
A Framework for Service-Oriented Extensions to
Ruby on Rails

S.F. Henzen
December 8, 2008

MASTER THESIS
TRESE Group

Department of Computer Science
University of Twente

The Netherlands

In cooperation with Nedforce B.V.

Supervising Committee:
dr. L. Ferreira Pires (University of Twente)

dr.ir. K.G. van den Berg (University of Twente)
dhr. R. van Domburg (Nedforce B.V.)

dr. I. Borovykh (Nedforce B.V.)

Abstract

Service-Oriented Architecture (SOA) is a relatively new architectural style
in software development. A SOA separates a system’s functionality into
distinct units called services, which can be distributed over a network.

Ruby on Rails is a free full-stack web development framework imple-
mented in the Ruby programming language. It allows programmers to cre-
ate applications that process HTTP requests, query or update a database,
and generate HTTP responses. Rails can also be used in a SOA to provide
or invoke services, but practical experiences have shown that Rails support
for these tasks is limited.

In this thesis we identify several limitations of Ruby on Rails with regard
to Service-Oriented Architecture. Limitations are discovered through case
studies. We study four medium-sized projects at a Dutch software company.
Limitation were discovered mainly in functionality for invoking services, but
also in functionality for providing certain types of services.

To allow for the extension of Rails’ functionality for invoking and pro-
viding services, an extensible framework was developed. Protocol handlers
for XML-RPC and a broad range of REST-ful services were also developed
as extensions for this framework. With this framework several test cases
that require extended functionality were successfully implemented. A sur-
vey has shown that application programmers rate the framework high on
many quality attributes, including learnability and maintainability.

1

Foreword

This research was triggered by the experiences of Nedforce in the develop-
ment of web-based applications. Nedforce is a Netherlands-based company
that develops web applications, typically for medium-sized businesses, gov-
ernments and education institutes. I would like to thank Nedforce for mak-
ing this research possible. I would especially like to thank the developers at
Nedforce. They have provided a lot of input for my case studies, and they
have helped evaluate the framework that is proposed in this thesis.

I would also like to thank my supervisors: Lúıs Ferreira Pires (Univer-
sity of Twente), Klaas van den Berg (University of Twente), Roderick van
Domburg (Nedforce) and Igor Borovykh (Nedforce) for their support.

2

List of Abbreviations

AWS ActionWebService, A framework for XML-RPC and SOAP in Rails

CoC Convention over Configuration, A design principle

CRUD Create, Read, Update, Delete, four common actions used to ma-
nipulate a set of data

DRY Don’t Repeat Yourself, A design principle

HTTP Hypertext Transfer Protocol, A network protocol

IoC Inversion of Control, A design pattern

JSON Javascript Object Notation, A markup language

MEP Message Exchange Pattern, Pattern describing the sequence of mes-
sages exchanged in a network interaction

MVC Model-View-Controller, A design pattern

Rails Ruby on Rails, A web development framework

REST Representational State Transfer, A service design style

RPC Remote Procedure Call, A service design style

SOA Service-Oriented Architecture, An architectural style

UDDI Universal Description, Discovery and Integration, a standard for
service repositories

URI Uniform Resource Identifier, A uniform syntax for uniquely identify-
ing resources.

WSDL Web Service Definition Language, A language for defining web
services

XML eXtensible Markup Language

XML-RPC eXtensible Markup Language - Remote Procedure Call, A net-
work protocol for performing remote procedure calls using XML

3

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Problem Description . 11
1.3 Objectives . 11
1.4 Approach . 12

1.4.1 Identifying the Limitations of Rails 12
1.4.2 Developing a Framework for Service-Oriented Exten-

sions to Rails . 13
1.5 Structure . 13

2 Background 15
2.1 Ruby . 15
2.2 Ruby on Rails . 16

2.2.1 HTTP Processing, Response generation 17
2.2.2 The Inversion of Control Pattern 18
2.2.3 The Push MVC Pattern 18
2.2.4 The DRY Principle . 18
2.2.5 Creating ActiveRecords 18
2.2.6 Using Generators . 19
2.2.7 Agile Software Development and Rails 20

2.3 Service-Oriented Architecture 21
2.3.1 Service Interaction Styles 22
2.3.2 Service Technology . 23

2.4 SOA in Rails . 27
2.4.1 Providing REST-ful services 27
2.4.2 Invoking REST-ful services 27
2.4.3 Providing and Invoking Services using XML-RPC and

SOAP . 28
2.5 Summary . 29

3 Case Studies 31
3.1 Case Study Approach . 31
3.2 Portal . 33

4

CONTENTS 5

3.2.1 Purpose . 33
3.2.2 Environment . 33
3.2.3 Data Structure . 34
3.2.4 Workflows and Interactions 35
3.2.5 Development Process 37

3.3 Content Management System 38
3.3.1 Purpose . 39
3.3.2 Environment . 39
3.3.3 Data Structure . 39
3.3.4 Workflows and Interactions 41
3.3.5 Development Process 42

3.4 Froodi . 43
3.4.1 Purpose . 43
3.4.2 Environment . 43
3.4.3 Data Structure . 44
3.4.4 Development Process 47

3.5 World Usability Day . 47
3.5.1 Purpose . 47
3.5.2 Environment . 47
3.5.3 Data Structure . 48
3.5.4 Workflows and Interactions 48
3.5.5 Development Process 49

3.6 Evaluation of Discovered Problems 50
3.7 Summary . 52

4 Framework 53
4.1 Requirements and Architecture 53

4.1.1 Service Invoker . 54
4.1.2 Service Provider . 55

4.2 Design of service invoker . 56
4.3 Implementation of service invoker 57
4.4 Design of service provider . 62
4.5 Implementation of service provider 64
4.6 Summary . 65

5 Test Cases 66
5.1 Overview . 66
5.2 General Design of Implementations 67
5.3 Case 1: Providing a ‘hello’ service using XML-RPC 67
5.4 Case 2: Invoking a ‘hello’ service using XML-RPC 68
5.5 Case 3: Invoking Google Maps using REST and HTTP . . . 68
5.6 Case 4: Invoking Flickr using XML-RPC 69
5.7 Case 5: Invoking Eventbrite using REST and HTTP 70
5.8 Case 6: Invoking Thumbalizr using REST and HTTP 71

CONTENTS 6

5.9 Case 7: Invoking a document converter using REST and HTTP 72
5.10 Summary . 74

6 Evaluation 75
6.1 Alternatives . 75

6.1.1 Approach . 75
6.1.2 Results . 76
6.1.3 Discussion . 77

6.2 Survey . 80
6.2.1 Approach . 80
6.2.2 Results . 81
6.2.3 Discussion . 82

6.3 Summary . 83

7 Conclusions 84
7.1 Limitations of Rails . 84
7.2 A Framework for Service-Oriented Extensions to Ruby on Rails 85
7.3 Framework Evaluation . 85
7.4 Future Work . 87

A Code Samples 88
A.1 Invoking a ‘hello’ service using XML-RPC 88
A.2 Providing a ‘hello’ service using XML-RPC with AWS 88
A.3 Invoking a ‘hello’ service using XML-RPC with AWS 89
A.4 Invoking Google Maps using REST and HTTP 89
A.5 Invoking Flickr using XML-RPC 90
A.6 Invoking Eventbrite using REST and HTTP 91
A.7 Invoking Thumbalizr using REST and HTTP 92
A.8 Invoking a document converter using REST and HTTP . . . 92

B Survey 94

List of Tables

2.1 Service technologies . 23
2.2 HTTP request contents . 23
2.3 HTTP methods and their semantics 24
2.4 Components available for SOA classified according to tasks . 27

3.1 SOA tasks with problems . 52

5.1 Test cases classified according to SOA tasks 67

6.1 Comparison of framework with alternatives 77
6.2 Implementations of cases using framework and alternatives . 78
6.3 Median rating by developers per case, per quality attribute . 81

7

List of Figures

1.1 Approach (UML Activity Diagram). 12

2.1 Rails stack, arrows indicate typical HTTP interaction 16
2.2 Typical HTTP request . 17
2.3 Example of a Service-Oriented Architecture 21
2.4 XML-RPC request layered on top of HTTP 25
2.5 SOAP request layered on top of HTTP 26

3.1 Publisher environment from portal perspective 34
3.2 Portal data structure (UML Class) 35
3.3 Portal roles (UML Use Case) 36
3.4 Publisher environment from CMS perspective. 40
3.5 CMS data structure . 41
3.6 Froodi Environment . 45
3.7 Froodi Data Structure . 46
3.8 World Usability Day Environment 48
3.9 World Usability Day Entities 49

4.1 Rails and the service invoker framework 54
4.2 The layered architecture of the invoker extension 55
4.3 Rails and the service provider extension 56
4.4 The layered architecture of the provider extension 57
4.5 Service Invoker as a singleton 58
4.6 Service Invoker with separate message object 58
4.7 Service invoker with request builder and response processors 59
4.8 Service invoker with subclasses for use in specific applications 60
4.9 Service invoker performing an HTTP request 61
4.10 Extended service invoker performing an HTTP request . . . 61
4.11 Basic elements of service provider 63

5.1 Implementation of Case 2. ProviderInvoker and extensions. . 68
5.2 Implementation of Case 3: GoogleMapsInvoker and exten-

sions. 69
5.3 Implementation of Case 4: FlickrInvoker and extensions. . . 70

8

LIST OF FIGURES 9

5.4 Implementation of Case 5: WUDInvoker and extensions. . . 71
5.5 Implementation of Case 6: ThumbalizrInvoker and exten-

sions. 72
5.6 Document converter interaction pattern 73
5.7 Implementation of Case 7: DocumentInvoker and extensions. 74

6.1 Boxplot of ratings for quality attributes over all cases 82

Chapter 1

Introduction

In this research we examine the potential of the Ruby on Rails web develop-
ment framework for use in Service-Oriented Architectures. We also propose
a framework for Rails that makes it more suitable for use in Service-Oriented
Architectures. This chapter briefly describes the core concepts ‘Service-
Oriented Architecture’ and ‘Ruby on Rails’, and outlines the problem mo-
tivating this research. It then describes the approach and the structure of
the rest of this thesis.

1.1 Motivation

Service-Oriented Architecture (SOA) is a relatively new architectural style
in software development [1]. A SOA separates tasks into distinct units called
services, which can be distributed over a network. A service, is a ubiqui-
tous interface that provides access to pieces of data or functionality. Service
clients can access this service to perform a task, such as querying or updating
a central database [2]. Services can be combined to create Service-oriented
applications. There can be services that invoke multiple other services to en-
act a long-running process [3]. There can also be services that are invoked by
other services to coordinate an interaction [4][5][6]. These possibilities allow
complex and distributed systems to be designed as interactions of services.
Services can be reused in many different applications. Many standards for
transporting and handling information in networked applications are based
on the SOA architectural style.

Ruby on Rails, or simply Rails, is a free full-stack web development
framework implemented in the Ruby programming language. It runs on top
of an HTTP server. It provides functionality to process HTTP requests,
generate HTTP responses (typically in HTML format), and interact with
a database. In its architecture it is comparable to a subset of the J2EE
framework [7], but it has several advantages. In Rails, there are no heavy
toolsets, no complex congurations, and no elaborate processes. The focus is

10

CHAPTER 1. INTRODUCTION 11

on rapid prototyping and the ability to respond quickly to changes. There-
fore, Rails has been called an ‘Agile’ framework (see Section 2.2.7). Rails
allows users to prototype applications by doing little more than specifying
the data model. Trivial parts of the application, like CRUD interfaces for
objects in the database, do not require much coding or configuration at all
(see Section 2.2.6).

Support for SOA is very important for current and future projects using
the Rails framework. However, limitations are encountered when using a
Rails application as part of a service-oriented system. These limitations are
the subject of this thesis.

1.2 Problem Description

At present, Rails has some support for providing and invoking RPC-style
web services (see Section 2.3.1). It also includes functionality for providing
and invoking REST-ful services. However, practical experiences have shown
that Rails support for SOA is not yet sufficiently developed to allow for the
development of high-quality service-oriented applications [8].

Rails was originally designed to be a platform that simply processes
HTTP requests, interacts with a database and generates HTTP responses
in HTML format. Since then it has evolved beyond that scope and is used
for all kinds of applications. However, since it was not designed for use in
service-oriented systems, it has been argued that Rails should not be used
as such [9].

In this research we explore the limitations and possibilities of Rails with
regard to SOA. The central problem of this research is how to use Rails in
a SOA environment.

1.3 Objectives

The first objective of this research is to identify the limitations of Rails
with regard to SOA. These limitations are discovered through case studies
supported by a litarature study. The limitations we have discovered include
missing functionality for invoking or providing services with Rails, and poor
integration for some of the service- related functionality that is available to
the Rails framework.

The second objective of this research is to develop a framework for inte-
grating service-oriented functionality into Rails. This framework provides a
common structure for extending Rails’ functionality with regard to invoking
and providing services. We evaluate the framework with a set of test cases.

CHAPTER 1. INTRODUCTION 12

1.4 Approach

The research presented in this thesis consists of two parts, corresponding
to the two objectives. The first part is investigating the limitations Rails
has when used for developing service-oriented applications. The second part
is developing a framework for integrating service-oriented functionality into
Rails. This solves some of the limitations found in the first part.

1. perform
case

studies

problems

2. evaluate
problems

limitationscode

interviews

design
documents

4. design
and

implement

solution
(extension)

3. determine
requirements

requirements

5. evaluate
framework

literature on
rails

Figure 1.1: Approach (UML Activity Diagram).

1.4.1 Identifying the Limitations of Rails

First we investigate limitations of Rails when used for service-oriented ap-
plications. The approach for this is as follows (the numbers correspond to
the activities in shown in Figure 1.1):

1. Conduct exploratory case studies at a Dutch software company. Here
we evaluated four projects in order to get an overview of what prob-
lems may be encountered when developing service-oriented applica-
tions with Rails. We evaluated several aspects of each project: envi-
ronment, functionality and development process. We sought evidence
of problems encountered in each of these areas by conducting inter-
views and reviewing design documents and source code.

2. Evaluate the problems encountered in the case studies to find limita-
tions of Rails with regard to SOA. An important consideration here is
whether a problem is caused by a limitation or by a misuse of Rails.
Problems caused by misuse may also indicate that a certain part of the
Rails platform is unnecessarily complicated or poorly structured. An-
other important consideration is whether the problem is still relevant.
Since Rails is a young platform, it is always evolving and changing.

CHAPTER 1. INTRODUCTION 13

Case studies on products delivered a year ago may yield problems that
where already solved or mitigated in more recent versions of Rails.

1.4.2 Developing a Framework for Service-Oriented Exten-
sions to Rails

The second step is to develop a framework for integrating service-oriented
functionality into Rails. The approach for this is as follows. (the numbers
correspond to the activities shown in Figure 1.1):

3. Determine initial requirements for the framework. In this step we
select the limitations we want to solve with our framework. From these
limitations the initial functional requirements are derived. Additional
requirements come from how we decide to integrate the framework
into Rails.

4. Design and implement the framework.

5. Evaluate the framework. In this phase we develop several test cases.
We look at the limitations we found and evaluate how these can be mit-
igated using the framework. We also involve programmers that have
experience developing service-oriented applications using Rails and let
them rate the framework with regard to several quality attributes,
including usability, extensibility, maintainability and simplicity.

1.5 Structure

The thesis is structured as follows:

Chapter 2 describes the background for this research. It gives an overview
of concepts related to Service-Oriented Architecture. It explains the
architecture and workings of Ruby on Rails. Current support for SOA
in Rails is also described.

Chapter 3 describes the first phase of the research In which we conduct
case studies to identify limitations of Rails with regard to SOA. It
contains the results of the case studies, the evaluation of the case
studies and the limitations of Rails that were discovered.

Chapter 4 describes the second phase of the research, in which we propose
a framework for integrating service-oriented functionality into Rails.
It starts with the requirements and architecture for the framework we
propose. It then describes in detail how the framework was designed
and implemented.

CHAPTER 1. INTRODUCTION 14

Chapter 5 describes a set of test cases that were implemented using the
framework. These test cases demonstrate the features and workings
of the framework.

Chapter 6 contains the evaluation of the framework. It describes how the
framework compares to several other technologies currently available
for providing and invoking services with Rails. It also presents a sur-
vey that was conducted to gather feedback on the framework from
experienced Rails developers.

Chapter 7 summarizes the conclusions.

Chapter 2

Background

This chapter introduces the basic concepts that are important in this thesis.
In Section 2.1 the Ruby programming language is introduced. Section 2.2
gives an overview of the Ruby on Rails web development framework. Sec-
tion 2.3 defines Service-Oriented Architecture, and gives an overview of the
main technologies that are currently available for it. How the technologies
described in Section 2.3 are currently supported in the Rails platform is
discussed in Section 2.4.

2.1 Ruby

Ruby is a general purpose object-oriented language [10]. It was inspired
by Perl and Smalltalk. Ruby originated in Japan during the mid-1990s
and was initially developed by Yukihiro Matsumoto. There is currently no
full specification of the Ruby language, so the original implementation is
considered to be the reference. As of 2008, there are a number of upcoming
alternative implementations of the Ruby language, including YARV, JRuby,
Rubinius, IronRuby, and MacRuby.

Ruby was designed with an emphasis on human needs rather than com-
puter needs. It focusses on maximizing programmer productivity, rather
than computer efficiency.

Ruby is a fully object oriented language. There are no primitive types,
like Java’s integer, boolean, etc. There are only objects. An integer would
be an object of the Integer class.

Ruby is an interpreted language. There is no distinction between compile
time and runtime. The JRuby and IronRuby implementations provide just-
in-time compilation functionality. The other implementations use single-
pass interpretation.

Ruby is dynamically typed. This means that classes can be dynamically
defined and redefined at runtime. Through reflection programmers can alter
the behaviour of a class at any point during the execution of a program.

15

CHAPTER 2. BACKGROUND 16

Changing the behaviour of a class changes the behaviour of all objects of
that class. Behaviour of built-in classes, like Integer or String, can also be
modified dynamically.

Methods in ruby can be treated as objects. A method can be passed
to another method as a parameter, and methods can return new methods
as a result. Ruby has been called ‘multi-paradigmatic’ because it allows
programmers to use constructs from functional programming, specifically
higher-order functions.

2.2 Ruby on Rails

Ruby on Rails (Rails) is a full-stack open source web development framework
implemented in the Ruby programming language. It allows programmers to
create applications that process HTTP requests, query or update a database,
and generate HTTP responses. Figure 2.1 shows the various components of
a typical web application that uses Rails. Rails relies on a webserver for the
handling of incomming HTTP connections. It consists of four main modules:
Dispatcher, ActionController, ActiveRecord and ActionView. Rails relies
on a database for persistent storage of data. Rails can work with various
databases and webservers.

Server (WEBrick/ Mongrel/ Apache)

Dispatcher

ActionController

ActiveRecord

Database (SQLite/ MySQL/ PostgreSQL)

ActionView Rails

HTTP Request HTTP Response

Figure 2.1: Rails stack, arrows indicate typical HTTP interaction

CHAPTER 2. BACKGROUND 17

2.2.1 HTTP Processing, Response generation

The Rails framework receives HTTP requests from a webserver. When a
request comes in, it is dispatched to an ActionController instance. Action-
Controller can give instructions to query or manipulate data in a database
through ActiveRecord. It can also give instructions to generate a response
through ActionView.

Dispatcher
<<ActionController>>

Controller
<<ActionController>> Template

<<ActionView>>

Model
<<ActiveRecord>>

Record
<<ActiveRecord>>

store result

records

HTTP Response

HTTP Request

handle

query

render
query

data

Figure 2.2: Typical HTTP request

Figure 2.2 shows a typical processing of an HTTP request by the Action-
Controller. The ActionController class controls the main event loop. Using a
set of routing rules, a request is mapped to a method in an ActionController
instance based on its URL and its HTTP action (GET, PUT, POST or
DELETE). ActionController automatically calls this method. This method
is defined by a programmer. It can use information from the request to
access the database and prepare data for response generation. It can then
either explicitly call a method that renders the response (as shown in Fig-
ure 2.2) or just terminate, in which case the ActionController takes control
again and decides how to generate a response using certain conventions. Ac-
tionView is the module that generates the response. This is done through a
templating system. The programmer can define a template for the response
in a Domain-Specific language (e.g. ERB, RJS) [11]. The resulting response
can be in many formats (e.g. HTML, XML, etc.). When the response is
generated, the ActionController takes control again and passes it to the
webserver.

CHAPTER 2. BACKGROUND 18

2.2.2 The Inversion of Control Pattern

Rails allows programmers to define how requests are processed through In-
version of Control (IoC) [12]. IoC means that instead of a programmer spec-
ifying the series of operations to be performed in response to a request, a
programmer rather registers desired responses to particular events, and then
lets Rails take control over the precise order and set of events to trigger. This
concept is used by many popular web application frameworks (Spring, Pic-
oContainer, HiveMind [13], EJB [14]). In Rails, users specify responses to
HTTP requests in ActionController and ActionView. There are also hooks
to register responses to data manipulation events in ActiveRecord.

2.2.3 The Push MVC Pattern

Rails follows the Model-View-Controller (MVC) architectural pattern [15],
which is quite common in web application development frameworks [16].
MVC prescribes that the application state should be contained in a model.
In Rails applications the application state is usually stored in a database. It
can be accessed through the ActiveRecord module, which performs Object-
Relational Mapping [1]. This ORM and the database together provide the
model component. ActiveRecord is part of Rails, but can also be used
independently.

MVC prescribes that the view should be the graphical representation
of the model. There are two types of MVC: Push and Pull. In Pull MVC
the view component accesses the model component directly and ‘pulls’ in-
formation from it to display to the user. In Push MVC the controller is
responsible for passing data to the view component. Data is ‘pushed’ to
the view by the controller. In both types the controller is responsible for
performing operations that alter the model. Rails uses push MVC.

2.2.4 The DRY Principle

Rails adheres to the DRY (Dont Repeat Yourself) principle. This means
that every piece of functionality, if possible, should only be present in one
place. This is closely related to the principle of Separation of Concerns
(SoC) and concepts like Aspect Oriented Programming. An example of
how Rails applies the DRY principle is by allowing programmers to define
filters. A request can pass through a filter before it is dispatched to a more
specific action method, thus providing a mechanism to specify behavior that
is common to many actions in a single location.

2.2.5 Creating ActiveRecords

Rails is designed adhering to the Convention over Configuration (CoC) prin-
ciple. This means that useful default behavior is provided, and this only

CHAPTER 2. BACKGROUND 19

needs to be changed when necessary. The following ActiveRecord definition
gives an example of this.

class Project < ActiveRecord::Base
has_many :milestones

end

Through CoC, Rails knows that this class represents the ‘projects’ ta-
ble in the database, and that an instance of this class represents a row in
that table. It gives instances of this class accessors for all the attributes
of this table. ‘has many :milestones’ means that projects have a one-to-
many relation with milestones in the database. Rails gives instances of this
class an accessor for an attribute ‘milestones’ that can be used to retrieve
all milestones from the database that belong to this project, and add new
milestones to the project.

2.2.6 Using Generators

Generators are scripts that allow users to quickly develop common function-
ality. For example, to create an application to manage person data, users
just need to run the following Ruby script:

generate scaffold Project name:string leader:string deadline:date

Running of this script generates:

1. A new script that can be used to create a table named ‘projects’ with
the specified properties in the database.

2. An ActiveRecord class named ‘Project’ for this table.

3. An ActionController and ActionViews that allow the user to create,
read, update and delete data in this table (A CRUD interface, [17]).

The classes generated by this script form a working piece of functionality
that can be used right away to interact with the data in the database from a
web interface. The standard classes can easily be modified to describe new
interactions beyond simple CRUD actions, for example assigning a person
to a project.

Test support is built-in. To test applications, Rails users define methods
that invoke functionality of the application and assert whether certain post-
conditions are met. A skeleton for these methods is automatically generated
when generators are used to create classes.

CHAPTER 2. BACKGROUND 20

2.2.7 Agile Software Development and Rails

Rails is especially suitable for Agile Software Development methods. Agile
is a common name for a set of software development methods that aim
to provide a lightweight and flexible development process. Agile methods
offer an alternative to traditional plan-driven methods, which are not used
as intended because they are too mechanistic and rigid [18][19]. There are
many agile methods, including: (from [20])

1. Scrum development process [21]

2. Extreme Programming (XP) [22]

3. Pragmatic Programming (PP) [23]

The authors of these methods have also co-authored and undersigned the
‘Agile Manifesto’ [24], which contains some of the common characteristics
of agile methods. These common characteristics include:

1. An aim to deliver working software fast and frequently, preferably
every couple of weeks.

2. A focus on working software as the main measure of progress and the
authoritative source of documentation.

3. Allowing for changing requirements at any stage of the development
process.

4. Employing close customer-developer interaction.

5. Employing face-to-face conversation as the main method of conveying
information to and within a development team.

In [25] the characteristics that agile methods aim to be simple, easy to learn
and modify and sufficiently documented were added.

Rails does not prohibit the use of any development methods, including
non-agile methods. It does not prescribe a process. It does, however, support
the practices and processes found in many agile methods.

CoC and DRY help in keeping the size of the codebase small. Changes
in the later stages of a development process thus impact less code in Rails
projects than they would in other projects. This makes it easier to respond
to last-moment changes, an ability that is required in agile methods.

Generators allow developers to deliver working software early in the de-
velopment life-cycle. This can be leveraged to improve customerdeveloper
interaction. Note that developers can also choose to forego generators and
build their applications from the ground up following a detailed design.

Test-Driven Development (TDD) is a practice that is incorporated in
several agile methods, including XP. TDD prescribes that tests are written

CHAPTER 2. BACKGROUND 21

before the code. Rails has built-in support for testing, which makes TDD
easy. However, Rails does not require that its testing capabilities are actually
used.

2.3 Service-Oriented Architecture

In this thesis we define a Service-Oriented Architecture (SOA) as an architec-
tural style for a system in which multiple applications interact by providing
and using services . An application provides a service when it exposes parts
of its functionality as an interface that can be used by all other applications
in the system [2]. An application invokes a service by sending messages to
it and/or receiving messages from it. Applications that provide or invoke
services can be distributed over a network.

Payment system

Bike order systemCar order system

Client Client Reporting system

= Application

= Service

= Application Invoking
a Service

Figure 2.3: Example of a Service-Oriented Architecture

Figure 2.3 shows an example of a SOA. The system in this figure belongs
to a hypothetical company that sells both cars and bikes. It has two different
order processing systems for this. Clients can order cars or bikes via the
respective order processing systems through a service. The order processing
systems both use the same payment processing service of a payment system.
The company also owns a reporting system that collects sales data and
extracts statistical information from it. The reporting system collects sales
data through another service that the order systems provide.

Applications can provide multiple services, use multiple services, and an
application is not limited to either invoking or providing services. A dis-
tributed Service-Oriented Architecture has several advantages over a mono-
lithic architecture:

CHAPTER 2. BACKGROUND 22

• Greater reliability: when the application providing the car order ser-
vice crashes nothing else breaks, and clients can still buy bikes.

• Better modularity: When the reporting system is replaced nothing
else needs to be changed

• Better extensibility: Other order processing systems using the same
payment processing system can be added without changing anything
else.

2.3.1 Service Interaction Styles

There are three important interaction styles a service can follow. These
are message-oriented, RPC and REST. Each of these styles imply different
message semantics and a different message exchange pattern.

A Message-oriented Service offers a set of endpoints. Each endpoint can
have a certain input message format and a certain output message format.
It is not necessary to output a message for every input message, nor is it
necessary to receive an input message before every output message. Any
message format is allowed. Application- or domain-specific protocols can
be layered on top of message-oriented services. This has been called the
framework approach. Message-oriented interaction leaves a lot of decisions
with regard to message semantics and message exchange pattern to the
application developer [26].

RPC stands for Remote Procedure Call. An RPC-style service exposes
a set of procedures. The client ‘calls’ a procedure and the service executes
the procedure and returns the result. A request to an RPC-style service
consists of a procedure name and a set of parameters. A response can be
either the result of the procedure referenced by the request or an error. Note
that a request should always be followed by a response, and that there are
no unsolicited responses.

RPC-style has more constraints on message format and interaction pat-
tern than message-style. This allows for more meaningful processing by a
common software framework. Having more constraints makes a common
framework more complicated, but it can also do a lot more for the appli-
cation programmer. For example, the procedure name could be used to
automatically call a corresponding method.

REST stands for Representational State Transfer. A REST-style service
exposes pieces of data or functionality as resources. Resources are queried
and manipulated through a constrained set of well-defined operations. This
set of operations often includes the CRUD operations (Create, Read, Up-
date, Delete). A service client can interact with a REST-style service by
requesting an operation on a resource. An operation may require a rep-
resentation of a resource as input. It may also yield a representation of a
resource as output.

CHAPTER 2. BACKGROUND 23

A protocol supporting REST has a constrained set of operations, whereas
a protocol supporting RPC allows programmers to define their own set of
operations in the form of function calls. Providing a constrained set of
operations allows for more meaningful processing by a common software
framework. For example, a request that merely retrieves a representation of
a resource can be cached by the client or an intermediary. Also, any request
that changes a resource is potentially harmful, so it can be filtered by a
firewall.

2.3.2 Service Technology

There are several technologies supporting the various service interaction
styles. In this section we discuss the most common technologies, as shown
in Table 2.1

Interaction Style Supporting Technology
REST HTTP and URI
RPC XML-RPC or SOAP
Message-oriented SOAP

Table 2.1: Service technologies

HTTP stands for Hyper Text Transfer Protocol. It supports the REST-
style by providing a constrained set of operations to query and manipulate
resources through the exchange of representations. It provides several oper-
ations, including the four CRUD operations. HTTP uses Uniform Resource
Identifiers (URI, [27]) to uniquely address resources. Table 2.2 shows the
contents of an HTTP request, and how it can be mapped to the REST style.
Table 2.3 shows the CRUD request methods and their semantics. This table
shows the intended use of these methods. The method semantics shown here
can be ignored by applications.

Message Contents Mapping to REST-style
request method Token indicating the desired operation on the re-

quested resource
URI Unique identifier of a certain resource
header fields Additional information required to perform the de-

sired operation, including the format of the enclosed
representation

body A representation of a resource

Table 2.2: HTTP request contents

HTTP provides a uniform interface to query and manipulate resources,
but whether this interface is used as intended depends on application devel-
opers. Another thing that HTTP leaves to application developers is how the

CHAPTER 2. BACKGROUND 24

Request method Semantics
GET retrieve whatever information is identified by the

Request-URI
PUT request that the enclosed entity be stored under the

supplied Request-URI
POST request that the server accept the entity enclosed in

the request as a new subordinate of the resource iden-
tified by the Request-URI

DELETE requests that the server delete the resource identified
by the Request-URI

Table 2.3: HTTP methods and their semantics

body of the request is used. According to REST the body should contain
a representation of a resource, but in reality anything can be transported
in an HTTP body. HTTP does not prescribe how the body should be en-
coded or what information about resources it should contain. HTTP can
be used to provide REST-style services when the HTTP actions are used as
intended and an encoding format (e.g. XML) and representation semantics
are defined for the HTTP body. We call services that use HTTP in this way
REST-ful services.

There are many examples of public REST-ful services available, such as
Amazons’ Simple Storage Service [28] or Google’s API’s [29].

XML-RPC is a protocol that supports the RPC interaction style. An
XML-RPC request contains a procedure name and zero or more parameters.
A response is either a result of a procedure or an error. XML-RPC prescribes
an XML-based format for encoding requests and responses. The format
includes encoding of primitive data types, such as strings and arrays. An
XML-RPC request consists of a procedure name and a list of parameters.
An XML-RPC response contains either a list of results or an error.

XML-RPC uses HTTP as a transport mechanism. The XML-RPC mes-
sage is contained in the body of the HTTP message. Figure 2.4 shows a
request to a service using XML-RPC. The XML-RPC layer encodes a pro-
cedure name and parameters and sends them to the HTTP layer as the body
of a request. It usually employs a single URI to identify the entire service.
The HTTP action is always POST. At the service side, the HTTP URI and
action are not used. All relevant data is in the body of the request. This
body is passed to the XML-RPC layer which decodes it and extracts the
procedure name and parameters. [30]

SOAP is an XML-based protocol for message-oriented interaction, with
features for RPC-style interaction. SOAP once stood for Simple Object
Access Protocol, but this acronym was dropped with Version 1.2 of the
standard, as it was considered to be misleading. SOAP was originally based
on XML-RPC, and version 1.0 and 1.1 supported RPC-style interaction only.

CHAPTER 2. BACKGROUND 25

Client Service

HTTP layer HTTP layer

Body Body
URI, action

XMLRPC-
layer

XMLRPC-
layer

ParamsMethod MethodParams

URI = endpoint uri

action = POST

Figure 2.4: XML-RPC request layered on top of HTTP

Version 1.2, the most recent version at the time of this writing, supports
message-oriented interaction. A SOAP message contains a header and a
body. The SOAP header contains control data and metadata about the
contents. The SOAP body contains the message. This message may be in
any XML-based format. SOAP 1.2 defines a message format for RPC-style
interaction, but usage of this message format is optional. [31], [32]

Services that use SOAP can be described in Web Service Description
Language (WSDL). WSDL is an XML-based language that provides a syn-
tax for describing services. It describes services in terms of endpoints with
input and output messages. An endpoint description includes a ‘style’ at-
tribute, which describes the message format. The styles used to describe
SOAP services are RPC/literal and document/literal. RPC/literal messages
conform to SOAP’s RPC message format. Document/literal messages can
contain any message in XML format. RPC/literal messages are thus a subset
of document/literal messages [33]. An endpoint can also have a certain Mes-
sage Exchange Pattern (MEP). A MEP describes the pattern of messages
required to interact with a service (e.g. in-out for request-response). With
the document/literal style and MEPs WSDL can describe the full range of
message-oriented SOAP interactions. WSDL documents can be used to au-
tomatically generate stubs and skeletons for client programs. They can also
be used to advertise a service.

WSDL documents can be retrieved through servers conforming to the
Universal Description, Discovery and Integration (UDDI) standard. A UDDI-
compliant server acts as a registry for services and can be accessed through
SOAP [34]. SOAP, WSDL and UDDI are referred to as the WS basic tech-
nologies [35].

There are many other standards that can be used with SOAP to provide
features like authentication, transactions, sessions, etc. These standards are
usually prefixed by ‘WS-’ (WS-Coordination [4], WS-Atomictransaction [5],

CHAPTER 2. BACKGROUND 26

WS-BusinessActivity [6]).
SOAP uses an internet application-layer protocol as a transport protocol.

HTTP is the most common protocol for transporting SOAP messages. This
is also prescribed by an interoperability standard called ‘basic profile’[36].
HTTP limits interaction patterns to request-response only, thus not sup-
porting the full range of possible message-oriented interaction patterns.

Figure 2.5 shows a request to a service using SOAP over HTTP. This is
similar to the XML-RPC request in Figure 2.4. One difference is that the
SOAP request contains a header that can contain additional processing and
routing information. Another difference is that the SOAP body can contain
an XML document in any format, not just an RPC-style procedure name
and parameters.

Client Service

HTTP layer HTTP layer

Body Body

SOAP layer SOAP layer

BodyHeader Header Body

URI = endpoint uri

action = POST

URI, action

Figure 2.5: SOAP request layered on top of HTTP

Using HTTP as a transport protocol, as done in case of SOAP and
XML-RPC, has several disadvantages:

1. it makes implementing security policies through firewalls more diffi-
cult, because deeper packet inspection is needed to determine what a
request is trying to do.

2. It decreases performance, because both the HTTP and the protocol
message need to be encoded and decoded.

3. In case of SOAP, it increases the complexity of the code unnecessarily,
because some features in the HTTP layer are duplicated in the SOAP
layer (Such as addressing [37]).

4. In case of SOAP, request-response becomes the only possible interac-
tion pattern, although other patterns are allowed by the SOAP proto-
col.

CHAPTER 2. BACKGROUND 27

2.4 SOA in Rails

In this section we focus on how to provide REST-ful services over HTTP,
and how to provide services using the XML-RPC and SOAP protocols in
Rails. Figure 2.4 shows the six possible tasks Rails could perform with
regard to these protocols. It also shows the names of the components that
are commonly used for that task. This section goes through each of these
tasks, and explains how they can be performed in Rails.

Protocols

Rails basic
functionality

HTTP

ActiveResource,
Restclient, HTTParty,
NET::HTTP, Open-uri

AWS, xmlrpc4rInvoke AWS, soap4r

SOAP

AWS, soap4r

XML-RPC

AWS, xmlrpc4rProvide

Roles

Table 2.4: Components available for SOA classified according to tasks

2.4.1 Providing REST-ful services

Rails is very suitable for providing REST-ful services over HTTP. It was
originally designed to provide HTML websites only. It supported HTTP
GET and POST operations on URI’s. Now Rails has built-in functionality to
provide almost any kind of REST-ful service over HTTP. It supports the full
set of HTTP operations, including PUT and DELETE. In accordance with
the REST-style, a Rails ActionController can be seen as managing a certain
resource or set of resources. Requests can be routed to the controller based
on their URI, and further routed within the controller based on their HTTP
operation. The controller can query or update a resource and generate a
response. The response can be human-readable (image, HTML, plain text)
or machine-processable (XML, YAML, JSON).

2.4.2 Invoking REST-ful services

Rails also includes functionality for invoking certain REST-ful services. Ac-
tiveResource is a Rails module that allows users to work with remote re-
sources over HTTP as if they were local objects. It translates method calls
to HTTP requests. It assumes that representations come in the form of a
certain XML format. The use of ActiveResource is limited to a subset of
REST-ful services. The method-to-request translation does not allow pro-
grammers to perform arbitrary operations on arbitrary resources. It expects

CHAPTER 2. BACKGROUND 28

a certain result in a certain encoding format from the service for each op-
eration. However, a REST-ful service can respond with a broad range of
representations of resources encoded in any encoding format.

When creating a Rails application it is quite easy to provide a service
that the ActiveResource module of another applicaiton can use. When you
use a generator to scaffold an entity you automatically provide a service
that manages an ActiveRecord and has both an HTML representation and
an XML representation that ActiveResource can use.

Alternative options for invoking REST-ful services are restclient [38] ,
HTTParty [39], open-uri and the rails core library NET::HTTP. These li-
braries are not dependent on Rails.

Restclient is a stateless library that can be used to perform any operation
on any remote resource, using any representation as input. The input can be
provided as raw data or as a set of key-value pairs. The key-value pairs are
then URL-encoded as if they were data from an HTML form. The HTTP
response is returned as a set of response headers and the unprocessed data
from the response body. It also handles HTTP response that indicate an
error or a redirect.

HTTParty provides a framework for creating objects that represent a
service in the program, analogous to ActiveResource instances. These ob-
jects can be configured to generate certain HTTP requests, as well as to
process the HTTP response in a certain way. HTTParty supports XML and
JSON formats.

Open-uri is a simple stateless library that can perform an HTTP GET
operation when provided with a URL. It also includes functionality for
HTTP basic authentication.

NET::HTTP is a stateless library for performing HTTP requests. It
provides no means of processing response data, generating request data or
handling errors. It just provides a set of functions that can be used to
generate and send any HTTP messages based on a set of parameters. Both
RESTclient and HTTParty use this library.

2.4.3 Providing and Invoking Services using XML-RPC and
SOAP

To provide or invoke a service using XML-RPC or SOAP the Rails appli-
cation programmer has several options. The most common option is to use
ActionWebService [40]. This was a part of the Rails framework until Rails
2.0. Now it is no longer supported. You can however still use it in Rails 2.0
projects with some tweaking. ActionWebService is a module for providing
and invoking both XML-RPC and SOAP services. It is limited to RPC-style
interaction.

ActionWebService allows programmers to define procedures and their
parameters in an API file. An API file is similar to a java interface, it only

CHAPTER 2. BACKGROUND 29

specifies signatures of procedures. The actual handling of a procedure call is
done by an ActionController method. ActionWebService provides the pro-
cedures in an API file through an XML-RPC and a SOAP interface. When
a procedure call comes in it is first checked against the API file to see wether
its valid. Then it is sent to an ActionController method. Which ActionCon-
troller method depends on certain predefined rules. The return value of the
ActionController method is used to generate a response. ActionWebService
can also be used to invoke XML-RPC and SOAP services on other hosts by
using an API file. In this case the API file forms a stub for the service. An
API file can also be used to generate a WSDL file that describes the service
it represents.

Another option for using XML-RPC or SOAP is to use the Ruby libraries
that underlie ActionWebService. These are called xmlrpc4r [41] and soap4r
[42]. Both can be used to provide or use services independently of Rails.
They can function as full-stack standalone XML-RPC or SOAP servers or
clients. They are not integrated into the Rails platform, but they can be
used from it.

There is also a port of the popular WSO2 web services framework to
the Ruby language, but it is still highly experimental and there is very little
documentation available [43]

2.5 Summary

Ruby is a general purpose programming language that features dynamic
typing and higher-order functions. Ruby on Rails is a framework for de-
veloping web applications implemented in Ruby. It includes many tools to
process HTTP requests and generate HTTP responses. It also includes a
database abstraction layer.

Service Oriented Architecture (SOA) is an architectural style in which
services are the main means of interaction between applications. A service
is an interface to an applications’ data or functionality that all other appli-
cations in a distributed system can access. In this chapter we have described
three styles of services:

• Message-oriented: A service exposes a set of endpoints to and from
which messages can be sent.

• Remote Procedure Call (RPC): A service exposes a set of procedures,
which can be called by a client.

• Representational State Transfer (REST): A service exposes a set of
resources on which a fixed set of actions can be performed.

We have also described three important protocols for providing and invoking
services:

CHAPTER 2. BACKGROUND 30

• HTTP (for REST)

• XML-RPC (for RPC)

• SOAP (for RPC and Message-oriented)

Rails’ basic functionality includes providing REST-ful services over HTTP.
It can also invoke REST-ful services that follow certain Rails-imposed con-
ventions. To invoke or provide other service types Rails needs external tools.

Chapter 3

Case Studies

This chapter presents the case studies we performed to identify limitations
of Rails with regard to SOA. The case study approach will be discussed
in Section 3.1. In this section the aspects of each case we explore and the
sources of evidence for problems we consider are described. The constraints
for selecting a case are also described.

Section 3.2 to Section 3.5 contain the reports of the four case studies we
performed. Each report has several sections, corresponding to the aspects
described in Section 3.1.

Section 3.6 gives an overview of the discovered problems. Problems
are evaluated in the context of recent developments. They are classified
according to the various SOA tasks described in Section 2.4.

3.1 Case Study Approach

The case studies are designed and implemented based on the principles out-
lined in [44]. This book provides a framework for defining a case study.
Following this approach, we define the following aspects of the case studies
here:

• The goal of the case studies.

• What is considered a case.

• The propositions.

The goal of the case studies is to find limitations of Rails when used in
SOA’s.

A case in this research is defined as the project of developing a single
product for a specific customer. A product is a working piece of software
that has a set of features that together achieve a set of consistent goals for
the customer. The product should be ‘finished’, meaning it was at some
point accepted by the customer, and after that has been operational for

31

CHAPTER 3. CASE STUDIES 32

some time. We consider only cases that are part of a SOA as defined by
Section 2.3.

There is only one proposition preceding this case study, which is: When
Rails is used to perform a SOA task, limitations are encountered. This gives
the case study a broad scope and an exploratory character.

For each case, we look at the following aspects:

• Background. How the need for the system arose, and what the stake-
holders of the system are.

• Purpose. Here we examine the functions of the final product. This
serves as an orienting step. It provides a context in which other as-
pects can be explored. It serves as a guideline for the rest of the case
study, ensuring that we dont overlook important functions and related
integration problems.

• Environment. Each project is part of a SOA. This implies that there
are other systems that interact with it. In this part, we list per interac-
tion how it works and what, if any, problems still exist in it. In every
case there is an interaction with the web browser on the client ma-
chine. This interaction is not described here, since it merely provides
a user interface to the product.

• Data structure. Here we describe how data is structured inside the
product.

• Workflows and interactions. This ties environment and data structure
together. It describes workflows in which operations are performed on
internal data entities and service requests are performed to external
systems.

• Development process. Here we examine the process by which the sys-
tem and its links to other systems were developed. We focus on the
problems encountered during the development process, and the solu-
tions used. Most of the problems will be described in this section.

These aspects also correspond to the different sections of each case study
report, except for background, which is used as an introduction.

Evidence for limitations encountered in each of these sections is collected
from multiple sources. Data from the following sources is collected:

• Design documents

• Source code

• Interviews

CHAPTER 3. CASE STUDIES 33

From the documents and the source code a diagram of the environment
and the data structure of the product is constructed. The programmers
that worked on the product are involved with constructing these diagrams
to ensure their correctness. These diagrams are then used as the basis for
structured interviews with programmers. For each connection to another
system, we ask programmers about the following issues:

• How difficult it was to implement.

• Whether problems were encountered in implementing the connection.

• How these problems were solved.

3.2 Portal

Portal was developed for a firm that sells digital publications. A digital pub-
lication is a special type of digital document that can be read like a book
with a flash tool. It can contain dynamic content such as audio and video. It
can also contain simple interactive elements. The publishing firm had a web-
site in place to make these publications available online. It allowed readers
to subscribe to these publications, pay for them, and access them with the
flash tool. At some point, the need arose to allow whole companies access
to publications. At the business level, this was implemented with licenses.
A company could buy a license to a digital publication, which allowed that
company to subscribe a limited amount of its employees to that publication.
Portal is the system that was implemented to allow the publishing firm and
the companies to manage these licenses and subscriptions. It was chosen as
a case because of its complicated interaction with existing systems.

3.2.1 Purpose

Portal has several purposes:

• It allows the publishing firm to manage companies and their licenses.

• It allows companies to manage subscriptions for their employees

• It gives employees of companies an alternative way to access digital
publications. When employees are subscribed to a publication they
can access that publication either through the original website of the
publishing firm or through Portal.

3.2.2 Environment

Although users and subscriptions are managed in Portal, Portal is not the
authoritative source for users and subscriptions. The authoritative source

CHAPTER 3. CASE STUDIES 34

for this data is the publisher system on the publisher server (see Figure 3.1)
The portal synchronizes users and subscriptions with this system by invoking
an RPC-style service using XML-RPC. The publisher system manages all
users that use digital publications, whereas the portal only manages a subset
of these users. This means that the client company users in Portal are also
users on the publisher system.

The digital publication data resides in the publisher library. It is exposed
to readers from this system through a REST-ful service. No specific data
about digital publications is present in Portal.

Publisher server

Publisher
system

Publisher
library

ComponentClipping tool

Portal server

Portal

User PC

Flash reader

CMS server

CMS

User and
Subscription data

<<XML>>

Information <<XML>>
publications

Product data <<XML>>

Clipping data <<XML>>
media files

Clipping data <<XML>>
media files

Browser

Interface <<HTML>>

Figure 3.1: Publisher environment from portal perspective

3.2.3 Data Structure

Figure 3.1 describes the main internal data structure of the portal system.
This schema was deduced from the Portal database. The portal manages
companies’ licenses to use products. A product is a digital publication or a
set of digital publications. When a company has a license to use a product,
it can create several subscriptions for its employees. A subscription is a
permission to access a digital publication. An employee is a type of user.
When an employee or subscription is created it is synchronized with the
publisher system, so that employees that have a subscription in the portal

CHAPTER 3. CASE STUDIES 35

system can access the associated digital publication in the publisher system.
A role represents the type of the user (e.g. client company employee). Next
to Client company Employees there are also two other types of users. These
are also shown in Figure 3.3:

• Portal Administrators. These users work at the publishing firm. They
can create new users, licenses and companies.

• Company administrators. These users work at companies, just like
the employees. They can create new employees and subscriptions for
these employees, within the limits of what the license of their company
allows.

Role User

company License

Subscription

Product

** *1

*1

*

1

*

0..1

*

1

associated with

needed to use

works at

is a
Portal

Administrator,
Employee,

Or company
Administrator

Figure 3.2: Portal data structure (UML Class)

3.2.4 Workflows and Interactions

The overall workflow in the system is as follows:

• The portal administrator adds the company and creates a license for
that company on a certain product.

• He then creates an account for a company administrator.

• The company administrator logs in and creates accounts and sub-
scriptions for the other employees at its company. The number of
subscriptions he can create is limited by the attributes of the license.

CHAPTER 3. CASE STUDIES 36

• Company employees can log in and use the content to which they were
subscribed by the company administrator.

portal-
administrator

client user

client company
administrator

<extends>

create
client

company

create
license

create
subscription

use
subscription

create
client company
administrator

account

Figure 3.3: Portal roles (UML Use Case)

When an employee account is created it needs to be synchronized with
the publisher system. This is required to allow the employee access to digital
publications stored in the publisher library. Synchronizing employees works
as follows:

• When an employee account is created in the portal it is not given a
password, so it cannot log in. The portal sends an XML-RPC request
to the publisher system with the employees information. This request
is handled by a background process.

• From this request, the publisher system creates a new user account in
its database. It generates a password for this user account and returns
it to the portal. The portal receives the password and stores it. From
that point onward the employee can log in to the publisher system and
the portal with the same account.

• The portal administrator can later change this password in the portal.
This triggers another XML-RPC request to the publisher to update
the password.

• When the password is changed in the publisher system, it is not syn-
chronized with the portal. Thus, in that (illegal) state, the client
company user can login to the portal, but it cannot access the publi-
cations of the publisher system. The administrator can fix this by also
changing the password in the portal, which causes it to sync with the
publisher system.

CHAPTER 3. CASE STUDIES 37

• If a user (identified by e-mail address) already exists on the publisher
system when it is created in the portal then that user’s password is
returned by the initial XML-RPC request. The employee can then
login to the portal like any other user using the password it already
has.

• A user is never deleted in the publisher system. At most, it is put
on non-active. When a user is deleted in the portal, it can no longer
log in to the portal, but it may still be able to log in to the publisher
system.

When an employee account is created, the company administrator may
add subscriptions to the account in the Portal system. These are also syn-
chronized with the publisher system. The subscription data is needed in
the Portal system to limit the amount of accounts per company. The sub-
scription data is needed in the publisher system to determine if a user is
authorized to access certain content.

The subscription and user data duplication in both the portal and the
publishers information system is widely considered an anti-pattern in SOA
[45]. The problems that it causes are clearly visible in this case. It requires
complex synchronization actions. Due to limitations in the publishers sys-
tem complete synchronization is not possible and the system may reach an
illegal state.

An employee has access to digital publications through an iFrame [46].
The portal embeds a URI with a hashed e-mail address and password in an
iFrame on an HTML page, which the employee’s browser uses automatically
to render the publisher website in a certain location on the site. The em-
ployee can interact with the library part of the publisher application directly
without any need for interaction with the portal.

Using a hashed e-mail address and password in an URL is not very safe,
however. Since the hashed information is sent to the user, and the user also
knows the original information, it may be possible for him to determine the
hashing algorithm.

There are several other connections and entities in Figure 3.1, outlined
in gray. The CMS component is one of these. CMS stands for Content
Management System. This component provides multimedia content for use
in digital publications. It is the subject of the next case study.

3.2.5 Development Process

In theory it would have been easier to develop the functionality of this portal
system in the publisher system, but in practice this was not the case. The
publisher system was not flexible enough to add these features (licenses,
client companies and client company administrators) in the allowed time
of 3 weeks. Therefore, an external company was contracted to implement

CHAPTER 3. CASE STUDIES 38

this portal approach. The drawbacks of this approach for the publishing
company included:

• Need for an extra server process and database.

• Additional point of failure.

• Cost overhead of outsourcing.

• Need to develop complex synchronization functionality.

However, despite these drawbacks, contracting an external company to
develop a portal solution was still a viable option.

Interacting with the publisher system from the portal caused several
problems. The user synchronization service was invoked through Action-
WebService (see Section 2.4).

A limitation of ActionWebService that was encountered in this project
is that it does not support basic HTTP authentication. This was resolved
by using Ruby’s reflection features (see Section 2.1) to change the Action-
WebService module’s implementation at runtime.

Another problem encountered during the development was that the XML
structure used to communicate with the service of the publisher system was
not properly documented. Sometimes the types or names of arguments were
wrong, and the programmers had to try several things before communication
was achieved. Also tied into this is that AWS and the framework of the
publisher system use a slightly different representation of the XML-RPC
type ‘array’. Therefore, the two systems could not communicate naturally.

Another problem was the set of procedures the publisher system exposed.
The behavior of these procedures was sometimes complex and counter-
intuitive. They were not always given descriptive names.

After deployment, the background process that handled the synchroniza-
tion operations could not handle the amount of actions required to synchro-
nize the user and subscription data. The interactions were performed in a
synchronous way, so they queued up. Processing a large batch of user data
caused over a 100 requests per second. The amount of requests queued up
for the background process eventually caused it to exceed its memory limit
and be terminated. Measures were taken to prevent this from happening in
the future. This illustrates the performance problems synchronization can
cause.

3.3 Content Management System

The Content Management System was developed for the same publisher of
digital documents as the portal from Section 3.2, and it lives in the same
environment as the portal. As digital publications became more complex,

CHAPTER 3. CASE STUDIES 39

the need for integration with multimedia resources such as video and mu-
sic arose. A system was needed to store and organize these multimedia
resources, and make them accessible to users of digital publications over
the internet. The Content Management System (CMS) of this case study
was developed for this. It was chosen as a case for this research because it
interacts with three other systems in the publisher environment.

3.3.1 Purpose

The most important purpose of the CMS is to store and serve multimedia
content to the users of digital publications. Digital publications are linked to
content in the CMS. The CMS can also store additional information for an
occurrence of a piece of multimedia content in a digital publication. A sec-
ondary purpose of the CMS is to provide options for organizing multimedia
content, so that it can easily be found by the editors of digital publications.

3.3.2 Environment

The environment of the CMS system is the same as the environment of
the portal, which is a set of interconnected applications at a publisher (see
Section 3.2.2).

The CMS provides a service using XML-RPC that is used by another
application called clippingtool. This application is used by the editors of
digital publications to define where content from the CMS needs to be in-
serted. This XML-RPC API is exposed with the ActionWebservice module
(see Section 2.4).

The readers of digital publications download a flash application to dis-
play their publications in their browser. the CMS provides a REST-ful
service through which this flash application can retrieve pieces of multime-
dia content linked to the digital publication it is displaying. Metadata about
this content is transfered in a custom XML format.

The CMS also allows users to link content to products from the Portal
system in the publisher environment. A product, as defined in Portal, is a
digital publication or set of digital publications (see Section 3.2.3). The flash
reader can retrieve the content that is associated through a product with
the publication it is displaying. This content is ‘global’ for that publication,
which usually means it is displayed on every page.

To allow the CMS to retrieve information about products the portal
provides a REST-ful service. The CMS can retrieve XML-representations
of each product or set of products through this service.

3.3.3 Data Structure

An item of content is called a component in the CMS. A link between a com-
ponent and a publication is called a clipping. A clipping has a publication

CHAPTER 3. CASE STUDIES 40

Publisher server

Publisher
system

Publisher
library

ComponentClipping tool

Portal server

Portal

User PC

Flash reader

CMS server

CMS

User and
Subscription data

<<XML>>

Information <<XML>>
publications

Product data <<XML>>

Clipping data <<XML>>
media files

Clipping data <<XML>>
media files

Browser

Interface <<HTML>>

Figure 3.4: Publisher environment from CMS perspective.

CHAPTER 3. CASE STUDIES 41

id that references the publication in the publisher system.
Figure 3.5 shows the data structure of the system. A component is

created from a component template that has several template parameters.
A template parameter is a name and type of an attribute, for example ti-
tle:String or picture:File. When a new component is created, several param-
eter objects are created as well. The names and types of these parameters
are copied from the template parameters associated with the template from
which the component was created. Values for these parameters can then be
provided. Extra parameters, which are specific for this component, can also
be added.

A clipping can overwrite parameters of its component. This is done by
creating a setting entity that represents a clipping-specific value for a certain
parameter.

Component
templateClipping Component

Catagory

Setting Parameter Template
parameter

<<external>>
Publication

*

1

*

1

*

1

* 1inserted with

* 1overwritten by * 0..1filled in by

*

1

* 1

*

1

Figure 3.5: CMS data structure

3.3.4 Workflows and Interactions

The workflow for linking a piece of content to a digital publication is as
follows:

1. The clippingtool retrieves a list of components from the CMS through
an RPC-style service. The publication editor can then insert these
items.

2. When the editor inserts a component into a publication the clipping-
tool tells the CMS about it through the RPC-style service. The CMS
then creates a clipping for that component in that publication.

When a reader accesses a digital publication the following happens:

CHAPTER 3. CASE STUDIES 42

1. The reader downloads a flash application that can present the digital
publication to him. His browser automatically takes care of this.

2. The flash application accesses the Publisher library to retrieve the
requested digital publication.

3. The flash application then accesses the CMS to retrieve a list of clip-
pings for the current page of the digital publication. This is done
through the REST-ful service the CMS provides.

4. The flash application processes this list. The list contains metadata
about the clipping and URIs of pieces of binary content. This content
can then be retrieved and displayed on the page.

3.3.5 Development Process

The requirements on how content should be stored were not immediately
clear. First, it was understood that the CMS would simply contain com-
ponents with parameters. These components could have a wide range of
types (for example ‘picture’ or ‘movie’). Later, it became clear that not all
these types could be defined in advance. Therefore, the template entity was
introduced and used as described in Section 3.3.3. Even later, it became
clear that links between content and digital publications also needed to be
stored in the CMS system (the clipping entities). Extra properties of these
links also needed to be maintained.

The connection with the clippingtool was easier to develop than the
connection between the publisher system and Portal. the CMS was the
service provider in this connection, so the programmers could decide which
procedures to expose and how to name them. They also had some control
over the clippingtool source code. These factors eliminated the problems
encountered in the Portal.

Initially, there were no requirements on how the CMS should communi-
cate with the reader. The reader would be developed after the CMS. The
only known was that it would be able to communicate with REST-ful ser-
vices, and that it could parse XML. There were no requirements on the XML
format. Rails proved an effective platform for providing REST-ful services,
so this was initially no problem. The built-in Rails mechanism to serialize
ActiveRecords to XML was used to expose resources through a read-only
service. When the reader was being developed, requirements on the XML
format and content started to emerge. This led to the programmers choos-
ing to overwrite the method that serializes a certain ActiveRecord to XML
(called to_xml). This was no clean solution, since every XML representation
of that ActiveRecord was now changed. This violates the MVC pattern, of
which one of the goals is loose coupling between models and their represen-
tations. In retrospect, they could also have used Rails response generation

CHAPTER 3. CASE STUDIES 43

mechanism to generate a custom representation of the ActiveRecords.
The communication with the portal application as described in Sec-

tion 3.3.2 was added much later in the project’s cycle. It was relatively
easy to provide an REST-ful service from the Portal application. It was
harder to invoke that service from the CMS side. Since CMS was devel-
oped in Rails 1.2, there was no ActiveResource (see Section 2.4) available
for easily invoking REST-ful services provided by other Rails applications.
Standard libraries for communication over HTTP and XML parsing were
used to invoke the service.

3.4 Froodi

Froodi is a website that allows people to search metadata about podcast
feeds and episodes. This is a publicly available service that this website
offers, supported by advertisement. Anyone can search the Froodi podcast
database. It was chosen because it forms a massive service-oriented system
with all the podcasts it indexes.

3.4.1 Purpose

The system has two purposes. The first is to retrieve podcast feeds, parse
them, and store the information they contain in a database. The second
purpose is to provide a user-friendly publicly available interface for people
to search this database. In addition to this people can register on the site,
which allows them to make lists of their favorite feeds and share them with
friends.

3.4.2 Environment

A podcast is basically an extended RSS feed [47][48]. RSS stands for ‘Really
Simple Syndication’. An RSS feed is an XML document with a certain
format. This document can be retrieved through HTTP and processed by
an application, e.g. an RSS reader. The RSS feed contains some metadata
and a list of items that is updated regularly. Each item has a release date.
By looking at the release date the application processing the feed knows
which items are new. A podcast contains a link to an MP3 or video file in
every item. In a podcast, an item is usually referred to as an episode.

Froodi scans a predefined list of feeds for updates in metadata and new
items periodically. It could use release dates to determine which content
is new and which was already retrieved, but this is not always reliable.
Changes in old data could remain unnoticed. Therefore, Froodi scans all
data from the feed and compares it with the database. Data that is not yet
in the database is added.

CHAPTER 3. CASE STUDIES 44

There may be several URIs in the feed list that refer to the same podcast.
Froodi compares metadata to find these duplicates, but this may not be
accurate. Another solution that was considered but not implemented was
to take a hash of the media file of the last episode of all podcasts and
compare these to find duplicates. This would however require a lot of time
and bandwidth and might still not be accurate.

A big problem with scanning the feeds was performance. To index all
feeds, Froodi takes more than 8 days. An performance analysis concluded
that the standard Ruby RSS processing library that was used to parse the
feeds was slow. The indexing and storing operations that Froodi’s search
engine performed were also slow. No improvements have been made on this
so far.

Figure 3.6 shows the environment of Froodi. As you can see, in addition
to scanning feeds, Froodi also interacts with the client in several ways. In
addition to the html interface, it also provides its own RSS podcast feeds.
These feeds are basically the same as the original feeds it scanned. The
differences are that

1. They are generated using the data cached in Froodi, not the data from
the real-time feed.

2. They have an extra field, a Froodi id, that references their id in the
Froodi database.

3. They are retrieved from a uniform and consistent URI space relative
to the Froodi site.

4. The data they contain is more standardized.

The advantage of this approach for the owner of Froodi is that it re-
ceives information about who accesses which feeds. This allows for targeted
marketing later on. The user can play these feeds (or actually the content
enclosed in these feeds) using either Froodis flash player or their own desktop
player.

Another way Froodi can interact with a client is through providing chan-
nels. A channel is basically a bundle of podcast feeds that users can create.
A channel can be represented in OPML [49]. Each channel has its own URI.
Several popular desktop players currently in existence can import OPML
podcast bundles [50].

3.4.3 Data Structure

The search functionality is quite extensive. Podcast metadata retrieved from
feeds may include a title, a description, author name, etc. metadata from
the individual episodes contained in the feeds may also include a summary

CHAPTER 3. CASE STUDIES 45

web server

podcast

froodi server

froodi

User PC

podcast player

podcast <<RSS>>

podcast <<RSS>>
channels <<OPML>>

Figure 3.6: Froodi Environment

and a title, as well as duration, release date, etc All this data is indexed
by Froodi and can be searched. For this, Froodi uses a Rails plugin called
Ferret [51]. Ferret allows for full-text search and relevance sorting across
multiple fields. It indexes the relevant database entities on the file system
and presents an API to search this index and sort results by relevance. It
also makes it possible to give fields a weight, which influences relevance
sorting.

When a user registers or logs into the site, the following features become
available to him:

1. Subscribing to podcasts or channels.

2. Tagging podcasts or channels.

3. Commenting on podcasts or channels.

Figure 3.7 shows how the database is structured. A taggeable, rateable,
commentable or subscribeable can be an entity of any type. Currently, only
podcasts and channels are taggeable, rateable, etc., but this can easily be
extended [52].

Podcasts can belong to channels. As mentioned in Section 3.4.2, a chan-
nel is a bundle of podcasts created by users. Podcasts can also have tags
associated with them. A tag is like a keyword. These tags are applied by
users. Podcasts can be browsed by tag or channel.

CHAPTER 3. CASE STUDIES 46

Channel Podcast

User

Episode

Commentable

Friendship

Subscribeable

Rateable

Taggable

* 1belongs to *1

*

1
owns

*

1

owns

2

*

links together

1

*

*

*

*

tags

rates

comments on

subscribes to

Figure 3.7: Froodi Data Structure

CHAPTER 3. CASE STUDIES 47

3.4.4 Development Process

Implementing the feed reader was not trivial. The RSS format allows for
many dialects, which makes it difficult to extract uniform information. Func-
tionality to deal with this had to be implemented. Also, REST-ful services
that provide RSS feeds could not be accessed easily. There is no functionality
in the Rails platform to invoke most REST-ful services. Standard libraries
for HTTP communication and XML parsing were used to invoke the service.

Providing a REST-ful service that provides RSS and OPML documents
was easy. Rails proved to be an effective platform for providing REST-ful
services. The response generation mechanism proved to be flexible enough
to generate RSS and OPML documents.

There were plans for developing a desktop podcast player to rival iTunes
and other popular players. This player could use the profile information from
the Froodi site to provide a highly customized user experience. Integrating
this player with Froodi would not be difficult. The OPML exporting of
channels and the forwarding of feeds through Froodi provide the tools to
develop this integration. This desktop player has not been realized.

3.5 World Usability Day

The World Usability Day website is a product that allows users to manage
information about events organized for the World Usability Day [53]. It was
chosen because of its integration with the Eventbrite site.

3.5.1 Purpose

The World Usability Day is a worldwide event that happens once a year. It
consists of many local events like symposia or workshops, focused around
the theme of usability. Typical participants are universities and companies
that are involved with usability in some way. The World Usability Day
website allows interested people to find information about events, and event
organizers to register events.

3.5.2 Environment

Figure 3.8 shows the environment of the product. When an event organizer
registers an event, he is redirected to the Eventbrite site where the actual
registration takes place. Eventbrite is a site where people can register and
manage events [54]. The WUD website is not the authoritative source on
WUD events. WUD events are registered and managed at Eventbrite first.
The WUD application then retrieves information about events in an XML
format through an REST-ful service provided by the Eventbrite site. These
events are then displayed on the WUD site.

CHAPTER 3. CASE STUDIES 48

3.5.3 Data Structure

As you can see in Figure 3.8, the site contains information on users and
events. Events are mainly managed in Eventbrite and downloaded from
there, as mentioned in Section 3.5.2. The WUD site also contains function-
ality to have event organizers register and manage an event. This function-
ality is deprecated in favor of putting all event information on Eventbrite,
but was retained as a fallback option in case the integration with Eventbrite
failed.

The administrator of the site can change events and users. When he
changes an event, the event gets a flag that means its properties should
no longer be downloaded from Eventbrite. Eventbrite is then no longer the
authoritative source of information about the event, the WUD site is. Events
are grouped by years (or editions of the World Usability Day). Besides events
and users, the administrator can also change news items, documents, etc.

3.5.4 Workflows and Interactions

The workflow of creating an event and having it displayed on the website is
as follows:

1. An event organizer visits the World Usability Day website. Here he
discovers a link to the World Usability Day context of the Eventbrite
website.

2. On the Eventbrite website, he creates a (payed) account and uses
Eventbrite’s functionality to publish, promote and sell his event.

Eventbrite server

Eventbrite

World Usability Day
server

World Usability
Day website

event
organizer

admin

Event registration
link <<HTML>>

Event
Registration <<HTML>>

event management
<<HTML>>

event data
<<XML>>

Figure 3.8: World Usability Day Environment

CHAPTER 3. CASE STUDIES 49

3. Periodically, representations of the event are downloaded from the
Eventbrite website and stored in the database backing the WUD web-
site. This information is then visible on the website.

4. When an event that is contained in the WUD website database can
not be found on the Eventbrite site, its status is set to deleted.

5. When an event is modified by the administrator in the WUD website,
its status is set to manual. This event is no longer updated with
information from the Eventbrite website.

3.5.5 Development Process

Most of the functionality of the WUD as it exists now was developed by
a company other than the company where we did this case study. This
other company developed the previous version of the website, which was
then adapted by the company where we did the case study to accommodate
the 2007 edition of the World Usability Day. The previous version did not
integrate with Eventbrite. The other company developed all the stand-alone
functionality for managing events and managing content. Our company
developed the integration with Eventbrite.

Redirecting the user to the World Usability Day context in Eventbrite
was a trivial matter. Eventbrite uses a specific URL for each event context,
so a redirect to that url was all that was necessary.

Event_year

Event

News_item

Section

Document

User

*

1
organized in

*

1
organizes

Figure 3.9: World Usability Day Entities

CHAPTER 3. CASE STUDIES 50

The retrieval of events and updating local data with them was more
difficult. The Eventbrite application provides an REST-ful service through
which XML formatted data of events can be retrieved. There is no function-
ality in the Rails platform to invoke most REST-ful services, including this
one. Standard libraries for HTTP communication and XML parsing were
used to invoke the service.

3.6 Evaluation of Discovered Problems

In the case studies we encountered the following problems:

Portal 1. Data duplication pattern causing difficult synchronization pro-
cess.

2. Insufficient functionality in publisher system XML-RPC interface
causing possible illegal states.

3. Hashed password in URL causing security risk.

4. Other platform doesnt understand ActionWebService’s array rep-
resentation for XML-RPC.

5. ActionWebservice has no support for basic HTTP authentication.

6. Incorrectly described XML-RPC interface of publisher system
causing confusion.

7. Unclear and complex semantics of publisher system XML-RPC
interface causing confusion.

8. Background process handling XML-RPC requests could not han-
dle load.

CMS 9. Relations between external entities stored locally requires com-
plex and hard-to-maintain interactions.

10. The requirements on the data model and relation to external
entities changed late in the development process. This required
many changes in the service interface.

11. A model was changed to change its representation. This violates
the MVC pattern.

12. Invoking REST-ful services from other Rails applications was not
supported by Rails 1.2.

Froodi 13. RSS feeds: Inconsistency of data unit and type among different
feeds.

14. RSS feeds: Possibility of duplicates, which is hard to detect.

15. RSS feeds: Hard to decide which data is new, changes could be
made in old data and could remain undetected.

CHAPTER 3. CASE STUDIES 51

16. Invoking REST-ful services that expose RSS feeds not supported
in Rails.

WUD 17. Invoking REST-ful services that expose information in a cus-
tom XML format not supported in Rails.

Problems 2, 8, 9 and 11 can only be attributed to design and implemen-
tation errors. Solving these is beyond the scope of this research. Problem 1
originates from the use of the SOA anti-pattern of data duplication. Prob-
lem 3 is a common problem. A common solution to this is a third application
that handles authentication for both other applications. The simplest form
of this is a single sign-on system [ref]. Problem 6 is a communication prob-
lem. A service should be properly documented for other applications to
use. Using a domain-specific language for this, such as WSDL, could have
solved this problem to some degree. A related problem, problem 7, could
not have been solved with WSDL, since WSDL only documents the syntax
of a service, not its semantics. Solving problem 7 is a matter of good com-
munication outside the actual programming activities. It also shows that
a service should provide a simple and understandable interface, especially
when the applications that use it are developed by different programmers.

With regard to problem 12: As of Rails version 2.0 programmers can use
ActiveResource (Section 2.4) for easy communication between Rails applica-
tions, so this problem is no longer relevant. Problem 13-15 are mainly caused
by lack of standardization of the RSS format. This includes feed providers
not adhering to the format, and the format not being strict enough to allow
for easy interoperability.

That leaves problems 4, 5, 10, 12, 16 and 17. These are all problems orig-
inating from missing or poorly integrated functionality in Rails. Problems 4
and 5 illustrate limitations of ActionWebService when invoking RPC-style
services. Problem 10 illustrates Rails’ lack of agility with regard to RPC-
style services when using AWS. A change in a service interface should be
easy to accomplish. Since AWS is no longer part of the Rails framework,
we argue that an alternative to AWS should be sought. The most serious
problems however are 16 and 17. These show that Rails has no functionality
for invoking services over HTTP.

Figure 3.1 shows the various SOA tasks Rails could perform, as identi-
fied in Section 2.4. The numbers refer to the problems encountered when
performing these tasks. SOAP was not used in any of the cases. From the
problems encountered in the cases we argue that the main limitations of
Rails with regard to SOA are:

• Limited functionality to invoke services over HTTP

• Missing or poorly integrated functionality to provide or invoke RPC-
style services

CHAPTER 3. CASE STUDIES 52

Protocols

HTTP

16: RSS, 17: XML 4: Array
representation, 5:
Basic authorization

Invoke Not Used

SOAP

Not Used

XML-RPC

10: Late changesProvide

Roles

Table 3.1: SOA tasks with problems

3.7 Summary

In this chapter we evaluated four Rails projects. All these Rails projects
are part of a SOA. They provide and invoke REST-ful and RPC-style ser-
vices. Programmers encountered several problems when working on these
projects. Most of these problems could not be attributed to limitations of
Rails. Some of them could, however. Based on the encountered problems
we have concluded that the main limitations of Rails with regard to SOA
are:

• Limited functionality to invoke services over HTTP

• Missing or poorly integrated functionality to provide or invoke RPC-
style services

Chapter 4

Framework

In this chapter we discuss a framework for service-oriented extensions to
Ruby on Rails. In Section 4.1 we discuss the requirements for this frame-
work and how they relate to the limitations identified in Chapter 3. Here
we also discuss the overall architecture of the framework. The framework is
split into two independent modules, one for invoking and one for providing
services with Rails (service invoker and service provider). Design consid-
erations for the two modules are discussed in Section 4.2 and Section 4.4.
How the modules are implemented and how they can be used is discussed
in Section 4.3 and 4.5.

4.1 Requirements and Architecture

The case studies have shown that Rails ability to invoke RPC-style and
REST-ful services needs improvement (see Section 3.6). Invoking REST-
ful and RPC-style services consists of generating requests and processing
responses. The case studies have also shown that Rails’ abilities to pro-
vide RPC-style services needs improvement. Providing RPC-style services
consists of processing requests and generating responses.

The goal of the framework is to allow programmers to extend Rails’
ability to invoke and provide RPC-style and REST-ful services. To do this
the framework does two things:

• Provide an extensible mechanism for invoking services over HTTP.

• Provide an extensible mechanism for providing services over HTTP.

To perform these two tasks the framework has been split into two parts:
the service provider and the service invoker. The service provider leverages
Rails’ existing abilities to provide services over HTTP by providing an exten-
sion mechanism that can be used to implement any protocol that provides
services over HTTP. The service invoker allows Rails to perform HTTP re-
quests and process HTTP responses. It provides an extension mechanism

53

CHAPTER 4. FRAMEWORK 54

that can be used to implement any protocol that performs requests to ser-
vices over HTTP.

An important consideration with regard to using and providing services
is whether to limit the framework to the HTTP protocol, or to allow other
internet application-layer protocols. However, because Rails already sup-
ports providing REST-ful services over HTTP, and because two important
service protocols (XML-RPC and SOAP) are commonly used over HTTP,
the choice was made to limit the framework to the HTTP protocol.

A general non-functional requirement for the framework is that it should
be easy to use. This means that it should integrate well with the Rails
architecture. If our solution would depart to much from this architecture it
would be hard to learn and use for Rails programmers. It also means that
it should provide programmers with powerful but simple and intuitive tools
for providing and invoking services.

4.1.1 Service Invoker

The service invoker extension overlaps in functionality with ActiveResource.
ActiveResource can only invoke services that follow the ActiveResource mes-
sage format and interaction semantics. The case studies have shown that
that is not enough. We propose a framework for invoking services similar to
ActiveResource, but extensible and less prescriptive.

The service invoker is designed to be used by specifying models, similar
to ActiveResource and ActiveRecord. Models are globally available to all
parts of the application, and can be explicitly invoked to query or manipulate
resources. In service invoker, as in ActiveResource, a model represents a
service. Conceptually the model is the right place to put this framework
because a model element is supposed to represent application state, and the
services that an application invokes can be seen as part of the application
state of that application. Figure 4.1 shows the modules of Rails and the
service invoker framework.

routing actions view
generation

activerecord activeresource service_invoker

HTTP ResponseHTTP Request

Figure 4.1: Rails and the service invoker framework

The service invoker is designed as a framework on which extensions can

CHAPTER 4. FRAMEWORK 55

be built that handle certain protocols (like XML-RPC or SOAP). Figure 4.2
shows the layered architecture of the service invoker framework. The first
layer is the actual service invoker that was implemented. It offers the basic
functionality of doing HTTP requests and processing responses. It also
provides an extension mechanism. The second layer builds on that extension
mechanism by providing handlers for several protocols, and through them
functionality to invoke services. The third layer is an actual Rails application
that uses the service invoker framework. It uses one or more of the provided
extensions to invoke services and process their responses. This framework
has no dependency on Rails. It can easily be used without Rails.

Service Invoker
Handle HTTP

Extensions
Protocol handlers (e.g. for XML-RPC or REST)

Application
Invoke services

Figure 4.2: The layered architecture of the invoker extension

4.1.2 Service Provider

As described in Section 2.4, Rails can provide RPC-style services using XML-
RPC and SOAP with ActionWebService. The service provider framework
will provide a more extensible and customizable alternative to ActionWeb-
Service. It does so by adding an extensible request decoding and routing
mechanisms to Rails.

The routing mechanism of Rails is focused on the URI and request
method in the HTTP request. The service provider allows messages to be
routed based on what they contain in their HTTP body. It assumes that
requests can be routed to a method using a fixed set of rules.

Figure 4.3 shows the modules of Rails and the service provider frame-
work.

Service provider is designed as a framework on which extensions can be
built that handle certain protocols. A protocol implies a message format and
a routing mechanism. XML-RPC for example prescribes a certain format

CHAPTER 4. FRAMEWORK 56

for encoding of messages. It also implies that messages be routed based on
the procedure name they contain.

Figure 4.4 shows the layered architecture of the service provider frame-
work. It is built on Rails, which is the first layer. Rails allows for rout-
ing based on URI and request method. The second layer, the actual ser-
vice provider, provides an extension mechanism that allows extensions to
implement decoding and routing based on the HTTP body. The third layer
builds on that extension mechanism to provide handlers for certain protocols
(like XML-RPC and SOAP). It performs decoding of the protocol message
in the HTTP body, and it allows application programmers to define rules
for routing the request based on the results of that decoding. The fourth
layer is an actual Rails application. The application programmer defines
routing rules for his application through the extension. The application can
also use the result of the decoding implemented by the extension. In case of
XML-RPC, that would be the parameter list.

4.2 Design of service invoker

The simplest design for a service invoker would be to use a singleton object
with a single public method that developers can call to invoke services.
Extensions could use inheritance to extend the singleton and overwrite the
method as shown in Figure 4.5. The invoking method would have a lot
of parameters, from which it would be able to construct an HTTP request
and process the HTTP response in many ways. The main limitation of this
approach is that messages cannot be reused. The invoke service method
would need all parameters to construct a request or process a response every
time it was called.

routing actions view
generation

activerecord activeresource

service_provider

HTTP ResponseHTTP Request

Figure 4.3: Rails and the service provider extension

CHAPTER 4. FRAMEWORK 57

To allow for message reuse, we define several extra types to represent
messages in our system, as shown in Figure 4.6.

Extensions to the service invoker come in the form of configurable objects
with a method for generating request objects (RequestBuilders), and mod-
ules that add functions to process response objects (ResponseProcessors).
RequestBuilders follow a factory pattern. ResponseProcessors are included
in the response objects returned by the ServiceInvoker. The ServiceInvoker
can be configured to use specific RequestBuilder and ResponseProcessor
modules.

Programmers can specify their own invoker singletons by extending the
base invoker. For each invoker they can define which factory and which
processors it should use. In these singletons they can also define functions
that perform a specific request or do a specific response processing opera-
tion by wrapping the base method, like post orders or get sales numbers in
Figure 4.8.

4.3 Implementation of service invoker

the service invoker is implemented as a plugin. It is automatically loaded
when Rails starts. It can be used anywhere in the application by calling
ServiceInvoker::Base.invoke(). This method takes a url, an HTTP
method, a body and a list of headers. Figure 4.9 shows the main objects in

Service Provider
Extension mechanism for routing

Extensions
Protocol handlers (e.g. for XML-RPC or SOAP)

Application
Provide services

Rails
Process HTTP requests

Figure 4.4: The layered architecture of the provider extension

CHAPTER 4. FRAMEWORK 58

Service_invoker

invoke(params):Response

ServiceInvoker

Figure 4.5: Service Invoker as a singleton

Service_invoker

invoke(params):Response

ServiceInvoker
raw_data
headers

Message

Request Response

Figure 4.6: Service Invoker with separate message object

this extension processing a call to ServiceInvoker::Base.invoke(). The
final result is a ServiceInvoker::Response object. This object encapsu-
lates the HTTP response that follows from invoking the specified service.

The plugin provides an easy extension mechanism in the form of custom
request builders and response processors. To use these custom builders and
processors you need to make an invoker class that extends the ServiceIn-
voker::Base class, and specify what builder and processors it should use.
This invoker class contains the location of a service and the knowledge of
how you can use this service. service invoker includes custom builders and
processors for several common use cases. A simple invoker class could look
like this:

class Example < ServiceInvoker::Base
request_builder BasicBuilder,
:endpoint_url => "www.example.com/rest"

CHAPTER 4. FRAMEWORK 59

Service_invoker

invoke(params):Response

ServiceInvoker
raw_data
headers

Message

Request Response

Extensions

build_request() : Request

RequestBuilder

unmarshal_xml()

ResponseProcessor

*

1

1

Figure 4.7: Service invoker with request builder and response processors

response_processor XMLProcessor
end

This invoker uses the BasicBuilder. The default builder is ServiceIn-
voker::AbstractBuilder. BasicBuilder extends the AbstractBuilder to add,
among other options, an option for a default url. this means that when Ex-
ampleInvoker.invoke() is called it is not necessary to give an url parameter.
This invoker also uses the XMLProcessor response processor. This means
that the response object that is returned contains functionality to process
XML. A call to Example.invoke() would look like Figure 4.10. All classes in
this diagram directly inherit from their standard version in Figure 4.9.

The extension also includes a custom builder and processor for the XML-
RPC protocol. This builder simply generates an HTTP POST request with
an XML-RPC body. The body is defined by the arguments passed to the
builder (i.e. the procedure name and parameters of the targeted XML-RPC
procedure). You can define an XML-RPC service invoker like this:

class Example < ServiceInvoker::Base
request_builder XMLRPCBuilder,
:endpoint_url => "www.example.com/xmlrpc"

response_processor XMLRPCProcessor
end

The XMLRPCBuilder allows options for specifying XML-RPC messages

CHAPTER 4. FRAMEWORK 60

Service_invoker

invoke(params):Response

ServiceInvoker
raw_data
headers

Message

Request Response

Extensions

Application

build_request() : Request

RequestBuilder

unmarshal_xml()

ResponseProcessor

*

1

1

post_orders()

ServiceInvoker1

get_sales_numbers()

ServiceInvoker2

Figure 4.8: Service invoker with subclasses for use in specific applications

to be passed to the invoke method. For example, this line:
Example.invoke(:method => ’say_hello’, :args => [’foo’])
sends the following XML-RPC message to www.example.com/xmlrpc:

<?xml version="1.0" ?>
<methodCall>
<methodName>say_hello</methodName>
<params>
<param><value><string>foo</string></value></param>

</params>
</methodCall>

The response object that is returned from this method call contains
methods to process XML and XML-RPC through the XMLRPCProcessor.
Both the builder and the processor use the xmlrpc4r library mentioned in
Section 2.4.

CHAPTER 4. FRAMEWORK 61

Base

invoke

get_request_builder
new

AbstractBuilder

AbstractBuilder
initialize

build

new

Base
initialize

do_request
HTTP

new

Response

Responseinitialize

Figure 4.9: Service invoker performing an HTTP request

Example

invoke

get_request_builder
new

BasicBuilder

BasicBuilder
initialize

build

new

Example
initialize

do_request
HTTP

new

XMLResponse

XMLResponse
initialize

Figure 4.10: Extended service invoker performing an HTTP request

CHAPTER 4. FRAMEWORK 62

4.4 Design of service provider

The provider framework is simply called service provider, and adds an exten-
sible decoding and routing mechanism to Rails. As described in Section 2.2,
Rails’ own routing mechanism allows programmers to specify routing rules,
which are used by the ActionController module to map a request to a con-
troller class and a method name. This controller is then automatically in-
stantiated and the method is called. Rails’ own routing mechanism only
uses the HTTP URI and request method. Rails’ decoding mechanism de-
codes the HTTP body, but only recognizes url-encoded key-value pairs and
plain XML documents. When another format is received it is passed to the
handling ActionController method as raw data.

The extensible decoding mechanism allows extension developers to de-
code the HTTP body in any way. The extensible routing mechanism allows
extension developers to define a syntax for routing requests based on the
decoded HTTP body.

There are several options for extending Rails’ routing mechanism to allow
for the routing of requests based on their HTTP body:

1. Recognize a request as needing extended decoding and routing and
send it to a separate module instead of the normal routing mechanism.

2. Use normal decoding and routing to send a request needing extended
routing to a separate module for further decoding and routing be-
fore sending it to the ActionController. This requires that a request
needing special routing can be distinguished from a normal request by
normal routing.

3. Do not extend the routing mechanism directly, use only normal rout-
ing and have programmers build a large ActionController method to
perform the extended routing manually.

The first option does not take advantage of Rails ability to do routing
based on HTTP method and URL. A mechanism that efficiently detects
wether a request is a layered request would look at the HTTP method (both
XML-RPC and SOAP use only the POST method). This would dupli-
cate functionality. It would also decrease performance of normal operations,
since every non-service request would need to be scanned by the detection
mechanism.

The third option is not really an extension. In this case service provider
could provide some functions for easily processing a service request, but this
does not take advantage of Rails’ abilities like per-method filters. Rails’
mechanism to automatically search for a template to generate a response
from wouldn’t be useful either.

The solution used for this extension is the second. It uses Rails’ normal
decoding and routing mechanism to route a request that needs extended

CHAPTER 4. FRAMEWORK 63

decoding and routing (e.g. an XML-RPC or SOAP request) to an additional
routing mechanism that decodes the HTTP body and routes the request
further based on the data in the HTTP body. This mechanism requires that
requests that need extended decoding and routing can be distinguished from
normal requests based on their HTTP URL and method.

You use service provider by including a module in an ActionController
instance. As described in Section 2.1, classes can be dynamically modified
in any way. A module is one of the mechanisms that allows this. A module
is not quite a class, but similar. Every class has a method include(module)
which can be used to include a module. When a module is included in a
class the class inherits al functions from the module.

service provider extends an ActionController class by giving it a method
to which requests can be routed for further decoding and routing. It also
gives it a singleton object called Dispatcher which can be used to configure
routing and processing of requests. Figure 4.11 shows the basic elements of
the service provider.

__dispatch_service_request()

GreetingController

ActionController

11

Dispatcher

Specifier Processor

Figure 4.11: Basic elements of service provider

Without extensions service provider does nothing. Extensions add spec-
ifiers and processors to the dispatcher singleton. A specifier adds function-
ality to the dispatcher which allows programmers to specify routing rules. A
processor is called when a request comes in. It decodes the requests’ HTTP
body and tries to match the data within to the routing rules specified by
the programmer.

CHAPTER 4. FRAMEWORK 64

4.5 Implementation of service provider

service provider is implemented as a plugin. An XML-RPC extension was
developed to demonstrate its functionality. The following controller code
uses this extension:

class XmlrpcgreetingController < ApplicationController
include XMLRPCProviding
service_dispatcher.draw_routes do |map|
map.xmlrpc ’greetings’, :action => ’do_greeting’
map.xmlrpc ’:action’

end

def do_greeting
result = "Hello " + self.service_request.params.first
render_xmlrpc(result)

end
end

What this code does is it provides an XML-RPC service with one func-
tion that returns a string containing ‘hello’ and the first parameter of the
request. by including the XMLRPCProviding module (second line), the ser-
vice provider is also automatically included. It gives the class a singleton
object which can be used to configure routing and processing of requests,
and which is accessed through the service dispatcher method (third line).
The XMLRPCProviding module registers a specifier and a processor to the
dispatcher. Routes can be specified through the draw routes function, which
takes an anonymous function as a parameter (this is called a block in Ruby)
that allows programmers access to the functions from the specifier (‘xmlrpc’
in this case). The first routing rule shown here specifies that if a request
with an XML-RPC procedure-name ‘greetings’ comes in it should be routed
to the do greeting action. The second rule specifies that any request should
be mapped to an action with the same name as the XML-RPC procedure-
name, so if a request comes in with procedure-name ‘do greeting’ it is also
routed to the do greeting action. This syntax was borrowed from Rails’
standard routing syntax.

When a request comes in the XMLRPCProviding processor uses the
rules specified by draw routes to process and route it. The object returned
by the service request method represents the request after processing by the
XMLRPCProviding processor. The render xmlrpc method is a convenience
method also included by XMLRPCProviding to easily render XML-RPC
encoded responses from Ruby objects.

CHAPTER 4. FRAMEWORK 65

4.6 Summary

In this chapter we proposed two extendible frameworks to help integrate
SOA functionality in Rails. These frameworks were implemented as Rails
plugins.

The service invoker plugin adds functionality for invoking services over
HTTP. It’s extension mechanism allows for the invoking of any service over
HTTP.

The service provider plugin allows for the providing of services over
HTTP with Rails. This plugin provides an extension mechanism that allows
programmers to customize Rails’ own decoding and routing mechanisms. It
favors the RPC-style by assuming a request can be translated to a method
call.

Chapter 5

Test Cases

In this chapter we discuss the implementation of several test cases using
the framework. This chapter outlines what the cases entail and how they
were implemented with the framework. Section 5.1 gives an overview of
the cases described in this chapter. The individual cases are described in
Section 5.3 through Section 5.9. Section 5.2 outlines the general design of
the implementations.

5.1 Overview

This chapter contains the following cases:

Case 1: Providing a ‘hello’ service using XML-RPC (Section 5.3).

Case 2: Invoking a ‘hello’ service using XML-RPC (Section 5.4).

Case 3: Invoking Google Maps using REST and HTTP (Section 5.5).

Case 4: Invoking Flickr using XML-RPC (Section 5.6).

Case 5: Invoking Eventbrite using REST and HTTP (Section 5.7).

Case 6: Invoking Thumbalizr using REST and HTTP (Section 5.8).

Case 7: Invoking a document converter using REST and HTTP (Section 5.9).

These cases cover the invocation of REST-ful services over HTTP, as
well as the provisioning and invocation of services using XML-RPC. Ta-
ble 5.1 shows the cases classified according to the SOA tasks described in
Section 2.4. The tasks that are not covered by the cases are the provisioning
and invocation of services using SOAP and the provisioning of REST-ful ser-
vices. Providing and invoking services using SOAP is not covered because
SOAP interaction is beyond the scope of this research. Providing REST-ful
services is the core function of the Rails framework itself. The provisioning
of REST-ful services is not part of the framework.

66

CHAPTER 5. TEST CASES 67

Protocols

HTTP

Case 3: google maps
Case 5: eventbrite
Case 6: thumbalizr
Case 7: document
converter

Case 2: hello
Case 4: flickr

Invoke

SOAPXML-RPC

Case 1: helloProvide

Roles

Table 5.1: Test cases classified according to SOA tasks

5.2 General Design of Implementations

In case 1 we provide a simple service. For this case we build a Rails appli-
cation that includes the service provider plugin described in Section 4.4 and
Section 4.5. This Rails application also includes the functionality for provid-
ing the desired service using the service provider, as described in Section 5.3.
To test if the service is provided as expected, we use case 2.

In case 2 through 7 we invoke a service. For these cases we build a Rails
application that includes the service invoker plugin described in Section 4.2
and Section 4.3. The functionality for invoking all the services in cases 2
through 7 is included in this application. This Rails application has a web
interface that can be used to invoke these services and display the results.

5.3 Case 1: Providing a ‘hello’ service using XML-
RPC

In the first case we provide a simple service with XML-RPC using ser-
vice provider and its XML-RPC extension. The service exposes a single
procedure that returns a string containing ‘hello’ and the first parameter
sent with the procedure call.

Section 4.5 shows the implementation of this case. It shows how the
XMLRPCProviding extension was used to expose a method through a ser-
vice using XML-RPC. This implementation successfully provided the re-
quired service, which is invoked in Case 2.

CHAPTER 5. TEST CASES 68

5.4 Case 2: Invoking a ‘hello’ service using XML-
RPC

In this case we invoke the service that was provided in Case 1. For this we
use service invoker. We send the service a single string. The returned result
is the string ‘hello’ with the string we sent appended to it.

To perform this task we implement a subclass of ServiceInvoker::Base
called ProviderInvoker. Figure 5.1 shows the ProviderInvoker and the ex-
tensions it uses. This figure is similar to Figure 4.8, except that it only
shows the application and the extensions level. The ProviderInvoker uses
the XMLRPCBuilder and XMLRPCProcessor, as well as the XMLProces-
sor. It defines an application-specific function called do greeting request
that takes a name as a parameter, and uses the functionality provided by
ServiceInvoker::Base and the XMLRPCbuilder to invoke the service. The
code of the ProviderInvoker can be found in Section A.1. This implementa-
tion was successful in invoking the service provided in Case 1.

Extensions

Application

unmarshal_xml()

XMLProcessing

do_greeting_request(name)

ProviderInvoker

build_request() : Request

XMLRPCBuilder

unmarshal_xmlrpc()

XMLRPCProcessing

Figure 5.1: Implementation of Case 2. ProviderInvoker and extensions.

5.5 Case 3: Invoking Google Maps using REST
and HTTP

In this case we use the service invoker with the Google Maps API in or-
der to retrieve directions and driving distance information. The Google
Maps API is a REST-ful service. It exposes several resources that can be
queried in order to receive address information, coordinates, driving direc-
tions and driving distance between two coordinates or addresses. It uses
JSON encoding. We are mainly interested in the driving distance between

CHAPTER 5. TEST CASES 69

two coordinates.
To retrieve driving distance between two coordinates we implement a

subclass of ServiceInvoker::Base called GoogleMapsInvoker. Figure 5.2 shows
the GoogleMapsInvoker and the extensions it uses. GoogleMapsInvoker uses
the BasicBuilder to generate requests. The instance of Basicbuilder it uses
is configured to send requests to a static URL using several default URL
parameters. How this configuration is performed can be seen in the code in
Section A.4. The GoogleMapsInvoker includes JSONProcessing. It also uses
a response processor called MapsProcessing that was implemented specifi-
cally for this application. MapsProcessing provides functionality to extract
the driving distance in meters from Google Maps’ responses. Figure 5.2
shows the ServiceInvoker that was defined and the extensions it uses. The
MapsProcessing extension is shown in Figure 5.2 on the application level.
The code for both the GoogleMapsInvoker and MapsProcessing module can
be found in Section A.4. This implementation was successful in retrieving
driving directions and distance information for two test coordinates in the
Netherlands.

Extensions

Application

unmarshal_json()

JSONProcessing

get_directions(from, to)

GoogleMapsInvoker

build_request() : Request

BasicBuilder

get_distance()

MapsProcessing

Figure 5.2: Implementation of Case 3: GoogleMapsInvoker and extensions.

5.6 Case 4: Invoking Flickr using XML-RPC

Flickr is a service that allows users to share photos. The photos on Flickr can
be accessed with a web-browser, through a REST-ful service and through an
RPC-style service using XML-RPC. In this case we invoke the Flickr service
using XML-RPC. We call two procedures: one just returns the parameters
we sent and the other returns links to the ten most recently posted photos
on the website.

CHAPTER 5. TEST CASES 70

To perform this task we implement a subclass of ServiceInvoker::Base
called FlickrInvoker. Figure 5.3 shows the FlickrInvoker and the extensions
it uses. The FlickrInvoker uses the XMLRPCBuilder to generate XML-RPC
requests, and the XMLRPCProcessing module to enable XML-RPC decod-
ing. The FlickrInvoker also uses a custom processor called FlickrProcessing
that was implemented specifically for decoding Flickr responses. Flickr re-
sponses use an elaborate encoding format that circumvents the constraints
of XML-RPC. A flickr response contains a single string. This string contains
an entire XML document, which is XML-escaped (meaning XML characters
like ‘<’ and ‘>’ are replaced). FlickrProcessing extracts this string, de-
codes the contained XML document and converts the document to a set of
Ruby objects. The code for both the FlickrInvoker and the FlickrProcessing
module can be found in Section A.5.

The FlickrInvoker also employs a feature called callbacks that is included
in the service invoker framework. Using the before request and after request
methods, application programmers can define functionality that is to be
performed in specific stages of a request’s life-cycle. In FlickrInvoker, this
functionality is used to write the raw data of the request and the response
to a log file.

Extensions

Application

unmarshal_json()

XMLRPCProcessing

do_echo_request()
do_recent_request()

FlickrInvoker

build_request() : Request

XMLRPCBuilder

unmarshal_flickr()

FLICKRProcessing

Figure 5.3: Implementation of Case 4: FlickrInvoker and extensions.

5.7 Case 5: Invoking Eventbrite using REST and
HTTP

In this case we replace part of the functionality that was developed for the
World Usability Day case study discussed in Section 3.5. As described in
Section 3.5, the World Usability Day website interacts with a service exposed
by Eventbrite. This service provides a REST-ful interface that is used to

CHAPTER 5. TEST CASES 71

retrieve information about a specific set of events. In this case we implement
the functionality for invoking Eventbrite from the World Usability Day site
using service invoker.

To perform this task we implement a subclass of ServiceInvoker::Base
called WUDInvoker. Figure 5.3 shows the WUDInvoker and the extensions
it uses. The WUDInvoker uses the BasicBuilder to generate requests. The
instance of Basicbuilder it uses is configured to send requests to the URL
that represents the set of events we want to retrieve. No application-specific
functionality is needed to generate the request. A simple call to WudIn-
voker.invoke sends a GET request to the pre-configured URL.

The response from Eventbrite is an XML-encoded list of events. To de-
code this list the WUDInvoker uses the XMLProcessing module. It also uses
the WUDProcessing module that was implemented specifically for this ap-
plication. The WUDProcessing module performs the task of extracting the
information we are interested in from the response, after the XMLProcess-
ing module is used to convert the response into a set of Ruby objects. The
code for both the WUDInvoker and WUDProcessing module can be found
in Section A.6. This implementation was successful in retrieving relevant
information about events from eventbrite.

Extensions

Application

unmarshal_json()

XMLProcessing

get_directions(from, to)

WudInvoker

build_request() : Request

BasicBuilder

unmarshal_wud()

WUDProcessing

Figure 5.4: Implementation of Case 5: WUDInvoker and extensions.

5.8 Case 6: Invoking Thumbalizr using REST and
HTTP

After the case study of Section 3.2 the portal product was extended to allow
users to upload their own content. Possible content types included URL and
document. A requirement was that previews of these content types could
be shown. For this, two external services were used, Thumbalizr [55] and a

CHAPTER 5. TEST CASES 72

service we will call Document Converter. The service invoker was used to
invoke these services. The implementation of this test case and the test case
in the next section were used as part of the portal product.

Thumbalizr is an application that generates a snapshot of a website. It
provides a REST-ful service. a GET request to the REST-ful Thumbalizr
service returns a snapshot of a website. It may be necessary to do several
requests before the result is returned, since generating a snapshot might
take a while.

To perform this task we implement a subclass of ServiceInvoker::Base
called ThumbalizrInvoker. Figure 5.5 shows the ThumbalizrInvoker and the
extensions it uses. The WUDInvoker uses the BasicBuilder to generate re-
quests. The FileProcessing response processor is used to store the response
as a file. An application-specific method called get thumbnail was imple-
mented to easily request a thumbnail using only the URL of the desired
website as a parameter. The code for the ThumbalizrInvoker can be found
in Section A.7. This implementation was successful in retrieving thumbnails
for URLs from Thumbalizr.

Extensions

Application

tempfile()

FileProcessing

get_thumbnail(url, encoding
= 'jpg')

ThumbalizrInvoker

build_request() : Request

BasicBuilder

Figure 5.5: Implementation of Case 6: ThumbalizrInvoker and extensions.

5.9 Case 7: Invoking a document converter using
REST and HTTP

The implementation of this test case was also used as part of the portal
product, as explained in the previous section. The document converter
service creates preview images from a document. One of these images is
then used by the portal product to preview a document to the user. The
document converter provides a REST-ful service. To process a document
a set of URLs must be sent to the document converter. The document

CHAPTER 5. TEST CASES 73

converter then downloads the document from one of the URLs, converts the
document into a set of image files, and sends a job id to one of the other
URLs. The application behind the second URL can then generate a URL
from the job id and download the document from that URL. Figure 5.6 shows
this interaction schematically. The interaction with the document converter
service effectively shows that asynchronous communication is possible when
using HTTP, provided that both applications can invoke and provide REST-
ful services.

Portal Document
Converter

(2) start_job(urls)

(4) job_finished(job_id)

(5) get_result(job_id)

(3) get_document

(1) upload_document

Figure 5.6: Document converter interaction pattern

Step 2 and 5 of Figure 5.6 were implemented in a subclass of ServiceIn-
voker::Base called DocumentInvoker. Figure 5.7 shows the DocumentIn-
voker and the extensions it uses. The DocumentInvoker only uses the Ba-
sicBuilder to generate requests. The response is processed by other function-
ality in the portal product. The DocumentInvoker contains two application-
specific methods. The first one, start job, implements step 2 of Figure 5.6. It
tells the document converter to start a conversion job. It sends the URLs the
document converter needs to perform step 3 and 4. The second application-
specific method, get result, implements step 5 of Figure 5.6. It retrieves the
converted document from the document converter based on a job id.

The code for the DocumentInvoker can be found in Section A.8. This
implementation was successful in starting jobs at- and retrieving results from
the document converter.

CHAPTER 5. TEST CASES 74

Extensions

Application

start_job(asset)
get_result(jobid)

DocumentInvoker

build_request() : Request

BasicBuilder

Figure 5.7: Implementation of Case 7: DocumentInvoker and extensions.

5.10 Summary

In this chapter we have outlined several test cases, and we have presented
implementations of these test cases. These cases covered the invocation of
REST-ful services over HTTP, as well as the provisioning and invocation of
services using XML-RPC. All cases were implemented successfully using the
framework.

Chapter 6

Evaluation

This chapter contains the evaluation of the framework proposed in this the-
sis. In this chapter we evaluate the various test implementations discussed
in Chapter 5.

We analyze several technologies that can be used as alternatives to the
framework in Section 6.1. We look at features of these alternative tech-
nologies and how they relate to the framework. We also indicate how these
alternatives can be applied to the test cases. We then discuss advantages
and disadvantages of the various technologies.

In Section 6.2 we present a survey that was conducted among developers
at the Dutch software company at which we performed the case studies. In
this survey, developers are asked to rate the test cases presented earlier on
several quality attributes, as compared to several alternatives.

The summary presents an overview of the evaluation.

6.1 Alternatives

In this section we describe several alternatives to the framework. We look
at several features of these alternatives and how they compare to the frame-
work. We also look at how the test cases of Chapter 5 can be implemented
using these alternatives, and how these implementations compare to the
framework implementation.

6.1.1 Approach

For this evaluation, we look at several alternatives. In Section 2.4 we have
given an overview of the components available for performing SOA tasks
with Rails. Here we look at components that can be used for REST-ful
or XML-RPC interaction. We specifically look at components that share
features with our framework, and can thus be used as alternatives. The
following components are considered:

75

CHAPTER 6. EVALUATION 76

ActionWebService (AWS): A Rails framework for providing and invok-
ing services using XML-RPC and SOAP.

ActiveResource: A Rails framework for invoking certain REST-ful ser-
vices.

HTTParty: A framework for invoking certain REST-ful services over HTTP.

RESTclient: A library for invoking certain REST-ful services over HTTP.

NET::HTTP: A Ruby standard library for HTTP interaction.

open-uri: A Ruby standard library for retrieving documents over HTTP.

All of these alternatives depend on the NET::HTTP library for HTTP in-
teraction. They are all implemented in Ruby and can be used by the Rails
platform, as described in Section 2.4.

We compare these alternatives to the framework by determining which
of the following features they include:

• Support for REST-ful services using various data markup languages:
XML, JSON, URL-encoded.

• Support for the XML-RPC or SOAP protocols.

• Support for configuration, meaning that the same or similar requests
or responses can be sent multiple times after defining an initial set of
parameters.

• Extensibility, meaning that it provides an extension mechanism for
handling new protocols or data markup languages.

We also determine whether they are limited to the invoking or providing
role.

We also compare three implementations from Chapter 5 to an alterna-
tive implementation that uses one of the components listed above. These
implementations are compared mainly based on lines of code.

6.1.2 Results

Table 6.1 shows how the alternatives compare to the framework based on
the features described in Section 6.1.1. It lists the service provider and
service invoker along with the alternatives in the first column. The other
columns represent the features as defined in Section 6.1.1. An X in a cell
denotes that the corresponding component supports the corresponding fea-
ture.

For three cases there is an alternative implementation available, using
one of the mentioned alternative components. Table 6.2 shows the alterna-
tives that were used, and the lines of code required to build the alternative

CHAPTER 6. EVALUATION 77

implementation. The code for the alternative implementation of the ‘invoke
XML-RPC’ and ‘provide XML-RPC’ cases can be found in Section A.3 and
Section A.2

6.1.3 Discussion

Based on the comparison with alternatives we argue that our framework has
several advantages. In this section we discuss those advantages.

Uniform interface

A general advantage the framework has over its alternatives is that it com-
bines several otherwise independent tasks and provides a uniform inter-
face to the programmer. Table 6.1 shows how the service invoker and ser-
vice provider combined support a wide range of protocols, unlike any of the
alternatives. The framework also provides a fixed place for certain function-
ality regardless of the protocol used. This approach is comparable to how
Rails provides a fixed place for most functionality. In Rails, this has been
shown to improve productivity and facilitate learning. The service invoker
provides a general HTTP handler with features like raw data and header
manipulation which are available to programmers through all protocol ex-
tensions.

No API file

The service provider provides an alternative to ActionWebService, but it
has several advantages over ActionWebservice. One advantage is that it
does not require a separate API file. Exposed methods are described in the
ActionController, where they are also defined. Table 6.2 shows that this
does not necessarily lead to reduction in the size of the codebase.

Invoking Providing URL-enc XML JSON XML-RPC SOAP Configurable Extensible

service_provider x x x x

service_invoker x x x x x x x

ActionWebService x x x x x

ActiveResource x x x

HTTParty x x x x

RESTclient x x

NET::HTTP x x

open-uri x

Roles REST-ful services

Features

C
o
m

p
o
n
e
n
ts

Table 6.1: Comparison of framework with alternatives (x = supported)

CHAPTER 6. EVALUATION 78

~32service_invokerCase 5: Invoking
Eventbrite open-uri27

Case 2: Invoking a
'hello' service

Case 1: Providing a
'hello' service

loccomponentloccomponent
Framework Alternative

Cases

14ActionWebService11service_provider

12ActionWebService11service_invoker

Table 6.2: Implementations of cases using framework and alternatives

The rules approach

The XML-RPC handler that was implemented for the service provider takes
a different approach to specifying methods than ActionWebService. The ser-
vice invoker does not require the programmer to explicitly declare exposed
procedures. A set of procedures can be exposed by merely providing a rout-
ing rule that matches their procedure name. Based on this simplification
we expected a reduction in the size of the codebase. However, reduction
in codebase is not indicated by Table 6.2 because it is only achieved when
exposing a large amount of procedures that can be easily described by a
single rule. The ‘provide XML-RPC’ case only exposes a single procedure.

The rules approach taken by the service provider achieves loose coupling
between the exposed procedures and the handler methods. It allows for a
method to be defined that catches all procedure calls not matched to other
methods. A method can also be defined that handles all procedures that
match a certain pattern. This gives application programmers a great deal of
flexibility. A drawback of this approach is that it is impossible to explicitly
state which procedures are exposed. This makes automatic generation of
machine-processable interface definitions (like WSDL documents) hard to
achieve.

Extensibility

The service invoker can possibly handle any protocol for invoking services
over HTTP, including XML-RPC and SOAP. It provides a mechanism that
allows application programmers to decode service responses in any format.
Alternatives like RESTclient, HTTParty, open-uri and NET::HTTP either
include no decoding mechanism or can only be used to decode a limited
number of formats, as shown in Table 6.1. None of these alternatives is
extendible, so supporting new formats with these alternatives is difficult.
For service invoker we implemented decoding of the XML, JSON and URL-

CHAPTER 6. EVALUATION 79

formatted responses, as shown in Table 6.1. It can also decode YAML
responses and it provides a mechanism to handle the raw data in the response
body as a file. It can also decode XML-RPC responses. These decoders can
all be used independently, without prohibiting the use of other decoders.

The decoding mechanism of the service invoker never loses original data
after a decoding step. Application programmers can always use raw data or
the result from any decoding step. This feature is not present in any of the
alternatives.

The ThumbalizrInvoker that was implemented in Case 6 includes the
FileProcessing module. This gives the response object a method tempfile
which stores the body of the response as a file and returns a pointer to that
file. This is useful when retrieving images that are later exposed to the user.

The service invoker was used in the Document Converter case because
it supports many different request and response formats. Sending requests
required URL-encoded key-value pairs, while responses were either Files or
simple HTTP responses with an empty body. Service invoker can be used
to handle each of these request and response formats.

Application programmers can specify their own decoding step, which
may rely on another decoding step. This can provide a nice separation of
concerns in many cases, since it allows programmers to put all function-
ality for providing the right response data in the right format into the
service invoker. This feature was used in the Google Maps, Flickr and
Eventbrite cases.

Separation of Concerns

The Eventbrite case was an actual case from the World Usability Day
project. The original code that was used for the case used open-uri to
perform an HTTP request to the service directly, and then used several
other libraries to process the results. The original implementation in the
World Usability Day project required about 32 LOC. This is the alternative
implementation mentioned in Table 6.2. The total size of the function that
performed this operation however was about a 100 LOC. It also performed
many other tasks, such as interpreting the event date and time information
and synchronizing events with the database. It had several interwoven con-
cerns. The code shown in Section A.6 separates the concern of retrieving
and decoding relevant organizer and event data into the WudInvoker class.
This should facilitate the implementation of other concerns.

CHAPTER 6. EVALUATION 80

6.2 Survey

6.2.1 Approach

For this survey we approached developers that work at the Dutch software
company at which we conducted the case studies. These are experienced
Ruby and Ruby on Rails developers with a college or university level edu-
cation in Computer Science.

The translated text of the survey can be found in Appendix B. We first
asked the subjects how experienced they where with several technologies
that can be used as alternatives to the proposed frameworks. The purpose
of this question was mainly to prime the right memories in the subjects.
After this they are presented with several implementations of test cases,
and asked to rate these implementations on several quality attributes. We
present them with the following cases:

Case 1: Providing a ‘hello’ service using XML-RPC (Section 5.3).

Case 2: Invoking a ‘hello’ service using XML-RPC (Section 5.4).

Case 3: Invoking Google Maps using REST and HTTP (Section 5.5).

Case 4: Invoking Flickr using XML-RPC (Section 5.6).

Case 5: Invoking Eventbrite using REST and HTTP (Section 5.7).

The subjects where asked to consider how they would implement a case
using another technology, and to give the provided implementations a rating
between 1 and 9. They where asked to give a rating of 5 if they thought using
this implementation over using an alternative would yield the same result
with regard to a certain attribute. They were asked to give it a higher rating
if they thought it was an improvement, and give a lower rating otherwise.
This is an ordinal scale. The quality attributes are:

Understandability: Effort required to understand the function of the im-
plementation.

Learnability: Effort required to learn how to use and replicate the imple-
mentation.

Reusability: Effort required to use the implementation as part of multiple
project.

Maintainability: Effort required to change the implementation.

Extensibility: Effort required to add functionality to the implementation.

Tailorability: Effort required to configure the implementation for a more
specific purpose.

CHAPTER 6. EVALUATION 81

Simplicity: General conciseness and lack of complexity of the implemen-
tation.

Testability: Effort required to test the implementation.

We assumed the meaning of these attributes was well understood by the
subjects. These attributes are not orthogonal. If classified according to
the ISO 9126 standard [56], understandability and learnability both fall
under the usability category. In this standard, testability is an attribute
of maintainability. Reusability, extensibility, tailorability and simplicity are
not included in that standard. Simplicty is of influence to many other quality
attributes. Tailorability, extensibility and reusability overlap, and they can
be classified under the portability attribute in the ISO 9126 standard. From
a rating for the portability attribute we can draw conclusions on how useful
the framework is in different environments, which is an important quality of
a framework.

6.2.2 Results

The survey had 5 participants. Table 6.3 shows the median rating of every
case per quality attribute. A rating of 5 is neutral. Everything above that
is positive, everything below that is negative. The median of a set of ratings
is the highest of the lowest 50% of the ratings. We use the median because
the cases were rated on an ordinal scale.

G
oogle M

aps

Flickr

Eventbrite

Providing XM
L-RPC

Invoking XM
L-RPC

M
e
d
ia
n

Understandability 7 4 7 8 8 7

Learnability 7 6 7 8 8 7

Reusability 8 7 7 7 7 7

Maintainability 7 7 7 8 8 7

Extensibility 8 7 6 8 8 7

Tailorability 6 7 6 7 7 7

Simplicity 7 5 7 7 8 7

Testability 7 7 7 8 8 7

Median 7 7 7 8 8 7

Table 6.3: Median rating by developers per case, per quality attribute. (on
a scale of 1 to 9, where 1 is bad, 5 is neutral, and 9 is excellent)

Figure 6.1 shows a boxplot for every quality attribute over all cases. This
can be seen as a general rating for the framework on these quality attributes.
A boxplot is constructed as follows: the plot starts at the lowest rating that
was given. The start of the box is at the highest of the lower 25% of the

CHAPTER 6. EVALUATION 82

ratings. The line in the box is the median. The end of the box is the lowest
of the upper 25% of the ratings. The end of the plot is the highest rating
that was given.

understandability
learnability
reusability

maintainability
extensibility
tailorability
simplicity
testability

1 5 9

Figure 6.1: boxplot of ratings for quality attributes over all cases. (on a
scale of 1 to 9, where 1 is bad, 5 is neutral, and 9 is excellent)

6.2.3 Discussion

When interpreting the results we have to take into account the following
threats to their validity:

Low number of participants: The survey had only 5 participants, mak-
ing the role of statistical outliers more prominent.

Interpretation of quality attributes: Participants may have had diver-
gent interpretations of the various quality attributes.

Learning effect: The order of the cases may have caused a learning effect
which may have caused participants to rate cases later in the survey
different from earlier cases.

Almost all implementations scored above neutral on all attributes. Case
1 and 2, the ‘hello service’ cases, scored especially high on almost all at-
tributes. These were the shortest implementations in terms of LOC, and
the simplest cases. We expected them to score high on understandability
and learnability. We also argue that the way our framework handles XML-
RPC procedures is very intuitive specifically for Ruby programmers. This
is due to the dynamic nature of Ruby, in which multiple method calls, like
XML-RPC procedure calls in the framework, can be handled by a single
method definition.

CHAPTER 6. EVALUATION 83

The two cases involving the invocation of REST-ful services, the Google
Maps and Eventbrite cases, score significantly lower than the cases involving
XML-RPC interaction. This can be explained by the wide range of REST-ful
services that are supported. This in combination with the uniform platform
approach of the service invoker makes the application code more complex.

Developers rated the implementation of the Google Maps case high in
terms of extensibility and reusability. This was expected, since the imple-
mentation provides many possibilities for extracting additional information
from the response. The ratings for understandability were lower. This may
be because the implementation uses generic functionality to process the re-
sult, and because there are no functions in the framework that are specifically
tailored to the Google Maps API.

Developers rated the implementation of the Flickr case low in terms of
understandability and simplicity. This can be explained by the complicated
encoding of Flickr responses, which leads to complicated response process-
ing. The survey also shows that developers rate this implementation high
in terms of extensibility. This is probably because it provides a basis which
can be used to call other procedures of the Flickr XML-RPC service.

Developers rated the implementation of the Eventbrite case relatively
low with regard to reusability and extensibility. This may be because it
can only invoke a single resource and processes responses in an application-
specific way.

6.3 Summary

In this chapter we evaluated the framework proposed in Chapter 4. We have
compared it to several alternative technologies. Based on this evaluation we
have described several advantages of the framework over alternatives.

Where possible, we have also discussed implementations of the test cases
described in Chapter 5 using alternative technologies. In these cases, the
same amount or less lines of code were needed for the implementation using
the framework.

For some of the test implementations described in Chapter 5 we have
gathered feedback from application programmers with regard to the follow-
ing quality attributes: understandability, learnability, reusability, maintain-
ability, extensibility, tailorability, simplicity and testability.

Almost all implementations scored above average on all attributes. The
service invoker and service provider scored especially high on interactions
using XML-RPC. Scores were lower in the cases that involved REST-ful
services.

Chapter 7

Conclusions

In this chapter we present the conclusions of this research. The central prob-
lem that this research deals with is that Rails is unsuitable for a role in a
service-oriented system. The main objectives are to better define the limi-
tations of Rails with regard to SOA, and to propose a framework that deals
with the most important of these limitations. In Section 7.1 we describe how
limitations to Rails with regard to SOA were discovered and what these lim-
itations are. In Section 7.2 we describe the framework that was developed
to be able to deal with these limitations, and how it deals with these limita-
tions. In Section 7.3 we discuss the effectiveness of our framework in dealing
with these limitations based on an evaluation that was performed.

7.1 Limitations of Rails

A Rails application is part of a SOA when it provides or invokes a service.
In this thesis we distinguished three service interaction styles:

• Message-Oriented

• Remote Procedure Call (RPC)

• Representational State Transfer (REST)

We identified several protocols that can be used to support these interaction
styles. Through case studies, we have identified several limitations of Ruby
on Rails with regard to these interaction styles and protocols.

We have studied four medium-sized projects at a Dutch software com-
pany. The goal of these studies is to identify problems that were encoun-
tered when developing Rails applications that interact with other systems
in a SOA.

These case studies have shown that Rails’ ability to invoke REST-ful
services is limited and insufficient in many cases. We also conclude from
the case studies that Rails’ ability to invoke and provide RPC-style services

84

CHAPTER 7. CONCLUSIONS 85

is limited and poorly integrated. Message-oriented services were not used
in the cases, so we drew no conclusions with regard to support for these
services in Rails.

7.2 A Framework for Service-Oriented Extensions
to Ruby on Rails

In this thesis we proposed a framework for Service-Oriented Extensions to
Ruby on Rails. One of the limitation of Rails we encountered was lack of
functionality for invoking REST-ful services. A goal of our framework has
been to enable Rails to invoke any type of service over HTTP, including any
REST-ful service.

Another limitations of Rails we encountered was poorly integrated func-
tionality for invoking and providing RPC-style services. One of the goals of
our framework has been to provide a generic extension mechanism to Rails
for integrating this functionality.

Our framework consists of two parts:

service invoker allows Rails to invoke any type of service over HTTP. Pro-
tocol handlers for XML-RPC and a broad range of REST-ful services
were implemented for this framework.

service provider allows Rails to provide services of any type over HTTP.
It builds on Rails’ built-in functionality to process HTTP requests.
Service provider mainly focusses on RPC-style services. A protocol
handler for XML-RPC was implemented.

7.3 Framework Evaluation

We have implemented seven test cases to determine how effective our frame-
work is with regard to its goals. These goals were providing and invoking
services using XML-RPC and invoking REST-ful services. The test cases
covered tasks related to these goals. All seven cases were implemented suc-
cessfully using the framework.

We have also looked at existing technologies that can serve as an alter-
native to the framework. We showed that the following components overlap
in functionality with our framework:

• Restclient

• HTTParty

• NET::HTTP

• NET::XML-RPC

CHAPTER 7. CONCLUSIONS 86

• ActionWebService

By evaluating these alternatives we identified several advantages of our
framework:

Uniform interface: The framework provides a uniform interface for pro-
viding and invoking services using a wide range of protocols.

Extensibility: The service invoker and service provider allow application
developers to use a wide range of protocols. They do this by allowing
application programmers to implement extensions that contain encod-
ing and decoding mechanisms for protocol messages. Extensions for
XML-RPC and a wide range of REST-ful protocols were developed.

The rules approach: The service provider and the XML-RPC extension
achieve loose coupling between procedure calls and handler methods
by allowing application programmers to specify rules that determine
which methods are exposed.

Separation of Concerns: The framework allows application programmers
to put most functionality related to invoking and providing services
into extensions, providing a good separation of concerns.

Reduction in size of codebase: In three of the test cases, we performed
LOC measurements on equivalent implementations using either our
framework or an alternative. In all three cases, the implementation
based on our framework used slightly less lines of code.

For five of the seven test implementations we have conducted a survey to
gather feedback from application programmers. Application programmers
were asked to rate the test implementations with regard to the following
quality attributes: understandability, learnability, reusability, maintainabil-
ity, extensibility, tailorability, simplicity and testability. The survey has
shown that application programmers rate all the test implementations rela-
tively high on each of these attributes.

Ratings were especially high on cases where simple services were invoked
or provided over XML-RPC. This was explained using the size of their code-
base. The size of the codebase was bigger for test cases involving REST-ful
services, and the scores for these test cases were lower. A broad range of
REST-ful services was tested, each with their own encoding format and rep-
resentation semantics. This can make application code built on a generic
platform such as the service invoker more complex, and may explain the
lower scores and bigger codebase.

CHAPTER 7. CONCLUSIONS 87

7.4 Future Work

The plugins we built in this thesis are meant to be extended. Support for
message-oriented interactions is a possible target for future work. Adding
support for the SOAP 1.2 protocol will make that possible.

The service provider has not been evaluated in details. It was only used
for providing a service to another Rails application using XML-RPC. Its
effectiveness in providing services with other protocols to applications on
other platforms needs to be evaluated in future work.

Another direction for future work is to examine the possibilities of using
other protocols for transport. With our extensions, Rails can still only
provide and invoke services over HTTP. It is not possible yet to use it to
invoke or provide services using another application-layer Internet protocol.

Other topics for future work are how programmers use the framework
developed in this thesis and how it fits into an agile development process. In
a broader sense, one could look at how an agile development process using
Rails is influenced by the requirements of service-orientation.

Appendix A

Code Samples

This appendix contains code samples from the test cases used in Section 6.
Note:

• Pieces of code that are not suitable for publication in this thesis are
replaced by the text <anonymized>

• Pieces of code that are abbreviated are suffixed with ...

A.1 Invoking a ‘hello’ service using XML-RPC

This was used to test communication between the service provider and ser-
vice invoker.

1 : class ProviderInvoker < ServiceInvoker::Base
2 : request_builder XMLRPCBuilder,
3 : :endpoint_url => "<anonymized>"
4 :
5 : response_module XMLRPCProcessing
6 : response_module XMLProcessing
7 :
8 : def self.do_greeting_request name
9 : self.invoke(:name => ’do_greeting’, :args => [name])
10: end
11: end

A.2 Providing a ‘hello’ service using XML-RPC
with AWS

This was used to compare service provider with ActionWebService. It pro-
vides a service similar to the code in Section 4.5

88

APPENDIX A. CODE SAMPLES 89

1 : # greeting_api.rb
2 : class GreetingApi < ActionWebService::API::Base
3 : inflect_names false
4 :
5 : api_method :do_greeting,
6 : :expects => [:string],
7 : :returns => [:string]
8 : end
9 :
10: # greeting_controller.rb
11: class GreetingController < ApplicationController
12: def do_greeting(username="nobody")
13: "Hello #{username}"
14: end
15: end

A.3 Invoking a ‘hello’ service using XML-RPC with
AWS

This was used to compare service invoker with ActionWebService. It invokes
the same service as the code in Section A.1.

1 : # greeting_api.rb
2 : class GreetingApi < ActionWebService::API::Base
3 : inflect_names false
4 :
5 : api_method :do_greeting,
6 : :expects => [:string],
7 : :returns => [:string]
8 : end
9 :
10: # aws_controller.rb
11: class AwsController < ApplicationController
12: web_client_api :greeting, :xmlrpc, "http://localhost:4000/greeting/api"#, :handler_name => "greeting"
13:
14: def index
15: @result = greeting.do_greeting ’stefan’
16: end
17: end

A.4 Invoking Google Maps using REST and HTTP

This was used to retrieve directions and driving distance from google maps.

APPENDIX A. CODE SAMPLES 90

1 : module MapsProcessing
2 : def get_distance
3 : unmarshal_json[’Directions’][’Distance’][’meters’]
4 : end
5 : end
6 :
7 : class GoogleMapsInvoker < ServiceInvoker::Base
8 : request_builder BasicBuilder,
9 : :endpoint_url => "http://maps.google.com/maps/nav",
10: :default_get_params => {
11: "key" => "<anonymized>"}
12:
13: response_module JSONProcessing
14: response_module MapsProcessing
15:
16: def self.get_directions(from, to)
17: self.invoke(:url_params => {"q" => "from: @#{from} to: @#{to}"})
18: end
19: end

A.5 Invoking Flickr using XML-RPC

This code was used to retrieve the last 10 uploaded fotos from Flickr

1 : module FLICKRProcessing
2 : def unmarshal_flickr
3 : Hash.from_xml(CGI::unescapeHTML(unmarshal_xmlrpc))
4 : end
5 : end
6 :
7 : class FlickrInvoker < ServiceInvoker::Base
8 : request_builder XMLRPCBuilder,
9 : :endpoint_url => "api.flickr.com/services/xmlrpc/"
10:
11: response_module XMLRPCProcessing
12: response_module FLICKRProcessing
13:
14: before_request {|c| logger.info(c.request.raw_data)}
15: after_request {|c| logger.info(c.response.raw_data)}
16:
17: def self.do_echo_request
18: Struct.new(’EchoStruct’, :api_key, :name, :name2)
19: args = Struct::EchoStruct.new(’<anonymized>’, ’value’, ’value2’)
20: self.invoke(:name => ’flickr.test.echo’, :args => [args])

APPENDIX A. CODE SAMPLES 91

21: end
22:
23: def self.do_recent_request
24: Struct.new(’Recent’, :api_key, :per_page, :page)
25: args = Struct::Recent.new(’<anonymized>’, ’10’, ’1’)
26: self.invoke(:name => ’flickr.photos.getRecent’, :args => [args])
27: end
28: end

A.6 Invoking Eventbrite using REST and HTTP

This code was used to retrieve information about events at the World Us-
ability Day from the Eventbrite REST-style service.

1 : module WUDProcessing
2 : def unmarshal_wud
3 : xml = unmarshal_xml
4 : result = {}
5 : xml["rsp"]["user"]["organizers"]["organizer"].collect do |o|
6 : result[o["name"]] = get_organizer_events(o)
7 : end
8 : result
9 : end
10:
11: private
12: def get_organizer_events(organizer)
13: return nil if organizer["events"].nil?
14: return [organizer["events"]["event"]]
15: if organizer["events"]["event"].is_a? Hash
16: return organizer["events"]["event"]
17: if organizer["events"]["event"].is_a? Array
18: end
19: end
20:
21: class WudInvoker < ServiceInvoker::Base
22: request_builder BasicBuilder,
23: :endpoint_url => "www.eventbrite.com/rest/user_list_events/<anonymized>"
24:
25: response_module XMLProcessing
26: response_module WUDProcessing
27: end

APPENDIX A. CODE SAMPLES 92

A.7 Invoking Thumbalizr using REST and HTTP

This code was used to interact with the Thumbalizr service in the portal
case

1 : class ThumbalizrInvoker < ServiceInvoker::Base
2 : request_builder BasicBuilder,
3 : :endpoint_url => ’http://api.thumbalizr.com/’,
4 : :default_get_params => {"api_key" => "<anonymized>"}
5 :
6 : response_module FileProcessing
7 :
8 : def self.get_thumbnail(url, encoding = ’jpg’)
9 : result = self.invoke(
10: :url_params => {:url => url, :encoding => encoding}
11:)
12: result.response
13: end
14: end

A.8 Invoking a document converter using REST
and HTTP

This code was used to interact with the document converter service in the
portal case.

1 : class DocumentInvoker < ServiceInvoker::Base
2 : request_builder BasicBuilder,
3 : :endpoint_url => <anonymized>
4 :
5 : # send a request to start the job
6 : def self.start_job(asset)
7 : self.invoke(
8 : :method => :post,
9 : :url_path => <anonymized>,
10: :user => <anonymized>,
11: :password => <anonymized>,
12: :headers => {’Content-Type’ => ’text/plain’}
13: :post_params => {
14: :docUrl => "<anonymized>",
15: :pingStart => "<anonymized>",
16: :pingDone => "<anonymized>",
17: :pingError => "<anonymized>",
18: ...

APPENDIX A. CODE SAMPLES 93

19: }
20:)
21: end
22:
23: def self.get_result(jobid)
24: result = self.invoke(
25: :method => :get,
26: :url_path => <anonymized>,
27: :user => <anonymized>,
28: :password => <anonymized>
29:)
30: result.response
31: end
32: end

Appendix B

Survey

This is the survey that was conducted to evaluate the framework developed
in Chapter 4. It was presented to programmers as a plain text file with some
markers where they could fill in their answers. It was originally in dutch, this
is the translated version. It contains references to the code samples in Ap-
pendix A. These could be accessed through hyperlinks in the original survey.

On a scale of 1 to 5, rate your familiarity with the following tools, where 1
is never heard of and 5 is used in production

ActionWebService []
ActiveResource []
ruby Net::HTTP []
xmlrpc4r []

On a schale of 1 to 9, rate the following code snippets on the mentioned
‘ilities’ as oposed to an implementation where one of the technologies men-
tioned above was used. 1 means the alternative is better and 9 means the
presented snippet is better. The code in the snippets has been written to
test the service invoker and service provider plugins from my thesis. If you
don’t know how to implement a snippet using one of the technologies above
you can fill in ‘don’t know’. Use this as a last resort however, if you have any
idea how to implement an alternative try and answer it anyway. Contact
me if one of the ilities is not clear.

To get a good picture of what this code does I recommend you down-
load the two demo applications. These can be found in <anonymized>.
These are full-blown Rails 2.1 applications that use the latest versions of
my plugins, including documentation. All the code below is used in these
applications. See app/models, app/controllers and routes.rb. For the XML-
RPC examples: The invoker application looks for a service on port 4000 by
default, so start the provider application there. Contact me if something
doesn’t work.

94

APPENDIX B. SURVEY 95

If there are any other reasons why you like the snippets or an alternative
please mentioned those under the survey. Suggestions for improvements and
additions are also welcome.

Google Maps Invoker
Retrieve directions and driving distance from google maps
See Section A.4

Understandability []
Learnability []
Reusability []
Maintainability []
Extensibility []
Tailorability []
Simplicity []
Testability []

Flickr invoker
Retrieve 10 most recent photos from flickr
See Section A.5

Understandability []
Learnability []
Reusability []
Maintainability []
Extensibility []
Tailorability []
Simplicity []
Testability []

WUD invoker
Retrieve event information for the world usability day
See Section A.6

Understandability []
Learnability []
Reusability []
Maintainability []
Extensibility []
Tailorability []
Simplicity []
Testability []

APPENDIX B. SURVEY 96

XML-RPC providing
Provide a simple ‘hello(name)’ service
See Section 4.5

Understandability []
Learnability []
Reusability []
Maintainability []
Extensibility []
Tailorability []
Simplicity []
Testability []

XML-RPC invoking
Invoke aforementioned ‘hello(name)’ service See Section A.1

Understandability []
Learnability []
Reusability []
Maintainability []
Extensibility []
Tailorability []
Simplicity []
Testability []

Bibliography

[1] S. Ambler, “Mapping objects to relational databases: O/r mapping in
detail,” 2006. [Online]. Available: http://www.agiledata.org/essays/
mappingObjects.html

[2] H. He, “What is service-oriented architecture,” 2003. [Online]. Avail-
able: http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and
S. Weerawarana, “Business process execution language for web services,
v1.1,” BEA, IBM, SAP, Siebel, Specification, 2003. [Online]. Available:
http://www.ibm.com/developerworks/library/specification/ws-bpel/

[4] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund,
S. Joyce, J. Klein, D. Langworthy, M. Little, F. Leymann,
E. Newcomer, D. Orchard, I. Robinson, T. Storey, and S. Thatte,
“Web services coordination (ws-coordination), v1.0,” IBM, BEA
Systems, Microsoft, Arjuna, Hitachi, IONA, Specification, 2005.
[Online]. Available: http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-tx/WS-Coordination.pdf

[5] ——, “Web services atomic transaction (ws-atomic transaction), v1.0,”
IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, Specification,
2005. [Online]. Available: http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf

[6] ——, “Web services business activity framework (ws-business activity)
1.0,” IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA,
Specification, 2005. [Online]. Available: http://download.boulder.ibm.
com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf

[7] A. Rustad, “Ruby on rails and j2ee: Is there room for both? two
web application frameworks compared,” 2005. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/wa-rubyonrails/

[8] “Nedforce,” Website, 2008. [Online]. Available: http://www.nedforce.
com/

97

http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf
http://www.ibm.com/developerworks/linux/library/wa-rubyonrails/
http://www.nedforce.com/
http://www.nedforce.com/

BIBLIOGRAPHY 98

[9] B. Tate, “Crossing borders: What’s the secret sauce in ruby on rails,”
2006. [Online]. Available: http://www.ibm.com/developerworks/java/
library/j-cb05096.html

[10] A. Hunt and D. Thomas, Programming Ruby, 2nd edition. The Prag-
matic Bookshelf, 2007.

[11] ——, “A conversation with andy hunt and dave thomas, part vi
- programming close to the domain,” 2003. [Online]. Available:
http://www.artima.com/intv/domain2.html

[12] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, Volume 1, Number 2, 1988.

[13] K. Ramirez, “Ioc container face-off,” 2005. [Online]. Available:
http://today.java.net/pub/a/today/2005/02/10/ioc.html

[14] M. Fowler, “Inversion of control,” 2005. [Online]. Available:
http://martinfowler.com/bliki/InversionOfControl.html

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison Wesley, 1995.

[16] G. Seshadri, “Understanding javaserver pages model 2 architecture,”
1999. [Online]. Available: http://www.javaworld.com/javaworld/
jw-12-1999/jw-12-ssj-jspmvc.html

[17] Wikipedia, “Create, read, update and delete,” 2007. [Online]. Available:
http://en.wikipedia.org/wiki/Create, read, update and delete

[18] J. Nandhakumar and J. Avison, “The fiction of methodological develop-
ment: a field study of information systems development,” Information
Technology People 12(2): 179-191, 1999.

[19] D. P. Truex, R. Baskerville, and J. Travis, “Methodical systems de-
velopment: The deferred meaning of systems development methods,”
Accounting, Management and Information Technology 10: 53-79, 2000.

[20] P. Abrahamsson, O. Salo, J. Warsta, and J. Ronkainen, “Agile software
development methods, review and analysis,” VTT Publications 478,
2002. [Online]. Available: www.vtt.fi/inf/pdf/publications/2002/P478.
pdf

[21] K. Schwaber and M. Beedle, Agile Software Development With Scrum.
Prentice-Hall, 2002.

[22] K. Beck, “Embracing change with extreme programming,” IEEE Com-
puter, vol. 32, 1999.

http://www.ibm.com/developerworks/java/library/j-cb05096.html
http://www.ibm.com/developerworks/java/library/j-cb05096.html
http://www.artima.com/intv/domain2.html
http://today.java.net/pub/a/today/2005/02/10/ioc.html
http://martinfowler.com/bliki/InversionOfControl.html
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
www.vtt.fi/inf/pdf/publications/2002/P478.pdf
www.vtt.fi/inf/pdf/publications/2002/P478.pdf

BIBLIOGRAPHY 99

[23] A. Hunt and D. Thomas, The Pragmatic Programmer. Addison Wesley,
2000.

[24] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for agile software development,” 2001.
[Online]. Available: http://agilemanifesto.org/

[25] P. Abrahamsson, J. Warsta, M. Siponen, and J. Ronkainen, “New direc-
tions on agile methods: A comparative analysis,” IEEE 5-1877-X/03,
2003.

[26] P. Prescod, “Roots of the rest/soap debate,” 2002. [Online]. Available:
http://www.prescod.net/rest/rest vs soap overview

[27] T. Berners-Lee, R. Fielding, U. Irvine, and L. Masinter, “Uniform
resource identifiers (uri): Generic syntax,” IETF, RFC, 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2396.txt

[28] Amazon, “Amazon simple storage service developer guide
(api version 2006-03-01),” 2006. [Online]. Available: http:
//docs.amazonwebservices.com/AmazonS3/2006-03-01/

[29] Google, “Google products (apis),” 2008. [Online]. Available: http:
//code.google.com/more/#label=APIs

[30] D. Winer, “Xml-rpc,” xmlrpc.com, Specification, 1999. [Online].
Available: http://www.xmlrpc.com/spec

[31] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F.
Nielsen, A. Karmarkar, and Y. Lafon, “Soap version 1.2 part
1 messaging framework (second edition),” World Wide Web
Consortium, Recommendation, 2007. [Online]. Available: http:
//www.w3.org/TR/soap12-part1

[32] ——, “Soap version 1.2 part 2: Adjuncts (second edition),” World
Wide Web Consortium, Recommendation, 2007. [Online]. Available:
http://www.w3.org/TR/soap12-part2/

[33] Y. Shohoud, “Rpc/literal and freedom of choice,” 2003. [Online].
Available: http://msdn.microsoft.com/en-us/library/ms996466.aspx

[34] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “Uddi version
3.0.2,” OASIS, Specification, 2004.

[35] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Con-
cepts, Architectures and Applications. Springer, 2004.

http://agilemanifesto.org/
http://www.prescod.net/rest/rest_vs_soap_overview
http://www.ietf.org/rfc/rfc2396.txt
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
http://code.google.com/more/#label=APIs
http://code.google.com/more/#label=APIs
http://www.xmlrpc.com/spec
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2/
http://msdn.microsoft.com/en-us/library/ms996466.aspx

BIBLIOGRAPHY 100

[36] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, and
P. Yendluri, “Basic profile version 1.0,” The Web Services-
Interoperability Organization, Specification, 2004. [Online]. Available:
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

[37] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley,
C. Kaler, D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet,
N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe,
T. Storey, S. Weerawarana, and S. Winkler, “Web services addressing
(ws-addressing),” World Wide Web Consortium, Submission, 2004.
[Online]. Available: http://www.w3.org/Submission/ws-addressing/

[38] A. Wiggins, “Rest-client,” Website, 2008. [Online]. Available:
http://github.com/adamwiggins/rest-client/tree/master

[39] J. Nunemaker, “httparty,” Website, 2008. [Online]. Available:
http://github.com/jnunemaker/httparty/tree/master

[40] J. Forder, “Actionwebservice in ruby on rails,” 2006. [Online].
Available: http://wiki.rubyonrails.org/rails/pages/ActionWebService

[41] M. Neumann, “xmlrpc4r - xml-rpc for ruby,” Website, 2002. [Online].
Available: http://www.fantasy-coders.de/ruby/xmlrpc4r/

[42] H. Nakamura, “soap4r,” Website, 2000. [Online]. Available: http:
//dev.ctor.org/soap4r

[43] WSO2, “Wso2 web services framework for ruby,” Website, 2008.
[Online]. Available: http://wso2.com/products/wsfruby/

[44] R. K. zuir Yin, Case study research: design and methods, 3rd edition.
Sage Publications, 2003.

[45] T. Fuller and S. Morgan, “Data replication as an enterprise soa
antipattern,” 2006. [Online]. Available: http://msdn2.microsoft.com/
en-us/library/bb245678.aspx

[46] D. Raggett, A. L. Hors, and I. Jacobs, “W3c html 4.01 specification,”
World Wide Web Consortium, Recommendation, 1999. [Online].
Available: http://www.w3.org/TR/REC-html40/

[47] D. Winer, “Rss 2.0,” Berkman Center, Specification, 2003. [Online].
Available: http://cyber.law.harvard.edu/rss/rss.html

[48] Apple, “Podcasting faq,” 2007. [Online]. Available: http://docs.info.
apple.com/article.html?artnum=301880

[49] D. Winer, “Opml 1.0,” OPML, Specification, 2007. [Online]. Available:
http://www.OPML.org/spec

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/Submission/ws-addressing/
http://github.com/adamwiggins/rest-client/tree/master
http://github.com/jnunemaker/httparty/tree/master
http://wiki.rubyonrails.org/rails/pages/ActionWebService
http://www.fantasy-coders.de/ruby/xmlrpc4r/
http://dev.ctor.org/soap4r
http://dev.ctor.org/soap4r
http://wso2.com/products/wsfruby/
http://msdn2.microsoft.com/en-us/library/bb245678.aspx
http://msdn2.microsoft.com/en-us/library/bb245678.aspx
http://www.w3.org/TR/REC-html40/
http://cyber.law.harvard.edu/rss/rss.html
http://docs.info.apple.com/article.html?artnum=301880
http://docs.info.apple.com/article.html?artnum=301880
http://www.OPML.org/spec

BIBLIOGRAPHY 101

[50] Apple, “Tips for podcast fans,” 2008. [Online]. Available: http:
//www.apple.com/itunes/store/podcaststips.html

[51] J. Kraemer, “Act as ferret,” 2008. [Online]. Available: http:
//projects.jkraemer.net/acts as ferret/wiki

[52] E. Weaver, “Has many polymorphs,” 2008. [Online]. Available:
http://blog.evanweaver.com/files/doc/fauna/has many polymorphs/

[53] “World usability day,” Website, 2008. [Online]. Available: http:
//www.worldusabilityday.org

[54] “Eventbrite,” Website, 2008. [Online]. Available: http://www.
eventbrite.com/

[55] “Thumbalizr,” Website, 2008. [Online]. Available: http://www.
thumbalizr.com/

[56] “Iso/iec 9126 : Information technology - software product evaluation
- quality characteristics and guidelines for their use,” ISO/IEC,
Reference, 1991. [Online]. Available: http://www.cse.dcu.ie/essiscope/
sm2/9126ref.html

http://www.apple.com/itunes/store/podcaststips.html
http://www.apple.com/itunes/store/podcaststips.html
http://projects.jkraemer.net/acts_as_ferret/wiki
http://projects.jkraemer.net/acts_as_ferret/wiki
http://blog.evanweaver.com/files/doc/fauna/has_many_polymorphs/
http://www.worldusabilityday.org
http://www.worldusabilityday.org
http://www.eventbrite.com/
http://www.eventbrite.com/
http://www.thumbalizr.com/
http://www.thumbalizr.com/
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html

Index

ActionController, 17, 27
ActionView, 17
ActionWebService, 28
ActiveRecord, 17
ActiveResource, 27

basic profile, 26

CoC, see Convention over Configura-
tion

Convention over Configuration, 18
Create, Read, Update, Delete, 19, 22
CRUD, see Create, Read, Update,

Delete

Document/literal, 25
Dont Repeat Yourself, 18
DRY, see Dont Repeat Yourself

Generators, 19

HTTP, see Hyper Text Transfer Pro-
tocol

HTTParty, 28
Hyper Text Transfer Protocol, 23, 27

Inversion of Control, 18
IoC, see Iversion of Control18

JSON, 27, 28

MEP, see Message Exchange Pattern
Message Exchange Pattern, 25
Message-oriented Service, 22
Model-View-Controller, 18
MVC, see Model-View-Controller

NET::HTTP, 28

Rails, 16
Rails 2.0, 28
Remote Procedure Call, 22
Representational State Transfer, 22
REST, see Representational State Trans-

fer
REST-ful, 24, 27
Restclient, 28
RPC, see Remote Procedure Call
RPC/literal, 25
Ruby, 15
Ruby on Rails, see Rails

Separation of Concerns, 18
Service-Oriented Architecture, 21
services, 21
SOA, see Service-Oriented Architec-

ture
SOAP, 24, 27, 28
soap4r, 29
SoC, see Separation of Concerns

UDDI, see Uiversal Description, Dis-
covery and Integration25

Uniform Resource Identifier, 23
URI, see Uniform Resource Identifier
URL-encoding, 28

Web Service Description Language,
25

WS basic technologies, 25
WSDL, see Web Service Description

Language
WSO2, 29

XML, 24, 26–28
XML-RPC, 24, 27, 28

102

INDEX 103

xmlrpc4r, 29

YAML, 27

	Introduction
	Motivation
	Problem Description
	Objectives
	Approach
	Identifying the Limitations of Rails
	Developing a Framework for Service-Oriented Extensions to Rails

	Structure

	Background
	Ruby
	Ruby on Rails
	HTTP Processing, Response generation
	The Inversion of Control Pattern
	The Push MVC Pattern
	The DRY Principle
	Creating ActiveRecords
	Using Generators
	Agile Software Development and Rails

	Service-Oriented Architecture
	Service Interaction Styles
	Service Technology

	SOA in Rails
	Providing REST-ful services
	Invoking REST-ful services
	Providing and Invoking Services using XML-RPC and SOAP

	Summary

	Case Studies
	Case Study Approach
	Portal
	Purpose
	Environment
	Data Structure
	Workflows and Interactions
	Development Process

	Content Management System
	Purpose
	Environment
	Data Structure
	Workflows and Interactions
	Development Process

	Froodi
	Purpose
	Environment
	Data Structure
	Development Process

	World Usability Day
	Purpose
	Environment
	Data Structure
	Workflows and Interactions
	Development Process

	Evaluation of Discovered Problems
	Summary

	Framework
	Requirements and Architecture
	Service Invoker
	Service Provider

	Design of service_invoker
	Implementation of service_invoker
	Design of service_provider
	Implementation of service_provider
	Summary

	Test Cases
	Overview
	General Design of Implementations
	Case 1: Providing a `hello' service using XML-RPC
	Case 2: Invoking a `hello' service using XML-RPC
	Case 3: Invoking Google Maps using REST and HTTP
	Case 4: Invoking Flickr using XML-RPC
	Case 5: Invoking Eventbrite using REST and HTTP
	Case 6: Invoking Thumbalizr using REST and HTTP
	Case 7: Invoking a document converter using REST and HTTP
	Summary

	Evaluation
	Alternatives
	Approach
	Results
	Discussion

	Survey
	Approach
	Results
	Discussion

	Summary

	Conclusions
	Limitations of Rails
	A Framework for Service-Oriented Extensions to Ruby on Rails
	Framework Evaluation
	Future Work

	Code Samples
	Invoking a `hello' service using XML-RPC
	Providing a `hello' service using XML-RPC with AWS
	Invoking a `hello' service using XML-RPC with AWS
	Invoking Google Maps using REST and HTTP
	Invoking Flickr using XML-RPC
	Invoking Eventbrite using REST and HTTP
	Invoking Thumbalizr using REST and HTTP
	Invoking a document converter using REST and HTTP

	Survey

