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Chapter 1

Introduction

Modeling of stock price behavior (dynamic) is key concept in option theory, as based on chosen model one
can further derive prices for options on underlying assets. It is more then obvious that the better model
reflects real asset dynamics, the better option pricing will be.

This thesis discusses pricing of equity options using extension of "classical" SABR model. The key idea of
this extension is that we assume that volatility is not only stochastic but also has non zero drift term. Drift
term is chosen to be mean reverting, i.e. we assume that volatility is constantly pushed to some function
with predefined mean reverting rate, while diffusion term is chosen to be similar to the one under "classical"
SABR model.

1.1 Model of Asset Dynamic

Maybe the most intuitive way to define asset dynamic is to use random walk and Wiener process. First let
us define random walk, suppose that we have N periods of length At and:

z (tk+1) =z (tk) +e€ (tk) \% At
thr1 =t +At; to=0; 2z(0)=0

for kK =0,1,...N. This process is called random walk. In this equation € (¢;) ~ N(0, 1) standardized normal
random variable. Additionally we assume that this variables are mutually uncorrelated E [e (¢;) € (¢;)] = 0 for
i .

A standard Wiener process obtained by taking limit of the random walk process At — 0. In the symbolic
form we write limit of increment as:

th = G(t) \/E

This definition is not rigorous because we have no assurance that limiting process exists but it provides a
good intuitive description. Generalized Wiener process is defined as:

dXt = vdt + O'th

here v— is drift term and o— is diffusion term. The first one defines growth rate of X;, and the last one
defines level of variability (volatility) of process. Note that described process is stochastic by its nature.
Thus, one can never deterministically name value of X; at time ¢, although one can give distribution of the
processes at t, in particular for generalized Wiener process we have that: X; ~ N(vt,o%t). Alternative way
to define Wiener process is to list all its features. Interested reader could refer to [15].

Our next logical step is to model stock price process using Wiener process:

d(In(Sy)) = dX, = vdt + odW,

Reason behind this model is that:



e Stock price could not be negative like Wiener process for example, and that is why it assumed to be
exponent of generalized Wiener process.

e Stock price will be exponentially growing in the mean. This fact also pretty well fits to reality.

One can immediately see that the distribution of stock price S; will be lognormal as: In (S;) ~ N (In (So) + vt, 0t).
Described process of stock price behavior is sometimes called GBM (Geometric Brownian Motion) and might
be simplest between all plausible models for asset dynamics.

1.1.1 Ito’s Formula

In order to express stock price dynamic explicitly by Wiener process and to derive later option pricing
formulas we need to introduce Ito’ formula. This formula allows us to systematically perform transformation
of different stochastic processes.

Let us consider random process X; defined by:

dXt = &(Xt, t)dt + b(Xt, t)th

Suppose that the process Y; = F(Xy,t) is defined. Then Y; satisfies the Ito equation:

OF OF 10%F oF
dY; =dF(Xp,t) = [ = + =—a+ = ——b? | dt + —bdW,
e = dF(Xe,t) (8t+8ma+28z2 ) g
where dW; is the same Wiener process as in the expression for d.X;.
If we apply Ito’s formula to random process:
dSt = /LStdt + O'Stth (11)

and function F(z,t) = In(x) then we will receive:

d(In(Sy)) = (u - ”;) dt + odW,

Denoting v = p — "; we will get above mentioned GBM dynamic, which agrees with our earlier results.
More general form of Ito’s formula for function of time and few stochastic variables and more rigorous

proof could be found in [17].

1.2 Concept of Equity Option

Holder of stock with price dynamic described above might worry about the possibility of the stock price to
drop below some level K (strike price) in T (maturity) years from now. For this reason he/she might want
to buy protection against undesirable price movement from second party. Protection is called Furopean Put
option if it promises that:

"Option holder has the right, but not obligation to sell stock for K in T years from now"

As it immediately follows from the contract, this option will always have positive value, as it is right but not
obligation (holder will never lose). Formally option payment at maturity time could be expressed as:

P = max(K — Sr,0)

So if option price in T years will be above level K there is no reason to execute (sell) stock for lower price.
On the contrary, if it is below K, option holder can be compensated for price drop.



If one holds short! position in equity stock he/she might worry about possibility of asset price to go above
level K in T year from now and buy Furopean Call option. This type of option allows its holder to buy
stock for K in T years from now:

C = max(St — K, 0)
Another modification of European option is American option and this type of option gives holder an additional
right to exercise it any time before maturity 7". Described options are widely traded on the market in contrast
to Ezotic option (which are usually traded over the counter). Exotic options have more unusual features
implemented in the contract. For example, European put option, which terminates in case the stock price
goes below some barrier level L before the time of maturity, will be called Barrier option.

One can see that price dynamic of underlying asset is very important, as options are derived based on
them, thus pricing of option is not a trivial problem in general.

1.2.1 Black-Scholes Equation

In some cases it is possible to find prices of options analytically, but then one needs to make some simplifying
assumption about stock price dynamics. Black-Scholes developed their theory assuming that stock price
dynamics is described by GBM and gave analytical formulas for European put and call options. Black-
Scholes formula derived as solution of Partial Differential Equation. Main assumptions to be made in order
to derive Black Scholes PDE are:

1. Stock price dynamic is described by (1.1)
2. On the market there exists risk free asset carrying interest rate r, with following dynamic: dB = rBdt.
3. Option price process has form f (S(t),1).

Further to derive PDE one should:

e Apply Ito’s rule to: f(S(¢),¢) in order to receive option price dynamic
e Construct self financing portfolio consisting of Ag amount of stock and A amount of options
e Choose Ag and A in the way to eliminate source of uncertainty in portfolio.

e Use the fact that constructed portfolio will be risk free and use no arbitrage arguments to derive final
PDE

And finally Black Scholes PDE for asset dynamics:
dSt = ’I"Stdt + O'Stth

has form: 260 g2y o ov
ag
5 o5 et V0

Black-Scholes formula (solution of Black Scholes PDE equation for European put and call options) is given
by:

Veat1. = SoN(dy) — KG_TTN(dz)

Vowr = Ke "TN(—=dy) — SoN(—dy)

I'Short position in equity stocks is liability to return to somebody indicated amount of stocks at given time.
Long position in equity stock is equivalent to owning stock.



where N(+) is cumulative distribution function for standard normal and

In(S/K)+ (r+0%/2) T
oVT

dy = di—oVT

Detailed derivation together with initial and boundary conditions for more general stock price process is
presented in 2.1.

d =

1.3 Generalization

Despite the fact that Black-Scholes formula gives nice analytical solutions, it is rarely used with all initial
assumptions made. And the problem is that real stock price dynamic does not have form (1.1). Although in
practice traders are still using Black-Scholes formula assuming the volatility of stock price to be the function
of strike and maturity. This function is found by mark to market of option prices (with different strikes and
maturities) to Black-Scholes formula and is named implied volatility. It might look controversial and false
that stock price volatility is assumed to be function of strike and time to maturity, but one can alternatively
think of implied volatility function as method for approximating stock price dynamics by GBM.

Hence, in order to get more realistic option pricing methods one needs to develop a new model for dynamics
of stock price. And there are in general three possibilities to develop new theory. First, one is to assume
that stock price is non-Markovian. Second, one is to leave it Markovian, but base the model on stochastic
process other than Wiener’s. Third, one is to assume that volatility is not only variable (for example time
dependent) but also stochastic. Last models are called models with stochastic volatility and will be the focus
of the present research.

1.3.1 SABR model

In the derivation of SABR model (Stochastic af8p model) Hagan [5] chose the third option. Under SABR
model it is assumed that the dynamic of forward stock value f; = Spexp (rt) under risk neutral measure is
described by:

{ dfy = @tfdetl (1.2)
day = va dW? '
where a;— is stochastic volatility, v— volatility of volatility, S— is a positive constant, additionally it is
assumed that W' and W7 are two correlated sources of uncertainty: dWerdW2 = pdt. Also we assume that
at t = 0 forward stock value and volatility are given: fy, ag.

Under this model volatility ay is stochastic and lognormally distributed. To show this one should apply
Tto’s rule to In(ay) to receive:

1
d(In(oy)) = —§y2dt + vdW}
In his research Hagan received analytical approximation for implied volatility function:

ag ( z )

(fK) 7 {1 ICEILN (%) ST (%) +} z(2)
(1-8)7° o2 1 pBrag 2-3p% ,

'<1+ 24 (fK)F Z(fK)% o1 7

O(va) =

T+...> (1.3)

where:
YR m (L

[ 1—2pz+z2+z—p]
z(z) = In

1-p



and f = Spexp (rT) — forward price of stock under risk neutral measure, K— strike price, T— time to
maturity. Substituting 1.3 into Black Scholes formula one will receive price of European put or call option
based on a stock with stochastic volatility given by (1.2).

Derived formula for implied volatility will be used as our main touchstone for valuing and deriving
numerical methods.

1.3.2 Research questions

In present research we further generalize the system describing stock price dynamic and consider following
model for stock price and volatility dynamic:

dSt =T (t) Stdt + oy (St)ﬁ thl
doy = k(0 (t) — o) dt + va dW?

which generalizes features of SABR model by means of introducing volatility mean reverting term u, =
k(0 (t) — i), with mean reverting limit function 6 (¢), mean reverting rate x and time dependent correlation
dWrdW?Z = p(t)dt. Tt should be mentioned that recently approximation for implied volatility for above
model with constant coefficients (r (t) =r, 6 (t) =0, p(t) = p) where presented [11].

In this project we would like to:

e Design numerical methods to reproduce European option prices generated by the model based on:
Finite Difference and Monte Carlo methods.

e Extend such methods for options with early exercise opportunity (American options) and on options
that pay continuous or cash dividends.

e Determine whether it is possible to derive pricing formula similar to (1.3) for this model as well.

e Fit the model parameters to real market data.



Chapter 2

Extended SABR model and PDE

Under the "extended" SABR model we assume that stock price dynamics S; with stochastic volatility ay is
described under risk neutral measure as:

{ dS; = (r (t) — q(t)) Sedt + o (S,)” AW} (2.1)
doy = 1 (0 (t) — o) dt + vy dV? '

in order to shorten notation and for further generalization of the above system, we will denote pg =
s (S, 0, 8) = (r (1) — a(t)) S, 05 = 75 (S,0,8) = 00 (S0, fo = i (@) = K (O(8) — ), T = 0 (1) =
vay. Where r (t) - risk free rate, ¢(t) - continuous dividend rate, 6 (t) - mean reverting limit for volatil-
ity, 5 - mean reverting rate of volatility, v - volatility of volatility, dWand dW? assumed to be correlated
dWrdW? = p (t) dt. Additionally r (t), q(t), 6 (t) - are non negative and non stochastic; correlation is bounded
—1 < p(t) <1 and non-stochastic; k, v - positive real numbers. Also we assume that at ¢ = 0 stock price
and volatility are defined Sy, «q.

Unfortunately it seems rather difficult to directly find distribution for S, but in order to get the feeling
of the model we can try to find distribution of volatility (for 6 (¢) = #). Using Ito’s rule for In(ay) we will get:

T Y s s P

Qi

and again we can not directly integrate this SDE as drift term includes a;. Let us try to use different
technique in order to find first moments for volatility E [oy] and E [a7]. Taking expectation of:

doy = k(0 — o) dt + va dWy

interchanging order of expectation and differentiation we will get:

dE [ay] = k(0 — E [ay]) dt
Integrating above as usual ODE w.r.t. E [a;], with initial conditions F [ag] = ag, we will finally obtain:

Elag] =0+ (g —0) e (2.2)
Now in order to find VAR [ay] let us one more time use Ito’s rule for a?:

d (af) = [2K00y + (1/2 — 2K) aﬂ dt + 2va?dW,

taking an expectation and again interchanging order of differentiating and expectation:

d(E [a7]) = [260E [o4] + (v — 2k) E [of]] dt



Substituting obtained expression for E [oy] (2.2) and integrating as usual ODE w.r.t. E [o7], with initial
conditions E [od] = af:
E a2 2k6° | 260 (a0 —0) i N <a2 260° 266 (a0 — 9)) J—Y

]ZQK—VQ K — 12 B

O 9k — 12 K — 12

and finally
VAR = E [of] — E* [ov] (2.3)

For "classical" SABR model k =0 (1, = 0 ) we can immediately see that:
Elag) = ap; VAR[ay] = o (et"z - 1) (2.4)

Comparing above formulas one can immediately notice that in case of "extended" SABR model variance of
volatility tends to final limit when ¢ — oo, but for "classical” SABR model it tends to infinity. Expectation
of volatilities for "classical" model stays constant, while for "extended" model it tends to 8 when t — oco.

Using described technique one can find higher moments for volatility dynamics as well.

2.1 Deriving PDE

Let us denote by V = V (S, a,t) price of derivative on underlying asset S with volatility «. Dynamic of V'
could be found using bivariate Ito’s rule:

ov ov ov
10%*V 0%V 19%V
+§@d5td5t + @dstdat + §wdatdat (25)

and Box Algebra
dt AW}l dW?
dt 0 0 0
dw} 0 dt  p(t)dt
dW}? 0 p(t)dt  dt

From (2.5) and (2.6) we obtain following dynamics for V:

v = ﬁ827‘/Jr (t)oso OV Jr(ilavar alJr 37V+37V dt +
2052 TP 8500 T 2 9a2 T 505 T 9 T Tt
ov ov
O'Sﬁdwt +O'a%dwt
or denoting differential operator in square brackets by £(-):
B av ov
AV =L(V)dt+os anWt +0a aath

Dynamic of the portfolio P =V — A1S — AsV; cousisting of two different derivatives V', V; (on the same
underlying asset) and underlying asset S itself will be:

dP = dV — A1dS; — AqxdV;

v oV
= [C (V)dt+ Us%dW} + aaaadwf] — Ay [pgdt + osdW}] —
Vi Vi o
AQ |:£ (m)dt‘F Usﬁth —|—Ga%th



rearranging terms we get:

dP = [L(V) = Aipg — Aol (V1)) dt
ov oy 1 ov 1% 9
+ |og 35 Ajog — Ayog 35} dw; + [Ua 90 Asoq e awy (2.7)

In order to eliminate uncertainty and receive risk free self financing portfolio we choose A; and As to satisfy
the following system:

ov oV,
O'S%—Alo'S—AQUSTS} = 0
ov oV
O'aaia Agaaaia 0

solving this system we will get:

ov. oviov Jovi

A= 35 35 90/ da
v 1oV,

A, = 2L /28

2 oo Oa

To exclude arbitrage possibility, return of constructed portfolio must be equal to return of risk free investment:
dP =r (t) Pdt=r (t) [V — AlSt — AQVl] dt (29)
Equating (2.9) and (2.7) and substituting expressions for Ay, Ay we obtain:

v oy
£y =rv] /G = 1evn) -rwil /5
Above equation must hold independently for arbitrary V and Vi, thus left and right hand sides of equation
must be equal to some function A (S, a, ) which is volatility risk premium.
Finally, derivative V' =V (5, a, t) must satisfy to:

aVv
L —r@) V=2 t) —
V) =r (V=51 =
Then choosing A (S, ,t) = 0 and rewriting above equation in open form:
2 52 2 2 92
o 0%V oV o0V ov av. oV
28”7 2 4 ZaZ = AR = 2.1
2 g57 TP Wostagame b 5 gar THegg thege Ty OV =0 (2.10)
Substituting expressions for extended SABR model:
28?8 92V 2 oB 0%V a*? %V ov ov oV
9 7852 +OdSp(t)Vasaa+ 9 8a2+T'(t)5%+/€(9(t)—a)aia‘i‘g—?“(t)‘/—o
or in shorter notation: oV
5 + B[V]=0.

2.2 Transformation

Let us perform some transformation of variables in order to get more convenient form of (2.10). In particular
let us introduce new time and space variables:

T=T—t,a=D(S),y=G(a) (2.11)

10



assume that there exists inverse functions:

t=T-1,5=Dy(z),a = Go(y) (2.12)
and following derivatives:
%: _ az;(SS) o Dy (2); % = 8%& o = D5 (z);
2 2

then partial derivatives in (2.10) could be expressed as:

v _ogvor oV
ot

“oron T or
oV oV ox oV
95~ or 05~ o)
o _Way v o
da oy Do Oy 1)
9V oV dx oy IV
9590 ~ 920y 95 da  dway 1 & AL W)
PV BV (00N 0V BV L oV
0582 9x2 \9S Or 082 9z2 1
PV _0V (0N OVPy PV, OV
da?  0y? \ da oy a2~ Oy?

and finally our PDE will take form:

o 02D (z) 9%V v a.Gi(y) 0?V

2 0x?
o2G (y) o
2 Oy

+

02Dy (x
{,uzD1 () + a:'D22():| % + |1y G1 (y) + r(T—7)V (2.13)

note that (2.12) should be substituted into expressions for coefficients pg, og, p,, 0o and after this we
denote them by Hy = Hg (DO(x)’GO(y)’T - T)’ Oy = 08 (DO(x)a GO(y)’T - T)7 Hy = Ha (Go(y),T - 7)7
0y = 0q (Go(y),T — 7). Also it should be mentioned that this equation has the same partial derivatives as
initial one and only coefficients in front of them differs.

Transformation of PDE could give valuable results not only from theoretical point of view but also from
numerical perspective. In particular applying transformation and using finite difference method for solving
transformed PDE one will receive finite-difference method with non-uniform grid.

In our research for numerical purposes the following transformations of space variables are used:

z=D(S) = (pS)” S =Do(x)=a'r /p (2.14)
D, (z) = plpzxf’iz Dy (z) = pips (p2 — 1) x .

z=D(S)=In(p1S)+p2 S =Do(z)=exp(z—p2)/p1

Dy (z) = prer==* Dy (z) = —ple2(P2—) (2.15)
z=D(5) = [asinh (%) + asinh ( 2221 /pg; 010
S = Do(z) = p1 + p2sinh (pga: — asinh p;}; /p3

11



The first two transformations are simple and widely used. Choosing p; = ps = 1 in the first one is the same
as performing no transformation at all (thus we are free to perform power transformation or not). Second one
is well known logarithmic transformation and in this case more care is needed when considering point S = 0,
as x — —oo (thus we should replace zero with small positive number). Last transformation is suggested by
[10] and allows to refine finite difference mesh near desired point by appropriate choice of parameters p;, pa,
ps. Here p; is grid concentration point, py concentration level, while ps is chosen' in such a way to satisfy
ZTmax = D(Smax) (note that F'(0) = 0).

Note that everywhere below we will be applying and using equation (2.13). In numerical realization all
mentioned transformation w.r.t. S and « are implemented and we can easily switch between them.

2.3 Problem Definition for European Option

In order to find price of the European put or call option one should find solution of (2.13) in the domain
Q={0<2 < Znmax;0 <Y < Ymax; 0 <7 < Thax} with appropriate initial and boundary conditions and then
perform corresponding inverse transformation defined by (2.12).

Let us first present initial and boundary conditions (for "classical" SABR model i.e. p, =0 = p, = 0) in
variables S, a and then translate them into corresponding conditions with transformed variables z,y. Initial
condition?:

V(S5a70) = F(S)7
boundary conditions:
t

V(0,a,t) = F(0)exp f/r(s)ds

0
O?V (Smax, a,t) 0
052 B
t T
V(S,0,T)=F [ Sexp /(r(s) —q(s))ds | | exp —/r(s)ds
0 0

AV (S, amax, t)
ot
Since operator B [V (.S, &max, t)] includes partial derivatives we assume that on the bound aax there one-sided
versions are used.
Now let us translate listed conditions in x,y and comment them. Initial condition reads:

+ B[V (S, amax, t)] = 0.

boundary conditions are:
V (0,y,7) = F (Do(0)) exp —/T(T — 8)ds (2.18)
0

O?V (Tmax, Y, T) OV (Tmax, Y, T)

D% (xmaX) + Dy (xmax) =0 (2.19)

Oz? Oz
V (z,0,7) = F | Do(x)exp (r(T—8)—q(T—3s))ds | |exp | — [ (T —s)ds (2.20)
/ /
ov (x,ymaxy’r) +A[V (fﬂ,ymaxﬁ)] =0 (221)

or

1Value of this parameter is easily calculated using any one dimensional solver.
2Put: F(S) = max (K — S,0) Call: F(S)=max (S — K,0).

12



While setting boundary conditions on & = xyax and ¥ = ymax one should always keep in mind that these
conditions are "approximately" correct for large values of .5 and ymax. So setting reasonable conditions on
these boundaries will always be matter of correct modelling. For example condition (2.19) is "continuation"
condition and suggests that for the large stock price I' of put and call option should be close to zero.
Alternatively this condition could be replaced by:

8V (:L'maxa y’ T)

put o Dy (Tmax) =0 (2.22a)
call Wm (Tmax) = 1 (2.22b)

Condition for put option suggests that A should be close to zero, while for call option it should be close to 1.

Condition (2.21) is called "smoothing"condition® and is set on boundary ¥ = ymax. If bound y = ymax > 0
is far from its origin then one might reasonably argue that the price of option will not be sensitive to volatility
change (i.e. Vega V = 0) and set:

OV (&, Ymax, T)
dy

During numerical experiments, it was justified that the best choice is still (2.21) as it is suitable for both
large and comparably small values of 4y ax.

Now let us present conditions for "extended" SABR model p, # 0 . All the above listed conditions,
except (2.20), remain unchanged. On the boundary y = 0 we set again "smoothing" condition:

oV (z,0,7)
or

In order to explain this one might use following reasoning: In case of y, = 0 and initially volatility y = 0,
volatility stays equal to zero all time till maturity (this immediately follows from (2.2) when x = 0 and
yo = 0). Therefore we know that price of underlying asset will be deterministic, and as a consequence price
of the option could be found explicitly, thus Dirichlet conditions (2.20) could be set. In case when volatility
drift term p1,, # 0 (k # 0), we can not assert any more that volatility stays zero all time, even if it was initially
zero (this also follows from (2.2) when & # 0, 6 # 0 and yo = 0). Therefore we can not say that the price of
option remains deterministic and we can not require (2.20) to hold. In this case we again set "smoothing"
condition on boundary y = 0 (2.23).

In case when neither Dirichlet nor Neuman boundary conditions are posed, we require PDE itself to be
satisfied on the bound. This is known as a "smoothing” condition and it seems to be natural choice. Thus,
(2.23) and (2.21) are PDE operators set on corresponding bounds.

Gl (ymax) =0

AV (2,0,7)] + =0 (2.23)

2.4 Problem Definition for American Option

For the American option not only boundary conditions should be changed but also the way we are solving
PDE. The price of the American option can be obtained by solving time dependent complementarity problem
in the domain € = {0 < 2 < Zmax; 0 < Y < Ymax; 0 < 7 < Traxc b

L A[V]>0
V > F(Do(x))
(V = F(Do(2))) (2£ + A[V]) =0

where F' (Dg(z)) is obstacle function (same as initial condition). To solve linear complementarity problem
using splitting technique (section 3.2.3) the above system should be rewritten into the following form:

9 L AV] =
A>0, V>F(Dy(z)) (2.24)
(V = F(Do(z)))A=0

3For further discussion on "smoothing" condition see end of current section.
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where ) is auxiliary function. In order to find stopping region (option exercising region) one should find part
of the domain € where A > 0. Later discrete formulation of the splitting problem will be given.

Initial and boundary conditions for the American option in case of "classical" SABR model (,uy =0) are
defined by:

V(z,y,0) = F (Do(z)) (2.25)
V(0,y,7) = F(Do(0)) (2.26)
wlﬁ (Zmax) + WDQ (Zamax) = 0 (2.27)
V(2,0,7) = F (Do(x)) (2.28)
ALV (@, Yoma, 7)) + Lo ¥mas T _ (2.29)

or

Note that for the American option none of the conditions include discounting factor and this reflects the fact
that the holder of the American option has right to exercise it at any given time. Additionally, condition on
T = Tmax like in the European case suggests that I' for the American put or call option should be close to
zero for large values of &pax. This condition could be replaced by (2.22a) or (2.22b), as A of the American
put (call) assumed to be close to zero (one). "Smoothing" condition (2.29) could be justified similarly to one
for the European option.

In case of "extended" SABR model (s, # 0) "smoothing" condition on y = 0 should be set:

oV (z,0,7)

AV (2,0,7)] + =5~

=0 (2.30)
Explanation of boundary condition replacement, goes similarly to one described for the European option
(page 13).

2.5 Cash Dividends

In above discussion we assumed that dividends are paid out continuously with rate ¢(T — 7). Derived PDE
together with corresponding boundary and initial conditions reflects this fact.

For discrete dividends we need to reformulate our PDE problem into PDE with initial-contact problem.
Let us assume that the dividends are paid only once at time 71, where 0 < 71 < Thax and amount paid out
is §1. Then our initial problem for the European option will be formulated for each intra-dividend interval
separately. The first part will be?:

AW+ % =0
‘/1 (.’E,y,O) = F(D0($)>

0<7<71: Vi(0,y,7) = F(Do(0)) exp —/T(T—s)ds
0

T

Vi(x,0,7) = F | Do(z)exp /(T(T —s)—q(T —s))ds exp —/T(T —s)ds
0 0

4Only PDE, intial and those of boundary conditions are listed that change.
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the second part:

AVa] + 22 =0
‘/Q(xaval) = G(LE,y)

T

Vo (0,5,7) = G (0,5)exp | — / r(T — 5)ds

T1
T T

Vo (2,0,7) = G | Do(z) exp /(T(T—S) —q(T'—s))ds | ,0 | exp —/T(T—s)ds

T 1 T1

71 <7 < Thax &

where:
V1($—517y77'1) 51S$

G(:E’y):{ Vl(O,y,Tl) $<§1

For the second part, initial condition is shifted price of option (just before dividend) towards positive direction
of x.
For the American option, the problem is formulated as:

G0+ AVA] 20, Vi > F(Do(x)); (Vi = F(Do(@)) (52 + A[1A]) =0
0<17<7: Vl(x,y,O):F(Do(x))
== Wi (Ovy’T) = F(DO(O))
W (1‘,0,7’) = F(Do(%))
and
G+ A[Va] 2 0; Vo > F(Do()); (Vo= F(Do(x))) (52 + A[Va]) =0
T < T < T VQ(x7y70):G($’y)
b=l T V2(0,y,7) = G(0,y)
V2 (Z’,O,T) = G(IZ?, 0)
where

cte = (oo { GG VST )

If there is more than one dividend paid, then the problem will have more parts (intra-dividend intervals) and
could be formulated in the similar way.

Above boundary conditions are given for case p,, = 0. If p, # 0 then all boundary conditions set on y =0
should be changed to "smoothing” condition (2.23).
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Chapter 3

Finite Difference

Let us present convenient scheme for constructing finite difference approximations. Using this scheme one
could find various approximations for derivatives having increased exactness, non uniform grid or one sided
approximations and etc..

Assume that there are given discrete points (grid points): 2o, 21, . . . , 2y and values of function: Vy, Vi,..., Vn
defined in each point. Let us construct polynomial of power N — 1:

N-1
f(z)= Z piz"
i=0

in order to find polynomial going through indicated points, one should solve the following linear system of

equations with respect to p;:
f(z0) =Vo

fen) = VN

The system should be solved explicitly and each coefficient will be function: p; = Fi(zo, 21, ..., 25, Vo, Vi, ..., VN).
Now in order to receive finite difference approximation for the first and second derivatives in point z = 2
(note that in general V might not be given for %) one should differentiate polynomial with respect to z and
substitute the obtained expressions for coefficients:

0z [V] = )z pr=Fi () =Fn1(.) (3.1a)

52 {‘7] = () omsp=Fi( Yo a=Fy1(.) (3.1b)

Note that in square brakes we write d, [f/} and this is to be online with continuous derivative notation

f'(2)],_;. In general case the above expressions are huge and difficult to work with. As soon as our grid
points are uniformly distributed, their number are small and we are interested in finding derivatives in one
of the grid points, expression will significantly simplifies.

For example let us assume that there are given three uniformly distributed grid points: zg = 0, z; = Az,
z9 = 2Az and in each grid point function values are given: Vp, V1, V2. Choosing f (z) to be parabola we can
find its coefficients by solving:

po + p1zo + p223 = Vo
po+pizi+p2zi =W
po+p122 + pazi = Va
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Coefficients could be found explicitly:

po = W

=3V 4V =1
b= 2Az

- Vo=2Vi+ VW,
b2 = 2N 22

In order to find approximation for first and second derivative in central point of grid Z = z; one should
substitute above expressions for pg, p1, p2 into (3.1a) and (3.1b). Simplifying them we will get well known
central difference approximations:

Vo =V,
0-] = 22Az :
-2
g = BoBath

Approximation for first and second derivatives in left hand side point of grid Z = zg could be found by
substitute expressions for pg, p1, p2 into (3.1a) and (3.1b). In this case we will get so called one sided (left
sided) approximation:

3Vo — 4V 4+ V5
) = T

— 2V
e = R

Note that in order to distinguish from central difference approximation we denote this approximation with
n_n

In the same manner we can find one sided (right sided) derivatives in right hand side of grid Z = 29

3Vo — 4V +Vp
eVl = — A
Vo —2V; + V,
L R

and denote it with "+".

Constructing central difference approximation with higher precision goes in the same way. The only
difference is that we consider uniform grid with five points zg = 0, 21 = Az, 20 = 2Az, 23 = 3Az, z4 = 4Az
with corresponding function values Vg, Vi, Vo, V3, V4. Solving system of equations 5 x 5, substituting
expressions for coefficients into (3.1a) and (3.1b) for the central point of grid Z = zo, one will get:

: Vo —8V1 +8Vs -V,

0:[Va] = 12A2

“Vp + 16V, — 30V 4 16V — V
12A22

v =

Dot above notation indicates that this approximation has higher exactness. In the appendix C all used
derivatives are listed.

For cross derivative one should find coefficients of polynomial f(z,w) = pg + p1z + pow + pszw.

More detailed discussion of finite difference and precision of different approximations could be found in
[14].
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3.1 Domain

We change our continuous domain Q = {0 < & < Ziax; 0 < Y < Ymax; 0 < 7 < Thax b by discrete domain 0=

{LEL Ty TIN5 YL, Yy YN 1T e Thy e e - TNT+1}, where

. _ _ _ _ A _ xmax
1 = ]-7 N:E + 1; Ty = 07 IN,+1 = Tmax; Li — Ti—1 = AT =

N,
. ymax
Jj =1 Ny +1, y1 =0, YNy+1 = Ymax, Yi — Yi-1 = Ay = N

y

Tmax
k= 1,.N+1, 711=0, TN.41 = Tmax, Tk — Tk—1 = AT = N

T

and define discrete function V; ; , on domain Q.

In order to distinguish between continuous and corresponding discrete function we will always use brackets
V (7, xi,y;) for continuous function and subscripts V; ; i for discrete function defined in point (7, z;,y;) (i.e.
in grid point 4, j, k of domain €2) .

When referring to the discrete function defined on ) we sometimes omit some of superscripts in order to
shorten formulas. For example writing V; ; we assume that £ is arbitrarily chosen; writing V}, we assume
that 4,7 are arbitrary and etc. Same notational agreement will be valid for continuous function.

3.2 PDE discretization

Our main goal below will be to replace continuous function V (7, z,y) defined on with Q by discrete function
Vi,j,k defined on Q, transform partial differential equation: %—‘T/ +A[V] = 0 into its finite difference replica and
finally define initial and boundary conditions for discrete function. As a consequence we will receive linear
system of equation w.r.t. unknowns V; ;. Solution of this system will be considered as finite difference
approximation of continuous solution V (7, z,y).

Discretization is performed in two steps. First step discretize operator A [V] and transforms it into linear
system of equations (space discretization). Second step discretize 7 and finally defines problem as iterative
process (time discretization); each iteration gives us solution for corresponding time step.

While constructing finite difference scheme it is important to keep in mind what kind of matrix we are
receiving for our linear system of equations. Usually our matrix will be sparse (with lot of zero elements)
and diagonal.

3.2.1 Space discretization

Problem with finite difference for cross derivatives is that non of them includes V; ;, and thus they do not
donate into diagonal superiority of the final finite difference matrix. In order to obtain "good" approximation
for cross derivative we are using technique described in [9]. Taylor series expansion reads:

V(Zit1,Yj41) =~ V(mz,yj)—I—Amaa—V—&-A aal+% Az 2?;—+2A Ay;zg +Ay28;;2/: (3.2a)
V(zic1,yj-1) ~ V(zi,y;) — Ax Z—Z—A aa—VJr% Ax 28;—+2A Ay§2g +Ay2%’2y‘2/: (3.2b)
Vg 1) ~ V(mi,yj)—i—Ax(?x/—A %Jr% A %_m A aaQa +Ay2%?§: (3.2¢)
V(zi1,yiv1) ~ V(z,y) — Az ZV+A %/+% Az Q%fm A 528 +Ayzg;/_ (3.2d)

summing up equations (3.2a), (3.2b) and solving for cross derivative we will get:

0V 1 Az 8’V Ay 0%V
920y~ 3Awhy V(Zit1,Yjv1) — 2V (@i, y5) + V(@io1,95-1)] — 57y 92 2Dz 0
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while summing up the equations (3.2¢), (3.2d) and solving for cross derivative:

o*V

0xdy ~ 2AzAy

Vi(zit1,yj-1) — 2V (24, y5) + V(zio1,yj41)]

Az 0*V

. Ay 02V
2Ay 0z

2Az Oy?

Finally replacing continuous function with discrete one and substituting finite difference approximations of

corresponding continuous derivatives:

oy Vil
«2
2y Vil

1
2AzAy
-
2AzAy

Vit1j+1 =2Viyj +Vic1,j-1] =

Vit1sj—1—2Vi; +Vic1,j41]

Az Ay
m(sm [V;»J] - E Y [V;»J]
Az

A
BT sary g, BY g2
+ 2Ay(sz [‘/1,]] + :176 [‘/LJ]

Choice between (iy and Siyy is determined by the sign of multiplier of cross derivative in (2.13). Idea
behind this is that we should try to choose such approximation for cross derivative, that keeps diagonal
element of final matrix "heavy" thus providing us with diagonal superiority.

Now we can construct finite difference replica of operator A in (2.13), but first let us rewrite it in the
following form:
0V 02V 02V d8V oV v
2 8x3y+68y2+ %+687y+f

and note that a < 0, b E 0if p(7) § 0,c<0,d<0,e E 0if p,, § 0, f > 0. Now replacing derivatives in
continuous operator A with corresponding finite differences (Ip~¢ -indicator function):

A[V] +b

~2 <
Ay [Vij] = ad2 [Vij] + Tpsobdy, , [Vig] + (1 = Ipso) b5i,y [Vigl + c62 [Vij] + d6 [Vi 5] + €dy [Vij] + fViy (3.3)

substituting expressions for finite difference, collecting and rearranging terms we will finally get:

Ay [Vi] Vig |f = 252 - A2§2 b(Qi);OAy 2+
Vit 2212103; G :Azz B 2Zy - b(Z]IAbZOA; 1): -
Vit1,j-1 W + Vit :Ao;z + QZQ; N b(ZQHAbZ:OA_y 1): *
Vit1,j41 foAoy + Vijt+1 :Acyg + sz B b(Z&Z()A; 1): -
Vo [P0 0]y - g W)

Subscript k£ in the operator indicates that in general case coefficients of finite difference operator is time
dependent. Applying operator Ay [V; ;] (for fixed time step k) for each inner point of domain Q) we will get
linear system of equations and denote matrix associated with this system by Ay (without square brackets).

It should be mentioned separately that constructing finite difference replica of operator A could be
performed using more precise approximating scheme:

. <2 ~2 < .2 . .
A [Vig] = b, (Vi) + Dby, (Vi) + (1= Tino) 05, , (Vi) + 8, [Vij] + b [Vi) + €8y [Vi g + Vi (3:4)

s

Problem with this approximation is that it involves more "off diagonal" elements in stencil, thus significantly
decreasing property of matrix diagonal superiority.
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3.2.2 Time Discretization

Replacing continuous derivative 9% with one sided finite differences &4, [Vi], Sir [Vie]s 0pr [Vi] we will get

following iterative scheme for finding V; ; x:
(I+ATA2)‘/2 = V1
2 4 1
I+ -ATA =-Vo—=
< + 3 T 3> V3 3V2 3V1

18 9

6 2
I+ —ATA =—Vi_1——Vi_ —V_3 f =4,...N 1
( +11 T k) Vi 1Vk 1 11Vk 2+11Vk 3 for k , T+

1
Note that above equations are written in matrix form, V; is given by initial conditions and I is identity
matrix.
Finally we will denote iterative finite difference scheme by:

(I 4+ ApAp) Vi = LV + Vo + [ Vis (3.5)

which we assume to hold in all inner points of domain €. This type of scheme usually called BDF3 (backward
difference formula with 3 time steps). Another types of scheme are described in [9)

BDF3 allows to manage diagonal superiority of matrix by means of decreasing A7, but "price" to be
paid for this will be increased number of steps (iteration) and as a consequence increased time required for
solution.

3.2.3 Discrete Splitting

Now in order to adjust the operator splitting method described in section 2.4 to numerical calculation of
price of the American option, we divide the method into two steps.

In the first step system of linear equation is solved, in second step an intermediate solution and auxiliary
variable are updated in such a way that they satisfy constrains. Intermediate solution Vj should be greater
then or equal to obstacle function F' (Dg(z;)), while Ay is required to be positive. System of linear equations
to be solved is:

(I + Ak.Ak) f/k = lin_l + lin_g + lin_g + ApAp_1 (36)
where Vk is intermediate solution.

Constrains are written as:

Vi—Vi—Ar Ok — A1) =0
()" (Vi = F (Do(:))) = 0
Vk Z F(Do(a?l)), /\k Z 0

or:

A\x = max w_,_)\kiho
Ay

Vi = Vk-f—Ak (A — Ag—1)

where V} is solution and A\ is auxiliary variable.
For initial guess we take A\; = 0, as the American option at maturity is exercised immediately.
Accuracy consideration for operator splitting method is described in [9].

3.3 Discretization of Initial and Boundary conditions

As it was mentioned above finding exact conditions reflecting real behavior of option price on boundaries
T = Tmax and ¥y = Ymax might be difficult, if ever possible. While setting conditions on = = Zyax and
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1Y = Ymax one should always keep in mind that they are only "approximately correct". In this section we will
define a few new conditions and in section 5 we will use and compare them.

Below we translate all continuous boundary and initial conditions listed above into their finite difference
replicas. Also we introduce some new conditions and also translate them. New conditions will be first defined
for continuous case and then translated into finite difference.

3.3.1 Imitial condition 7=0 (k=1)

Initial condition for European or American option is similar to each other (2.17), (2.25). It could be translated
in a finite difference:
Vi = F(Do(a))) (3.7)

Thus the first solution (zero solution) could be found directly from initial conditions.

3.3.2 Bound: z=0 (i=1)

For the European option we translate Dirichlet condition (2.18) set on the bound and adjacent corners
=0,y =0and z = 0,y = ymax into discrete version for function V; ; x:

Tk
Vijk = F(Do(x1))exp —/T(T —s)ds (3.8)
0
For the American option (2.26):
Vi = F(Do(w1)) (3.9)

3.3.3 Bound: y=0 (j=1)

Conditions on this bound are chosen differently for zero volatility drift term and non zero volatility drift
term.

When 41, = 0 we translate Dirichlet condition for the European option (2.20) on the bound and adjacent
corner T = Tyax,y = 0 into:

Tk Tk

Viik = F | Do(x;)exp /(r(T —5)—q(T —s))ds exp —/’I"(T — s)ds (3.10)
0 0

For the American option condition (2.28) is translated into:
Viak = F (Do(:)) (3.11)

If p1,, # 0 condition (2.23) for the European, and condition (2.30) for the American are translated (ex-
cluding adjacent corners), into:

(14 ARAL") Vi = iVeor + BV + Vi s (3.12)

where matrix Az:o is constructed using one sided finite differences w.r.t. y in operator A:

AP Via] = adl [Vig] + 005 o, [Via] + ed%, [Via] +

déy [Via] +edyy [Vial + fVin

This approximation is changing stencil and allows us to use it on the bound, otherwise we would face a
problem with external grid points.
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3.3.4 Bound: z=x,,, ({=N,+1)

Few possible conditions could be set on this bound (excluding adjacent corners). Let us first of all translate
those ones described in previous sections. Neuman conditions (2.22a) for both the American and European
put option cases are same and could be translated into:

01z [VN,+1,5] D1 (2N, +1) =0, (3.13)

for the call option we set above to be equal to one. Another possibility is to translate equivalent conditions
(2.19) and (2.27) into:

5% 2 [VNu41,5] D3 (TN, 4+1) + 00 [V, 41,5] D2 (2N, 41) =0 (3.14)

Note that this condition is held for both put and call option.
Now let us describe alternative conditions (not stated in continuous form). First one is to set smoothing
conditions, i.e. to translate continuous operator

8‘/ (xmaxv y’ 7-)

A[V (xmaxaya T)] + 87_

=0
into its finite difference replica:

(I + ApATT" )V Vi = i Viee1 + i Vie—2 + 13 Vi3 (3.15)
where matrix A}~"™**is constructed using one sided finite differences w.r.t. = in operator A:

AT [V 5] = ad%, [Vega,y] + 0074y Vie41,5] + €0 [Viv,11.5] +
dbyo [VN,+1,5] + €6y [V, +1,5] + fVN, 41,5

Second possibility is to set (for put option only) smoothing condition and Neuman condition simultaneously:

ov (xmaxa Y, T)

A[V (xmaxvyuT)] + T =0
ov (:Emaxvya’r) = 0
ox B

translating this we will get two conditions:

(I + AkAp) Vi = GV + Vi + 1 Vis (3.16)

04z [VN,+1,5] D1 (zn,+1) =0

Note that simultaneously setting these two finite difference conditions on the boundary is equal to assuming
that all external grid points are equal to corresponding inner points: Vi, 12 ; = Vi, ; for all j. This condition
is described in [9].

3.3.5 Corner: 1=y, y=0 ({(=N,+1, j=1)

Lower corner point is treated in two different ways. If 1, = 0 then Dirichlet condition (3.10) or (3.11) should
be set.
If p, # 0, the following conditions could be set and translated into finite differences. The first one is

usual Neuman condition
OV (Tmax, 0,7)

ox =0

which will translate into:
ta [VN,411] D1 (ZN,41) =0 (3.17)
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For the call option instead of zero 1 is substituted.
Second one is smoothing condition:

OV (Zmax, 0,7)

V maxs O’ = 0
ALY (i 0,7)] 4 -0
translated into: ,
(I + AkAﬁzzmx’y:O) Vi = UVie1 + Vi + Vi3 (3.18)
Where
Aizmmax’yzo [VNerl,l] = a(ﬁm [VNI+1,1] + b(sim#y [VNerLﬂ + C(siy [VNI+171] +

dbyu [VN,+11] + €04y [V, 41,1 + fVN, 411

and again we are using one sided finite difference in order to exclude the external grid points from the finite
difference operator.

3.3.6 Corner: r==pay, Y=Ymax (i =N,+1, j= Ny+1)

For the upper corner point few possible conditions could be set. The first one is usual Neuman condition
w.r.t. x:

OV (Tmax,0,7) 0
or -

translated into:
4z [V, +1,8,+1] D1 (2N, 1) =0 (3.19)

For the call option instead of zero, 1 should be substituted.
The second one is a smoothing condition:

ov (zmaxv Ymax; 7-)

ALY (@ Yo, )] + e D — g
translated into finite difference replica using one sided derivatives:
(I + ApAy"mwed =) Vi — BV g + Voo + [ Vies (3.20)
where
AT Vv, ] = 083, [Viesn,a] + 0020 1 [Vierv, o] + 603, [V, ] +

dbyo [V, 11,8, 11] + €0y [V, 11n,11] + VN, 18,11
The third possibility is to set smoothing and two Neuman conditions simultaneously:

ov (:L'maxa Ymax, 7_)

AV (Zmax, Ymax, T)] + or =0
ov (xma,xv Ymax; T) = 0
ox
ov (xmaxa Ymax; T) = 0
Jy -

replicating these into finite difference we will get:
(I + ApAp) Vi = Vi1 + i Vao + 1Vis (3.21)
40 [VN,+1,N,41] D1 (zn,41) =0
Oty [VNat1,8,+1] G1 (yn,+1) =0

note that setting additional Neuman conditions in the corner is equal to assuming that external grid points
VN, +2,N,42 = VN..N,» Vo428, 41 = VN, N, +1, VN, +1,N, 42 = VN, +1,N, [9]-
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3.3.7 Bound: y=yunax (j = Ny—i—l)
Smoothing conditions (2.21) and (2.29) are equal and could be translated into:

(I + ApAYT ) Vi = Vi + GVio + Vi3 (3.22)
where using one sided derivatives we can get:

AYTUme [V ] = adh [Vin,+1] + 002y [Vin, 1] +¢6%, [Vin,+1] +
do [‘/i7Ny+1:| + 65_y [Vz‘,Ny-H] + sz',Ny-H

finite difference operator with excluded external grid points.
The second possibility is to require additionally Neuman condition to be satisfied:

ov (.Z‘, Ymax; T)

A [V ('ra Ymax, T)] + T = 0
aV (:Cv Ymax, T) _ 0
dy
and this is translated into:
(T 4+ AA) Ve = UV 1 + BVi o + Vi3 (3.23)

Oty [Vin,+1] G1 (yn,+1) =0

note that setting two conditions on the boundary is equal to assuming that all external grid points are equal
to corresponding internal grid points: V; n, 42 = Vi n, for all i [9].
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Chapter 4

Monte Carlo

In this chapter we are describing well known and widely used Monte Carlo method for option pricing. In
case of American option we are using modification of Monte Carlo method (least square approach) described
in [12].

4.1 FEuropean option

Key idea of Monte Carlo method is to simulate M paths of the underlying asset and based on simulated
paths derive the price of option under the "extended" SABR model. This method is known to be very
time consuming but easy to apply, even for the options with path-dependent price. First we will discuss
implementation of the European option case for stock paying cash dividends.

Let us divide interval [0, 7] into N equidistant parts At = +:

t1 =0ty =At,... ty41 = NAt =T
and calculate the paths for volatility and stock price using;:

i1 = i+ 1o (0 ) At + 00 (o) [p () €2 (0) + VT = 7 (B)ea (1) | VAL

Sk+1 = Sk + g (Sk, o, t) At + 05 (Sk, o, tr) €1 (tr) VAL,
here k=1,2,...,N; and oy =, 51 =S5

where g (S, a,t) = (r(t) — q(t)) Si, 05 (S, t) = ar (S0)°, pg (o, t) = k(0 () — ), 0o (,t) = voy. Ex-
pression |p (t) €1 (tx) + /1 — p? (t)e2 (tk)] appears because Wiener processes are correlated!, while €; (¢x)
and € (tx) are two independent random samples from standard normal distribution. Note that if dividend
is paid out at t; then the price of stock "just before" dividend is calculated according to given formula for
Sk+1 while the price of stock "just after" dividend is §k+1 = max (Sk4+1 — 0¢,,0) and after this value of gk+1
is used to calculate next Sgio.

After generating path for stock price one can immediately calculate put (or any other claim) payoff for

each generated path using:
T

V =exp —/r(s)ds (K — Sny1)"
0

IThe Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems with multiple correlated
variables. The matrix of inter-variable correlations is decomposed, to give the lower-triangular matrix. Applying this to a vector
of uncorrelated samples, produces a new sample vector with the covariance properties of the system being modeled.
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Since M paths were generated, one should find mean py, and standard deviation oy of V in order to estimate
confidence interval for price of option:

ov

\/M;

ov

py — N7H(1—0.05/2) NI

py + N7 (1 —0.05/2)

4.2 American option

In case of the American option, Monte Carlo simulation can not be used directly. While we are calculating
value of American option, price of immediate exercise should always be compared with expected cash flow
from continuing. However, expected cash flow from continuing could not be found directly from Monte Carlo
simulation.

The method to derive prices of American options using Monte Carlo simulations starts in the same way
as the one described above for European options, namely simulating M paths of the underlying asset S.
Again the life of the option can be divided into N short time intervals At¢, and paths for volatility and stock
price can be approximated as before. The difference is now that the holder of the option can also choose to
exercise the option at each moment in time between time zero and time T' (option is exercised only once).
This means for the approximation that at each time step it has to be evaluated if exercising at that moment
gives a higher payoff than the expected discounted payoff of holding the option at least one more time step.
The payoff of exercising at time ¢, is easy to determine, since this decision can only be made at time ¢, itself.
So the value of the stock at time ¢, is known, and the payoff of exercising the option can be easily computed.

The expected discounted payoff of continuing however is far more difficult to calculate. Longstaff and
Schwartz in [12] provide a way to approximate this value when Monte Carlo simulation is used, namely using
modification called the Least-Squares Monte Carlo (LSM) method. There are other methods based on Monte
Carlo simulation, like the one proposed by Andersen [1], but the LSM method is easier to apply to models
with multiple stochastic factors, and has a good trade-off between computational time and precision. That
is why the Least-Squares Monte Carlo method is used here to derive prices of American options under the
"extended" and "classical" SABR models.

After sampling M paths for S, there are M possible values for each Sy. First the option payoff for each
path when exercising at ty4+1 = T is derived. After that, all paths for which the option is in-the-money at
time ¢ are considered, which forms a set Z.

Now the key idea of Longstaff and Schwartz [12] comes into play. They assume an approximate relationship
between the conditional expected value of continuing and the value of the stock:

Vi~ S f () (4.1)

i=1

where Vi is the approximated value of continuing discounted back to the point tx, Sy is the value of the

stock at time ty, [% are constants, f(-) is the i’th function of a chosen set of basis functions (like Laguerre,

Legendre polynomials or any other set of orthogonal or usual functions) and j is the number of basis functions.
To find the constants l%;, the following functional is minimized:
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>
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7
Vi = Y INF(SR)
i=1

where V3 is the value of continuing with path z at time ¢y discounted back to time ¢y, and S% is the stock
price of path z at time ty.

Now equation (4.1) gives the expected payoff when continuing at ¢y, and these values are compared with
the pay-off of exercising at time ¢). With this data the decision to exercise or not at {y can be taken for
each path. Of course the option will not be exercised at ¢y, when it is out of the money at ¢y.
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After this step, all paths for which the option is in the money at time ¢5_; are considered, and so on
until time t; = 0. At every time step functional

D

2€Z},

2

J
Vi =Y LS <Sz>]
=1

is repeatedly minimized, to derive all values of [%, where Z is the set of paths for which the option is in the
money at time t;. The value of continuing is again compared with the value of exercising at time tj.

At the end of this procedure, each generated path has one exercise time. These M payoffs should all be
discounted to time t; and averaged. This will give the value of the option with the LSM method suggested
by Longstaff and Schwartz.

A detailed numerical example of this LSM method can be found in the [12].
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Chapter 5

Numerical Experiment

To perform reliable numerical experiment we need to compare not only different boundary conditions and
choose those ones which will give us higher exactness, but also different finite difference schemes. As a
measure of exactness we will choose the residue between existent analytical solution and solution obtained
by finite difference method. Of course, analytical solution does not exist for general choice of parameters
(otherwise there would be no reason in constructing finite differences), but there exists analytical solution
for some special cases. As soon as we are certain about the exactness of numerical solution for this special
cases, we can assume that it will work also for the general choice of parameters. However, in last case we
additionally compare two different numerical methods (Finite Difference and Monte Carlo).

5.1 Boundary Conditions

As it was mentioned above, boundary conditions could be conventionally divided into two groups.

The first group includes all conditions that are given in analytical form, for example (2.20), (2.18) for
the European option and (2.28), (3.9) for the American option. These conditions could not be somehow
improved or perfected, as they are only possible and unique conditions.

The second group includes conditions that are only "approximately" correct. We are facing problem
with this type of conditions due to the fact that initially the problem is set on semi-infinite domain. Since
we are using finite difference method we have to consider finite domain by means of "cutting off" infinite
parts, thus condition on infinity should be replaced by some "approximate" conditions on finite boundaries.
Additionally, there is always a balance between "numerical" and "mathematical" levels of correctness for the
condition. For example, requiring on & = Tpax, I' = 0 seems to be equally correct, as to require (for put
option) A = 0. Though, one should keep in mind that I" converges to zero faster then A, but finite difference
approximation (with same amount of grid points) is more precise for A. In our particular case we are using
the condition A = 0, since we are performing variable transformation and for very large xy.x there is no
"numerical" difference between choosing I' = 0 or A = 0 and thus we are choosing last one as a simpler. On
the boundary znax we can also set "smoothing" condition separately (3.15) or together with A = 0 (3.16).
During the numerical experiment it was found that setting only "smoothing" condition on this bound gave
higher error then setting coupled conditions.

Choosing the appropriate condition for y = ymax is a bit tricky, since Vega - V is not uniformly converging
to zero when volatility increases, in contrast with A for example. Thus setting V = 0 separately or coupled
with "smoothing" conditions (3.23) could be justified only for very small or very big volatilities. It was found
that "smoothing" condition alone (3.22) gave best result and proved to be multipurpose (for small, mid and
big volatilities Ymax)-
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5.2 Finite Difference Schemes

Setting perfect boundary and initial conditions does not guarantee nice numerical approximation. Construct-
ing replica of differential operator A is the first and might be the most important task while working with finite
difference method. In present research, two different replicas of continuous operator are considered: (3.3)
and (3.4). The first one involves "usual" central differences, the last one uses central differences with more
grid points and, as a result, higher precision. Price to pay for using larger stencil is additional computational
time. And this is caused by the fact that we are obtaining finite difference matrix with "lighter" diagonal and
larger number of nonzero elements. "Diagonal superiority" could be managed by decreasing time step size
(3.5), but there is noting that could decrease the memory usage for non zero elements additionally occupied
by bigger stencil.

Experimenting with different step sizes and two mentioned stencils, it was found that it is better to
decrease step size and use smaller stencil rather than use larger one.

5.3 Variable Transformation

Variable transformation allows us to resolve a few problems. The first is that boundary conditions set on
T = Tyax and Yy = Ymax should imitate behavior of option price on infinity. Thus, the bigger values for xyax
and ymax are chosen, the better imitation will be. While choosing larger domain, we need to dramatically
increase the number of grid points and that is the main drawback. In order to avoid this problem we should
apply variable transformation, which allows us to concentrate grid points in the domain of interest and "send"
boundary to infinity.

The second is that usually we are interested in the increasing exactness of the solution for some particular
parts of the whole domain (for example for "At The Money Option"). For this reason we should refine grid
points in this parts and this is possible only by applying transformation.

It was found that the most convenient transformation is (2.16) since it allows of successfully resolving
both of the mentioned problems. For transformation with respect to x parameters pi, pa, ps of (2.16) should
be chosen in a way to concentrate (refine) grid points near strike and coarse grid points on the boundary
T = Tmax-

5.4 Comparison

In this section we will find price for the European put option with following data: Tmax = 600, Ymax = 2,
Tmax = 1, K = 25, N, = 200, N, = 200, Ny = 100, » = 0.03, ¢ = 0 and numerical solution will be
compared with existing analytical solution (for special cases) or with numerical solution obtained by Monte
Carlo simulation (for general case).

5.4.1 SABR model (p, =0 < x=0=0)

Coefficients of the system (2.1) are chosen to be constant and p = 0.2, 8 = 0.9, K = 0.0, § = 0.0, v = 0.4.
For this model we are choosing as an "analytical solution" the price of put found by equation for volatility
surface (1.3) suggested by Hagan in [5] which is proved to be very precise analytical approximation. Our
finite difference scheme is defined by (3.5), (3.7), (3.8), (3.10), (3.13), (3.19), (3.22). The residual (error)
between numerical and analytical solutions for 7 = 1 is presented in Figure 5.1. Maximal absolute error of
solution is concentrated in domain (filled with gray color) with high volatility and big time to maturity (for
7 < 1 maximal error is few times smaller). Also there is concentration of error near point with S = K = 25
and a = 0, though absolute value of error is smaller then 0.003. Discussion of errors and recipes for them
are given below.
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Figure 5.1: The residual between numerical and analytical solutions for the "classical" SABR model.
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5.4.2 Non stochastic volatility (5 =1, o0,=0 < v =0)

Coefficients of system (2.1) are chosen to be: p =0, 8 =1, Kk = 0.25, § = 0.8, ¥ = 0. In this case volatility
is time dependent but non stochastic (v = 0). There exist analytical solution for this problem, in particular
averaging variance w.r.t. time i.e.:

a2 (t) =

S

0/02 (s) ds (5.1)

and substituting & into Black Scholes formula for put one can immediately find analytical price. Our finite
difference scheme is: (3.5), (3.7), (3.8), (3.12), (3.17), (3.13), (3.19), (3.22). Residual between numerical and
analytical solutions for 7 = 1 is presented in Figure 5.2. First of all one can immediately see that maximal
absolute error for this problem approximately 10 times smaller compared to Figure 5.1. Domain of maximal
error is again filled with gray color. It is interesting to note that there is no error concentration for at the
money option with zero volatility (S = K = 25 and « = 0) like it is in the previous case.

5.4.3 Monte Carlo

Coefficients of system (2.1) are chosen to be: p=0.2, =1, Kk =0.25, § = 0.8, v = 0.4. We are comparing
finite difference solution with the one obtained by Monte-Carlo simulation. Due to the fact that Monte-Carlo
is computationally very expensive method, we are comparing numerical solutions in: y = G (0.5), © = D (25).
Comparison is made for both European and American puts Figure 5.3. It should be mentioned that since
both pricing methods are numerical, they bear some error, thus qualitative behavior of presented plots are
more informative rather then purely quantitative measuring. Qualitative behavior shows that both methods
give nice pricing and real values should be in range for American and European options.

Operator splitting method for the American option guarantees that price obtained will always be greater
than obstacle function. From Figure 5.3 one can also see that price of American option is greater than price of
European option. In Monte Carlo method adapted for American option (least square approach), this feature
is not "built-in" in the algorithm, thus price obtained for the American option might be lower then price of
the European option if insufficient number of simulations performed. From Figure 5.3 one can also note that
100, 000 simulations were not enough to provide this feature.

5.5 Error types and recipes

We can classify errors associated with finite difference algorithm and bring some recipes for each of them:

1. Initial Error: This type of error is usually caused by discontinuity for put and/or call options of
A ‘JC:D(K) for 7 = 0 (initial conditions) and concentrated near small values of 7 and z ~ D (K). In
order to decrease this error regularization (smoothing) of initial conditions could be applied. Replacing
payoff function F' () in (3.7) with the price of option (put or call) given by classical B-S equation
for small values of 7 ie.: V; ;1 = P(Do(x;), K,Go(y;), T — 7) where 0 < 7 <« 1, this error could be
eliminated. Another method for decreasing this type of error is to refine mesh near x = D (K) using, for
example, transformation (2.16). It was found that mesh refining could be applied directly, but requires
some additional computational resources. Regularization of initial conditions is effective but requires
carefully choose of 7.

2. Strike Error: This error is caused by discontinuity of A at the boundary y = 0. Error arises when we
set Dirichlet condition (only for the case when mean reverting term By = 0) on the boundary y = 0 and
concentrating near y = 0, x = K. Like in previous error type, regularization (smoothing) technique
could be applied for this type of error. Another recipe is to refine mesh near x = D (K) as in the
previous case.

3. Corner Error: Is concentrated near the corner point ¥ = Ymax, € = Tmax, 7 > 0 and caused by the
fact that Neuman or Dirichlet conditions are "approximately correct". If we set in the corner point
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Figure 5.2: The residual between numerical and analytical solutions for model with Non Stochastic Volatility.
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Figure 5.3: Prices of European and American options obtained by Finite Difference and Monte Carlo methods.

"smoothing" condition (3.20), error will still occur because of poor approximating possibility near the
boundaries and even more in the corner. The most natural way to reduce this type of error is to take
large value for z,,x =~ 30K and in this case the error level will be acceptable.

4. Vega Error: This error is concentrating near y = Ymax, © = D (K), 7 > 0 caused by the fact that Vega
V is growing quickly for at the money options. If volatility mean reverting term p, is comparable to
volatility diffusion term o, this type of error significantly decreases as V is not growing so fast any more
(this could be seen from Figure 5.1 and Figure 5.2). Refining mesh for at the money option x = D (K)
might reduce this error, though improvement is not dramatic. General PDE transformation allows to
remove the cross derivative term and this might significantly decrease this type of error. In the next
section we are discussing possible alternative technique "Point Pinning" for reducing this error.

In order to give graphical interpretation of "Vega Error" in Figure 5.4 two analytical solutions for 7 =1
are compared, first one is generated using "classical" SABR model (u, = 0) and second one is generated
assuming that volatility is time dependent but non stochastic NSV (o, = 0). One can easily notice that the
first surface is much stepper for at the money option with larger initial volatility and that causes inexactness
in finite difference approximation.

5.6 Point pinning

Basic idea of this technique is to choose a few points on the grid (inside domain or on the boundary) and set
in these points Dirichlet conditions:

‘/si,sj,sk = D(xsi » Ysjo TSk)
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Figure 5.4: Analytical solutions of "classical" SABR and NSV models.

where s;, 55,55 are chosen indices for the points in discrete domain, D(xs,,ys,,Ts,) is values set on this
point. In order to find appropriate values for D(xzs,,ys,,s,) one should use supporting method,(Monte-
Carlo, Binomial Tree or use some analytical approximation in the point s, ys;,7s,). Using the supporting
numerical method in order to improve finite difference method might seem controversial, but one should not
forget that finite difference method returns "set" of solutions (as a matter of fact each grid point is price
of option) while Monte-Carlo or Tree method return solution for one isolated point in grid. Of course, time
spent on supporting numerical methods should be taken into account.

Interpretation of the point pinning approach is if one assumes that finite difference operator (3.5) acts
like most natural interpolator in between of pinned points. Note that implementing this method does not
really affects the time spent on creating the matrix as only few rows (equations) should be replaced.

If we apply this method to reduce "Vega Error", then error is decreased not only in pinned point but also
in nearby domain. In Figure 5.5 residual function (error) presented for the "classical" SABR model with one
pinned point: S = 15 and « = 0.95. Comparing this with Figure 5.1 one can notice that domain (filled with
gray color) with maximal absolute error has shrunk.

In case of the American option this technique could be further generalized. In particular, while using
the supporting numerical method, one is receiving not only the value of option but also the approximation
for the shape of the open boundary and this fact could be exploited while constructing the finite difference
method.

5.7 Accuracy versus Speed

To analyze the accuracy of algorithm and the time spent on calculation, the following experiment is performed.
We are choosing three different initial values for maturities, initial stock prices and initial volatilities for put
option with strike K = 25. After this we are plotting Figure 5.6 difference (error) between the obtained
prices, in chosen points, with corresponding theoretical values for four different grid resolutions (50 x 50 x 50,
100 x 100 x 100, 150 x 150 x 150, 200 x 200 x 200) versus computational time spent for each resolution.
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Figure 5.6: Accuracy, Speed, Convergence

Comparison with the theoretical value is performed for SABR model (first subplot) and the model with non
stochastic volatilities (second subplot). We see that the convergence toward zero is obvious, though the speed
of convergence differs for different point. Also one can notice that there is no significant improvement in the
convergence after resolution 150 x 150 x 150 (third point from left) and convergence to zero is much faster
for the point with lower initial volatility.

On the last subplot one can see the convergence of the absolute value of option price versus computational
time (grid resolution) for general choice of parameters. It should be mentioned that convergence speed is
mostly affected by refining resolution w.r.t. stock price and time rather then volatility.

Computation is performed on the following machine: Intell CPU 1.8 GHz, RAM 1.00GB.

5.8 Calibration

For calibrating parameters of the SABR model we are using data for the American options written on
Royal Dutch Shell (RDSA). Data is collected for fixed time moment during trading day 2 January 2006 and
presented in the Table 5.7. All maturities are presented as a fraction of year and prices are quoted in Euros.
Note that underlying stock RDSA is paying dividends. For calibrating we are using middle (average) price
from bid-ask spread. During fitting process we calibrate not only parameters of the SABR model but also
volatility of stock, as it is not directly observable on the market. Since all option prices are taken for one
fixed moment (snapshot) of a day we will have only one additional volatility parameter « to calibrate. If
data would be collected for two different time moments, then two additional volatility parameters a; and as
should be taken into account and calibrated.

First set of calibrations are performed for following parameters: « - volatility of stock and "extended"
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RDSA 2-Jan-06
PUT-1

Maturity S K - Strike CALL-0 Bid Ask  Middle
1 0.2071 26.02 24 1 0.2 0.25| 0.225
2 0.2071 26.02 25 1 0.45 05| 0475
3 0.2071 26.02 255 1 0.6 0.7 0.65
4 0.2071 26.02 26 1 0.85 09| 0.875
5 0.2071 26.02 26.5 1 1.1 1.2 1.15
6 0.2071 26.02 27 1 1.45 1.55 1.5
7 0.2071 26.02 275 1 1.85 1.9[ 1.875
8 0.2071 26.02 28 1 225 2.35 2.3
9 0.7058 26.02 25 1 1.2 1.3 1.25
10 0.7058 26.02 26 1 1.65 1.75 1.7
11 0.7068 26.02 27 1 225 23| 2275
12 0.7058 26.02 28 1 2.9 2.95| 2925
13 0.8016 26.02 24 1 0.95 1] 0975
14 0.8016 26.02 25 1 1.3 14 1.35
15 0.8016 26.02 26 1 1.75 1.85 1.8
16 0.8016 26.02 27 1 2.3 24 2.35
17 0.8016 26.02 275 1 2.65 27| 2675
18 0.8016 26.02 28 1 2.95 3.06 3
19 0.9551 26.02 24 1 1.15 1.25 1.2
20 0.9551 26.02 25 1 1.55 1.6] 1.575
21 0.9551 26.02 26 1 2 2.1 2.05
22 0.9551 26.02 27 1 2.55 2.65 2.6
23 0.9551 26.02 275 1 2.85 2.95 2.9
24 0.9551 26.02 28 1 3.15 3.25 3.2
Dividend Time Dividend

0.1036 0.22

0.3529 0.22

0.5830 0.22

0.8323 0.22

Figure 5.7: Options prices and dividends.

SABR coefficients: p, k, 0, v (we assume that all parameters are constant). Risk free rate r and § are not
calibrated, but we are taking different values of 5 for each calibration. Results for the four calibrations with
different 8 are given in Table 5.8. In addition to the first guess of parameters and their final (calibrated)
values! following data are presented in table: total time spent for calibration (in hours), number of required
iterations to reach target tolerance, count of function calls for calculating residual functional, residual for
each data point (option price), confirmation if prices calculated with calibrated parameters are in bid-ask
spread and norm of residual functional || F (-)||. At the end of the table parameters for the MATLAB function
lsqnonlin(-)are given.

We can see that different choices of 3 significantly changes mean reverting limit # and initial stock volatility
«, while p, k and v are changed insignificantly. Change of « is very much online with the results obtained
by [20] for "classical" SABR model. In "extended" case 6 comes into play and adjusts to different values
of 8. Tt is interesting to note that calibrated values of a (for different choices of 8) are almost equal to the
corresponding values in the "classical" model (see Table 5.10 for calibrated values of « for "classical" SABR).
Thus it is obvious that the mean reverting parameters 6 and  are playing main role in decreasing value of
residual functional, and produce option prices that are within bid-ask spreads.

Second set of calibrations are performed for following parameters: « - volatility of stock and extended
SABR coefficients: p, &, 6, v and B. In contrast to the previous set of calibrations we are additionally
calibrating S and keeping fixed only risk free rate r. From Table 5.9 one can see that it is always better to
keep f fixed, since functional ||F'(-)||seems to have equal minimal values for different 8 (so called "ditch" of
minimums with respect to ).

Third set of calibrations is performed for "classical" SABR model, i.e. following coefficients are calibrated:
a, p, v while x, 0, 3 and risk free rate 7 are kept fixed? (for each calibration different fixed values of 3 are
taken). From Table 5.10 one can notice that some of the produced prices are not in bid-ask spread and value
of residual functional is greater then corresponding one in Table 5.8. This might not be surprising since the

1Values of r and 3 are kept fixed and written in white cells, while first guess and final calibrated values of parameters o, p,
K, 6 and v are written in colored cells.
2For "classical" SABR model k = 6§ = 0.
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First Guess Calibrated First Guess Calibrated First Guess Calibrated First Guess Calibrated
r 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000
o 0.500000 0.469673 0.500000 0.339004 0.500000 0.244755 0.500000 0.176721
p 0.000000 -0.188358 0.000000 -0.218643 0.000000 -0.249431 0.000000 -0.278045
K 0.500000 0.165273 0.500000 0.178203 0.500000 0.163141 0.500000 0.188485
6 0.170000 0.989913 0.170000 0.694399 0.170000 0.530726 0.170000 0.360598
v 1.000000 0.670996 1.000000 0.683848 1.000000 0.686914 1.000000 0.702559
B 0.700000 0.700000 0.800000 0.800000 0.900000 0.900000 1.000000 1.000000
TIME SPENT (H) 10.64 10.40 10.24 10.15
ITERATIONS 31 31 31 31
FUNC. COUNT 192 192 192 192
RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK]
1 -8.24E-03 YES -7.79E-03 YES -7.59E-03 YES -6.85E-03 YES
2 1.13E-02 YES 1.15E-02 YES 1.16E-02 YES 1.22E-02 YES
3 -9.91E-03 YES -1.07E-02 YES -1.14E-02 YES -1.19E-02 YES
4 -1.03E-02 YES -1.00E-02 YES -9.84E-03 YES -9.22E-03 YES
5 5.66E-03 YES 5.54E-03 YES 5.35E-03 YES 5.80E-03 YES
6 -8.05E-04 YES -5.78E-04 YES -3.54E-04 YES 3.79E-04 YES
7 -3.13E-03 YES -3.80E-03 YES -4.29E-03 YES -4.63E-03 YES
8 7.00E-04 YES 7.87E-04 YES 8.79E-04 YES 1.33E-03 YES
9 8.94E-03 YES 8.84E-03 YES 8.81E-03 YES 9.06E-03 YES
10 1.56E-02 YES 1.54E-02 YES 1.51E-02 YES 1.54E-02 YES
11 3.78E-03 YES 3.96E-03 YES 4.21E-03 YES 4.94E-03 YES
12 -1.21E-02 YES -1.27E-02 YES -1.30E-02 YES -1.32E-02 YES
13 1.58E-02 YES 1.56E-02 YES 1.54E-02 YES 1.55E-02 YES
14 -5.24E-03 YES -5.58E-03 YES -5.87E-03 YES -5.93E-03 YES
15 1.66E-03 YES 1.32E-03 YES 9.54E-04 YES 1.18E-03 YES
16 2.51E-03 YES 2.68E-03 YES 2.87E-03 YES 3.58E-03 YES
17 -1.06E-02 YES -1.09E-02 YES -1.12E-02 YES -1.12E-02 YES
18 -8.58E-03 YES -8.93E-03 YES -9.29E-03 YES -9.42E-03 YES
19 -1.38E-02 YES -1.36E-02 YES -1.34E-02 YES -1.27E-02 YES
20 -3.56E-03 YES -3.86E-03 YES -4.12E-03 YES -4.05E-03 YES
21 -2.57E-02 YES -2.60E-02 YES -2.64E-02 YES -2.65E-02 YES
22 8.46E-03 YES 8.22E-03 YES 7.77E-03 YES 8.01E-03 YES
23 -8.55E-03 YES -8.28E-03 YES -8.15E-03 YES -7.41E-03 YES
24 2.28E-02 YES 2.28E-02 YES 2.26E-02 YES 2.27E-02 YES
I F) 2.93E-03 2.96E-03 2.98E-03 3.02E-03
TolX 1.00E-04
TOLFun 5.00E-06
DiffMaxChange 0.5
DiffMinChange 1.00E-05
Maxlter 30

Figure 5.8: Calibration results for "extended" SABR model (8 fixed).
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First Guess Calibrated First Guess Calibrated First Guess Calibrated First Guess Calibrated
r 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000
o 0.500000 0.438109 0.500000 0.418783 0.500000 0.416492 0.500000 0.359143
1] 0.300000 -0.193165 0.000000 -0.198595 -0.300000 -0.200126 0.000000 -0.209441
K 1.000000 0.238767 0.000000 0.227103 0.000000 0.140813 1.000000 0.323361
2} 0.300000 0.780997 0.000000 0.766946 0.000000 0.957510 0.300000 0.573015
v 1.000000 0.693855 0.000000 0.687166 0.400000 0.668246 0.000000 0.724356
B 0.700000 0.900000 1.000000 0.734925 0.900000 0.736973 1.000000 0.781829
TIME SPENT (H) 11.22 7.16 6.13 12.11
ITERATIONS 28 18 15 31
FUNC. COUNT 203 133 112 224
RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK]
1 -7.67E-03 YES -7.90E-03 YES -8.21E-03 YES -6.87E-03 YES
2 1.17E-02 YES 1.1BE-02 YES 1.14E-02 YES 1.23E-02 YES
3 -1.03E-02 YES -1.02E-02 YES -9.90E-03 YES -1.10E-02 YES
4 -1.01E-02 YES -1.02E-02 YES -1.02E-02 YES -9.74E-03 YES
5 6.00E-03 YES 5.96E-03 YES 5.60E-03 YES 6.25E-03 YES
6 -5.66E-04 YES -4.38E-04 YES -6.42E-04 YES -2.87E-04 YES
7 -3.57E-03 YES -3.29E-03 YES -3.05E-03 YES -4 35E-03 YES
8 7.30E-04 YES 5.89E-04 YES 7.95E-04 YES 7.57E-04 YES
9 8.82E-03 YES 8.68E-03 YES 9.02E-03 YES 8.60E-03 YES
10 1.58E-02 YES 1.59E-02 YES 1.56E-02 YES 1.58E-02 YES
11 3.92E-03 YES 4.14E-03 YES 3.97E-03 YES 4.08E-03 YES
12 -1.25E-02 YES -1.21E-02 YES -1.20E-02 YES -1.32E-02 YES
13 1.57E-02 YES 1.55E-02 YES 1.59E-02 YES 1.53E-02 YES
14 -5.41E-03 YES -5.59E-03 YES -5.27E-03 YES -5.80E-03 YES
15 1.88E-03 YES 1.85E-03 YES 1.56E-03 YES 1.92E-03 YES
16 2.71E-03 YES 2.87E-03 YES 2.67E-03 YES 2.93E-03 YES
17 -1.08E-02 YES -1.05E-02 YES -1.03E-02 YES -1.13E-02 YES
18 -8.66E-03 YES -8.87E-03 YES -8.63E-03 YES -8.94E-03 YES
19 -1.35E-02 YES -1.34E-02 YES -1.36E-02 YES -1.31E-02 YES
20 -3.73E-03 YES -3.49E-03 YES -3.40E-03 YES -4.03E-03 YES
21 -2.57E-02 YES -2.59E-02 YES -2.58E-02 YES -2.58E-02 YES
22 8.91E-03 YES 8.70E-03 YES 8.35E-03 YES 9.24E-03 YES
23 -8.13E-03 YES -8.15E-03 YES -8.39E-03 YES -7.63E-03 YES
24 2.29E-02 YES 2.30E-02 YES 2.31E-02 YES 2.28E-02 YES
NEC 2.95E-03 2.95E-03 2.93E-03 2.99E-03
TolX 1.00E-04
TOLFun 5.00E-06
DiffMaxChange 0.5
DiffMinChange 1.00E-05
MaxIter 30

39

Figure 5.9: Calibration results for "extended" SABR model.




First Guess Calibrated First Guess Calibrated First Guess Calibrated First Guess Calibrated

r 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000 0.030000
0.500000 0.480043 0.500000 0.345747 0.500000 0.249477 0.500000 0.180103
p -0.200000 -0.134159 -0.200000 -0.154083 -0.200000 -0.172665 -0.200000 -0.190423
K 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
v 0.400000 1.075938 0.400000 1.098854 0.400000 1117722 0.400000 1.139417
B 0.700000 0.700000 0.800000 0.800000 0.900000 0.900000 1.000000 1.000000
TIME SPENT (H) 1.74 2.12 2.08 2.92
ITERATIONS 7 9 9 13
FUNC. COUNT 32 40 40 56
RESIDUAL [BID-ASK] RESIDUAL  [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK]
1 1.23E-02 YES 1.21E-02 YES 1.25E-02 YES 1.33E-02 YES
2 2.78E-02 NO 2.90E-02 NO 2.95E-02 NO 3.01E-02 NO
3 -9.25E-03 YES -7.67E-03 YES -7.72E-03 YES -8.33E-03 YES
- 6.27E-03 YES 5.19E-03 YES 5.24E-03 YES 5.74E-03 YES
5 8.30E-03 YES 7.32E-03 YES 6.84E-03 YES 6.68E-03 YES
6 -4.87E-03 YES -4.74E-03 YES -4.69E-03 YES -4.62E-03 YES
7 -2.47E-02 YES -2.41E-02 YES -2.46E-02 YES -2.57E-02 NO
8 1.52E-02 YES 1.37E-02 YES 1.35E-02 YES 1.37E-02 YES
9 2.26E-02 YES 2.07E-02 YES 2.03E-02 YES 2.03E-02 YES
10 1.13E-02 YES 9.71E-03 YES 8.89E-03 YES 8.38E-03 YES
11 -8.97E-03 YES -9.46E-03 YES -9.71E-03 YES -9.94E-03 YES
12 -4.16E-02 NO -4.14E-02 NO -4.20E-02 NO -4.33E-02 NO
13 3.00E-02 NO 2.81E-02 NO 2.76E-02 NO 2.76E-02 NO
14 1.06E-02 YES 8.91E-03 YES 8.46E-03 YES 8.44E-03 YES
15 5.30E-03 YES 4.00E-03 YES 3.46E-03 YES 3.27E-03 YES
16 -2.93E-03 YES -3.11E-03 YES -3.06E-03 YES -2.94E-03 YES
17 -3.03E-02 NO -2.95E-02 NO -2.96E-02 NO -3.02E-02 NO
18 9.30E-03 YES 7.93E-03 YES 7.65E-03 YES 7.78E-03 YES
19 -1.02E-02 YES -9.87E-03 YES -9.39E-03 YES -8.81E-03 YES
20 -1.27E-02 YES -1.13E-02 YES -1.08E-02 YES -1.08E-02 YES
21 -6.55E-03 YES -7.48E-03 YES -7.54E-03 YES -7.23E-03 YES
22 3.13E-02 YES 3.13E-02 YES 3.17E-02 YES 3.25E-02 YES
23 6.39E-03 YES 7.47E-03 YES 8.52E-03 YES 9.70E-03 YES
24 2.70E-02 YES 2.94E-02 YES 3.06E-02 YES 3.14E-02 YES
NFEO 8.54E-03 8.25E-03 8.38E-03 8.76E-03
TolX 1.00E-04
TOLFun 5.00E-06
DiffMaxChange 0.5
DiffMinChange 1.00E-05
Manxiter 30

Figure 5.10: Calibration results for "classical" SABR model (3 fixed).

more freedom functional has the better its approximating features should be, but this is also an argument
one more time confirming that "extended" SABR model more precisely describes stock price behavior.

Fourth set of calibrations are performed for "extended" SABR model with time dependent coefficients
(for each calibration different fixed values of § are taken). During this part we assume that: 6§ = 0 (1) =
0173 + 0272 4 037 + O4is function of time and it is given as cubic polynomial. Risk free rate is also time
dependent and given in polynomial form: 7 = 7 (1) = 7172 + ro7% + r37 + r4. Coefficients:

r = —2.05619348-107%,
ry = —1.33536972-1073,
rs = —3.21917123-1073,
ry = 3.10604120- 1072,

are found from interest rate term structure.
Calibrations are performed for the following parameters: «, p, v, k and 61, 0, 03, 04 (see Table 5.12).
Initial guesses for values of parameters «, p, v, k are taken equal to corresponding calibrated values received
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Figure 5.11: Time dependency of mean reverting limit 6 (7).

during the first part of calibrations (see Table 5.8), this is done to avoid redundant computational time. Time

dependency of mean reverting limit 6 (1) could be seen in Figure 5.11.

Value of residual functional has not decreased noticeably (compared to "extended" model with constant
coefficients Table 5.8), additionally one of the calibrated mean reverting limiting function 6 (7) takes negative
values. Negative values of mean reverting limit might partially be explained by poor approximating possibili-
ties of cubic polynomial. But, unnoticeable decrease of residual functional indicates that time dependency of
mean reverting limit could not be found out only from 24 observations (Table 5.7). It is known that in while
fitting parameters of a system number of observation should be at least 5 times greater then the number of

calibrated parameters (in our case 8).
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First Guess Calibrated

First Guess Calibrated

First Guess Calibrated

First Guess Calibrated

First Guess Calibrated

r1 | -0.000206| -0.000206 -0.000206| -0.000206 -0.000206| -0.000206 -0.000206| -0.000206 -0.000206| -0.000206
r2 | -0.001335| -0.001335 -0.001335| -0.001335 -0.001335| -0.001335 -0.001335] -0.001335 -0.001335| -0.001335
r3 | -0.003219| -0.003219 -0.003219| -0.003219 -0.003219| -0.003219 -0.003219| -0.003219 -0.003219| -0.003219
rd 0.031060) 0.031060 0.031060{ 0.031060 0.031060] 0.031060 0.031060| 0.031060 0.031060] 0.031060
o 0.470000| 0.486033 0.340000{ 0.355272 0.240000| 0.250940 0.180000| 0.181181 0.200000| 0.256662
o] -0.190000| -0.210859 -0.220000| -0.242569 -0.250000| -0.272318 -0.280000| -0.300740 0.000000| -0.256970
K 0.170000| 0.205768 0.180000| 0.239942 0.160000| 0.146688 0.190000| 0.183508 1.000000| 0.882778
a1 0.000000| -1.094716 0.000000| -0.985425 0.000000| -0.544725 0.000000| -0.353690 0.000000| -0.332397
02 0.000000| 0.318588 0.000000{ 0.198136 0.000000| 0.344293 0.000000| 0.265849 0.000000| 0.226854
a3 0.000000| 1.417879 0.000000{ 1.373095 0.000000| 0.497537 0.000000| 0.263251 0.000000| 0.237553
64 0.990000| 0.046600 0.690000{ -0.160789 0.530000| 0.182231 0.360000| 0.145555 0.500000| 0.139095
v 0.670000| 0.644099 0.680000{ 0.653143 0.690000| 0.654404 0.700000| 0.672558 0.400000| 0.830262
B 0.700000| 0.700000 0.800000{ 0.800000 0.900000| 0.900000 1.000000| 1.000000 0.900000] 0.800000
TIME SPENT (H) 7.89 8.55 7.03 7.72 13.04
ITERATIONS 9 10 8 9 16
FUNC. COUNT 90 99 81 90 153
RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK] RESIDUAL [BID-ASK]
1| -5.43E-03 YES -4.89E-03 YES -4.87E-03 YES -4.28E-03 YES -3.49E-04 YES
2| 1.03E-02 YES 1.09E-02 YES 1.01E-02 YES 1.04E-02 YES 1.22E-02 YES
3| -9.16E-03 YES -1.00E-02 YES -9.41E-03 YES -9.89E-03 YES -1.12E-02 YES
4| -8.74E-03 YES -6.22E-03 YES -6.22E-03 YES -5.82E-03 YES -4.53E-03 YES
5| 9.34E-04 YES -1.21E-04 YES 1.10E-03 YES 8.96E-04 YES -6.43E-04 YES
6| -1.47E-03 YES -5.82E-04 YES -1.56E-03 YES -1.27E-03 YES -5.72E-04 YES
71 -1.21E-03 YES -1.76E-03 YES -1.23E-03 YES -1.49E-03 YES -2.82E-03 YES
8| 4.18E-03 YES 4.63E-03 YES 4.54E-03 YES 4.74E-03 YES 4.68E-03 YES
9| 1.20E-02 YES 1.24E-02 YES 1.22E-02 YES 1.21E-02 YES 1.12E-02 YES
10|  1.04E-02 YES 9.19E-03 YES 1.03E-02 YES 9.97E-03 YES 7.62E-03 YES
11| 3.15E-03 YES 4.12E-03 YES 2.98E-03 YES 3.26E-03 YES 3.66E-03 YES
12| -9.17E-03 YES -9.52E-03 YES -9.05E-03 YES -9.13E-03 YES -9.93E-03 YES
13| 1.83E-02 YES 1.85E-02 YES 1.81E-02 YES 1.79E-02 YES 1.66E-02 YES
14| -3.71E-03 YES -3.53E-03 YES -4.13E-03 YES -4.40E-03 YES -5.33E-03 YES
15| -4.20E-03 YES -5.44E-03 YES -4.41E-03 YES -4.85E-03 YES -6.71E-03 YES
16| 1.70E-03 YES 2.62E-03 YES 1.48E-03 YES 1.75E-03 YES 2.68E-03 YES
17| -6.77E-03 YES -7.00E-03 YES -6.44E-03 YES -6.35E-03 YES -6.26E-03 YES
18| -7.96E-03 YES -7.82E-03 YES -8.53E-03 YES -8.83E-03 YES -8.96E-03 YES
19| -1.47E-02 YES -1.38E-02 YES -1.49E-02 YES -1.46E-02 YES -1.31E-02 YES
20| 5.73E-04 YES 3.77E-04 YES 1.06E-03 YES 1.24E-03 YES 1.82E-03 YES
21| -2.60E-02 YES -2.58E-02 YES -2.66E-02 YES -2.68E-02 YES -2.61E-02 YES
22|  2.33E-03 YES 1.11E-03 YES 2.11E-03 YES 1.74E-03 YES 1.38E-03 YES
23| -9.48E-03 YES -8.67E-03 YES -9.58E-03 YES -9.24E-03 YES -7.22E-03 YES
24|  2.75E-02 YES 2.73E-02 YES 2.82E-02 YES 2.85E-02 YES 2.96E-02 YES
[ F() | 2.85E-03 2.84E-03 2.93E-03 2.95E-03 2.88E-03
TolX 1.00E-04
TOLFun 5.00E-06
DiffMaxChange 0.5
DiffMinChange 1.00E-05
Maxlter 15

Figure 5.12: Calibration results for time dependent "extended" SABR model (3 fixed).
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Chapter 6

Conclusion and Discussion

The main goal of our research was to:

e Compare the “extended” SABR model with the “classical” one and test how well the “extended” model
can price European and/or American options.

e Design and compare numerical methods for reproducing option prices.

e Fit parameters of both models to real market data and compare them.

The comparison of models showed that the “extended” SABR model provides higher degrees of freedom,
the result being predictable since any additional parameter inserted into the model will generalize it. But
the main question was how much new parameters (volatility mean reverting terms in our case) increases
degrees of freedom of the model and how well this extension in its turn models reality. Comparing solutions
and problem statement for “extended” and “classical” models we can make following observations. First, is
the in case of the “extended” SABR model, the boundary condition (in PDE formulation) for zero volatility
a = 0 changes from the Dirichlet type condition to the so called “smoothing” condition. Secondly, the mean
reverting term adds partial derivative w.r.t. « to partial differential equation. Thirdly, under “classical”
model variance of volatility tends to infinity, while in the “extended” model it pushed to a certain finite limit.
Summing up all these facts one can see that extension of “classical” model provides non-trivial generalization
with a sufficiently high degrees of freedom and seems to model stock price behavior better.

While fitting parameters to real market data it was found that:

1. B does not affect accuracy of fit neither in the “classical” nor in “extended” models. This fact is
very much online with the results obtained by [20]. In the “classical” model initial stock volatility
adjusts to different choices of 5 and as a result is mostly influenced by the particular choice of 5. In the
“extended” model different choices of 3 affects mostly o and 0, while other parameters of the “extended”
model are not noticeably changed. When [ was calibrated together with the other parameters of the
“extended” model we obtained the so called “ditch” of minimums w.r.t. 5, and this fact is also online
with the results obtained by [20].

2. Prices of options obtained during calibration of the “extended” model were always in bid-ask spread
in contrast to prices obtained during calibration of the “classical” model. Additionally, the residual
functional was 4 times smaller for the “extended” model. These facts once more underlines that the
“extended” model can better approximate options prices.

3. Assuming that volatility mean reverting limit 6 () is time dependent and calibrating additionally w.r.t.
this function it was found that time dependent mean reverting limit is not constant and the shape of
the curve is affected by particular choice of 5. While increasing the number of calibrating parameters
of the model (mean reverting limit 6 (1) assumed to be polynomial with unknown coefficients) we are
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facing the fact that the number of the local minimums of functional might dramatically increase, thus
we might doubt if our minimum is local or global.

4. Observing decrease of the value of residual functional with number of iterations, we can conclude that
the first 4,5 iterations will be enough for the options prices to drop into bid-ask spread in the case of
the “extended” SABR model, while for the classical model even 10 iterations was not enough . And
that is another fact supporting advantage of the “extended” SABR model.

While comparing the Monte Carlo method with the Finite Difference method we take into account accu-
racy and speed. It was found that Finite Difference method provides better approximation for the “extended”
model compared to the “classical” one. For example, the so called “Vega Error” (at the money options with
high initial volatility and big time to maturity) is greater when volatility mean reverting terms 6 and x are
much smaller then volatility of volatility v. Monte Carlo method seems to work with equal effectiveness for
both models, but the main drawback of the Monte Carlo method is the time spent on simulation. Especially
power operations S? significantly increase the calculation time when B # 1. Thus, the Finite Difference
method seems to be an appropriate and good choice for solving this kind of problems. Additionally it should
be mentioned that one “launch” of the Finite Difference method gives option prices (solutions) for each point
of the finite difference grid (i.e. for different initial stock prices, volatilities and time to maturities), while
one “launch” of the Monte Carlo method gives the solution only for one initial value of stock and volatility.
It was shown that time required for computation is incomparable. The Finite Difference methods requires
80 seconds to achieve accuracy of 1 cent for option prices with different stock prices, volatilities and time
to maturities defined by grid points. While the Monte Carlo methods takes 10 — 15 minutes for the same
accuracy for one point only (if S # 1 this difference is even greater). In the case of American option the
Monte Carlo method additionally stores all sample paths in order to apply list square method and this re-
quires extra waste of computational recourses. Thus, the Monte Carlo method could only be used to check
and compare different results. An additional advantage of the Finite Difference method is that since option
prices are given in each grid point Greeks: A, I' and V of option could be immediately computed; also using
multiple right hand sides of the system of equations (see B) volatility surface can be constructed.

Although the results are acceptable, some critical remarks should be made. This might lead to the
improvement of the results and provide recommendations for further research:

1. More general variable transformation should be applied to PDE (2.10) in order to eliminate or decrease
cross derivative and first derivatives w.r.t. volatility a and stock price S. Transformation could be
adapted to different choices of i, 04, 0s and this will definitely improve the accuracy of a Finite
Difference solution.

2. Recently formula for the implied volatility similar to (1.3) was developed by [11] for the “extended”
SABR model with constant coefficients. It will be interesting to check the accuracy of the suggested
formula by means of comparing it with some numerical results.

3. If formula suggested by [11] proves to be accurate and reliable, it will be interesting to apply the
technique described in A.2 and A.3 to this formula in order to adjust it for the case when some
parameters (6 for example) of the "extended" SABR model are time dependent.
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Appendix A

Analytical Approximation of Solution

In this chapter we will refer to initial variables S, «, ¢ and assume that later the transformation is performed.
Let us try to find solution of PDE (2.13) in the form of:

V(S,a,t) =V (S,a,t) + G (S, a,t)

where V (S, a, t) is price of option in analytical form, while G (S, «, t) is correction (or residual) term. Ana-
lytical form V (S, a, t) is chosen (guessed) in a way to be as "close" as possible to the real value V (S, o, t) of
derivative. Possible initial guesses for V (S, a, t) will be described below.

The better initial guess V (S, o, t) will be, the lessen error term G (S, o, t) should be and easier to find it
in analytical form.

A.1 First guess - Non stochastic volatility

For the first guess of function V (S, t) we are assuming that the variance of stock price is not stochastic
but time dependent and has generalized form of (5.1):

7% (t) = P(p(t), E o] . E [0f])

where E [a¢] and E [o] are the first two moments for the extended model', while P(-) is polynomial of the
three variables with initially guessed coefficients. After this substituting & into Black Scholes formula we
will get V' (S, o, t). In order to correctly guess coefficients for P(-) one might need to run optimization w.r.t.

mentioned coefficients to reduceHV (S, t) — V (S, e, t)”
Further improvement of described approach is possible if one includes higher moments for stochastic
volatility and carefully choose function P(:).

A.2 Second guess - Time adjusted modification

For the second guess of function V (S, a, t) we are using price of derivative generated using some modification
of Hagan’s formula. To modify it we are assuming that parameters &g and 7 in (1.3)? are time dependent
and for different ¢ should be found from:

o (1) = Ea];
ag (t) (exp(tr® (t)) — 1) = VAR [ay]

n order to find first moments of volatility with time dependent coefficients one might use technique similar to one used for
finding (2.2), (2.3) when coefficients are assumed to be constant.
2In order to avoid confusing notation we denote by bar initial volatility and the volatility of volatility used in Hagan’s formula.
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where E [oi] and VAR [oy] are defined by (2.2), (2.3) for "extended" SABR model. Identically:

Qg (t) = 0+ (O[O — (9) e rt

v = A (g vanial 1)

Such choice of parameters matches expectation and variance of volatility of "classical" SABR model for
each ¢t with corresponding expectation and variance of "extended" SABR models. Thus we are trying to
approximate implied volatility surface for "extended" SABR model by using "classical" SABR model for
each t.

On Figure A.1 evolution of residual function G (5, , ) in time is presented.

C(S,ot) = SIMULATED - ADJUSTED

Figure A.1: Residual function G (S, o, t) for time adjusted modification.
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A.3 Third guess - Time averaged modification

This case is identical to the previous one, we are assuming that parameters oy and v are again time dependent
but in this case we require from parameters to satisfy to the following equations:

t

/ Gods = /t Elay] ds

0
t t

/@g (et’72 - 1) ds = /VAR [as] ds

0 0

Such choice of parameters averages w.r.t. time, expectation and variance of volatility of "classical" SABR
model with corresponding expectation and variance of "extended" SABR model.

On Figure A.2 the evolution of residual function G (S, a, t) in time is presented. Note that time averaged
modification gave better results compared to time adjusted modification. Additionally for time to maturity
less then 0.2 residual is smaller then 1 cent.

(3,0t = SIMULATED-AVERAGED
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Figure A.2: Residual function G (S, «, t) for time averaged modification.
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Appendix B

Implementation

The program code for performing numerical simulation and testing different algorithms associated with
described theory is generated in MATLAB. Below we describe three techniques (tricks) used during program
code development for speeding up the simulation:

e Sparse triplets. Sparse matrix allows user to work with huge matrix with overwhelming majority of
zero elements. In order to store this matrix in memory the MATLAB automatically creates so called
vector of sparse triplets:

11,1, 01

Zn7]n7 an

and stores all non zero elements of matrix as a sorted vector with triplet consisting of: row number i,
column number j and element value a. Vector is sorted with respect to column indices j (that is to
speed up solution of matrix equation using Gaussian elimination method). While assigning non zero
value to some element of sparse matrix, MATLAB’s algorithm each time automatically forces to run
column sorting in order to preserve sorted structure. This might not be time consuming when the user
is working with few non zero elements, but in case when each non zero element of sparse matrix should
be calculated separately (finite difference stencil for example) that requires a lot of computational time.
In order to speed up matrix generation we create vector of sparse triplets and add up new triplet for
each non zero element of matrix (of course without intermediate sorting). After all non zero elements
of matrix are stored in the vector of sparse triplets we use MATLAB’s function sparse(-) to transform
the vector of sparse triplet into sparse matrix. Described technique might seem naive and simple but
it reduces time spend to sparse matrix generation immensely. For example, if finite difference matrix
40000 x 40000 requires approximately 40 seconds for generation, then using the described computational
trick the time reduces to 0.6 sec.!!! This effect is especially noticeable when finite difference matrix has
many non zero elements and it should be generated for each time step (for problem with time dependent
coefficients).

e Multiple strikes <= Volatility surface. In the program code we implemented additional feature
which allows us to simultaneously solve a problem for different final payoffs (for example puts and/or
calls with different strikes). Generating multiple right hand sides’ B for matrix equation AX = B
and solving it simultaneously we can obtain solution for different final payoffs. This trick allows us not
only to receive solution for different puts and/or calls, but also to reconstruct volatility surface. For
example, after finding solutions for the puts (with different strikes) we can immediately find surface
of implied volatility (with respect to strikes and times to maturity). In case of the American options
this technique works in the same way, but in this case not only multiple right hand sides should be

1Boundary conditions define right hand side of matrix equation.
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generated, but also multiple auxiliary functions and multiple obstacles (see sections 2.4 and 3.2.3). The
time spent on solving matrix equation with multiple right hand sides is negligible comparing to the
time spent on solving the problems separately.

e Parallel computing. This technique is not implemented in the program code, but should be men-
tioned separately. While applying to the most time consuming algorithm of calibration of parameters
(up to 10 hours), this method can immensely speed it up. Calibration of parameters assumes that
residual functional should be minimized in the space defined by parameters. Minimization problem
assumes calculation of gradient i.e. of Hessian matrix (matrix consisting of partial differences of resid-
ual functional). In order to find partial derivatives one should calculate value of functional in a few
points?. And calculation could be performed in parallel (i.e. for each point separately). This could
decrease time spent on calibration (i.e. 10 hours spent on calibration of 4 parameters reduces to 2
hours). Additionally, parallel computing could be used for generating finite difference matrix for time
dependent parameters.

2In initial point and points with increments w.r.t each coordiante. Thus if we minimising functional in three dimensional space
(three parameters) we should calculate value of functional in initial point (z,y, ) and in (z+ Az, y, 2), (x, y+Ay, 2),(z, y, 2+ Az).
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Appendix C

Formulas for finite difference

Finite difference w.r.t. =

Vivr,; — Vie1;
593 [‘/i,j] = + j2AJZ :
. Vieg i —8Viiy i+ 8Viiy i — Vito s
5:’; [V;,J] _ i 2,5 i 1,]]-2‘21. +1,5 1+2,7
3V — 4Vigry + Vizay
6:|:x [Vi,ﬂ — + J 22; F2,)
Vie1,; =2V +Vicaj
0 Vigl = ——53 }
Pl = —Vic2 +16Vi_1; — 30V, ; +16Vip1 j — Vigoj
2 Vial = 12A22
Vij = 2Vig1 + Viza
5 [Vig] = Ly 2
Finite difference w.r.t. y
Vijr1— Vija
8y [Vijl = H%TJ
; Vij2—8Vij 1 +8Vijt1—Vijio
5, [Vi,] = J J 155, J J
3V — Vi1 + Vi
Sy Wi = 2o = g + Ve
Viie1 =2V, + Vi
2 i,5+1 1, i,j—1
52/ [Vm‘] = . Aij :
PVl — —Vij—oa+ 16V j_1 —30V; ; + 16V; j11 — Vi jyo
y[ ] = 12A92
Vig = Viggs + Vg
0, i) = P
Finite difference w.r.t. 7
Vi — Vi_
Opr [Vi] = Tl
. 3Vik —4Vi_1 + Vo
0er Vil = 2AT
- 11V — 18V + Vg — 2V _3
Or Vil = 6AT
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Cross derivatives:

0z y Vil = Visrjer = Vicrjo1 = Vicrjmn + Vic1j

o 9AzAyY
0%y Vigl = Vig1 - Vi’j‘12_A?£;j+1 +Vici—1
5y ) = Vst = Vi~ Vit + Vi
2, Vil = Vi, — W71,j2—A‘;‘£;j+1 + Vic1 41
6%, 1y Vis] = Vij—Vic1 ;;szjy—l +Vic1j-1
53:::,—34 [Vijl=— Vig = Vi1 ;.Q‘L‘/ZAJ;l +Vic1j41
Siy Vil = m Vit1yje1 —2Vipj +Vic1,j-1] — QAA%(S?C Vi) - %65 Vil
oVl = gy Vvt =2V Vi V) 5350
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