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Summary

Self-organisation is foreseen as a key feature of future wireless communications networks in order
to decrease operational cost and to exploit resources to their fullest potential. Self-organisation of
wireless networks comes in three forms: self-optimisation, self-configuration and self-healing. In
this report we will focus on self-optimisation, i.e. the adjustment of operational algorithms and
parameters in order to adapt to changes in the network, traffic and channel conditions.

There are multiple capacity allocation mechanisms in the operations of wireless networks, which
can be self-optimised. The main difference between these capacity allocation mechanisms is that
they each perform a different task and act at their own operational timescale. In this research we
will focus on the packet scheduling algorithm that acts on a timescale of milliseconds, i.e. at the
packet level. Before self-optimisation methods for packet scheduling can be designed, the poten-
tial for self-optimisation of packet scheduling must be investigated, which is the focus of this thesis.

The research objective of this study is to investigate the sensitivity of the optimal parameter
settings for packet scheduling algorithms in wireless networks, loaded with voice and data traffic,
with respect to variations in network, traffic and channel conditions. We investigate this sensitivity
by means of a mathematical analysis and a simulation model. In the mathematical model we use
time scale decomposition between the packet and flow level. Scheduling algorithms operate at the
packet level at which the user population is relatively stable. The flow level dynamics, due to flow
transfer initiations and completions, causes the number of ongoing flow transfers to vary over time,
typically at a timescale of seconds. Our modelling approach captures the packet level and flow
level behaviour and basically consists of two steps. In the first step we consider the packet level
and derive mathematical expressions for the long-term rate that users can expect in a given system
state indicated by the number of active flows. In the second step we incorporate these rates in a
Markov chain model to analyse flow level performance for the users of the mobile wireless network.

Since the analytical model that we introduce is limited in the set of sensitivity analysis that
can be carried out with it, we introduce a simulation model with which we are able to incorpo-
rate more details and analyse more network, traffic and channel conditions. Furthermore, the
simulation model replicates the behaviour of a network, with interaction between base stations,
whereas the mathematical analysis is limited to a single cell scenario. The simulation model is a
more realistic model of network, traffic and propagation characteristics. We investigate the flow
level performance of users in this network for different parameters of the packet scheduling algo-
rithm we describe in this thesis. This way we determine whether the optimal parameter setting for
the packet scheduling algorithm depends on changes in the network, traffic and channel conditions.

Both the numerical results from the mathematical model and the results from the simulation
study show that the optimal parameter settings of the considered packet scheduler are largely
insensitive to changes in the considered network, traffic and channel conditions. We therefore
conclude that there is no potential for self-optimisation of packet scheduling algorithms based on
the investigated network, traffic and channel conditions.

i



ii



Preface

The eleven months of research for this thesis I did at TNO ICT in Delft have been a great experi-
ence for me. During this project I had the opportunity to broaden my knowledge about operations
research and I have learned how research is conducted in a professional environment. Within the
context of my project I gained insight in wireless networking, in particular the issue of packet
scheduling playing an important role in the operations of these networks. Performing literature
studies, building a simulation model in Delphi programming code and performing more fundamen-
tal analysis have been a great challenge. I can look back at the project with satisfaction, knowing
that I achieved my goals and produced some nice results.

I would like to thank Prof. dr. J.L. van den Berg and Dr. R. Litjens MSc. from TNO ICT
for their great help and their critical questions to keep me focussed. Our weekly discussions were
crucial for the progress of the project. Furthermore I would like to thank Prof. dr. R.J. Boucherie
and Ir. R.J. Mantel from the University of Twente, for their personal approach and their coaching
in the last years of my master, which kept me motivated. Their feedback in the project, as well as
their support in combing a masters programme in both Mechanical Engineering as well as Applied
Mathematics, have been great. I would like to thank my family and friends, especially my parents,
for their help and good times during my studies.

Amsterdam, March 2009

iii



iv



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Wireless communication networks 5
2.1 Fundamentals of wireless communication networks . . . . . . . . . . . . . . . . . . 5

2.1.1 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Multiple access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Capacity allocation in wireless communication networks . . . . . . . . . . . . . . . 6
2.3 Self-organisation of future wireless communication networks . . . . . . . . . . . . . 8

3 Packet scheduling in wireless networks 11
3.1 The fundamentals of packet scheduling on a wireless link . . . . . . . . . . . . . . . 11
3.2 Scheduling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Queue characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Channel quality variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Packet schedulers in literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Scope of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Mathematical modelling and analysis 17
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Fitting 1: Modelling ξi/ξ̂i ∼ Exp(1) . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Fitting 2: Modelling ξi/ξ̂i ∼ Erlang(β, k) . . . . . . . . . . . . . . . . . . . 22
4.3.3 Fitting 3: Modelling ξi/ξ̂i ∼ Erlang(βi, ki) . . . . . . . . . . . . . . . . . . . 23

4.4 Markov Chain Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 QoS Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Simulation study 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Service rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Propagation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 QoS measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



vi CONTENTS

6 Numerical results 35
6.1 Numerical results of the mathematical model . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Numerical results of the simulation study: data only . . . . . . . . . . . . . . . . . 40
6.2.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Numerical results of the simulation study: voice & data . . . . . . . . . . . . . . . 42
6.3.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusions and recommendations 49
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

A Horizontal antenna gains 55

B Vertical antenna gains 57



Chapter 1

Introduction

1.1 Background

Wireless telecommunication networks are an essential part of modern life. Although large parts
of Africa are not connected to fresh water supply, the people that live in the smallest villages do
have mobile phone coverage. Mobile devices are becoming more sophisticated every day. Mobile
wireless internet and applications for watching a video or interacting with players during an online
game are becoming part of every day life. In order to allow people to use all these applications
with increasing bandwidth needs, developments in mobile wireless networks are essential. While
GSM networks were mainly focussed on wireless telephone conversations, mobile wireless networks
of the future will be used by various applications, each with their own service requirements.

In order to provide users of the mobile network with the service they request, the capacity of
the network must be allocated. Several methods to allocate capacity within mobile wireless net-
works exist. Each of these capacity allocation methods has its own parameter settings. But while
networks and their usage are getting more complex, the optimisation of these parameters is still
conducted by manual intervention of network operators. However, to allow increased service to
users of mobile networks at competitive costs, wireless communications networks of the future will
have automated optimisation of the parameters in their network capacity allocation mechanisms.
This adaptation of parameters to the current state of the wireless network, self-optimisation, is
one of the trends for self-organising, or more automated, wireless networks. Self-organising net-
works have automated installation of new base station in the network (self-configuration), triggers
to detect failure on which they act without intervention of humans (self-healing) and continuous
optimisation of their operational settings (self-optimisation). To cope with increasing demand
at competitive cost, standardisation body 3rd Generation Partnership Project (3GPP) [1] and
operators lobby Next Generation Mobile Networks (NGMN) [2] pursue a significant degree of self-
organisation in future wireless networks. In order to implement self-organisation in wireless com-
munications networks, studies such as those carried out by Van den Berg et al. [10] visualise how
future wireless communications networks will use self-organisation methods. Self-optimisation,
self-configuration and self-healing are foreseen as promising opportunities to automate wireless
network planning and operation.

In self-optimisation active base stations may continuously adjust their operational algorithms
and parameters due to changes in network, traffic and channel conditions. In this thesis we will
investigate the packet scheduler, one of the operational algorithms to allocate capacity. The packet
scheduler handles the allocation of the transmit power of base stations to users in the network,
acting at millisecond scale. The packet scheduling algorithm is foreseen as promising for use in
self-optimisation of wireless networks.
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2 CHAPTER 1. INTRODUCTION

1.2 Previous research

As indicated in the previous section the standardisation body 3rd Generation Partnership Project
(3GPP) [1] and operators lobby Next Generation Mobile Networks (NGMN) [2] pursue a significant
degree of self-organisation in future wireless networks. Ideas on how to implement self-organisation
in these networks are currently developed and described by e.g. Van den Berg et al. [10]. Research
on actual methods and algorithms on how to implement self-organisation in networks is emerging
and described by e.g. Lei et al. [25], Delli Priscoli et al. [34] and Senouci et al. [37] who describe
self-optimisation of call admission control.

Research on self-optimisation of packet scheduling is hardly available. Necker [31] compares var-
ious different scheduling schemes, investigating service differentiation of traffic classes. Packet
schedulers in wireless networks come in different forms. In fading environments, channel-aware
scheduling strategies, such as the Proportional Fair algorithm are attractive to exploit channel
quality fluctuations while providing user fairness [6, 23]. This algorithm is mostly investigated in
networks consisting of data users. Shakkottai and Stolyar [35] investigate scheduling algorithms
for a mixture of real-time and non-real-time traffic. Furthermore the recent work by Elsayed and
Khattab [19, 24] describes an interesting and pragmatic scheduling principle, the Channel-Aware
Earliest Deadline Due, that incorporates both channel-awareness as due date aspects to allow for
this mixture of real-time and non-real-time traffic.

Performance of channel-aware scheduling algorithms has mostly been investigated at the packet
level for static user populations, including packet-scale dynamics [5, 35], but often assuming in-
finite backlogs [4, 16, 30]. This assumption of a static user population is reasonable because of
the separation in time scales. Scheduling algorithms operate at the packet level on which the
user population evolves relatively slowly. Most analytical studies focus on the performance of
schedulers without taking into account the impact of the flow level dynamics. Bonald, Proutière
and Borst have studied the performance of wireless data networks that do include this flow level.
Interesting references here are [11, 12, 13, 14, 15]. In these papers they provide analytical perfor-
mance evaluation of wireless data networks.

Furthermore there are simulation studies taking the actual flow level characteristics into account.
Litjens and Van den Berg extensively studied the flow level performance in HSDPA networks
[9, 28] with analytical and simulation models. In their papers they investigate the influence of
environment and traffic aspects on the flow level performance.

1.3 Research objectives

To allow for increased service to users of mobile networks at competitive costs, wireless com-
munications networks of the future will have to become more automated. In order to decrease
operational cost and to exploit resources to the fullest potential, self-organistion in wireless net-
works is foreseen as inevitable. Before these future wireless networks will be operational, research
on self-organisation methods is needed. As we will describe in detail in Chapter 2 self-organisation
of wireless networks comes in three forms; self-optimisation, self-configuration and self-healing. In
this report we will focus on the adjustment of operational algorithms and parameters due to
changes in the network-, traffic- and channel conditions: self-optimisation.

As we will describe in Chapter 2 there are multiple levels in wireless communications networks at
which capacity of the network is defined and allocated. On each of these levels we can implement
self-optimisation methodologies. The main difference between these capacity allocation mecha-
nisms is that they each act at their own operational timescale. In this research we will focus on
the packet scheduling algorithm that acts on a timescale of milliseconds at the packet level of the
traffic management.
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Before we can actually develop algorithms that self-optimise the operational parameters in wireless
networks we discussed, the potential for self-optimisation of the parameters from these capacity
allocation methods has to be investigated. There are multiple time scales on which different ca-
pacity allocation mechanisms act. We have to determine which of these mechanisms are crucial
in cost-effective and efficient allocation of capacity. Upon determination of the potential of self-
optimisation for each of the capacity allocation methods, actual operational self-optimisation can
be developed.

In this study we determine the potential for self-optimisation of the packet scheduling algorithm.
This algorithm acts on a timescale of milliseconds at the packet level of the traffic management.
Therefore we define our research objective as:

Investigate the sensitivity of the optimal parameter settings for packet scheduling
algorithms in wireless networks, loaded with voice and data traffic, with respect
to variations in network, traffic and channel conditions, in order to determine the
potential for self-optimisation of packet scheduling algorithms.

In this objective we identify 3 main points:

• To investigate the performance of packet scheduling algorithms, we define so called Quality
of Sevice (QoS) measures for each of the user types we consider (voice and data users).

• To determine the sensitivity of the optimal parameter settings on the QoS measures for each
user type under variations in network, traffic and channel conditions. We change network,
traffic and channel conditions and measure the difference in QoS for the users of the network.

• To determine the possible advantage for self-optimisation of packet scheduling algorithms, we
quantify the differences in traffic capacity (the supportable traffic load given predetermined
QoS targets) of the network under changing network, traffic and channel conditions. We are
mainly interested whether the optimal packet scheduling algorithm is dependent on one of
the conditions we change.

Upon determining the possible advantage for self-optimisation of packet scheduling algorithms,
we can define the gain of using self-optimisation techniques to reduce operational cost and to
exploit resources to the fullest potential. This (potential) gain will help in satisfying customer
requirement of mobile wireless networks of the future.

1.4 Structure

We will approach the research objective by elaborating on wireless communications networks in
more detail in Chapter 2. We will give an overview on packet scheduling within wireless networks
in Chapter 3. We then define a mathematical model in Chapter 4 and a simulation model in
Chapter 5 to investigate the sensitivity of packet scheduling algorithms for variations in network,
traffic and channel conditions. We will describe the numerical results for the studies performed in
Chapter 6 and conclude this thesis with some conclusions and recommendations in Chapter 7.
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Chapter 2

Wireless communication networks

In this chapter we will introduce the fundamentals of wireless communication networks. We will
describe the methods for capacity allocation in these wireless networks and discuss the general idea
behind self-organisation of wireless networks.

2.1 Fundamentals of wireless communication networks

This section highlights some basic aspects which are fundamental to the development and oper-
ations of wireless communication networks. Spectrum is the fundamental resource for wireless
communications. In order to allow more than one user on a wireless channel and use this spec-
tral resource effectively multiple access to this resource is necessary. Finally we will introduce
the concept of propagation of radio signals, essential in understanding wireless communication
networks.

2.1.1 Spectrum

Spectral resources are rather intangible yet fundamental to wireless communication. Spectrum is
an expensive resource. When the UMTS spectrum became available in The Netherlands in 2000
five companies paid a total of 2.7 billion Euro for the licences to operate on the frequencies until
2016. Nations are in charge of the wireless spectrum in their own country, though the need for
cost-efficient use of the resource led to European as well as international agreements. Technologies
in the spectrum, e.g. GSM and UMTS and the future technologies Wimax and LTE each use part
of the available spectrum. In this spectrum the uplink frequency is used to sent information from
a mobile device (the user) to a base station, using dedicated or shared channels. On the downlink
frequency information is sent from a base station to the user.

2.1.2 Multiple access

In order to use the expensive resource effectively and efficiently, wireless networks use techniques
to allow for multiple access of the spectrum to its users. Allowing users access to the resource will
allow them to be served at their requested service. There are three main technologies to allow
multiplexing of users to the resource for efficient use.

• Frequency multiplexing slices the spectrum in small frequency pairs, that are used to support
dedicated channels between the transmitter and receiver.

• Time multiplexing partitions the available channel into time slots, where each channel has
multiple time slots that each can serve one user.

• Code multiplexing uses channelisation (or spreading) codes to grant access to a shared chan-
nel. More codes allows the user to send information at a higher bit rate.

5



6 CHAPTER 2. WIRELESS COMMUNICATION NETWORKS

In this research we will use a combination of time multiplexing and code multiplexing, which we
will describe in more detail in Chapter 3.

2.1.3 Propagation

Essential in wireless communication is the degradation of the wireless signal, the radio signal, as
it propagates from the transmitting base station to the intended receiving user. Propagation of
this signal can be described by three mutually independent multiplicative propagation phenomena
that affect the transmitted signal at different scales of time and magnitude. We will describe these
phenomena of path loss, shadowing and multipath propagation below.

Path loss

At the largest time scale, the degree of attenuation is predominantly determined by the transmis-
sion path length, the antenna heights and the carrier frequency. In generic analyses, the effects
of attenuation are usually modelled by assuming an average attenuation which increases with
distance according to a power law. Models developed by Okumura [32] and Hata [21] describe
this phenomenon of path loss. For wireless communications the Okumura-Hata method is most
commonly used, since this model has continuously been updated in a.o. the Cost 231 project.

Shadowing

Shadowing is a medium scale effect which occurs whenever there is an obstruction in the direct path
from the transmitter to the receiver. Such obstructions are mountains or buildings. Shadowing is
denoted as slow fading, since the landscape between the transmitter and receiver changes slowly,
the shadowed areas are large. Shadowing effects are observed experimentally by Egli in 1957 [18],
which states that the local mean power is distributed lognormally around the attenuation based
area mean power. By ‘lognormal’ is meant that the local-mean power expressed in logarithmic
values, such as dB, has a normal (i.e., Gaussian) distribution. Egli’s experimental observation is
generally used to model shadowing effects in wireless networks.

Multipath fading

In wireless telecommunication, multipath is the propagation phenomenon that results in radio
signals reaching the receiving antenna by two or more paths. Causes of multipath include at-
mospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and
terrestrial objects such as mountains and buildings. The effects of multipath include constructive
and destructive interference, and phase shifting of the signal. As such multipath fading effects vary
over very short (typically half-wavelength) distances, the term fast fading is often used. The stan-
dard statistical model of this gives a distribution known as the Rayleigh distribution [26]. Rayleigh
fading with a strong line of sight content (i.e. with less constructive and destructive interference),
is said to be Ricean fading [20, 26, 33, 41]. In this study we use the Rayleigh and Ricean fading
models as they are most commonly used and capture the essence of multipath fading.

2.2 Capacity allocation in wireless communication networks

In order to allocate the scarce resource of the spectrum to the intended users of the wireless
communication network some form of capacity allocation is essential. In Figure 2.1 the different
capacity allocation mechanisms, as described by Litjens [27], are depicted.

In this figure we see that capacity allocation acts at four levels, each acting at their own time
scale. Although each of the mechanisms carries out a well-defined task, interdependencies exist.
We will describe the mechanisms at network planning level and traffic management level. A more
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detailed description on packet scheduling can be found in Chapter 3, the other capacity allocation
mechanisms are described in more detail by Litjens [27].

Network planning

At the network and cell level, the network planning mechanisms set the capacity and thus estab-
lishes the operational framework for the traffic management mechanisms that operate at the call
and burst or packet level. At this level the locations of base stations, the directions of antennas
and the planning that assigns frequencies to base stations is determined. Radio resource reserva-
tion policies prevent dropping of existing calls, e.g. by reserving a fraction of the system capacity
specifically for handover calls.

Traffic management

The objective of traffic management is to exploit these resources most efficiently while providing
adequate quality of service (QoS). Conversely the traffic management mechanisms determine the
amount of resources services of various types consume, which is an essential input for network
planning. QoS requirements differ per traffic class, while voice users need to receive packets
within a threshold of 100 ms [22] in order to allow for a normal phone conversation, data users
are more interested in the throughput of the network measured in seconds.

Figure 2.1: Capacity allocation in wireless communication networks: a layered overview of the
principal mechanisms and the corresponding time scales [27].
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In this research we will focus on the packet scheduling algorithm that acts on a timescale of
milliseconds at the packet level of the traffic management. Each service in the wireless network
effectively sends and receives small packets of information over the wireless link. Packet scheduling
handles the transmission of packets on a per packet basis. Depending on the quality of the wireless
channel as well as on possible deadlines for the information packets that need to be sent, the
packet scheduler decides which users get access to the wireless channel. Scheduling mechanisms
multiplexes the data flows in order to grant the users access. The goal of the packet scheduler is to
fulfil such diverse and potentially contradictory aims as resource efficiency optimisation, fairness
and QoS differentiation. We will describe the different types of packet schedulers in more detail
in Chapter 3.

2.3 Self-organisation of future wireless communication net-
works

In current wireless networks the optimal settings for capacity allocation mechanisms are deter-
mined via studies performed by network operators. Their parameters are optimised via off-line
studies, not including real-time changes of the network in the parameter-settings. Network op-
erators set targets for the different QoS measures for the users and tune the parameters they
can adapt in the capacity allocation mechanisms in order to satisfy these QoS targets most cost-
efficient. Planning and optimisation of capacity allocation mechanisms are labour intensive tasks
and, due to the increasing complexity of mobile wireless networks, these costs are increasing.

New applications that require connections of high quality, arise in mobile wireless networks. Both
the diversity and the use of these applications is growing. Planning, optimisation and operations
of these complex networks require significantly increasing effort. In order to stay competitive in
the highly competitive and price oriented telecommunications market, there is a growing trend
towards decreasing the operational expenditure for the network operator, whilst increasing capac-
ity, coverage and service quality.

To achieve this goal, wireless communication networks of the future will exhibit a significant
degree of self-organisation, as recognised by standardisation body 3rd Generation Partnership
Project (3GPP) [1] and operators lobby Next Generation Mobile Networks (NGMN) [2]. The
objectives of introducing self-organisation into wireless networks are twofold. The first objective
is to reduce operational and capital expenditure (OPEX and CAPEX) by minimising human in-
volvement in network operational tasks. The second objective is to optimise the network capacity,
coverage and service quality.

In order to implement self-organisation in wireless communication networks, studies such as those
carried out by Van den Berg et al. [10] visualise how future wireless communication networks will
use self-organisation methods. Self-optimisation, self-configuration and self-healing are foreseen as
promising opportunities to automate wireless network planning and operation, which results in the
operational process illustrated in Figure 2.2. Base stations will be added to an existing network
and configure themselves via plug-and-play: self-configuration. Once active, base stations may
continuously adjust their operational algorithms and parameters due to changes in network, traf-
fic and channel conditions: self-optimisation. Due to automatic optimisation the required quality
can be delivered as efficiently as possible. Incidental triggers, such as failure of a base station, will
lead to adjustments to the parameter settings of neighbouring base stations in order to limit the
consequences for the quality and coverage: self-healing.
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Figure 2.2: Self-organisation in future wireless networks, consisting of self-optimisation, self-
configuration and self-healing, as envisioned by Van den Berg et al. [10].
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Chapter 3

Packet scheduling in wireless
networks

As we have discussed in Chapter 2 the quality of a wireless link between the transmitter and the
intended receiver is typically dependent on the time and place of the user within the network. The
variable character of the channel quality gives opportunity for the optimal exploitation of these
variations. Efficient packet scheduling algorithms allow for this optimal exploration in order to
provide for QoS for the different users of the wireless network.

In order to introduce different types of packet schedulers we will start this chapter with a gen-
eral discussion on the fundamentals of a packet scheduling decision. We discuss the changes in
the channel quality that result in changes of the achievable rate at which users of the wireless
communications network can be served. We will discuss the different packet scheduling algorithms
that can be found in literature. We will end this chapter with a discussion on the packet scheduling
algorithm that we will use in this research. This packet scheduling algorithm needs parameters
that we can adjust. Different settings of parameter-values will lead to differences in QoS for the
users of the wireless network. This will allow us to determine the potential for self-optimisation
of packet scheduling.

3.1 The fundamentals of packet scheduling on a wireless
link

In wireless communication networks one base station typically provides service for more than one
user at a time. Users either have a dedicated channel, such as in GSM or UMTS networks, or a
shared channel, such as GPRS, HSDPA and LTE. The general idea behind this shared channel
is indicated in Figure 3.1. In this figure we see that dedicated channels will have continue access
to (part of the total) resource. In a shared channel the resource is shared, where the multi-user
variable channel scheduling problem arises. In this thesis we will constrain ourself to the downlink
frequency, on which information is sent from a base station to an intended user. Packet schedulers
determine which of the users allocated to the base station are granted service. In order to allocate
bandwidth to a user, the network operator has the possibility to use time-multiplexing and to
allow for parallel transmission within time intervals. We will describe each of these multiplexing
techniques below and denote how we interpret them in this research.

Time multiplexing shares the wireless channel in time instances. The scheduler assigns the band-
width of the base station on each time interval called the Transmission Time Interval, TTI. These
TTIs are small, e.g. 2 ms in a HSDPA network. In Figure 3.1b we see how time is divided into
these time intervals.

11
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Parallel transmission assigns the resource, the wireless channel, to multiple users at the same
time interval. Assigning more resource to a user will result that this user can be served at a higher
bit rate. Higher bit rates allow for faster transmission of the information, thereby increasing the
QoS for the user. One way to allow for parallel transmission is by assigning channelisation codes
to the users. When a higher number of codes is assigned to a user, this user can be served at a
higher bit rate. For technical reasons, there is a limitation to serve up to 4 users in the same time
interval [40]. Figure 3.1 shows the general idea behind parallel transmission in shared channels,
allowing multiple users on the wireless channel in the same time interval.

Figure 3.1: The downlink channel of a wireless telecommunication cell serves multiple users. The
resource can be allocated in dedicated channels, or in shared channels. Shared channels can
allocate the resource on time intervals, within time intervals the channel can allow for parallel
transmission.

3.2 Scheduling algorithms

In order to decide which user (or users) have to be served by a base station in a given time interval,
packet scheduling algorithms have to discriminate between the users in service. Discrimination
is based on the required QoS. We distinguish two main aspects to base a scheduling decision,
the queue characteristics of the packets waiting for transmission and the channel quality of the
users. As we already denoted in Chapter 2 the channel quality of each user is subjected to different
propagation effects, which typically change over time. In this section we will introduce the concepts
of queue characteristics that may influence the scheduling decision as well as the channel quality
concept and how and why this channel quality changes over time.

3.2.1 Queue characteristics

Queue characteristics are of interest for users that have delay sensitive service. For instance voice
users need their packets to be sent within a time limit, e.g. 100 ms [22], in order to allow for
adequate quality of this real-time service. The queue characteristics are defined by the first packet
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to be served in the queue, the head-of-line packet. This packet has characteristics defined by

Wi(t) = Delay of the first packet of user i at time t
Ti = Maximum delay or due date of the first packet of user i

The delay based scheduling component takes the delay of a packet, its deadline or a combina-
tion thereof into account when making the scheduling decision. Basically we can develop any kind
of delay based scheduling. Well known methods for taking delay into account are delay based,

Wi(t), due date based, Wi(t)
Ti−Wi(t)

, or based on the exponential rule, exp
[

aiWi(t)−aW

1+
√

aW

]
, described by

a.o. Shakkottai and Stolyar [35].

3.2.2 Channel quality variation

Channel quality varies randomly in time and independently for different users. The variations in
channel quality are due to different, varying interference levels observed by different users as well
as variable fading of the signal received by a user. We define the channel quality of user i at time
t by its Signal-to-Interference-and-Noise-Ratio (SINR), denoted ξi(t). For a given instantaneous
SINR, it is possible to find the corresponding rate at which the user can be served by the base
station. This relation, described by Shannon [36], is given by rSH(W, ξi) ≡ W log2(1 + ξi) (in
kbits/sec) where W is the available bandwidth (in kHz). Note that differences in the channel
quality lead to different rates at which the user can be served. Precisely this variation is the
reason to incorporate channel quality variation in the scheduling decision. Serving users at time
instants when their achievable rate is higher will lead to increased capacity of the network, resulting
in better QoS with similar network characteristics. Now assume user i is assigned to a base station
k and that there are S\{k} other interfering base stations transmitting signal to other users in
the network. ξi(t) is defined by

ξi(t) =
(Ptr,k(t)− Ppilot)Gk(t)∑

j∈S\{k} Ptr,j(t)Gj(t) + ωPtr,k(t)Gk(t) + N
(3.1)

where Ptr,j(t) and Ptr,k(t) are the transmitting powers of base station j, respectively k at time
t. This power has a minimum value Ppilot, the power of the pilot channel that is necessary to
communicate with the (potential) users. The maximum transmitting power is denoted by Pmax.
In the numerator we substract the pilot power from the transmitting power to obtain the power
that is available to transmit information over the traffic channel.

Gj(t) is the gain that the signal transmitted by base station j has when reaching user i at time
t. This gain is due to the path loss, shadowing, antenna gains and multipath fading. N is the
thermal noise, which is existent in every network. We describe how this gain can be calculated
in Chapter 5. ω is the orthogonality factor that determines the amount of intra-cell interference.
Furthermore define ξ̂i as the average channel SINR for user i and r̂i as the average rate for user i.

Channel adaptation identifies how the rate of the current channel state, ri(t), is taken into consid-
eration in the scheduling decision. In order to benefit from the stochastic behavior of the channel
variations and to incorporate this phenomenon three main forms of channel adaptation scheduling
are known, which are described in various papers, o.a. Van den Berg et al. [9].

Round Robin (RR)

The basic principle of channel-oblivious RR scheduling is that each base station cyclically assigns
its channel to the different flows it serves.
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Proportional Fair (PF)

The design principle of the channel aware PF scheme is to exploit the channel variations for
throughput enhancement, while still providing fairness and avoiding starvation of flows with rela-
tively poor link quality. To this end, in the considered scheme the base station assigns its channel
to flow

i∗ = arg max
i

ri(t)

r̂i(t)
(3.2)

where r̂i denotes the average rate of user i. In actual live networks and in simulation based
literature r̂i is calculated over a specified historical period by

r̂i(t) = (1− α) r̂i(t− 1) + αri(t) (3.3)

with α ∈ [0, 1] the associated smoothing parameter and r̂i(t0) = ri(t0) the assumed initial value
at the flow’s generation time t0. It is readily verified that for α = 0, respectively α = 1 the PF
scheduler is equivalent to the maximum SINR (see below), respectively RR, scheduler.

In analytical literature we schedule on SINR, thus by

i∗ = arg max
i

ξi(t)

ξ̂i

(3.4)

where we assume ξ̂i to be known and constant over time. We use the expression of the Shannon-
rate to determine the rate in the analysis. We will further discuss this approach in Chapter
4.

Maximum SINR

The channel aware Maximum SINR scheme exploits the channel variations for throughput en-
hancement even further than the PF scheme, though without providing fairness and by allowing
starvation of flows with relatively poor link quality. In the considered scheme the base station
assigns its channel to the flow with the highest instantaneous rate.

i∗ = arg max
i

ri(t) (3.5)

Again we schedule on SINR, ξi(t), in analytical literature. Key difference between the Round
Robin and Proportional Fair scheme on the one side and Maximum SINR scheduling on the other
side is the inherent fairness property of the first two schemes. Flows obtain equal long term access
to the base stations resources, regardless of their respective average SINRs.

3.3 Packet schedulers in literature

Packet schedulers can be identified on their channel adaptive and their delay based component.
Besides this, schedulers are differentiated in homogeneous schedulers, which consider no differen-
tiation between traffic types, and heterogeneous schedulers, which incorporate multiple classes of
users thereby allowing differentiation between traffic types. Often the classes are based on the
type of service of the users in the network. In order to allow for differentiation of the classes of
users, some form of relative importance for the user is set by γi. Often users within the same class
are given the same value for γi. Table 3.1 lists the schedulers we found in literature and their
scheduling decision maximization formulas. For each scheduler we indicate the usage of channel
adaptation, the incorporation of delay aspects and whether the scheduler is homogeneous or het-
erogeneous.
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Scheduler Maximization formula Channel adaptive Delay aspect Type
RR - No No Homogenous

Max SINR ri (t) Max SINR No Homogenous

PF ri(t)

r̂i(t)
PF No Homogenous

FIFO Wi (t) No Delay Homogenous

EDD Wi(t)
Ti−Wi(t)

No Due Date Homogenous

CD-EDD ri(t)

r̂i

(
Wi(t)

Ti−Wi(t)

)
PF Due Date Homogenous

LWDF γiWi (t) No Delay Heterogenous

M-LWDF γiri (t)Wi (t) Max SINR Delay Heterogenous

Exp rule γi
ri(t)

r̂i

exp
[

aiWi(t)−aW

1+
√

aW

]
PF Delay Heterogenous

CD-EDD γi
ri(t)

r̂i

Wi(t)
Ti−Wi(t)

PF Due Date Heterogenous

Table 3.1: The schedulers we found in literature and their scheduling decision maximization
formulas. For each scheduler we indicated the usage of channel adaptation, the incorporation of
delay aspects and whether the scheduler is homogeneous or heterogeneous.

Hierarchical scheduling

It is possible to schedule different classes of users heterogenously with an hierarchical scheduling
method, as described by Necker [31]. The hierarchical scheduler subdivides the scheduling decision
to two levels. The first level, the traffic class scheduler, makes the high-level scheduling decision
that determines which traffic class is scheduled. This can be accomplished with a Weighted Round
Robin mechanism, which assigns a weighted share of the available resource to each user class, or a
Static Prioritisation mechanism, which allows absolute priority of one traffic class over the others
or by some other form of (weighted) priority of one traffic class over the other. Within each
traffic class, the traffic class scheduler makes a scheduling decision based on one a scheduler that
is composed of a channel adapive and/or delay based component.

3.4 Scope of the research

In this thesis we will distinguish between a network loaded with data traffic only and a network
loaded with both data and voice traffic. As indicated in Chapter 2 we will simulate a network
loaded with data traffic and a network loaded with both data and voice traffic. We will develop a
mathematical analysis as well, which can be used for a network loaded with data traffic only. We
will distinguish between the schedulers considered in the mathematical analysis and the simulation
study. We will describe the mathematical analysis in Chapter 4 and the corresponding numerical
results in Chapter 6.

Mathematical analysis

In the mathematical analysis, we consider a network in use by data users only. We therefore will
consider the Round Robin, Proportional Fair and maximum SINR scheduler. As discussed above,
we will take the analytical expression into account and base our scheduling decision on the SINR
values, where we assume the average SINR ξ̂i to be known. We will describe the mathematical
analysis in Chapter 4 and the corresponding numerical results in Chapter 6.
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Simulation study

The network in the simulation study is loaded with both voice and data traffic. Therefore we
want the scheduling mechanism we consider to be both ‘channel sensitive’ and ‘delay sensitive’.
Voice users have a deadline for their packets of typically 100 ms [22]. In order to satisfy the
deadline of a packet, we should incorporate this deadline in the scheduling decision. Furthermore
we incorporate channel sensitivity to exploit channel variations. In the simulation study we will
therefore base our scheduling decision on an adjusted version of the CD-EDD scheduler, cf. Table
3.1

arg max
i

=
ri (t)
r̂i

(
1 +

Wi (t)
Ti −Wi (t)

)ζ

(3.6)

where Wi(t)
Ti−Wi(t)

= 0 for data users. Furthermore recall from Equation (3.3) that r̂i(t) = (1− α) r̂i(t−
1) + αri(t).

The objective of our research is to investigate the sensitivity of the optimal packet scheduling
parameters in wireless networks with respect to variations in network, traffic and channel con-
ditions. Therefore we chose for the channel quality sensitive Proportional Fair expression. To
determine the influence of the deadline component of the scheduler, we initiated the parameter ζ,
which gives relative importance of the ‘deadline sensitivity’ to the ‘channel sensitivity’. In Chapter
5 we will introduce the model simulation used in our simulation study. In Chapter 6 we will define
the simulation scenarios and the parameter values for α and ζ that we consider.



Chapter 4

Mathematical modelling and
analysis

In this chapter we develop a mathematical model to analyse the performance of different packet
scheduling schemes in different fading environments in a wireless network. As indicated in Chapter
3 we will analyse the Round Robin, the Proportional Fair and the maximum SINR scheduler.
Previous analytical research on scheduling mechanisms that incorporate multipath fading conducted
by Berggren and Janti [7] and Litjens and Berggren [8, 29] assume a Rayleigh fading model,
modelled by a distribution of ξi/ξ̂i ∼ Exp(1). The variance of this distribution characterises a high
degree of multipath fading. We will generalise this fading model, making it possible to adjust the
distribution of ξi/ξ̂i

4.1 Introduction

The goal of this chapter is to compare the performance of different scheduling schemes in different
fading environments using an analytical approach. We want to compare the different scheduling
schemes based on their performance at flow level. We incorporate the flow level dynamics due to
flow (file) transfer completions and initiations by the users at random time instants, which causes
the number of ongoing flow transfers to vary over time. The differences in fading environment
and scheduling mechanisms lead to differences in the flow transfer completions. In this chapter we
will develop an analytical model that allow us to calculate the rate with which these flow transfer
completions occur, based on the fading environment and scheduling mechanisms.

We aim at quantifying the performance measure throughput, expressing how the performance
depends on the users average channel quality, the fading environment and the scheduling mech-
anism under consideration. Furthermore we are interested in the performance throughput of the
users which have the worst channel quality. In a mobile network the throughput that a typical
user can experience is dependent on its distance to the base station, antenna gains, shadowing
aspects and multipath fading. Users that are located further from the base station typically have
a channel of worse quality than users located close to the base station and therefore typically
receive a lower throughput. These users are called ‘cell edge’ users and we will quantify their
performance throughput in this chapter. We will introduce a model that categorizes users based
on their average channel quality, ξ̂i, in L types.

In the next section we will describe the mathematical model. Section 4.3 describes the calculations
of the long-term average throughputs for users in the network. We use these long-term average
throughputs in the Markoc chain model we define in Section 4.4. In Section 4.5 we define the QoS
measures that we use to determine the performance of the different packet scheduling mechanisms
in the different fading environments considered. The numerical results of the mathematical model
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described in this chapter are discussed in Chapter 6.

4.2 Mathematical modelling

We will consider a single cell scenario with users generating elastic traffic flows. Our modelling
and analysis approach is based on time scale decomposition and consists basically of two steps.
The first step takes the details of the scheduler’s behaviour into account in a given state of the
system, i.e. the number of users and their average channel quality measured in SINR. The step
determines the user’s average throughput. In the second step these throughputs and the rates
at which new users become active are used to create a continuous-time Markov chain describing
the system behaviour at flow level. From the steady-state distribution of the Markov chain the
performance measures, such as the average throughput for a user of an arbitrary type, can be
calculated. Our approach to capture packet level dynamics by analysis and flow level dynamics by
Monte Carlo simulation is similar to the approach described by Dimitrova et al. [17]. The main
difference is that this research focusses on the performance of the downlink, whereas the paper by
Dimitrova et al. has a clear focus on the (enhanced) uplink.

We describe the modelling assumptions underlying the presented analysis. At system level, we
consider the downlink of a single cell. Calls arriving at the considered base station are split in L
types. The average SINR for users of type i is assumed to be known and is denoted by ξ̂i.

A number of assumptions are made at the user level. Calls are generated according to spa-
tially uniform Poisson arrival processes with rate λ. For the performance of calls it matters of
which type they are. As a direct consequence of the uniformity assumption, the probability qi

that generated call is of type i is 1/L, so that the call arrival rate of type i users is λi = λqi. Calls
are characterised by a file that needs to be downloaded, whose size is exponentially distributed
with mean F (in kbits). As no user mobility is considered, users keep their positions in the cell
during the file transmission. The bit rate at which a call is served depends on the average SINR
of the user type and the scheduling method, as we will see in the perfomance analysis section 4.3.

At a given time, the system state n = (n1, n2, .., nL) is described by the number of calls ni of
type i, i = 1, .., L. The instantaneous SINR of a flow type i is modelled as a random variable
denoted ξi with average ξ̂i. The variability of the instantaneous SINR will be modelled using three
fittings of the distribution for ξi/ξ̂i.

1. For the first fitting we consider that the variability of the instantaneous SINR is caused by
small-scale Rayleigh fading, which is reflected by modelling ξi/ξ̂i ∼ Exp(1) as is done in
literature by e.g. Berggren and Janti [7] and Litjens and Berggren [8, 29].

2. For the second fitting we model the variability as caused by the Ricean fading model [20,
26, 33, 41] and determine a general distribution, we use an Erlang(β, k) distribution. We
assume an identical distribution for all types of users, so ξi/ξ̂i ∼ Erlang(β, k).

3. For the third fitting we model the variability by fitting an individual distribution, we use an
Erlang(βi, ki) distribution on each of the types individually, so ξi/ξ̂i ∼ Erlang(βi, ki).

For a given instantaneous SINR, a link adaptation scheme is assumed to provide a suitable trans-
mission rate when the flow is scheduled for service, viz. rSH(W, ξi) ≡ W log2(1 + ξi) [36], where
W denotes the available bandwidth. The resulting instantaneous rates lead to long-term average
throughput values for users of type i in a given state n. We use these long-term average through-
put values to calculate the transition rates in the Markov chain model, as will be discussed in
Section 4.4. The resulting Markov Jump queue can then be analysed or simulated to obtain the
flow level performance for each of the types of users in the network. Figure 4.1 shows the resulting
transition state diagram of the continuous-time Markov chain describing the system at flow level
for the case L = 2.
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Figure 4.1: Transition state diagram of the continuous-time Markov chain describing the system
at flow level for the case L = 2.

From Figure 4.1 we see that the long-term average throughput values for users of type i, Ri(n) are
of essential influence in the determination of the steady state of the Markov Chain model. We will
determine the influence of the different scheduling schemes and the different fading environments
by determining the associated long-term average throughput values based on the scheduling scheme
and the fading environment under consideration. As discussed we will determine the influence of
the different fading environments by fitting an Erlang distribution on to ξi/ξ̂i. We consider three
fittings in our analysis, ξi/ξ̂i ∼ Exp(1), ξi/ξ̂i ∼ Erlang(β, k and ξi/ξ̂i ∼ Erlang(βi, ki). In the next
section we will determine the long-term average throughput Ri(n) for each of these fittings.

4.3 Performance analysis

As discussed in the previous section the modelling approach consist of two steps. The first step
is to take the details of the scheduler’s behaviour into account in a given state of the system to
determine the user’s average throughput. In this section we describe this first step and determine
the long-term average throughput rate of calls of type i, Ri(n), based on the system state and
scheduling scheme. These rates will be input for the transition rates of the Markov model jump
queue. We distinct the three fittings as identified in Section 4.2. For each of these fittings we con-
sider the access selection based on scheduling via Round Robin, Proportional Fair and Maximum
SINR, as described in Chapter 3. For the analysis of the Proportional Fair scheduler we assume
the idealised version of the Proportional Fair scheduler, where we assume the average SINR ξ̂i to
be known.

In the second step discussed in Section 4.2, we use these throughputs and the rates at which
new users become active are used to create a continuous-time Markov chain describing the system
behaviour at flow level. From the steady-state distribution of the Markov chain the performance
measures, such as the average throughput for a user of an arbitrary type, can be calculated.

We will now describe how to determine the long-term average throughput rate of calls of type
i, Ri(n), based on the system state and scheduling scheme for the three fittings we consider in our
analysis.
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4.3.1 Fitting 1: Modelling ξi/ξ̂i ∼ Exp(1)

We will determine the long-term average rate for calls of type i, Ri(n) under the assumption
that ξi/ξ̂i is distributed according to Exponential(1). We consider the scheduling schemes Round
Robin, Proportional Fair and Maximum SINR.

Round robin access selection

Define the auxiliary function

H(k, ξ̂i) ≡
∫ ∞

0

rSH(W, ξi)
1

ξ̂i

e
− ξik

ξ̂i dξi

H(k, ξ̂i) = W
ek/ξ̂i

k ln 2
Γ

(
k

ξ̂i

)
(4.1)

where Γ(x) =
∫∞

x
t−1e−tdt is an incomplete Gamma function, applying substitution and partial

integration techniques to obtain the final expression. For k = 1, H(1, ξ̂i) is readily seen to express
the long-term average throughput experienced by an isolated flow with average SINR ξ̂i, which is
obtained by conditioning on the exponentially distributed instantaneous SINR. Given a presence
of N =

∑L
i=1 ni flows, the fraction of time a single flow of type i is served is equal to 1/N due to

the nature of the RR scheme. The long-term average throughput experienced by a flow of type i
is then

Ri(n) =
1
N

H(1, ξ̂i) (4.2)

Note that the long-term average throughput experienced by a flow of type i is only dependent on
the total amount of users present in the system.

Proportional Fair access selection

As introduced above, the basic principle of PF access selection is to schedule a flow based on
the ratio ξi/ξ̂i of the instantaneous and average SINRs in order to enhance throughput while
preserving fairness. Given the instantaneous SINR values, the probability that a given flow of
type i is served by the RA is equal to

Pr (flow i is served|ξi) = Pr

(
ξi

ξ̂i

≥ ξj

ξ̂j

, ∀j 6= i

)

Pr (flow i is served|ξi) =

(
1− e

− ξi

ξ̂i

)N−1

(4.3)

which is noted to be increasing in ξi and not dependent on the SINRs of the competing calls.
Deconditioning Expression (4.3) with respect to the experienced SINR ξi we find

Pr {flow i is served} =
∫ ∞

0

(
1− e

− ξi

ξ̂i

)N−1
1

ξ̂i

e
− ξi

ξ̂i dξi

Pr {flow i is served} =


 1

N

(
1− e

− ξi

ξ̂i

)N


∞

0

Pr {flow i is served} =
1
N

(4.4)

expressing the above mentioned fairness property, i.e. the PF scheme indeed establishes fair ac-
cess to the resources, regardless of a flow’s average SINR, which is also immediately clear from the
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fact that access selection is based on the ratio ξi/ξ̂i, which is probabilistically identical for all flows.

Under the PF scheme, the long term average throughput of a flow i is then

Ri(n) =
∫ ∞

0

rSH(W, ξi)

(
1− e

− ξi

ξ̂i

)N−1
1

ξ̂i

e
− ξi

ξ̂i dξi

Ri(n) =
N−1∑

k=0

(
N − 1

k

)
(−1)k

∫ ∞

0

rSH(W, ξi)
1

ξ̂i

e
− ξi

ξ̂i dξi

Ri(n) =
1
N

N∑

k=1

(
N

k

)
(−1)k+1H

(
k, ξ̂i

)
(4.5)

applying Newton’s binomium with H(·) again as defined in Expression (4.1). It can be verified
that Expression (4.5) is larger than Expression (4.2), basically since Pr(flow i is served|ξi) is
increasing in ξi while overall access is fair, i.e. a flow is more likely to be granted its fair share
of access time at instances where it experiences a more favourable radio link quality and thus a
higher potential bit rate. This establishes the multi-user diversity gain that is achieved by the
PF scheme. Again, note that the long-term average throughput experienced by a flow of type i is
only dependent on the total number of users present in the system.

Maximum SINR access selection

As introduced above, the basic principle of Maximum SINR access selection is to schedule a flow
based on its instantaneous SINR ξi. We know that ξi/ξ̂i ∼ Exp(1), so ξi ∼ Exp(1/ξ̂i). Given the
instantaneous SINR values, the probability that a given flow of type i is served by the RA is equal
to

Pr (flow i is served|ξi) = Pr (ξi ≥ ξj , ∀j 6= i)

Pr (flow i is served|ξi) =

(
1− e

− ξi

ξ̂1

)n1
(

1− e
− ξi

ξ̂2

)n2

...

...

(
1− e

− ξi

ξ̂i

)ni−1

...

(
1− e

− ξi

ξ̂J

)nJ

(4.6)

which is noted to be increasing in ξi and though not independent on the SINRs of the competing
calls. Deconditioning Expression (4.6) with respect to the experienced SINR ξi we find

Pr {flow i is served} =
∫ ∞

0

(
1− e

− ξi

ξ̂1

)n1
(

1− e
− ξi

ξ̂2

)n2

...

(
1− e

− ξi

ξ̂ni

)ni−1

...

(
1− e

− ξi

ξ̂nJ

)nJ

1

ξ̂i

e
− ξi

ξ̂i dξi (4.7)

Under the Maximum SINR scheme, the long term average throughput of flow i is then

Ri(n) =
∫ ∞

0

rSH(W, ξi)

(
1− e

− ξi

ξ̂1

)n1
(

1− e
− ξi

ξ̂2

)n2

...

(
1− e

− ξi

ξ̂i

)ni−1

...

(
1− e

− ξi

ξ̂J

)nJ

1

ξ̂i

e
− ξi

ξ̂i dξi (4.8)

The long-term average throughput experienced by a flow of type i is thus dependent on the total
state (n) of users present in the system.
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4.3.2 Fitting 2: Modelling ξi/ξ̂i ∼ Erlang(β, k)

We will determine the long-term average rate for calls of type i, Ri(n) under the assumption that
ξi/ξ̂i is distributed according to Erlang(β, k). We consider the scheduling schemes Round Robin,
Proportional Fair and Maximum SINR.

Round robin access selection

Given a presence of N =
∑L

i=1 ni flows, the fraction of time a single flow of type i is served is
equal to 1/N due to the nature of the RR scheme. The long-term average throughput experienced
by a flow of type i is then

Ri(n) =
1
N

∫ ∞

0

rSH(W, ξi)

(
β

ξ̂i

)k

ξk−1
i

(k − 1)!
e
−β

ξi

ξ̂i dξi (4.9)

Note that the long-term average throughput experienced by a flow of type i is only dependent on
the total amount of users present in the system.

Proportional Fair access selection

As introduced above, the basic principle of PF access selection is to schedule a flow based on
the ratio ξi/ξ̂i of the instantaneous and average SINRs in order to enhance throughput while
preserving fairness. Assuming identical probability density functions for ξi/ξ̂i for all types of
users, the probability that a given flow of type i is served by the RA is equal to

Pr (flow i is served|ξi) = Pr
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, ∀j 6= i
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Which gives us for the distribution ξi/ξ̂i ∼ Erlang(β, k)
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which is noted to be increasing in ξi and not dependent on the SINRs of the competing calls.
Deconditioning Expression (4.11) with respect to the experienced SINR ξi we find
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(4.12)

Under the PF scheme, the long term average throughput of a flow i under assumption of ξi/ξ̂i ∼
Erlang(β, k) is then
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The long-term average throughput experienced by a flow of type i is only dependent on the total
amount of users present in the system.
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Maximum SINR access selection

As introduced above, the basic principle of Maximum SINR access selection is to schedule a flow
based on its instantaneous SINR ξi. We know that ξi/ξ̂i ∼ Erlang(β, k), so ξi ∼ Erlang(β/ξ̂i, k).
Assuming identical probability density functions for ξi/ξ̂i for all types of users, the probability
that a given flow of type i is served by the RA is equal to

Pr (flow i is served|ξi) = Pr (ξi ≥ ξj , ∀j 6= i)
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which is noted to be increasing in ξi, though not independent on the SINRs of the competing calls.
Deconditioning Expression (4.14) with respect to the experienced SINR ξi we find
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Under the Maximum SINR scheme, the long term average throughput of flow i under assumption
of ξi/ξ̂i ∼ Erlang(β, k) is then
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The long-term average throughput experienced by a flow of type i is thus dependent on the total
state (n) of users present in the system.

4.3.3 Fitting 3: Modelling ξi/ξ̂i ∼ Erlang(βi, ki)

We will determine the long-term average rate for calls of type i, Ri(n) under the assumption that
ξi/ξ̂i is distributed according to Erlang(βi, ki). We consider the scheduling schemes Round Robin,
Proportional Fair and Maximum SINR.

Round robin access selection

Given a presence of N =
∑L

i=1 ni flows, the fraction of time a single flow of type i is served is
equal to 1/N due to the nature of the RR scheme. The long-term average throughput experienced
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by a flow of type i is then
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Note that the long-term average throughput experienced by a flow of type i is only dependent on
the total amount of users present in the system.

Proportional Fair access selection

As introduced above, the basic principle of PF access selection is to schedule a flow based on
the ratio ξi/ξ̂i of the instantaneous and average SINRs in order to enhance throughput while
preserving fairness. Assuming identical probability density functions for ξi/ξ̂i for all types of
users, the probability that a given flow of type i is served by the RA is equal to
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Which gives us for the distribution ξi/ξ̂i ∼ Erlang(βi, ki)

Pr (flow i is served|ξi) =
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which is noted to be increasing in ξi and not independent on the SINRs of the competing calls.
Deconditioning Expression (4.19) with respect to the experienced SINR ξi we find
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Under the PF scheme, the long term average throughput of a flow i under assumption of ξi/ξ̂i ∼
Erlang(βi, ki) is then
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The long-term average throughput experienced by a flow of type i is thus dependent on the total
state (n) of users present in the system.

Maximum SINR access selection

As introduced above, the basic principle of Maximum SINR access selection is to schedule a flow
based on its instantaneous SINR ξi. We know that ξi/ξ̂i ∼ Erlang(βi, ki), so ξi ∼ Erlang(βi/ξ̂i, ki).
Assuming independent probability density functions for ξi/ξ̂i for all types of users, the probability
that a given flow of type i is served by the RA is equal to

Pr (flow i is served|ξi) = Pr (ξi ≥ ξj ,∀j 6= i)
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which is noted to be increasing in ξi, though not independent on the SINRs of the competing calls.
Deconditioning Expression (4.22) with respect to the experienced SINR ξi we find
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Under the Maximum SINR scheme, the long term average throughput of flow i under assumption
of ξi/ξ̂i ∼ Erlang(βi, ki) is then
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The long-term average throughput experienced by a flow of type i is thus dependent on the total
state (n) of users present in the system.

4.4 Markov Chain Modelling

Now that the packet level analysis is completed we can introduce flow level dynamics. This is
done in the second step of the analysis with the creation of a continuous-time Markov chain model
describing the dynamics of call initiations and completions in the cell. The states in the Markov
model are given by n = (n1, n2, .., nL), i.e. the distribution of the calls over the different zones in
the cell. Hence the Markov model itself has L dimensions, each of the L dimensions is unlimited
in the number of admissible calls. The transition rates of the Markov model are as follows, cf.
Figure 4.1

n → (n1, .., ni + 1, .., nL) at rate λi call arrival
n → (n1, .., ni − 1, .., nL) at rate ni

F Ri(n) call completion

Due to the complexity of the resulting Markov model (transition rates are dependent on the
full state) an analytical solution is not feasible. When no closed-form expressions are available,
standard techniques for deriving the steady-state distribution can be used, e.g. numerical solution
of the balance equation or simulation of the Markov chain. Using numerical simulation we can
easily derive the desired performance measures from the steady-state distribution of the Markov
model. We will describe the numerical results of this mathematical model and the conclusions
that we can draw from these results in Chapter 6.

4.5 QoS Measures

In order to evaluate the numerical results of the Markov Jump queue we defined in the previous
section, we have to define the measures on which we determine the QoS. We will distinguish
between measures taken from all users that receive service in the network and users which we will
denote ‘cell edge’ users. We define a ‘cell edge’ user as a with the worst average channel quality,
thus a user of type L. With this measure 10% of the users is labeled as ‘cell edge’ users, since we
consider L = 10 types of users. We define the following QoS measures for the data users.

1. Average throughput for all users.

2. Throughput for users of type L, the ‘cell edge’ users.

Operators typically optimise a network by setting minimal requirements for the throughput for
‘cell edge’ users. We measure throughput for each user as the file size divided by the time needed
to sent this file, expressed in kbits/sec.



Chapter 5

Simulation study

In this chapter we will describe the simulation model we used to investigate the influence of packet
scheduling decisions on the QoS for users in the network. The network model, traffic model,
service rate model and propagation model are described. They are combined with selected scheduling
algorithms as described in Chapter 3. The resulting simulation model is implemented in Delphi
programming code in order to perform numerical studies. With these numerical studies we want
to determine the influence of the different environment characteristics identified in Chapter 3
and the different packet scheduling algorithms on the QoS for the users of the network. The
numerical results for the simulation study are presented in Chapter 6 and show the QoS for users
by simulation of a network loaded with data traffic only and a network loaded with voice and data
traffic.

5.1 Introduction

The goal of this chapter is to compare the performance impact of different parameter settings for
the selected scheduling algorithm as described in Chapter 3 for changes in the network, traffic and
channel conditions using a simulation model. Different network, traffic and channel conditions and
different parameter settings for selected scheduling algorithm lead to differences in the experienced
service quality for users of the network. The simulator of the wireless network that we define in
this research comprises specific models for the network, traffic, service rate and propagation as
described in Sections 5.2, 5.3, 5.4 and 5.5, respectively. As a high level overview of the applied
simulator, the call and packet level operations are described below.

At the call level we initiate and terminate calls. Upon call generation the geographic location
of the call, as well as its service requirement is determined. We determine when the information,
that needs to be transmitted from the base station to the user, arrives and how large these infor-
mation packets are. These arriving packets are placed in a buffer for each user. Furthermore, upon
call generation the propagation characteristics of the call are modelled and the serving base station
is selected. Calls that have received their requested service are terminated. Upon termination we
determine the QoS that this user has received in accordance with the QoS measures as described
in Section 5.6.

At the packet level we model the network in so-called transmission time intervals of 2 ms. In each
time interval the path gains, as described in Section 5.5, are updated. Based on these updated
path gains the instant achievable service rate, ri(t), is calculated. We use the packet scheduler,
as described in Section 3.4, to make the scheduling decision for each base station. Users that are
scheduled receive service according to their instant bit rate, ri(t), until their buffer is emptied.
We detect whether transmission of packets that empty the buffer lead to call termination, which
is then processed at the call level.

27
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5.2 Network model

The network topology will be characterized by 12 x 3 cells in hexagonal layout as is shown in
Figure 5.1a. In this model we define an area consisting of hexagons. Each of the 12 sites has 3
directed antennas, resulting in a total of 36 base stations. Users are generated by the traffic model
described in Section 5.3. Users are placed at a position in the network and they are allocated
to one of these 36 base station cells. This allocation is based on the propagation characteristics
of a user, as described in Section 5.5. The area uses wraparound in so-called ’doughnut-style’,
which means that the network area is wrapped around from top to bottom and left to right. The
lines in Figure 5.1a denote the allocated base station of each user. This figure clearly visualises
the wraparound principle. Figure 5.1 denotes how each site is divided in 3 base stations, serving
different users.

We have to define some parameters and aspects of the network to fully determine the network
model. We will set these parameters to match a suburban scenario. These network settings are
typically found in suburban areas. Urban areas are characterised by a higher density of base sta-
tions, with less inter-site distance, while country side areas are characterised by lower density of
base stations, with a greater inter-site distance. In our simulation model, we define the following
parameters.

1. Inter-site distance = 1.224 km.

2. Pilot transmitting power of the base station Ppilot = 5 Watt. This is the part of the
transmitting power a base station is sending to communicate with all possible users. This
part of the transmitting power is not available for sending information to users of the base
stations and is also being sent when there are no users allocated to the base station. This
pilot power includes other signalling channels in the network.

3. Maximum transmitting power of the base station Pmax = 20 Watt is the maximum power
at which a base station can transmit. The difference between the maximum transmitting
power and the pilot power can be used to sent information to the users served by the base
station.

4. Noise level in the network, N = 9.5499E-14 Watt.

5. Bandwidth of the network, W = 5 MHz.

5.3 Traffic model

Traffic model data users

Users requiring data service arrive to the network characterised by a Poisson process. The inter-
arrival times of the users is exponentially distributed with parameter λdata, the aggregate Poisson
session arrival rate. By varying λdata we can effectively vary the load on the network. We measure
λdata in calls/sec/cell.

The general traffic model used in this simulation is denoted in Figure 5.2. Arriving data traffic is
characterised by a size which has a hyperexponential probability density function, characterised
by a mean and squared coefficient of variation (SCOV). The data packets are relatively large and
fill a buffer at the base station with information to be transmitted to the user. We assume that
the size of the packets that are transmitted to the user can be of arbitrary size. When the user
is scheduled, the base station will sent a packet from the buffer with a size that is in accordance
with the channel quality, as we will describe in section 5.4. The user leaves the network when the
buffer at the base station becomes empty.
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(a) (b)

Figure 5.1: (a) The network layout. (b) The sectorisation of a site in 3 base stations (cells). Each
cell in the network is served by a directional antenna.

Figure 5.2: The traffic model.
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Traffic model voice users

Users requiring voice service arrive to the network characterised by a Poisson process. The inter-
arrival times of the users is exponentially distributed with parameter λvoice, the aggregate Poisson
session arrival rate. By varying λvoice we can effectively vary the load on the network. We measure
λvoice in calls/sec/cell.

Voice traffic is characterised by deterministic inter-arrival times of the voice packets. We as-
sume that voice users need a bandwidth of 12.2 kbits/sec and that the inter arrival time between
voice packets is 20 ms. This results in deterministic voice packet sizes of 244 bits. The length of a
voice call is further characterised by a geometric distribution for the number of packets that arrive
in a session with an average of 500 packets. This is equivalent with an average voice call length
of 10 seconds. This way we model the voice calls as talk spurts of normal phone conversations.
Figure 5.2 shows this voice traffic model. Voice packets are delay-sensitive and need to be sent to
the intended user within 100 ms. Packets that violate this deadline are removed from the buffer
(not shown in the figure).

5.4 Service rate model

An essential aspect of wireless communications is the degradation of radio signals as they prop-
agate from a transmitter, the base station, to the intended receiver, the user. Since wireless
telecommunication is subject to radio propagation, we have to include a model that replicates this
phenomenon. In this research we include the propagation aspects of path loss, multipath fading,
shadowing and antenna gain. These propagation aspects will determine the loss that the signal
of a user is subject to. To see the influence of propagation on the service a user can expect we
will show how the rate at which a user can be served (if scheduled) is dependent on its Signal-
to-Interference-and-Noise-Ratio (SINR) and how this SINR is based on the different propagation
aspects.

A user that is scheduled to receive service by its allocated base station will be served at a rate
based on the relation between rate and SINR as described by Shannon [36], with a maximum of
14400 kbits/sec (the maximum service rate in HSDPA). We denote the rate (in kbits/sec) that
user i can be served at time t, if scheduled, by Ri(t).

Ri(t) = min (14400, W log2(1 + ξi(t))) (5.1)

where W denotes the bandwith of the base station in the network and ξi(t) is the SINR of user i at
time t. Assume user i is allocated to base station k. We define ξi(t) in accordance with Equation
(3.1) introduced in Chapter 3.

In the remainder of this section we will describe the calculation of the transmitting power Ptr,j(t).
In the next section we will discuss the propagation model and describe how Gj(t) is calculated. It
is obvious that the packet sizes that can be achieved this way are a multiplication of the service
rate and the length of the time interval.

Calculating the transmitting power Ptr,j(t)

When calculating the transmit power of the base stations in the network Ptr,j(t) we have to dis-
tinguish between the simulation of a network used by data users alone and the simulation of the
network used by voice and data users.

For the network loaded with data traffic, we assume that a data user uses all available trans-
mitting power at a base station when scheduled. Typically data traffic is sufficiently large to allow
this. We assume that multiplexing is only possible in time, i.e. there is a limitation of up to one
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user in the same time interval. Therefore we set Ptr,j = Pmax if base station j has users in service
and Ptr,j = Ppilot if base station j has no users in service. When scheduled, the buffer of the user
decreases at the rate calculated with Equation (5.1), until the buffer becomes empty and the user
ends his service.

For the network loaded with voice and data traffic, we see that voice users have smaller buffers
since the packets they sent are smaller. Therefore they request lower rates than the rates that
a base station that transmits at maximum power can achieve. As we discussed in Chapter 3 a
network that allows parallel transmission can serve up to 4 users in the same time interval. In this
situation part of the available transmit power of a base station is assigned to one user. We calculate
the needed power of this user to empty his buffer from Equations (5.1) and (3.1) by determining
a needed rate to empty the buffer in Equation (5.1) and the corresponding Ptr,k(t) − Ppilot in
Equation (3.1). The resulting power Pmax −Ptr,k(t)−Ppilot can now be used to serve other users
at this base station in the same TTI, with a limitation of up to 4 users due to technical reasons.

Users are scheduled based on the scheduling algorithm. This algorithm does take the maximum
achievable rate ri(t) into account which is based on transmitting at full power. This rate is calcu-
lated with Equation (5.1) with ξi(t) as obtained in Equation (3.1) by setting Ptr,k(t) = Pmax−Ppilot

in the numerator.

5.5 Propagation model

In this section we will describe how the propagation environment is modelled in the simulation
model. The propagation environment determines how the gain Gj(t), used in Equation (3.1), is
calculated. The gain of the signal that reaches a user can be subdivided in static gain due to
pathloss, shadowing and antenna characteristics and in non-static gain due to multipath fading.
The static gain static depends solely on the position of a user in the network. As we assume
no mobility of the users, the static gain does not change over time in this simulation model. In
simulations with mobility this static gain is time dependent. The non-static gain due to multipath
fading is time-varying. The total gain for user i relative to base station k at time t can now be
calculated by

Gi,k(t) = GStatic,i,k ·GNon−static,i,k(t) (5.2)

When determining which base station will serve a user, we determine which base station has the
best GStatic,i,k. This way we do not incorporate the stochastically changing non-static gain in this
decision.

Calculating the static gain

We will calculate the static gain in dB and then convert this gain in dB to a linear gain. The
static gain is composed of the following components.

1. Gain due to path loss. A signal that is sent from an antenna to a receiver is subject to path
loss. This loss increases over the distance the signal is sent over. We initiate each user at
a location in the network, as we do each base station. We can then simply calculate the
distance between the base station and the user. Since se assume no mobility of the user,
this distance remains equal throughout the stay of the user in the network. We will base
the gain due to path loss on the Okumura-Hata model [21] [32] and will calculate the loss
by Loss = 136.54 + 35.74 log10(d) − 12.0 (in dB), where d is the distance of a user to the
base station. This is the loss for a suburban environment. Since Gain(dB) = −Loss(dB)
this gives us for the gain due to path loss (in dB).

GOH,i,k = − (136.54 + 35.74 log10(di,k)− 12.0) (5.3)
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2. Shadowing is loss that occurs whenever there is an obstruction in the direct path from the
user to the receiver. We model the amount of shadowing with

GShadowing,i,k =
√

0.7ui +
√

0.3vk (5.4)

with ui and vk ∼ N(0, 92) [39]. With these parameters the shadowing effects on the radio
links from a given user to different sites has a 70% correlation.

3. The antenna gain that the signal is subjected to can be subdivided in three components.
The main lobe antenna gain is the gain experienced when sending a signal in line-of-sight.
The horizontal and vertical antenna gains are incurred when users are not in line-of-sight of
the antenna. Thus both a horizontal and vertical gain are considered here. The values for
the mail lobe antenna gain, vertical and horizontal antenna gain are based on measurements
from the antenna Kathrein, model 741 989 [3].

• Antenna Gain Mainlobe is the overall loss from the antenna use.

GMainLobe = 11.5dB (5.5)

• The Horizontal Antenna Gain is determined from the horizontal angle between a user
and the direction of the antenna of the base station. Since we know the place of the
user and the base station in the network, we can easily calculate this angle. For each
angle the corresponding gain, GAntennaHorizontal,i,k, can be found in Appendix A. We
interpolate linearly between angles which are not integer. Figure 5.3a visualises the
horizontal antenna gain.

• The Vertical Antenna Gain is determined from the vertical angle between a user and the
direction of the antenna of the base station. Antennas are considered to be directed at
an angle of 3 degrees down tilt. We assume that base stations have a hight of 30 meter
from the earth and users have a hight of 1.5 meters from the earth. Since we initiated
users at a position in the network, we can now calculate the vertical angle between each
user and antenna. For each angle the corresponding gain, GAntennaV ertical,i,k, can be
found in Appendix B. We interpolate linearly between angles which are not integer.
Figure 5.3b visualises the vertical antenna gain.

(a) (b)

Figure 5.3: (a) The horizontal pattern of the antenna Kathrein, model 741 989. This pattern
determines the horizontal gain. (b) The vertical pattern of the antenna Kathrein, model 741 989.
This pattern determines the vertical gain.
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4. The Indoor Penetration Loss models the loss that the signal experiences when penetrating
through walls of buildings. We assume a fixed penetration loss for all users.

GIndoorPenetrationLoss = −17.6dB (5.6)

We need a minimum static gain to guarantee that there is indeed path loss for each user, as even
users located close to the base station experience some path loss. We will set the minimum Loss
for each user to 30 dB, equivalent to a gain of -30.0 dB. This gives us for the total static gain that
user j experiences

GStatic,i,k = min (GOH,i,k + GShadowing,i,k + GMainLobe

+GAntennaHorizontal,i,k + GAntennaV ertical,i,k + GIndoorPenetrationLoss,−30.0) (5.7)

Now all we have to do is convert this gain in dB into linear gain. This is easily done with

GStatic,i,k(linear) = 10
GStatic,i,k(dB)

10 (5.8)

Calculating the non-static gain

The non-static gain consists of the multipath fading that user i experiences on the power received
from base station k we use the Ricean fading model [20][26][33][41]. In this model parameter K is
a measure for the degree of multipath fading. K = 0 models a high degree of multipath fading, i.e.
much interference between waves sent from the same the base station. The Ricean fading model
with K = 0 is equivalent to the Rayleigh fading model. For K = ∞ we model a situation where
the gain due to multipath fading is constant over time and equal to 1. This is a situation without
multipath fading, also indicated as pure line-of-sight. The intermediate values of parameter K
give varying multipath fading from high degree of fading (K = 0) to no fading (K = ∞). The
non-static (linear) gain described by the Ricean fading model is calculated as follows

GNon−static,i,k(t) = r1(t)
2 + r2(t)

2 (5.9)

with

r1(t) =

√
K

K + 1
cos

(
φk,i,0 +

2πvt

λ
cosβk,i

)
+

√
1

(K + 1)nw

[
nw∑

l=1

cos υ(t)

]

r2(t) =

√
K

K + 1
sin

(
φk,i,0 +

2πvt

λ
cosβk,i

)
+

√
1

(K + 1)nw

[
nw∑

l=1

sin υ(t)

]

υ(t) = φi,k,l +
2πvt

λ
cos ζi,k,l

Here the terminal velocity is denoted v(t) (in m/s), λ is the wavelength, nw is the aggregated
number of waves, φi,k,l is the phase of wave l and ζi,k,l is the azimuth angle of wave l (i.e.
ζi,k,l = ζi,k(l−1)

nw
), which is not in line-of-sight. βi,k is the angle of wave 0, which we assume to

be in line-of-sight, i.e. in a direct path from the sender (base station) to the receiver (user). We
take φi,k,l, ζi,k and βi,k ∼ Uniform (0, 2π). We see from equation (5.9) that we can determine
the amount of influence of the line-of-sight wave (wave 0) compared to the not-line-of-sight wave
(wave 1 till nw) by choosing parameter K.

5.6 QoS measures

In order to evaluate the numerical results of the simulations, we have to define the measures on
which we determine the QoS. We will distinguish between measures taken from all users that receive
service in the network and users which we will denote ‘cell edge’ users. We define a ‘cell edge’ user
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as a user that has lower gain, i.e. more loss, than a user at a distance to the base station of 60% of
the inter site distance in the direction of the main antenna lobe. This user has strong line-of-sight,
resulting in relatively high antenna gain. We base this decision on the place-dependent static loss
and do not take gain due to multipath fading into account. The multipath fading component is on
average equal for all users, while the static component differentiates ‘good’ users close to the base
station and ‘worse’ users further from the base station. With this measure approximately 10% of
the users is labeled as ‘cell-edge’ users. We define the following QoS measures for data and voice
users.

For data users

1. Average throughput for all users.

2. 10% Quantile of throughput for ‘cell edge’ users.

Operators typically optimise a network by setting minimal requirements for the 10% quantile of
throughput for ‘cell edge’ users. We measure throughput for each user as the file size divided by
the time needed to sent this file, expressed in kbits/sec.

For voice users

1. Average packet loss for all users.

2. 10% Quantile of the packet loss for ‘cell edge’ users.

Operators typically optimise a network by setting minimal requirements for the 10% quantile of
the packet loss for ‘cell edge’ users. We measure packet loss for each user as the number of packets
lost divided by the total number of voice packets that were sent to the user, resulting in a packet
loss percentage.



Chapter 6

Numerical results

In this chapter we present the numerical results of our research. First we discuss the results of the
mathematical model, which determines the QoS for the three scheduling algorithms, as denoted for
the mathematical analysis in Section 3.4, for a single cell that is loaded with data traffic.

Furthermore we present the numerical results for the simulation study for different settings of
the parameters of the packet scheduler, as denoted for the simulation study in Section 3.4, for a
network loaded with data traffic and a network loaded with voice and data traffic as described in
Chapter 5.

6.1 Numerical results of the mathematical model

In this section we discuss the numerical results that we obtained for the mathematical model in a
network loaded with data traffic that we defined in Chapter 4. We start with a discussion on the
scenarios, the determination of the input parameters in the model and sensitivities we investigate
in this mathematical study. We then discuss the numerical results from the Markov Jump queue
as described in Section 4.4. Finally we end with some conclusions we can draw from the results.

6.1.1 Scenario

In this section we will determine the influence of changes in the propagation characteristics on the
performance for data users for Round Robin, Proportional Fair and maximum SINR scheduling.
We investigate whether changes in propagation lead to different optimal schedulers. In order to
determine the influence of the environment characteristics, we analyse the performance of the
packet scheduling algorithms in three fading environments.

• Scenario 1: A fading environment with a large degree of multipath fading, characterised by
Ricean fading with parameter K = 0.

• Scenario 2: A fading environment with an average degree of multipath fading, characterised
by Ricean fading with parameter K = 10.

• Scenario 3: A fading environment with no multipath fading, characterised by Ricean fading
with parameter K = ∞.

As discussed in Chapter 4 we defined three fittings of the distribution for ξi/ξ̂i that we will use to
determine the long-term average throughput.

• Fitting 1: ξi/ξ̂i ∼ Exp(1)

• Fitting 2: ξi/ξ̂i ∼ Erlang(λ, k)

35
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• Fitting 3: ξi/ξ̂i ∼ Erlang(λi, ki)

For each of the three scenarios we will determine the performance of the scheduling methods
Round Robin, Proportional Fair and maximum SINR for each of the three possible fittings. This
performance will be measured at an increasing load offered to the single cell in consideration. In
Chapter 4 we have defined a model that consists of L types of users. We determine the perfor-
mance of the different schedulers based on the average throughput over all of these L types and
the average throughput for the user type with the worst average channel quality (the cell-edge
users), ξ̂i, as discussed in Chapter 4. From an operators perspective we determine the optimal
scheduler as the scheduler that can handle the highest allowable load, while maintaining a QoS
target for the throughput of 500 kbits/sec for the cell-edge users.

We set the average file size at F = 1000 kbit and we assume a network with L = 10 types of
users. Before we can determine numerical results from simulation of the Markov Jump queue,
we have to determine the parameters of the fitting distribution of ξi/ξ̂i for each of the fading
environments, as we defined in Chapter 4.

Determining the parameters of the fitting distribution

We used the simulation model as discussed in Chapter 5 to measure realisations of ξi and the vari-
ance of ξi. We used these measurements to fit an Erlang distribution to each of the types of users
(Class i) for each of the thee fading environments considered, the results of which are presented in
Table 6.1, 6.2 and 6.3 respectively. To obtain these measurements we randomly generated 10000
users, which each were given 10000 multipath fading realisations. The users were then ordered in
10 groups, based on the average channel quality ξ̂i.

In these tables we see that the average channel qualities, the SINRs ξi, are approximately the
same for each of the three fading environments. Furthermore we see that the variance of ξi/ξ̂i

is quite different for the three degrees of fading, as we expected. The average variance over the
L = 10 classes for K = 0, K = 10 and K = ∞ is 0.76, 0.17 and 0.01 respectively.

We can now determine the associated parameters λi, ki that we need for fitting 3 as indicated in
Tables 6.1, 6.2 and 6.3. For fitting 2 the associated parameters for K = 0, K = 10 and K = ∞
areλ = k = 1, λ = k = 6 and λ = k = 100 respectively.

6.1.2 Results

The numerical results for the Markov Jump queue analysis of the mathematical model as described
in Chapter 4 are shown in Figures 6.1, 6.2 and 6.3. We simulated 30000 jumps in the Markov
Jump queue to come to these results. Figures 6.1, 6.2 and 6.3 represent the QoS measures we
have indicated: the average throughput and the throughput for the edge users. The graphs show
how the throughput for these measures develops for increasing load offered to the the base station.
The load is measured by the average amount of kbits offered per second to the base station we
consider in this model. As we would expect the average throughput and the throughput for the
edge users decreases with increasing load. As we know from classical queueing theory higher loads
lead to longer waiting times for the users, resulting in a lower throughput.

From the results presented in Figures 6.1 and 6.2 we see that the optimal scheduler for flow
level performance of data traffic does not depend on the fading environment. For the average
throughput maximum SINR is the optimal scheduler, for the throughput for the edge users Pro-
portional Fair is optimal. We will discuss the results for each of the fading environments in more
detail below.
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Class i ξ̂i Variance ξi Variance ξi/ξ̂i λi ki

1 3.1536 3.2479 0.3266 3 3
2 2.1489 2.2273 0.4823 2 2
3 1.6258 1.6064 0.6077 2 2
4 1.2653 1.1405 0.7124 2 2
5 1.0131 0.8047 0.7841 1 1
6 0.8117 0.5474 0.8309 1 1
7 0.6497 0.3738 0.8857 1 1
8 0.5185 0.2507 0.9323 1 1
9 0.4100 0.1620 0.9636 1 1
10 0.2850 0.0846 1.0409 1 1

Table 6.1: Associated moments for ξi for an environment with a high degree of multipath fading,
characterised by Ricean fading with parameter K = 0

Class i ξ̂i Variance ξi Variance ξi/ξ̂i λi ki

1 3.5224 1.0250 0.0826 12 12
2 2.2822 0.6011 0.1154 9 9
3 1.6423 0.3911 0.1450 7 7
4 1.2280 0.2481 0.1645 6 6
5 0.9610 0.1658 0.1796 6 6
6 0.7643 0.1118 0.1914 5 5
7 0.6087 0.0707 0.1909 5 5
8 0.4834 0.0453 0.1941 5 5
9 0.3817 0.0286 0.1965 5 5
10 0.2670 0.0160 0.2246 5 5

Table 6.2: Associated moments for ξi for an environment with an average degree of multipath
fading, characterised by Ricean fading with parameter K = 10

Class i ξ̂i Variance ξi Variance ξi/ξ̂i λi ki

1 3.6346 0.3006 0.0228 44 44
2 2.3205 0.0673 0.0125 80 80
3 1.6397 0.0235 0.0087 115 115
4 1.2136 0.0093 0.0063 140 140
5 0.9409 0.0037 0.0042 241 241
6 0.7437 0.0026 0.0048 212 212
7 0.5934 0.0015 0.0044 229 229
8 0.4719 0.0010 0.0043 230 230
9 0.3730 0.0007 0.0053 188 188
10 0.2621 0.0021 0.0308 32 32

Table 6.3: Associated moments for ξi for an environment with no multipath fading, characterised
by Ricean fading with parameter K = ∞
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Large degree of multipath fading, characterised by Ricean fading with K = 0

The flow level performance for a fading environment with a large degree of fading is shown in
Figure 6.1. As we have discussed above the modelling assumption for the distribution of ξi/ξ̂i is
identical for fittings 1 and 2 in this fading environment, since the Erlang(1, 1) distribution is equal
to the Exp(1) distribution. The difference in flow level performance between fitting 2 and fitting
3 is small, which shows that better actual representation of the variation of ξi/ξ̂i does not result
in significant differences on flow level performance. For the average throughput maximum SINR
is the optimal scheduler, for the throughput for the edge users Proportional Fair is optimal.

Average degree of multipath fading, characterised by Ricean fading with K = 10

For the environment with an average degree of multipath fading changing the from fitting 1,
Exp(1), to fitting 2, Erlang(6, 6) did result in differences in the flow level performance for the sched-
ulers considered, as shown in Figure 6.2. The flow level performance for Round Robin scheduling
improved. In the figure we see that for fitting 2 a higher maximum load is allowed while still
satisfying a given QoS throughput target (both for the average throughput as the throughput for
cell edge users). This difference is a direct result of the decrease in variation of ξi/ξ̂i. Since the
actual rate at which a user is served is dependent on the Shannon rate, via Ri = W log2(1 + ξi),
we note that the increase in achieved rates due to the decreased chance on low rates is higher than
the decrease due to the decreased chance on high rates.

In this environment we see an increase in average throughput and throughput for the cell edge
users for the Proportional Fair scheduler at low loads on the network and a decrease at high loads.
This difference is due to the extend to which channel quality variations can be exploited. At lower
loads the reduction in variability leads to higher throughput with the same reasoning as for the
Round Robin case. For higher loads the reduction in exploitation of channel quality variations,
due to the lower variability, is greater than the increase in achieved rates due to the decreased
chance on low rates.

We furthermore see a small increase in average throughput for the maximum SINR scheduler.
This difference is explained by the same reasoning as for Round Robin scheduler. The increase in
achieved rates due to the decreased chance on low rates is higher than the decrease in achieved
rates due to the decreased chance on low rates. The throughput for the cell edge users is consid-
erably lower for the maximum SINR scheduler. For this user type the increase in achieved rates
due to the decreased chance on low rates is considerably lower than the decrease in achieved rates
due to the decreased chance on high rates.

Although scheduling based on maximum SINR does result in the highest average throughput
for the environment with average degree of multipath fading, Proportional Fair scheduling results
in the highest allowable load for a given throughput target for the cell-edge users, which is the
threshold used by network operators.

No multipath fading, characterised by Ricean fading with K = ∞
The numerical results of the simulation of the Markov Jump queue for a situation with no multipath
fading are shown in Figure 6.3. Since the calculations to obtain results in a situation with no
multipath fading for the Round Robin, Proportional Fair and maximum SINR scheduler in fitting 3
are computationally too demanding, we have not included these in this research. As the parameters
in the Erlang distribution become large, Matlab can no longer numerically determine the long term
rate Ri(n) as needed in the Markov Jump queue (in the calculation of Ri(n) the factorial of ki

needs to be determined for the largest parameter ki = 241, which is numerically not feasible). As
we have seen for the scenarios with a large degree of multipath fading (K = 0) and an average
degree of multipath fading (K = 10), the flow-level performance for fitting 2 and fitting 3 do not



6.1. NUMERICAL RESULTS OF THE MATHEMATICAL MODEL 39

differ significantly. Therfore, we conjecture that the differences in the situation with no multipath
fading (K = ∞) the flow level performance for fitting 2 and fitting 3 do not differ significantly.

Figure 6.1: Results for the average flow level throughput (left) and for the throughput for cell
edge users (right) for a wireless network in an environment with large degree of multipath fading,
characterised by Ricean fading with parameter K = 0.

Figure 6.2: Results for the average flow level throughput (left) and for the throughput for cell edge
users (right) for a wireless network in an environment with average degree of multipath fading,
characterised by Ricean fading with parameter K = 10.

6.1.3 Conclusions

In the fading environments with large degree of multipath fading (K = 0) and average degree of
multipath fading (K = 10) for the fittings 1, 2 and 3, as well as in the fading environments with
no multipath fading (K = ∞) for the fittings 1 and 2, maximum SINR scheduling results in the
highest allowable load for given average throughput target. For these scenarios Proportional Fair
scheduling resulted in the highest allowable load for the throughput target of 500 kbits/sec for the
cell edge users.

Since the optimal scheduling method does not change due to a change in the propagation en-
vironment, we see that the choice for the optimal scheduling method is independent with respect
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Figure 6.3: Results for the average flow level throughput (left) and for the throughput for cell edge
users (right) for a wireless network in an environment with no multipath fading, characterised by
Ricean fading with parameter K = ∞.

to the propagation environment. For the given QoS measure of a throughput target of 500 kbits/sec
for the cell edge users, the scheduling method of Proportional Fair is optimal in the mathematical
model.

To determine the sensitivity of optimal parameter settings for actual implementations of the
packet scheduler with respect to the fading environment as well as other network, traffic and
channel conditions, we will further investigate this relation in the numerical results obtained from
the simulation study presented in the next two sections.

6.2 Numerical results of the simulation study: data only

In this section we discuss the numerical results that we obtained for the simulation study in a
network loaded with data traffic. We start with a discussion on the simulation scenarios and
sensitivities we investigate in this simulation study. We then discuss the numerical results from
these simulations and end with some conclusions from these simulations.

6.2.1 Simulation scenario

In this section we will determine the influence of changes in the traffic characteristics and propa-
gation characteristics to the performance for data users for Round Robin, Proportional Fair and
maximum SINR scheduling. We investigate whether changes in traffic or propagation lead to
different optimal schedulers. In order to determine the influence of the traffic and environment
characteristics, we determine a default simulation scenario. We will examine the influence of each
of the characteristics by changing this setting from the default scenario and determine the in-
fluence that this change has on the QoS measurements. Our default scenario (Scenario D1) is
characterised by

• Traffic characteristics

– The file size distribution is hyperexponential, with balanced means as described by
Tijms [38].

– The mean file size is F = 1000 kbits.

– The squared coefficient of variation of the file size is SCOV = 1.

• Propagation characteristics
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– The degree of multipath fading propagation is characterised by Ricean fading with
K = 0. This is equivalent to Rayleigh fading.

To determine the difference in the influence of changing traffic and environment characteristics
we will change one of the parameter settings defined above. We will look at the following traffic
and environment characteristics settings.

• Scenario D2 - The degree of multipath fading propagation is characterised by Ricean fading
with K= 10.

• Scenario D3 - The degree of multipath fading propagation is characterised by Ricean fading
with K= ∞.

• Scenario D4 - The squared coefficient of variation of the file size is SCOV = 16.

• Scenario D5 - The mean file size is F = 100 kbits.

• Scenario D6 - The mean file size is F = 10000 kbits.

For each of these six scenarios (the default scenario and the 5 adjusted scenarios) we will
determine the QoS measures described for the scheduling methods Round Robin, Proportional
Fair with parameter α = 0.001, α = 0.2 and α = 0.9 and Maximum SINR. We will determine
the QoS measure dependent on an increasing load for the network, which we will quantify by the
average load that is offered to each base station.

6.2.2 Results

The numerical results for the simulation of Scenario D1 till D5 are shown in Figures 6.4 until 6.9.
We used a warmup of 5000 arrivals of data users after which we simulated 10000 arrivals of data
users to determine the QoS measures of interest. Figures 6.4 until 6.9 represent the QoS measures
we have indicated: the average throughput and the 10% quantile of throughput for the edge users.
The graphs show how the throughput for these measures develops for increasing load offered to
the network. The load is measured by the average amount of kbits offered per second to each
base station in the network. As we would expect the average throughput and the 10% quantile of
throughput for the edge users decreases with increasing load. As we know from classical queueing
theory higher loads lead to longer waiting times for the users, resulting in a lower throughput.
The absolute value for the QoS measures, as well as the difference in performance between the
schedulers considered is dependent on the considered scenario. From the figures we can distill the
influence of the fading environment as well as the file size distribution on the QoS measures.

The influence of the fading environment

From Figure 6.4, 6.5 and 6.6 we see that a lower degree of multipath fading, a higher value for K,
results in higher throughput for both QoS measures. On the one hand a larger degree of multipath
fading results in more multi-user diversity gain. On the other hand less multipath fading results
in less volatile rates, thus in less low rates due to negative multipath fading influence. This last
effect is strongest.

The differences between the schedulers are bigger for more heavily loaded cases. For the average
throughput we see that maximum SINR scheduling has the highest allowable load on the network
at any given throughput target. For the 10% quantile of throughput target of 500 kbits/sec for
the edge users the proportional fair scheduler with parameter α = 0.001 allows the highest load
for scenario D1, D2, D4, D5 and D6. For scenario D3 the proportional fair scheduler with α = 0.2
slightly outperforms the scheduler with parameter α = 0.001. The difference between the sched-
ulers is largest for scenario D1, with the highest degree of multipath fading. It should be noted
that the difference between the schedulers is small.



42 CHAPTER 6. NUMERICAL RESULTS

The influence of the traffic characteristics: file size variability

By comparing the results from scenario D1 and D4, we see that the QoS measures for the different
schedulers do not change significantly. For the case of low variability, SCOV of the file size = 1,
as well as for the case of high variability, SCOV of the file size = 16, the schedulers for maximum
SINR and PF with α = 0.001 have similar performance. The average throughput is slightly higher
for the maximum SINR scheduler.

The influence of the traffic characteristics: file size average

The differences between scenario D1, D5 and D6 are caused by changes in the file size average.
From the numerical results obtained in scenario D1 and D6 we see that an increase on the file
size average does not significantly change the throughput for either of the QoS measures. On the
other hand we see that a decrease of the file size average, obtained by comparing scenario D1 and
D5, does lead to lower throughput for each of the QoS measures. This phenomenon is caused by
the so called one-on-one scheduling between users and available TTIs. A user with a small buffer
of data that needs to be transmitted will still be assigned all the transmitting power of a base
station for one TTI. In case file sizes are larger, the waste of transmitting power is small, since
this waste only occurs in the last TTI a user is served. For a smaller file size averages there will be
more waste, resulting in a lower system capacity. This leads to lower throughput values on each
of the QoS measures. In practice this effect can be mitigated by allowing parallel transmission, as
discussed in Chapter 3. For the changes in file size averages we again see that the schedulers for
maximum SINR and PF with α = 0.001 have similar performance.

6.2.3 Conclusions

The throughput values for each of the two QoS measures considered do not differ significantly. For
the considered scenarios D1 till D6 maximum SINR scheduling and proportional fair scheduling
with parameter α = 0.001 result in the highest allowable load for the throughput target of 500
kbits/sec for the 10% quantile of the throughput for the cell edge users for all scenarios except
D3. For this scenario α = 0.2 has better performance. The maximum SINR scheduling method
results in the highest average throughput values at given load.

The choice for the optimal scheduling method is relatively independent of the propagation en-
vironment characteristics considered. Although the scheduler with α = 0.2 has slightly better
performance in scenario D3 on the QoS target for the cell-edge users, the difference with the
scheduler with α = 0.001 was so small that it would not be interesting to exploit these differences
from an operators perspective. The traffic characteristics, both the file size average as the file size
SCOV, have identical optimal scheduling paramters. The scheduler with parameter α = 0.001 re-
sulted in the highest allowable load on the network for the given throughput target of 500 kbits/sec
for the 10% quantile of the throughput for the cell edge users.

From these observations we can conclude that the optimal parameter for the packet scheduler
does not change due to changes in the considered traffic and environment aspects.

6.3 Numerical results of the simulation study: voice & data

In this section we discuss the numerical results that we obtained for the simulation study in a
network loaded with voice and data traffic. We start with a discussion on the simulation scenarios
and sensitivities we investigate in this simulation study. We then discuss the numerical results
from these simulations and end with some conclusions from these simulations.
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Figure 6.4: Simulation results Scenario D1, the default scenario. In this scenario the mean file size
is F = 1000 kbits, the squard coefficient of variation of the file size is SCOV = 1 and the degree
of multipath fading propagation is characterised by Ricean fading with K= 0.

Figure 6.5: Simulation results Scenario D2. In this scenario the degree of multipath fading prop-
agation is characterised by Ricean fading with K= 10.

Figure 6.6: Simulation results Scenario D3. In this scenario the degree of multipath fading prop-
agation is characterised by Ricean fading with K= ∞.
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Figure 6.7: Simulation results Scenario D4. In this scenario the squared coefficient of variation of
the file size is SCOV = 16.

Figure 6.8: Simulation results Scenario D5. In this scenario the mean file size is F = 100 kbits.

Figure 6.9: Simulation results Scenario D6. In this scenario the mean file size is F = 10000 kbits.
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6.3.1 Simulation scenario

In order to determine the influence of the traffic mix on the QoS performance for the users, we
determine the simulation scenario used in the simulation of a network used by voice and data
users. We will examine the influence of the traffic mix and the offered load to the network for.

Our simulation scenario is characterised by

• Traffic characteristics

– Data traffic
∗ The file size distribution is hyperexponential, with balanced means as described by

Tijms [38].
∗ The mean file size is F = 1000 kbits.
∗ The squared coefficient of variation of the file size is SCOV = 4.

– Voice traffic
∗ The number of voice packets for a voice call has a geometric distribution with a

mean of 500. This is equivalent with an average length of a voice call of L = 10
seconds.

∗ The needed bandwidth for a voice user is Bvoice = 12.2 kbits/sec.

• Propagation characteristics

– The degree of multipath fading propagation is characterised by Ricean fading with
K = 0. This is equivalent to Rayleigh fading.

• Scheduling parameter

– The parameter for updating the average rate r̂i is α = 0.001. We chose this value since
α = 0.001 resulted in the highest allowable load, as we have seen in Section 6.2

• Service mix of the offered load

– The amount of load offered to the network is a variable, as well as the fraction of traffic
that is voice traffic. Offered load is measured in kbits/cell/sec. The offered load for
voice and data users is dependent on the stochastic behaviour of the arrival process as
described in Section 5.3. Based on the expected file size of for data traffic and the ex-
pected length of a call for voice traffic we can now calculate λdata and λvoice, measured
in calls/sec/cell. Assume a fraction of voice traffic of β and a load of Y kbits/cell/sec.

The number of data arrivals in a cell per second is thus

λdata =
(1− β)Y

F
(6.1)

The number of data arrivals in a cell per second is thus

λvoice =
βY

BvoiceL
(6.2)

We identify the scheduling method arg maxi = ri(t)

r̂i

(
1 + Wi(t)

Ti−Wi(t)

)ζ

as described in Chapter 3
with parameter ζ = 0, ζ = 0.5, ζ = 1 and ζ = 10. To determine how the different parameter
settings perform, we set minimal QoS targets for both data users and voice users. For data users
the 10% quantile of throughput for cell edge users the minimal QoS target is set at 500 kbits/sec.
For voice users the 10% quantile of the packet loss for cell edge users the minimal QoS target is
set at 2%. For various combinations of offered load and traffic mix it is indicated whether the
voice target QoS, the data QoS or both are met. We do not allow blocking of offered load in this
simulation.
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6.3.2 Results

The numerical results for the simulation of a network used by voice and data users is shown in
Figure 6.10. We used a warmup of 5000 arrivals of voice users and 5000 arrivals of data users after
which we simulated 10000 arrivals of voice users and 10000 arrivals of voice users to determine the
QoS measures of interest. Figure 6.10 shows whether or not the QoS targets for the data users
and the voice users, as described in the previous section, were met. As we can see from this figure
increasing load results in violation of the QoS targets. The admissible region, the combination of
offered load and the fraction of load that is voice user, is largest for the schedulers with parameter
ζ = 1 and ζ = 10. Figure 6.10 shows that the scheduler with parameter ζ = 1 satisfies both QoS
targets for a fraction of voice users of 0.2 at a load of 3000 kbits/sec and at a fraction of voice
users of 0.4 at a load of 2500 kbits/sec, whereas the scheduler with parameter ζ = 10 does violate
the data QoS target for these combinations. We should note that the QoS target for voice users
for these combinations are only just met for the scheduler with parameter ζ = 1. Furthermore the
QoS target for data users is only slightly violated for the scheduler with parameter ζ = 10. From
the results we see that the admissible region for given fraction of voice traffic is comparable for
the schedulers with parameter ζ = 1 and ζ = 10.

Figure 6.10: Simulation results for a network used by both voice and data users: The combinations
of load and fraction of voice users that meet the QoS targets are indicated.

Now take a closer look at the performance of the schedulers for each of the QoS measures. Figure
6.11 shows the performance for the data users for variable load, but fixed fraction of voice users.
The average throughput and the 10% quantile of the throughput for the cell edge users are shown.
For the case of a fraction of 0.1 voice traffic load and the fraction of 0.3 voice traffic load the
performance for the data users is comparable. However we do see that increasing the fraction of
voice users leads to more differentiation of the results. The parameter ζ = 1 is performing better
than ζ = 10.

On the contrary we see in Figure 6.12 the performance for voice users for variable load, but
fixed fraction of voice users. From this figure we see that parameter ζ = 10 is performing better
than parameter ζ = 1. Especially the performance for 10% quantile of the packet loss for the cell
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edge users is considerable.

6.3.3 Conclusions

We have investigated the performance for the scheduler with parameters ζ = 0, ζ = 0.5, ζ = 1 and
ζ = 10 for variations in service mix. For each fraction of voice traffic load, we investigated which
total load on the cell is allowed without violating the QoS measures we defined. From Figure
6.10 we see that ζ = 1 and ζ = 10 have similar performance. When we take a closer look at the
performance on each of the QoS measure, we see small differences in performance for the QoS
measure for data users between the parameter values ζ = 1 and ζ = 10. However, we see that
parameter ζ = 10 has significantly lower packet loss for the voice users.

We should note here that voice traffic is typically not bandwidth intensive. As the packets that
need to be transmitted are typically small, only part of the transmit power at the base station is
needed to transmit this packet. The residual power can be used to schedule other users. Since the
network can serve up to 4 users in each TTI, parallel service of voice and data users is possible.
This will result in a situation where (relative) priority for the deadline-sensitive voice user will not
result in large deterioration in the throughput of the data user.

From these observations we can conclude that the optimal parameter for the packet scheduler
does not depend on the offered traffic mix.

Figure 6.11: Simulation results for a network used by both voice and data users: The data
performance for schedulers with parameters ζ = 0, ζ = 0.5, ζ = 1 and ζ = 10 is shown versus the
aggregate cell load for a fraction of voice traffic load of 0.1 and 0.3.
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Figure 6.12: Simulation results for a network used by both voice and data users: The voice
performance for schedulers with parameters ζ = 0, ζ = 0.5, ζ = 1 and ζ = 10 is shown versus the
aggregate cell load for a fraction of voice traffic load of 0.1 and 0.3.



Chapter 7

Conclusions and recommendations

7.1 Conclusions

The research objective is to investigate the sensitivity of the optimal parameter settings for packet
scheduling algorithms in wireless networks, loaded with voice and data traffic, with respect to
variations in network, traffic and channel conditions. Both the numerical results from the mathe-
matical model and the results from the simulation study show that the optimal parameter settings
of the scheduler are largely insensitive to changes in the considered network, traffic and channel
conditions. Therefore we conclude that there is no potential for self-optimisation of packet schedul-
ing algorithms based on the investigated network, traffic and channel conditions.

Besides this general conclusion, we describe our findings in more detail. In this research the
optimal scheduler in the mathematical model allows for the highest load, while maintaining a
minimum throughput. From the numerical results of the mathematical model defined in Chapter
4 we have seen that the optimal scheduler for flow level performance of data traffic does not de-
pend on the fading environment. While changing the fading environment from a situation with a
large degree of multipath fading to an average degree of multipath fading, the Proportional Fair
algorithm remained the optimal scheduler. We note that changes in the fading environment do
result in different behaviour of the channel quality, measured by the signal-to-interference ratio
(SINR), as well as different corresponding average throughput and throughput for cell edge users.
However, the optimal scheduling principle remains unchanged.

Since the analytical model that we introduced has its limitations, we introduced a simulation
model in Chapter 5 with which we were able to incorporate more details and analyse more net-
work characteristics. In this research the optimal scheduler in the simulation model allows for the
highest load, while maintaining a minimum throughput for data users or a maximum packet loss
for voice users. As presented in Section 6.2, changes in the traffic and environment characteristics
considered do not result in different optimal parameter settings for a network loaded with data
traffic. For the traffic characteristics, changes in both the mean file size of data users and the
variation of the file size did not influence optimal parameter settings. Nor did changes in the
degree of multipath fading. For all considered scenarios the Proportional Fair algorithm with the
same parameter is shown to be optimal or near optimal. When expanding the network to allow for
a combination of voice traffic and data traffic in Section 6.3 we found that the optimal parameter
setting does not depend on the offered traffic mix (i.e. the fraction of voice traffic in the offered
load) either. For all service mixes considered the influence of the deadline within the scheduling
decision should be set at an arbitrary high value, giving voice packets absolute priority over data
packets. Since the voice packets that are transmitted are small compared to the size of the data
packets, priority for voice packets does not result in significant degradation in the throughput for
data traffic. Scheduling based on less influence of the deadline in the scheduling decision does
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result in higher packet loss for voice traffic, particularly for relatively high traffic loads.

7.2 Recommendations

Given the results of this research we can recommend the network vendors and operators that they
do not have to implement self-optimisation of the parameters of their packet scheduling algorithms
based on changes in the network, traffic and channel conditions that we considered. These changes
do not result in different optimal parameter settings of the packet scheduling algorithms.

Besides a recommendation to the network vendors and operators, there are recommendations
for future research to be made.

The first recommendation is to include mobility as a changing factor in the traffic conditions.
In this research we have limited ourselves to static users. Users that have mobility will have a
changing geographical place in the network and as a direct result changing average channel qual-
ities. Parameter settings that permit faster adaptation to the changed average channel quality
might result in better performance, as the scheduling decision is based on the actual average chan-
nel quality instead of the previous average channel quality.

The second recommendation is to change the parameter settings of the packet scheduling al-
gorithms based on on the actual number of users in the network and potentially even the actual
channel condition and experienced performance. We would then adapt the parameters based on
actual realisation of the statistical distribution, rather than on its average values. In this case
optimisation of the scheduling parameter would no longer just be coupled to the average network,
traffic and channel conditions, but to the actual number of users in the network that can vary on
a smaller timescale, in the order of seconds.

The third and final recommendation is to investigate the potential for self-optimisation of capac-
ity allocation mechanisms other than the packet scheduling algorithm considered in this research
(see Chapter 2). Since this research field is relatively new, the potential for each of the capacity
allocation mechanisms in mobile wireless networks should be investigated. Once the potential for
each of the mechanisms is obtained, researchers can combine these mechanisms to develop actual
self-optmisation mechanisms that can be implemented in future wireless networks.
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Appendix A

Horizontal antenna gains

Figure A.1: Horizontal Antenna Gains for Kathrein model 741 989.
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Appendix B

Vertical antenna gains

Figure B.1: Vertical Antenna Gains for Kathrein model 741 989. Assumed is an angle direction
of 3 degrees downtilt.
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