
Realization and high level specification of

facial expressions for embodied agents

Master's Thesis

Human Media Interaction

Faculty EEMCS

University of Twente

Graduation Committee

Job Zwiers

Dennis Reidsma

Herwin van Welbergen

Enschede, June 2010

Ronald Paul

Abstract

In this thesis we describe work done related to realization
and high level specification of facial expressions for embodied
agents. Realization is done by implementation of MPEG-
4 Facial Animation. High level specification of facial ex-
pressions is done by creating FACS (Facial Action Coding
Standard) configurations or by choosing points on a circular
emotion space.

For realization of facial expressions, an editor has been de-
veloped which can be used to set face dependent parameters
like feature point location and other variables that control
the way a face is deformed. Evaluation of our implemen-
tation of MPEG-4 Facial Animation is done by comparing
it to several other virtual faces that have implemented it.
This shows that our implementation is performing better
than any of the faces it was compared to.

We visually show that expressions created using the FACS
high level specification method are corresponding to real life
imagery very well.

v

Preface

This document is written in the context of the final gradu-
ation project of my Master’s degree program Human Media
Interaction. The thesis is now complete and I learned a lot
during the process. This final project took me a few months
more than it takes the average student to complete but I
will conveniently not mention that again. It is a milestone.
It marks the end of almost a decade of tertiary education
and the beginning of something completely new.

Enough sentimentalities. I would like to thank a few people
that enabled or helped me with my final project. First of
all, friends and family in general. Not only for asking me
about my progress very regularly of course. I also thank my
parents for their continuous support through the years.

I specifically would like to thank the graduation commit-
tee. Herwin van Welbergen for his help with BML, Dennis
Reidsma for his help in software development and deploy-
ment and Job Zwiers for helping me from the very beginning
when my wishes were vague and needed to be concertized
in a real graduation project. And all these three persons for
guiding and assisting me in the project and giving comments
and tips for improvement of the preliminary versions of this
thesis.

Ronald Paul
Enschede, June 2010

vii

Contents

Abstract v

Preface vii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Approach . 2

1.4 Structure of the report . 3

2 Literature 5

2.1 Animation techniques . 5

2.1.1 Low level animation . 6

2.1.2 Blend shape based animation . 6

2.1.3 Performance-driven animation . 7

2.1.4 Simulation . 7

2.2 Pseudo muscle-based animation . 8

2.2.1 FACS . 8

2.2.2 MPEG-4 Facial Animation . 8

2.3 Conversions . 11

ix

2.3.1 Introduction . 11

2.3.2 From emotion to FACS . 11

2.3.3 From FACS to MPEG-4 FA . 11

2.3.4 From emotion to MPEG-4 FA . 11

3 Behavior Markup Language 15

3.1 BML . 15

3.2 Design . 18

3.2.1 Class hierarchy . 18

3.2.2 Class diagram . 18

3.3 Scheduling . 18

3.3.1 Context . 18

3.3.2 Use cases . 21

3.3.3 Problem solving . 22

3.3.4 SmartBody scheduler . 22

3.3.5 Conclusion . 22

4 MPEG-4 Facial Animation 23

4.1 Standard . 23

4.2 Xface . 26

4.2.1 Description . 26

4.2.2 Java-interface . 26

4.3 Our MPEG-4 FA implementation . 27

4.3.1 Software model . 28

4.3.2 GUI . 29

4.3.3 Displacing vertices . 33

4.3.4 Alternatives to easing . 35

4.3.5 Setting parameters for a new face . 37

4.3.6 File format . 38

4.4 Evaluation . 39

4.4.1 Faces . 39

4.4.2 Method . 40

4.4.3 Analysis . 42

4.4.4 Conclusion . 45

5 Conversion from FACS 47

5.1 Procedure . 47

5.2 Our FACS conversion implementation . 48

5.3 Evaluation . 50

6 Conversion from emotion 55

6.1 Plutchik’s emotion wheel . 55

6.2 Procedure . 55

6.3 Our emotion conversion implementation . 61

6.4 Evaluation . 62

7 Discussion 69

7.1 MPEG-4 Facial Animation . 69

7.2 Conversion from FACS . 70

7.3 Conversion from emotion . 71

7.4 Combination of higher level controls . 72

7.5 Conclusion . 72

8 Conclusion and future work 73

8.1 Conclusion . 73

8.2 Future work . 74

A FACS Action Units 77

B MPEG-4 FA Facial Action Parameters 79

C FaceEditor parameter XML DTD 85

Chapter 1

Introduction

Computers have been around for a while. The interface with human users of these com-
puter systems is a integral part of the system for many applications. Most of these inter-
faces were mostly task oriented in the past, but user centric approaches became possible
with development of more powerful two and three dimensional graphics capabilities. A
computer will always be a computer but work with computers becomes more pleasant and
efficient if a human user is confronted with a visually appealing virtual human.

An embodied conversational agent (ECA) can be constructed to show emotions and affect
to improve user experience. This means that facial expressions should be displayed on
the ECA’s face. Facial expressions have different representations and there is a trade-off
between the number of control parameters of a particular representation and the graininess
of control. A high number of parameters allows more subtle expressions but is more time
consuming. We chose for a basic expression representation that actually specifies how the
face should be altered and two higher level representations that can be translated in this
basic one.

1.1 Background

The research performed at Human Media Interaction (HMI) is focused on interaction
between humans and machines. With the use of ECAs, the user faces a whole new kind
of interface compared to the mature standard graphical user interfaces. The user actually
is able to get acquainted with and develop affect for a character that acts such as a real
human which in it self poses a whole range of advantages in the field of human-computer
interaction such as more pleasure and less stress.

The face is the most important part of the human body for communication with other
humans. Not only for verbal but also for non-verbal communication such as expressions.

1

1.2. Objectives Chapter 1. Introduction

Non-verbal communication for virtual characters require a vast amount of facilities. From
the mental model of emotion, how these emotional states changes over time and how it
is influenced by stimuli from other characters or the user to the actual visualization of
expression by changing the virtual world face by adjustments. This research is focused on
the facilities that come last in line: the representation of expressions and the translation
in adjustments to the virtual face.

When the virtual face is able to show expressions, animation is the next step in the process
of building usable ECAs. The only link this research has with this future work is the work
done for reading BML, a markup language for describing human behavior.

1.2 Objectives

The objectives for this project are to perform research in the context of and design and
implement a set of tools that:

1. assist in creating facial expressions by providing several high level steering instru-
ments that can be driven by a limited number of parameters;

2. provide a good trade-off between number of control parameters and range of expres-
sion;

3. actually apply adjustments to virtual faces in such a way that these faces are inter-
changeable with other faces without changing too much of the expression;

4. interface with Behavior Markup Language (BML) and

5. work in real-time.

1.3 Approach

The work started with a literature research. This brought up earlier used methods and
techniques for implementation of facial animation. Putting them side to side enabled us
to make a decision about what facial expression representations to use, what translations
between them are possible and how to apply adjustments to the virtual face.

Pieces of software are developed to facilitate reading of BML, translation of high level
expression representation into lower level ones, and application of adjustments to virtual
faces. Some of these pieces are integrated so they can work together.

To show the correctness of implementation of the chosen method for applying adjustments,
produced faces are placed side to side to other faces that have implemented the same
method and scored for all possible steering parameters.

2

Chapter 1. Introduction 1.4. Structure of the report

To show the effectiveness of the expression representation translations, the aforementioned
implementation are used to show outputs for a selection of the possible higher level steering
parameters.

The literature research brought up a part of the MPEG-4 standard, named Facial Ani-
mation (FA) as low level representation of expression and application method. For two
higher level representations, one called Facial Action Coding Standard (FACS) and the
other being an emotion model by Plutchik [21], translations into MPEG-4 FA have been
used.

1.4 Structure of the report

Chapter 2 starts of with description of literature found relevant for this project. It de-
scribes the different techniques for animation of faces, pseudo muscle-based animation and
different conversions or translation between expression representations.

BML is described in chapter 3, along with a description of the design of software that
facilitates reading it. Also, a part about scheduling of behaviors is included.

MPEG-4 FA is described in chapter 4. It includes a description of Xface that is MPEG-4
FA compatible and the design and evaluation of the realized prototype for for application
of micro adjustments to the face and setting parameters that depend on the virtual face.

Chapters 5 and 6 describe two conversion prototypes, from FACS to MPEG-4 FA and
from emotion to MPEG-4 FA. Both chapters describe the procedure of conversion, discuss
the design of the software prototype and evaluate the performance of the conversions
themselves.

In chapter 7, some of the weaknesses and strengths of a few of the methods that have been
developed or reused, are discussed.

Chapter 8 concludes this thesis and describe possible future research.

3

1.4. Structure of the report Chapter 1. Introduction

4

Chapter 2

Literature

Some important choices are made based on the information found in literature. This chap-
ter reviews these sources and gives an overview of animation techniques, pseudo muscle-
based animation and conversions from high level expression representations into lower level
ones.

2.1 Animation techniques

A face is represented by a 3D mesh with a varying number of vertices. Ultimately, facial
animation is about moving the vertices in space over time. The problem lies in the fact
that since all vertices have three degrees of freedom and even low resolution meshes already
have hundreds of vertices, the total amount of possible combinations of movements of the
whole face is very large. Even when just looking at a face in the real world, it is hard to
mimic these movements.

This is why, during the long history of facial animation, a lot of different techniques have
been developed for animating a face. The remainder of this section has been used to
describe fundamental approaches, to give some examples of techniques and to work out
the direction into which the technique for this thesis should develop.

There is more then one categorization possible. Parke et al. uses these categories: inter-
polation, performance-driven, direct parameterization, pseudo muscle-based and muscle-
based animation [19]. Although this work has proven to be a good starting point for
research occurred later in time, I find the taxonomy developed by Ersotelos and Dong [10]
more intuitive. This survey of realistic facial modeling and animation approaches the facial
animation with only three categories: blend shape based animation, performance driven
animation and simulation. I added a fourth low-level category for two almost ancient
techniques.

5

2.1. Animation techniques Chapter 2. Literature

2.1.1 Low level animation

One of the first and probably the oldest way of animating a face was to manually pick
vertices, give them other positions and gradually apply this displacements over time. This
was a lot of work, even for the first facial surfaces with a low number of polygons. And
since the average number of vertices in a face have increased a few orders of magnitude
since then, this method has became infeasible.

Another approach within this category is direct parameterization. It is still based on inter-
polation and key-frames but a face can be controlled by a much smaller set of parameters.
Every parameter has a specific influence on the face, a numeric range and can be interpo-
lated over time. One of the first attempts of direct parameterization by Parke is described
in [12]. The challenge is to determine a good set of parameters and to implement them
correctly.

The advantage of direct parameterization is that once control parameters are determined,
they provide a detailed control over the face. But determining this is hard. Complexity of
creating an animation with these control parameters is related to the number of control
parameters, as is the possible range of expressions.

2.1.2 Blend shape based animation

Blend shape based animation is a simple technique for animating a face. Multiple meshes
(key poses or blend shapes) are created, for example a neutral one and one for each of
the basic emotions anger, disgust, fear, joy, sadness and surprise proposed by Ekman et
al.[9]. All meshes contain vertex positions for the same vertices. When a face should show
anger, the position of all vertices can easily be interpolated between the positions of the
neutral face and the angry face. With respect of course to the preferred duration of the
total animation and the time already elapsed since the beginning of the animation.

It is also possible to create key poses with subsets of the vertices available. Consider
one pose for a smile and one pose for raised eyebrows. This way, multiple poses can be
combined and blended to get a somewhat more flexible face.

This technique has one obvious advantage: it is simple. Once the meshes are available,
it is trivial to create software that incorporates facial animation by interpolation. As
a consequence, it is also computationally cheap. However, to obtain more fine-grained
animation, lots of key poses are needed and creating them is labor intensive. Furthermore,
it is not possible to create expressions that are outside the bounds of the set of created
key poses. Extrapolation can help in this case but is dangerous.

6

Chapter 2. Literature 2.1. Animation techniques

2.1.3 Performance-driven animation

When features from a real human face are extracted and used for animation, we call this
performance-driven animation. They often use specialized input devices such as a laser
scanner or use video based motion tracking.

Performance-driven animation can result in a realistic facial animation. But it is hard
to create a system that handles all data from input devices correctly. Furthermore, data
is difficult to use in a generic way. Once recorded material is to be used on different
(virtual) faces, data is abstracted and loses its fine detail that partly enabled the reality.
Furthermore, it requires extra hardware and a real life actor.

2.1.4 Simulation

Simulation techniques recreate or approach the workings of one or more anatomical struc-
tures.

The technique of muscle-based animation is a simulation technique and tries to mimic
important anatomical structures of the head such as bone, tissue, muscles and skin. This
approach should give us a limited set of control parameters that, although they are low in
number, provide a good range of expressions.

Waters introduced a muscle model [3, 12] that describes two types of muscles: linear or
parallel muscles that pull and sphincter muscles that squeeze. Muscles of the first type
have a attachment point and a zone of influence. Per node, displacement is calculated from
the distance from the attachment points, the properties of the zone of influence, elasticity
of the ’skin’ and the angle with the center of the zone of influence.

Complete muscle based animation is a technique that should give realistic results if and
only if the anatomical human face structures are recreated with enough detail. However,
computationally it is prone to be too complex to perform in a real-time environment. We
will not go into this any further.

Pseudo muscle-based animation on the other hand only models muscles. This is a kind
of direct parameterization. Further simplification can be done by omitting small muscles
with diminishable influence or by using an abstraction of all possible movements of the
face. Two of those abstractions are FACS and MPEG-4 FA. The advantage of pseudo
muscle-based animation is that it provides a good ratio between control parameters and
range of possible expressions. §2.2 goes deeper into FACS and MPEG-4 FA.

When creating an animation of a face, temporal information can help in recognition of
the expressions. When a face is smiling, it takes time before the smile is fully realized
and all muscle contractions follow specific curves. Trapezoid functions are widely used.
These have three linear stages: application, release and relaxation. It is shown that the

7

2.2. Pseudo muscle-based animation Chapter 2. Literature

actual shape is more complex [11], but trapezoid functions are still popular because there
is insufficient evidence for what these more natural movements actually are [23]. We did
not perform any further research on this topic of incorporation of temporal information
because our goal was not to create animations but only static expressions.

2.2 Pseudo muscle-based animation

2.2.1 FACS

FACS stands for Facial Action Coding System. It was developed by Ekman and its
colleagues [8] and consists of a number of Action Units (AUs). The goal was to create a
comprehensive system in which all visually distinguishable facial movements are described.
Although it has its origin in psychology, it has been adopted by facial animation synthesis
systems.

FACS was created by determining which of the facial muscles can be used voluntarily and
independently and to determine how much a muscle changes facial appearance. There is
a many to many relation between AUs and facial muscles. See Table 2.1 for some of the
AUs with most of them referencing one or more specific facial muscles. A full reference
can be found in Appendix A. Most of the muscles can be visually identified with Figure
2.1.

All AUs can be used at any time with only a few restrictions: some AUs conflict with
each other (they work in the opposite direction) and some AUs hide the visual presence
of others.

AU Description Facial muscle

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer Corrugator supercilii, Depressor supercilii

5 Upper Lid Raiser

Table 2.1: A few Action Units defined in FACS. A full reference can be found in Appendix A.

2.2.2 MPEG-4 Facial Animation

A relatively recent standard, as opposed to FACS, for Facial Animation, is MPEG-4
FA. It defines Feature Points (FPs), Facial Action Parameters (FAPs) and Facial Action
Parameter Units (FAPUs). All of these terms are explained in 4.1. There are others,
such as Facial Description Parameters (FDPs), Face Interpolation Tables (FITs) and Face
Animation Tables (FATs), but those are only relevant in cases where facial animation is
embedded in a MPEG-4 stream just as in streaming video.

8

Chapter 2. Literature 2.2. Pseudo muscle-based animation

Figure 2.1: Facial muscles.

MPEG-4 has at least one limitation; it is not possible to reposition the points at the lower
base of the nose directly. This portion of the face is a key-indicator for the disgust-emotion.
Disgust can still be made visible through MPEG-4 FA though.

Possibilities for higher level control

Most of the FAPs are low level control points. They only control a small region of the face.
The first two FAPs however are more high level. FAP 1 allows to apply an expression
(anger, disgust, fear, joy, sadness and surprise) and FAP 2 allows to apply a viseme (or
a set of visemes). Also, Raozaiou, Tsapatsoulis, Karpouzis and Kollias [22] propose a
method for creating intermediate facial expressions. See §2.3.4 and §6.

Comparison with FACS

MPEG-4 FAPs are strongly related to FACS [22]. Creating archetypal expressions in FAPs
traditionally has been performed by analyzing which FACS AU are fired [16].

9

2.2. Pseudo muscle-based animation Chapter 2. Literature

MPEG-4 facilitates animation independent of face models because it makes use of FAPUs.
How muscle tensions for FACS correspond to specific offsets of portions of the face is
undefined and therefore it is hard to create a animation that does not depend on the
implementation of FACS let alone the face (dimensions, topography, etc.) it is applied to.

Implementation

Although all feature points (see Figure 4.2) are clearly defined, application of those points
to a actual 3D mesh of a face and moving them is not trivial. Choosing vertices that
correspond to feature points should be easy with the points around the mouth and eyes.
Points such as 5.4 or 5.2 can be estimated since their influence on surrounding vertices
does not depend on an exact placement as the points in the corners of the eye or mouth
do.

As of moving a point, there is more to it than just moving the vertex. There must be a
mechanism that move the surrounding points in a natural way. According to the MPEG-
4 FA book [18], the “mapping of feature points motion onto vertex motion can be done
using lookup tables such as FAT, muscle-based deformation, distance transforms or cloning
from existing models”. For the rest of this section, we will shortly look into some of these
methods.

Face Animation Tables (FATs) define how vertices of a model are displaced as a function
of the FAP. With them, displacements for each individual vertex that surround a feature
point for the whole range of the FAP can be defined.

Bee et al.[6] use a fully controllable virtual head which was developed by Augsburg Univer-
sity. This head (Alfred) had predefined morph targets for all FACS action units. Although
FACS is used, a similar approach can be used for MPEG-4. This can yield realistic results
but only if the morph targets themselves are realistic.

Xface is, amongst other things, an open source implementation of MPEG-4 FA [5]. In
Xface, users should select a set of vertices for all feature points (zones). When moving a
feature point, it uses a raised cosine function to deform the zone and displace the vertices in
the zone. This is a distance transform and should achieve satisfactory results [5]. Kojekine
et al. [14] use Compactly Supported Radial Basis Functions (CSRBF) as a mean for 3D
deformation. Free form deformation (FFD) could also be used, see Kalra et al. [13].

Another real-world example of implementation of MPEG-4 FA is Greta. In addition, it
features an ad-hoc technique for creating wrinkles [20]. See Figure 4.18 for a screenshot.
It displaces vertices based on the distance to the feature point using a sinoidal function.

10

Chapter 2. Literature 2.3. Conversions

2.3 Conversions

2.3.1 Introduction

This section describes the higher level control mechanisms for synthesis of facial animation
based on simulation. We have already established that FACS and MPEG-4 both are
representations for expressions on the face. But for an animator, manually controlling
AUs or FAPs is still too much work.

In this thesis, emotion is defined as a state of mind which results in one or more expressions.

2.3.2 From emotion to FACS

Zhang, Ji, Zhu and Yi [27] made a simple mapping from each of the six basic emotions
to Action Units that are active for this emotion. See Figure 2.2. This mapping is not
quantitative. For example, when we want to make a sad face, we know that we at least
need AUs 1, 15 and 17 but we don’t know what intensities are appropriate.

Figure 2.2: Activated AUs for each of the six basic emotions. Taken from Zhang et al. [27].

2.3.3 From FACS to MPEG-4 FA

AUs and FAPs are strongly related [27, 22]. Zhang et al. [27] related all relevant AUs to
FAPs. See Figure 2.3. It should be relatively easy to construct a complete map for all
AUs.

We actually implemented this conversion, see §5 for a detailed description on the approach
taken.

2.3.4 From emotion to MPEG-4 FA

Raouzaiou, Tsapatsoulis, Karpouzis and Kollias [22] describe a method for enriching hu-
man computer interaction, focusing on analysis and synthesis of primary and intermediate

11

2.3. Conversions Chapter 2. Literature

Figure 2.3: Mapping between FAPs and AUs. Taken from Zhang et al. [27].

12

Chapter 2. Literature 2.3. Conversions

facial expressions. An important asset for this method is the emotion wheel by Plutchik
[21], see Figure 2.4.

Figure 2.4: Plutchik’s model of emotion. It describes relations among emotion concepts.

Raouzaiou et al. have build profiles each belonging to a certain archetypal expression. All
archetypal expressions have a coordinate on Plutchik’s model of emotion, and the method
supplies us with a procedure to calculate a FAP-configuration for the complete coordinate
space. The complete procedure and background information on this emotion space can be
found in chapter 6.

13

2.3. Conversions Chapter 2. Literature

14

Chapter 3

Behavior Markup Language

This chapter describes Behavior Markup Language (BML), the design of a parser that
reads BML and stores it in an internal representation and includes some words on schedul-
ing of behaviors. It is part of SAIBA [15], which is short for Situation, Agent, Intention,
Behavior and Animation. The goal of its creators is to have a uniform framework for multi-
modal generation. This should reduce the overall time researchers spend creating their
own languages, interfaces and architectures and encourage cooperation because modules
now can be shared easily.

On first sight, BML might look like it has nothing to do with animating a virtual face,
but with the facilities it contains, facial expression can be specified and - over time - facial
movement. In this project, it is the primary way to drive the facial animations. And
because BML is not fully specified yet, this project can help in maturing it when it comes
to facial animation. For general use withing HMI, a BML recursive descent XML parser
was designed and implemented.

3.1 BML

BML is part of the SAIBA framework. The structure of the framework is depicted in
Figure 3.1.

���������	��
�� ��
	�
�����	��
�� ��
	�
�����	�
�	�
��
��� ���

�����	�� �����	��

Figure 3.1: Overview of the SAIBA framework.

15

3.1. BML Chapter 3. Behavior Markup Language

The framework divides multi-modal generation over three levels:

1. Intent planning

2. Behavior planning

3. Behavior realization

Two major interfaces between these levels are:

1. Function Markup Language (FML)

2. Behavior Markup Language (BML)

We will only describe BML since Behaviour Planning uses facial expression and animation
for the first time in the whole SAIBA process.

BML is XML. The top level element is <bml>. The standard [1] defines the core. Re-
searchers are free to create their own extensions in special tags or in separate namespaces.
These additions are called beyond core. In this container, one or more of the following
core tags may be placed:

• <head>: movement of the head. Supports nodding, shaking, tilting and rhythmic
movement.

• <gaze>: angular movement of the eyes, so that can be controlled where a character
is looking at.

• <locomotion>: used to move the body of an character from one location to another.

• <posture>: used to put the body of an character into a specific posture (standing,
sitting, lying, etc.)

• <speech>: specifies what words a character should speak (with the use of a speech
synthesizer).

• <gesture>: specifies coordinated movement with arms and hands.

For us, the most important behavior is

• <face>: movement of facial muscles to form certain expressions. Facilities exist for
moving the eyebrows, mouth, eyelids but the core also specifies a place where FACS
action units can reside.

16

Chapter 3. Behavior Markup Language 3.1. BML

���

����	��

�	��

�	�
��	�

�������	��

�������	��
�������
������
�������
���

����

��������	��
����������

�����

����

���
	�	��

�����������

	
 �������
�	���������	���

�����

����	��	��

����

���

Figure 3.2: BML elements and its hierarchy. Each child in this graph can be a child node in
XML. Dashed lines represent that the parent can only have one child of that type.

There is currently some discussion about what action units are required for a realizer to
have implemented. For this project, we plan to support the full array of action units or
only a beyond core specification of FAPs.

Besides these behavioural tags, several administrative elements are available for messaging,
event synchronization and marking groups of behaviours as required. The full tree is
depicted in Figure 3.2.

Behaviors have certain markers that are called synchronization points. These occur in
time when the behavior is executed, mark beginning, stroke and end amongst others and
can be used to synchronize other behaviors with these key moments. A behavior can
be bound to a synchronization point of another behavior internally, but this also can be
achieved by using dedicated tags externally to the behaviors.

17

3.2. Design Chapter 3. Behavior Markup Language

3.2 Design

The design of the recursive descent parser is broken up in two pieces: the class hierarchy
and the object hierarchy. Java is chosen as implementation language, mostly because it is
used most of the time with current efforts at HMI.

Efforts are made to make the process of parsing a BML document reversible. This means
that from a representation of the BML document in a Java object tree, the BML document
can be reconstructed.

3.2.1 Class hierarchy

The basis of the recursive descent parser for reading BML is a recursive descent parser
for XML. This can easily be extended for any kind of XML by extending the proper Java
classes. The full class hierarchy can be found in Figure 3.3.

3.2.2 Class diagram

Within this class hierarchy, objects relate to each other. For example, a RequiredBlock

can have zero or more multiple Behaviors. The full set of relations is depicted in the class
diagram of Figure 3.4.

In this class space, a reference to an synchronization point is represented by an object of the
type SyncRef. The classes Sync an Synchronize represent the tags sync and synchronize.

3.3 Scheduling

Some efforts have been made to design and build a basic scheduler for BML behaviors.
In this section, the context of such a scheduler is described. To help determine in what
situations the scheduler is needed in particular, some use cases are described. And for
solving conflict situations, some possibilities for problem solving are given.

3.3.1 Context

Scheduling behaviors is done by the scheduler. It gets its BML from the planner, observer
and event listener and outputs absolute timing information along with other BML encoded
necessary information to the various engines. The scheduler also can query these engines
for extra information. This could be preferred timings or some cost or penalty that this
engines assigns to any given timing.

18

Chapter 3. Behavior Markup Language 3.3. Scheduling

������

��	
��������
������

��	���������� ��	�������
���������

� ��� ������ �������� ������������� ��!�����������

"�!�������� #�$����������
%��
%�������&�

'����������� (�&��������� (�!������������)����������� 	��!��������

	����������������� ��!������������ ��	���������
������������� *�����������

��	� ����������������� ��	�+�%�������������

��	�����
���������������� ��	�����!�������������

Figure 3.3: The Java class hierarchy. The classes with gray text represent an extension not
designed by me.

19

3.3. Scheduling Chapter 3. Behavior Markup Language

Figure 3.4: The class diagram. The classes with gray text represent an extension not designed
by me.

The scheduler works continuous and parallel to the planner, observer, event listener and
engines. Scheduling is all about lining up synchronization points. Every behavior can
have one or more of these points and every behavior can reference each of these points to
a specific point or area in time. A point in time is defined by means of a sync point of
another behavior and a area in time by means of before or after a point in time.

As soon as a sync point is known to the scheduler and as long as referenced sync points are
not consumed by time, they can be shifted. When none of the sync points of a behavior are
consumed, the complete behavior may be shifted in time, without changing the individual
sync points. Nothing fancy is there to be done here.

When two sync points of the same behavior are referenced to two sync points of another
behavior, the penalty function provides a mechanism to find out what portion of time
adjustment should go to each of the behaviors. The same holds for more behaviors that
are interlocked with each other.

Some example scheduling problems. See Figure 3.5 for the most simple problem. Here,
only one of the two need to be shifted - or translated - in time. Since if one behavior is
inserted in the scheduler, it is executed as fast as possible, it is better to align left here
too.

See Figure 3.6 for a scheduling problem where two synchronization points each point to
the same behavior. The solution is to scale one of them or to scale both.

20

Chapter 3. Behavior Markup Language 3.3. Scheduling

��

��

Figure 3.5: Shift one of the behaviors.

��

�� �

�

Figure 3.6: Scale one or both behaviors.

Figure 3.7 is a bit more complex. When the length of behavior 3 is altered to match up
synchronization point C, this also has an effect on the target lengths of all other behaviors.
Changing each of the behaviors has influence on all other.

3.3.2 Use cases

Consider the case of the virtual conductor. Imagine the conductor should show the tempo
by using its arm and nodding its head. The behavior planner plans the behaviors accord-
ingly and puts a synchronization constraint between the stroke of the arm movement and
the stroke of the nods. One of the two modalities has to have authority because otherwise
the behaviors are just shifted forwards in time when at least one of the elements of the
animation (eg. the hand gesture or nod) is longer than the tempo-period. Nothing fancy
is happening here since the scheduler has all synchronization points fixed in time.

In fact, most of the BML-scripts do not have scheduling problems in which there is no
clear solution. But theoretically, for the cases that fall in the scheduling problems of figure
3.6 and 3.7, a solution is presented in the next section.

��

�� �

�

�� �

Figure 3.7: Scale one, a combination of or all behaviors.

21

3.3. Scheduling Chapter 3. Behavior Markup Language

3.3.3 Problem solving

Simple scale Consider the scheduling problem of figure 3.6. Simple scale means that
both periods (between synchronization points A and B for both behaviors) are scaled to
the mean of to their initial sizes. If period 1 has a length of 3 and period 2 a length of 2,
the target length t of both periods is then t = 3+2

2 = 2.5

Quadratic cost functions Assume all behaviors have only one optimal length. This
is the minimum of the cost function. It monotonically rises on both sides of this point.
With these prerequisites, the balance between two or more behaviors can be found in a
small amount of time.

Furthermore, if we restrict the functions to be quadratic in the form y = a(t1−t0)
2+b(t1−

t0)+c, we simply can add these functions up and lookup the minimum with (t1−t0) =
−b
2a .

Cost functions More complex cost functions that have multiple minimums and max-
imums are possible, but it is expected that those functions cannot help the scheduler find
a optimal solution in bounded time in all cases.

3.3.4 SmartBody scheduler

SmartBody is a research project by the University of Southern California’s Institute for
Creative Technologies and Information Sciences Institute. It is a character animation
system that uses BML to describe the movements a character needs to perform. The
scheduler does adress translation or scaling of behaviors, but does this in the order the
behaviors enter the system [24]. It does not address situations in which behaviors have a
circular dependency, presumably because those situations hardly do occur.

3.3.5 Conclusion

The problems that the BML-scheduler faces can be divided in a few classes. It is to be
expected that more complex cases are rare, considering use cases that the whole BML-
realizer would be used in. But when complex cases must be processed, the polynomial
cost functions are good candidates because they are more flexible than simply averaging
the lengths of behaviors and still are easy to calculate.

22

Chapter 4

MPEG-4 Facial Animation

This chapter starts with a description of the main and most important collection of meth-
ods and techniques bundled in a standard called MPEG-4 Facial Animation (FA). After
this, Xface - it is an open source implementation of MPEG-4 FA that aided in devel-
opment and evaluation of our own implementation of the standard - is described. This
section is followed by a description of the prototype itself and this chapter concludes with
an evaluation of the quality of the prototype.

4.1 Standard

This section describes the MPEG-4 Facial Animation standard. It is part of MPEG-4
systems that has a characteristic producer consumer architecture with a one way transport
link in between. Audio and video as well as Facial Animation (FA) and possibly others
all have their own encoder and decoders at both ends of this link. The basic idea is to
mark a face with a number of points (Feature Points, FPs). The position of these points
and the vertices near them, is then controlled by parameters (Facial Action Parameters,
FAPs). The distance of displacement is related to distances between key FPs.

FAPUs (Facial Action Parameter Units) are fractions of key-distances on the face. For
example, the distance between the eyes. This allows usage of FAPs in normalized ranges
so they are applicable to any model. See Figure 4.1. When a FAP has value 1024, its FP
moves a distance equal to the corresponding key-distance.

FAPs (Facial Action Parameters) describe all possible actions that can be done with the
face using MPEG-4 FA. This can either be done at low level by displacing a specific single
point of the face or at a higher level by reproduction of a facial expression. Changing a
FAP means changing the location of the corresponding FP, in relation to the appropriate
FAPU and in the direction defined by the FAP itself. Table 4.1 gives some example FAPs.

23

4.1. Standard Chapter 4. MPEG-4 Facial Animation

���

����

����

���

������

Figure 4.1: Facial Animation Parameter Units

Most FAPs are bidirectional and work in both directions (positive and negative) but some
only accept positive values. Appendix B is a complete list of all FAPs.

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion

1 viseme Set of values determining the mix-
ture of two visemes for this frame
(e.g. pbm, fv, th)

2 expression A set of values determining the mix-
ture of two facial expression

3 open jaw Vertical jaw displacement (does not
affect mouth opening)

MNS U down

4 lower t midlip Vertical top middle inner lip dis-
placement

MNS B down

5 raise b midlip Vertical bottom middle inner lip dis-
placement

MNS B up

Table 4.1: FAPs. A full reference can be found in Appendix B.

FPs (Feature Points) are points on the face. Their position during expression or animation
is altered by one or more FAPs. See Figure 4.2 for the position of all FPs in the face.

Now one might wonder, considering the low level topology of the face that consist of a

24

Chapter 4. MPEG-4 Facial Animation 4.1. Standard

�
�

�

����

����

����

����

����

�����

����

���	

����

��

���	 ��	

���

���

���

���

����

����
���

����

������

���
��� ��	

���

����

���
��� ����

���
��	

��

���

���

���
���

���

��	

���

������

��
��� ���

���
���� ����

����

����

���	

����
����

����

����

�����

���

���

��	

���

����

����
���	

����
���

���
��	

������
��� ���

�������� ���	

����

����

�

�

�

����

��� ��

���� ���	

����

���

��� ���� ���

��	

���

�����

����
����

���

���

�������� ��������

	��	

	�

	��

	��

	��

	�	

	���

	���

	���

	��� 	��

	��

	��

	��

Figure 4.2: Feature Points. Solid dots actually represent points that can be controlled by FAPs.

number of vertices and some feature points on its surface who’s position is altered, how do
we change the position of these vertices in a way that we end up with a realistic looking
face? There are several methods for this, some of which are described in 2.2.2.

25

4.2. Xface Chapter 4. MPEG-4 Facial Animation

4.2 Xface

4.2.1 Description

Because the first prototypes of conversions from FACS and emotion were built before our
MPEG-4 FA implementation in Java, we had a need for a tool that could visualize a
MPEG-4 FA stream. More than one was freely available on the internet, but Xface was
chosen because of its unique ability to control it over TCP/IP. And this would come in
handy when the conversion prototypes are to be fine-tuned because the actual face on the
screen is updated almost instantly. See Figure 4.3 for a screenshot of Xface Player.

Figure 4.3: The Xface Player

4.2.2 Java-interface

To be able to use Xface throughout the whole project, a small part of the client side
portion of the Xface TCP/IP protocol was implemented in Java. There was very little or
no documentation except from what actually traveled over the line between Xface and its
own client application and the source code. In addition, a few other problems arose which
are described in the remainder of this section.

All actions that can be done via the network are called tasks. Xface reads a more or less
common plain text file format for representation of FAP-values. The first line includes

26

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

the file-format version number, filename, speed (frames per second) and number of frames
in the file. Per frame, two lines are used. The first line is a mask that tells the receiver
for which FAPs values are supplied in the second line. The second line is also prepended
with the frame number. The network protocol allows for giving a reference to such a file
or directly uploading the contents.

The fact that Xface reads FAPs only per-file posed a problem because we wanted to display
FAP-values in real-time without saving to a buffer first and showing it later. Getting Xface
to accept files with only one frame has proven to be possible but two bugs in Xface that
needed a workaround. First of all, Xface would not display a one framed file until a stop-
commando was sent. And secondly, Xface would stop showing file uploads when they were
sent over the line too quickly after each other. The solution to this last problem was to
have new FAP values uploaded at only a 250 ms interval.

The actual XfaceInterface for Java includes a simple state machine, as shown in Figure
4.4. This is to keep track of our state and stops us from things such as connecting when
connected, trying to communicate when no connection is open and for debugging purposes.

Figure 4.4: The simple state machine as used in the XFaceInterface.

4.3 Our MPEG-4 FA implementation

Our MPEG-4 FA implementation called FaceEditor is a Java application that loads and
shows the head model, reads the file and provides the GUI for adjusting FP locations,
setting and reviewing FAP parameters and interfaces with the prototypes for conversion
from FACS and conversion from emotion. This prototype is described in the next few
sections.

27

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

4.3.1 Software model

FaceEditor is build on top of the Elckerlyc environment, a 3D framework that handles the
scenegraph, interfaces with OpenGL and loads objects. It can easily be extended as was
done for FaceEditor. On top of this, various graphical user interface classes are created.
See Figure 4.5 for a class diagram of the most important classes.

��������	
�
���

������	

�������	
����
��

��	��	
�	
��
��
�
���

��	��	
��
��

������	
�
	���
�
���

�������	
������	

�������	
������	

�������	
������	

�������	
������	

�����
��	�
���
��
�������	
������	

�����
��	�
��
���

������
���

����

���	
��

���������	
��

�

����

����	��
��� ���

�
�

��� �
������	�
��
	
��
�

�!�"�������	�
��
	
��
�

�
��!��"���	�
��
	
��
�

�������	
������	

�#���	
��
��
�
���

��
�����
��
��

$�
��%��
 �

�#���
 �

�����
��	�
���
 �

���

Figure 4.5: Most important Java classes used in FaceEditor

FACSConverterFrame and EmotionConverterFrame are entry points for respectively the
FACS converter (see §5) and the emotion converter (see §6).
FaceEditorFrame is the class that overrides ElckerlycDemoEnvironment. When initi-
ated, it starts by creating a new HeadManager which instantiates and returns an object

28

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

of the type Head which in turn handles loading of all parameters. After that, the GUI is
constructed and the application is running.

The purpose of the classes LowerJaw, Eye and Neck is to encapsulate 3D world objects
and provide an interface relevant to that object. For LowerJaw for example, FAPs 3
(open jaw), 14 (thrust jaw) and 15 (shift jaw) can be set directly and the 3D world object
is then positioned and rotated accordingly.

Head does not only have the task of loading and saving parameters, it also keeps track
of displacements on a per-vertex basis. When displacements are to be applied to the 3D
face mesh, displacements are averaged (when a vertex has more than one displacement)
and set. Furthermore Head calculates FAPUs which are requested by objects of the type
Deformer, Eye and Neck.

When handling GUI events, a lot of interaction is going on between the normal screen
elements and the 3D world. The most important class that enables this interaction is the
Mediator. It implements the interface FaceEditorServer which has methods for setting
MPEG4Configuration objects. On the other side, many of the objects that interface with
the Mediator implement the interface FaceEditorClient which has a method for passing
the Mediator itself so they can communicate with it.

Furthermore, Mediator receives a lot of updates from GUI elements that let the user
specify parameters for FAP-parameters. It translates these updates to appropriate ac-
tions to be taken on the Head object, Deformer objects and the 3D helper instruments
FeaturePointMarker, FAPMarker and VertexMarker. FeaturePointMarker and VertexMarker
are small boxes that show the positions of respectively FPs and vertices. FAPMarker is
rendered as a wire-frame sphere that shows influence. More on this in §4.3.2.
The GUI is split in two important parts, one for setting locations of FPs and one for setting
parameters of FAPs. The first part is handled by FeaturePointPanel and the second by
ParameterPanel. FeaturePointFrame shows a reference image of where feature point
should be placed on a face and can be opened from FeaturePointPanel.

4.3.2 GUI

In this section, the GUI of FaceEditor is described. Take a look at a screenshot of FaceEd-
itor in Figure 4.6. The bar on the left is where FPs are selected and parameters are set.
Auxiliary screens and functions can be found in the bar at the bottom of the screen. The
main area on the right is where the 3D face and helper instruments are displayed.

Navigation through 3D space is inherited from the Elckerlyc environment. When focus is
on the 3D portion of the window, keys can be used to move the camera. See Table 4.2 for
an overview of these keys. Face and world orientations are aligned. The x-axis is pointing
to the left (from our point of view, to the right for the point of view of the face), y-axis

29

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

Figure 4.6: Screenshot of FaceEditor.

to above and z-axis to the front of the face.

Key Action

Up Move the camera forward

W Move the camera forward fast

Down Move the camera backward

S Move the camera backward fast

Left Turn the camera to the left

Right Turn the camera to the right

Page-up Move the camera up

Page-down Move the camera down

A Move the camera to the right

D Move the camera to the right

Table 4.2: Navigation keys, expressed in terms of orientation of the camera.

A few actions require a translation from a location from the 2D panel that shows the
rendered 3D world to a 3D coordinate. When a 2D coordinate is known, the z-depth of
this location is retrieved and with a few matrices for projection and viewport matrices,
the 3D coordinate is calculated.

When setting parameters for a face for the first time, positions of feature points, see Figure
4.2, must be set first. The process is very simple. When clicking the 3D panel, the position

30

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

of the currently selected feature point is set to the 3D coordinate where this click occurred
and a marker is also placed at this location. When another feature point that already has
a position is selected, the marker is moved to this location so they can be reviewed and
reset when needed. See Figure 4.7 for two relevant portions of the GUI.

Figure 4.7: The GUI for selection of FPs and the marker indicating current FP positions.

Figure 4.8: The parameter panel.

Now that the locations of feature points are correct, parameters can be set. The parameter
panel can be split in three parts; the FAP selection and information-part, the parameter
part and the test part. See Figure 4.8 for how this looks.

31

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

The first part gives a list of all available FAPs. When a FAP is selected, the rest of
the panel is updated, the feature point marker is moved to the location of the currently
relevant feature point and the FAP marker is moved and sized according to the actual size
and shape of the influence sphere.

Keep synchronized with other side is only enabled when a FAP is selected that has a
counterpart on the other side of the face. close b r eyelid and close b l eyelid for example.
When it is checked, any subsequent changes in all parameters are also made to the FAP
of the other side.

Figure 4.9: The vertex mask showing selected vertices for FAP 22 (close b r eyelid).

The basis of facial expression in FaceEditor is the displacement of feature points and the
points or vertices that surround them. Since we select those vertices based on the distance
from the feature point, in some cases some vertices are displaced when we do not want
them to change position. For these cases, it has been made possible to individually select
vertices and create a vertex mask. See Figure 4.9 for how this looks. Vertices can be
selected or deselected by clicking the face whenever the checkboxes Show vertex mask and
Edit are checked. The vertex marker closest to where the click was made, is selected or
deselected. The button Copy from other side attempts to copy the vertex mask from the
other side. For this, vertices on the left and on the right side of the face are required to
be symmetrical about the vertical plane in the middle of the face within a small margin.
See §4.3.3 for more on the effect of vertex masks.

The second part lets the user choose between several types of vertex displacement. The
two shown here, simple falloff and linear (Figure 4.8), are until now the only ones avail-
able because the simple falloff combined with xyz-scaling, easing and vertex masks seem
sufficient for now. The sliders for size, scale x, scale y and scale z specify the size and
shape of the sphere of influence and easing influences the rate of falloff as function of the
distance to the feature point. See §4.3.3 for more on easing.

While setting parameters, the user can test current parameter values by moving the test
slider. All subsequent changes to parameters and the vertex mask are shown directly. See
Figure 4.10.

32

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

Figure 4.10: The feature point marker and FAP marker while the test slider is in neutral position
and while it is set to 600.

A more elaborate way of testing parameters is by using the MPEG-4 controller utility
which can be started using the corresponding button on the bottom bar of FaceEditor.
Values can be set on a per-FAP basis and reviewed instantly in FaceEditor. See Figure
4.11 for a screenshot.

Figure 4.11: Screenshot of the MPEG-4 direct control utility.

Other buttons on the bottom bar are respectively for the FACS converter (see §5), for
the emotion converter (see §6), to hide the instruments such as the markers, show or hide
accessories such as eyes and teeth, to save the parameters to a new XML file and to save
the current FAP configuration to a FAP file.

4.3.3 Displacing vertices

According to the value of a FAP, the corresponding feature point is moved in the direction
specified by the standard. Vertices surrounding the feature point are for now always moved
in the same direction.

The distance each vertex moves is related to its distance to the feature point and the

33

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

radius of the influence sphere which center is also at the feature point. The function in
which we can describe this behavior travels from 1 when the distance is 0 to 0 when the
distance is equal to or larger than the radius of the influence sphere. The outcome is the
influence, or i. This function is linear in the normal case, but there are a few mechanisms
that can influence the distance a vertex is displaced apart from sizing the influence sphere:
scaling, easing and masking.

Scaling is the process of changing the size of the influence sphere in only one or two
dimension so that it becomes an ellipsoid or, when two dimensions are scaled equally, a
spheroid. The aforementioned function then travels to 0 when the vertex approaches the
end of the imaginary line through the vertex and between the center (the feature point)
and the surface of the shape.

Easing is the process of changing the influence curve by exponentiation. Normally, i′ = i.
Easing can be done in two directions: by easing in and increase influence or by easing out
and decrease influence. The GUI allows for an input of the ease parameter e ranging from
-100 (easing out) to 100 (easing in). When easing out, the exponent is 1+e/100 and when
easing in, the exponent is 1 + e/20. See Figure 4.12 for a number of curves for various
values of e.

 0

 1

 0 1

i’

i

Figure 4.12: Some sample curves that are used for altering the influence curve. From top to
bottom e = −80, e = −50, e = −20, e = 0, e = 20, e = 50, e = 80.

34

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

Figure 4.13: Easing for the right lower eye lid. From left to right: normal situation, easing out
and easing in.

Figure 4.14: Masking for the right lower eye lid. In the right image, the vertex mask is disabled
and the upper eye lid moves along.

Masking makes it possible to switch off displacement on a per-vertex basis. This is neces-
sary in cases where parts that should move are close to parts that should not. Eyes and
the mouth are good examples of this.

There are several things that can be changed in this process. More sophisticated imple-
mentations may change the direction in which vertices travel based on its relative position
to the feature point to get a more real muscle-based contraction. Also, the whole idea of
the influence sphere, easing and masking is to assign weights to vertices. Numerous other
procedures can be followed here, such as vertex weight painting, defining regions, etcetera.

4.3.4 Alternatives to easing

We were concerned about the fact that for all of the curves produced for easing, the first
derivative is never equal to zero for i = 0 and i = 1. When displacing vertices in a mesh
that consists of an infinite number of points, side-effects could become visible. A few
possible solutions (for making the first derivative through i = 0 and i = 1 equal to zero
while maintaining smoothness of the curve) have been put to the test.

First, over a small interval at the beginning and the end, such as [0.0 : 0.2] and [0.8 : 1.0],
the original easing curve was adjusted using a hyperbolic tangent. See Figure 4.15 for a
plot of these curves. The problem with this is that the first derivative gets to large at

35

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

times where the curve needs to catch up a lot in order to maintain a smooth descent of
the derivative to 0 at i = 0 for example.

 0

 1

 0 1

i’

i

Figure 4.15: Some sample curves that are used for altering the influence curve and that are
smoothed with a hyperbolic tangent. From top to bottom e = −80, e = −50, e =
−20, e = 0, e = 20, e = 50, e = 80.

Secondly, easing was ignored and replaced by a combination of Bézier curves and automatic
adjustment of the size of the influence sphere. Placement of control points is determined
by two new parameters, smooth center and smooth side. See Figure 4.16 for a plot of the
curves where smooth center and smooth side are on 0%, 25%, 50%, 75% and 100% of the
size of the original influence sphere. The right side of the curve always corresponds to
the center of the influence sphere and the left side always corresponds to the edge of this
sphere.

Ignoring easing and replacing it with smoothing using Bézier curves yields very slightly
different results, but it’s mileage may increase when models with even more vertices are
introduced.

36

Chapter 4. MPEG-4 Facial Animation 4.3. Our MPEG-4 FA implementation

 0

 1

-1 0 1 2

i’

i

Figure 4.16: Some sample curves that are used for altering the influence curve based on Bézier
curves and enlarging the actual sphere of influence.

4.3.5 Setting parameters for a new face

A set of parameters must be set first in order to have face show expressions. This process
all can be done from within the GUI of FaceEditor and the process that needs to be
followed is outlined shortly in this section.

• Place all feature points on the face using the example image from the standard.

• Set parameters for each of the FAPs:

– Set the size of the influence sphere appropriate to the feature point and sur-
rounding feature points. For points next to each other such as on the eyelids,
a good default is to adjust the radius of the influence sphere so that it just
includes the neighboring feature point.

– Use masking for the lips since for lower lip movements, the upper lip vertices
must stay in their positions and vice versa. It might be a bit cumbersome to
grab the right vertices when they are hidden, but activating the fap during
vertex selection might make things easier.

– Easing comes in handy with things such as the midpoints of the eyelids. The
vertices in the middle between these midpoints and the corners of the eye would
normally not move enough, easing in can adjust for this.

– Alternative to easing, smoothing can be used to smooth out the influence near
the center or near the edges of the influence sphere.

– Some FAPs such as the jaw lowerer, need to have the influence sphere flattened
because we don’t want the vertices above the lower lips to be influenced although
we do want to cover the whole width of the face. This is done with the x-, y-,
and/or z-scaling.

37

4.3. Our MPEG-4 FA implementation Chapter 4. MPEG-4 Facial Animation

��������	
���
�
���
�

����	����	��
����������
���	

�
�

��
����
����

����	����	�
��������	

�

�
		������	

�

�������	

�

��
����
���

Figure 4.17: The XML file format.

– We found that when parameters for individual FAPs are set for the first time,
only a few adjustments are yet to be made before activating FAPs cooperatively.
So regularly test the FAP using the test slider.

4.3.6 File format

When parameters are set, they must be saved to a file to make them persistent and
available when FaceEditor is run the next time. The storage format has changed two
times over time. First, native Java object serialization was used. This can be implemented
very quickly and is integrated in Java and the Java code. Attributes can be kept from
serialization by the transient keyword and no extra code is needed because everything is
happening under the hood. Drawback is the fact that the file format cannot be read and
altered by humans directly using a plain text editor. Flattened objects are not bothered
by adding or removing attributes, as long as serialVersionUID is used, but is is not
possible to change a object’s hierarchy.

To overcome the issue that the file is not human readable, a simple plain text file format
was incorporated. Positions of feature points, parameters of FAPs and vertex masks were
written to a file as simple as possible. The drawback of this is that when these parameters
need to be embedded in some other file, chances are that the exact contents of the file
cannot be kept intact. This was solved by the use of XML.

The hierarchy used is simple and plain, see Figure 4.17 and Appendix C for a DTD and
a textual description.

38

Chapter 4. MPEG-4 Facial Animation 4.4. Evaluation

Figure 4.18: The faces used in evaluation of FaceEditor. From left to right: Xface, Greta and
Miraface.

4.4 Evaluation

4.4.1 Faces

The faces that are being used in this evaluation are Xface, Greta and Miraface which are
described in this section.

Xface is already shortly described in 4.2.2. The Xface project is initiated and maintained
by the Cognitive and Communication Technologies (TCC) division of FBK-irst, a research
center based in Italy. It is open source and platform independent [5]. See Figure 4.18 for
a screenshot.

Greta is a ”Simple Facial Animation Engine (SFAE)” which aim was to have ”an animated
model able to simulate in a rapid and believable manner the dynamics aspects of the human
face”. It includes the ability to generate wrinkles using the bump mapping technique [20].
See Figure 4.18 for a screenshot.

Miraface is facial animation software. It incorporates a facial animation module and
includes a simple facial model both developed at MIRALab and has a relatively low number
of polygons. See Figure 4.18 for a screenshot.

Attempts have been made to also use software supplied by Visage Technologies AB, vis-
age—interactive, but those failed. The key of the problem lies in the fact that this program
is only able to read a binary stream of FAPs that are encoded in the binary MPEG-4 FBA
data stream and that conversion is very labor intensive. Furthermore, actual visualisation
still showed to be unrealistic. See Figure 4.19 for a screenshot of visage—interactive and
how a certain FAP configuration was visualized.

RUTH is also an animatable face, see DeCarlo et al. [7], but it only has some mouth and
tongue movements along with brow actions, smiling and blinking so it is not MPEG-4 FA

39

4.4. Evaluation Chapter 4. MPEG-4 Facial Animation

Figure 4.19: From left to right: visage—interactive with model Reana loaded, how a certain
FAP configuration looks on Reana and how this same configuration should look
using FaceEditor. This FAP configuration was actually created using the Emotion
conversion prototype described in §6.

compatible.

4.4.2 Method

Directly comparing displacements of the face in FaceEditor with displacements of other
faces that have implemented MPEG-4 FA, for the same FAP-values, is a way to evalu-
ate the quality of the implementation of MPEG-4 FA and the parameters that are set.
Although still subjective, it is possible to compare displacements and determine whether
they are similar or whether there is a displacement that is better (more realistic) than the
other. Attempts to this are described in this section.

Note that only individual FAPs are evaluated in this section. We do not assume that
when activation of all individual FAPs are looking realistic, combinations are too. A more
high level evaluation is performed in §7, also incorporating the more high level steering
methods. Also, we evaluated FaceEditor without using any smoothing as described in
§4.3.5.
There is a bottle neck in the evaluation on this level. A ground truth only exists for
displacements of feature points. MPEG-4 FA does not describe how vertices are best
displaced, in particular because there is a infinite number of three dimensional face models.
Because of this, determining realism of a displacement and comparing two different faces
to obtain the most realistic one is a subjective human process. On top of that, the face
model itself also has a influence on the actual quality of a displacement.

In defence, we are comparing FaceEditor not only with Xface but also with Greta and
Miraface (see §4.4.1). The average of the displacements of all of these faces should at least
approach a common ground truth. And since the face is a very important interface to
humans, assessment of what displacement is more realistic should be quite universal. And

40

Chapter 4. MPEG-4 Facial Animation 4.4. Evaluation

Figure 4.20: Creation of a difference-comparison image. From left to right: neutral face, FAP 7
(stretch r cornerlip) activated (in positive direction), the difference between these
images and the difference with a blurred underlay.

regarding the influence of face models themselves, attempts are made to ignore them.

Screenshots were taken from the side when the displacement can not be seen very well
from the front. This is the case for FAP 14 (thrust jaw) for example.

The process of evaluation consists of creating screenshots of all faces for all FAPs. Most
of the time, the value chosen is approximately so that the feature point moves halfway
the FAPU. For bidirectional FAPs, another screenshot is taken with its value negated.
Screenshots are cropped and the background is masked out so the only thing left is the
face itself. Since differences between a certain pose and the neutral face are sometimes
hard to spot, difference images have been calculated. Since these difference images only
have differences in them, it is sometimes hard to determine where and to what extent
exactly this difference in the face occurred. For this, the image of the neutral face (with
the background removed) was blurred and placed with 25% intensity as layer under the
differences. See Figure 4.20 for a visual display of this process.

Screenshots and difference images with blurred underlays can be viewed next to each other
so that for all FAPs, the displacements of all four faces on these FAPs can easily be assessed
in relation to each other. I assigned a score to each displacement, and for bidirectional
FAPs, one for each direction. When a FAP (or direction) is not implemented, no score is
given. Because FAPs vary in importance, each FAP is given a weight factor w from 1-3, 1
meaning not important (such as eyeball thrust), 2 meaning average importance (such as
sub-lip displacements) and 3 meaning important (eyebrows, eyelids, mouth corners). In
the end, a weighted average is calculated for each face with and without consideration of
displacements that are not implemented.

These are 66 FAPs (the first two high level FAPs are left out), out of which 5 are unidi-
rectional. So there is a total of 61 + 66 = 127 displacements to be evaluated.

41

4.4. Evaluation Chapter 4. MPEG-4 Facial Animation

4.4.3 Analysis

See Table 4.3 for all scores given to the displacements. Some simple statistics can be
found in Table 4.4. The weighted averages can be found in Table 4.5. One score is
calculated while leaving unimplemented FAPs out of the equation and one while giving
all unimplemented FAPs a score of 0 (to make it harder for implementations that only
implement a few FAPs).

The critera for certain scores are:

• For a score of 3: the displacement is all right and looks the way it should (given the
description of the FAP).

• For a score of 2: the displacement looks all right on first sight but is slightly odd
(wrong displacement distance or an influence area that has a unrealistic size).

• For a score of 1: by the location of the displacement, it should be possible to recon-
struct what FAP was activated.

It goes beyond the scope of this document to comment on all scores individually. However,
an external document has been created which shows all screenshots side by side annotated
by what is wrong with a certain displacement and why a certain score has been chosen,
see Paul [2]. There are however some general remarks to be made here.

• Xface was particularly bad in displacements of eyelids and lip corners.

• Greta got left and right confused for FAPs 10 (raise b lip lm) and 11 (raise b lip rm).

• In Miraface, all FAPs working on the right half of the face work on the left half
instead, and vice versa. This is consistent for all FAPs that have a counterpart on
the other side of the face, so no scores were lowered for this.

• In some occasion, Miraface did not show any displacement for a right half FAP
though it did for the left half FAP.

• For a certain number of FAPs, Miraface had no differentiated displacement for left
and right and just showed the same symmetrical one for both FAPs.

See Figures 4.21, 4.22 and 4.23 for some example displacements and how they were scored.

There is little room for improvement for FaceEditor since there are only 13 displacements
that not have been assigned a score of 3 (the gray line bordered cells in Table 4.3). These
are for lowering and raising the corners of the mouth, lowering the midpoint of the top
lip and stretching the nose. With the current implementation, it should be relatively easy
to correct the displacements of the corners of the mouth. The lowering of the top lip

42

Chapter 4. MPEG-4 Facial Animation 4.4. Evaluation

� �� �� �� �� �� �� �� �� � � �� �� �� �� �� �� �� �� �

� � � 	 	 � �
 � � � � � � � �
� � 	 � � 	 	 	 � � �
 � � � � � � � �
� � � � � � � � � � �� � � � � � � 	
� � � � � � � � � 	 �� � � � � 	

 � � � � � � � � 	 �� ������������ � � 	

 � � � � � 	 � � 	 �	 ������������ � � 	
� � � � � � 	 � � 	 �� ����������!����" � � �

�� � 	 	 � � 	 	 � 	 �� � �
�� � � 	 � � 	 � � 	 �� �
�	 	 � � 	 � � 	 �� � � � � �
�� 	 � 	 � 	 � 	 � 	 �
 ����!������ � �
�� � � � � �
 	 � 	 	 � 	 �
�� � 	 � � 	 � 	 �� � � 	 � � 	 �
�� "!���#���" � 	 � � � 	 � � 	 �� 	 � 	 	 � 	 �
�
 "!�������" � 	 � � � 	 � � � �� � 	 	 	 � 	 � � 	
�
 � 	 	 � � 	 	 �	 � � 	 	 � � 	 � 	
�� � � � � � � � � �� � 	 � � � 	 � � 	
	� � � � � � � � � �� � 	 � � � 	 � � 	
	� � � � � � � � � � �� � 	 	 � � � 	 � 	
		 � � � � � � � � �� � 	 	 � � � 	 � 	
	� � 	 � � 	 � 	 �
 � 	 � � � � � � 	
	� � 	 � � 	 � 	 �
 � � � � � � � � 	
	� � 	 � � 	 � 	 �� 	 � � � 	 � � � �
	� � 	 � � 	 � 	 �� 	 � � � 	 � � � �
	
 � 	 � 	 � �� 	 � � 	 � � �
	
 � 	 � 	 � �	 	 � � 	 � � �
	� � � � �� � � � � 	 �
�� � � � �� � � � � � � �
�� � 	 � � � � � � � �� � � � � � � �
�	 � 	 � � � � � � � �� � � � � � � �
�� � 	 � 	 � 	 � 	 � �
 � � � � �
�� � 	 � 	 � 	 � 	 � �
 � � � � �
�� � � 	 � � 	 �
�� � � 	 � � 	 �

$��%��&� '�����&� $��%��&� '�����&�
(�����"���� (�����"����
�"���)%* �+!��,�����.�#��*
��*�����/�3��" �+!��,�����.�#��*
�%����#�/�3��" "!����������
������������������" "!����������
������������������"
��*�������"��/
��*�������"��/
�%����#���"��/ �%��������!����"
�%����#���"��/ ���!�������!����"
�%��������������" �%��������!�
�%��������������"
���!���)%* ��%3�"����
������)%* ��%3�.%*

��%3�����
��*�����/�3��"��

3�"��������� �%����#�/�3��"��
�����������.���3 ������������������"��
�����������.���3 ������������������"��
������#����.���3 ��*�������"��/��
������#����.���3 ��*�������"��/��
.%*����.�#%�� �%����#���"��/��
.%*����.�#%�� �%����#���"��/��
"��������.�#%�� �%��������������"��
"��������.�#%�� �%��������������"��
���!������.�#%�� ��������������
���!������.�#%�� ��������������
3��%�����"!"�� �%��������
3��%�����"!"�� #��3�����
�%���������.�#��* �%�������%�
�%���������.�#��* �%�������%�
�%������/��.�#��* "!������%�
�%������/��.�#��* "!������%�
�%���������.�#��*
�%���������.�#��*

Table 4.3: Scores given to all individual FAP movements to all faces. For bidirectional FAPs,
scores are given for resp. the negative and the positive value. FE, XF, GR and MF
are short for FaceEditor, Xface, Greta and Miraface. w is the weight of the FAP as
explained in §4.4.2. Gray line bordered cells are the situations in which FaceEditor
performs worse than at least one of the other faces.

FaceEditor Xface Greta Miraface

Implemented 104 70 110 115

Score 3 91 19 71 62

Score 2 13 30 25 24

Score 1 0 21 14 21

Score 0 0 0 0 8

Table 4.4: Number of implemented FAPs and number of FAPs that has been given a certain
score. A total of 127 displacement have been assessed.

43

4.4. Evaluation Chapter 4. MPEG-4 Facial Animation

FaceEditor Xface Greta Miraface

Score without unimplemented FAPs 2.88 1.97 2.55 2.17

Score with unimplemented FAPs 2.60 1.32 2.32 1.96

Table 4.5: Weighted average score for each of the faces, with or without consideration of unim-
plemented FAPs.

Figure 4.21: Example of displacements for FAP 8 (lower t lip lm) in the negative direction. All
faces except Miraface has been given a score of 3 for this particular displacement.
As can be seen, Miraface shows a symmetrical displacement here, which resulted in
a score of 1.

Figure 4.22: Example of displacements for FAP 20 (close t r eyelid) in the positive direction.
Here, all faces got a score of 3.

44

Chapter 4. MPEG-4 Facial Animation 4.4. Evaluation

Figure 4.23: Some examples of displacements of Xface that are considered bad and that are
given a score of 1. From left to right, these displacements belong to FAPs 12
(raise l cornerlip, in negative direction, sharp edges and auxiliary displacement on
other side), 19 (close t l eyelid, in negative direction, strange black area above the
eye), 22 (close b r eyelid, in negative direction, hardly any movement at all) and 52
(raise b midlip o, in positive direction, very unrealistic due to sharp corners).

Figure 4.24: Some displacements on which FaceEditor did not get the highest score. From left
to right, these displacements belong to FAP 4 (lower t midlip, in positive direction,
sharp point), 13 (raise r cornerlip, in positive direction, no curve in lip line) and
two belong to FAP 61 (stretch l nose, in both directions, slightly unrealistic).

could pose a problem since adjusting this will also alter the negative version. Altering
parameters to improve stretching of the nose will be harder because for this, vertices
should travel in a angular fashion away from the center of the nostril. This is currently
not possible because vertices are bound to the direction of the feature point itself. But
this is only a minor problem because these FAPs for stretching the nose (and lowering the
midpoint of the top lip) are not so important. See Figurer 4.24 for some of these cases in
which FaceEditor did not get the highest score.

4.4.4 Conclusion

Several other MPEG-4 FA compliant faces have been used to evaluate the performance
of FaceEditor itself: Xface, Greta and Miraface. Attempts have been made to also use

45

4.4. Evaluation Chapter 4. MPEG-4 Facial Animation

software of visage in order to have a fifth face, but those failed.

Although evaluation is inherently subjective, the method proposed at least attempts to
create a metric whose determination and calculation procedures are more or less objectively
reproducible. It does this by scoring individual displacements in the faces for each FAP
and with each FAP having a weight indicating its importance, a weighted average is
calculated. Using this method, FaceEditor scores better than all faces that were used in
this evaluation.

46

Chapter 5

Conversion from FACS

Expressions that can be made by the human face were used to create a mapping that
accomodates automatic and real-time translation from FACS to MPEG-4 FA. A software
prototype was created for testing the mapping. This chapter describes the procedure used
when creating the mapping, the software prototype and the evaluation performed.

5.1 Procedure

This section is all about how the translation between AUs and FAPs was constructed.
The primary input was the mapping given by Zhang et al. [27], see Figure 2.3 and a
set of images visually showing the impact of the activation of an AU which, courtesy of
the Carnegie Mellon University School of Computer Science [17]. With the Xface Java-
interface (see §4.2.2) and the MPEG4-direct control utility (see §4.3.2), the following steps
were followed. For each given mapping (a AU-FAP-pair):

• Determine the maximum value by looking at the face produced by Xface. Any higher
values should produce an unrealistic displacement of the feature point. We assume
that Xface correctly performs the calculation of this displacement based on FAPUs
of the face used.

• Determine, based on the description of the AUs and the muscles used, whether there
are FAPs other than those assigned by Zhang et al. that positively can contribute
to the appearance of the movement. For example, for AU 1 (inner brow raiser), FAP
33 (vertical displacement of left middle eyebrow) was added. See Figure 5.1 for a
comparison.

• When more FAPs are mapped to this AU: possibly customize the start point.

47

5.2. Our FACS conversion implementation Chapter 5. Conversion from FACS

Figure 5.1: Two screenshots of Xface: the right image has FAP 33 added to the mapping of AU
1, which originally only referred to FAP 31.

All FAPs mapped to an AU have two ranges each of which has a lower and an upper
boundary. One range is for the FAP and one for the AU. Conversion from the one into
the other is a simple linear calculation.

5.2 Our FACS conversion implementation

This implementation consists of:

• a file format for representation of the mapping between AUs and FAPs;

• a Java model to represent AUs and FAPs

• a Java application that reads a mapping file, supplies the user with a GUI with
sliders corresponding to the AUs and interfaces with XFace and FaceEditor.

The file format is simple and plain. It it text based and each significant line (comments and
empty lines are not) can either be a reference to an AU or a specification of the influence
on a particular FAP. Each FAP influence specification is related to the last encountered
AU reference. Since AUs do not specify whether a movement should occur on the left
or right side of the face and FAPs do, we should make a distinction for FAPs whether
they relate to a left or right side AU movement. This is done by giving the lines with
AU references another field (separated with a tab) that is either ’L’ or ’R’ for left and
right respectively. A FAP influence specification contains five fields: the FAP-number,
AU-range start, AU-range end, FAP-range start and FAP-range end.

See Figure 5.2 for a few lines from a file in the format described above. AU 23 (lip tightner)
has two counterparts in MPEG-4 FA, a left and a right one. The FAP for the movement
in the left half of the face, FAP 53 (vertical displacement of left outer lip corner), ranges

48

Chapter 5. Conversion from FACS 5.2. Our FACS conversion implementation

from 0 to −300 when AU 23 ranges from 0.0 to 1.0. When the AU is activated half way
down its range (0.5), the FAP is calculated as 0 + (−300− 0) ∗ 0.5 = −150.

23 L

53 0.0 1.0 0 -300

23 R

54 0.0 1.0 0 -300

24

16 0.0 1.0 0 1000

17 0.0 1.0 0 500

25

3 0.0 1.0 0 900

4 0.5 1.0 0 -100

5 0.0 1.0 0 -1000

10 0.2 1.0 0 -1000

11 0.2 1.0 0 -1000

Figure 5.2: Mapping of three AUs to their corresponding FAPs

The Java object model for representation of FACS is presented in Figure 5.3. It provides
information about all existing Action Units (AUs), and a container for configurations of
values of AUs. FACS is static, and when this object is asked to give a list of AUs for the
first time, it reads a plain text file that contains all fields of all existing AUs, constructs
the necessary ActionUnit-objects, stores them in a map and returns it. When an object
of the type FACSConfiguration is instantiated, an array with twice the number of defined
action units is created. This is done because many AUs are asymmetric and have a left
and right of the face they describe.

On top of this model, the actual class that the conversion does, is built: FACSConverter.
The user interface uses FACSConverter to update MPEGConfiguration when the users
drags a slider and hands it over to Xface and FaceEditor. See Figure 5.4 for a screenshot
of the main window.

With this prototype built, some small optimizations in the mapping were made. In some
cases, it was more realistic to have a certain FAP work on another range of the AU scale
than the default 0.0-1.0 range. Or to have other FAPs incorporated in the mapping as
well. Things that could not be seen as easily with the MPEG4-direct control utility.

49

5.3. Evaluation Chapter 5. Conversion from FACS

Figure 5.3: Class diagram of the FACS model.

Figure 5.4: Screenshot of the FACS to MPEG4-FA converter.

5.3 Evaluation

Mapping of AUs to FAPs was done based on Zhang et al. [27] and a set of photographs
visually showing the impact of the activation of an AU [17]. This was fine-tuned with the

50

Chapter 5. Conversion from FACS 5.3. Evaluation

use of Xface and FaceEditor. There are two problems with this:

• AUs are not quantified as they only describe that a movement in the face is present
and not to what extent. With this converter, AUs can gradually be activated, but
FACS does not describe intermediate levels of activation so we’re stuck with a simple
linear scale.

• MPEG-4 does not have limits on the values for FAPs, so determination of maximum
values must be established by hand by looking for which values an MPEG-4 FA face
is beginning to look unrealistic which is rather subjective.

See the table below for a comparison between the photographs [17] and screenshots of
FaceEditor. Note that for opening the mouth, AUs 26 and 27 are more intensive versions
of AU 25. The same holds for closing the eyes: AUs 42 and 43 in respect to AU 41.

Action Unit CMU FaceEditor

1: Inner brow raiser

2: Outer Brow raiser

4: Brow lowerer

5: Upper lid raiser

6: Cheek raiser

7: Lid tightner

51

5.3. Evaluation Chapter 5. Conversion from FACS

Action Unit CMU FaceEditor

9: Nose wrinkler

10: Upper lip raiser

11: Nasolabial deepener

12: Lip corner puller

13: Cheek puffer

14: Dimpler

15: Lip corner depressor

16: Lower lip depressor

17: Chin raiser

52

Chapter 5. Conversion from FACS 5.3. Evaluation

Action Unit CMU FaceEditor

18: Lip puckerer

20: Lip stretcher

22: Lip funneler

23: Lip tightner

24: Lip pressor

25: Lips part

26: Jaw drop

27: Mouth stretch

28: Lip suck

53

5.3. Evaluation Chapter 5. Conversion from FACS

Action Unit CMU FaceEditor

41: Lid droop

42: Slit

43: Eyes closed

44: Squint

45: Blink

46: Wink

61: Eyes turn left

62: Eyes turn right

63: Eyes up

64: Eyes down

Eyebrow and eyelid operations pose no problem. There are some slight problems with
the lips, especially with AUs 24 (lip pressor) and 28 (lip suck). AU 9 (nose wrinkler)
is hardly reproducible since there are no movable MPEG-4 feature points at the base of
the nose (see Figure 4.2). But generally speaking, expression produced by FaceEditor are
reasonably realistic.

54

Chapter 6

Conversion from emotion

A way to represent expressions is to describe emotions that led to them. This chapter
describes the automatic and real-time translation from emotion to MPEG-4 FA using
Plutchik’s emotion wheel [21], Whissel’s study on activation of emotion terms [25] and is
based on previous work by Raouzaiou et al. [22].

6.1 Plutchik’s emotion wheel

A fundamental asset to the procedure for conversion of emotions in MPEG-4 FA configu-
ration as proposed by Raouzaiou et al. [22], is Plutchik’s emotion wheel, see Figure 6.1.
Although it is also displayed as a cone in the image, we only use the flattened version.
Plutchik created this wheel from his observation that emotion terms in the space defined by
dimensions such as Whissel’s are unevenly distributed and tent to form an approximately
circular pattern.

Picking an emotion is as easy as picking a point in this two dimension circular space. The
emotion picked depends on the distance from the center point and the angle. The greater
the distance, the less intense the emotion and vice versa. There are eight basic emotions
and eight advanced emotions that are placed in between the basic emotions. Each of
the basic and advanced emotions have an opposite although some of these are not that
straightforward. See Table 6.1 for a list of emotions in this space.

6.2 Procedure

The primary expressions are the six universally recognizable expressions as proposed by
Ekman et al.[9]. For the intermediate expressions, Plutchik’s emotion wheel is used.

55

6.2. Procedure Chapter 6. Conversion from emotion

Basic emotion Basic opposite Advanced emotion Composed of... Advanced opposite

trust disgust submission trust & fear contempt

fear anger awe fear & surprise aggressiveness

surprise anticipation disapproval surprise & sadness optimism

sadness joy remorse sadness & disgust love

disgust trust contempt disgust & anger submission

anger fear aggressiveness anger & anticipation awe

anticipation surprise optimism anticipation & joy disapproval

joy sadness love joy & trust remorse

Table 6.1: List of basic and advanced emotions in Plutchik’s emotion space.

Raouzaiou et al. [22] quantified FAPs for all archetypal emotions with input from psy-
chological studies and experimental data provided by classic databases as Ekman’s and
MediaLab’s. For each archetypal emotion, several profiles (valid instances of the archety-
pal emotion) have been made. Each profile contains a set of FAPs and their corresponding
range of variation. One of the profiles for fear is given in Figure 6.2. Ranges of variation
are created using the mean and standard deviation coming from the experimental data
and provide room for fuzziness and mild adjustments to reduce ”robot-like” expressions.
In the current implementation, ranges are simply reduced to their midpoint and length.

When calculating FAPs for intermediate expressions (the visual portion of emotion),
Raouzaiou et al. considered two different cases:

1. emotions that are similar, in nature, to an archetypal one; for example they may
differ only in the intensity of muscle actions;

2. emotions that cannot be considered as related to any of the archetypal ones.

For calculating FAPs for intermediate expressions, first have a look at Figure 6.3. PA is the
location of the archetypal emotion (the activation parameter for the emotion word surprise
is 6.5) and PI is the location for which we want to calculate a new profile. Calculation is
done as follows (based on Raouzaiou et al. [22]):

Let Pi be a profile of emotion i and Xi,j be the range of variation of FAP Fj involved in
Pi. If A, I are emotions belonging to the same universal emotion category, A being the
archetypal, and I the intermediate one, then the following rules are applied:

1. PA and PI employ the same FAPs.

2. aA and aI are the values of the activation parameter for emotion words A and I
obtained from Whissel’s study [25].

3. The range of variation XI,j is computed by XI,j = (aI/aA)XA,j .

56

Chapter 6. Conversion from emotion 6.2. Procedure

Figure 6.1: Plutchik’s model of emotion. It describes relations among emotion concepts.

In other words: the range is calculated using the ratio between the activation of PA and
PI . Let us take FAP 3 (open jaw) of one of the surprise-profiles as example. It has range
[569, 1201] and PA has activation 6.5 and PI has activation 4.0 so the new range is

[569 ∗ (4.0/6.5), 1201 ∗ (4.0/6.5)] = [350, 739] (6.1)

This is then done for all FAPs contained in the selected profile.

Calculating FAPs for intermediate expressions that lie in between two archetypal emotions
(in between on the wheel of Plutchik [21]) is slightly more complicated. The following is
the formal description (also based on from Raouzaiou et al.):

Let PA1 be a profile of emotion A1 and PA2 a profile of emotion A2, then the following
rules are applied so as to create a profile PI for the intermediate emotion I.

1. PI includes FAPs that are involved either in PA1 or PA2 .

57

6.2. Procedure Chapter 6. Conversion from emotion

F3 ∈ [400, 560], F5 ∈ [−240,−160], F19 ∈ [−630,−570], F20 ∈ [−630,−570], F21 ∈
[−630,−570], F22 ∈ [−630,−570], F31 ∈ [460, 540], F32 ∈ [460, 540], F37 ∈ [60, 140], F38 ∈
[60, 140]

Figure 6.2: A profile for fear. See Raouzaiou et al. [22] for a complete listing of all profiles for
all archetypal emotions.

2. aA1 , aA2 and aI are the values of the activation parameter for emotion words A1,
A2 and I obtained from Whissel’s study [25].

3. ωA1 , ωA2 and ωI , ωA1 ≤ ωI ≤ ωA2 are the angular parameters for emotion words
A1, A2 and I, obtained from Plutchik’s study [21].

4. If Fj is a FAP involved in both PA1 and PA2 with the same sign (direction of
movement), then the range of variation XI,j is computed as a weighted translation
of XA1,j and XA2,j (where XA1,j and XA2,j are the ranges of variation of FAP Fj

involved in PA1 and PA2 , resp.) in the following way:

(a) we compute the translated range of variations

t (XA1,j) =
aI
aA1

XA1,j , t (XA2,j) =
aI
aA2

XA2,j (6.2)

of XA1,j and XA2,j ,

(b) we compute the center and length cA1,j and sA1,j of t (XA1,j) and cA2,j and
sA2,j of t (XA2,j),

(c) the length of XI,j is

sI,j =
ωI − ωA1

ωA2 − ωA1

sA1,j +
ωA2 − ωI

ωA2 − ωA1

sA2,j (6.3)

and its midpoint is

cI,j =
ωI − ωA1

ωA2 − ωA1

cA1,j +
ωA2 − ωI

ωA2 − ωA1

cA2,j . (6.4)

5. If the Fj is involved in both PA1 and PA2 but with a contradictory sign (opposite
direction of movement), then the range of variation XI,j is computed by

XI,j =
aI
aA1

XA1,j ∩
aI
aA2

XA2,j . (6.5)

In case where XI,j is eliminated (which is the most likely situation), Fj is excluded
from the profile.

6. If the Fj is involved only in one of PA1 and PA2 , then the range of variation XI,j

will be averaged with the neutral face, that is, XI,j = (aI/ (2 ∗ aA1))XA1,j or XI,j =
(aI/ (2 ∗ aA2))XA2,j .

58

Chapter 6. Conversion from emotion 6.2. Procedure

�

�

�

�

�

�

�

	

�

�

Figure 6.3: A situation in which a new profile is calculated within the same archetypal emotion.

When estimating ranges of variation of FAPs for profiles for emotions that do not clearly
belong to a universal category, activation and the angular measures are used. In the
approach of Raouzaiou et al. [22], FAPs that are common in both emotions are retained
during synthesis and FAPs that only exist in one of the emotions are averaged with the
neutral face. FAPs with contradicting intensities are canceled out.

Have a look at Figure 6.4 which will be held as example. aA1 is the first archetypal
emotion, anger. Its angle is 225◦ and its activation (according to Whissel) is 2.4. The
second archetypal emotion is aA2 , joy. Its angle is 315◦ and its activation is 5.4. We want
to construct a profile for aI . Its angle is 261◦ and its activation is 3.8.

Now lets have a look at the procedure for FAP 3 (open jaw). This is an easy one because
it is only present in the profile for joy. Its range is [195, 205]. This FAP will be included
in aI but averaged with the neutral face:

[(3.8/(2 ∗ 5.4)) ∗ 195 = 67, (3.8/(2 ∗ 5.4)) ∗ 205 = 72]. (6.6)

FAP 20 (close t r eyelid) is included in both profiles. For the second profile of anger it is
[−335,−205] and for the fourth profile of joy [−426,−302]. First, we calculate translated

59

6.2. Procedure Chapter 6. Conversion from emotion

�

�

�

�

	�
�
�
�
�

����

����

���

�

���

Figure 6.4: A situation in which a new profile (aI) is calculated which lies in between two different
archetypal emotions.

ranges of variation. For anger:

[(3.8/4.2) ∗ −335 = −303, (3.8/4.2) ∗ −205 = −185]. (6.7)

Center = -260, length = 150. For joy:

[(3.8/5.4) ∗ −426 = −300, (3.8/5.4) ∗ −302 = −213]. (6.8)

Center = -256.5, length = 87.

The length of the new range:

ωI − ωA1

ωA2 − ωA1

=
261− 225

315− 225
= 0.4, (6.9)

ωA2 − ωI

ωA2 − ωA1

=
315− 261

315− 225
= 0.6, (6.10)

s
(m)
I,j = 0.4 ∗ 150 + 0.6 ∗ 87 = 112.2, (6.11)

and the center:

c
(m)
I,j = 0.4 ∗ −260 + 0.6 ∗ −256.5 = −257.9, (6.12)

so the range of FAP 20 in the new intermediate profile is [−314,−202].

60

Chapter 6. Conversion from emotion 6.3. Our emotion conversion implementation

6.3 Our emotion conversion implementation

The prototype consists of:

• a file format for representation of profiles of all archetypal emotions;

• a Java model to represent FAPs

• a Java application that reads the data file, supplies the user with a GUI with which
he can choose different profiles and positions on the circulair model of emotion of
Plutchik and interfaces with Xface and FaceEditor.

The file format is a, just as the mapping file for the FACS conversion, simple and plain.
It is text based and each significant line can either be a profile label or a profile. Each
profile label precedes exactly one profile. A profile label is build up from the archetypal
emotion it represents, a space, and a sequence number which is unique within the scope
of an emotion. A profile is a comma seperated list of FAP ranges and each FAP consists
of a reference to a FAP and a lower and upper boundary.

See Figure 6.5 for a few lines from a file in the format described above. The three lines
with profiles have been shortened to improve readability. We can see in this fragment
that, for example, for the 10th profile for Fear, the range for FAP 5 (raise b midlip) starts
at 307 and ends at 399. The angle and activation of the archetypal emotions themselves
are set in Java code.

Fear 9

F3 [400, 560], F5 [307, 399], ..., F36 [460, 540]

Surprise 0

F3 [569, 1201], F5 [340, 746], ..., F54 [-121,-43]

Surprise 1

F3 [1150, 1252], F5 [-792,-700], ..., F54 [-141,-101]

Figure 6.5: Three profiles for two different emotions

The real work is done in a class called EmotionConverter, but some classes represented
in Figure 6.6 are used in the process. These classes were also used in the FACS conversion
prototype.

The user interface uses EmotionConverter to update MPEGConfiguration when a user
clicks somewhere in the emotion space and hands it over to Xface and FaceEditor. See
Figure 6.7 for a screenshot of the main window.

61

6.4. Evaluation Chapter 6. Conversion from emotion

Figure 6.6: Class diagram of the auxiliary classes.

Figure 6.7: Screenshot of the emotion to MPEG4-FA converter.

6.4 Evaluation

With the prototype built, we did a preliminary assessment of the quality of the produced
faces and the profiles supplied by Raouzaiou et al. It was disappointing and we investigated
it a bit further in the next few paragraphs. See §7.3 for a discussion of the method used
by Raouzaiou et al. for aquisition of the data.

For evaluation purposes, they use a face model developed in the context of the European
project ACTS MoMuSys [4]. It was freely available but it has evolved in a reference
implementation and is now part of the MPEG-4 standard itself so we can not use it.
However, Raouzaiou et al. included screenshots in their work. We will not only compare
these screenshots with the performance of FaceEditor, but also with the three other faces

62

Chapter 6. Conversion from emotion 6.4. Evaluation

we have used earlier in evaluation of FaceEditor itself, see §4.4.1.
Raouzaiou et al. have displayed screenshots of MoMuSys for three different profiles for
anger, two for surprise and one for joy. To illustrate the method of creation of new profiles,
they also included images for the emotion terms afraid, terrified and worried, afraid, guilty
and sad. Because we don’t know which profiles are used for animation of the face used
in MoMuSys - except for sadness and joy because they each have only one profile - we
cannot reconstruct the used FAP configurations exactly. In these cases, the profile that
looks best in FaceEditor will be selected.

See Figure 6.8 for the comparison. This shows that especially for anger and joy, the
supplied profiles result in unrealistic faces.

Based on this, we chose to hand-craft each archetypal emotion by ourself to see if we
can produce some better profiles. As guide for what FAPs we need to activate for each
archetypal emotion, we still used the vocabularies of the aforementioned work. See Figure
6.9 for a visual display of both the best profiles supplied by Raouzaiou et al. and the
hand-crafted versions. Problems clearly arise for anger and joy.

To show that the new profiles perform well for all other faces used in evaluation earlier,
they will be put side to side. See Figure 6.10. Only the profile created for anger is slightly
of course for all faces but FaceEditor.

To further explore and evaluate the emotion space and the conversion method, we will
simply show faces that correspond to points on a circular grid that is placed in the emotion
space. Note that the angle 0◦ is in between joy and fear (trust) and that it is clockwise.
See the following table.

Activation Emotion

Angle 1 3 5 7

0.0 Trust

22.5 Submission

45.0 Fear

63

6.4. Evaluation Chapter 6. Conversion from emotion

Activation Emotion

Angle 1 3 5 7

67.5 Awe

90.0 Surprise

112.5 Disapproval

135.0 Sadness

157.5 Remorse

180.0 Disgust

202.5 Contempt

225.0 Anger

247.5 Aggressiveness

64

Chapter 6. Conversion from emotion 6.4. Evaluation

Activation Emotion

Angle 1 3 5 7

270.0 Anticipation

292.5 Optimism

315.0 Joy

337.5 Love

360.0 Trust

The process of conversion or translation of a certain emotion in a FAP configuration has
been implemented with help from Raouzaiou et al. The method seems to work well. The
data was less usable, but new profiles could easily be created by hand.

65

6.4. Evaluation Chapter 6. Conversion from emotion

Figure 6.8: Screenshots of MuMoSys, FaceEditor, Xface, Greta and Miraface. The screenshots
of MuMoSys are taken from the paper by Raouzaiou et al., the other screenshots
are made based on reconstructed profiles that represent the same FAP configuration
as the one the MuMoSys screenshots were taken from. From top to bottom: anger,
surprise, joy, terrified and sad.

66

Chapter 6. Conversion from emotion 6.4. Evaluation

Figure 6.9: Screenshots of FaceEditor for the six archetypal emotions. The top row contains the
best performing profiles coming from Raouzaiou et al., the bottom row contains the
hand crafted ones. From left to right: joy, sadness, anger, fear, disgust and surprise.

Figure 6.10: The new archetypal profiles displayed in Xface, Greta and Miraface. From left to
right: joy, sadness, anger, fear, disgust and surprise.

67

6.4. Evaluation Chapter 6. Conversion from emotion

68

Chapter 7

Discussion

In this chapter, we will talk about some of the weaknesses and strengths of some of the
methods that have been developed or reused.

7.1 MPEG-4 Facial Animation

The MPEG-4 Facial Animation (FA) standard is clear and sound for the part it describes.
It describes FPs (Feature Points) on the face and the direction and distance they should
travel in relation to FAPs (Facial Action Parameters). The mapping between this displaced
FP and how the vertices should be displaced is left open for the implementation and this
is done because it is not feasible to globally specify this mapping for all different facial
vertex topologies.

This leaves us with the following question: how to create and evaluate a certain mapping
created for a certain face? In contrast with FACS, a lot of individual FAPs cannot be
recproduced individually by a human face. So this mapping must be created solely by
means of the tools created to define these mappings for faces and the one who sets the
parameters for a particular face. The input for this process is the description given by the
standard and the personal interpretation of the animator. This description is short, but
nevertheless the total range of mappings is limited because there are only a few descriptions
of FAPs that allow for multiple interpretations.

An example of a FAP description that is not entirely clear is that of the midpoint lip
displacements. The position of the FP is known, so is the distance it travels, but it is
unknown what the width of the influence area must be exactly. The impact of a different
interpretation in this case can however be easily be limited by another layer on top of the
sum of all vertex displacements (vectors) which checks that if a vertex has vector in the
same direction from more than one FAP, one of those vectors is canceled. This check comes

69

7.2. Conversion from FACS Chapter 7. Discussion

in effect when two influence areas overlap each other and - when activated simultaneously
- create a w-like shape. See Figure 7.1 for a visual example. We solved this by easing, but
it must be set in cooperation with the size of the influence sphere and this is still a point
in which two faces can be configured differently.

Figure 7.1: From left to right: neutral upper lips, the way it should be when the three upper
lips points are moved up and the way it looks when the middle one has a influence
sphere that is too large.

Evaluation of a specific implementation of MPEG-4 FA can not be done by means of a
quantitative research. Because of the unnatural facial expressions (because of activation
of only individual FAPs), a reference to what is good must be given. We have found some
sort of reference implementation by looking at other faces that implemented MPEG-4
FA but when asking subjects which face is producing the best expression for any of the
FAPs, they inevitably will at least take other irrelevant information in consideration, if
they are not led by them in the first place. There are numerous factors that would distract
subjects, such as how the face itself looks, hair, textures, geometry, etcetera. The only
sensible alternative was to assess all FAPs on all available faces one by one and give scores
that evaluated the displacements individually.

Our way of implementation and evaluation of this implementation gives us enough reason
to believe the implementation is usable in an environment where expressions and anima-
tions based on FAPs are interchangeable with other faces displayed by the same and other
implementations of MPEG-4 FA.

7.2 Conversion from FACS

FACS is one of the higher level control mechanisms. It involves a translation from configu-
rations of AU (Action Unit) values to configurations of FAP values. FACS claims to have
indexed all individually discriminable expressions that a human face can show. And since
each and every movement in the face also can be represented using FAPs, a translation
should be possible.

This has proven to be true to a large extent, but not completely. The largest problem
is AU 9, the nose wrinkler. It involves movement of two points at the base of the nose.
These points correspond to points in MPEG-4 FA, namely 9.4 and 9.5 (see Figure 4.2) but
the problem is that no FAP has effect on their position so they cannot be moved. Points

70

Chapter 7. Discussion 7.3. Conversion from emotion

9.2 and 9.1 (respectively the points ahead of points 9.4 and 9.5) are movable by FAPs 61
(stretch l nose) and 62 (stretch r nose), but only on a horizontal line through these points
from left to right. A way of giving a face a nose wrinkle using MPEG-4 FA is to map a
expression (FAP 2) to a custom deformation target, but this is less portable.

Input for creation of the mapping was a set of images visually showing the impact of the ac-
tivation of an AU, courtesy of the Carnegie Mellon University School of Computer Science
[17]. FAPs were set per AU to mimic the expression shown in the real life photograph.

Since all FACS can be reproducible by the human face, evaluation of this conversion meant
matching up actual images of FACS performances by a human face with the actual results
produced by FaceEditor. In addition or alternative to this, an official FACS coder could
have been hired that could have validated that each and every face shows activation of
the right AU and maybe even could have assessed the quality, but they are expensive.
And since we have real life imagery for all individual AUs, we chose to simply show the
imagery side by side.

7.3 Conversion from emotion

The other higher level control that has been described earlier, is the one that converts a
position in a two dimensional emotion space into a configuration of FAP values. It relies
heavily on the work of Raouzaiou et al. [22] in two ways. First, we implemented their
method for synthesis of new FAP profiles (a FAP configuration with a range of variation
for each FAP) based on profiles for archetypal emotions. Secondly, these base profiles for
the archetypal emotions were being filled in by the data that was the result of another
process.

This other process consisted of a few steps. Raouzaiou et al. [22] wrote: ”we translate
facial muscle movements – describing expressions through muscle actions – into FAPs and
create a vocabulary of FAPs for each archetypal expression. [They] are also experimentally
verified through analysis of prototype datasets.” Furthermore, ranges of variation (to be
able to create the profiles) were estimated for each archetypal profile by ”analyzing real
images and video sequences as well as by animating synthesized examples”.

The method for synthesis of new FAP profiles performed well, but the archetypal profiles
themselves were not producing realistic faces on our side in FaceEditor at all. Because
of the claims made by Raouzaiou et al. and the imagery showed in their paper, and to
rule out that FaceEditor was interpreting or showing these profiles wrong, this issue has
been investigated further in §6.4. It shows that when visualizing these profiles, unrealistic
results appear on more faces. The fact that MuMoSys (the face used by Raouzaiou et al.)
showed viable results could have been caused by the relative low number of polygons. Just
like Miraface, it is a old face model which can lead to extremes being flattened out. This
is supported by the fact that all displays of Miraface in Figure 6.8 look like MuMoSys the

71

7.4. Combination of higher level controls Chapter 7. Discussion

most.

In general, the data collection method of Raouzaiou et al. proved to be usable for Mu-
MoSys for a limited number of easily detectable feature points. But variance in the dataset
they created is large and other errors may have been masked by the fact that MuMoSys
is rather low polygon in terms of todays face models.

7.4 Combination of higher level controls

It is possible to combine two or more higher level steering elements. For example, one
could deform the face using a position on the two dimensional emotion space and alter
this with the FACS controller. There is a limitation in that one FAP can only be set
once. When it is set a second time, the old value is overwritten. And because in general,
higher level controls with a few input parameters affect a lot of FAPs at the same time,
it is advisable to always set the expression using the method that has the fewest input
parameters first and then refine it with methods with more input parameters. See Figure
7.2 for what can be accomplished for example.

+ =

Figure 7.2: Combination of a wink set using the FACS converter and serenity using the emotion
converter.

7.5 Conclusion

In this chapter, we have spoken about weaknesses and strengths of MPEG-4 FA, conversion
from FACS and and the conversion from emotions. Also, the way in which these parts are
evaluated is discussed.

72

Chapter 8

Conclusion and future work

8.1 Conclusion

To conclude this thesis, we will revisit the objectives that are given in the introduction
of this thesis en describe for each objective to what extent and how is has been fulfilled.
These objectives were to design and implement a set of tools that:

1. assist in creating facial expressions by providing several high level steering instru-
ments that can be driven by a limited number of parameters;

2. provide a good trade of between number of control parameters and range of expres-
sion;

3. actually apply micro adjustments to virtual faces in such a way that these faces are
interchangeable with other faces without changing too much of the expression;

4. interface with Behavior Markup Language (BML) and

5. work in real-time with respect to three dimensional rendering on the screen.

Point 1: two high level steering instruments have been designed and implemented. These
respectively translate FACS and emotion into the low level expression representation
MPEG-4 FA. The translation from FACS performs well, only slight problems occur in
translation of FACS’ Action Unit 9 (nose wrinkler) because there are no corresponding
MPEG-4 FA feature points at the base of the nose. Generally speaking, expression that
come out of this translation are reasonably realistic.

Regarding the translation from emotion, re-using data from Raouzaiou et al. [22] needed
for this translation, resulted in unrealistically looking faces. We hand-crafted our own
data and with this, the method itself proved to be usable.

73

8.2. Future work Chapter 8. Conclusion and future work

Point 2: the two provided high level steering instruments are different from each other in
the sense that the translation from FACS has a relatively high number of input parameters
and the translation from emotion only two. With this translation from FACS, almost every
facial expression can be built, but with the translation from emotion, a complete expression
can be made by only choosing an emotion and an intensity. Furthermore, when combining
these two high level steering instruments, the emotion instrument can be used to set a
global face which can then be further altered by using the FACS instrument.

Point 3: the software package created enables to create parameter files for faces that need
to be expression-enabled. Some work still needs to be done before another face can be
used but a graphical user interface is provided to make the mandatory labor of setting
parameters less intensive.

Point 4: a BML reader has been designed and developed and this is the first step in BML
as container for high and low level expression representations. It can contain FACS action
units, timing constraints and it may also have FAP values or emotion space coordinates
in it using extensions. Furthermore, this implementation can be used for all other things
BML is capable of representing, such as body animation.

Point 5: all operations used in the context of three dimensional rendering are cheap; the
high level steering instruments and the application of micro adjustments work in real-time.

8.2 Future work

Future work related to the work presented in this thesis is represented in the following
points.

• Since all implemented facial expressions do not yet take pre-modelled visemes or
morph targets in general into account, actions have to be taken in order to be able
to create a embodied conversational agent. There are several paths that can be
traveled in order to achieve this. Mixing for example. Care must be taken with
respect to priorities and conflicts between the two sources of facial deformation.
Another possibility is to recreate visemes as FAP-configurations and attack this
problem at FAP-level.

• Continuing on the course of the previous point, the same problems arises when
heavily combining higher level control methods. The controls are not aware of the
presence of other control methods. One might also think in the direction of a com-
plete hierarchy of control methods, all working together. Not only on the same level
but also in the branches of the tree.

• In this work, we only looked at static expression. We believe that animation of
expressions or facial animation can improve realism and recognition of facial expres-

74

Chapter 8. Conclusion and future work 8.2. Future work

sions, so future research regarding this subject would be to find out how expressions
must be turned into facial animation in such a way that it improves realism and
recognition of expressions.

• Not relevant to all face models, but the face model used for this thesis incorporated
eyelashes. For the sake of simplicity, these were hidden because it might take a
considerate amount of time to automatically align deformation of these objects with
the actual movements of the eyelids. This is something to consider for production
quality environments. Other auxiliary objects are related to this, such as animation
of hair or dilation of the eye pupils.

• Incorporation of wrinkles can improve realism. In cases where the skin would nor-
mally wrinkle (such as on the forehead when frowning), the virtual skin should do
the same. Several attempts to do this have been made, see Stefano Pasquariello and
Catherine Pelachaud [20] or Wu, Kalra, Moccozet and Magnenat-Thalmann[26] for
example.

• The emotion conversion model uses the activation parameter from Whissel’s study
[25] for emotion terms in cooperation with Plutchik’s emotion wheel [21]. But it also
incorporates other terms or factors, evaluation being the second most important after
activation. There is not a 1:1 relationship between this evaluation parameter and
angles from Plutchik’s emotion wheel. It might be worthwhile to investigate this
extra parameter and maybe extend the emotion conversion model with it. It would
also be worthwhile to look at completely different emotion models such as the widely
used valence-arousal representation.

• Researches have made attempts for automatic feature point placement. Not limited
to the field of analysis of real life imagery, but also for synthesis purposes. Research
could be done to investigate whether automatic placement of MPEG-4 FA feature
points on the face is feasible. An advantage above analysis of real life image data
is that the algorithm has access to the vertex topology. One could imagine that
corners of the mouth or eyes should not be hard to find.

• When vertices are displaced, their movement is bound to the direction in which the
feature point is moving for a particular FAP. Research could be done to find out if
realism can be improved by other ways of defining new vertex positions not only by
their distance to the feature point and its direction. More skin like deformations for
example.

• When vertices are displaced, the size of the displacements are based on a function
of the distance to the feature point with respect to the size of the influence sphere.
This function is now limited to exponential functions and smoothing using Bézier
curves but other functions such as raised cosine could lead to further improvement.

• The whole idea of the influence sphere, easing and masking is to assign weights to
vertices. Numerous other procedures can be followed here, such as vertex weight

75

8.2. Future work Chapter 8. Conclusion and future work

painting or defining regions on the face. This can also be combined with work
regarding the directions vertices should travel. And all of this could be defined
globally or on a per-FAP or per-feature point basis.

76

Appendix A

FACS Action Units

AU Description Facial muscle

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer Corrugator supercilii, Depressor supercilii

5 Upper Lid Raiser Levator palpebrae superioris

6 Cheek Raiser Orbicularis oculi, pars orbitalis

7 Lid Tightener Orbicularis oculi, pars palpebralis

9 Nose Wrinkler Levator labii superioris alaeque nasi

10 Upper Lip Raiser Levator labii superioris

11 Nasolabial Deepener Zygomaticus minor

12 Lip Corner Puller Zygomaticus major

13 Cheek Puffer Levator anguli oris (a.k.a. Caninus)

14 Dimpler Buccinator

15 Lip Corner Depressor Depressor anguli oris (a.k.a. Triangularis)

16 Lower Lip Depressor Depressor labii inferioris

17 Chin Raiser Mentalis

18 Lip Puckerer Incisivii labii superioris and Incisivii labii in-
ferioris

20 Lip stretcher Risorius with platysma

22 Lip Funneler Orbicularis oris

23 Lip Tightener Orbicularis oris

77

Appendix A. FACS Action Units

AU Description Facial muscle

24 Lip Pressor Orbicularis oris

25 Lips parta Depressor labii inferioris or relaxation of
Mentalis, or Orbicularis oris

26 Jaw Drop Masseter, relaxed Temporalis and internal
Pterygoid

27 Mouth Stretch Pterygoids, Digastric

28 Lip Suck Orbicularis oris

41 Lid droopb Relaxation of Levator palpebrae superioris

42 Slit Orbicularis oculi

43 Eyes Closed Relaxation of Levator palpebrae superioris;
Orbicularis oculi, pars palpebralis

44 Squint Orbicularis oculi, pars palpebralis

45 Blink Relaxation of Levator palpebrae superioris;
Orbicularis oculi, pars palpebralis

46 Wink Relaxation of Levator palpebrae superioris;
Orbicularis oculi, pars palpebralis

51 Head turn left

52 Head turn right

53 Head up

54 Head down

55 Head tilt left

56 Head tilt right

57 Head forward

58 Head back

61 Eyes turn left

62 Eyes turn right

63 Eyes up

64 Eyes down

aThis currently also embeds AU’s 26 and 27 by intensity.
bThis currently also embeds AU’s 42 and 43 by intensity.

Table A.1: The Action Units defined in FACS

78

Appendix B

MPEG-4 FA Facial Action
Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

1 viseme Set of values determining
the mixture of two visemes
for this frame (e.g. pbm,
fv, th)

2 expression A set of values determin-
ing the mixture of two fa-
cial expression

3 open jaw Vertical jaw displacement
(does not affect mouth
opening)

MNS U down 2.1

4 lower t midlip Vertical top middle inner
lip displacement

MNS B down 2.2

5 raise b midlip Vertical bottom middle in-
ner lip displacement

MNS B up 2.3

79

Appendix B. MPEG-4 FA Facial Action Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

6 stretch l cornerlip Horizontal displacement of
left inner lip corner

MW B left 2.4

7 stretch r cornerlip Horizontal displacement of
right inner lip corner

MW B right 2.5

8 lower t lip lm Vertical displacement of
midpoint between left cor-
ner and middle of top inner
lip

MNS B down 2.6

9 lower t lip rm Vertical displacement of
midpoint between right
corner and middle of top
inner lip

MNS B down 2.7

10 raise b lip lm Vertical displacement of
midpoint between left cor-
ner and middle of bottom
inner lip

MNS B up 2.8

11 raise b lip rm Vertical displacement of
midpoint between right
corner and middle of
bottom inner lip

MNS B up 2.9

12 raise l cornerlip Vertical displacement of
left inner lip corner

MNS B up 2.4

13 raise r cornerlip Vertical displacement of
right inner lip corner

MNS B up 2.5

14 thrust jaw Depth displacement of jaw MNS U forward 2.1

15 shift jaw Side to side displacement
of jaw

MW B right 2.1

16 push b lip Depth displacement of bot-
tom middle lip

MNS B forward 2.3

17 push t lip Depth displacement of top
middle lip

MNS B forward 2.2

80

Appendix B. MPEG-4 FA Facial Action Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

18 depress chin Upward and compressing
movement of the chin (like
in sadness)

MNS B up 2.10

19 close t l eyelid Vertical displacement of
top left eyelid

IRISD B down 3.1

20 close t r eyelid Vertical displacement of
top right eyelid

IRISD B down 3.1

21 close b l eyelid Vertical displacement of
bottom left eyelid

IRISD B up 3.3

22 close b r eyelid Vertical displacement of
bottom right eyelid

IRISD B up 3.4

23 yaw l eyeball Horizontal orientation of
left eyeball

AU B left 3.5

24 yaw r eyeball Horizontal orientation of
right eyeball

AU B left 3.6

25 pitch l eyeball Vertical orientation of left
eyeball

AU B down 3.5

26 pitch r eyeball Vertical orientation of
right eyeball

AU B down 3.6

27 thrust l eyeball Depth displacement of left
eyeball

ES B forward 3.5

28 thrust r eyeball Depth displacement of
right eyeball

ES B forward 3.6

29 dilate l pupil Dilation of left pupil IRISD B growing 3.5

30 dilate r pupil Dilation of right pupil IRISD B growing 3.6

31 raise l i eyebrow Vertical displacement of
left inner eyebrow

ENS B up 4.1

32 raise r i eyebrow Vertical displacement of
right inner eyebrow

ENS B up 4.2

33 raise l m eyebrow Vertical displacement of
left middle eyebrow

ENS B up 4.3

81

Appendix B. MPEG-4 FA Facial Action Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

34 raise r m eyebrow Vertical displacement of
right middle eyebrow

ENS B up 4.4

35 raise l o eyebrow Vertical displacement of
left outer eyebrow

ENS B up 4.5

36 raise r o eyebrow Vertical displacement of
right outer eyebrow

ENS B up 4.6

37 squeeze l eyebrow Horizontal displacement of
left eyebrow

ES B right 4.1

38 squeeze r eyebrow Horizontal displacement of
right eyebrow

ES B left 4.2

39 puff l cheek Horizontal displacement of
left cheeck

ES B left 5.1

40 puff r cheek Horizontal displacement of
right cheeck

ES B right 5.2

41 lift l cheek Vertical displacement of
left cheek

ENS U up 5.3

42 lift r cheek Vertical displacement of
right cheek

ENS U up 5.4

43 shift tongue tip Horizontal displacement of
tongue tip

MW B right 6.1

44 raise tongue tip Vertical displacement of
tongue tip

MNS B up 6.1

45 thrust tongue tip Depth displacement of
tongue tip

MW B forward 6.1

46 raise tongue Vertical displacement of
tongue

MNS B up 6.2

47 tongue roll Rolling of the tongue into
U shape

AU U concave
up-
ward

6.3 & 6.4

82

Appendix B. MPEG-4 FA Facial Action Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

48 head pitch Head pitch angle from top
of spine

AU B down 7.1

49 head yaw Head yaw angle from top of
spine

AU B left 7.1

50 head roll Head roll angle from top of
spine

AU B right 7.1

51 lower t midlip o Vertical top middle outer
lip displacement

MNS B down 8.1

52 raise b midlip o Vertical bottom middle
outer lip displacement

MNS B up 8.2

53 stretch l cornerlip o Horizontal displacement of
left outer lip corner

MW B left 8.3

54 stretch r cornerlip o Horizontal displacement of
right outer lip corner

MW B right 8.4

55 lower t lip lm o Vertical displacement of
midpoint between left cor-
ner and middle of top outer
lip

MNS B down 8.5

56 lower t lip rm o Vertical displacement of
midpoint between right
corner and middle of top
outer lip

MNS B down 8.6

57 raise b lip lm o Vertical displacement of
midpoint between left cor-
ner and middle of bottom
outer lip

MNS B up 8.7

58 raise b lip rm o Vertical displacement of
midpoint between right
corner and middle of
bottom outer lip

MNS B up 8.8

83

Appendix B. MPEG-4 FA Facial Action Parameters

FAP Name Description Unit U
n
i-
/
b
id
ir
ec
ti
o
n
a
l

Motion F
ea
tu
re

p
o
in
t

59 raise l cornerlip o Vertical displacement of
left outer lip corner

MNS B up 8.3

60 raise r cornerlip o Vertical displacement of
right outer lip corner

MNS B up 8.4

61 stretch l nose Horizontal displacement of
left side of nose

ENS B left 9.1

62 stretch r nose Horizontal displacement of
right side of nose

ENS B right 9.2

63 raise nose Vertical displacement of
nose tip

ENS B up 9.3

64 bend nose Horizontal displacement of
nose tip

ENS B right 9.3

65 raise l ear Vertical displacement of
left ear

ENS B up 10.1

66 raise r ear Vertical displacement of
right ear

ENS B up 10.2

67 pull l ear Horizontal displacement of
left ear

ENS B left 10.3

68 pull r ear Horizontal displacement of
right ear

ENS B right 10.4

Table B.1: FAPs

84

Appendix C

FaceEditor parameter XML DTD

Under the root faceeditor-parameters, the four children fp-positions, keep-syncs,
deformers and vertex-masks must occur once and in order. fp-positions contains
one or more fp-position elements each of which having attributes to denote the feature
point and the three coordinates. keep-syncs contains a plain space delimited list of
FAP numbers for which synchronization must be kept. deformers contains elements that
on their part contain the various parameters. For ease-deformer, all parameters are
contained in attributes. vertex-masks contains one or more vertex-mask elements each
of which having an attribute with the FAP number and containing a list of indices of
vertices. See the DTD below.

<!DOCTYPE FEPARAM [

<!ELEMENT faceeditor-parameters (fp-positions, keep-syncs,

deformers, vertex-masks)>

<!ELEMENT fp-positions (fp-position?)>

<!ELEMENT keep-syncs (#PCDATA)>

<!ELEMENT deformers (ease-deformer?, smooth-deformer?, deformer?)>

<!ELEMENT vertex-masks (vertex-mask?)>

<!ELEMENT fp-position>

<!ATTLIST fp-position x CDATA #REQUIRED>

<!ATTLIST fp-position y CDATA #REQUIRED>

<!ATTLIST fp-position z CDATA #REQUIRED>

<!ATTLIST fp-position fp CDATA #REQUIRED>

<!ELEMENT ease-deformer>

<!ATTLIST ease-deformer x CDATA #REQUIRED>

<!ATTLIST ease-deformer y CDATA #REQUIRED>

85

Appendix C. FaceEditor parameter XML DTD

<!ATTLIST ease-deformer z CDATA #REQUIRED>

<!ATTLIST ease-deformer fap CDATA #REQUIRED>

<!ATTLIST ease-deformer size CDATA #REQUIRED>

<!ATTLIST ease-deformer scalex CDATA #REQUIRED>

<!ATTLIST ease-deformer scaley CDATA #REQUIRED>

<!ATTLIST ease-deformer scalez CDATA #REQUIRED>

<!ATTLIST ease-deformer use-vertex-mask CDATA #REQUIRED>

<!ATTLIST ease-deformer invert-vertex-mask CDATA #REQUIRED>

<!ATTLIST ease-deformer ease CDATA #REQUIRED>

<!ELEMENT smooth-deformer>

<!ATTLIST smooth-deformer x CDATA #REQUIRED>

<!ATTLIST smooth-deformer y CDATA #REQUIRED>

<!ATTLIST smooth-deformer z CDATA #REQUIRED>

<!ATTLIST smooth-deformer fap CDATA #REQUIRED>

<!ATTLIST smooth-deformer size CDATA #REQUIRED>

<!ATTLIST smooth-deformer scalex CDATA #REQUIRED>

<!ATTLIST smooth-deformer scaley CDATA #REQUIRED>

<!ATTLIST smooth-deformer scalez CDATA #REQUIRED>

<!ATTLIST smooth-deformer use-vertex-mask CDATA #REQUIRED>

<!ATTLIST smooth-deformer invert-vertex-mask CDATA #REQUIRED>

<!ATTLIST smooth-deformer smooth-center CDATA #REQUIRED>

<!ATTLIST smooth-deformer smooth-side CDATA #REQUIRED>

<!ELEMENT deformer>

<!ATTLIST deformer x CDATA #REQUIRED>

<!ATTLIST deformer y CDATA #REQUIRED>

<!ATTLIST deformer z CDATA #REQUIRED>

<!ATTLIST deformer fap CDATA #REQUIRED>

<!ELEMENT vertex-mask (#PCDATA)>

<!ATTLIST vertex-mask fap CDATA #REQUIRED>

]>

86

Bibliography

[1] Behavior markup language (bml) version 1.0 (draft).
http://wiki.mindmakers.org/projects:bml:draft1.0.

[2] Online mpeg-4 fa implementation evaluation appendix.
http://rcpaul.nl/ut/feeval/.

[3] A muscle model for animation three-dimensional facial expression, New York, NY,
USA, 1987. ACM.

[4] G. A. Abrantes and F. Pereira. Mpeg-4 facial animation technology: survey, im-
plementation, and results. IEEE Transactions on Circuits and Systems for Video
Technology, 9(2):290–305, 1999. Cited By (since 1996): 35.

[5] Balci. Xface: Mpeg-4 based open source toolkit for 3d facial animation.

[6] Nikolaus Bee, Stefan Franke, and Elisabeth Andr. Relations between facial display,
eye gaze and head tilt: Dominance perception variations of virtual agents. In Pro-
ceedings of Affective Computing and Intelligent Interaction (ACII ’09), 2009.

[7] Douglas DeCarlo, Corey Revilla, Matthew Stone, and Jennifer Venditti. Making
discourse visible: Coding and animating conversational facial displays. In In Proc.
Computer Animation 2002, pages 11–16, 2002.

[8] P. Ekman and W. Friesen. Facial Action Coding System: A Technique for the Mea-
surement of Facial Movement. Consulting Psychologists Press, Palo Alto, 1978.

[9] P. Ekman, W. V. Friesen, and P. Ellsworth. Emotion in the human face: Guidelines
for research and an integration of findings. page 191, 1972.

[10] N. Ersotelos and F. Dong. Building highly realistic facial modeling and animation:
A survey. Visual Computer, 24(1):13–30, 2008.

[11] Irfan A. Essa, Massachusetts Institute of Technology. Media Laboratory. Vision, and
Modeling Group. Analysis, interpretation and synthesis of facial expressions. PhD
thesis, Vision and Modeling Group, Media Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., 1995.

87

[12] Keith Waters Frederic I. Parke. Computer Facial Animation. A K Peters Ltd, Welles-
ley, MA, 1996.

[13] P. Kalra, A. Mangili, N.M. Thalmann, and D. Thalmann. 3d interactive free form
deformations for facial expression. 1991.

[14] Nikita Kojekine, Vladimir Savchenko, Mikhail Senin, and Ichiro Hagiwara. Real-time
3d deformations by means of compactly supported radial basis functions. In In Short
papers proceedings of Eurographics, pages 35–43, 2002.

[15] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H. Pirker, K. R. Thris-
son, and H. Vilhjlmsson. Towards a common framework for multimodal generation:
The behavior markup language, volume 4133 LNAI. 2006. Cited By (since 1996): 3.

[16] L. Malatesta, A. Raouzaiou, K. Karpouzis, and S. Kollias. Mpeg-4 facial expression
synthesis. Personal and Ubiquitous Computing, 13(1):77–83, 2007.

[17] Carnegie Mellon University School of Computer Science. Facs - facial action coding
system. http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm.

[18] Igor S. Pandzic and Robert Forchheimer, editors. MPEG-4 Facial Animation: The
Standard, Implementation and Applications. John Wiley & Sons, Inc., New York,
NY, USA, 2003.

[19] Frederic I. Parke. Techniques for facial animation. pages 229–241, 1991.

[20] Stefano Pasquariello and Catherine Pelachaud. Greta: A simple facial animation en-
gine. In In Proc. of the 6th Online World Conference on Soft Computing in Industrial
Applications, 2001.

[21] R. Plutchik. Emotion: A psychoevolutionary synthesis. Emotion: A Psychoevolu-
tionary Synthesis, 1980. Cited By (since 1996): 347.

[22] A. Raouzaiou, N. Tsapatsoulis, K. Karpouzis, and S. Kollias. Parameterized facial
expression synthesis based on mpeg-4. Eurasip Journal on Applied Signal Processing,
2002(10):1021–1038, 2002.

[23] Z Ruttkay. Constraint-based facial animation, 2001.

[24] M. Thiebaux, A. N. Marshall, S. Marsella, and M. Kallmann. Smartbody: Behavior
realization for embodied conversational agents. The 7th International Conference of
Autonomous Agents and Multiagent Systems (AAMAS’08), 2008. Cited By (since
1996): 1.

[25] C. M. Whissel. The dictionary of affect in language. Emotions, Theory, and Experi-
ence: The Measurement of Emotions, 1989. Cited By (since 1996): 1.

[26] Y. Wu, P. Kalra, L. Moccozet, and N. Magnenat-Thalmann. Simulating wrinkles and
skin aging. The Visual Computer, 15(4):183–198, July 1999.

88

[27] Y. Zhang, Q. Ji, Z. Zhu, and B. Yi. Dynamic facial expression analysis and syn-
thesis with mpeg-4 facial animation parameters. IEEE Transactions on Circuits and
Systems for Video Technology, 18(10):1383–1396, 2008.

89

