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Chapter 1

Introduction

Modeling of stock price behavior (dynamic) is key concept in option theory, as based on chosen model one
can further derive prices for options on underlying assets. It is more then obvious that the better model
re�ects real asset dynamics, the better option pricing will be.
This thesis discusses pricing of equity options using extension of "classical" SABR model. The key idea of

this extension is that we assume that volatility is not only stochastic but also has non zero drift term. Drift
term is chosen to be mean reverting, i.e. we assume that volatility is constantly pushed to some function
with prede�ned mean reverting rate, while di¤usion term is chosen to be similar to the one under "classical"
SABR model.

1.1 Model of Asset Dynamic

Maybe the most intuitive way to de�ne asset dynamic is to use random walk and Wiener process. First let
us de�ne random walk, suppose that we have N periods of length �t and:

z (tk+1) = z (tk) + � (tk)
p
�t

tk+1 = tk +�t; t0 = 0; z (0) = 0

for k = 0; 1; : : : N . This process is called random walk. In this equation � (tk) � N(0; 1) standardized normal
random variable. Additionally we assume that this variables are mutually uncorrelated E [� (ti) � (tj)] = 0 for
i 6= j.
A standard Wiener process obtained by taking limit of the random walk process �t! 0. In the symbolic

form we write limit of increment as:
dWt = � (t)

p
�t

This de�nition is not rigorous because we have no assurance that limiting process exists but it provides a
good intuitive description. Generalized Wiener process is de�ned as:

dXt = �dt+ �dWt

here �� is drift term and �� is di¤usion term. The �rst one de�nes growth rate of Xt, and the last one
de�nes level of variability (volatility) of process. Note that described process is stochastic by its nature.
Thus, one can never deterministically name value of Xt at time t, although one can give distribution of the
processes at t, in particular for generalized Wiener process we have that: Xt � N(�t; �2t). Alternative way
to de�ne Wiener process is to list all its features. Interested reader could refer to [15].
Our next logical step is to model stock price process using Wiener process:

d (ln (St)) = dXt = �dt+ �dWt

Reason behind this model is that:
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� Stock price could not be negative like Wiener process for example, and that is why it assumed to be
exponent of generalized Wiener process.

� Stock price will be exponentially growing in the mean. This fact also pretty well �ts to reality.

One can immediately see that the distribution of stock price St will be lognormal as: ln (St) � N
�
ln (S0) + �t; �

2t
�
.

Described process of stock price behavior is sometimes called GBM (Geometric Brownian Motion) and might
be simplest between all plausible models for asset dynamics.

1.1.1 Ito�s Formula

In order to express stock price dynamic explicitly by Wiener process and to derive later option pricing
formulas we need to introduce Ito�formula. This formula allows us to systematically perform transformation
of di¤erent stochastic processes.
Let us consider random process Xt de�ned by:

dXt = a(Xt; t)dt+ b(Xt; t)dWt

Suppose that the process Yt = F (Xt; t) is de�ned. Then Yt satis�es the Ito equation:

dYt = dF (Xt; t) =

�
@F

@t
+
@F

@x
a+

1

2

@2F

@x2
b2
�
dt+

@F

@x
bdWt

where dWt is the same Wiener process as in the expression for dXt.
If we apply Ito�s formula to random process:

dSt = �Stdt+ �StdWt (1.1)

and function F (x; t) = ln (x) then we will receive:

d (ln (St)) =

�
�� �

2

2

�
dt+ �dWt

Denoting � = �� �2

2 we will get above mentioned GBM dynamic, which agrees with our earlier results.
More general form of Ito�s formula for function of time and few stochastic variables and more rigorous

proof could be found in [17].

1.2 Concept of Equity Option

Holder of stock with price dynamic described above might worry about the possibility of the stock price to
drop below some level K (strike price) in T (maturity) years from now. For this reason he/she might want
to buy protection against undesirable price movement from second party. Protection is called European Put
option if it promises that:

"Option holder has the right, but not obligation to sell stock for K in T years from now"

As it immediately follows from the contract, this option will always have positive value, as it is right but not
obligation (holder will never lose). Formally option payment at maturity time could be expressed as:

P = max(K � ST ; 0)

So if option price in T years will be above level K there is no reason to execute (sell) stock for lower price.
On the contrary, if it is below K, option holder can be compensated for price drop.
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If one holds short1 position in equity stock he/she might worry about possibility of asset price to go above
level K in T year from now and buy European Call option. This type of option allows its holder to buy
stock for K in T years from now:

C = max(ST �K; 0)

Another modi�cation of European option is American option and this type of option gives holder an additional
right to exercise it any time before maturity T . Described options are widely traded on the market in contrast
to Exotic option (which are usually traded over the counter). Exotic options have more unusual features
implemented in the contract. For example, European put option, which terminates in case the stock price
goes below some barrier level L before the time of maturity, will be called Barrier option.
One can see that price dynamic of underlying asset is very important, as options are derived based on

them, thus pricing of option is not a trivial problem in general.

1.2.1 Black-Scholes Equation

In some cases it is possible to �nd prices of options analytically, but then one needs to make some simplifying
assumption about stock price dynamics. Black-Scholes developed their theory assuming that stock price
dynamics is described by GBM and gave analytical formulas for European put and call options. Black-
Scholes formula derived as solution of Partial Di¤erential Equation. Main assumptions to be made in order
to derive Black Scholes PDE are:

1. Stock price dynamic is described by (1.1)

2. On the market there exists risk free asset carrying interest rate r, with following dynamic: dB = rBdt.

3. Option price process has form f (S(t); t).

Further to derive PDE one should:

� Apply Ito�s rule to: f (S(t); t) in order to receive option price dynamic

� Construct self �nancing portfolio consisting of �S amount of stock and � amount of options

� Choose �S and � in the way to eliminate source of uncertainty in portfolio.

� Use the fact that constructed portfolio will be risk free and use no arbitrage arguments to derive �nal
PDE

And �nally Black Scholes PDE for asset dynamics:

dSt = rStdt+ �StdWt

has form:
�2S2

2

@2V

@S2
+ rS

@V

@S
+
@V

@t
� rV = 0

Black-Scholes formula (solution of Black Scholes PDE equation for European put and call options) is given
by:

Vcall = S0N(d1)�Ke�rTN(d2)
Vput = Ke�rTN(�d2)� S0N(�d1)

1Short position in equity stocks is liability to return to somebody indicated amount of stocks at given time.
Long position in equity stock is equivalent to owning stock.
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where N(�) is cumulative distribution function for standard normal and

d1 =
ln(S=K) +

�
r + �2=2

�
T

�
p
T

d2 = d1 � �
p
T

Detailed derivation together with initial and boundary conditions for more general stock price process is
presented in 2.1.

1.3 Generalization

Despite the fact that Black-Scholes formula gives nice analytical solutions, it is rarely used with all initial
assumptions made. And the problem is that real stock price dynamic does not have form (1.1). Although in
practice traders are still using Black-Scholes formula assuming the volatility of stock price to be the function
of strike and maturity. This function is found by mark to market of option prices (with di¤erent strikes and
maturities) to Black-Scholes formula and is named implied volatility. It might look controversial and false
that stock price volatility is assumed to be function of strike and time to maturity, but one can alternatively
think of implied volatility function as method for approximating stock price dynamics by GBM.
Hence, in order to get more realistic option pricing methods one needs to develop a new model for dynamics

of stock price. And there are in general three possibilities to develop new theory. First, one is to assume
that stock price is non-Markovian. Second, one is to leave it Markovian, but base the model on stochastic
process other than Wiener�s. Third, one is to assume that volatility is not only variable (for example time
dependent) but also stochastic. Last models are called models with stochastic volatility and will be the focus
of the present research.

1.3.1 SABR model

In the derivation of SABR model (Stochastic ��� model) Hagan [5] chose the third option. Under SABR
model it is assumed that the dynamic of forward stock value ft = S0 exp (rt) under risk neutral measure is
described by: �

dft = �tf
�
t dW

1
t

d�t = ��tdW
2
t

(1.2)

where �t� is stochastic volatility, �� volatility of volatility, �� is a positive constant, additionally it is
assumed that W 1

t and W
2
t are two correlated sources of uncertainty: dW

1
t dW

2
t = �dt. Also we assume that

at t = 0 forward stock value and volatility are given: f0, �0:
Under this model volatility �t is stochastic and lognormally distributed. To show this one should apply

Ito�s rule to ln(�t) to receive:

d (ln(�t)) = �
1

2
�2dt+ �dW 2

t

In his research Hagan received analytical approximation for implied volatility function:

� (K; f) =
�0

(fK)
1��
2

h
1 + (1��)2

24 ln2
�
f
K

�
+ (1��)4

1920 ln4
�
f
K

�
+ : : :

i � � z

x (z)

�
�

�
 
1 +

"
(1� �)2

24

�20

(fK)
1�� +

1

4

����0

(fK)
1��
2

+
2� 3�2
24

�2

#
T + : : :

!
(1.3)

where:

z =
�

�0
(fK)

1��
2 ln

�
f

K

�
x(z) = ln

"p
1� 2�z + z2 + z � �

1� �

#
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and f = S0 exp (rT )� forward price of stock under risk neutral measure, K� strike price, T� time to
maturity. Substituting 1.3 into Black Scholes formula one will receive price of European put or call option
based on a stock with stochastic volatility given by (1.2).
Derived formula for implied volatility will be used as our main touchstone for valuing and deriving

numerical methods.

1.3.2 Research questions

In present research we further generalize the system describing stock price dynamic and consider following
model for stock price and volatility dynamic:�

dSt = r (t)Stdt+ �t (St)
�
dW 1

t

d�t = � (� (t)� �t) dt+ ��tdW 2
t

which generalizes features of SABR model by means of introducing volatility mean reverting term �� =
� (� (t)� �t), with mean reverting limit function � (t), mean reverting rate � and time dependent correlation
dW 1

t dW
2
t = � (t) dt. It should be mentioned that recently approximation for implied volatility for above

model with constant coe¢ cients (r (t) = r, � (t) = �, � (t) = �) where presented [11].
In this project we would like to:

� Design numerical methods to reproduce European option prices generated by the model based on:
Finite Di¤erence and Monte Carlo methods.

� Extend such methods for options with early exercise opportunity (American options) and on options
that pay continuous or cash dividends.

� Determine whether it is possible to derive pricing formula similar to (1.3) for this model as well.

� Fit the model parameters to real market data.
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Chapter 2

Extended SABR model and PDE

Under the "extended" SABR model we assume that stock price dynamics St with stochastic volatility �t is
described under risk neutral measure as:�

dSt = (r (t)� q(t))Stdt+ �t (St)� dW 1
t

d�t = � (� (t)� �t) dt+ ��tdW 2
t

(2.1)

in order to shorten notation and for further generalization of the above system, we will denote �S =

�S (S; �; t) = (r (t)� q(t))St, �S = �S (S; �; t) = �t (St)
� , �� = �� (�; t) = � (� (t)� �t), �� = �� (�; t) =

��t. Where r (t) - risk free rate, q(t) - continuous dividend rate, � (t) - mean reverting limit for volatil-
ity, � - mean reverting rate of volatility, � - volatility of volatility, dW 1

t and dW
2
t assumed to be correlated

dW 1
t dW

2
t = � (t) dt. Additionally r (t), q(t), � (t) - are non negative and non stochastic; correlation is bounded

�1 � � (t) � 1 and non-stochastic; �, � - positive real numbers. Also we assume that at t = 0 stock price
and volatility are de�ned S0, �0:
Unfortunately it seems rather di¢ cult to directly �nd distribution for St, but in order to get the feeling

of the model we can try to �nd distribution of volatility (for � (t) = �). Using Ito�s rule for ln(�t) we will get:

d (ln(�t)) =

�
�

�
�

�t
� 1
�
� �

2

2

�
dt+ �dWt

and again we can not directly integrate this SDE as drift term includes �t. Let us try to use di¤erent
technique in order to �nd �rst moments for volatility E [�t] and E

�
�2t
�
. Taking expectation of:

d�t = � (� � �t) dt+ ��tdWt

interchanging order of expectation and di¤erentiation we will get:

dE [�t] = � (� � E [�t]) dt

Integrating above as usual ODE w.r.t. E [�t], with initial conditions E [�0] = �0, we will �nally obtain:

E [�t] = � + (�0 � �) e��t (2.2)

Now in order to �nd V AR [�t] let us one more time use Ito�s rule for �2t :

d
�
�2t
�
=
�
2���t +

�
�2 � 2�

�
�2t
�
dt+ 2��2tdWt

taking an expectation and again interchanging order of di¤erentiating and expectation:

d
�
E
�
�2t
��
=
�
2��E [�t] +

�
�2 � 2�

�
E
�
�2t
��
dt
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Substituting obtained expression for E [�t] (2.2) and integrating as usual ODE w.r.t. E
�
�2t
�
, with initial

conditions E
�
�20
�
= �20:

E
�
�2t
�
=

2��2

2�� �2 +
2�� (�0 � �)
�� �2 e��t +

�
�20 �

2��2

2�� �2 �
2�� (�0 � �)
�� �2

�
e�(2���

2)t

and �nally
V AR [�t] = E

�
�2t
�
� E2 [�t] (2.3)

For "classical" SABR model � = 0 (�� = 0 ) we can immediately see that:

E [�t] = �0; V AR [�t] = �
2
0

�
et�

2

� 1
�

(2.4)

Comparing above formulas one can immediately notice that in case of "extended" SABR model variance of
volatility tends to �nal limit when t �!1, but for "classical" SABR model it tends to in�nity. Expectation
of volatilities for "classical" model stays constant, while for "extended" model it tends to � when t �!1.
Using described technique one can �nd higher moments for volatility dynamics as well.

2.1 Deriving PDE

Let us denote by V = V (S; �; t) price of derivative on underlying asset S with volatility �. Dynamic of V
could be found using bivariate Ito�s rule:

dV =
@V

@t
dt+

@V

@S
dSt +

@V

@�
d�t

+
1

2

@2V

@S2
dStdSt +

@2V

@S@�
dStd�t +

1

2

@2V

@�2
d�td�t (2.5)

and Box Algebra 2664
dt dW 1

t dW 2
t

dt 0 0 0
dW 1

t 0 dt � (t) dt
dW 2

t 0 � (t) dt dt

3775 (2.6)

From (2.5) and (2.6) we obtain following dynamics for V :

dV =

�
�2S
2

@2V

@S2
+ � (t)�S��

@2V

@S@�
+
�2�
2

@2V

@�2
+ �S

@V

@S
+ ��

@V

@�
+
@V

@t

�
dt+

�S
@V

@S
dW 1

t + ��
@V

@�
dW 2

t

or denoting di¤erential operator in square brackets by L(�):

dV = L (V ) dt+ �S
@V

@S
dW 1

t + ��
@V

@�
dW 2

t

Dynamic of the portfolio P = V ��1S ��2V1 consisting of two di¤erent derivatives V , V1 (on the same
underlying asset) and underlying asset S itself will be:

dP = dV ��1dSt ��2dV1

=

�
L (V ) dt+ �S

@V

@S
dW 1

t + ��
@V

@�
dW 2

t

�
��1

�
�Sdt+ �SdW

1
t

�
�

�2

�
L (V1) dt+ �S

@V1
@S

dW 1
t + ��

@V1
@�

dW 2
t

�
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rearranging terms we get:

dP = [L (V )��1�S ��2L (V1)] dt

+

�
�S
@V

@S
��1�S ��2�S

@V1
@S

�
dW 1

t +

�
��
@V

@�
��2��

@V1
@�

�
dW 2

t (2.7)

In order to eliminate uncertainty and receive risk free self �nancing portfolio we choose �1 and �2 to satisfy
the following system:

�S
@V

@S
��1�S ��2�S

@V1
@S

= 0

��
@V

@�
��2��

@V1
@�

= 0

solving this system we will get:

�1 =
@V

@S
� @V1
@S

@V

@�

�
@V1
@�

�2 =
@V

@�

�
@V1
@�

To exclude arbitrage possibility, return of constructed portfolio must be equal to return of risk free investment:

dP = r (t)Pdt = r (t) [V ��1St ��2V1] dt (2.9)

Equating (2.9) and (2.7) and substituting expressions for �1, �2 we obtain:

[L (V )� r (t)V ]
�
@V

@�
= [L(V1)� r (t)V1]

�
@V1
@�

Above equation must hold independently for arbitrary V and V1, thus left and right hand sides of equation
must be equal to some function � (S; �; t) which is volatility risk premium.
Finally, derivative V = V (S; �; t) must satisfy to:

L (V )� r (t)V = � (S; �; t) @V
@�

Then choosing � (S; �; t) = 0 and rewriting above equation in open form:

�2S
2

@2V

@S2
+ � (t)�S��

@2V

@S@�
+
�2�
2

@2V

@�2
+ �S

@V

@S
+ ��

@V

@�
+
@V

@t
� r (t)V = 0 (2.10)

Substituting expressions for extended SABR model:

�2S2�

2

@2V

@S2
+ �2S�� (t) �

@2V

@S@�
+
�2�2

2

@2V

@�2
+ r (t)S

@V

@S
+ � (� (t)� �) @V

@�
+
@V

@t
� r (t)V = 0

or in shorter notation:
@V

@t
+ B [V ] = 0:

2.2 Transformation

Let us perform some transformation of variables in order to get more convenient form of (2.10). In particular
let us introduce new time and space variables:

� = T � t; x = D(S); y = G(�) (2.11)
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assume that there exists inverse functions:

t = T � � ; S = D0(x); � = G0(y) (2.12)

and following derivatives:

@�

@t
= �1;

@x

@S
=

@D(S)

@S

����
S=D0(x)

= D1 (x) ;
@2x

@S2
=
@2D(S)

@S2

����
S=D0(x)

= D2 (x) ;

@y

@�
=

@G(�)

@�

����
�=G0(y)

= G1 (y) ;
@2y

@�2
=
@2G(�)

@�2

����
�=G0(y)

= G2 (y) ;

then partial derivatives in (2.10) could be expressed as:

@V

@t
=
@V

@�

@�

@t
= �@V

@�
;

@V

@S
=
@V

@x

@x

@S
=
@V

@x
D1 (x) ;

@V

@�
=
@V

@y

@y

@�
=
@V

@y
G1 (y) ;

@2V

@S@�
=

@V

@x@y

@x

@S

@y

@�
=

@V

@x@y
D1 (x)G1 (y) ;

@2V

@S2
=
@2V

@x2

�
@x

@S

�2
+
@V

@x

@2x

@S2
=
@2V

@x2
D2
1 (x) +

@V

@x
D2 (x) ;

@2V

@�2
=
@2V

@y2

�
@y

@�

�2
+
@V

@y

@2y

@�2
=
@2V

@y2
G21 (y) +

@V

@y
G2 (y) ;

and �nally our PDE will take form:

@V

@�
= �A [V ] = �2xD

2
1 (x)

2

@2V

@x2
+ � (T � �)�x�yD1 (x)G1 (y)

@2V

@x@y
+
�2yG

2
1 (y)

2

@2V

@y2
+�

�xD1 (x) +
�2xD2 (x)

2

�
@V

@x
+

"
�yG1 (y) +

�2yG2 (y)

2

#
@V

@y
� r (T � �)V (2.13)

note that (2.12) should be substituted into expressions for coe¢ cients �S , �S , ��, �� and after this we
denote them by �x = �S (D0(x); G0(y); T � �), �x = �S (D0(x); G0(y); T � �), �y = �� (G0(y); T � �),
�y = �� (G0(y); T � �). Also it should be mentioned that this equation has the same partial derivatives as
initial one and only coe¢ cients in front of them di¤ers.
Transformation of PDE could give valuable results not only from theoretical point of view but also from

numerical perspective. In particular applying transformation and using �nite di¤erence method for solving
transformed PDE one will receive �nite-di¤erence method with non-uniform grid.
In our research for numerical purposes the following transformations of space variables are used:

x = D(S) = (p1S)
p2 S = D0(x) = x

1/p2 /p1

D1 (x) = p1p2x
p2�1
p2 D2 (x) = p

2
1p2 (p2 � 1)x

p2�2
p2

(2.14)

x = D(S) = ln (p1S) + p2 S = D0(x) = exp(x� p2) /p1
D1 (x) = p1e

p2�x D2 (x) = �p21e2(p2�x)
(2.15)

x = D(S) =
h
asinh

�
p3(S�p1)

p2

�
+ asinh

�
p3p1
p2

�i.
p3;

S = D0(x) = p1 + p2 sinh
�
p3x� asinh

�
p3p1
p2

��.
p3

(2.16)
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The �rst two transformations are simple and widely used. Choosing p1 = p2 = 1 in the �rst one is the same
as performing no transformation at all (thus we are free to perform power transformation or not). Second one
is well known logarithmic transformation and in this case more care is needed when considering point S = 0,
as x �! �1 (thus we should replace zero with small positive number). Last transformation is suggested by
[10] and allows to re�ne �nite di¤erence mesh near desired point by appropriate choice of parameters p1, p2,
p3. Here p1 is grid concentration point, p2 concentration level, while p3 is chosen1 in such a way to satisfy
xmax = D(Smax) (note that F (0) = 0).
Note that everywhere below we will be applying and using equation (2.13). In numerical realization all

mentioned transformation w.r.t. S and � are implemented and we can easily switch between them.

2.3 Problem De�nition for European Option

In order to �nd price of the European put or call option one should �nd solution of (2.13) in the domain

 = f0 � x � xmax; 0 � y � ymax; 0 � � � �maxg with appropriate initial and boundary conditions and then
perform corresponding inverse transformation de�ned by (2.12).
Let us �rst present initial and boundary conditions (for "classical" SABR model i.e. �� = 0 =) �y = 0) in

variables S; � and then translate them into corresponding conditions with transformed variables x; y. Initial
condition2 :

V (S; �; 0) = F (S) ;

boundary conditions:

V (0; �; t) = F (0) exp

0@� tZ
0

r(s)ds

1A
@2V (Smax; �; t)

@S2
= 0

V (S; 0; T ) = F

0@S exp
0@ tZ
0

(r(s)� q(s)) ds

1A1A exp
0@� �Z

0

r(s)ds

1A
@V (S; �max; t)

@t
+ B [V (S; �max; t)] = 0:

Since operator B [V (S; �max; t)] includes partial derivatives we assume that on the bound �max there one-sided
versions are used.
Now let us translate listed conditions in x; y and comment them. Initial condition reads:

V (x; y; 0) = F (D0(x)) (2.17)

boundary conditions are:

V (0; y; �) = F (D0(0)) exp

0@� �Z
0

r(T � s)ds

1A (2.18)

@2V (xmax; y; �)

@x2
D2
1 (xmax) +

@V (xmax; y; �)

@x
D2 (xmax) = 0 (2.19)

V (x; 0; �) = F

0@D0(x) exp
0@ �Z
0

(r(T � s)� q(T � s)) ds

1A1A exp
0@� �Z

0

r(T � s)ds

1A (2.20)

@V (x; ymax; �)

@�
+A [V (x; ymax; �)] = 0 (2.21)

1Value of this parameter is easily calculated using any one dimensional solver.
2Put: F (S) = max (K � S; 0) Call: F (S) = max (S �K; 0) :
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While setting boundary conditions on x = xmax and y = ymax one should always keep in mind that these
conditions are "approximately" correct for large values of xmax and ymax. So setting reasonable conditions on
these boundaries will always be matter of correct modelling. For example condition (2.19) is "continuation"
condition and suggests that for the large stock price � of put and call option should be close to zero.
Alternatively this condition could be replaced by:

put :
@V (xmax; y; �)

@x
D1 (xmax) = 0 (2.22a)

call :
@V (xmax; y; �)

@x
D1 (xmax) = 1 (2.22b)

Condition for put option suggests that � should be close to zero, while for call option it should be close to 1.
Condition (2.21) is called "smoothing"condition3 and is set on boundary y = ymax. If bound y = ymax � 0

is far from its origin then one might reasonably argue that the price of option will not be sensitive to volatility
change (i.e. Vega V = 0) and set:

@V (x; ymax; �)

@y
G1 (ymax) = 0

During numerical experiments, it was justi�ed that the best choice is still (2.21) as it is suitable for both
large and comparably small values of ymax.
Now let us present conditions for "extended" SABR model �y 6= 0 . All the above listed conditions,

except (2.20), remain unchanged. On the boundary y = 0 we set again "smoothing" condition:

A [V (x; 0; �)] + @V (x; 0; �)
@�

= 0 (2.23)

In order to explain this one might use following reasoning: In case of �y = 0 and initially volatility y = 0,
volatility stays equal to zero all time till maturity (this immediately follows from (2.2) when � = 0 and
y0 = 0). Therefore we know that price of underlying asset will be deterministic, and as a consequence price
of the option could be found explicitly, thus Dirichlet conditions (2.20) could be set. In case when volatility
drift term �y 6= 0 (� 6= 0), we can not assert any more that volatility stays zero all time, even if it was initially
zero (this also follows from (2.2) when � 6= 0, � 6= 0 and y0 = 0). Therefore we can not say that the price of
option remains deterministic and we can not require (2.20) to hold. In this case we again set "smoothing"
condition on boundary y = 0 (2.23).
In case when neither Dirichlet nor Neuman boundary conditions are posed, we require PDE itself to be

satis�ed on the bound. This is known as a "smoothing" condition and it seems to be natural choice. Thus,
(2.23) and (2.21) are PDE operators set on corresponding bounds.

2.4 Problem De�nition for American Option

For the American option not only boundary conditions should be changed but also the way we are solving
PDE. The price of the American option can be obtained by solving time dependent complementarity problem
in the domain 
 = f0 � x � xmax; 0 � y � ymax; 0 � � � �maxg:8<:

@V
@� +A [V ] � 0
V � F (D0(x))
(V � F (D0(x)))

�
@V
@� +A [V ]

�
= 0

where F (D0(x)) is obstacle function (same as initial condition). To solve linear complementarity problem
using splitting technique (section 3.2.3) the above system should be rewritten into the following form:8<:

@V
@� +A [V ] = �
� � 0; V � F (D0(x))
(V � F (D0(x)))� = 0

(2.24)

3For further discussion on "smoothing" condition see end of current section.
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where � is auxiliary function. In order to �nd stopping region (option exercising region) one should �nd part
of the domain 
 where � � 0. Later discrete formulation of the splitting problem will be given.
Initial and boundary conditions for the American option in case of "classical" SABR model (�y = 0) are

de�ned by:

V (x; y; 0) = F (D0(x)) (2.25)

V (0; y; �) = F (D0(0)) (2.26)

@2V (xmax; y; �)

@x2
D2
1 (xmax) +

@V (xmax; y; �)

@x
D2 (xmax) = 0 (2.27)

V (x; 0; �) = F (D0(x)) (2.28)

A [V (x; ymax; �)] +
@V (x; ymax; �)

@�
= 0 (2.29)

Note that for the American option none of the conditions include discounting factor and this re�ects the fact
that the holder of the American option has right to exercise it at any given time. Additionally, condition on
x = xmax like in the European case suggests that � for the American put or call option should be close to
zero for large values of xmax. This condition could be replaced by (2.22a) or (2.22b), as � of the American
put (call) assumed to be close to zero (one). "Smoothing" condition (2.29) could be justi�ed similarly to one
for the European option.
In case of "extended" SABR model (�y 6= 0) "smoothing" condition on y = 0 should be set:

A [V (x; 0; �)] + @V (x; 0; �)
@�

= 0 (2.30)

Explanation of boundary condition replacement, goes similarly to one described for the European option
(page 13).

2.5 Cash Dividends

In above discussion we assumed that dividends are paid out continuously with rate q(T � �). Derived PDE
together with corresponding boundary and initial conditions re�ects this fact.
For discrete dividends we need to reformulate our PDE problem into PDE with initial-contact problem.

Let us assume that the dividends are paid only once at time �1, where 0 < �1 < �max and amount paid out
is �1. Then our initial problem for the European option will be formulated for each intra-dividend interval
separately. The �rst part will be4 :

0 � � � �1 :

8>>>>>>>>>><>>>>>>>>>>:

A [V1] + @V1
@� = 0

V1 (x; y; 0) = F (D0(x))

V1 (0; y; �) = F (D0(0)) exp

0@� �Z
0

r (T � s) ds

1A
V1 (x; 0; �) = F

0@D0(x) exp
0@ �Z
0

(r(T � s)� q(T � s)) ds

1A1A exp
0@� �Z

0

r(T � s)ds

1A
4Only PDE, intial and those of boundary conditions are listed that change.
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the second part:

�1 � � � �max :

8>>>>>>>>>><>>>>>>>>>>:

A [V2] + @V2
@� = 0

V2 (x; y; �1) = G (x; y)

V2 (0; y; �) = G (0; y) exp

0@� �Z
�1

r(T � s)ds

1A
V2 (x; 0; �) = G

0@D0(x) exp
0@ �Z
�1

(r(T � s)� q(T � s)) ds

1A ; 0
1A exp

0@� �Z
�1

r(T � s)ds

1A
where:

G (x; y) =

�
V1 (x� �1; y; �1) �1 � x
V1 (0; y; �1) x < �1

For the second part, initial condition is shifted price of option (just before dividend) towards positive direction
of x.
For the American option, the problem is formulated as:

0 � � � �1 :

8>><>>:
@V1
@� +A [V1] � 0; V1 � F (D0(x)); (V1 � F (D0(x)))

�
@V1
@� +A [V1]

�
= 0

V1 (x; y; 0) = F (D0(x))
V1 (0; y; �) = F (D0(0))
V1 (x; 0; �) = F (D0(x))

and

�1 � � � �max :

8>><>>:
@V2
@� +A [V2] � 0; V2 � F (D0(x)); (V2 � F (D0(x)))

�
@V2
@� +A [V2]

�
= 0

V2 (x; y; 0) = G(x; y)
V2 (0; y; �) = G(0; y)
V2 (x; 0; �) = G(x; 0)

where

G(x; y) = max

�
F (D0(x));

�
V1 (x� �1; y; �1) �1 � x
V1 (0; y; �1) x < �1

�
If there is more than one dividend paid, then the problem will have more parts (intra-dividend intervals) and
could be formulated in the similar way.
Above boundary conditions are given for case �y = 0. If �y 6= 0 then all boundary conditions set on y = 0

should be changed to "smoothing" condition (2.23).
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Chapter 3

Finite Di¤erence

Let us present convenient scheme for constructing �nite di¤erence approximations. Using this scheme one
could �nd various approximations for derivatives having increased exactness, non uniform grid or one sided
approximations and etc..
Assume that there are given discrete points (grid points): z0; z1; : : : ; zN and values of function: V0; V1; : : : ; VN

de�ned in each point. Let us construct polynomial of power N � 1:

f (z) =
N�1X
i=0

piz
i

in order to �nd polynomial going through indicated points, one should solve the following linear system of
equations with respect to pi: 8><>:

f (z0) = V0
...

f (zN ) = VN

The system should be solved explicitly and each coe¢ cient will be function: pi = Fi(z0; z1; : : : ; zN ; V0; V1; : : : ; VN ).
Now in order to receive �nite di¤erence approximation for the �rst and second derivatives in point z = ~z
(note that in general ~V might not be given for ~z) one should di¤erentiate polynomial with respect to z and
substitute the obtained expressions for coe¢ cients:

�z

h
~V
i
= f 0(z)jz=~z;p1=F1(:::);:::;pN�1=FN�1(:::)

(3.1a)

�2z

h
~V
i
= f 00(z)jz=~z;p1=F1(:::);:::;pN�1=FN�1(:::)

(3.1b)

Note that in square brakes we write �z
h
~V
i
and this is to be online with continuous derivative notation

f 0(z)jz=~z. In general case the above expressions are huge and di¢ cult to work with. As soon as our grid
points are uniformly distributed, their number are small and we are interested in �nding derivatives in one
of the grid points, expression will signi�cantly simpli�es.
For example let us assume that there are given three uniformly distributed grid points: z0 = 0, z1 = �z,

z2 = 2�z and in each grid point function values are given: V0, V1, V2. Choosing f (z) to be parabola we can
�nd its coe¢ cients by solving: 8<: p0 + p1z0 + p2z

2
0 = V0

p0 + p1z1 + p2z
2
1 = V1

p0 + p1z2 + p2z
2
2 = V2
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Coe¢ cients could be found explicitly:

p0 = V0

p1 =
�3V0 + 4V1 � V2

2�z

p2 =
V0 � 2V1 + V2

2�z2

In order to �nd approximation for �rst and second derivative in central point of grid ~z = z1 one should
substitute above expressions for p0, p1, p2 into (3.1a) and (3.1b). Simplifying them we will get well known
central di¤erence approximations:

�z [V1] =
V2 � V0
2�z

�2z [V1] =
V2 � 2V1 + V0

�z2

Approximation for �rst and second derivatives in left hand side point of grid ~z = z0 could be found by
substitute expressions for p0, p1, p2 into (3.1a) and (3.1b). In this case we will get so called one sided (left
sided) approximation:

��z [V0] = �3V0 � 4V1 + V2
2�z

�2�z [V0] =
V0 � 2V1 + V2

�z2

Note that in order to distinguish from central di¤erence approximation we denote this approximation with
"-".
In the same manner we can �nd one sided (right sided) derivatives in right hand side of grid ~z = z2

�+z [V2] =
3V2 � 4V1 + V0

2�z

�2+z [V2] =
V2 � 2V1 + V0

�z2

and denote it with "+".
Constructing central di¤erence approximation with higher precision goes in the same way. The only

di¤erence is that we consider uniform grid with �ve points z0 = 0, z1 = �z, z2 = 2�z, z3 = 3�z, z4 = 4�z
with corresponding function values V0, V1, V2, V3, V4. Solving system of equations 5 � 5, substituting
expressions for coe¢ cients into (3.1a) and (3.1b) for the central point of grid ~z = z2, one will get:

_�z [V2] =
V0 � 8V1 + 8V3 � V4

12�z

_�
2

z [V2] =
�V0 + 16V1 � 30V2 + 16V3 � V4

12�z2

Dot above notation indicates that this approximation has higher exactness. In the appendix C all used
derivatives are listed.
For cross derivative one should �nd coe¢ cients of polynomial f(z; w) = p0 + p1z + p2w + p3zw:
More detailed discussion of �nite di¤erence and precision of di¤erent approximations could be found in

[14].
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3.1 Domain

We change our continuous domain 
 = f0 � x � xmax; 0 � y � ymax; 0 � � � �maxg by discrete domain _
 =�
x1; : : : xi; : : : xNx+1; y1; : : : yj ; : : : yNy+1; �1; : : : �k; : : : �N�+1

	
, where

i = 1; :::Nx + 1; x1 = 0; xNx+1 = xmax; xi � xi�1 = �x =
xmax
Nx

j = 1; :::Ny + 1; y1 = 0; yNy+1 = ymax; yi � yi�1 = �y =
ymax
Ny

k = 1; :::N� + 1; �1 = 0; �N�+1 = �max; �k � �k�1 = �� =
�max
N�

and de�ne discrete function Vi;j;k on domain _
.
In order to distinguish between continuous and corresponding discrete function we will always use brackets

V (�k; xi; yj) for continuous function and subscripts Vi;j;k for discrete function de�ned in point (�k; xi; yj) (i.e.
in grid point i; j; k of domain _
) .
When referring to the discrete function de�ned on _
 we sometimes omit some of superscripts in order to

shorten formulas. For example writing Vi;j we assume that k is arbitrarily chosen; writing Vk we assume
that i,j are arbitrary and etc. Same notational agreement will be valid for continuous function.

3.2 PDE discretization

Our main goal below will be to replace continuous function V (� ; x; y) de�ned on with 
 by discrete function
Vi;j;k de�ned on _
, transform partial di¤erential equation: @V@� +A [V ] = 0 into its �nite di¤erence replica and
�nally de�ne initial and boundary conditions for discrete function. As a consequence we will receive linear
system of equation w.r.t. unknowns Vi;j;k. Solution of this system will be considered as �nite di¤erence
approximation of continuous solution V (� ; x; y).
Discretization is performed in two steps. First step discretize operator A [V ] and transforms it into linear

system of equations (space discretization). Second step discretize � and �nally de�nes problem as iterative
process (time discretization); each iteration gives us solution for corresponding time step.
While constructing �nite di¤erence scheme it is important to keep in mind what kind of matrix we are

receiving for our linear system of equations. Usually our matrix will be sparse (with lot of zero elements)
and diagonal.

3.2.1 Space discretization

Problem with �nite di¤erence for cross derivatives is that non of them includes Vi;j , and thus they do not
donate into diagonal superiority of the �nal �nite di¤erence matrix. In order to obtain "good" approximation
for cross derivative we are using technique described in [9]. Taylor series expansion reads:

V (xi+1; yj+1) � V (xi; yj) + �x
@V

@x
+�y

@V

@y
+
1

2

�
�x2

@2V

@x2
+ 2�x�y

@2V

@x@y
+�y2

@2V

@y2

�
(3.2a)

V (xi�1; yj�1) � V (xi; yj)��x
@V

@x
��y @V

@y
+
1

2

�
�x2

@2V

@x2
+ 2�x�y

@2V

@x@y
+�y2

@2V

@y2

�
(3.2b)

V (xi+1; yj�1) � V (xi; yj) + �x
@V

@x
��y @V

@y
+
1

2

�
�x2

@2V

@x2
� 2�x�y @

2V

@x@y
+�y2

@2V

@y2

�
(3.2c)

V (xi�1; yj+1) � V (xi; yj)��x
@V

@x
+�y

@V

@y
+
1

2

�
�x2

@2V

@x2
� 2�x�y @

2V

@x@y
+�y2

@2V

@y2

�
(3.2d)

summing up equations (3.2a), (3.2b) and solving for cross derivative we will get:

@2V

@x@y
� 1

2�x�y
[V (xi+1; yj+1)� 2V (xi; yj) + V (xi�1; yj�1)]�

�x

2�y

@2V

@x2
� �y

2�x

@2V

@y2
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while summing up the equations (3.2c), (3.2d) and solving for cross derivative:

@2V

@x@y
� �1
2�x�y

[V (xi+1; yj�1)� 2V (xi; yj) + V (xi�1; yj+1)] +
�x

2�y

@2V

@x2
+
�y

2�x

@2V

@y2

Finally replacing continuous function with discrete one and substituting �nite di¤erence approximations of
corresponding continuous derivatives:

�̂
2

x;y [Vi;j ] =
1

2�x�y
[Vi+1;j+1�2Vi;j +Vi�1;j�1 ]�

�x

2�y
�2x [Vi;j ]�

�y

2�x
�2y [Vi;j ]

��
2

x;y [Vi;j ] =
�1

2�x�y
[Vi+1;j�1�2Vi;j +Vi�1;j+1 ] +

�x

2�y
�2x [Vi;j ] +

�y

2�x
�2y [Vi;j ]

Choice between �̂
2

x;y and ��
2

x;y is determined by the sign of multiplier of cross derivative in (2.13). Idea
behind this is that we should try to choose such approximation for cross derivative, that keeps diagonal
element of �nal matrix "heavy" thus providing us with diagonal superiority.
Now we can construct �nite di¤erence replica of operator A in (2.13), but �rst let us rewrite it in the

following form:

A [V ] =a@
2V

@x2
+ b

@2V

@x@y
+ c

@2V

@y2
+ d

@V

@x
+ e

@V

@y
+ fV

and note that a < 0, b R 0 if � (�) Q 0, c < 0, d < 0, e R 0 if �y Q 0, f > 0. Now replacing derivatives in
continuous operator A with corresponding �nite di¤erences (Ib>0 -indicator function):

Ak [Vi;j ] = a�2x [Vi;j ] + Ib>0b�̂
2

x;y [Vi;j ] + (1� Ib>0) b��
2

x;y [Vi;j ] + c�
2
y [Vi;j ] + d�x [Vi;j ] + e�y [Vi;j ] + fVi;j (3.3)

substituting expressions for �nite di¤erence, collecting and rearranging terms we will �nally get:

Ak [Vi;j ] = Vi;j

�
f � 2a

�x2
� 2c

�y2
+
b (2Ib>0 � 1)
�x�y

�
+

Vi�1;j�1

�
bIb>0
2�x�y

�
+ Vi;j�1

�
c

�y2
� e

2�y
� b (2Ib>0 � 1)

2�x�y

�
+

Vi+1;j�1

�
b (Ib>0 � 1)
2�x�y

�
+ Vi+1;j

�
a

�x2
+

d

2�x
� b (2Ib>0 � 1)

2�x�y

�
+

Vi+1;j+1

�
bIb>0
2�x�y

�
+ Vi;j+1

�
c

�y2
+

e

2�y
� b (2Ib>0 � 1)

2�x�y

�
+

Vi�1;j+1

�
b (Ib>0 � 1)
2�x�y

�
+ Vi�1;j

�
a

�x2
� d

2�x
� b (2Ib>0 � 1)

2�x�y

�
Subscript k in the operator indicates that in general case coe¢ cients of �nite di¤erence operator is time
dependent. Applying operator Ak [Vi;j ] (for �xed time step k) for each inner point of domain _
 we will get
linear system of equations and denote matrix associated with this system by Ak (without square brackets).
It should be mentioned separately that constructing �nite di¤erence replica of operator A could be

performed using more precise approximating scheme:

_Ak [Vi;j ] = a _�
2

x [Vi;j ] + Ib>0b�̂
2

x;y [Vi;j ] + (1� Ib>0) b��
2

x;y [Vi;j ] + c
_�
2

y [Vi;j ] + d
_�x [Vi;j ] + e _�y [Vi;j ] + fVi;j (3.4)

Problem with this approximation is that it involves more "o¤ diagonal" elements in stencil, thus signi�cantly
decreasing property of matrix diagonal superiority.
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3.2.2 Time Discretization

Replacing continuous derivative @V
@� with one sided �nite di¤erences �+� [Vk], _�+� [Vk], ��+� [Vk] we will get

following iterative scheme for �nding Vi;j;k:

(I +��A2)V2 = V1�
I +

2

3
��A3

�
V3 =

4

3
V2 �

1

3
V1�

I +
6

11
��Ak

�
Vk =

18

11
Vk�1 �

9

11
Vk�2 +

2

11
Vk�3 for k = 4; : : : NT + 1

Note that above equations are written in matrix form, V1 is given by initial conditions and I is identity
matrix.
Finally we will denote iterative �nite di¤erence scheme by:

(I +�kAk)Vk = l1kVk�1 + l2kVk�2 + l3kVk�3 (3.5)

which we assume to hold in all inner points of domain _
. This type of scheme usually called BDF3 (backward
di¤erence formula with 3 time steps). Another types of scheme are described in [9]
BDF3 allows to manage diagonal superiority of matrix by means of decreasing �� , but "price" to be

paid for this will be increased number of steps (iteration) and as a consequence increased time required for
solution.

3.2.3 Discrete Splitting

Now in order to adjust the operator splitting method described in section 2.4 to numerical calculation of
price of the American option, we divide the method into two steps.
In the �rst step system of linear equation is solved, in second step an intermediate solution and auxiliary

variable are updated in such a way that they satisfy constrains. Intermediate solution Vk should be greater
then or equal to obstacle function F (D0(xi)), while �k is required to be positive. System of linear equations
to be solved is:

(I +�kAk) ~Vk = l1kVk�1 + l2kVk�2 + l3kVk�3 +�k�k�1 (3.6)

where ~Vk is intermediate solution.
Constrains are written as: 8<:

Vk � ~Vk ��k (�k � �k�1) = 0
(�k)

T
(Vk � F (D0(xi))) = 0

Vk � F (D0(xi)) ; �k � 0
or:

�k = max

"
F (D0(xi))� ~Vk

�k
+ �k�1; 0

#
Vk = ~Vk +�k (�k � �k�1)

where Vk is solution and �k is auxiliary variable.
For initial guess we take �1 = 0, as the American option at maturity is exercised immediately.
Accuracy consideration for operator splitting method is described in [9].

3.3 Discretization of Initial and Boundary conditions

As it was mentioned above �nding exact conditions re�ecting real behavior of option price on boundaries
x = xmax and y = ymax might be di¢ cult, if ever possible. While setting conditions on x = xmax and
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y = ymax one should always keep in mind that they are only "approximately correct". In this section we will
de�ne a few new conditions and in section 5 we will use and compare them.
Below we translate all continuous boundary and initial conditions listed above into their �nite di¤erence

replicas. Also we introduce some new conditions and also translate them. New conditions will be �rst de�ned
for continuous case and then translated into �nite di¤erence.

3.3.1 Initial condition �= 0 (k = 1)

Initial condition for European or American option is similar to each other (2.17), (2.25). It could be translated
in a �nite di¤erence:

Vi;j;1 = F (D0(xi)) (3.7)

Thus the �rst solution (zero solution) could be found directly from initial conditions.

3.3.2 Bound: x= 0 (i = 1)

For the European option we translate Dirichlet condition (2.18) set on the bound and adjacent corners
x = 0; y = 0 and x = 0; y = ymax into discrete version for function Vi;j;k:

V1;j;k = F (D0(x1)) exp

0@� �kZ
0

r(T � s)ds

1A (3.8)

For the American option (2.26):
V1;j;k = F (D0(x1)) (3.9)

3.3.3 Bound: y= 0 (j = 1)

Conditions on this bound are chosen di¤erently for zero volatility drift term and non zero volatility drift
term.
When �y = 0 we translate Dirichlet condition for the European option (2.20) on the bound and adjacent

corner x = xmax; y = 0 into:

Vi;1;k = F

0@D0(xi) exp
0@ �kZ
0

(r(T � s)� q(T � s)) ds

1A1A exp
0@� �kZ

0

r(T � s)ds

1A (3.10)

For the American option condition (2.28) is translated into:

Vi;1;k = F (D0(xi)) (3.11)

If �y 6= 0 condition (2.23) for the European, and condition (2.30) for the American are translated (ex-
cluding adjacent corners), into:�

I +�kAy=0k

�
Vk = l

1
kVk�1 + l

2
kVk�2 + l

3
kVk�3 (3.12)

where matrix Ay=0k is constructed using one sided �nite di¤erences w.r.t. y in operator A:

Ay=0k [Vi;1] = a�2x [Vi;1] + b�
2
x;+y [Vi;1] + c�

2
+y [Vi;1] +

d�x [Vi;1] + e�+y [Vi;1] + fVi;1

This approximation is changing stencil and allows us to use it on the bound, otherwise we would face a
problem with external grid points.
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3.3.4 Bound: x=xmax (i = Nx + 1)

Few possible conditions could be set on this bound (excluding adjacent corners). Let us �rst of all translate
those ones described in previous sections. Neuman conditions (2.22a) for both the American and European
put option cases are same and could be translated into:

�+x [VNx+1;j ]D1 (xNx+1) = 0; (3.13)

for the call option we set above to be equal to one. Another possibility is to translate equivalent conditions
(2.19) and (2.27) into:

�2+x [VNx+1;j ]D
2
1 (xNx+1) + �+x [VNx+1;j ]D2 (xNx+1) = 0 (3.14)

Note that this condition is held for both put and call option.
Now let us describe alternative conditions (not stated in continuous form). First one is to set smoothing

conditions, i.e. to translate continuous operator

A [V (xmax; y; �)] +
@V (xmax; y; �)

@�
= 0

into its �nite di¤erence replica:

(I +�kAx=xmaxk )Vk = l
1
kVk�1 + l

2
kVk�2 + l

3
kVk�3 (3.15)

where matrix Ax=xmaxk is constructed using one sided �nite di¤erences w.r.t. x in operator A:

Ax=xmaxk [VNx+1;j ] = a�2+x [VNx+1;j ] + b�
2
+x;y [VNx+1;j ] + c�

2
y [VNx+1;j ] +

d�+x [VNx+1;j ] + e�y [VNx+1;j ] + fVNx+1;j

Second possibility is to set (for put option only) smoothing condition and Neuman condition simultaneously:

A [V (xmax; y; �)] +
@V (xmax; y; �)

@�
= 0

@V (xmax; y; �)

@x
= 0

translating this we will get two conditions:

(I +�kAk)Vk = l1kVk�1 + l2kVk�2 + l3kVk�3 (3.16)

�+x [VNx+1;j ]D1 (xNx+1) = 0

Note that simultaneously setting these two �nite di¤erence conditions on the boundary is equal to assuming
that all external grid points are equal to corresponding inner points: VNx+2;j = VNx;j for all j. This condition
is described in [9].

3.3.5 Corner: x=xmax; y= 0 (i = Nx + 1; j = 1)

Lower corner point is treated in two di¤erent ways. If �y = 0 then Dirichlet condition (3.10) or (3.11) should
be set.
If �y 6= 0, the following conditions could be set and translated into �nite di¤erences. The �rst one is

usual Neuman condition
@V (xmax; 0; �)

@x
= 0

which will translate into:
�+x [VNx+1;1]D1 (xNx+1) = 0 (3.17)
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For the call option instead of zero 1 is substituted.
Second one is smoothing condition:

A [V (xmax; 0; �)] +
@V (xmax; 0; �)

@�
= 0

translated into: �
I +�kAx=xmax;y=0k

�
Vk = l

1
kVk�1 + l

2
kVk�2 + l

3
kVk�3 (3.18)

Where

Ax=xmax;y=0k [VNx+1;1] = a�2+x [VNx+1;1] + b�
2
+x;+y [VNx+1;1] + c�

2
+y [VNx+1;1] +

d�+x [VNx+1;1] + e�+y [VNx+1;1] + fVNx+1;1

and again we are using one sided �nite di¤erence in order to exclude the external grid points from the �nite
di¤erence operator.

3.3.6 Corner: x=xmax; y=ymax
�
i = Nx + 1; j = Ny+1

�
For the upper corner point few possible conditions could be set. The �rst one is usual Neuman condition
w.r.t. x:

@V (xmax; 0; �)

@x
= 0

translated into:
�+x

�
VNx+1;Ny+1

�
D1 (xNx+1) = 0 (3.19)

For the call option instead of zero, 1 should be substituted.
The second one is a smoothing condition:

A [V (xmax; ymax; �)] +
@V (xmax; ymax; �)

@�
= 0

translated into �nite di¤erence replica using one sided derivatives:

(I +�kAx=xmax;y=ymaxk )Vk = l
1
kVk�1 + l

2
kVk�2 + l

3
kVk�3 (3.20)

where

Ax=xmax;y=ymaxk

�
VNx+1;Ny+1

�
= a�2+x

�
VNx+1;Ny+1

�
+ b�2+x;+y

�
VNx+1;Ny+1

�
+ c�2+y

�
VNx+1;Ny+1

�
+

d�+x
�
VNx+1;Ny+1

�
+ e�+y

�
VNx+1;Ny+1

�
+ fVNx+1;Ny+1

The third possibility is to set smoothing and two Neuman conditions simultaneously:

A [V (xmax; ymax; �)] +
@V (xmax; ymax; �)

@�
= 0

@V (xmax; ymax; �)

@x
= 0

@V (xmax; ymax; �)

@y
= 0

replicating these into �nite di¤erence we will get:

(I +�kAk)Vk = l1kVk�1 + l2kVk�2 + l3kVk�3 (3.21)

�+x
�
VNx+1;Ny+1

�
D1 (xNx+1) = 0

�+y
�
VNx+1;Ny+1

�
G1 (yNx+1) = 0

note that setting additional Neuman conditions in the corner is equal to assuming that external grid points
VNx+2;Ny+2 = VNx;Ny , VNx+2;Ny+1 = VNx;Ny+1, VNx+1;Ny+2 = VNx+1;Ny [9].
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3.3.7 Bound: y=ymax
�
j = Ny+1

�
Smoothing conditions (2.21) and (2.29) are equal and could be translated into:

(I +�kAy=ymaxk )Vk = l
1
kVk�1 + l

2
kVk�2 + l

3
kVk�3 (3.22)

where using one sided derivatives we can get:

Ay=ymaxk

�
Vi;Ny+1

�
= a�2x

�
Vi;Ny+1

�
+ b�2x;�y

�
Vi;Ny+1

�
+ c�2�y

�
Vi;Ny+1

�
+

d�x
�
Vi;Ny+1

�
+ e��y

�
Vi;Ny+1

�
+ fVi;Ny+1

�nite di¤erence operator with excluded external grid points.
The second possibility is to require additionally Neuman condition to be satis�ed:

A [V (x; ymax; �)] +
@V (x; ymax; �)

@�
= 0

@V (x; ymax; �)

@y
= 0

and this is translated into:

(I +�kAk)Vk = l1kVk�1 + l2kVk�2 + l3kVk�3 (3.23)

�+y
�
Vi;Ny+1

�
G1 (yNx+1) = 0

note that setting two conditions on the boundary is equal to assuming that all external grid points are equal
to corresponding internal grid points: Vi;Ny+2 = Vi;Ny for all i [9].
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Chapter 4

Monte Carlo

In this chapter we are describing well known and widely used Monte Carlo method for option pricing. In
case of American option we are using modi�cation of Monte Carlo method (least square approach) described
in [12].

4.1 European option

Key idea of Monte Carlo method is to simulate M paths of the underlying asset and based on simulated
paths derive the price of option under the "extended" SABR model. This method is known to be very
time consuming but easy to apply, even for the options with path-dependent price. First we will discuss
implementation of the European option case for stock paying cash dividends.
Let us divide interval [0; T ] into N equidistant parts �t = T

N :

t1 = 0; t2 = �t; : : : ; tN+1 = N�t = T

and calculate the paths for volatility and stock price using:

�k+1 = �k + �� (�k; tk)�t+ �� (�k; tk)
h
� (tk) �1 (tk) +

p
1� �2 (tk)�2 (tk)

ip
�t;

Sk+1 = Sk + �S (Sk; �k; tk)�t+ �S (Sk; �k; tk) �1 (tk)
p
�t;

here k = 1; 2; : : : ; N ; and �1 = �; S1 = S

where �S (S; �; t) = (r (t)� q(t))St, �S (S; �; t) = �t (St)
� , �� (�; t) = � (� (t)� �t), �� (�; t) = ��t. Ex-

pression
h
� (tk) �1 (tk) +

p
1� �2 (tk)�2 (tk)

i
appears because Wiener processes are correlated1 , while �1 (tk)

and �2 (tk) are two independent random samples from standard normal distribution. Note that if dividend
is paid out at tk then the price of stock "just before" dividend is calculated according to given formula for
Sk+1 while the price of stock "just after" dividend is ~Sk+1 = max (Sk+1 � �tk ; 0) and after this value of ~Sk+1
is used to calculate next Sk+2.
After generating path for stock price one can immediately calculate put (or any other claim) payo¤ for

each generated path using:

V = exp

0@� TZ
0

r(s)ds

1A (K � SN+1)+

1The Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems with multiple correlated
variables. The matrix of inter-variable correlations is decomposed, to give the lower-triangular matrix. Applying this to a vector
of uncorrelated samples, produces a new sample vector with the covariance properties of the system being modeled.
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SinceM paths were generated, one should �nd mean �V and standard deviation �V of V in order to estimate
con�dence interval for price of option:�

�V �N�1 (1� 0:05=2) �Vp
M
; �V +N

�1 (1� 0:05=2) �Vp
M

�

4.2 American option

In case of the American option, Monte Carlo simulation can not be used directly. While we are calculating
value of American option, price of immediate exercise should always be compared with expected cash �ow
from continuing. However, expected cash �ow from continuing could not be found directly from Monte Carlo
simulation.
The method to derive prices of American options using Monte Carlo simulations starts in the same way

as the one described above for European options, namely simulating M paths of the underlying asset S.
Again the life of the option can be divided into N short time intervals �t, and paths for volatility and stock
price can be approximated as before. The di¤erence is now that the holder of the option can also choose to
exercise the option at each moment in time between time zero and time T (option is exercised only once).
This means for the approximation that at each time step it has to be evaluated if exercising at that moment
gives a higher payo¤ than the expected discounted payo¤ of holding the option at least one more time step.
The payo¤ of exercising at time tk is easy to determine, since this decision can only be made at time tk itself.
So the value of the stock at time tk is known, and the payo¤ of exercising the option can be easily computed.
The expected discounted payo¤ of continuing however is far more di¢ cult to calculate. Longsta¤ and

Schwartz in [12] provide a way to approximate this value when Monte Carlo simulation is used, namely using
modi�cation called the Least-Squares Monte Carlo (LSM) method. There are other methods based on Monte
Carlo simulation, like the one proposed by Andersen [1], but the LSM method is easier to apply to models
with multiple stochastic factors, and has a good trade-o¤ between computational time and precision. That
is why the Least-Squares Monte Carlo method is used here to derive prices of American options under the
"extended" and "classical" SABR models.
After sampling M paths for S, there are M possible values for each Sk. First the option payo¤ for each

path when exercising at tN+1 = T is derived. After that, all paths for which the option is in-the-money at
time tN are considered, which forms a set ZN .
Now the key idea of Longsta¤and Schwartz [12] comes into play. They assume an approximate relationship

between the conditional expected value of continuing and the value of the stock:

VN �
jX
i=1

liNf
i (SN ) (4.1)

where VN is the approximated value of continuing discounted back to the point tN , SN is the value of the
stock at time tN , liN are constants, f i (�) is the i�th function of a chosen set of basis functions (like Laguerre,
Legendre polynomials or any other set of orthogonal or usual functions) and j is the number of basis functions.
To �nd the constants liN , the following functional is minimized:

X
z2ZN

"
V zN �

jX
i=1

liNf
i (SzN )

#2

where V zN is the value of continuing with path z at time tN discounted back to time tN , and SzN is the stock
price of path z at time tN .
Now equation (4.1) gives the expected payo¤ when continuing at tN , and these values are compared with

the pay-o¤ of exercising at time tN . With this data the decision to exercise or not at tN can be taken for
each path. Of course the option will not be exercised at tN , when it is out of the money at tN .
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After this step, all paths for which the option is in the money at time tN�1 are considered, and so on
until time t1 = 0. At every time step functional

X
z2Zk

"
V zk �

jX
i=1

likf
i (Szk)

#2

is repeatedly minimized, to derive all values of lik, where Zk is the set of paths for which the option is in the
money at time tk. The value of continuing is again compared with the value of exercising at time tk.
At the end of this procedure, each generated path has one exercise time. These M payo¤s should all be

discounted to time t1 and averaged. This will give the value of the option with the LSM method suggested
by Longsta¤ and Schwartz.
A detailed numerical example of this LSM method can be found in the [12].
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Chapter 5

Numerical Experiment

To perform reliable numerical experiment we need to compare not only di¤erent boundary conditions and
choose those ones which will give us higher exactness, but also di¤erent �nite di¤erence schemes. As a
measure of exactness we will choose the residue between existent analytical solution and solution obtained
by �nite di¤erence method. Of course, analytical solution does not exist for general choice of parameters
(otherwise there would be no reason in constructing �nite di¤erences), but there exists analytical solution
for some special cases. As soon as we are certain about the exactness of numerical solution for this special
cases, we can assume that it will work also for the general choice of parameters. However, in last case we
additionally compare two di¤erent numerical methods (Finite Di¤erence and Monte Carlo).

5.1 Boundary Conditions

As it was mentioned above, boundary conditions could be conventionally divided into two groups.
The �rst group includes all conditions that are given in analytical form, for example (2.20), (2.18) for

the European option and (2.28), (3.9) for the American option. These conditions could not be somehow
improved or perfected, as they are only possible and unique conditions.
The second group includes conditions that are only "approximately" correct. We are facing problem

with this type of conditions due to the fact that initially the problem is set on semi-in�nite domain. Since
we are using �nite di¤erence method we have to consider �nite domain by means of "cutting o¤" in�nite
parts, thus condition on in�nity should be replaced by some "approximate" conditions on �nite boundaries.
Additionally, there is always a balance between "numerical" and "mathematical" levels of correctness for the
condition. For example, requiring on x = xmax, � = 0 seems to be equally correct, as to require (for put
option) � = 0. Though, one should keep in mind that � converges to zero faster then �, but �nite di¤erence
approximation (with same amount of grid points) is more precise for �. In our particular case we are using
the condition � = 0, since we are performing variable transformation and for very large xmax there is no
"numerical" di¤erence between choosing � = 0 or � = 0 and thus we are choosing last one as a simpler. On
the boundary xmax we can also set "smoothing" condition separately (3.15) or together with � = 0 (3.16).
During the numerical experiment it was found that setting only "smoothing" condition on this bound gave
higher error then setting coupled conditions.
Choosing the appropriate condition for y = ymax is a bit tricky, since Vega - V is not uniformly converging

to zero when volatility increases, in contrast with � for example. Thus setting V = 0 separately or coupled
with "smoothing" conditions (3.23) could be justi�ed only for very small or very big volatilities. It was found
that "smoothing" condition alone (3.22) gave best result and proved to be multipurpose (for small, mid and
big volatilities ymax).
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5.2 Finite Di¤erence Schemes

Setting perfect boundary and initial conditions does not guarantee nice numerical approximation. Construct-
ing replica of di¤erential operatorA is the �rst and might be the most important task while working with �nite
di¤erence method. In present research, two di¤erent replicas of continuous operator are considered: (3.3)
and (3.4). The �rst one involves "usual" central di¤erences, the last one uses central di¤erences with more
grid points and, as a result, higher precision. Price to pay for using larger stencil is additional computational
time. And this is caused by the fact that we are obtaining �nite di¤erence matrix with "lighter" diagonal and
larger number of nonzero elements. "Diagonal superiority" could be managed by decreasing time step size
(3.5), but there is noting that could decrease the memory usage for non zero elements additionally occupied
by bigger stencil.
Experimenting with di¤erent step sizes and two mentioned stencils, it was found that it is better to

decrease step size and use smaller stencil rather than use larger one.

5.3 Variable Transformation

Variable transformation allows us to resolve a few problems. The �rst is that boundary conditions set on
x = xmax and y = ymax should imitate behavior of option price on in�nity. Thus, the bigger values for xmax
and ymax are chosen, the better imitation will be. While choosing larger domain, we need to dramatically
increase the number of grid points and that is the main drawback. In order to avoid this problem we should
apply variable transformation, which allows us to concentrate grid points in the domain of interest and "send"
boundary to in�nity.
The second is that usually we are interested in the increasing exactness of the solution for some particular

parts of the whole domain (for example for "At The Money Option"). For this reason we should re�ne grid
points in this parts and this is possible only by applying transformation.
It was found that the most convenient transformation is (2.16) since it allows of successfully resolving

both of the mentioned problems. For transformation with respect to x parameters p1, p2, p3 of (2.16) should
be chosen in a way to concentrate (re�ne) grid points near strike and coarse grid points on the boundary
x = xmax.

5.4 Comparison

In this section we will �nd price for the European put option with following data: xmax = 600, ymax = 2,
�max = 1, K = 25, Nx = 200, Ny = 200, NT = 100, r = 0:03, q = 0 and numerical solution will be
compared with existing analytical solution (for special cases) or with numerical solution obtained by Monte
Carlo simulation (for general case).

5.4.1 SABR model
�
�y = 0 () � = � = 0

�
Coe¢ cients of the system (2.1) are chosen to be constant and � = 0:2, � = 0:9, � = 0:0, � = 0:0, � = 0:4.
For this model we are choosing as an "analytical solution" the price of put found by equation for volatility
surface (1.3) suggested by Hagan in [5] which is proved to be very precise analytical approximation. Our
�nite di¤erence scheme is de�ned by (3.5), (3.7), (3.8), (3.10), (3.13), (3.19), (3.22). The residual (error)
between numerical and analytical solutions for � = 1 is presented in Figure 5.1. Maximal absolute error of
solution is concentrated in domain (�lled with gray color) with high volatility and big time to maturity (for
� < 1 maximal error is few times smaller). Also there is concentration of error near point with S = K = 25
and � = 0, though absolute value of error is smaller then 0:003. Discussion of errors and recipes for them
are given below.
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Figure 5.1: The residual between numerical and analytical solutions for the "classical" SABR model.
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5.4.2 Non stochastic volatility (� = 1; �y = 0 () � = 0)

Coe¢ cients of system (2.1) are chosen to be: � = 0, � = 1, � = 0:25, � = 0:8, � = 0. In this case volatility
is time dependent but non stochastic (� = 0). There exist analytical solution for this problem, in particular
averaging variance w.r.t. time i.e.:

��2 (t) =
1

t

tZ
0

�2 (s) ds (5.1)

and substituting �� into Black Scholes formula for put one can immediately �nd analytical price. Our �nite
di¤erence scheme is: (3.5), (3.7), (3.8), (3.12), (3.17), (3.13), (3.19), (3.22). Residual between numerical and
analytical solutions for � = 1 is presented in Figure 5.2. First of all one can immediately see that maximal
absolute error for this problem approximately 10 times smaller compared to Figure 5.1. Domain of maximal
error is again �lled with gray color. It is interesting to note that there is no error concentration for at the
money option with zero volatility (S = K = 25 and � = 0) like it is in the previous case.

5.4.3 Monte Carlo

Coe¢ cients of system (2.1) are chosen to be: � = 0:2, � = 1, � = 0:25, � = 0:8, � = 0:4. We are comparing
�nite di¤erence solution with the one obtained by Monte-Carlo simulation. Due to the fact that Monte-Carlo
is computationally very expensive method, we are comparing numerical solutions in: y = G (0:5), x = D (25).
Comparison is made for both European and American puts Figure 5.3. It should be mentioned that since
both pricing methods are numerical, they bear some error, thus qualitative behavior of presented plots are
more informative rather then purely quantitative measuring. Qualitative behavior shows that both methods
give nice pricing and real values should be in range for American and European options.
Operator splitting method for the American option guarantees that price obtained will always be greater

than obstacle function. From Figure 5.3 one can also see that price of American option is greater than price of
European option. In Monte Carlo method adapted for American option (least square approach), this feature
is not "built-in" in the algorithm, thus price obtained for the American option might be lower then price of
the European option if insu¢ cient number of simulations performed. From Figure 5.3 one can also note that
100; 000 simulations were not enough to provide this feature.

5.5 Error types and recipes

We can classify errors associated with �nite di¤erence algorithm and bring some recipes for each of them:

1. Initial Error: This type of error is usually caused by discontinuity for put and/or call options of
�
��
x=D(K) for � = 0 (initial conditions) and concentrated near small values of � and x � D (K). In

order to decrease this error regularization (smoothing) of initial conditions could be applied. Replacing
payo¤ function F (�) in (3.7) with the price of option (put or call) given by classical B-S equation
for small values of � i.e.: Vi;j;1 = P (D0(xi);K;G0(yj); T � ~�) where 0 < ~� � 1, this error could be
eliminated. Another method for decreasing this type of error is to re�ne mesh near x = D (K) using, for
example, transformation (2.16). It was found that mesh re�ning could be applied directly, but requires
some additional computational resources. Regularization of initial conditions is e¤ective but requires
carefully choose of ~� .

2. Strike Error: This error is caused by discontinuity of � at the boundary y = 0. Error arises when we
set Dirichlet condition (only for the case when mean reverting term �y = 0) on the boundary y = 0 and
concentrating near y = 0, x = K. Like in previous error type, regularization (smoothing) technique
could be applied for this type of error. Another recipe is to re�ne mesh near x = D (K) as in the
previous case.

3. Corner Error: Is concentrated near the corner point y = ymax, x = xmax, � � 0 and caused by the
fact that Neuman or Dirichlet conditions are "approximately correct". If we set in the corner point
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Figure 5.2: The residual between numerical and analytical solutions for model with Non Stochastic Volatility.
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Figure 5.3: Prices of European and American options obtained by Finite Di¤erence and Monte Carlo methods.

"smoothing" condition (3.20), error will still occur because of poor approximating possibility near the
boundaries and even more in the corner. The most natural way to reduce this type of error is to take
large value for xmax � 30K and in this case the error level will be acceptable.

4. Vega Error: This error is concentrating near y = ymax, x = D (K), � � 0 caused by the fact that Vega
V is growing quickly for at the money options. If volatility mean reverting term �y is comparable to
volatility di¤usion term �y this type of error signi�cantly decreases as V is not growing so fast any more
(this could be seen from Figure 5.1 and Figure 5.2). Re�ning mesh for at the money option x = D (K)
might reduce this error, though improvement is not dramatic. General PDE transformation allows to
remove the cross derivative term and this might signi�cantly decrease this type of error. In the next
section we are discussing possible alternative technique "Point Pinning" for reducing this error.

In order to give graphical interpretation of "Vega Error" in Figure 5.4 two analytical solutions for � = 1
are compared, �rst one is generated using "classical" SABR model (�y = 0) and second one is generated
assuming that volatility is time dependent but non stochastic NSV (�y = 0). One can easily notice that the
�rst surface is much stepper for at the money option with larger initial volatility and that causes inexactness
in �nite di¤erence approximation.

5.6 Point pinning

Basic idea of this technique is to choose a few points on the grid (inside domain or on the boundary) and set
in these points Dirichlet conditions:

Vsi;sj ;sk = D(xsi ; ysj ; � sk)
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Figure 5.4: Analytical solutions of "classical" SABR and NSV models.

where si; sj ; sk are chosen indices for the points in discrete domain, D(xsi ; ysj ; � sk) is values set on this
point. In order to �nd appropriate values for D(xsi ; ysj ; � sk) one should use supporting method,(Monte-
Carlo, Binomial Tree or use some analytical approximation in the point xsi ; ysj ; � sk). Using the supporting
numerical method in order to improve �nite di¤erence method might seem controversial, but one should not
forget that �nite di¤erence method returns "set" of solutions (as a matter of fact each grid point is price
of option) while Monte-Carlo or Tree method return solution for one isolated point in grid. Of course, time
spent on supporting numerical methods should be taken into account.
Interpretation of the point pinning approach is if one assumes that �nite di¤erence operator (3.5) acts

like most natural interpolator in between of pinned points. Note that implementing this method does not
really a¤ects the time spent on creating the matrix as only few rows (equations) should be replaced.
If we apply this method to reduce "Vega Error", then error is decreased not only in pinned point but also

in nearby domain. In Figure 5.5 residual function (error) presented for the "classical" SABR model with one
pinned point: S = 15 and � = 0:95. Comparing this with Figure 5.1 one can notice that domain (�lled with
gray color) with maximal absolute error has shrunk.
In case of the American option this technique could be further generalized. In particular, while using

the supporting numerical method, one is receiving not only the value of option but also the approximation
for the shape of the open boundary and this fact could be exploited while constructing the �nite di¤erence
method.

5.7 Accuracy versus Speed

To analyze the accuracy of algorithm and the time spent on calculation, the following experiment is performed.
We are choosing three di¤erent initial values for maturities, initial stock prices and initial volatilities for put
option with strike K = 25. After this we are plotting Figure 5.6 di¤erence (error) between the obtained
prices, in chosen points, with corresponding theoretical values for four di¤erent grid resolutions (50�50�50,
100 � 100 � 100, 150 � 150 � 150, 200 � 200 � 200) versus computational time spent for each resolution.
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Figure 5.5: Point with S = 15 and � = 0:95 is pinned.
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Figure 5.6: Accuracy, Speed, Convergence

Comparison with the theoretical value is performed for SABR model (�rst subplot) and the model with non
stochastic volatilities (second subplot). We see that the convergence toward zero is obvious, though the speed
of convergence di¤ers for di¤erent point. Also one can notice that there is no signi�cant improvement in the
convergence after resolution 150 � 150 � 150 (third point from left) and convergence to zero is much faster
for the point with lower initial volatility.
On the last subplot one can see the convergence of the absolute value of option price versus computational

time (grid resolution) for general choice of parameters. It should be mentioned that convergence speed is
mostly a¤ected by re�ning resolution w.r.t. stock price and time rather then volatility.
Computation is performed on the following machine: Intell CPU 1.8 GHz, RAM 1.00GB.

5.8 Calibration

For calibrating parameters of the SABR model we are using data for the American options written on
Royal Dutch Shell (RDSA). Data is collected for �xed time moment during trading day 2 January 2006 and
presented in the Table 5.7. All maturities are presented as a fraction of year and prices are quoted in Euros.
Note that underlying stock RDSA is paying dividends. For calibrating we are using middle (average) price
from bid-ask spread. During �tting process we calibrate not only parameters of the SABR model but also
volatility of stock, as it is not directly observable on the market. Since all option prices are taken for one
�xed moment (snapshot) of a day we will have only one additional volatility parameter � to calibrate. If
data would be collected for two di¤erent time moments, then two additional volatility parameters �1 and �2
should be taken into account and calibrated.
First set of calibrations are performed for following parameters: � - volatility of stock and "extended"
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Figure 5.7: Options prices and dividends.

SABR coe¢ cients: �, �, �, � (we assume that all parameters are constant). Risk free rate r and � are not
calibrated, but we are taking di¤erent values of � for each calibration. Results for the four calibrations with
di¤erent � are given in Table 5.8. In addition to the �rst guess of parameters and their �nal (calibrated)
values1 following data are presented in table: total time spent for calibration (in hours), number of required
iterations to reach target tolerance, count of function calls for calculating residual functional, residual for
each data point (option price), con�rmation if prices calculated with calibrated parameters are in bid-ask
spread and norm of residual functional kF (�)k. At the end of the table parameters for the MATLAB function
lsqnonlin(�)are given.
We can see that di¤erent choices of � signi�cantly changes mean reverting limit � and initial stock volatility

�, while �, � and � are changed insigni�cantly. Change of � is very much online with the results obtained
by [20] for "classical" SABR model. In "extended" case � comes into play and adjusts to di¤erent values
of �. It is interesting to note that calibrated values of � (for di¤erent choices of �) are almost equal to the
corresponding values in the "classical" model (see Table 5.10 for calibrated values of � for "classical" SABR).
Thus it is obvious that the mean reverting parameters � and � are playing main role in decreasing value of
residual functional, and produce option prices that are within bid-ask spreads.
Second set of calibrations are performed for following parameters: � - volatility of stock and extended

SABR coe¢ cients: �, �, �, � and �. In contrast to the previous set of calibrations we are additionally
calibrating � and keeping �xed only risk free rate r. From Table 5.9 one can see that it is always better to
keep � �xed, since functional kF (�)kseems to have equal minimal values for di¤erent � (so called "ditch" of
minimums with respect to �).
Third set of calibrations is performed for "classical" SABR model, i.e. following coe¢ cients are calibrated:

�, �, � while �, �, � and risk free rate r are kept �xed2 (for each calibration di¤erent �xed values of � are
taken). From Table 5.10 one can notice that some of the produced prices are not in bid-ask spread and value
of residual functional is greater then corresponding one in Table 5.8. This might not be surprising since the

1Values of r and � are kept �xed and written in white cells, while �rst guess and �nal calibrated values of parameters �, �,
�, � and � are written in colored cells.

2For "classical" SABR model � = � = 0:
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Figure 5.8: Calibration results for "extended" SABR model (� �xed).
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Figure 5.9: Calibration results for "extended" SABR model.
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Figure 5.10: Calibration results for "classical" SABR model (� �xed).

more freedom functional has the better its approximating features should be, but this is also an argument
one more time con�rming that "extended" SABR model more precisely describes stock price behavior.
Fourth set of calibrations are performed for "extended" SABR model with time dependent coe¢ cients

(for each calibration di¤erent �xed values of � are taken). During this part we assume that: � = � (�) =
�1�

3 + �2�
2 + �3� + �4is function of time and it is given as cubic polynomial. Risk free rate is also time

dependent and given in polynomial form: r = r (�) = r1�3 + r2�2 + r3� + r4. Coe¢ cients:

r1 = �2:05619348 � 10�4;
r2 = �1:33536972 � 10�3;
r3 = �3:21917123 � 10�3;
r4 = 3:10604120 � 10�2;

are found from interest rate term structure.
Calibrations are performed for the following parameters: �, �, �, � and �1, �2, �3, �4 (see Table 5.12).

Initial guesses for values of parameters �, �, �, � are taken equal to corresponding calibrated values received
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Figure 5.11: Time dependency of mean reverting limit � (�) :

during the �rst part of calibrations (see Table 5.8), this is done to avoid redundant computational time. Time
dependency of mean reverting limit � (�) could be seen in Figure 5.11.
Value of residual functional has not decreased noticeably (compared to "extended" model with constant

coe¢ cients Table 5.8), additionally one of the calibrated mean reverting limiting function � (�) takes negative
values. Negative values of mean reverting limit might partially be explained by poor approximating possibili-
ties of cubic polynomial. But, unnoticeable decrease of residual functional indicates that time dependency of
mean reverting limit could not be found out only from 24 observations (Table 5.7). It is known that in while
�tting parameters of a system number of observation should be at least 5 times greater then the number of
calibrated parameters (in our case 8).
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Figure 5.12: Calibration results for time dependent "extended" SABR model (� �xed).
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Chapter 6

Conclusion and Discussion

The main goal of our research was to:

� Compare the �extended�SABR model with the �classical�one and test how well the �extended�model
can price European and/or American options.

� Design and compare numerical methods for reproducing option prices.

� Fit parameters of both models to real market data and compare them.

The comparison of models showed that the �extended�SABR model provides higher degrees of freedom,
the result being predictable since any additional parameter inserted into the model will generalize it. But
the main question was how much new parameters (volatility mean reverting terms in our case) increases
degrees of freedom of the model and how well this extension in its turn models reality. Comparing solutions
and problem statement for �extended�and �classical�models we can make following observations. First, is
the in case of the �extended�SABR model, the boundary condition (in PDE formulation) for zero volatility
� = 0 changes from the Dirichlet type condition to the so called �smoothing�condition. Secondly, the mean
reverting term adds partial derivative w.r.t. � to partial di¤erential equation. Thirdly, under �classical�
model variance of volatility tends to in�nity, while in the �extended�model it pushed to a certain �nite limit.
Summing up all these facts one can see that extension of �classical�model provides non-trivial generalization
with a su¢ ciently high degrees of freedom and seems to model stock price behavior better.
While �tting parameters to real market data it was found that:

1. � does not a¤ect accuracy of �t neither in the �classical� nor in �extended� models. This fact is
very much online with the results obtained by [20]. In the �classical�model initial stock volatility �
adjusts to di¤erent choices of � and as a result is mostly in�uenced by the particular choice of �. In the
�extended�model di¤erent choices of � a¤ects mostly � and �, while other parameters of the �extended�
model are not noticeably changed. When � was calibrated together with the other parameters of the
�extended�model we obtained the so called �ditch�of minimums w.r.t. �, and this fact is also online
with the results obtained by [20].

2. Prices of options obtained during calibration of the �extended�model were always in bid-ask spread
in contrast to prices obtained during calibration of the �classical�model. Additionally, the residual
functional was 4 times smaller for the �extended�model. These facts once more underlines that the
�extended�model can better approximate options prices.

3. Assuming that volatility mean reverting limit � (�) is time dependent and calibrating additionally w.r.t.
this function it was found that time dependent mean reverting limit is not constant and the shape of
the curve is a¤ected by particular choice of �. While increasing the number of calibrating parameters
of the model (mean reverting limit � (�) assumed to be polynomial with unknown coe¢ cients) we are
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facing the fact that the number of the local minimums of functional might dramatically increase, thus
we might doubt if our minimum is local or global.

4. Observing decrease of the value of residual functional with number of iterations, we can conclude that
the �rst 4; 5 iterations will be enough for the options prices to drop into bid-ask spread in the case of
the �extended�SABR model, while for the classical model even 10 iterations was not enough . And
that is another fact supporting advantage of the �extended�SABR model.

While comparing the Monte Carlo method with the Finite Di¤erence method we take into account accu-
racy and speed. It was found that Finite Di¤erence method provides better approximation for the �extended�
model compared to the �classical�one. For example, the so called �Vega Error�(at the money options with
high initial volatility and big time to maturity) is greater when volatility mean reverting terms � and � are
much smaller then volatility of volatility �. Monte Carlo method seems to work with equal e¤ectiveness for
both models, but the main drawback of the Monte Carlo method is the time spent on simulation. Especially
power operations S� signi�cantly increase the calculation time when � 6= 1. Thus, the Finite Di¤erence
method seems to be an appropriate and good choice for solving this kind of problems. Additionally it should
be mentioned that one �launch�of the Finite Di¤erence method gives option prices (solutions) for each point
of the �nite di¤erence grid (i.e. for di¤erent initial stock prices, volatilities and time to maturities), while
one �launch�of the Monte Carlo method gives the solution only for one initial value of stock and volatility.
It was shown that time required for computation is incomparable. The Finite Di¤erence methods requires
80 seconds to achieve accuracy of 1 cent for option prices with di¤erent stock prices, volatilities and time
to maturities de�ned by grid points. While the Monte Carlo methods takes 10 � 15 minutes for the same
accuracy for one point only (if � 6= 1 this di¤erence is even greater). In the case of American option the
Monte Carlo method additionally stores all sample paths in order to apply list square method and this re-
quires extra waste of computational recourses. Thus, the Monte Carlo method could only be used to check
and compare di¤erent results. An additional advantage of the Finite Di¤erence method is that since option
prices are given in each grid point Greeks: �, � and V of option could be immediately computed; also using
multiple right hand sides of the system of equations (see B) volatility surface can be constructed.
Although the results are acceptable, some critical remarks should be made. This might lead to the

improvement of the results and provide recommendations for further research:

1. More general variable transformation should be applied to PDE (2.10) in order to eliminate or decrease
cross derivative and �rst derivatives w.r.t. volatility � and stock price S. Transformation could be
adapted to di¤erent choices of ��, ��, �S and this will de�nitely improve the accuracy of a Finite
Di¤erence solution.

2. Recently formula for the implied volatility similar to (1.3) was developed by [11] for the �extended�
SABR model with constant coe¢ cients. It will be interesting to check the accuracy of the suggested
formula by means of comparing it with some numerical results.

3. If formula suggested by [11] proves to be accurate and reliable, it will be interesting to apply the
technique described in A.2 and A.3 to this formula in order to adjust it for the case when some
parameters (� for example) of the "extended" SABR model are time dependent.
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Appendix A

Analytical Approximation of Solution

In this chapter we will refer to initial variables S; �; t and assume that later the transformation is performed.
Let us try to �nd solution of PDE (2.13) in the form of:

V (S; �; t) = V̂ (S; �; t) +G (S; �; t)

where V̂ (S; �; t) is price of option in analytical form, while G (S; �; t) is correction (or residual) term. Ana-
lytical form V̂ (S; �; t) is chosen (guessed) in a way to be as "close" as possible to the real value V (S; �; t) of
derivative. Possible initial guesses for V̂ (S; �; t) will be described below.
The better initial guess V̂ (S; �; t) will be, the lessen error term G (S; �; t) should be and easier to �nd it

in analytical form.

A.1 First guess - Non stochastic volatility

For the �rst guess of function V̂ (S; �; t) we are assuming that the variance of stock price is not stochastic
but time dependent and has generalized form of (5.1):

��2 (t) = P (� (t) ; E [�t] ; E
�
�2t
�
)

where E [�t] and E
�
�2t
�
are the �rst two moments for the extended model1 , while P (�) is polynomial of the

three variables with initially guessed coe¢ cients. After this substituting �� into Black Scholes formula we
will get V̂ (S; �; t). In order to correctly guess coe¢ cients for P (�) one might need to run optimization w.r.t.
mentioned coe¢ cients to reduce




V (S; �; t)� V̂ (S; �; t)


.
Further improvement of described approach is possible if one includes higher moments for stochastic

volatility and carefully choose function P (�).

A.2 Second guess - Time adjusted modi�cation

For the second guess of function V̂ (S; �; t) we are using price of derivative generated using some modi�cation
of Hagan�s formula. To modify it we are assuming that parameters ��0 and �� in (1.3)2 are time dependent
and for di¤erent t should be found from:

��0 (t) = E [�t] ;

��20 (t)
�
exp(t��2 (t))� 1

�
= V AR [�t]

1 In order to �nd �rst moments of volatility with time dependent coe¢ cients one might use technique similar to one used for
�nding (2.2), (2.3) when coe¢ cients are assumed to be constant.

2 In order to avoid confusing notation we denote by bar initial volatility and the volatility of volatility used in Hagan�s formula.
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where E [�t] and V AR [�t] are de�ned by (2.2), (2.3) for "extended" SABR model. Identically:

��0 (t) = � + (�0 � �) e��t

�� (t) =

s
1

t
ln

�
1

��20 (t)
V AR [�t] + 1

�
Such choice of parameters matches expectation and variance of volatility of "classical" SABR model for
each t with corresponding expectation and variance of "extended" SABR models. Thus we are trying to
approximate implied volatility surface for "extended" SABR model by using "classical" SABR model for
each t.
On Figure A.1 evolution of residual function G (S; �; t) in time is presented.

Figure A.1: Residual function G (S; �; t) for time adjusted modi�cation.
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A.3 Third guess - Time averaged modi�cation

This case is identical to the previous one, we are assuming that parameters �0 and � are again time dependent
but in this case we require from parameters to satisfy to the following equations:

tZ
0

��0ds =

tZ
0

E [�s] ds

tZ
0

��20

�
et��

2

� 1
�
ds =

tZ
0

V AR [�s] ds

Such choice of parameters averages w.r.t. time, expectation and variance of volatility of "classical" SABR
model with corresponding expectation and variance of "extended" SABR model.
On Figure A.2 the evolution of residual function G (S; �; t) in time is presented. Note that time averaged

modi�cation gave better results compared to time adjusted modi�cation. Additionally for time to maturity
less then 0:2 residual is smaller then 1 cent.

Figure A.2: Residual function G (S; �; t) for time averaged modi�cation.
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Appendix B

Implementation

The program code for performing numerical simulation and testing di¤erent algorithms associated with
described theory is generated in MATLAB. Below we describe three techniques (tricks) used during program
code development for speeding up the simulation:

� Sparse triplets. Sparse matrix allows user to work with huge matrix with overwhelming majority of
zero elements. In order to store this matrix in memory the MATLAB automatically creates so called
vector of sparse triplets:

i1; j1; a1
...

in; jn; an

and stores all non zero elements of matrix as a sorted vector with triplet consisting of: row number i,
column number j and element value a. Vector is sorted with respect to column indices j (that is to
speed up solution of matrix equation using Gaussian elimination method). While assigning non zero
value to some element of sparse matrix, MATLAB�s algorithm each time automatically forces to run
column sorting in order to preserve sorted structure. This might not be time consuming when the user
is working with few non zero elements, but in case when each non zero element of sparse matrix should
be calculated separately (�nite di¤erence stencil for example) that requires a lot of computational time.
In order to speed up matrix generation we create vector of sparse triplets and add up new triplet for
each non zero element of matrix (of course without intermediate sorting). After all non zero elements
of matrix are stored in the vector of sparse triplets we use MATLAB�s function sparse(�) to transform
the vector of sparse triplet into sparse matrix. Described technique might seem naive and simple but
it reduces time spend to sparse matrix generation immensely. For example, if �nite di¤erence matrix
40000�40000 requires approximately 40 seconds for generation, then using the described computational
trick the time reduces to 0:6 sec.!!! This e¤ect is especially noticeable when �nite di¤erence matrix has
many non zero elements and it should be generated for each time step (for problem with time dependent
coe¢ cients).

� Multiple strikes () Volatility surface. In the program code we implemented additional feature
which allows us to simultaneously solve a problem for di¤erent �nal payo¤s (for example puts and/or
calls with di¤erent strikes). Generating multiple right hand sides1 B for matrix equation AX = B
and solving it simultaneously we can obtain solution for di¤erent �nal payo¤s. This trick allows us not
only to receive solution for di¤erent puts and/or calls, but also to reconstruct volatility surface. For
example, after �nding solutions for the puts (with di¤erent strikes) we can immediately �nd surface
of implied volatility (with respect to strikes and times to maturity). In case of the American options
this technique works in the same way, but in this case not only multiple right hand sides should be

1Boundary conditions de�ne right hand side of matrix equation.
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generated, but also multiple auxiliary functions and multiple obstacles (see sections 2.4 and 3.2.3). The
time spent on solving matrix equation with multiple right hand sides is negligible comparing to the
time spent on solving the problems separately.

� Parallel computing. This technique is not implemented in the program code, but should be men-
tioned separately. While applying to the most time consuming algorithm of calibration of parameters
(up to 10 hours), this method can immensely speed it up. Calibration of parameters assumes that
residual functional should be minimized in the space de�ned by parameters. Minimization problem
assumes calculation of gradient i.e. of Hessian matrix (matrix consisting of partial di¤erences of resid-
ual functional). In order to �nd partial derivatives one should calculate value of functional in a few
points2 . And calculation could be performed in parallel (i.e. for each point separately). This could
decrease time spent on calibration (i.e. 10 hours spent on calibration of 4 parameters reduces to 2
hours). Additionally, parallel computing could be used for generating �nite di¤erence matrix for time
dependent parameters.

2 In initial point and points with increments w.r.t each coordiante. Thus if we minimising functional in three dimensional space
(three parameters) we should calculate value of functional in initial point (x; y; z) and in (x+�x; y; z), (x; y+�y; z),(x; y; z+�z).
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Appendix C

Formulas for �nite di¤erence

Finite di¤erence w.r.t. x

�x [Vi;j ] =
Vi+1;j � Vi�1;j

2�x

_�x [Vi;j ] =
Vi�2;j � 8Vi�1;j + 8Vi+1;j � Vi+2;j

12�x

��x [Vi;j ] = �
3Vi;j � 4Vi�1;j + Vi�2;j

2�x

�2x [Vi;j ] =
Vi+1;j � 2Vi;j + Vi�1;j

�x2

_�
2

x [Vi;j ] =
�Vi�2;j + 16Vi�1;j � 30Vi;j + 16Vi+1;j � Vi+2;j

12�x2

�2�x [Vi;j ] =
Vi;j � 2Vi�1;j + Vi�2;j

�x2

Finite di¤erence w.r.t. y

�y [Vi;j ] =
Vi;j+1 � Vi;j�1

2�y

_�y [Vi;j ] =
Vi;j�2 � 8Vi;j�1 + 8Vi;j+1 � Vi;j+2

12�y

��y [Vi;j ] = �
3Vi;j � 4Vi;j�1 + Vi;j�2

2�y

�2y [Vi;j ] =
Vi;j+1 � 2Vi;j + Vi;j�1

�y2

_�
2

y [Vi;j ] =
�Vi;j�2 + 16Vi;j�1 � 30Vi;j + 16Vi;j+1 � Vi;j+2

12�y2

�2�y [Vi;j ] =
Vi;j � 2Vi;j�1 + Vi;j�2

�y2

Finite di¤erence w.r.t. �

�+� [Vk] =
Vk � Vk�1

��

_�+� [Vk] =
3Vk � 4Vk�1 + Vk�2

2��

��+� [Vk] =
11Vk � 18Vk�1 + 9Vk�2 � 2Vk�3

6��
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Cross derivatives:

�2x;y [Vi;j ] =
Vi+1;j+1 � Vi�1;j�1 � Vi�1;j+1 + Vi�1;j�1

2�x�y

�2+x;y [Vi;j ] =
Vi;j+1 � Vi;j�1 � Vi�1;j+1 + Vi�1;j�1

2�x�y

�2x;+y [Vi;j ] =
Vi+1;j � Vi�1;j � Vi+1;j�1 + Vi�1;j�1

2�x�y

�2x;�y [Vi;j ] = �
Vi+1;j � Vi�1;j � Vi+1;j+1 + Vi�1;j+1

2�x�y

�2+x;+y [Vi;j ] =
Vi;j � Vi�1;j � Vi;j�1 + Vi�1;j�1

�x�y

�2+x;�y [Vi;j ] = �
Vi;j � Vi�1;j � Vi;j+1 + Vi�1;j+1

�x�y

�̂
2

x;y [Vi;j ] =
1

2�x�y
[Vi+1;j+1�2Vi;j +Vi�1;j�1 ]�

�x

2�y
�2x [Vi;j ]�

�y

2�x
�2y [Vi;j ]

��
2

x;y [Vi;j ] =
�1

2�x�y
[Vi+1;j�1�2Vi;j +Vi�1;j+1 ] +

�x

2�y
�2x [Vi;j ] +

�y

2�x
�2y [Vi;j ]
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