A
&

University of Twente
Enschede - The Netherlands

On Access Network Identification

and Characterization

Master Thesis
Rafael Ramos Regis Barbosa

Telematics Programme (MTE)
Chair for Design and Analysis of Communication Systems (DACS)
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
University of Twente, The Netherlands

Supervisors:
Dr. ir. Pieter-Tjerk de Boer (UT/DACS)
Dr. ir. Geert Heijenk (UT/DACS)
Dr.ir. Aiko Pras (UT/DACS)

June 2009

“There is nothing like looking, if you want to find something. You certainly
usually find something, if you look, but it is not always quite the something you

were after.”

J.R.R. Tolkien

Abstract

The proliferation of portable computing devices, such as laptops, netbooks,
PDAs and smart phones, increased the demand for wireless network connectivity.
The deployment of IEEE 802.11 Wireless LANs (WLANSs) appears as an attractive
solution for providing network connectivity in enterprises and universities, and in
public places like conference venues and airports. The use of 802.11 WLANS brings
new challenges to network administrators. They need to understand the extent of
wireless usage to properly allocate the networks resources, such as Access Points
(APs).

In this report we propose a novel approach for the identification of access net-
work types from passive measurements performed in an aggregation point of the
network backbone. Based on basic characteristics of Ethernet and 802.11 proto-
cols, like transmission rates of the links and duplex capabilities of the medium, we
show that it is possible to distinguish TCP flows that cross these types of networks.
As a side effect, our method provides information on the transmission rate in which
the protocols are operating in. We validate our findings using traces generated in
a semi-controlled laboratory environment and “real-world” traces collected at our

university campus network.

Acknowledgements

I would like to thank everyone that somehow helped me finish this thesis. To
thank my advisors Pieter-Tjerk and Geert for our discussions in (quasi) weekly
meetings and constructive comments on the report, even on short notice. I would
like to thank Aiko that provided some useful ideas that are part of this work. I
would also like to thank my friends and my girlfriend Aleksandra that made this
time in the Netherlands two of the best years of my life. Last but not least, I
am grateful to my parents Florencio and Angela, who always supported me, even

when I decided to study overseas.

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1

Introduction

1.1 Problem Statement
1.2 Approach
1.3 Outline.

Background Information

2.1 FEthernet
2.2 802.11 Wireless LANo
2.3 Acknowledgements in TCP
2.4 Related Work
2.5 Datasets

Intel/Torino Reproduction
3.1 Classification Algorithm
3.2 Results Discussion oL

ACK Inter-arrivals Study

4.1 Inter-ACK Time vs. Inter-data Time
4.1.1 CRAWDAD and Simpleweb tests
4.1.2 Laboratory tests

4.2 Inter-ACK Time observations
4.2.1 Capturing on theair
4.2.2 Analysis of wireless link traces
4.2.3 500us-bin Histograms

The Inter-ACK Time Distribution
5.1 Link Transmission Capacities

iv

viii

11
13
17

19
19
21

24
25
25
27
29
30
31
32

36

Contents

vii

5.1.1 Ethernet
51.2 802.11
5.1.2.1 &802.11b .

5.1.2.2 802.11a/802.11g

5.1.2.3 802.11g wit
5.2 Duplex Capabilities

h CTS-to-Self

5.3 The Inter-ACK Time Distribution

5.4 Practical Aspects
5.4.1 TCP ACK in Differe
5.4.2 ACK-pair Detection

6 Validation
6.1 Laboratory Traces
6.1.1 Ethernet results . .
6.1.2 802.11 results . . .
6.2 UT Traces
6.2.1 Ethernet results . .
6.2.2 802.11 results . . .
6.2.3 Unexpected Results

7 Conclusion and Future Work

Bibliography

nt OS’s

37
37
39
40
40
43
45
48
48
51

52
52
93
95
29
60
61
65

69

71

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3

4.1

4.2

4.3
4.4

4.5

4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.9

6.1

6.2

6.3

Problem Scenario

The basic medium access method (adapted from [1]).
Laboratory Setupo

PMF Entropy
Result of Torino/Intel algorithm for CRAWDAD traces.
Result of Torino/Intel algorithm on a Simpleweb Location 6 traces.

Inter-ACK Time vs Inter-data Time for CRAWDAD and Sitmpleweb
Location 6 traces.
Inter-ACK Time vs Inter-data Time for CRAWDAD and Sitmpleweb
Location 6 traces zoomed on the origin.
Inter-ACK Time vs Inter-data Time for a WLAN Laboratory trace.
Inter-ACK Time vs Inter-data Time for an Ethernet Laboratory

Data points concentrated in multiple of 125us indicating the preci-

sion of the measurements.
The inter-ACK time for the first 40 ACK-pairs.
ACK-pair distribution histogram for a Mac OS 802.11 connection. .

ACK-pair distribution histogram for a Mac OS Ethernet connection.

ACK-pair distribution histogram for a Windows 802.11 connection.
ACK-pair distribution histogram for a Windows 802.11 connection.

The full-duplex case.
The half-duplex cases.
Sketch of the PDF for the inter-ACK time for Ethernet
Sketch of the PDF for the inter-ACK time for 802.11
Inter-ACK time for an 100Mbps Ethernet connection where the

second ACK in the pair is sent in reply to 1, 2, 3 and 4 data segments.

Inter-ACK time for an 100Mbps Ethernet connection in Windows

Inter-ACK time for an 100Mbps Ethernet connection in Linux ker-
nel 2.6.
Inter-ACK time for an 100Mbps Ethernet connection in Mac OS
Leopard.

18

20
22
22

26

26
28

28

29
32
33
33
34
35

44
45
46
47

o1

53

54

54

List of Figures ix
6.4 Inter-ACK time for an 10Mbps Ethernet connection in Mac OS
Leopard and Linux. 55
6.5 Inter-ACK time for an 10Mbps half-duplex Ethernet connection on
Mac OS Leopard. 56
6.6 Inter-ACK time for 802.11 connections in Windows XP. 57
6.7 Inter-ACK time for an 802.11 connection in Windows XP using
125ps and 500ps bins.o o7
6.8 Inter-ACK time for 802.11 connections in Mac OS Leopard. 58
6.9 Excerpt from a TCP connection captured on the wireless hop gen-
erated using a Mac OS client. 59
6.10 Data points concentrated in multiple of 50us indicating the preci-
sion of the measurements. 60
6.11 Inter-ACK time for 100Mbps Ethernet connections. 61
6.12 Inter-ACK time distribution for different number of observations. 62
6.13 Inter-ACK time distribution suggesting a 802.11 station using OFDM
operating at 36Mbps. 63
6.14 Inter-ACK time distribution suggesting 802.11 stations using OFDM
operating at 36Mbps with fewer ACK pairs. 64
6.15 Inter-ACK time distribution suggesting 802.11 stations transmit-
ting at different datarates. L. 65
6.16 Inter-ACK time distribution suggesting 802.11 stations using DSSS
operating at 11Mbpso 66
6.17 Inter-ACK time distribution for a possible 1Gbps Ethernet host. . . 67
6.18 Inter-ACK time distribution for a VPN host. 67
6.19 Inter-ACK time distribution for an ADSL host. 68

List of Tables

5.1 Transmission times for 802.11b 40
5.2 Transmission times for 802.11a/802.11g 41
5.3 CTS-to-self overhead (Tpror) - - -« « v v v v v i 42
54 Tspg for 802.11g with CTS-to-self 42

Chapter 1

Introduction

The proliferation of portable computing devices, such as laptops, netbooks, PDAs
and smart phones, increased the demand for wireless network connectivity. The
deployment of IEEE 802.11 Wireless LANs (WLANSs) [1] appears as an attractive
solution for providing network connectivity in enterprises and universities, and in

public places like conference venues and airports.

802.11 networks bring some new challenges to network administrators. As
wireless nodes tend also to be mobile, they can access the network from different
points in a short period of time, affecting different parts of the infrastructure. It is
also hard to guarantee Quality of Service (Qos) parameters in these environments
due to the unpredictable nature of the wireless medium. It is useful to understand

the extent of wireless usage to properly allocate the networks resources, such as
Access Points (APs).

The main goal of this work is to derive traffic characteristics from wireless and
wired connections based on passive measurements performed in an aggregation
point of the network backbone. We describe a method to differentiate hosts using
these access networks based on differences in their transmission rates and duplex
capabilities. As a side-effect, we are also able to infer the transmission rate at

which these hosts access the network.

Identifying the access network type from this types of measurements is not
an easy task to perform. The Medium Access Control (MAC) headers contain
useful information regarding the network type, however they are replaced in every

link crossed in the communication path, thus are not available in the monitoring

Chapter 1. Introduction 2

point. Our method extracts a timing signature created by the access link, based
in measurements at the TCP/IP level. Moreover, wireless access points are not
invisible to conventional topology discovery tools such as tracepath, as they operate
at the IP level.

A possible application of our method is the discover of unauthorized access
points. The detection of wireless connections in portions of the infrastructure
reserved to wired access indicates the existence of such rogue access points. Besides
representing a clear security problem, they may interfere with other nearby APs,

causing also performance problems.

Our technique also can be used to monitor the performance of the wireless
networks. The identification of links operating at lower than expected transmission
rates provide useful information to network administrators, as adding new APs or
simply repositioning the existing ones could make the network perform better and

increase radio coverage.

1.1 Problem Statement

Consider the scenario depicted in Figure 1.1: a local network that consists of wired
and wireless clients. This network is connected via an arbitrary topology to servers
in the Internet. A network traffic monitor is deployed in this local network in a
way that it is able to capture packets exchanged between clients and servers in
both directions. Our main objective is to be able to differentiate connections made
from wired Ethernet and wireless 802.11 clients based on timing characteristics of
the captured traffic. We are also interested in deriving some characteristics from

the wireless networks, such as the transmission rates in which they are operating.

Our method is based on the behaviour of Transmission Control Protocol (TCP)
connections in which most of the data is downloaded from the servers, and conse-
quently, TCP Acknowledgements (ACKSs) are generated in response by the clients.
By studying the interval of consecutive ACKs in the monitoring point we observe
that the duplex capabilities and transmission rates of Ethernet and 802.11 proto-

cols leave a signature that allows us to distinguish them.

Two basic assumptions are made in this work. The first is that the access

network link is the one with the smallest capacity, i.e. smallest transmission

Chapter 1. Introduction 3

rate. The presence of a link with smaller capacity on the path from the client
to the monitoring point would destroy the timing signature created by the access
network link. It is reasonable to assume that the access link is the bottleneck, as

core networks are normally over provisioned.

The second assumption is that the monitoring point is near to the clients, this
is to limit the effect of cross-traffic in our measurements. The closer the monitoring
point is to the client the clearer characteristics from the access network can be
visualized. We believe that performing the capture in some aggregation point near

the client it is not a difficult task.

Ethernet
Link

Arbitrary Arbitrary
Topology Topology

Monitoring
Point

TCP DATA

TCP ACKs >

FIGURE 1.1: Problem scenario

1.2 Approach

The following approach is used in this research work. With a literature study
we collect detailed information on the functioning of the access network protocols
considered: Ethernet and 802.11. We also perform a review of the TCP acknowl-
edgement mechanism, which is of great importance for our identification method.
This literature study includes a research on the state of the art in access network

identification.

Using two public available data sets [2, 3] and measurements performed in a
semi-controlled laboratory environment we perform a series of experiments that
allow us to see how the studied protocols behave in practice. Based on the results
obtained, we describe a visual access network classification method described in
Chapter 5.

Chapter 1. Introduction 4

Finally we validate our findings with further experiments in our laboratory and

“real world” traces collected at our campus university.

1.3 Outline

The remaining of this document is organized as follows. In Chapter 2 we provide
some background information on the problem of access network identification,
including a review of Ethernet, 802.11 and TCP protocols, an overview of related

work and a short description of the used data sets.

In Chapter 3 we discuss our attempt to reproduce the results of one of the

related works, presented in [4].

The works proposed in [5, 6] serve as a starting point for Chapter 4, where we

perform a series of studies on the ACK inter-arrival times.

This preliminary work leads to the description of the distribution of ACK inter-
arrivals in Chapter 5. This chapter includes a detailed discussion of the effects of
transmission rates and duplex capabilities on this distribution. Also some practical

issues are discussed.

In Chapter 6 we present the validation our method, using traces generated on
semi-controlled laboratory experiments and real-world network traces collected at

our university.

Finally in Chapter 7 we present our conclusions and future work.

Chapter 2

Background Information

In this chapter we introduce some background information related to this thesis.
In Sections 2.1, 2.2 and 2.3 we discuss important aspects on the studied protocols:
Ethernet, 802.11 Wireless LAN and TCP. Section 2.4 we discuss some of the
related work found in the literature. Finally, in Section 2.5 we describe the data

sets used throughout this work.

2.1 Ethernet

Ethernet is the de facto standard for wired Local Area Network (LAN) originally
designed by Bob Metcalfe and David Boggs in the mid-1970s. In its first version,
it used a coaxial bus (the ether) to interconnect the nodes. In this topology the
bus serves as a broadcast LAN, where all transmissions are received by all nodes
connected to it. At a given time only one node can be transmitting, otherwise a
collision occurs, thus this medium is said to be half-duplex. The Medium Access
Control (MAC) mechanism is defined by the carrier sense multiple access with
collision detection (CSMA/CD) protocol. The basic functioning of this protocol

can be described as follows [7]:

1. If the channel is idle, an adapter may transmit at any time, that is, there is

no notion of time slots.

2. If the adapter senses a transmission from another adapter it never starts a
transmission, that is, it uses carrier sensing. As soon as the medium is free

again, the adapter can start its the transmission.

5

Chapter 2. Background Information 6

3. If a collision is detected, the adapter aborts the current transmission and
transmits a jam signal to make sure that every other adapter will also detect

the collision, that is, it uses collision detection.

4. After a collision an adapter waits for a random interval of time before at-
tempting a retransmission. This is said to be an exponential backoff phase
as, the interval increases exponentially with the number of collisions. Specif-
ically, after experiencing the nth collision, the adapter picks a random num-
ber K at random from the contention window {0,1,2,...,2™ — 1} where
m = min(n, 10). The adapter then waits for a period equal to K x 512 bit

times before attempting a retransmission.

Note that this protocol suffers from an unfairness issue. Following item 4
above, when a collision occurs, each node has to wait for a random period before
a attempting a retransmission, and, as the contention window increases with the
number of attempts, this period also tends to increase. The problem occurs when

a node continues to “win” the dispute for medium access.

For example, consider the case where a node A and a node B try to access an
idle channel at the same time, causing a collision. Both nodes select a random
number between 0 and 1, and use it to calculate their backoff time. Consider that
node A chooses a lower backoff time. Node A then starts its transmission and
node B will not transmit, sensing the busy medium. If node A has more frames to
transmit, another collision will happen. Once again node A will choose a random
number between 0 and 1, but node B chooses its backoff between 0 and 3 (as it is
its second attempt). Clearly node A has a higher probability of gaining access to
the medium at this time. Actually as long as node A has new frames to transmit
it will have a higher and increasing probability to get access to the medium. This
problem is well known and normally referred to as the channel capture effect. The
number of packets consecutively transmitted by the node capturing the channel

can potentially be hundreds of packets or more [§].

In the mid-1980s, a new topology was introduced. The coaxial bus was replaced
by twisted-pair cables, the widely know 10BASE-T, connected via a hub in a star
topology. The hub is a physical device that repeats every incoming bit in a given
interface to every other interface. Consequently this new hub-based star topology
is still a broadcast LAN, which is half-duplex and also suffers from the channel

capture effect.

Chapter 2. Background Information 7

Switched Ethernet was introduced in the early 1990s, and has become dominant
in current installations [7]. In this version the nodes are still connected in a star
topology, but in its center the hub was replaced with a switch. This new device is
considerably more intelligent than a hub. Instead of simply reproducing the bits
received in a given interface to all others, switches are capable of learning the MAC
addresses from the nodes connected to it. Basically the role of a switch is to receive
a link-layer frame, find the interface connected to its destination and forward it to
the correct output interfaces. Switches also have the ability to temporally store
frames, as the amount of received traffic to be forwarded to a given interface can
be higher than the link capacity of that interface. If one received frame is destined
to a link that is occupied, the switch stores this frame and forwards it as soon as

the link is free again.

Modern switches and Ethernet adapters are full-duplex, i.e. a switch and a
node can both send frames at the same time without causing a collision. Current
switched Ethernet deployments are thus a collision-free environment where the

CSMA /CD protocol is no longer necessary.

The transmission rate of Ethernet depends on the actual technology used. The
original paper in which Ethernet was described reports an experiment running
at 3 Mbps, while current technology offers transmission rates up to 10 Gbps. In
this work we only consider two of the typically used technologies, the 10BASE-T
and 100BASE-T, which refers to 10 Mbps and 100 Mbps twisted-pair copper wire,

respectively.

2.2 802.11 Wireless LAN

The IEEE 802.11 Wireless LAN standard [1] specifies a family of Wireless LANs
(WLANS), which are one of the most important access network technologies ex-
istent. In this work we only consider the 802.11a, 802.11b and 802.11g versions,
which are the most commonly used today. When discussing common aspects of

these versions, we refer to them simply as 802.11.

In this work we consider only 802.11 infrastructure-based networks. This ar-
chitecture has the Basic Service Set (BSS) as its fundamental building block. A
BSS is formed by a central base station, know as Access Point (AP) and one or

more wireless stations. BSS may be connected to each other via a distribution

Chapter 2. Background Information 8

system to increase wireless coverage, forming an Extended Service Set (ESS). This
distribution system is normally connected to other networks, through a logical

element referred to as portal in the standard.

Although these technologies have major differences in the physical layer, e.g.
the frequency range utilized and the maximum transmission rate they support,
they all provide medium access in the same way: CSMA with Collision Avoidance
(CSMA/CA). This means that before a transmission an 802.11 node always senses
the medium, but unlike Ethernet, 802.11 does not implement collision detection.
The first reason why this is not done is that collision detection would require
the ability to simultaneously send and receive signals. Because the power of a
transmitted signal is, in most of the cases, much higher than the power of a
received signal, it would be too expensive to build a radio capable of detecting
collisions. The second reason is that even if the radio was able to transmit and
receive at the same time it would still not be able to detect all collisions due to the

hidden terminal problem [7]. 802.11 connections are thus half-duplex by design.

The basic CSMA/CA functioning depicted in Figure 2.1 can be described as
follows. If a node senses the medium idle for more than a Distribute Inter-Frame
Space (DIFS) period it is allowed to transmit. If the medium is sensed to be busy,
the node waits for the duration of a DIFS and enters the exponential backoff phase.
In this phase the node chooses a random backoff time from a contention window,
which is defined in terms of a reference slot time (the number of slots and their
duration is technology dependent). When the medium is idle again, the node has
to wait for a new DIFS period and starts its backoff timer. If the medium is still
free when the backoff period is over, the node gets access to the medium and can
start its transmission. However if the medium becomes busy before the node is
allowed to transmit (i.e. another station has a shorter backoff time), the node has
lost this cycle and has to again wait for the medium to be idle for a DIF'S period

before attempting to gain access to the medium again.

To provide some fairness, if a node does not get access to the medium in one
cycle, it stops its backoff timer. After the medium is again idle for a DIF'S period,
it resumes the timer. As soon as the timer is over the node will get access to
the medium. This means that deferred nodes have some advantage over stations
that just start to contend for the medium, as they have to wait for only for the

remainder of their backoff timer from previous cycles [9].

Chapter 2. Background Information 9

Immediate access when medium

is free for a period >= DIFS L DIES contention window—3

%D.FH s Jsws| | /[T][]] e
T

defer access

slot time

select backoff time and decrement
as long as medium is idle

FIGURE 2.1: The basic medium access method (adapted from [1]).

It is important to note that this backoff procedure is also performed after a
successful transmission. After a transmission the node selects a random backoff
time to be utilized for the next transmission, even if there are no other nodes
transmitting. This is done to avoid the channel capture effect present on Ethernet.
As a side effect two frames transmitted back-to-back over a wireless hop using

802.11 are always be separated by a random time period.

The 802.11 MAC protocol also defines acknowledgement (ACK) frames. After
correctly receiving an 802.11 frame the receiver accesses the medium after wait-
ing for a Short Inter-Frame Space (SIFS) period. As the SIFS period is smaller
than the DIFS, the receiver has priority over other nodes. The ACK frame is a
confirmation that the previous frame was received correctly, which is important in
error-prone environments such as wireless connections. If after a transmission an
ACK frame is not received has to content form medium access, entering the expo-
nential backoff phase described above. For each retransmission attempt the sender

doubles its contention windown, as in the CSMA /CD protocol used in Ethernet.

The transmission rates for 802.11 protocols depend on the actual technology
used. In the original standard the transmission rate is, at maximum, only 2Mbps
using Direct Sequence Spread Spectrum (DSSS) with 11-chip Baker sequence and
Differential Quadrature Phase Shift Keying (DQPSK) modulation.

The 802.11b standard, which has been added as an amendment to the original
standard, describes a new physical layer that provides transmission rates up to
11Mbps by using 8-chip Complementary Code Keying (CCK) as the modulation
scheme. This new capability is referred to as High Rate DSSS (HR/DSSS), and
it is compatible with the original physical layer. The standard also states that all
control frames may be exchanged at basic data rates (i.e. the ones defined in the

original standard) to keep backwards compatibility.

Chapter 2. Background Information 10

Two packet formats are standardized for 802.11b; they are basically formed
by a Physical Layer Convergence Protocol (PLCP) preamble, a PLCP header and
the payload. Basically these headers provide means for the nodes to synchronize,
perform energy detection (for carrier sensing), etc. and they also contain infor-
mation such as transmission rate, length of payload and error checking. The first,
and mandatory, format is called long PLPC PPDU, which is 192-bit long (PLCP
preamble plus PLCP header) and is transmitted at 1Mbps. The short PLPC
PPDU, the second format, has defines a smaller 72-bit PLCP preamble which is
transmitted at 1Mbps and uses the same PLCP header, but it is transmitted at
2Mbps. For both formats, the payload can be transmitted up to 11Mbps.

802.11b operates in the 2.4 GHz ISM band which is divided into 14 channels.
Depending on national regulations, a different number of channels is actually used.
For instance, in the US and Canada 11 channels are used, while in Europe, with

a few exceptions, 14 channels.

In 802.11a defines a new physical layer which offers up to 54Mbps using Orthog-
onal Frequency-Division Multiplexing (OFDM). To achieve this transmission rate,
216 data bits are coded into an OFDM symbol and transmitted using 64-QAM
modulation. Due to the nature of OFDM, the packet format defined by 802.11a
is quite different from the one defined in 802.11b. It can be divided in PLCP
preamble, signal and data. The PLCP preamble is used for frequency acquisition,
channel estimation and synchronization. It is 12 symbols long and it takes 16us
to be transmitted. The signal field contains information such as the data rate and
modulation of the rest of the packet and length of payload. It is 1 symbol long and
it is transmitted at 6Mbps using BPSK modulation. The data field contains infor-
mation to synchronize the receiver, the upper layer payload and padding, which

guarantees that the number of bytes of the frame maps to an integer number of
OFDM symbols.

802.11a operates in the 5 GHz band, which depending on national regulation
represent a different frequency range. For instance, in the US, the FCC autho-
rized three domains for the US, 5.15-5.25 GHz, 5.25-5.35 GHz and 5.725-5.825
GHz, while in Europe the ETSI defined two frequency bands, 5.15-5.35GHz and
5.47-5.725 GHz. Depending on the actual band in use, different non-overlapping

channels are available.

Chapter 2. Background Information 11

Finally, 802.11g also uses OFDM for modulation, achieving transmission rates
up to 54 Mbps, using a physical layer very similar to the one defined in 802.11a,
but it operates at the same 2.4 GHz band as 802.11b. Protection mechanisms
are necessary to allow co-existence of 802.11b and 802.11g nodes in the same
BSS as they define incompatible physical layers. Two are the defined protection
mechanisms: RTS/CTS and CTS-to-self which basically consist in the exchange
of extra frames to reserve the medium for a given amount of time. In the following
we describe the CTS-to-self mechanism, which is present in some of the data sets

used in this work.

The medium reservation is defined by means of the Network Allocation Vector
(NAV), which is an indicator of time periods when a transmission should not be
initiated, even if nodes sense the medium as idle. When the CTS-to-self mechanism
is in use, before transmitting a frame at a non-basic data rate (like the ones defined
in 802.11g) a node must distribute NAV information, to reserve the medium.
For that the node transmits a CTS frame at basic data rate with its own MAC
address (the CTS-to-self). This frame contains a duration value that protects the
transmission of the pending frame and the ACK to be sent in response. As a
result other nodes that receive the CTS-to-self frame, including the 802.11b nodes
that are not able to understand ODFM modulation, refrain from transmitting
during the NAV duration. Clearly this mechanism reduces the throughput offered

to upper layer protocols.

Is important to note that the transmission rates reported in this section simply
describe how fast the physical layer can transmit a frame once the medium access
is obtained. When calculating the effective transmission rates that 802.11 proto-
cols make available to higher layer protocols is important to consider the delays
introduced by the CSMA /CA protocol, such as the slot time and the inter-frame
spaces (SIFS and DIFS).

2.3 Acknowledgements in TCP

The Transmission Control Protocol (TCP) is, together with the Internet Proto-
col (IP), one of main protocols of today’s Internet protocol suite. It provides a
connection-oriented, ordered delivery and reliable transport service used by a num-

ber of traditional applications, such as the Hypertext Transfer Protocol (HTTP),

Chapter 2. Background Information 12

Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP) and Secure
Shell (SSH). TCP is defined in a series of documents known as Request For Com-
ments (RFC). [10] provides a “roadmap” to the RFC documents relating to the
Internet’s TCP.

TCP provides a logical end-to-end (abstracts the network connecting the hosts),
point-to-point (always involves only two hosts) and full-duplex connection between
processes running of different hosts. TCP ports are used to deliver the data to
the right process, in a process called demultiplexing. A TCP connection can be
uniquely identified by the IP addresses of the communicating hosts plus the TCP

ports chosen for the connection in both ends.

It provides a reliable delivery service that is based on the use of sequence
numbers, acknowledgments (ACKs) and timers. In TCP data is viewed as an
ordered stream of data, and, to reflect this view, the sequence number used in
a transmitted segment represents the byte-stream number of the first byte in
the segment. The sequence number allows data to be delivered orderly in the
destination, regardless of any disordering or packet loss that may occur during

transmission.

Receivers confirm the correct reception using a cumulative acknowledgment
scheme, where the receiver explicitly sends an acknowledgment informing that it
received all data preceding the acknowledgment number. Consider the transmis-
sion from segments from a Host A to a Host B. In this scenario every incoming
segment in Host B has a sequence number for the data flowing from A to B. The
acknowledgment number that Host B puts in its segment is the sequence number
of the next byte Host A is expecting from Host B [7]. The use of sequence numbers
and acknowledgment numbers allows the correlation of data segments with their

respective ACK segments.

When a host sends a segment over a TCP connection, it starts a timer, if it
is currently not running, and passes the segment to the network layer for trans-
mission. The value of this timer is based on the Round Trip Time RTT which is
constantly estimated by TCP. In case the timer expires before an ACK for that
segment is received, a retransmission is triggered. When receiving an ACK that
is acknowledging one or more previously unacknowledged segments the timer is

restarted.

Chapter 2. Background Information 13

While this covers the basis of the reliable transfer, TCP contains a series of
improvements over this basic method, such as selective acknowledgments, fast
retransmit and delayed acknowledgments. We are particularly interested in the
last mechanism, which determines how ACKs should be generated. The main idea
of this mechanism is to reduce the required bandwidth for as TCP connection by
sending less than one ACK segment per data segment received, which is referred
to as a “delayed ACK”.

These are the requirements for the delayed ACK mechanism [11]:

A TCP SHOULD implement a delayed ACK, but an ACK should
not be excessively delayed; in particular, the delay MUST be less than
0.5 seconds, and in a stream of full-sized segments there SHOULD be

an ACK for at least every second segment.

It is important to note that by RFC documents conventions [12], the word
MUST means that the definition is an absolute requirement of the specification
while SHOULD means that there may exist valid reasons in particular circum-
stances to ignore a particular item, that is, it represents a recommendation rather

than a requirement for compliance.

The main reasoning is that a delayed ACK gives the application an opportunity
to process the received data and perhaps to send an immediate response. As the
acknowledgement information can be piggybacked in a data segment, this avoids

the transmission of one TCP segment.

2.4 Related Work

Network measurements have been used to study the performance and user behavior
in wireless networks [13, 14]. These works provide valuable information about
typical characteristics of wireless environments. [15] observes differences in TCP
connections established by wired and wireless clients. Characteristics like delay,
losses and termination of TCP connections are studied, but no classification scheme
is proposed. In [16] is proposed that wireless and wired access networks can be
differentiated based on the RTT of probe packets. The classification mechanism

described in this work assumes high loss and low bandwidth on the wireless link. In

Chapter 2. Background Information 14

contrast, our method is based in differences on how the considered access networks

provide medium access.

Packet inter-arrival times were originally used to solve problems related to
capacity or available bandwidth estimation, using both active, where packets are
injected on the network, and passive measurements, where the traffic is captured
as it passes by a network device (e.g. sniffer). Pathrate [17] and CapProbe [1§]
are examples of the use of packet inter-arrival times in active measurements for
this purpose, while in tools like Nettimer [19], multiq [20] and pprate [21] passive

measurements are used.

In recent research work, packet inter-arrival times have been use for the iden-
tification of access networks, either using active measurements [22], or analysing
passively captured traffic [4, 5]. These works exploit differences between 802.11
and Ethernet protocols transmission bandwidth and on how they provide medium
access. By analyzing the interval between packets, they propose classification

methods for access network identification.

In these works the use of two metrics are recurring: entropy and median. These
metrics were chosen to reflect some of the basic characteristics of the protocols and
the medium where they operate. First, 802.11 protocols operate in a shared half-
duplex medium, where collision/contention is expected to happen. Also link-layer
retransmission can occur depending on the conditions of the wireless medium.
These conditions may vary depending on the distance from the client to the access
point (AP) and on the level of interference present. It is also important to keep
in mind that these protocols determine that if a station is to send two or more
back-to-back packets, they should be separated by a random backoff even if no
other station is transmitting. Ethernet connections on the other side normally

operate on full-duplex dedicated link, as discussed in Section 2.1.

From this one should expect that the inter-arrival times of packets crossing a
wireless hop are fundamentally more random when compared to the ones crossing
an Ethernet link. The entropy metric is used to measure the uncertainty associated
with the random variable that represents these inter-arrival times. It is necessary
to discretize the inter-arrival times in order to calculate its entropy, and different
bin sizes are proposed. The entropy of a discrete random variable X with possible

values {z1, ..., z,} is defined as

Chapter 2. Background Information 15

n

H(X) ==Y p(x;)log, p(xs), (2.1)
i=1
where the function p(x) denotes the probability mass function of X and b is the
base of the logarithm used. When b = 2 the entropy is said to be expressed in
bits.

The median is a type of average defined as the middle value of a distribution.
At most half of the observations are lower than the median and at most half
of the observations are higher than the median. It can be found by sorting all
observations in ascending order, i.e. from the lowest to the highest value, and
then selecting the middle one. In case there are two middle values, the mean of

them represents the median.

The median of inter-arrival times of packets is a useful measure that can cap-
ture differences in the transmission rate of the protocols, and also on how they
provide medium access. For instance, 802.11 protocols explicitly acknowledge data
frames with a control frame, which leads to larger median values when compared
to Ethernet, where these link-layer acknowledgements are not used. Median is

preferred to mean as it is more robust against the presence of outliers.

The work proposed in [22] is based on transmission of packet pairs (a packet
pair contains two back-to-back packets) from a sender to a receiver. The receiver
then classifies the sender using entropy and median of the inter-arrival times of
packet pairs. Three classes of endpoints are defined: Ethernet (high-bandwidth
wired), 802.11 (wireless LAN) and ADSL/Cable/Dial up (low-bandwidth wired).
To distinguish the access networks the classification scheme uses fixed thresholds
for entropy and median, which are calculated using in a simplified analytical model.
The need for cooperation between sender and receiver is the major shortcoming

of this approach and why it does not apply to our scenario.

In the first passive approach [5] classification is done using so called ACK-pairs,
two TCP ACKs generated in response to data segments that arrive close in time
at the measurement point. The idea behind this approach is that the time interval
between the ACKs in a pair (inter-ACK time) can be used to determine whether
the TCP flow crosses an 802.11 hop or not. An analytical model similar to the one
used in [22] is used to study the effects that the access link have on the inter-ACK

Chapter 2. Background Information 16

time. As a conclusion of this study they state that deterministic classification of
802.11 and Ethernet flows based on fized thresholds for the median inter-ACK

time would not provide accurate results.

Motivated by the results taken from this analytical model, they propose an
probabilistic method to classify the flows according to their access network type.
For each TCP flow the median inter-ACK time is fed into an iterative Bayesian
inference algorithm which classifies the flow. Although the algorithm is claimed
to have a low inference error, downsides of this method are: (1) it classifies flows,
not endpoints; (2) it does not use the network traces efficiently, as TCP flows tend
to contain a low number of ACK-pairs; and (3) it requires a training set of TCP

flows from which 802.11 and Ethernet observation distributions can be obtained.

Rather than describing a method to differentiate wireless and wired endpoints
which based in the median of inter-ACK time intervals as in [5], we analyze the
effects of the access network technologies on the inter-ACK time distribution. We
describe the general behavior of this distribution for different scenarios, and show

how it can be used for the classification of access network types.

The second passive approach [4] is also based on the interval between two con-
secutive segments in the monitoring point, although this method does not restrict
the evaluation to ACK-pairs and uses both TCP and UDP segments. The only
restriction is that two consecutive segments in a 5-tuple (IP source/destination ad-
dresses, transport source/destination ports and transport protocol) are less than
10ms apart. The classification algorithm is based on the entropy of inter-arrival
time of segments in a pair. For the two data sets used in the evaluation, the
authors claim to have high classification accuracy when more than 200 intervals
are used for classification, although in our tests this approach did not perform
well. Our attempt to reproduce the results presented in this work is discussed in
Chapter 3.

The ACK-pair technique is also used on [6] with the goal of identifying end-
points connected to rogue (unauthorized) access points. The downsides previously
mentioned were addressed to some extent by using sequential hypothesis test [23],
with and without training data. However they report that the accuracy of the

method without the use of a training set is considerably lower than the one with

Chapter 2. Background Information 17

it and in addition to that, the method without training is only capable of report-
ing 802.11 endpoints, in contrast with the sequential hypothesis test with training
reports both WLAN and Ethernet endpoints.

2.5 Data sets

In this work we use four sets of tecpdump/libpcap [24] traces: two traces are from
publicly available data sets, traces generated in a semi-controlled laboratory envi-
ronment and traces collected in our campus university. The first of these data sets
is the CRAWDAD data set Dartmouth/Campus [2]. It consists of packet headers
for wireless communication captured in some buildings of their university cam-
pus. In total, twenty two 802.11b access points were monitored. The monitoring
point was connected to the same switches used by the access points. Through port
mirroring, all traffic on the ports connected to access points is copied to the port

connected to the monitoring point.

The second data set is the Simpleweb / University of Twente - Traffic Mea-
surement Data Repository [3]. More specifically we use traces from Location 6.
The description of this data set states that it has been made on the 100 Mbps
Ethernet link that connects an educational organization to the Internet. More-
over all workstations on the location, 100 approximately, have a 100 Mbps LAN

connection.

The semi-controlled laboratory environment built for our tests is represented in
Figure 2.2. On a server installed on an arbitrary location in our campus network we
run the chargen service [25] as a traffic generator. When a client opens a TCP con-
nection to this service, chargen generates an arbitrary sequence of characters until
the connection is closed. We perform tests from different clients, varying hardware
and operating system, connected to both Ethernet and 802.11g networks. On the
server, our monitoring point, we record all chargen connections for subsequent
analysis. We refer to this laboratory environment as semi-controlled because we
can determine the time and duration of the chargen connections, but we have
no control on parameters like the quality of the wireless link and the amount of

cross-traffic on the path, and these parameters tend to change throughout the day.

The last data set used consists in packet headers collected in our university

campus in August of 2007. The capture was performed in the 1Gbps link that

Chapter 2. Background Information 18

5 Ethernet
Q y Link
% I

Eth. Client

Arbitrary
Topology

N - Server/
8|0_|2.11 Monitoring Poi
v *®

NLAN Client

Client Network

TCP DATA

TCP ACK:

FIGURE 2.2: The laboratory setup.

connects part of the student houses to a router which is connected to the univer-
sity’s internet service provider. The IP addressing scheme allows us to distinguish
4 types of hosts by their connection type: Ethernet, 802.11 WLAN, Virtual Pri-
vate Network (VPN) and ADSL. However we do not have information on the
actual access network technology used. For instance it is possible that the Ether-
net connections consist in a mixture of 10 Mbps, 100Mbps and 1Gbps hosts. Both
802.11a and 802.11b/g APs are present in our network, so it is possible to have
hosts with 802.11a, 802.11b (using CTS-to-self protection) and 802.11g network

cards. Finally, this data set presents a considerable amount of packet loss.

From this point on we simply refer to these data sets respectively as CRAW-

DAD, Simpleweb Location 6, Laboratory and University of Twente (UT) traces.

Chapter 3
Intel /Torino Reproduction

For the goal of identifying the type of access network we considered to reproduce
some of the results presented in the related work. The simplicity of the classifica-
tion method described on [4] is the main reason behind this reproduction attempt.

From this point on we refer to this method as Torino/Intel.

This Chapter is organized as follows. In Section 3.1 we present the proposed
classification algorithm in details. In Section 3.2 we analyze our results and discuss

reasons why this classification method might not present high accuracy.

3.1 Classification Algorithm

The first step in this classification method is to separate the network trace based on
IP address source. For each source, a second separation is made based on 5-tuple!
flows. The interval between two consecutive packets in a flow is then computed
and only the ones smaller than (on [4] nomenclature) Trrr = 10ms are kept. Two
values are then calculated, (1) H;p, the empirical entropy using b = 2 (see Eq. 2.1)
calculated on the whole IP-source aggregated traces, and (2) Hps, the empirical
entropy of the largest 5-tuple flow (in terms of number of inter-arrivals) for each

IP-source trace. The variation of entropy is defined as AH = H;p — Hyp5.

Algorithm 1 shows how the classification is performed (the authors use the term

detection in contrast classification used in this work). The thresholds proposed

15-tuple consists in IP source and destination address, transport protocol (TCP or UDP) and
transport source and destination ports

19

Chapter 3. Intel/Torino Reproduction 20

on the work and the ones used on our tests are the same: Hj,uer = 3.5bits,
H,pper = Hbits, and AHppygr = 0.5. Their values are based on Figure 3.1, which
shows the Probability Mass Function (PMF) of entropy computed over a training
dataset (no information on the contents of this training set is given). As can be
observed, the majority of wireless flows is where H;p >= Hj,uer while the wired
flows are concentrated where Hip <= Hjper. It is worth noting that some wired
flows have Hrp >= Hj,er and also some wireless flows have Hip <= Hjyyer SO

this method cannot be expected to have 100% accuracy.
0.2

—#— wired
0.181-| — & —wireless

016

0.14 -

PMF of Entropy
o o o
o o o 4.
(o] (o] — n
T
—
= 3

(=]
?
1
-
*

o

o

n
1o}
o

H
@
@

=]
-
B
b
D
b

(=}
n
w
P
ol —
@
~

Entropy, [bits]

FIGURE 3.1: Probability Mass Function of entropy (copied from [4]).

In the interval in the range Hjower, Hypper bits the two distributions are super-
imposed. For flows in this region the variation of entropy is used as discriminator.
It is argued that for wireless hosts, the uncertainty measured by H;ps already
accounts for the effects introduced by wireless transmission. As a consequence,
adding other smaller 5-tuple flows has a marginal impact on the value of the ag-
gregated entropy resulting in a low AH. In the case of wire hosts, instead, the

variation of entropy is driven by different factors. When AH is measuring the

Algorithm 1: Classification Algorithm
if Hip <= Hipper then
L. The host is wired
else if H;p >= H,pp.r then
L The host is wireless
else if Hipper < Hrp < Hypper then
if AH >= AHTHR then
L. The host is wired

else if AH <= AHrgr then
L The host is wireless

Chapter 3. Intel/Torino Reproduction 21

impact of aggregating different flows. By adding more outcomes the distribu-
tion defined over a limited interval becomes more informative, i.e. the aggregated

entropy grows [4].

3.2 Results Discussion

To test the algorithm we used CRAWDAD and Simpleweb Location 6. Traces
from the CRAWDAD data set are also used on [2]. Figure 3.2 shows the outcome
of our implementation of the Torino/Intel algorithm for a trace from CRAWDAD
data set. Only the endpoints containing 200 or more pairs of packets are showed,
situation in which the algorithm is argued to present better results. The method
classifies correctly 41 out of 49 endpoints (remember that on this data set all traffic

is generated by wireless endpoints).

In a more detailed analysis of the traces we study what could have been the
cause of the misclassification of some endpoints. The traces for the five endpoints
that have empirical entropy lower than 3.5 present a large number of packets
with the same timestamp. This is probably due some inaccuracy in the capture
procedure and causes low empirical entropy value. For two consecutive packets
to have the same timestamp, the interval between them should be smaller than
1ps (timestamp precision in the libpcap format) which, given the packets size and
link bandwidth, should not be feasible. The other three misclassified points have
empirical entropy near the threshold H,,,,., = 5, so this error can be explained by

the method inaccuracy as explained before.

The results for Simpleweb Location 6 are shown on Figure 3.3. Again, only
endpoints with 200 or more packet pairs are considered. Here only 95 out of 154
endpoints were correctly classified (remember that on this data set all traffic is
generated by wired endpoints). By analyzing the traces in more depth we see that
some flows present a large variation on the time between packets, which causes the
entropy value to be large. This suggests that simply classifying endpoints based
the empirical entropy of the interval between consecutive packets is ineffective as

both wireless and wired traces can present high empirical entropy.

The entropy of packet inter-arrival can be a useful metric for the classification
of access networks, but we believe this method fails to identify a timing behavior in

transport layer connections that could be distorted or randomized when crossing

Chapter 3. Intel/Torino Reproduction 22

55

élassified és Wireles‘s + +
Classified as Wired ~ x

4.5

35

)
z
= +
2 3
S
€ +4
@ 25
5 + o+
c + 4
S 2
g X +
r>\: 15 + H
. o+
+ +
1 X +, T
iy
0.5 ¥
x +
0 i tr w T
+
-0.5
15 2 25 3 35 4 45 5 55 6 6.5

Entropy of aggregated flows [bits]

FIGURE 3.2: Result of Torino/Intel algorithm for CRAWDAD traces.

5.5 T T T
Classified as Wireless ~ +
5 Classified as Wired ~ x
45
4
"
w 35 +
3
> i+
g 3 X i
5 x X gt i
& 25 ik
.- X
o X X +
»5) % % ++
8 » o
5 X x X + +
> 15 - < % X -
« x + +
1 X x X xi +
% x % e %}(% % i
X X X
X X XX
05 5 i R ¥ +
% X X XX + +
+ Tk + i
o % « n + +
¥
x N +
-0.5
15 2 25 3 3.5 4 4.5 5 55 6 6.5

Entropy of aggregated flows [bits]

FIGURE 3.3: Result of Torino/Intel algorithm on a Simpleweb Location 6 traces.

a wireless link. Simply considering consecutive packets that are less than 10ms
apart is not a good method to find packets that are sent back-to-back over a TCP
or UDP connection as suggested in this work. For instance, when considering two
1500-byte packets (typical MTU size) sent back-to-back over a 10Mbps link, the
interval between the packets is expected to be 1.2304ms, less than 15% of the

considered value. In faster links, this interval would be even smaller.

Also no assumption is made about the environment where the traces are made,
so the inter-packet time could be seen as random (or with high entropy) for a
number of reasons. For instance, an application could generate the packets in this

fashion. In [20] it is shown that TCP connections facing queues in a congested

Chapter 3. Intel/Torino Reproduction 23

link can cause the probability density function (PDF) of the inter-packet time to
have multiple peeks separated by equally-spaced mode gaps. This can be seen as
packets that were sent back-to-back facing different amounts of cross traffic in this
congested link. This is another behavior that makes the inter-packet time of a
wired Ethernet connection to have high entropy and thus be wrongly classified as

wireless by this method.

Chapter 4

ACK Inter-arrivals Study

As good results are not achieved in our reproduction of the classification method
proposed in [4], we change our focus to the techniques proposed in [5, 6]. These
works show that the inter-arrival times of consecutive ACKs on the monitoring
point can differ significantly depending on whether the connection crosses a wire-
less hop or a wired Ethernet link. Differently from Chapter 3, we do not simply
attempt to reproduce results of these works. We study the effect that the 802.11
and Ethernet protocols have on the inter-ACK time distribution searching for any

pattern that can be useful for differentiating Ethernet from 802.11 connections.

For the series of experiments described in this chapter we consider TCP connec-
tions where a client mainly downloads data from a server and sends pure ACKs!
in reply. For every pair of consecutive ACKs on the monitoring point we record
the time between the ACKs (inter-ACK time) and the time between the respec-
tive data segments (inter-data time). The only restriction on the detection of such

ACK-pairs is that we discard cases where segments are retransmitted or reordered.

In this chapter we perform a series of studies that give us some insight on how
the behavior of such inter-arrival times. This is the basis for the description of
the distribution of inter-ACK times for both wired and wireless connections that

is discussed in Chapter 5.

!'Pure ACKs contains no user-level data, i.e. only link, IP and TCP layer headers including
possible options.

24

Chapter 4. ACK Inter-arrivals Study 25

4.1 Inter-ACK Time vs. Inter-data Time

In this first study we try to find some relation between the inter-ACK time and
the inter-data time. Here we analyze how the intervals between consecutive ACKs
behave in different timescales. We plot a series of graphs of the inter-ACK time
versus the inter data-time to gain some insight on data sets. In the first group of
tests we extract ACK-pairs from randomly selected TCP flows existent on traces
from CRAWDAD and Simpleweb Location 6. Later we perform the same study

on traces collected on our laboratory environment.

4.1.1 CRAWDAD and Simpleweb tests

In Figure 4.1 we show the result for these tests. The inter-ACK and inter-data
intervals of ACK-pairs present on the selected wireless CRAWDAD flows are repre-
sented by red crosses and the Ethernet ones in blue asterisks. No clear distinction
between Ethernet and 802.11 connections can be made at this timescale. It can
be observed that in cases where one of the intervals is large the other also is, i.e.
if inter-ACK is larger than 200ms also is the inter-data time, and vice-versa. Also
most of the intervals are concentrated near the origin, which is expected since in
all considered protocols the time to transmit a full-sized TCP data segment (1500
bytes) is less than 2ms.

Figure 4.2 shows the same graph in a much smaller time scale, namely from 0
to 10ms in both axis. Two support lines are included: z = 500us and y = 1.2ms.
500us is roughly the minimum time to transmit one ACK in an 802.11b network,
so we would expect not to have any inter-ACK time from a CRAWDAD connec-
tion left of this line. We believe that such small inter-ACK times are caused by
limitations on the accuracy of the timestamp in this data set. 1.2ms is roughly
the minimum time to transmit a full-sized TCP data segment (1500 bytes) over
a 10Mbps link. As all Ethernet points below this line are less than 1500 bytes
long, this is an indication that the traffic is crossing a 10 Mbps link. Because of
the TCP delayed ACK mechanism, clients should send an ACK for every second
data segments received, so many of the inter-data time represent the transmission
time of two data packets. The concentration of inter-data intervals approximately
at 2.4ms, roughly the time to transmit two data packets over a 10Mbps link, is

another indication that the traffic would be crossing a link with this capacity.

Chapter 4. ACK Inter-arrivals Study 26

1.4 T T
802.11 - Crawdad +
Ethernet - Location 6 X
1.2
S X
1
O
) 0.8
X
g x % X
o}
g X
g 06
=
0.4
+
0.2
X &
X
x X X
0 XX
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Inter ACK time (s)

FIGURE 4.1: Inter-ACK Time vs Inter-data Time for CRAWDAD and Sim-
pleweb Location 6 traces.

Another interesting behavior in this graph is that the inter-ACK times are
distributed in vertical lines spaced 125us from each other. We have no plausible
explanation for this fact. Our last observation is that a large number inter-ACK
intervals for Ethernet connections tend to concentrate near the origin, while for

802.11 they are more spread, not being concentrated at any region.

0.01 T
802.11 - Crawdad + X
Ethernet - Location 6 X
X
X X
X
0.008 |- + T e
X
X
+ X
2 0.006 |----500us
£ o :
<
g ’ +
© +
g X
£ 0.004 ¥
£ % N
s
X R « <
X X x X
+
0.002 P T
X >><(X X+>< X% -+
+ + + X4 X 3: x 1 X 1.2ms
B T, $i+++ +F +1+¢ ¢¥£ +£§+11 e e +
- $jr+¢++x** F e T F + +
0
0 0.002 0.004 0.006 0.008 0.01

Inter ACK time (s)

FIGURE 4.2: Inter-ACK Time vs Inter-data Time for CRAWDAD and Sim-
pleweb Location 6 traces zoomed on the origin.

Chapter 4. ACK Inter-arrivals Study 27

4.1.2 Laboratory tests

We also perform this study on data generated in our laboratory. For this pre-
liminary work we use a Mac OS client connecting to both 802.11 and Ethernet
access networks. A series of traces of chargen flows are recorded, and we choose a
representative flow for each access network type. The following graphs are plotted

using these flows, unless noted otherwise.

As on the tests on the previous data sets we observe some relevant behaviors
on small timescales. Due to the amount of ACK-pairs found in these traces we
divide the results of 802.11 and Ethernet in two different graphs. On Figure 4.3
are present the results from the 802.11 trace. The most striking behavior is the
scarce number of ACK-pairs in the interval [0.0005,0.001]s represented by the
green support lines, in comparison with other regions of the graph. Another point
to be noted is that even for small inter-data interval times (lower than 500us),
the inter-ACK interval is rather spread over the plotted interval. On the Ethernet
connection, plotted on Figure 4.4, it is clear that most of the data points are
concentrated near the origin, having both inter-data and inter-ACK times smaller
than 500pus.

By observing the graphs more carefully, in a even smaller timescale, the points
plotted seems to be concentrated in lines spaced 125us from each other. As the
pattern is observed on both axis, opposed to only the z axis (inter-ACK time)
in CRAWDAD traces, we believe that this value represents the accuracy of our
measurement method. This is clearly illustrated in Figure 4.5, which shows the
inter-ACK and inter-data times for a selected Ethernet connection. This behavior

is recurrent in all measurements done in our laboratory environment.

By the results of this study we identified some behaviors that might be used for
the differentiation between Ethernet and 802.11 protocols. First, Ethernet inter-
ACK times tend to be concentrated in low timescales, while for 802.11 the inter-
ACK times are more spread. This is expected given the differences in transmission
rate and on the use of the back-off mechanism in 802.11 protocols. Second, for
the laboratory traces, we have a clear absence of ACK-pairs with inter-ACK time
on the [0.0005,0.001]s interval. This behavior is not clear on the CRAWDAD
traces, but it is possible that it is simply not visible because not enough data

points are present. Our next step is to understand if this gap is caused by an

Chapter 4. ACK Inter-arrivals Study

4

==

i 3 3 I++ + + * + o+
500us 1ms + + ot N i + 7.
e o | i + + 4 + + T .
o * tr Pyt P +
Ena [* + + I +
= | + + + +
¢*$+1+ | + oA+ N i + A :
0.008 e ' 7 7 FUUE
i+ | +4 + 4t + + +
! | + + £+ i +
+) ! + + + o+ + +
H [R 2 + + +
FoF T | hy t + + + +
cail ! + L F o ¥ + T
e i b T + o+ + T + +
! ! + 4 +
g i+ o+t - ES + 4t T T+ *oi g + +
@ e | ! o N T + +
L 0.006 FrE gt o e B Sa + +
P = + o o+ T + ++ + +
= R T + ot Tt T *
1= I I + + + + 4 + +
= | | + 4 + + +
= | o+ o+ + o+ + + +
1 ! + u o+ T +
L T RO
1 1 + o4 + + o
T + H+
°© | | +¢:+I# R = T+ o+ + . 4
5 ARN R T TR ks I + + +
2 0.004 | S 4 + o + +
. For : T e + S
= e [t T pats T LS R + ot LA +
| | T
& [S U = U TR S S + F
i o - a
! [e e + oot ooy
| IS ¥ e+ T T + * R
| | +5 + T - T+ s oal t
I % S = R L R T A
mAlEC o 1++¢+++ T S + + oy
0.002 e L
- L A e s Fass S F
! f n
‘ ! s LA e ORI IT O+ o +
! | + + g *;trJr ++~#+ ++++ i + h + + ++
,L,,,,L S S, N S + ,,,,j},,,j’f,,,,,,,,,i,,,,,,,,,,,j: ,,,,,,,,,,, Ims
i
i +
+
7777777777 T e
+ o+ et + +
0 A e, T e e

0 0.002 0.004 0.006 0.008 0.01
Inter ACK time (s)

FIGURE 4.3: Inter-ACK Time vs Inter-data Time for a WLAN Laboratory

trace.

0.01 —

500ps 1 ms
<
0.008 "
X
B 0.006 [t
[} | 1
£ x|
] P
= L
° L
5 oo
£ 0.004 e
= x
X
¥
0.002 |-

S B S S R R 1ims
i X
7777777777 g S00US
0.004 0.006 0.008 0.01

Inter ACK time (s)

FIGURE 4.4: Inter-ACK Time vs Inter-data Time for an Ethernet Laboratory
trace.

Chapter 4. ACK Inter-arrivals Study 29

intrinsic characteristic of 802.11 protocols, and as such, can be used for access

point network identification.

4.2 Inter-ACK Time observations

The objective of the set of experiments reported in this section is to study how
packets from TCP connections are transmitted over a wireless hop, and try to
identify there the reason behind the gap in the graph represented in Figure 4.3.
For that we repeat our experiments on the laboratory setup, but this time, we use

a third machine to monitor the connection on the wireless hop.

Note that to study the wireless hop would not be sufficient to perform the
capture at the client-side, as packets sent by the client are copied to the trace
before they are delivered to the network card. For this reason their timestamps
would not reflect the time they are actually transmitted over the air. For the
same reason it is not possible to observe link-layer retransmissions performing the

capture at the client-side.

By performing the capture on the wireless hop with a third machine we have
a better precision in timestamps, as their calculation takes into account the time

in which the frame was actually transmitted over the air (and thus received by

1250

1125

1000

875

750

625

Inter-data time (ps)

500

375

250 ;é ? *
125 B¢ é& *‘

¥
125

S

0
0 250 375 500 625 750 875 1000 1125 1250

Inter-ACK time (us)

FIGURE 4.5: Data points concentrated in multiple of 125us indicating the
precision of the measurements.

Chapter 4. ACK Inter-arrivals Study 30

this machine). Furthermore, this setup also makes possible to observe link-layer

retransmissions.

4.2.1 Capturing on the air

Performing a network capture in a wireless link is tricky. It is necessary to perform
a few steps to guarantee that the right information is being captured. First,
in order to capture management/control frames, e.g. RTS, CTS, ACK, etc., it
is necessary to select the right link-layer header type, as 802.11 adapters often
transform 802.11 data packets into “fake” Ethernet packets before supplying them
to the host, and, even if they don’t, the drivers for the adapters often do so
before supplying the packets to the operating system’s networking stack and packet
capture mechanism [26]. It might also be necessary, as it is in our case, to set
the network card to the monitor mode, which allows it to capture traffic without
associating to an access point. Note that this concept is different from promiscuous
mode, which should also be used. Setting the network card to promiscuous mode
determines that all packets received by the card should be delivered to the host,

and not only the ones addressed to it.

Also it is important to select the right channel before starting the capture.
Some monitoring tools like kismet [27] can operate in channel hop mode, captur-
ing traffic from each of the channels for a small period, allowing the discovery of
some information about all wireless networks in range. For instance it is possible
to obtain the MAC address of an AP and its clients. In our tests we use kismet to
find the channel used by our client in the chargen connection. Note that depend-
ing on the link quality, the client associates itself to another access point, which
possibly operates in another channel, making necessary to check this information

periodically when tests are being made.

Last, it is common that all wireless traffic is encrypted, making all information
but the link-layer header to be unreadable after capture. One could still try to
infer the content of the packets based on the MAC addresses, size and timestamp
of the packets, comparing with information from unencrypted packets captured
in another point of the network, e.g. on the client. However this is not a trivial
task to do, possible problems are: the client could have been transmitting packets
from another connection, link-layer retransmissions, the order of the packets in a

connection might be different when observed from different points of the network,

Chapter 4. ACK Inter-arrivals Study 31

etc. We were able to completely avoid this problem by setting an unencrypted

connection to the access point.

4.2.2 Analysis of wireless link traces

After properly setting up our environment we start our tests. We establish a
chargen connection with a wireless client, monitoring the connection both on the
wireless hop and on the server. Using the trace generated by the server we identify
the ACK-pairs. We them perform an in-depth analysis on the transmission of first
40 ACK-pairs on the wireless hop. On Figure 4.6 we plot the inter-ACK time
for these pairs using the frame number of the first packet in the ACK-pair as an
identifier. As before we plot two support lines to represent the [0.0005,0.001]s

region. Note that only one pair, the one with identifier 264, is in this region.

We divide the ACK-pairs in three groups, depending on how they were trans-
mitted on the wireless hop. The first group is formed by the ACK-pairs that were
sent back-to-back packets, and it contains 10 pairs. All packets that are below the
0.5ms line are in this group. The pair 264, which has inter-ACK time of 0.504ms,
is also in this group. The second group is formed by the pairs that had at least one
TCP data segment from the same connection transmitted in between the first and
the second ACKs of the pair. This group has 14 pairs and their inter-ACK time
varies from 1.615ms to 3.874ms. The last group is formed by the 16 remaining
pairs which faced some cross-traffic between the ACKs in a pair. For this group
the inter-ACK times vary from 2.841ms to 33.495ms. This division motivates the
gap seen on the inter-ACK interval for wireless transmission, the first group is in

the left side on the gap and the other two groups are on the right side.

The measurement in the wireless link also allows us to obtain detailed infor-
mation on the quality of the wireless hop at the moment of the capture. We can
observe that our network uses the CTS-to-self protection mechanism, which causes
all stations that to want to transmit to reserve the medium with a CTS frame.
Furthermore we see that all control frames are exchanged at 1Mbps, while the
data frames from the monitored chargen connection are exchanged at 54Mbps.
Under this conditions, including the CTS, data and ACK transmission times and
the interframe times, it takes roughly 442us to transmit a pure ACK and 658us
a full-sized TCP data segment. Details on the transmission time calculation are

given on Section 5.1. These values explain the division seen on our measurements.

Chapter 4. ACK Inter-arrivals Study 32

35 T T T T T T T
{ 802.11 - Laboratory —+—
|
I
30 \“ 1
|
|
/
25 | | | |
|
|
| \
—~ 20 | i
M | ‘
£ 1 ‘
2 I |
Foas b \ C 7
| ‘\\ [
| “\ ‘
|
10 + [\ [E
/ A \ :
ARNATER |/
/ | \ /
/ \ \ |/ ¥ \
A \| \ 4 / Vv \ //X/ /Xﬁ s
0 [i \i” P I |\4/"‘\// 1 i\./ 10.5ms
0 50 100 150 200 250 300 350
ACK-pair ID

FI1GURE 4.6: The inter-ACK time for the first 40 ACK-pairs.

For the group of back-to-back ACK-pairs, the inter-ACK time is approximately
the transmission time of one ACK, and thus smaller than 0.5ms, while for the
second group the inter-ACK time includes at least the transmission time of an

ACK plus and TCP data segment, and thus bigger than 1ms.

4.2.3 500us-bin Histograms

For a better visualization of this peek-gap-peek behavior we plot in Figure 4.7 a
histogram for the wireless connection as follows. On the horizontal axis, time is
divided in bins of 500us. The vertical axis represents the fraction of ACK-pairs
with inter-ACK time in each of these bins. As discussed in Section 4.1.2, the
measurements on the laboratory traces tend to concentrate in clusters separated
by 125us intervals (see Figure 4.5). We want that all points in these clusters
contribute for the same bin on the histogram, as they likely represent the same
measure. To accomplish this we define the beginning of the histogram to be
—62.5 instead of zero, i.e. the first bin covers all inter-ACK times on the interval
[—62.5,437.5)us, the second covers the interval [437.5,937.5)us, and so on. The

gap can be clearly observed in this representation.

In Figure 4.8 the same type of histogram is plotted to an Ethernet connection.
As observed before, inter-ACK times are concentrated on small timescales. When

comparing to the histogram both histograms the differences are obvious.

Chapter 4. ACK Inter-arrivals Study

0.35 T T T T T

8|02.11 - Labloratory —

03 | 1

0.25 -]

02 R

0.15 | 1

Fraction of pairs

01 | 1

0.05 | i

0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Inter-ACK time (us)

FIGURE 4.7: ACK-pair distribution histogram for a Mac OS 802.11 connection.

0.9 T T T T T T T T
— Ethernet - Laboratory ———

0.8 - B

0.7 - R

05 1

04 R

Fraction of pairs

02]

0.1 B
0 — L I L L 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Inter-ACK time (us)

FIGURE 4.8: ACK-pair distribution histogram for a Mac OS Ethernet connec-
tion.

Chapter 4. ACK Inter-arrivals Study 34

We then try to verify the generality of the peek-gap-peek behavior using a
different wireless client, running the Windows XP operating system. The results
are shown on Figure 4.9. No gap is visible on this graph, but this is due to the
position of the bins the histogram. In the Mac OS test, the inter-ACK times
for pairs transmitted back-to-back contribute to the first bin in the histogram,
i.e. they are smaller than 437.5us. For this test, the inter-ACK times for back-
to-back pairs are concentrated at 500us, thus contributing to the second bin on
the histogram. When ACK-pairs have at least one data packet transmitted in
between, the inter-ACK time increases to approximately 1100us (442us + 658us),
contributing for the third bin.

0.16 T T T T

' 802.11 - Lé\boratory Wlindows —

0.14 - 1

0.12 B

0.08 |- R

Fraction of pairs

0.06 - 1

0.04 - 1

0.02 i

0 1 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Inter-ACK time (us)

F1GURE 4.9: ACK-pair distribution histogram for a Windows 802.11 connec-
tion.

To show that the peek-gap-peek is still present on this trace, we plot the graph
in a slightly different way. We reduce the size of the first bin to 125us, keeping the
size of every other bin in 500us. The result is shown on Figure 4.10. In this graph,
the back-to-back pairs still concentrate on the second bin, which now represents
the interval [62.5,562.5)us. But pairs that have at least one data packet in between
are now contributing to the forth bin, representing the interval [1062.5, 1625)us.
It is possible to observe that the gap in the inter-ACK time between back-to-back
pairs and pairs with at least on data segment in between still exists, but in a
different position. We come back to this issue on Chapter 6, where we discuss the

observations made in the laboratory experiments in more details.

Chapter 4. ACK Inter-arrivals Study 35

I 802.11 - Léboratory Wlindows [—
0.16 - 4

0.14 - 1

0.12] B

01 |]

Fraction of pairs

0.06 R

0.04 - 1

0.02 R

0 1000 2000 3000 4000 5000 6000 7000 8000
Inter-ACK time (us)

FI1GURE 4.10: ACK-pair distribution histogram for a Windows 802.11 connec-
tion.

This study showed us the impact that the half-duplex nature of the wireless
medium had in the inter-ACK time as seen from the server. As ACKs flowing
from the client to the server compete for the medium with data segments flowing
in the opposite direction we expect to see a gap on the distribution of inter-ACK

times distinguishing the cases where ACKs are transmitted back-to-back or not.

Chapter 5

The Inter-ACK Time

Distribution

The results of the ACK inter-arrivals study show that it is possible to observe
characteristics from wireless connections on the passively captured traffic. In this
chapter we describe in more details what characteristics of the access networks
impact on the distribution of inter-ACK time, and it should be distributed from

a theoretical point of view.

Throughout this chapter we assume the scenario described in Section 1.1. This
scenario consists of a local network with both wired and wireless clients connected
through a arbitrary topology. This network connects to external servers on the
Internet. A monitoring point is deployed in a way in which it is capable of captur-
ing traffic exchanged between local and external endpoints in both directions. We
monitor TCP connections in which data flows downstream and acknowledgements
upstream, with respect to the client. We assume that the access link of the clients
is the communication bottleneck, i.e. these are the links with smaller transmission

capacity, and the monitoring point is located near to them.

This chapter is organized as follows. In the first two sections we discuss factors
that have large impact on the distribution of the inter-ACK times: the transmis-
sion capacities of links and the duplex capabilities of the medium. Based on this
information we describe the theoretical inter-ACK distribution in Section 5.3. We
close this chapter with some practical issues on the identification of ACK-pairs in
Section 5.4.

36

Chapter 5. The Inter-ACK Time Distribution 37

5.1 Link Transmission Capacities

As discussed in Chapter 2 Ethernet and 802.11 protocols have different transmis-
sion rate capacities. We consider Ethernet links to be of 10Mbps or 100Mbps, and
802.11 protocols to range from 1 to 54Mbps. Clearly when observing the interval
between consecutive ACKs the transmission capacity of the studied link will have
a large impact on the distribution of such intervals. Here we make estimates of
how long it takes to transmit the TCP data and ACKs segments over different
link types. This analysis is based on [28].

For our analysis we assume that all TCP data segments are 1500 bytes long,
which is a typical Maximum Transmission Unit (MTU) for the studied protocols.
We also assume that ACKs have no user data, i.e. they consist of 40 bytes (20
bytes from IP header and 20 bytes from TCP header without options) plus link-
layer encapsulation. The use of TCP options, such as timestamp, would not have
a big impact on this analysis, as for TCP data segments the TCP options are
included on the 1500 bytes MTU and for ACKs they would only add a few bytes

of overhead, and thus a few microseconds on their transmission time.

5.1.1 Ethernet

We start our analysis with the simpler case, the Ethernet. This protocol adds
38 bytes per packet of overhead, consisting of inter frame gap (12 bytes), MAC
preamble (8 bytes), MAC source and destination address (6 bytes each), type (2
bytes) and cyclic redundancy check (CRC - 4 bytes). This totalizes 1538 bytes
for a TCP data segment. As Ethernet have requires that the minimum frame
payload to be 46 bytes, the 40-byte long ACK segment is padded with 6 extra
bytes, totalizing 84 bytes. The transmission of TCP data and ACK segments over
a 10 Mbps link takes respectively 1230.4us and 68.8us, while the transmission
over a 100Mbps link takes respectively 123.04us and 6.88us.

5.1.2 802.11

For 802.11 protocols 36 additional bytes of data are added during the encapsulation
process to the payload data by two distinct headers. The first 28 bytes form the

Chapter 5. The Inter-ACK Time Distribution 38

MAC header, which consists of frame control (2 bytes), duration ID (2 bytes),
addresses 1 to 3 (6 bytes each), sequence control (2 bytes) and CRC (4 bytes).
Note that the field address 4 defined on the standard is only used when packets
are transmitted between two access points over a distribution system [1]. In every
other situation this field is omitted, which is the case in our scenario. The next 8
bytes form the Subnetwork Access Protocol (SNAP) header [29]. With the extra
encapsulation TCP data packets are 1536 bytes long and TCP ACKs are 76 bytes
long.

We also take into account the transmission of control frames. 802.11 protocols
define that always after a data transmission an ACK (14 bytes) needs to be sent.
CTS (14 bytes) frames are used in our laboratory environment for the CTS-to-self
protection mechanism discussed on 2.2, we come back to the usage of this frame
later in Section 5.1.2.3. At this point it is important to make clear that the term
ACK refers to both TCP and link-layer acknowledgements, although the meaning

should be clear based on the context.

We assume that the following sequence is taken for data transmission: (1) the
sender waits for a DIFS period then (2) sends the 802.11 data frame (containing
the TCP data or ACK segment), (3) upon the receipt of the data frame, receiver
waits for a SIFS period and then (4) transmits the 802.11 ACK frame, concluding
the process. Note that we consider an ideal case where the station always senses
the medium free during the DIFS period, as we are calculating a minimum trans-

mission time. Also link-layer errors/retransmissions are not taken into account.

The transmission time Tsgq of a TCP segment over a 802.11 link operating at

T'X bytes per microsecond with no protection mechanism can be estimated as:

(Ssec + Sack) x 8
TX ’

Tspag = Tpuy + (5.1)

where Tpyy is the overhead introduced by the physical layer, which consists of
the DIF'S and SIF'S periods and the time necessary to transmit the physical layer
header in each frame, Sgpg is the payload size of the TCP segment in bytes,
i.e. 1536 bytes for data segments and 76 bytes for ACK segments and Syck is a
constant equal to the size of a link-layer ACK, i.e. 14 bytes.

Chapter 5. The Inter-ACK Time Distribution 39

Finally, we also consider the extra overhead caused by the physical layer which
is dependent on the 802.11 technology used. In our estimate of the transmission
time we ignore the encoding made by the physical layer, i.e. assuming that the
physical layer transmits bytes instead of symbols. This allows expressing the trans-
mission time for different transmission rates in a simple mathematical formula, at

the expense of losing precision.

For 802.11b no error is introduced by ignoring the physical layer encoding, as
any frame size can be divided into an integer number of symbols by the physical
layer. However that is not the case for 802.11a and 802.11g, where some padding
might be needed. In the worst case scenario, every frame transmitted causes a
symbol to be sent with only one bit of data payload. In the transmission sequence
described above, we estimate the error to be twice an OFDM symbol time, i.e.
2 X 4us = 8us (in the tranmission sequence described above two frames are trans-
mitted, the data the and ACK frames). As the error introduced is always less than
the measurement accuracy for the traces present in the validation of our method

in Chapter 6, thus it does not have a large impact in our study.

In the following we show how the Tpyy is calculated for 802.11a, 802.11b and
802.11g technologies. We then provide estimates for the segment transmission

time for the different transmission rates defined in these tecnologies.

5.1.2.1 802.11b

802.11b uses DSSS for the physical layer and defines a preamble to be included
in every frame before transmission over the wireless hop. Two types of preamble
are defined, the long preamble which requires 192us to be transmitted and the
short preamble which requires 96us. We consider only the long preamble, which is
mandatory. DIFS and SIFS periods are 50us and 10us long, respectively. In this
situation Tpyy = 444us (the preamble is added twice, once for the TCP segment
and once for the link-layer ACK).

For this technology the minimum contention window consists of 31 slots of
20us, leading to a random backoff in the interval [0,620]us. Remember that all

segments transmitted back-to-back are separated by a random backoff time.

Table 5.1 summarize the transmission time for data and ACK segments at the
different speeds defined for 802.11b, based on Equation 5.1.

Chapter 5. The Inter-ACK Time Distribution

40

TABLE 5.1: Transmission times for 802.11b

Transmission Rate | TCP Data Segment | TCP ACK segment
(Mbps) (ps) (ps)
1 12844 1164
2 6444 804
5.5 2698 575
11 1571 509

5.1.2.2 802.11a/802.11g

The 802.11a technology support much higher transmission rates using OFDM
modulation. For each frame transmitted over the wireless hop a physical header
(formed by a preamble and the PLPC header) is added, which takes 20us to be
transmitted. In 802.11a, DIFS and SIFS are 34us and 16us long, respectively.

The physical overhead in this situation is Trgyy = 90us.

802.11g also makes use of OFDM modulation, defining a physical layer very
similar to the one from 802.11a. For each frame transmitted also a 20us physical
header is added, however it adds a 6us signal extension, needed for coding purposes
that is not present on 802.11a. The DIFS and SIFS periods are slightly smaller
28us and 10us long. Ultimately, the physical overhead is the same as in 802.11a,
that is Tpyy = 90us.

For both technologies the minimum contention window consists of 15 slots of

9us, leading to a random backoff in the interval [0, 135]us.

Table 5.2 summarize the transmission times for data and ACK segments at the
different speeds defined for 802.11a and 802.11g using OFDM modulation, based
on Equation 5.1. Note that 802.11g is backward compatible with 802.11b, i.e. it
can use the same physical layer as 802.11b, thus the transmission time reported

in Table 5.1 are also valid for 802.11g stations.

5.1.2.3 802.11g with CTS-to-Self

802.11b stations are not capable of understanding OFDM modulation, in fact
802.11b stations are not even capable to perceive the medium being used by
an 802.11g station. So, for co-existence of 802.11b and 802.11g stations on the

Chapter 5. The Inter-ACK Time Distribution 41

TABLE 5.2: Transmission times for 802.11a/802.11¢g

Transmission Rate | TCP Data Segment | TCP ACK segment
(Mbps) (ps) (ps)
6 2156 210
9 1467 170
12 1123 150
18 778 130
24 606 120
36 434 110
48 348 105
54 320 103

same access point, protection mechanisms are defined. These protection mecha-
nisms basically consist of the exchange of reservation packets in a slower, 802.11b-
compatible modulation, before the transmission of data at the higher rates defined
by the 802.11g standard, using OFDM.

In our last scenario we calculate the transmission time considering that the
CTS-to-self protection mechanism is being used, situation observed on the Lab-
oratory traces. This mechanism requires that before an 802.11g station initiates
a data transmission, one CTS frame needs to be sent using 802.11b-compatible
modulation and data rate, reserving the medium for a certain amount of time.
With the medium reserved, the following 802.11 data and ACK can be exchanged
using OFDM. The use of CTS-to-self implies the use of the DIFS and SIFS pe-
riods defined by 802.11b, that is 50us and 10us respectively. Also the minimum

contention window is the same as in 802.11b, that is, 31 slots of 20us.

In this situation, the following sequence is followed: (1) sender senses the
medium free for a DIF'S period and (2) sends the CTS frame. Then (3) it waits for
a SIFS period before (4) it finally sends the 802.11 data. Upon the receipt of the
data frame the receiver (5) waits for a SIFS period and then (6) sends the 802.11
ACK. Once again, note that we consider the case where no other station tries to

get access to de medium during this time and no transmission error occurs.

The total transmission time, Torg, can now be estimated as:

Ters = Trror + Tska, (5.2)

Chapter 5. The Inter-ACK Time Distribution 42

where Trror is the extra delay caused by the use of the protection mechanism

and Tsgg can be calculated using Equation 5.1.

Tpror can be estimated as:

Sers X 8
Toror = PLCPors + 295522 | §IF, (5.3)
TXcrs

where PLC Porg is the time necessary to transmit the physical layer header for
the CTS frame, i.e. 192 us, Scrg is the size in bytes of a CTS frame, i.e. 14 bytes,
T Xcrs is the transmission rate in which the CTS frame is exchanged in bytes per
microsecond and SIFS is equal to 10us. The possible Tpror times are shown in
Table 5.3.

TABLE 5.3: CTS-to-self overhead (Tpror)

Transmission Rate | CTS-to-self
(Mbps) Overhead (ps)
1 314
2 258
5.5 222
11 212

For the Tspe calculation, Tpyy includes the 802.11b DIFS and SIFS (50us
and 10us, respectively) and the physical header from 802.11g (2 x 20us) plus the

signal extension (2 X 6us), totalizing 112us. The possible Tspe times are showed
on Table 5.4.

TABLE 5.4: Tsgq for 802.11g with CTS-to-self

Transmission Rate | Data Segment | ACK segment
(Mbps) (1s) (ps)
6 2179 232
9 1490 192
12 1145 172
18 801 152
24 629 142
36 456 132
48 370 127
54 342 125

Any combination of values in Table 5.3 and Table 5.4 gives a valid transmission

time for data and ACK segments. The minimum transmission time is achieved

Chapter 5. The Inter-ACK Time Distribution 43

by exchanging frames at maximum transmission rate, i.e. CTS frames at 11Mbps
and the following frames at 54Mbps. In this situation the TCP data transmission
is completed after 554us while the ACK transmission after 337us. The maximum
transmission time (when exchanging CTS frames at 1Mbps and following frames
at 6Mbps) is 2493us for data segments and 546us for ACKs.

5.2 Duplex Capabilities

The duplex capabilities of the studied protocols have a major impact on the distri-
bution of the inter-ACK time interval. Intuitively one could expect that inter-ACK
times for half-duplex connections would be fairly larger than the ones from full-
duplex connections, as on the former is not possible to have transmission in both
directions at the same time. In this section we discuss the effects of the duplex

capabilities of Ethernet and 802.11 protocols in detail.

Consider the scenario where a client downloads a large amount of data over
a TCP connection. At a certain point of the communication the TCP parame-
ters, such as congestion window and advertised receive window, allow the server
to transmit four back-to-back data segments. Furthermore assume that these seg-
ments are practically undisturbed while crossing the path from the server to the
client, i.e. they are not lost, follow the same path, do not encounter any queues on
this path, etc., and arrive nearly back-to-back at the access link of the client. Fol-
lowing the TCP delayed ACK mechanism, assume that the second and the fourth
packets trigger the transmission of an ACK segment by the client. Depending on
the duplex capabilities of the access link the order in which these segments are

transmitted is different and affects inter-arrival times of the ACK segments.

If the link is full-duplex, as in the case of Ethernet, the ACKs can be sent
as soon as the data segments are received and processed by the client. We use a
sequence diagram to represent this situation on Figure 5.1. For ease of visualization
we number the TCP data segment according to the send order, and we number
the TCP ACKs using the same number of data segment they refer to. It is clear
that the inter-ACK time is dependent on the transmission time of the amount of
data acknowledged by the second ACK in the pair. In this scenario the inter-ACK
time is equal to the transmission time of the two data and one ACK segments

at the monitoring point (we consider the processing time of the segments to be

Chapter 5. The Inter-ACK Time Distribution 44

negligible). In Section 5.4 we show that it is not the case that an ACK is always

triggered by the reception of two data segments.

~04 4 ,

~04 T)

Client

S

Server

D45 —ACK2
7 3

04 4 p

CK 4
</A

FIGURE 5.1: The full-duplex case.

Considering a half-duplex 802.11 network, the access link consists of an AP on
one end and the client on the other. Note that we assume the access link to be the
bottleneck, so data segments arrive on the access point faster than it can transmit
them to the client. For our analysis this means that until the fourth data segment
transmission is finished, the access point always tries to access the medium. The
arrival of the second and fourth segments trigger the transmission of ACKs by
the client, but, unlike the full-duplex case, the transmission might not take place
immediately. On a half-duplex link when both AP and client have segments to
send, they will compete for the medium. For simplicity assume that only the AP

and the receiver client are trying to access the medium.

On this scenario the segments can be exchanged in any of the three orders
depicted on Figure 5.2, depending on a number of factors like processing time of
the segments on the client side and on the values chosen by the AP and client for

the exponential backoff mechanism.

The receipt of DATA 2 by client triggers the transmission of ACK 2 making
client and AP to contend for the medium. In Case (a) the client gets access to
the medium in its first attempt, allowing the transmission of ACK 2. No more
contention exists. If it was the AP to get access to the medium, segments DATA
3 and ACK 2 would contend for the medium. Case (b) shows the case where the
client get access to the medium after receiving Data 3, delaying the transmission
ACK 2. At last in Case (¢) the AP get access at both times, causing the ACKs
to be sent back-to-back.

Is easy to see that a similar behavior occurs if any bigger number of segments

is sent by the server. The inter-ACK time on a half-duplex link is not dependent

Chapter 5. The Inter-ACK Time Distribution 45

\D \D \D
4 4 2 ATq 2 4 4 Z
A2 A2 A2
5] = € @ 1= @ <
p ACK 2 & 2 4 k) 2 0,)
g iy 3 8 Tas_ |G iz A4 3|0
A 3. ACK 2— |
™ 04y,
4
74 g T4 Ko—
AC
A—] A— A—
Q,/ACK Q,"ACK Q/ACK

(a) (b) (c)

FIGURE 5.2: The half-duplex cases.

on the number of segments acknowledged by the second ACK of a pair, as in the

full-duplex case, but on how these segments are actually transmitted over this link.

On a half-duplex link the inter-ACK time is composed by the transmission time
of an ACK plus the transmission time of the n data packets transmitted between

the ACKs in a pair. In our tests we observe n as large as 8.

5.3 The Inter-ACK Time Distribution

Based on the link transmission capacities and duplex capabilities discussion in the
previous sections we propose a description of the inter-ACK distribution at the
monitoring point. A basic assumption in our method is that the local network
does not cause great perturbation to the inter-ACK times, i.e. segments crossing
the local network will not face a large amount of cross traffic. Also, our analysis
of the duplex capabilities needs data segments to arrive nearly back-to-back at
the monitoring point. We want to be clear that we are not assuming that all data
segments sent back-to-back by the server will not face cross-traffic on the path to
the monitoring point. We simply discard ACK-pairs for which the data segments
do not meet this criterion. In Section 5.4.2 we discuss other practical issues on
the ACK-pair identification.

As discussed on the previous section, on Ethernet connections the inter-ACK
time (AAC Kgyy,) is dependent on the number of data segments acknowledged by
the second ACK in an ACK-pair. Considering that the delayed ACK mechanism
is used, the inter-ACK time would be roughly equal to the transmission time of

two data (Tpai) segments, which can be expected to be a nearly constant value.

Chapter 5. The Inter-ACK Time Distribution 46

The probability density function (PDF) of the inter-ACK time would then have a

single dominant mode at:

AACKEth =2 x% TData- (54)

A sketch of the expected inter-ACK time PDF for a Ethernet connection is
depicted in Figure 5.3. The existence of cross traffic could either compress or
expand the time between the ACKSs, causing some noise before and after the
dominant mode. Even if no cross traffic is present, some variation is expected due

the time necessary to process the segments.

Based on the results from Section 5.1, for Ethernet 10Mbps the mode is located
at AACKgy, = 2 % 1230.4 = 2460.8us and for Ethernet 100 Mbps it is located at
AACK gy, = 2 % 123.04 = 246.08us.

Ethernet Imer‘-ACK Time

Probability

Time

FIGURE 5.3: Sketch of the PDF for the inter-ACK time for Ethernet

For 802.11 connections the inter-ACK time (AAC Kgp2.11) is dependent on the
transmission order of the segments on the wireless link. More specifically it is
roughly equal to the transmission time of n data segments plus the transmission
time of an ACK (T4ck) over this link, where n is the number of data segments
transmitted in between the ACKs in a pair. The PDF for the inter-ACK time in

this case can be expected to be multi-modal, with modes at:

AACKs02.11 = n* Tpgra + Tack. (5.5)

Chapter 5. The Inter-ACK Time Distribution 47

While the segment transmission times give us an approximation of the position
of the modes, it is important to note that the CSMA/CA protocol causes 802.11
nodes to always wait a random backoff time before a frame transmission to avoid
channel capture (see Section 2.2). The size of this random interval is dependent
on the technology used and on the number of transmission attempts. Assuming
that all frames transmissions are successful, i.e. no collisions or errors occur during
transmission, the random backoff is always chosen from the minimum contention

window.

We expect the inter-ACK distribution to have broader and weaker modes as
n increase, as more random times are added to the inter-ACK time, achieving a

point where they are no longer discernible from noise.

On Figure 5.4 a sketch of the PDF for 802.11 connections is presented. The
first mode represents the transmission of back-to-back ACKs on the wireless hop,
and the following modes are separated by the time transmission of one TCP data
segment. We expect to have some noise around the modes caused by cross-traffic

and the time necessary to process the segments as in the Ethernet case.

T
|
ACK|transmission

time |

802.11 Inter-ACK time
|

T T
| |
| |
| |

!

| .
data transmission
time

Probability

0

0 Time

FIGURE 5.4: Sketch of the PDF for the inter-ACK time for 802.11

A nice side effect of our approach to differentiate Ethernet from 802.11 connec-
tions is that the position of the modes gives us information on the transmission
rate that the protocol is operating in. This is especially interesting for 802.11

connections, as the transmission rates can vary depending on the quality of the

Chapter 5. The Inter-ACK Time Distribution 48

wireless link. The identification links operating at lower than expected transmis-
sion rates (54Mbps for 802.11a and 802.11g, and 11Mbps for 802.11b) provide
useful information for network administrators, as repositioning the existing AP’s

or adding new ones could make the network perform better.

The position of the first mode in the inter-ACK time distribution can also
give us some extra information. As it can be observed in on Section 5.1.2; the
transmission time for an ACK segment varies considerably depending on which
802.11 technology is used. If the position of the first mode is at 210us or before, it is
an indication that OFDM is in use. If the first mode is in the interval [337, 546]us,
it is an indication of the use of CTS-to-self. If the first mode is at 509us or after,
it is an indication that DSSS is in use. Note that in the case that the first mode
is present in the interval [509, 546]us, both DSSS and CTS-to-self may be in use.

5.4 Practical Aspects

In this section we discuss practical problems we have to deal with for the iden-
tification of ACK-pairs in real world situations. We first comment on the im-
plementation of TCP in different operating systems (OS’s), as it is important to
understand when ACKs are generated by them. This give us a base to discuss the

identification of ACK-pairs per se, including issues like lost packets and reordering.

5.4.1 TCP ACK in Different OS’s

Through our laboratory experiments we were able to observe that the implemen-
tation of TCP is slightly different in the three tested OS’s: Linux kernel 2.6.22,
Windows XP and Mac OS X Leopard. It turns out that the delayed ACK mech-
anism as described in RFC 1122 [11] allows different implementations. The first
point is that [11] only establishes a maximum delay of 500ms for ACKs, when
it states: “.. in particular, the delay MUST be less than 0.5 seconds, ...”. This
means that the actual value for the delayed ACK timer is implementation depen-

dent and does not even need to be a constant.

Secondly it states: “.. in a stream of full-sized segments there SHOULD be an
ACK for at least every second segment.”. Note the use of the word should, which

Chapter 5. The Inter-ACK Time Distribution 49

in RFC standards represents a recommendation rather than one requirement for
compliance. This means that TCP implementations are allowed to delay an ACK
for more than two segments, i.e. acknowledging only the third or fourth data

segments are valid implementations.

In Windows XP the delayed ACK timer and the number of received data seg-
ments that trigger an ACK are controlled by two registry entries: TcpDelAckTicks
and TcpAckFrequency. Both have 2 as default value, meaning that the delayed
ACK timer is 200ms (2 periods of 100ms) and every second data segment is ac-
knowledged. To some extent we can verify these values on the laboratory traces.
We see that ACKs are always sent in response to 1 or 2 data segments. When
the second ACK of a pair is generated in response to a single data segment, the
inter-ACK time tends to be in the order of hundreds of milliseconds, an indication

that this ACK was generated by a delayed ACK timer expiration.

As open source software the Linux kernel 2.6 source code is freely available
and can be found on the Internet [30]. This makes possible to study their TCP
implementation. On this OS the TCP delayed ACK timer is variable and its value
is constantly refined to the minimum of the interval between the arrival of data
packets and the sample round trip time (srtt). Furthermore, the timer has a lower

bound of 40ms and an upper bound of 200ms.

In Linux, upon the receipt of a data segment an immediate ACK is sent in

three situations:

1. More than one MSS worth of data is received and the receiver buffer has

space for accepting advertised window worth of data;
2. TCP is in quick ACK mode, and;

3. Data received is out of order

If none of the situations is true, a delayed ACK is triggered. The first situation
represents how the RFC 1122 statement, “.. in a stream of full-sized segments
there SHOULD be an ACK for at least every second segment.”, is interpreted.
The reception of a second full-sized segment causes the check “more than one
MSS worth of data” to be true. But an immediate ACK is sent only if the receiver
buffer has available space in buffer for accepting the last advertised window worth
of data.

Chapter 5. The Inter-ACK Time Distribution 50

In practice, normally an ACK is sent for every second data segment, but in
some cases is can be also triggered by any n number of data segments received
before the delayed ACK timer expires, depending on the available space on the
TCP buffer.

The quick ACK mode, mentioned as situation 2, is enabled every time the
receiver infers that the sender is in slow start, e.g. on the beginning of a connec-
tion or after detecting a lost segment. When operating in this mode the receiver
sends an ACK for every data segment received with the objective of making the
congestion window on the sender side to grow as fast as possible. The third and
last situation consists in sending an ACK every time an out of order is received,

which is a recommendation of RFC 1122.

As we were not able to obtain official information about the Mac OS implemen-
tation of TCP is hard to say exactly how ACKs are generated. In our experiments
we see ACKs after different quantities of data segments having a low inter-ACK
time (< 1ms), which would indicate that they are not delayed ACKs. We also did
not find any official information on the delayed ACK timer value, but it is reason-

able to assume that it is at maximum 200ms as in the other OS’s considered.

In summary when dealing with different OS’s one should expect differences in
the protocol implementations. On our analysis we assumed the number of received
data segments that trigger an ACK to be exactly 2, as recommended by the
RFC. Having ACKs being triggered by different number of segments can change
the single dominant mode on the distribution of inter-ACK times for Ethernet

connections.

This behavior is illustrated using a laboratory trace generated with a Linux
client using a 100Mbps Ethernet connection. As discussed above, the Linux imple-
mentation of TCP can generate ACKs immediately after different number of data
segments. On Figure 5.5 we plot the inter-ACK time discretized using 125us bins,
which is the accuracy of our measurements (see Section 4.1) versus the fraction
of ACK-pairs in each of these bins. Each line represents the situation where the
second ACK in the pair is sent in reply to 1, 2, 3 or 4 data segments. As expected,
in the 1 data segment case most of the inter-ACK times are in the 125us bin,
and the following case’s peeks are separated by 125us, approximately the time to

transmit a full-sized TCP data segment over a 100Mbps link.

Chapter 5. The Inter-ACK Time Distribution 51

T T
1 Data Segment —+—

2 Data Segments

3 Data Segments ---*---

4 Data Segments 3

0.8 |

0.6

Fraction of pairs

04 |

02 |/

\ o+
L N
0 e & — A L % & &

0 125 250 375 500 625 750 875 1000
Inter-ACK time (us)

F1GURE 5.5: Inter-ACK time for an 100Mbps Ethernet connection where the
second ACK in the pair is sent in reply to 1, 2, 3 and 4 data segments.

5.4.2 ACK-pair Detection

We use the fact that the interval between consecutive ACKs carries useful infor-
mation about the characteristics of the access points when both data and ACK
segments are carried undisturbed through the network. Unfortunately that is not
always the case, it would actually be naive to assume that all segments would
be undisturbed. Here we discuss some of the issues on identifying ACK-pairs on

network traces.

TCP segments can be lost or reordered on the path from the server to the
client. In situations where this happens the inter-packet time in this situation
would not reflect aspects of the medium but TCP characteristics, so consecutive
ACKs that have their respective data segments retransmitted or reordered are not

considered in our analysis.

By the lessons learned while studying the TCP implementations discussed in
5.4.1 we discard consecutive ACKs that are more than 200ms apart, as this would
be an indication of a delayed ACK expiration. Once again, this situation would
not reveal the medium aspects. We also restrict our analysis to ACKs generated

after 2 data segments to be consistent with Section 5.3.

Finally our analysis depends on the transmission of (nearly) back-to-back seg-
ments by the access network link. Thus we only consider ACKs which respective

data segments are less than 500us apart at the monitoring point.

Chapter 6

Validation

In this chapter we present the validation our method, using traces generated on
semi-controlled laboratory experiments and real-world network traces collected at
our university. We also present some unexpected results that are not part of the

scope of this work.

6.1 Laboratory Traces

In this section we confirm our predictions about the inter-ACK time distribution
using data gathered in the semi-controlled laboratory environment described in
Section 2.5. We perform tests with different clients using the three operating

systems that were used for the study of the TCP acknowledgements in Section
5.4.1: Windows XP, Linux kernel 2.6.22, and Mac OS Leopard.

For this analysis we use histograms with 125us bins, which is the smallest
bin allowed by our measurement accuracy. Following the reasoning presented in
Section 4.2.3, our measurements are concentrated in clusters every 125us and
we want that all points in the same cluster contribute for the same bin of the
histogram. For that we define the beginning of the histogram at —62.5 instead of
zero, i.e. the first bin covers all inter-ACK times in the interval [—62.5,62.5)us,
the second covers the interval [62.5,187.5)us, and so on. A last note is that we
use lines instead of the traditional boxes to plot the histograms, this facilitates

visualization for cases where more than one curve is depicted in the same graph.

52

Chapter 6. Validation 53

The points over these lines represent the mean value of the histogram bin, e.g., 0

identifies the first histogram, 125 the second, and so on.

6.1.1 Ethernet results

The first set of results are from 100Mbps Ethernet connections from a client run-
ning Windows XP. In the graph plotted in Figure 6.1 is possible to observe a
single peek in the distribution of the inter-ACK time at 250us. This matches the
predicted behaviour by the analysis done in Section 5.3. The histograms for Linux
and Mac OS are depicted in Figure 6.2 and Figure 6.3 respectively. Once again a
single mode is present on the distribution as expected. All TCP flows used have
at least 1000 ACK-pairs.

0.8

Ethernet - Windows 1 —+—
Ethernet - Windows 2 --—+---

0.7

0.6

0.5

0.4

Fraction of pairs

0.3

0.2

0.1

0 125 250 375 500 625
Inter-ACK time (us)

FIGURE 6.1: Inter-ACK time for an 100Mbps Ethernet connection in Windows
XP.

We also performed tests 10Mbps Ethernet connections using a Mac OS client.
In the results depicted in Figure 6.4 a single mode in the inter-ACK time distri-
bution is present, although the value of the mode is slightly smaller then the one
expected. We observe that most of the inter-ACK times concentrate at 2125us
and 2250us while we expect this mode to be approximately at 2460.8us. This dif-
ference is mainly caused by the size of the TCP data segments, while we assumed
1538 bytes in our analysis, in these flows their size is 1342 bytes. Performing the
calculations, one can check that the expected mode position for this segment size

corresponds to the one observed in this graph.

Chapter 6. Validation 54

0.8

Ethernet - Linux 1 ———
Ethernet - Linux 2 --—+---

0.7

0.6

0.5

0.4

0.3 A \\
0.2

Fraction of pairs

0 125 250 375 500 625
Inter-ACK time (us)

F1GURE 6.2: Inter-ACK time for an 100Mbps Ethernet connection in Linux

kernel 2.6.
0.8 y T
. Ethernet-Mac OS 1 —+—
Ethernet - Mac OS 2 ---+-—-

07 A

06 / \
P 0.5
T
o
5 /
c 0.4
k=) /
3 /
8 /
w

0.3

0.2

0.1

0¥
0 125 250 375 500 625

Inter-ACK time (us)

FIGURE 6.3: Inter-ACK time for an 100Mbps Ethernet connection in Mac OS
Leopard.

For the half-duplex connection, plotted on Figure 6.5, we would expect to have
multiple modes on the inter-ACK distribution as in 802.11 connections, but this
behavior is not is not clear in this graph. The inter-ACK time for pairs transmitted
back-to-back is approximately 68.8us, and, considering our accuracy, these pairs
could contribute for either the first or the second bins. The next modes should
be separated by the time of a full-sized TCP segment, which is 1230.4us in this

situation.

A possible explanation for the multiple mode behavior do not appear in this

Chapter 6. Validation 55

0.7

Ethernet 10Mbps - Mac OS ——
Ethernet 10Mbps - Mac OS ---+---

0.6

0.5
|
03 ‘J
02 / “\v\
0.1 \

0 0.5 1 15 2 25 3
Inter-ACK time (ms)

Fraction of pairs

FIGURE 6.4: Inter-ACK time for an 10Mbps Ethernet connection in Mac OS
Leopard and Linux.

graph is the channel capture effect described in Section 2.1. This effect would
cause the TCP transmission to occur in large bursts. Once the sender captures
the channel, it transmits all data segments it has. Following the delayed ACK
mechanism, every second data segment received triggers an ACK transmission,
however these segments are not transmitted by the link layer while the medium is
captured by the sender. After the sender finishes it transmission, the client starts
transmitting its delayed ACKs, possibly capturing the channel. When these ACKs
are received by the sender, it updates its TCP window, sending a large amount of
data again, and possibly capturing the channel and restarting the procedure. As
ACKs are sent back-to-back most of the times, we have a large, dominant mode

at the first two bins of the graph.

6.1.2 802.11 results

We now show the observable behavior of 802.11 connections. In all tests shown in
this section, the clients are connected using an 802.11g interface. For compatibility
reasons the CTS-to-self protection mechanism is used in our network, as reported
in 5.1.2, and CTS frames are exchanged at 1Mbps. Considering that the stations
are operating at maximum speed (54Mbps), the expected transmission times for a
data and for an ACK segment in this situation are 656us and 546us (see Equation
5.2 and Tables 5.3 and 5.4).

Chapter 6. Validation 56

0.6

Ethernet 10Mbps - Mac OS 1 —+—
Ethernet 10Mbps - Mac OS 2 ---%---
Ethernet 10Mbps - Linux ---G---

os| /|

0 0.5 1 15 2 25 3
Inter-ACK time (ms)

Fraction of pairs

FIGURE 6.5: Inter-ACK time for an 10Mbps half-duplex Ethernet connection
on Mac OS Leopard.

Figure 6.6 show the results for Windows XP clients. The flows represented by
lines Windows 1 and Windows 2 are quite similar. These flows have 1157 and 1074
ACK-pairs, respectively. A first mode is present at 500us and the three following
modes are separated by 5 or 6 bins (625us or 750us). Considering the data and
ACK segments transmission for this case and the accuracy of our measurements,

the expected behavior is confirmed.

For the flow represented by line Windows 3 (681 ACK-pairs) the first mode is
also present at 500us, but the following modes are further apart when comparing
to the other flows. In this case modes are separated by 6 or 7 bins (750us or 875us).
This indicates that the wireless network was operating in a slower transmission
rate (36Mbps), probably caused by a lower link quality in the moment of the

measurement.

A closing remark about this experiment related to flow Windows 2. This was
the same flow used to plot the 500us-bin histograms in Figure 4.9 and Figure 4.10.
Observing Figure 6.7, where this flow is plotted using both 500us and 125us bins,
it becomes clear why the peek-gap-peek behavior was not visible at first. It was
simply hidden by the position of the bins. When we included a small bin of 125us

in Figure 4.10, the behavior appears as the peeks become separated by one bin.

In Figure 6.8 we present the results for Mac OS Leopard clients. The flows Mac
OS 1, 2 and 3 have respectively, 1471, 2664 and 3144 ACK-pairs. At these traces

the first mode has considerably more pairs than the others. Another unexpected

Chapter 6. Validation 57

0.12 T T
802.11 - Windows 1 —+—
802.11 - Windows 2 ---x---
802.11 - Windows 3 ---&---
01 I
I8\
Il
i
0.08 ““‘ ‘w‘
£ i i
g F /i
5 B /il
o 006 " i (-
2 ‘ 1o
8 [
| /
0.04 | | /
[/
¥ | < :
[) | RS By { | RO
0.02 |/ f : - A O T Sl e fia) \ E
Jj ",,3“’ ‘\ 3 \ /s) Xy 7 \ “ N ; A ,7[;,
J\"E’ / \\\ S [
ot ;
0 500 1000 1500 2000 2500 3000 3500 400C

Inter-ACK time (us)

FIGURE 6.6: Inter-ACK time for 802.11 connections in Windows XP.

0.16

500015 bins ——
125ps bins -+~

0.14 |
0.12
0.1

0.08 +

Fraction of pairs

0.06 |- H

0.04 |- L

002F || i
|

+ o i

¥

0 1000 2000 3000 4000 5000 6000 7000 8000
Inter-ACK time (us)

FIGURE 6.7: Inter-ACK time for an 802.11 connection in Windows XP using
125us and 500us bins.

behavior is the large concentration of pairs with inter-ACK in the first 3 bins
(smaller than 250us), differently from what is observed in the Windows XP traces.

We address this issue later on.

The other modes, caused by the transmission of data segments in between the
ACK-pairs, still exist. As in the Windows traces, the position of the first of these
modes is approximately at 1250us and they are separated by 625us or 750us,
fitting our analysis. The flow Mac OS 1 does not present the first of these modes.
This shows that some flows may not follow the inter-ACK distribution described

in Chapter 4.

Chapter 6. Validation 58

0.3

802.11-MacOS 1 —
802.11 - Mac 0S 2 ---x-—-
802.11-Mac OS 3 ---%---

0.25

02 [t

015 |+

Fraction of pairs

01

0.05

B P
P 7:7;\; e AT X;ﬂ e /"“ S S 0 et B v

0 500 1000 1500 2000 2500 3000 3500 4000
Inter-ACK time (us)

F1GURE 6.8: Inter-ACK time for 802.11 connections in Mac OS Leopard.

To understand why so many inter-ACK times are smaller than 250us we study
these flows with the traces made in the wireless hop. The 802.11 standard [1]
defines that transmitted frames from a station are always separated by at least one
random backoff interval, to avoid channel capture. Moreover, when monitoring a
TCP connection in a wireless hop where the CTS-to-self mechanism is being used,
one expects that every TCP ACK sent by a station is preceded by a CTS frame
and followed by an ACK frame. However this does not seem to be the case for the

monitored Mac OS client.

In Figure 6.9 we show an excerpt from the traffic captured on the wireless
hop. The time column specifies the interval in seconds since the previous cap-
tured frame. This excerpt contains seven consecutive ACKs sent by the Mac OS
client, displayed in blue. Note that the time between two ACKs is nearly con-
stant, approximately ranging from 91us to 98us. We would expect a much larger
variation due to the backoff timer, which is defined in multiples of 9us. It is also
possible to observe in this excerpt that all TCP ACKs are followed by link-layer
ACKs, but none is preceded by a CTS frame.

The only CTS frame showed is followed by an ACK, with no data frame in
between. It is likely that the data frame was not capture by the monitoring point,
but it reached the intended receiver. This ACK contains the MAC address (see
field Destination in the figure) of the monitored Mac OS client, so possibly the
lost frame is an eighth TCP ACK.

Chapter 6. Validation 59

Ne.. |T\me ‘Sour(e ‘Destmat\on ‘Protcco\ |Info

1 0.000000 00:23:12:57:6c:15 (R4 IEEE 802 Clear-to-send, Flags=........
20.000116 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=

4.0.000046 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=
£ 0.000050 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=
8 0.000053 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=
10 0.000053 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=
12 0.000055 00:23:12:57:6c:15 (R4 TEEE 802 Acknowledgement, Flags=

14 0.000051 00:23:12:57:6c:15 (RA TEEF 802 Acknowledgement, Flags=

16 0. 000054 00:23:12:57:6c:15 (RA TEEF 802 Acknowledgement, Flags=

FIGURE 6.9: Excerpt from a TCP connection captured on the wireless hop
generated using a Mac OS client.

The same behavior can be observed throughout the trace, consecutive TCP
ACKs being sent with no visible backoff timer in between, and only the first of
the ACKs is preceded by a CTS frame. While this explains why so many ACK-
pairs have such small inter-ACK times, it is not an expected behavior from an
802.11-compliant station. As these traces were all generated by the same client,
we cannot be sure that this is a general behavior in Mac OS implementations or

an isolated case due to hardware/software malfunctioning.

6.2 UT Traces

We further validate our work with traces collected in our university campus gate-
way (see Section 2.5). In this data set we are able to distinguish the access net-
work type of the hosts based on their IP address, as the Ethernet and 802.11 are
different subnets. However we do not have detailed information on the exact tech-
nology used, i.e. Ethernet hosts can be operating at 10Mbps, 100Mbps or 1Gbps
transmission rates, while 802.11 hosts can be using 802.11a, 802.11b or 802.11g
technologies. The consequence is that we are not able to confirm our results for

transmission rates.

Following the reasoning from Section 4.1.2, we estimate the precision of our
measurements based on the observed time resolution of the inter-ACK and inter-
data times. In Figure 6.10 is plotted the inter-ACK time versus the inter-data

time calculated on randomly selected TCP flow from this data set. It is clear that

Chapter 6. Validation 60

all data points are concentrated in clusters spaced 50us from each other in both

axis. This behavior is recurrent in all TCP flows used in this analysis.

Inter-data time (us)

0 100 200 300 400 500
Inter-ACK time (us)

FIGURE 6.10: Data points concentrated in multiple of 50us indicating the
precision of the measurements.

This accuracy allows us to generate histograms a 50us. We make all clusters
to contribute to the same histogram bin by making the first histogram bin to start
at —25us instead of zero. This way, the first bin includes all points in the interval
[—25,25)us, the second covers the interval [25,75)us and so on. As before, we
use lines instead of the traditional boxes to plot the histograms, and the points

present in the lines represent the mean value of a bin.

6.2.1 FEthernet results

Figure 6.11 shows the results for some random selected Ethernet flows present in
the data set. As expected, the inter-ACK distribution for these flows contains a
single mode, which is present at 250us indicating that all hosts are connected to
100 Mbps access links.

Two observations are made about these results. First, in comparison with
the results from the experiments done in our laboratory environment, the flows
Ethernet 1 and FEthernet 4 present a considerably broader mode. For instance,
Ethernet 4 hast almost 10% of the inter-ACK times in the 400us bin, while in
all laboratory experiments have less than 5% of the inter-ACK times bigger than
375us.

Chapter 6. Validation 61

0.4

T T
Ethernet1 —+——
Ethernet 2 ---x---
Ethernet 3 ------
0.35 A Ethernet 4 ---&

i Ethernet5 —-#-—

0.3

0.25

0.2

Fraction of pairs

0.15 /"‘l,’ J \!
i AR

0.1 X/

0.05

L / \\;
e N
~a Tk

0 = . -
0 100 200 300 400 500 600 700

Inter-ACK time (us)

FIGURE 6.11: Inter-ACK time for 100Mbps Ethernet connections.

Second, the flow Ethernet 2 presents an unexpectedly large amount of intervals
in the first two bins. Both the larger (present in flows Ethernet 1 and Ethernet
4) and the shorter (present in flow Ethernet 2) inter-ACK times can be caused
by cross-traffic faced by the ACKs in a pair in the path from the client to the

monitoring point.

Packets from some other flow can be inserted between the ACKs in a pair
by some router in this path, leading to a larger inter-ACK time observation. A
shorter inter-ACK time can be observed if the first ACK in a pair faces queuing
in a router in this path. When this happens it may be the case that the ACK
pair will be transmitted back-to-back by this router. If the router is connected to
a link with higher transmission rate than the access link the inter-ACK time is

shorter than the one expected by our method.

6.2.2 802.11 results

When examining the UT traces for wireless flows, we realize that many of the
flows did not contain sufficient ACK-pairs for our analysis. We notice that the
TCP flows from wireless hosts are normally smaller than the wired ones. Also due
to the large amount of packet loss in this data set, some large TCP flows do not

contain sufficient ACK-pairs for our analysis.

Chapter 6. Validation 62

In our experiments we see that the multiple modes behavior for 802.11 connec-
tions is not always clear when fewer than 1000 ACK-pairs are present. However
for large traces (more than 10000 ACK-pairs) the behavior is as described in Sec-
tion 5.3. For this analysis we only use traces that have at least 700 ACK-pairs.
In Figure 6.12 show the effect of the number of observations in our analysis. In
this figure we plot the same flow, with different number of pairs. Note that the
multiple mode behavior is clear when all 11143 ACK-pairs are used. When 700
pairs are used it is possible to observe the three first modes, however when fewer

packets are used, is impossible to distinguish the modes from noise.

0.09 T T T
100 pairs —+—

400 pairs
o 700 pairs ---*--- |
11143 pairs &

0.08

0.07

0.06

0.05 [t

Fraction of pairs

0.04 ;““ ‘

0.03 /

oo [
0.02 | % i

\

1 i
I if \ “ ““(/ *" /\ iguéi%—
S0 1 T T [\ [}

800 1000 1200 1400 1600 1800 2000 2200 2400
Inter-ACK time (us)

0.01

FIGURE 6.12: Inter-ACK time distribution for different number of observations.

The histograms for the 802.11 flows with the largest number of ACK pairs
are plotted in Figure 6.13. The 802.11 Flows 1, 2 and 3 are from the client and
contain respectively 11143, 12823 and 12905 ACK pairs. All flows present the same
behavior, with four clear modes in the inter-ACK distribution, characterizing the

half-duplex nature of the 802.11 hop. It is also possible to observe that the modes

get broader as the inter-ACK time increases, what can be explained by the random

backoff times introduced by the CSMA /CA protocol, as described in 5.3.

In this graph, the first mode is present approximately at 150us indicating the
use of OFDM and the space of approximately 500us between the modes indicates
that the transmission rate is 36Mbps (the transmission time for a TCP data seg-

ment at this speed is 434us, and the random backoff is in the interval [0, 135]us).

Figure 6.14 shows two other flows, from distinct clients, with a similar behavior.

The 802.11 Flows 4 and 5 contain 729 and 713 ACK pairs, respectively. As these

Chapter 6. Validation 63

0.09

"'802.11- Flow 1 ——
802.11 - Flow 2 ---x---

0.08 02.11 - Flow 3 ------

0.07 \

0.06

0.05

0.04

Fraction of pairs

0.03

0.02 / g

001 |
|

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Inter-ACK time (us)

FIGURE 6.13: Inter-ACK time distribution suggesting a 802.11 station using
OFDM operating at 36Mbps.

flows contain considerably fewer data points than Flows 1, 2 and 3, when plotting
the histogram with 50us bins (Figure 6.14(a)) a large amount of noise is present in
the graph. However when making the same plot using 100us bins (Figure 6.14(b))

the modes become more visible.

In this graph the first mode is located before 210us, indicating the use of
OFDM. Modes are separated by 500us or 600us, still in accord with the transmis-
sion rate of 36Mbps, as the flows in Figure 6.13.

Figure 6.15 shows two flows with different behaviors. The Flows 6 and 7 are
from different clients and contain 982 and 785 ACK pairs, respectively. As in the
case of Flows 4 and 5, the modes are better visualized using 100us bins. Flow
6 present the first mode at 100us, with two visible following modes spaced by
roughly 400us or 500us, describing the behavior an 802.11 station using OFDM
operating at 48Mbps.

For Flow 7, the first mode is present approximately at 300us, indicating the
use of CTS-to-self mechanism. The modes separated by roughly 600us. Various
combinations of Tspe and Tpyy (see Section 5.1.2.3) can fit this values, thus is

not possible to infer the transmission rate for this case.

The last 802.11 flows used for this analysis are present in Figure 6.16. The
Flows 8, 9 and 10 are from the client and contain respectively 694, 1004 and 1059
ACK pairs. The inter-ACK times present in these flows are substantially bigger

Chapter 6. Validation 64

0.08 T T T T
802.11 - Flow 4 —+—
802.11-Flow 5 ---x---

0.07

0.06

0.05

Fraction of pairs

i

A
VAR /ﬁ
i/ Y \\

L £

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Inter-ACK time (us)

(a) 50us bins

0.1

" 802.11- Flow 4 —
x 802.11 - Flow 5 ---x-—-

0.09

0.08

0.07

0.06

0.05

Fraction of pairs

0.04

0.03

0.02 \it 7 x/ N

0.01

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Inter-ACK time (us)

(b) 100us bins

FIGURE 6.14: Inter-ACK time distribution suggesting 802.11 stations using
OFDM operating at 36Mbps with fewer ACK pairs.

than the ones analyzed before, as it can be observed in this figure. While multiple
modes can be visualized in this distribution using 50us bins (Figure 6.16(a)), the

large amount of noise makes hard to determine the location of the modes.

Figure 6.16(b) presents the same graph with 200us bins, which makes the be-
havior to become clearer. The first peek is locate at the interval [400,600]us,
characterizing the use of DSSS for the physical layer. The following peeks sepa-
rated by roughly 1600us or 1800us. Taking into account the large random backoff
introduced by this technology, the minimum contention window can introduce an

extra delay up to 620us, this behavior fits a transmission rate of 11Mbps.

Chapter 6. Validation 65

0.12 T T T T
} 802.11 - Flow 6 —+—
802.11 - Flow 7 ---x---

0.1 |-t

0.08

0.06 |-

Fraction of pairs

0.04

0.02

o K
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Inter-ACK time (us)

FIGURE 6.15: Inter-ACK time distribution suggesting 802.11 stations trans-
mitting at different data rates.

6.2.3 Unexpected Results

In this section we discuss some results that are not part of the scope of this work.

Figure 6.17 shows the first unexpected behavior. This flow is generated by a

host with IP address in the range reserved for Ethernet connections, however,

the behavior showed on this graph does not fit neither the 10Mbps or 100Mbps
Ethernet inter-ACK distribution described on Section 5.3.

We believe this to be the behavior of a client connected to a 1Gbps Ethernet.
The transmission times for TCP data and ACK segments are respectively, 12.304us
and 0.688us. Assuming that this is the bottleneck link, following Equation 5.4,

we would expect a single mode in the inter-ACK distribution at approximately
25.296us.

Two curves are present in Figure 6.17, one using the same threshold used to
identify ACK-pairs as the one described in Section 5.4.2, i.e. 500us, and one using
a smaller threshold of 50us. In both curves most of the inter-ACK times are on
the first bin (i.e. are smaller than 25us), as expected. However a considerable

amount of inter-ACK times exist in the interval [150,300]us, which does not fit
our reasoning.

Although 500us is a reasonable threshold for the considered technologies so
far, segment transmission times are much smaller for 1Gbps connections. Thus

we need a smaller threshold to discard segments that are not transmitted (nearly)

Chapter 6. Validation

66

0.025

0.02

802.11 - Flow 8 —
802,11 - Flow 9 ---x-—-
802.11 - Flow 10 ------

0.015

Fraction of pairs

0.01

0.005

X

Motk

R

i

L&(“‘"H’

0.08

1000 2000 3006 4000 5000 6000
Inter-ACK time (us)

(a) 50us bins

7000 8000 900C

0.07

80211 - Flow 8 —
802.11 - Flow 9 ---x-—-
802.11 - Flow 10 ------

0.06

0.05

===

0.04

T —

Fraction of pairs

0.03

=ikt

0.02 /

~

0.01 /L

N/ ¥

|
177 S
v%;/ ><’ % *x\

FIGURE 6.16: Inter-ACK time distribution suggesting 802.11 stations using

1000 2000 3000 4000 5000 6000
Inter-ACK time (us)

(b) 200us bins

DSSS operating at 11Mbps

7000 8000 900C

back-to-back. As it can be observed in Figure 6.17, the number of inter-ACK
times in the [150, 300]xs interval is reduced when reducing the threshold used to

identify ACK-pairs.

Figure 6.18 shows two TCP flows from the same client, which is in the IP range

reserved to VPN connections. The presence of a single mode in the inter-ACK

time distribution suggests a full-duplex connection. The position of this mode

indicates a transmission rate of approximately 25Mbps (it takes roughly 1000us

to transmit two full-sized TCP segments at this speed).

Chapter 6. Validation 67

0.8

‘Unexpected i - 500pus LA
Unexpected 1 - 50pus ---x---

o7 |t

0.6 \
0.5 !

03 \\
02 fod

0.1

Fraction of pairs

\//‘\ ,,,,,

0 100 200 300 400 500 600 700
Inter-ACK time (us)

FIGURE 6.17: Inter-ACK time distribution for a possible 1Gbps Ethernet host.

0.4

T T
Unexpected 2 —+—
Unexpected 3 —»—

0.35

0.3

0.25
0.2

0.15 //
0.1

0.05 /

0

— e S
S —

Fraction of pairs

S i e i S —_—
0 1000 2000 3000 4000 5000
Inter-ACK time (us)

FIGURE 6.18: Inter-ACK time distribution for a VPN host.

The last unexpected behavior detected in this data set can be visualized in
Figure 6.19. In this graph the inter-ACK times for two TCP flows from a client in
the IP range reserved to ADSL connections are plotted. Three modes separated
by roughly 800us can be observed, however further research to infer the reasons
behind this behavior is needed.

Although we are not able to draw any further conclusions from these flows, the
fact that the inter-ACK distribution is similar for different flows from the same
hosts suggests that our method could be extended to infer information about other

types of access networks.

Chapter 6. Validation

68

0.25

U‘nexpected 4 RS

Unex

pected 5 —x—

0.2

0.15

Fraction of pairs

0.1

L

0.05

0
1000 2000

FIGURE 6.19: Inter-ACK time distribution for an ADSL host.

3000 4000

Inter-ACK time (us)

5000

6000

Chapter 7

Conclusion and Future Work

In this report we propose a novel approach for the identification of access network
types. Based on basic characteristics of Ethernet and 802.11 protocols, like trans-
mission rates of the links and duplex capabilities of the medium, we show that it

is possible to distinguish TCP flows that cross these types of networks.

Our main contribution is the description of the inter-ACK time distribution of
TCP flows crossing full or half-duplex links, which is used to differentiate Ethernet
and 802.11 access networks. Our method can also be used to infer the transmission
rates of the access network links based on the position of the modes in the inter-
ACK time distribution. It is important to note though, that with this objective
one should use more accurate measurement methods than the ones reported in
this work, possibly using specialized hardware for network capture, such as DAG
cards [31]. With the 125us precision of our laboratory measurements it is not

possible to capture small changes in the transmission rates.

Based on our semi-controlled laboratory experiments we see that this precision
is sufficient to distinguish full-duplex Ethernet connections from the half-duplex
802.11 connections. Our tests were carried out in a variety of OS’s, showing that
the behavior we describe is intrinsic from these protocols and not particular to
one implementation. The behavior can also be observed in traces collected in the
link that connect part of the student houses to our university network, showing
the applicability of our method in real-world environments. A downside of our
method is that it requires a large number of ACK-pairs (i.e. large TCP flows) to
be applied.

69

Chapter 7. Conclusion and Future Work 70

In this work, our tests were limited by our network infrastructure. Future
work includes the realization of new experiments in different situations, e.g. using
802.11b, 802.11a and the new 802.11n technologies. Some of the unexpected results
presented in our validation suggest that our method could be extended to other
access network types such as ADSL. Being able to derive traffic characteristics from
wireless connections from passive measurements performed in the wired network
can be especially interesting for technologies such as General Packet Radio Service
(GPRS) and Universal Mobile Telecommunications System (UMTS), as network

operators are often not willing to share traffic information.

In this work we also do not perform the access network identification auto-
matically, which is left for future work. One possibility to perform this task is to
adapt the algorithm proposed in [20] to perform automatic detection of capacity
bottlenecks. This algorithm constructs a kernel density estimate of the PDF of
packet inter-arrivals and then scans it for modes. By adapting this algorithm to
precisely detecting modes in the inter-ACK distribution it could be used to per-
form the access network identification. However, as the inter-ACK distribution
differs considerably for 802.11 and Ethernet, it might be possible to perform the
identification with fewer ACK-pairs (i.e. smaller TCP flows), where the behavior

described in this work is not yet visible.

Another point that deserves further research is the impact of cross-traffic in
our method. One of our basic requirements is that the monitoring point is close to
the client, which decreases the amount of cross-traffic seen on the path from the
client to the monitoring point. Through simulation models it would be possible
to carefully study the performance of our method under different network loads,

and thus, different quantities of cross-traffic.

Bibliography

1]

2]

3]

[4]

[5]

[6]

IEEE 802.11-2007, Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications, June 2007.

D. Kotz, T. Henderson, and 1. Abyzov. CRAWDAD data
set dartmouth/campus (v. 2007-02-08). Downloaded from
http://crawdad.cs.dartmouth.edu/dartmouth/campus, February 2007.

Simpleweb / University of Twente - Traffic Measurement Data Repository.
http://traces.simpleweb.org/.

V. Baiamonte, K. Papagiannaki, and G. [annaccone. Detecting 802.11 Wire-
less Hosts from Remote Passive Observations. In Networking 2007 Ad Hoc
and Sensor Networks, Wireless Networks, Next Generation Internet: 6th In-
ternational IFIP-TC6 Networking Conference Atlanta, GA, USA, May 14-18,
2007 Proceedings, page 356. Springer, 2007.

W. Wei, S. Jaiswal, J. Kurose, and D. Towsley. Identifying 802.11 traffic
from passive measurements using iterative Bayesian inference. In Proc. IEEFE

INFOCOM, 2006.

W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley. Passive online
rogue access point detection using sequential hypothesis testing with TCP
ACK-pairs. In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 365-378. ACM New York, NY, USA, 2007.

James F. Kurose and Keith W. Ross. Computer Networking: A
Top-Down Approach (4th Edition). Addison Wesley, March 2007.
ISBN 0321497708. URL http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\& path=ASIN/0321497708.

71

http://traces.simpleweb.org/
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0321497708
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0321497708

Bibliography 72

8]

[10]

[11]

[12]

[15]

[18]

KK Ramakrishnan and H. Yang. The Ethernet capture effect: analysis and
solution. In Conference on Local Computer Networks, volume 19, pages 228—
228. IEEE COMPUTER SOCIETY PRESS, 1994.

Jochen Schiller. Mobile Communications. Addison Wesley, second edition,
May 2003.

M. Duke, R. Braden, W. Eddy, and E. Blanton. A Roadmap for Transmission
Control Protocol (TCP) Specification Documents. RFC 4614 (Informational),
September 2006. URL http://www.ietf.org/rfc/rfc4614.txt.

R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard), October 1989. URL http://www.ietf.org/rfc/
rfcll122.txt. Updated by RFCs 1349, 4379.

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119 (Best Current Practice), March 1997. URL http://www.ietf.org/
rfc/rfc2119.txt.

David Kotz and Kobby Essien. Analysis of a campus-wide wireless network.
In In Proceedings of ACM Mobicom, pages 107-118. ACM Press, 2002.

Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat
Rangan. Characterizing user behavior and network performance in a public
wireless lan. SIGMETRICS Perform. Eval. Rev., 30(1):195-205, 2002. ISSN
0163-5999. doi: http://doi.acm.org/10.1145/511399.511359.

Felix Hernandez-Campos and Maria Papadopouli. Assessing the real impact
of 802.11 wlans: A large-scale comparison of wired and wireless traffic. In
in 14th IEEE Workshop on Local and Metropolitan Area Networks, Chania,
2005.

Liang Cheng and Ivan Marsic. Fuzzy reasoning for wireless awareness. Inter-

national Journal of Wireless Information Networks, 8:2001, 2001.

C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion
techniques measure? In IN PROCEEDINGS OF IEEE INFOCOM, pages
905-914, 2001.

R. Kapoor, L.J. Chen, A. Nandan, M. Gerla, and M. Y. Sanadidi. Capprobe:

a simple and accurate capacity estimation technique for wired and wireless

http://www.ietf.org/rfc/rfc4614.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

Bibliography 73

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[20]
[27]

28]

environments. SIGMETRICS Perform. Fval. Rev., 32(1):390-391, 2004. ISSN
0163-5999. doi: http://doi.acm.org/10.1145/1012888.1005732.

Kevin Lai and Mary Baker. Nettimer: A tool for measuring bottleneck link
bandwidth. pages 123-134. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.22.9081.

S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss. MultiQ: Automated
Detection of Multiple Bottleneck Capacities Along a Path. In In IMC 0/:
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 245-250. ACM Press, 2004.

T. En-Najjary and G. Urvoy-Keller. Pprate: A Passive Capacity Estimation
Tool. In practice, 3:98.

W. Wei, B. Wang, C. Zhang, J. Kurose, and D. Towsley. Classification of
access network types: Ethernet wireless LAN, ADSL, cable modem or dialup?
In Proceedings IEEE INFOCOM 2005. 2/th Annual Joint Conference of the

IEEE Computer and Communications Societies, volume 2, 2005.
A. Wland. Sequential Analysis. J. Wiley & Sons, 1947.
tepdump/libpcap. http://www.tcpdump.org/.

J. Postel (ed.). RFC 864: Character generator protocol. http://tools.
ietf.org/html/rfc864, May 1983.

Wireshark. http://wiki.wireshark.org/CaptureSetup/WLAN.

Kismet. http://www.kismetwireless.net/.

M. Gast. When Is 54 Not Equal to 547 A Look at 802.11a, b, and
g Throughput. http://www.oreillynet.com/pub/a/wireless/
2003/08/08/wireless_throughput.html.

M. Gast. 802.11 Wireless Networks: The Definitive Guide, Second Edition.
O’Reilly Media, Inc., April 2005. ISBN 0596100523.

The Linux Kernel Archives. http://www.kernel.org/.

DAG Network Cards. http://www.endace.com/

dag-network-monitoring-cards.html.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.9081
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.9081
http://www.tcpdump.org/
http://tools.ietf.org/html/rfc864
http://tools.ietf.org/html/rfc864
http://wiki.wireshark.org/CaptureSetup/WLAN
http://www.kismetwireless.net/
http://www.oreillynet.com/pub/a/wireless/2003/08/08/wireless_throughput.html
http://www.oreillynet.com/pub/a/wireless/2003/08/08/wireless_throughput.html
http://www.kernel.org/
http://www.endace.com/dag-network-monitoring-cards.html
http://www.endace.com/dag-network-monitoring-cards.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Outline

	2 Background Information
	2.1 Ethernet
	2.2 802.11 Wireless LAN
	2.3 Acknowledgements in TCP
	2.4 Related Work
	2.5 Data sets

	3 Intel/Torino Reproduction
	3.1 Classification Algorithm
	3.2 Results Discussion

	4 ACK Inter-arrivals Study
	4.1 Inter-ACK Time vs. Inter-data Time
	4.1.1 CRAWDAD and Simpleweb tests
	4.1.2 Laboratory tests

	4.2 Inter-ACK Time observations
	4.2.1 Capturing on the air
	4.2.2 Analysis of wireless link traces
	4.2.3 500s-bin Histograms

	5 The Inter-ACK Time Distribution
	5.1 Link Transmission Capacities
	5.1.1 Ethernet
	5.1.2 802.11
	5.1.2.1 802.11b
	5.1.2.2 802.11a/802.11g
	5.1.2.3 802.11g with CTS-to-Self

	5.2 Duplex Capabilities
	5.3 The Inter-ACK Time Distribution
	5.4 Practical Aspects
	5.4.1 TCP ACK in Different OS's
	5.4.2 ACK-pair Detection

	6 Validation
	6.1 Laboratory Traces
	6.1.1 Ethernet results
	6.1.2 802.11 results

	6.2 UT Traces
	6.2.1 Ethernet results
	6.2.2 802.11 results
	6.2.3 Unexpected Results

	7 Conclusion and Future Work
	Bibliography

