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Abstract

The bin packing game is a cooperative N-person game, where the set of players
consists of k£ bins, each has capacity 1 and n items of sizes aq, as, - - - , a,, w.l.o.g, we
assume 0 < q; < 1 for all 1 < ¢ < n. The value function of a coalition of bins and
items is the maximum total size of items in the coalition that can be packed into
the bins of the coalition. A typical question of the bin packing game is to study
the existence of the core, i.e. given an instance of a bin packing game v, is the core
C(v) # () 7 If the answer is ‘yes’, then how to find the core allocation of the grand
coalition?

Instead of directly analyzing the existence of the core, we study by look at the
e-core, which can be viewed as the generalization of the core because it is the core
when € = 0. For any instance of the bin packing game, there exists a minimal €,,;,
such that for all € > €,,;,, the e-core is not empty. The € is also called the tax rate,
hence the problem becomes to find the minimal tax rate such that the associated
e-core is nonempty.

In chapter [T, we briefly introduce the background of game theory and some
concepts from the cooperative game theory. In chapter [2] by studying the fractional
bin packing game, we give a sufficient and necessary condition for the existence of
the e-core and successively summarize some results about the bound of the minimal
tax rate. In chapter [3} we study the computational complexity of bin packing games
and fractional bin packing games. In chapter [4] and chapter [f] we discuss exact
algorithms and approximation algorithms for computing the value function of bin
packing games and the corresponding fractional bin packing games, as well as the
approximation algorithm for computing the minimal tax rate. Finally, in chapter [6]
we summarize the conclusions of previous chapters and further discuss the related
unsolved problems we have met. In the end, we present some simple applications of
the bin packing game, which are useful in practice.
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the minimal tax rate
an instance of the optimization problem
encoding length of the instance [

output of the algorithm A when applying to the in-
stance [

optimal value of the instance [
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Chapter 1

Introduction

1.1 Report Outline

Our study on the bin packing game is focused on the problem of finding the core
(e-core) allocation of the grand coalition, which in this thesis, principally consists
of four parts: study the existence of the core (e-core), the complexity results about
computations of the core (e-core), the exact algorithms as well as the approximation
algorithms of computing the core (e-core).

Since the bin packing game is a cooperative game, in this chapter we briefly
introduce the history of the game theory and some basic definitions from the coop-
erative game theory, after this we define the bin packing game and further show an
example of it.

In chapter [2| we study the emptiness of the e-core. For any instance of the bin
packing game, we first define the corresponding fractional bin packing game, then
using this definition we give a sufficient and necessary condition for the existence
of the e-core. Based on this condition, we successively derive some results about
bound of the minimal tax rate.

In chapter [3) we study the computational complexity of bin packing games and
fractional bin packing games. Moreover, the problem of testing whether an allocation
vector lies in the e-core and the problem of deciding whether an instance of the bin
packing game has a nonempty e-core also draw our attention in this chapter.

By introducing the matrix form of the linear program for bin packing games and
the corresponding fractional bin packing games, we present an algorithm for com-
puting the corresponding value function in chapter 4, In particular for large instance
of the fractional bin packing game, we apply the column generation approach, and
in the sequel give an example to account for how this approach works.

In chapter [5] instead of researching on exact algorithms, we investigate approx-
imation algorithms for computing value functions of the bin packing game and the



CHAPTER 1. INTRODUCTION 2

fractional bin packing game. After that, we further propose an approximation algo-
rithm for calculating the minimal tax rate.

Finally, in chapter [6, we summarize the conclusions of previous chapters and
discuss the related unsolved problems we have met. In the end, we present some
simple applications of the bin packing game, which are useful in practice.

1.2 (ames and Applications

Game theory is a branch of applied mathematics that is used in the social sciences,
most notably in economics, as well as in biology, engineering, political science, in-
ternational relations, computer science, and philosophy. Game theory attempts
to mathematically capture behavior in strategic situations, in which an individual’s
success in making choices depends on the choices of others. While initially developed
to analyze competitions in which one individual does better at another’s expense
(zero sum games), it has been expanded to treat a wide class of interactions, which
are classified according to several criteria.

Traditional applications of game theory attempt to find equilibria in these games.
In an equilibrium, each player of the game has adopted a strategy that they are un-
likely to change. Many equilibrium concepts have been developed (most famously
the Nash equilibrium) in an attempt to capture this idea. These equilibrium con-
cepts are motivated differently depending on the field of application, although they
often overlap or coincide. In this section, we give a short introduction about the
background of the game theory and some basic definitions from the cooperative
game theory.

1.2.1 History

The earliest example of a formal game-theoretic analysis is the study of a duopoly by
Antoine Cournot in 1838. The mathematician Emile Borel suggested a formal theory
of games in 1921, which was furthered by the mathematician John von Neumann in
1928 in a paper theory of parlor games. Game theory was established as a field in its
own right after the 1944 publication of the monumental volume Theory of Games
and Economic Behavior by von Neumann and the economist Oskar Morgenstern.
This book provided much of the basic terminology and problem setup that is still
in use today.

In 1950, John Nash introduced the concept of a nash equilibrium, which became
a focal point of analysis in noncooperative game theory since then. Immediately
after this, game theory was broadened theoretically and applied to problems of war
and politics. In 1951, Nash followed this up with the concept of a nash bargaining



CHAPTER 1. INTRODUCTION 3

solution for cooperative games. Lloyd Shapley (1953) introduced the concept of
a shapley value and the core as solutions to cooperative games. Throughout the
early 1960s, Robert J. Aumann and Martin Shubik began to apply cooperative
game theory extensively throughout economics, and, in the process, went on to
invent several solution concepts for cooperative games (e.g. bargaining set, strong
equilibrium). Since the 1970s, game theory has driven a revolution in economic
theory. Additionally, it has found applications in sociology and psychology, and
established links with evolution and biology. Game theory received special attention
in 1994 with the awarding of the Nobel prize in economics to Nash, John Harsanyi,
and Reinhard Selten.

At the end of the 1990s, a high-profile application of game theory has been the
design of auctions. Prominent game theorists have been involved in the design of
auctions for allocating rights to the use of bands of the electromagnetic spectrum to
the mobile telecommunications industry. Most of these auctions were designed with
the goal of allocating these resources more efficiently than traditional governmental
practices, and additionally raised billions of dollars in the United States and Europe.

1.2.2 What is the Game?

The object of study in game theory is the game, which is characterized by a number
of players or decision makers who interact, possibly threaten each other and form
coalitions, take actions under uncertain conditions, and finally receive some benefit
or reward or possibly some punishment or monetary loss.

The commonly known games, for instance, the entertaining games, such as chess,
poker, tic-tac-toe, bridge, baseball, computer games etc. In some cases, we want to
understand what is happening in order to make better predictions about the future
and furthermore to be able to suggest what courses of an action should be taken by
the players. Fortunately, various mathematical models of games have already been
established, although may not be perfect.

Game theory can be roughly divided into two broad areas: non-cooperative (or
strategic) games and cooperative (or coalitional) games . The meaning of these
terms are self evident. Players in the non-cooperative games work independently,
so for each player, he is only interested in making the best decision to maximize
his proceeds. The non-cooperative game theory is concerned with the analysis of
strategic choices, namely, the details of players’ choices are crucial to determine the
outcome of a game; while the cooperative game theory investigates coalitional games
with respect to the formation of coalitions of players, and a fair allocation of the
payoff to each player. This is most naturally applied to situations arising in political
science or international relations, where concepts like coalitions are most important.
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In following sections, we shall present the mathematical model of cooperative games.

1.2.3 Cooperative Games

A cooperative game is concerned primarily with groups of players-who coordinate
their actions and pool their winnings. Consequently, one of the problems here is how
to fairly divide the extra earnings among the members of the formed groups, so that
every player is still willing to cooperate. Let N be a non-empty finite set of players,
S C N is referred to as a coalition, which represents the group of players. The set
N is called the grand coalition and () is called the empty coalition. We denote the
collection of coalitions, i.e. the set of all subsets of N by 2¥. Commonly the player
set N ={1,2,--- ,n}, and for each S € 2" we denote by |S| the number of elements
of S, and by e® the characteristic vector of S with i-th component (e%)! = 1ifi € S,
and (%) = 0if i € N\S.

Definition 1.2.1. A cooperative game in characteristic function form is an
ordered pair (N,v) consisting of the player set N and the characteristic function
v: 2V — R with v(0) = 0.

The characteristic function v is also often called the value function. Given a
coalition S, the real number v(.S) can be interpreted as the maximal worth or cost
savings that the members of S can obtain when they cooperate. Often we identify
the game (N, v) with its characteristic function v.

Example 1.2.2. Unanimity games (N,ur), T € 2N\{0}, are defined by

ur(S) = {1 if T C S,

0 otherwise.

The set GV of characteristic functions of coalitional games with player set N
forms with the usual operations of addition and scalar multiplication of functions a
(2|N - 1)—dimensional linear space; a basis of this space is supplied by the unanimity
games up, T € 2V\{0}. One can easily check that for each v € GV we have

v = Z crur, with ep = Z (—1)T=1SDy(8).

Te2N\{0} S:5CT

The interpretation of the unanimity game ur is that a gain (or cost savings) of 1
can be obtained if and only if all players in coalition S are involved in cooperation.

Definition 1.2.3. A game v € GV is additive if v(SUT) = v(S) + v(T) for all
S, T e2N with SNT = 0.
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For an additive game v € GV, we have v(S) = Y, gv(i) ! for all S € 2V so it
forms an n-dimensional linear subspace of G¥. A game v € GV is called inessential
if it is an additive game. For an inessential game there is no problem how to allocate
total gain v(NN) because v(S) = >, s v(i), which is to say, in this case coalition S
gets no extra profit if players cooperate, compared to working individually.

Most of cooperative games arising from real life situations are superadditive
games.

Definition 1.2.4. A game v € GV is superadditive if v(SUT) > v(S) + v(T) for
all S, T € 2N with SNT = 0.

Of course, in a superadditive game we have v(U¥_,S;) > Zle v(S;) if 51,59, -+ ,Sk
are pairwise disjoint coalitions. In particular, v(N) > Zle v(S;) for each partition
(S1,S2,-++,Sk) of N and v(N) > >>"  v(i). Therefore, in a superadditive game it
is advantageous for the players to cooperate. The set of (characteristic function of)
superadditive games form a cone in G, i.e. for all v and w that are superadditive
we have that av + fw is also a superadditive game, where o, 5 € R,..

Definition 1.2.5. A map A : 2Y\{0} — R, is called a balanced map if

Z AS)e® = eV, (1.1)

Se2N\ {0}

By the definition we see D ¢ scon gy A(S) =1, for all : € N. We can interpret
the balanced map A as follows. For all player ¢ € N, and coalition S C N, A(S5)
indicates the energy of player i paid in coalition S. No matter how many coalitions
he engaged in, the total energy of the player is equal to 1.

Definition 1.2.6. A game v € G¥ is balanced if for each balanced map X\ :
2M\{0} — R, we have
> AS)u(S) < u(N). (1.2)
Se2N\ {0}

The above inequality says that the grand coalition gains most among other pos-
sible coalitions. Thus, intuitively, we may say the players are very glad to cooperate
in the grand coalition N in a balanced game. Further discussions about this will be
carried on in the next section.

1.2.4 The Core and Related Concepts

Following up on the preceding description of the cooperative games and character-
istic functions, now we take a look at the payoff vectors x = (x;);en € R™, with z;

!To simplify notation, we often write v(1,--- ,n) instead of v({1,--- ,n}).
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being the payoff to be given to player ¢« € N, under the condition that cooperation in
the grand coalition is reached. Clearly, the actual formation of the grand coalition
is based on the agreement of all players upon a proposed payoff in the game. Such
an agreement is, or should be, based on all other cooperation possibilities for the
players and their corresponding payoffs.

We note first that only payoff vectors x € R™ satisfying ),y 2; < v(N) are
reachable in the game v € G". However, to have any chance of being agreed upon,
a payoff vector should be efficiency, i.e.

Zaz = o(N). (1.3)

To motivate the efficiency condition we argue that ).\ x; > v(N) should also
hold.
Suppose that ),y z; < v(N). In this case we would have

a:v(N)—Zmi>O.

Then the players can still form the grand coalition and receive the better payoff
y=(y1,y2, " ,Yn) With y; = x; + a/n for all i € N.

Now, note that if there is a player i € N whose payoff z; satisfies x; < v(i), the
grand coalition would never form. The reason is that such a player would prefer not
to cooperate since acting on his own hen can obtain more. Hence, the individual

rationality condition
x; > wv(i) for all i € N (1.4)

should hold in order that a payoff vector has a real chance to be realized in the
game.

Definition 1.2.7. A payoff vector x € R" is an imputation for the game v € GV
if it is efficient and individual rational, i.e.

LY ien i = v(N);
2. x; >v(i) for all1 € N.

Nevertheless, imputation can not always grantee every player of N is satisfied.
Since there may exists some players S C N, that their payoff is less than their earn-
ings, which forces these players to work in coalition S, rather than in N. Therefore,
to make sure all players of N are satisfied, the payoff vectors should be in the core.

Definition 1.2.8. The core C(v) of a game v € GV s the polytope of all vectors
x € RY satisfying
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1. > x;=v(N);

iEN
2. Y x; >v(9), forall S C N.
i€s

If x € C(v) is the proposed reward allocation in N, then no coalition S has
an incentive to split off from N, because the total amount ), ¢ x; allocated to S
is not smaller than the amount v(S) which the players can obtain by forming the
subcoalition.

Reviewing the definition of the balanced game, it tells the players that cooper-
ation in grand coalition N earns maximum profit among other coalitions, which is
to say, the core of a balanced game is nonempty. Namely we have the following
theorem.

Theorem 1.2.9. [1] The game v € GV is balanced if and only if C(v) # 0.

Proof. Consider the linear program (LP)

Note that C'(v) # () if and only if the optimal objective value of (LP) equals to v(IV).
Its dual problem (DP) is

max Y AS)(S)

Se2N\{0}

s.t. Z A(S)e® = eV,
Se2N\ {0}
A(S) > 0.

The constraints of (DP) implies A is a balanced map (1.1)), so C'(v) # 0 if and only
if the optimal objective value of (DP) equals to v(N) and this holds if and only if v

is balanced (|1.2)). O

1.3 Bin Packing Games

A binpacking game is defined by a set of items I = {1,2,---  n} of sizes a, ag, - - - , ay,
and k bins, denoted by Ip = (n+ 1,n+2,--- ,n + k), each of capacity 1, where we
assume, w.l.o.g, 0 < a; < 1. The player set N consists of all bins and all items, i.e.
N =T1UlIp, so we have |[N| =n + k.
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For a coalition S containing &’ < k bins and items 41,9, - - - , iy, the sizes of the
items are a;,, a;,, - - ,a;,. The characteristic function (value function) v relative to

S is defined as below
k/
v(S) = maXZZai, (1.5)
j=1 i€l;
where the maximum is taken over all collections of pairwise disjoint subsets Iy, - - - , [y C

{i1,--+ ,is} such that
Zai S 1.

i€l
We set v(S) = 0if &’ =0 or S only consists of bins.
In fact, if we assign the items iq,14s, -+ ,is to the &’ bins on condition that the

total weight of assigned items in each bin does not exceed the capacity 1, then v(.S)
is the maximum weight of the assigned items of coalition S . We refer to the assigned
items as the packed items, while the unassigned items are called unpacked items. A
feasible packing of an item set I’ C I into bin set Iz C Ip is an assignment of some
(or all) elements in I” to the bins in I such that the overall size of items assigned
to any bin does not exceed the bin capacity 1. The value of a feasible packing is the
overall size of all packed items. An optimal packing of a coalition S is the feasible
packing which has the maximal value over all feasible packing of S.

Example 1.3.1. Consider a bin packing game of 2 bins, and 4 items of sizes
1111

20272172

In this example N = {1,2,3,4,5,6}, besides, if we pack item 1,2 into the first
bin (player 5) and item 4 into the second bin (player 6), then we get an optimal
packing of N, with v(N) = 3/2 4+ e. Moreover, it is easy to observe that the bin
packing game is superadditive since more bins and items the coalition has, the larger

+ ¢, where € is a very small positive real number.

value it may get. However, in this example the core of this game does not exist. To
show this, we first prove the following lemma.

Lemma 1.3.2. Let v be a bin packing game and suppose C(v) # 0. We have

(i) if an item is not packed into any bin in the optimal packing of the grand
coalition N, then its payoff is 0 for all x € C(v).

(i1) there exists a payoff vector x € C(v) satisfying each bin gets the same payoff
and the payoffs to the items which have the same size are equal, i.e. if a; = a;,
then x; = x;.

Proof. Let x € C(v) be the core allocation vector of the bin packing game (N, v),
where x1,--- ,x, are payoffs to players 1,--- n and x,.1, -, %, are payoffs to
bins 1,--- k.
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(i) Suppose j € N is not packed into any bin in the optimal packing of N, and
its payoff z; > 0, then
v(N\{j}) = v(N).
By definition of the core (definition we know

n+k

v(N) = Zibi,

and
n—+k n+k

(NG < 3w < 3w =u(V).
ot =
This gives a contradiction.
(ii) Let zy,, xp,, n+ 1 < l1,lo < n+ k be the payoffs to bins [y — k,l; — k and we
assume x;, < x;,. Then the new allocation vector z’, where
r Ty + Ty,
B2

is also a core allocation. In fact, 77 +xj, = 2, +y,, so any coalition S involving both

T, =T yand o =z for 1 <i<n+k,i# 1y,

7y, and x;, naturally meets the expressions v(S) < >, qw; and v(N) = Y.y ;.
Assume S only includes either bin /; or bin [y, then

v(S) < Zi’«"z = Zﬂ?i—l—le < Z:%—I——ml1 ;%,

icS icS icS
i#ly il

namely we have
v(9) < Z ;.
i€s
So ' € C(v), in this way we can find an allocation vector that each bin has the
same payoff. Similarly, in the case of 2 items which have the same size, the same
argument can be applied. O

What the lemma says is quite reasonable, because the unpacked items contributes
0 value to v(V); also, each bin has the same contribution as well as those items that
have equal size should not be paid distinctly.

Now let us return to example[L.3.1] and we assume C(v) # (). Since either item 1,
2 or 3 is not packed in the optimal packing, applying Lemma |1.3.2| gives 0 payment
to each item. However, v({1,2,5}) = 1, this implies the payment to each bin should
be at least 1. So we have

3
U<N):§+€:Z$i2$5+$6=27
iEN

where x5, xg are the payoffs to the 2 bins and here we get a contradiction.
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e-Core of Bin Packing Games

2.1 Introduction and Definitions

Example told us that not all instances of the bin packing game are balanced,
in other words, the bin packing game which has an empty core can not grantee a
formation of the grand coalition IV, because there exists some coalition .S such that
the players in S earn more than their current payoff. One may naturally arise the
question that how to assert the emptiness of the core of a bin packing game?

To answer this question, we first introduce a more general definition with respect
to the core, which not only involves all core allocation vectors but also the allocation
vectors close to the core. Then, by this generalized definition, we try to find an
allocation vector as close to the core as possible, and even if we failed to find the
core allocation vector, while at least, we know how far it is from the core.

As an extension of the core, Faigle and Kern (1993) [5] introduced the e-core.

Definition 2.1.1. Given a bin packing game (N,v) and 0 < e < 1, the e-core C.(v)
is defined as the polytope of all vectors x € RN satisfying conditions

1Y en i = v(N);
2. Y ies i > (1 —=€)u(S), for all s C N.

The first condition is known as the “efficiency” condition, while the second con-
dition, instead of »_,_qx; > v(S), can be interpreted as that the government tax
players by rate €, so the € is also called the tazr rate. Evidently, 1-core of any bin
packing game is not empty and 0-core is the core. Hence, in order to approach the
core as close as we can, we want to know the minimal tax rate €,;, which grantees
a nonempty e-core.

As a further remark of the e-core, one may have noticed that if the players work
individually, then the second condition says, z; > (1 — €)v(i) for all ¢ € N, so the

10
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“individual rationality” may not hold in some cases. However, in the case of
bin packing games, v(i) = 0 for all i € N, all e-core allocations of bin packing games
are indeed individual rational. Namely we have, for all z € C(v),  is a imputation
(definition [1.2.7).

Parallel to the e-core, Faigle and Kern (1993) [5] also extended the balanced
games to the e-balanced games.

Definition 2.1.2. A game v € GV is e-balanced if for each balanced map X :
2M\{0} — R*, we have

(I—e) > AS(S) <v(N). (2.1)
Se2N\{0}

As stated in Theorem [1.2.9] a game is balanced if and only if the core is not
empty. As such, we may ask whether e-balanced games have the similar property?
The answer is stated as below.

Theorem 2.1.3. [3§] The game v € G is e-balanced if and only if C.(v) # 0.

Proof. Consider the linear program (LP)

Note that C.(v) # 0 if and only if the optimal objective value of (LP) is less than
or equal to v(N). Its dual problem (DP) is

max Z (1 —=e)A(S)v(S)
Se2N\{0,N}
s.t. Z A(S)e® = eV,
Se2N\{0,N}
A(S) > 0.

The constraints of (DP) implies A is a balanced map (1.1). Then C.(v) # 0 if and
only if the optimal objective value of (DP) does not exceed v(N) and this holds if

and only if v is e-balanced (2.1.2)). O

So far so good, the preparations for analysis of bin packing games have been well
done. Next we look at the linear program of bin packing games and based up on
this to define the fractional bin packing game. Then, by studying the fractional bin
packing game, we will show a sufficient and necessary condition for the existence of
the e-core. At the end of this chapter, we show some results about the bound of the
minimal tax rate €,,;, for any instance of bin packing games.
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2.2 Fractional Bin Packing Games

Consider the bin packing game v. As we have shown in the proof of Theorem [1.2.9]
the core C'(v) # ) if and only if the linear program (LP)

(LP) minz T
ieN
s.t. Zm, > v(S) for all S € 2V\ {0}

1€S

has an optimal objective value v(NV).

By Lemma [1.3.2] if C(v) # 0, then there exists an optimal solution of (LP)
allocating the same payoff xy to each bin. Furthermore, instead of considering all
coalitions S € 2V\{(}, we restrict S by consisting of only one bin and some subset
fi €I ={1,2,---,n} of items with total size

o(f) = ai<l, j=12--

i€f;

Let us call such f; the feasible set and denote by F the collection of all different
feasible subsets and o = (o(f;)) € R the total size vector. Now our allocation
problem can be written in the form

(AP) min kxzo + Z x;
i=1
s.t. xo+ le > o(f;) for all f; € F,
i€ f;

To, T5 Z 0.

It is easy to see that (AP) is equivalent to (LP), and we give a strict proof in the
following lemma.

Lemma 2.2.1. Problems (LP) and (AP) are equivalent.

Proof. By Lemma(l.3.2] we see the objective functions of (LP) and (AP) are equiva-
lent, so (AP) is obtained from (LP) by relaxing S to be one bin and the feasible set
of all possibilities. Then the feasible solution of (LP) is also feasible for (AP). On
the other side, consider the feasible solution xg,z;, 1 < i < n of (AP), and for any
S € 2N\ {0}, suppose S consists of k' < k bins and items I’ C I, and fi, fo, -+, fu
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be the optimal packing of coalition S, then we have

$O+in ZO'(fl)

i€f1

$0+Z$z‘ > o(f2)

1€ fa

To + Z xX; Z O'(fk/)

iEfk/

Summing up these inequalities yields

W
Kz + sz = k'zo+ ZZ% > Zk"a(fj) = v(9).

ieS j=1 i j=1
This implies xg, z;, 1 < i < n are also feasible for (LP), and we are done. O

Let F = {fi, fo, -+, fiz}, the dual of (AP) is formulated as the fractional bin
packing game, where the value function vpra(N) is defined by solving

(INT) max o’y
i

s.t. nyj < k?,
j=1
7| (2.2)
nyj <1 (Z =12 7n)7
j=1
f]'B'L

y=>0.

Note that the corresponding integer programming of (FRA) is the value function of
the bin packing game, namely

(FRA) max o’y
171

s.t. nyj S /{7,
j=1
7| (2.3)
nyj <1 (i=12--,n),
j=1

fj%i

y € {0,1}”.
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A feasible solution y of (FRA) is called the feasible packing vector of the fractional
bin packing game. The feasible packing vector as well as the associated feasible sets
construct the feasible packing of the fractional bin packing game. So for a feasible
packing, each feasible set f; has a corresponding fractional index y;. In the following
context, we refer to v;yr and vpra as the value function of the bin packing game
and the corresponding fractional bin packing game respectively. Thus, by our above
analysis, we have

Theorem 2.2.2. Consider the bin packing game (N,vin7) and the fractional bin
packing game (N,vpra), then C(vint) # 0 if and only if vera(N) = vint(N).

Proof. By Lemma [2.2.1] we know (AP) is equivalent to (LP), and (FRA) is the dual
of (AP), so (FRA) and (LP) have the same optimal value, which means C'(v;yr) # ()
if and OIlly if UFRA(N) :U]NT(N). ]

To further understand the fractional bin packing game, we review the example
. Given 2 bins and 4 items with sizes a; = a3 = a3 = 1/2, a4y = 1/2 + €. By
solving the linear program (FRA), we get vrpra(N) = 7/4 + €/2, and the optimal
packing is depicted in the picture.

h f fz  fa
i 2 1

3 | 3 2 || o
iy Y3 s

As is shown above, fi, fa, f3, f1 are the optimal feasible sets, i.e. f; = {1,2}, fo =
{2,3}, f3 = {1,3}, fu = {4}. Besides, y1,y2,ys3,ys are the corresponding optimal
fractional indexes. Note that, a feasible packing should always meet the constraints
of (FRA), which, in this example is

(a) v +yat+ys+tys<2

(b) item 1: y; +y3 < 1;
item 2: y1 +y2 < 1
item 3: yo +y3 < 1.

The first constraint says the sum of the components of y should be less than or
equal to the number of bins, while the second condition indicates that for each item,
no matter how many feasible sets it appeared, the total sum of these parts can not
exceed 1. This can be interpreted as that every item can be split into many fractional
parts so as to form large feasible sets, as in our example, item 1 appears in both
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f1 and f3, with y; = y3 = 1/2. However, this can not happen in the ‘integer’ bin
packing game because only integer values the y can take. This advantage explains
why vrra has larger possibilities to be greater than vy for the same player set V.

2.3 Sufficient and Necessary Condition

Based on former analysis, now we recognize that the fractional bin packing game
plays a crucial role of analyzing the existence of the core of the bin packing game.
In fact, by calculations of both vrpra(N) and vyn7(IN), we immediately know the
distance vpra(N)—vrnr(N), if it is vanished, then we claim C'(v;yr) exists; however,
what does it imply if the distance is nonzero? it is clear that C'(vpgra) is always
nonempty, we may speculate that the distance vpgra(N) — vyyr(N) indicates how
far is the bin packing game from having a core allocation, which is to say

Theorem 2.3.1. For a bin packing game (N,v;nr), €-core C(vint) # 0 if and

only if
S vpraA(N) — vyt (N)

€
- vprA(N)

Proof. (=) Suppose x € C.(vinT), by definition of the e-core we have

(2.4)

in = vrnr(N) and Zx, > (1 —e)v(S), for all S € 2V\{0}.

iEN €S

Let 2’ = (1 — €)', then

ng: 1iez$i: 1i€UINT(N>

i€EN 1€EN

and

1
E T =1, E x; > v(9), for all S € 27\ {0}.
i€S €S

So 2’ is a feasible solution of (LP) (see section 2.2)). From lemma we know
(LP) has the same optimal objective with (AP), so we have

1
1 —

vrra(N) < Zﬂfi =

iEN

EUINT(N)v

namely,
vpra(N) — vinr(N)
€> .
vpra(N)
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(<) If inequality (2.4) holds, then we have

1

vpra(N) < 1
— €

’U]NT(N).

Suppose 2’ is the optimal solution of (LP), then

1
Zx; = vpra(N) < ; vin(N) and Zx; > v(S), for all S € 2V\{0}.
ieN — € i€s
Let N 1 /
= (1—aa + vinT(N) — (1 =€) ZieN‘ri’
| V]
we get
in =(1—¢) Zxé +onr(N) — (1 —¢€) Zx; = vnr(N)
iEN iEN iEN
and
Doaiz (-0 Y ai= (1= eu(s) for all § € 2\{0}.
ieS (IS
This implies x € C,(v;nT). =

Let emin(N) = 1 — vy (N) /vpra(IN), then the €y, (N) is the minimal e such
that Cc(vinr) # 0 and ey, are referred to as the minimal tazx rate. To further study
the emptiness of e-core, now we are concerned about the value of vyn7(N)/vrra(N).
However, before calculating €y, (IV), we first look at its upper and lower bound over
all instances of bin packing games.

For example, we consider an arbitrary bin packing game (N, v;y7) and the as-
sociated fractional bin packing game (N, vrg4), where N consists of n items and k
bins. If all items are packed in the optimal packing of N, then viny7(N) = vpra(N),
which results in a nonempty core (€, = 0); otherwise half capacity of bins should
be filled, i.e. viyr(N) > k/2, besides, it is clear that vpra(N) < k. We get

k2 1
0 < €min < T T %
Now we can claim that 1/2-core of the bin packing game always exists. Obviously,
zero is a tight lower bound of e;,, so one may ask is 1/2 also a tight upper bound?
If it is not, can we find a sharper bound? More detail is discussed in the following
section.
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2.4 Bound of Tax Rate

We use the Example to show that if € < 1/7, there always exists an instance of
the bin packing game which has an empty core. Given 2 bins and 4 items with sizes
1.3, 5. 2 4¢, it is easy to compute that vy (N) = 3/2+€ and vpra(N) = T/4+¢€/2
(we will discuss how to compute them in Chapter [4). So we have
U[NT(N)_ . 3/2+€ _1—26
vrra(N)  T/4+€/2 T+ 2

emzn(N) =1- <

1
=
It is easy to see that €,,;,(N) converges to 1/7 as € goes to 0. Moreover, Woeginger
(1995) [16] proved that €., < 1/3 for all instances of bin packing games. In the
following we will show another proof of this result.

Theorem 2.4.1. [16] For any instance of the bin packing game (N,vinr), the
minimal taz rate €m;,(N) < 1/3.

Proof. Refer to [16]. O

Let UB be the upper bound of the minimal tax rate €,,;, for any instance of the
bin packing game, then based on above discussions we have

1 1

S<UB<.
Now we are concerned about the exact value of UB, or ask that can we shrink the
bound of UB? We have 2 ways of performing this task: one is to find an instance
N of the bin packing game, such that the €,;,(N) = a € (1/7,1/3], then we can
claim that @« < UB < 1/3; another way is to theoretically prove a smaller bound of
the €,,;, for any instance of bin packing games.

Faigle and Kern [6] mentioned a conjecture which is proposed by Woeginger.

Conjecture 2.4.2. [6] There exists a universal constant C' > 0 such that each bin
packing game (N,vinT) admits an allocation vector x € R™ with the properties

1Y en®i <v(N)+C;
2. Y ies Ti > v(S) for all subsets S C N.

Based on our former analysis, the above conjecture can be expressed in relation
of the bin packing game and the corresponding fractional bin packing game, i.e.

Conjecture 2.4.3. For any instance of the bin packing game (N,v;yr), and the
associated fractional bin packing game (N,vpgra), there exists a universal constant
C > 0 such that

vrra(N) —vinr(N) < C. (2.5)
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Divided by vgpra(N), the inequality (2.5) becomes

vpra(N) — vinr(N) < C

€min(N) = vpra(N) ~ vpga(N)

Let N* be the instance of the bin packing game such that the €,,;,(N*) reaches the
upper bound UB, and we assume v;yr(N*) > k/2, otherwise all items are packed
in the optimal packing of N, and we have vppa(N*) = vynr(N*). If C is a tight
bound, then vpra(N) > k/2 + C and this gives

C C C
B = ¢€,,,(N¥) < < < .
U Emm( )_ UFRA(N*) - k‘/Q—l—C - 1+C

Therefore, if we can show this conjecture by C' < 1/2, then a smaller bound of UB
would hold, i.e. UB < C/(1+ C) < 1/3. Faigle and Kern (1998) [6] proved that if
item sizes are all strictly greater than 1/3, then the bound C' < 1/4. Kuipers [10]
(1998) in the same year showed in this case UB = 1/7.

Intuitively thinking, the small items will not enlarge the gap between vy and
vrra because we can always ‘greedily’” improve the value of the bins by adding small
items. Besides, we know that vpra — vyt < 1/4 for any instance of the bin packing
game, with all item sizes strictly greater than 1/3. So we have sufficient reasons
to believe that its bound C' is not a large number. Moreover, we have verified
this by computational experiments and found that the maximum value of C' is 1/4.
Although this is not a proof of the bound, yet it is useful for computing a bound of
VINT, Since in most cases vpr4 is very close to vyyr.



Chapter 3

Complexity Results

3.1 Introduction

As a summary of previous chapters, we have introduced the basic conceptions from
cooperative games, and further studied a specific case of the cooperative game, which
is referred to as the bin packing game. Based on the theory of cooperative games, a
central question of the bin packing game is how to fairly allocate the total profits of
the grand coalition /V to each player. Then the problem turns out to be seeking out
the core of the bin packing game, however, not all instances of bin packing games
are balanced, which is to say the problem occurs when the core is empty.

An alternative choice is to find a nonempty e-core, obviously, 1-core of any bin
packing game is not empty. Thus, one may be eager to know the minimal e that
ensures a nonempty e-core. Motivated by this idea, we further defined the fractional
bin packing game vpr4 and found that the existence of the e-core lies on the quotient
UINT/ UFRA-

Following up this clue, it seems that the next step would be working on the
algorithms for computing v;y7r and vpra, yet one question should be answered
before doing so. Does there exist a polynomial algorithm for finding vpra or vinr?
If the polynomial algorithm for them does not exist at all, then instead, another
idea is to find good approximation algorithms (non-exact but in polynomial time)
for them.

In this chapter we focus on analyzing the time complexity of calculating v;nr
and vpgra, rather than solving them. Moreover, we will show that to assert the
existence of e-core or even to test whether an allocation vector is in the core or not
is N'P-hard.

19
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3.2 NP and NP-complete

Probably most readers have some intuitive idea about what a problem is and what
an algorithm is, and what is meant by the running time of an algorithm. Although
this intuition has been sufficient to understand the substance of the matter, in
some cases it is important to formalize this intuition. This is particularly the case
when we deal with concepts like NP and N'P-complete. In the following context,
we introduce some concepts and methodologies from the computational complexity
theory.

3.21 P and NP

An optimization problem is the problem of finding the best solution from all feasible
solutions. More specifically, given an instance I = (S, f) of optimization problem
P, where S is the set of all feasible solutions and f : z — f(z) € R, x € S is called
the objective function. The problem P is to find a * € S maximizing or minimizing
f(@).

In order to classify optimization problems into the several classes, like P and
NP, we first introduce the decision problem, which is only required to answer ‘yes’
or ‘no’, and later we will see every optimization problem has its decisional version.
Then by studying the hardness of solving these decision problems, we are able to
classify the optimization problems.

Definition 3.2.1. A decision problem P is a set of instance I that can be parti-
tioned into ‘yes’ and ‘no‘ instances Iy, I such that I = Iy U Iy and Iy NIy = 0.

We take an example to account for what the decision problem is. Given a bin
packing game (N, v), where N consists of k bins and n items of sizes aq, - - , a,. For
a real number 0 < s < k, the question is

For the bin packing game (N, v), is v(N) greater than or equal to s?

Simply speaking, the answers to decision problems only consists of ‘yes’ or ‘no’ so
for this problem, if we answer ‘yes’ , then we need to be able to give a feasible packing
such that v(N) > s; otherwise, an optimal packing is needed to show v(N) < s. It
is easy to see that if the optimization problem is solvable, so is the corresponding
decision problem, namely to say, the decision problem seems to be easier than the
optimization problem. Reversely, if the decision problem is polynomially solvable,
can we solve the optimization problems in poly-time? We would say for quite many
discrete optimization problems the answer is yes. If the space of the output only
includes finite many elements, by binary search we can compute the optimal value
via solving the corresponding decision problem.
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Nevertheless, in many cases decision problems are so difficult that we can not
solve them within an acceptable time. Therefore, the rest of the possibility is to
‘guess’ a right answer, which in above example is to guess a feasible packing. Then
we can certify the value of this packing and further conclude if it is no less than
s the answer to the decision problem is ‘yes’. Such problems are in the class NP,
which will be described more precisely below, is a class of problems that might be
very difficult to solve.

In particular, NP does not mean “not polynomial time”, while it stands for
“nondeterministic polynomial time”. The class NP consists, roughly speaking, of
all those questions with the property that for any input that has a ‘yes’ answer,
there is a “certificate” from which the correctness of this answer can be derived in
polynomial time. Accordingly, the class of problems solvable in polynomial time is
usually denoted by P. Clearly, P C NP.

Given decision problem P and instance I € P. We know that the data in
computers are essentially restored in binary form, and before solving the instance
I, it is encoded and restored in the memory, we denote |I| as the binary encoding
length of the instance.

Definition 3.2.2. The decision problem P € P if P has an algorithm A and poly-
nomial p such that

1. A(I) is ‘yes’ < I is ‘yes’ instance;
2. ta(I) < p(|I]), for all instances I € P,

where A(I) is the output of algorithm A when solving instance I, and ta(l) is the
corresponding computation time.

By the first condition, the algorithm A identifies the ‘yes’ instance and the ‘no’
instance of I, that is to say A solves I; the second condition indicates A is a poly-
nomial algorithm. Accordingly, the definition of NP is given by

Definition 3.2.3. The decision problem P € NP if P has an algorithm A and
polynomial p such that

1. there exists a certificate z(I) for all ‘yes’ instances I € P, |2(I)| < p(|1]);
2. A(I,z(1)) is ‘yes’ < I is ‘yes’ instance;
3. ta(l,2(1)) < p(|I]), for all instances I € P and any z(I),

where A(I,z(I)) is the output of algorithm A for wverifying certificate z(I) and
ta(l,z(1)) is the corresponding computation time.
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Condition 1 requires the encoding length of the certificate z(I) be polynomially
bounded and in condition 2, the algorithm A is used for verifying the ‘yes’ instance
of I. Besides, as formulated in the last condition, the computation time of the
algorithm A should be polynomial.

3.2.2 Reductions and N'P-complete

Within the class NP there are N'P-complete problems, which are defined to be
the hardest problems in the class NP. However, the word ‘hardest’ is not able to
convince us whether a problem is really the hardest, the concepts like polynomial
reductions and transformations between problems are needed.

Definition 3.2.4. (Turning Reduction) Given two problems P and @), say P poly-
nomially reduces to Q (P x Q), if the following is true: assuming a poly-time
algorithm for Q, there is a poly-time algorithm for P.

Intuitively speaking, problem (@) is at least as hard as P, and we say P and @)
are polynomially equivalent if P oc Q) and @ < P.

Definition 3.2.5. (Karp Reduction) Given decision problems P and Q, say P poly-
nomzially transforms to Q) if the following is true: there is a polynomial time
algorithm (the transformation) T : P — @Q, such that instance I € P =" yes' <
instance T(I) € Q =" yes'.

As the ‘hardest’ problem, the NP class is characterized as below
Definition 3.2.6. Given decision problem Q, then Q is N'P-complete if

1. Q e NP;

2. for all P € NP, P polynomially transforms to Q).

A decision problem @ in NP is N"P-complete if every problem in NP can be
polynomially transformed to . Cook (1971) [3] proved that the problem SATIS-
FIABILITY (SAT) is N'P-complete. Since 1971, showing that problem Q is N'P-
complete is ‘easy’ , because we just need to show Q € NP and to find a polynomial
transformation T : SAT — (). Surprisingly, there are a great many prominent com-
binatorial optimization problems that are N'P-complete, like 3-SATISFIABILITY,
3-DIMENSIONAL MATCHING, VERTEX COVER, PARTITION, HAMILTONIAN
CYCLE, CLIQUE etc. The list of NP-complete problems is endless.

At present, we generally distinguish between the polynomially solvable problems
and the N'P-complete problems, although there is no proof that these two concepts
are really distinct. For a large number of combinatorial optimization problems, one
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has been able to prove either a problem is solvable in polynomial time, or that
is N'P-complete. In addition, we call the optimization problem NP-hard if the
corresponding decision problem is NP-complete.

Moreover, among N P-complete problems, we consider a more ‘difficult’ class of
problems, which is referred to as the strongly N'P-complete. Let P be a problem,
|I| the (binary) encoding length of any instance I € P, and f : Rt — RT be some
nonnegative function, denote by Py the restricted version of problem P, where

Py ={I € P | number(I) < f(|I])}.

Definition 3.2.7. Problem P is strongly /unary N'P-complete (N'P-hard) if there
exists a polynomial function p such that P, is N'P complete (N"P-hard).

The problem remains A/P-hard even if ‘all numbers’ are restricted to be small,
i.e. polynomial in unary encoding. For instance, 3-PARTITION is strongly N 7P-
complete while PARTITION is not.

3.3 Characteristic Functions

By using reductions, now we are able to prove the complexity results of the bin pack-
ing game (N, v;yr) and the corresponding fractional bin packing game (N, vrga),
where N consists of k£ bins and n items. In this section, we particular concern
ourselves with characteristic functions of them.

First we consider the number of bins is a fixed constant, and we have

Theorem 3.3.1. For fized k , to find viyy(N) is N'P-hard.

Proof. Tt is not difficult to see the corresponding decision problem is in N'P. In
fact, for any feasible packing of the bin packing game there are at most k feasible
sets, and the value of these feasible sets can be computed in O(n?). To prove its
NP-hardness, we reduce from SUBSET SUM: given a set S of n positive integers,
S = {s1,892, -+, 8.}, and an integer X > s;, ¢ = 1,--- ,n, does there exist S C S
such that > o si = X7

We construct a bin packing game with k£ > 1 bins, and item set I = {1,2,--- ,n+
k — 1}, with sizes ay, a9, -+ , Gpygk_1, Wwhere

ai:%, for 1 <i <n,

a; =1, forn+1<i<n+4+k—1.

The question is: does there exist a packing with total size no less than k?

(=) If SUBSET SUM has a solution, then there exists S’ C S such that

ZSZ’ES/ S; = X Let [, = {ai‘si € S/}’ then ZCMEI/ a; = Z&;ES'% = 1. We put
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I’ into the first bin and the remaining & — 1 items n + 1,--- ,n + k — 1 into the
remaining k — 1 bins, thereby having v;nr(N) > k.

(<) Assume vynr(N) > k, then each bin is fully filled by items. Let [y =
{1,2,--- ,n}, then the rest of items excluding the set Iy have total size k — 1. We
can always find an optimal feasible set I} such that I C [y and Zai er, @i =1, which
also indicates a solution of SUBSET SUM. O

Next we consider the time complexity of computing v;nr for arbitrary number
of bins.

Theorem 3.3.2. For arbitrary k, to find viyr(N) is strongly N'P-hard.

Proof. We prove by reduction from 3-PARTITION, which is already known as
strongly N'P-hard. Given a set S of 3¢ positive integers, denote by S = {by, by, - - , b3},
and Y% b =t- B (B/4 < b; < B/2), does there exist a partition Sy, Sy, --- ,S;
such that the sum of the numbers in each subset is equal?

W.lLo.g, we assume k < n, otherwise we can conclude viyr(N) = D7 a; by
packing each item in each bin. We construct a bin packing game of k = ¢ bins, and
item set [ = {1,2,---,3t}, with sizes aq,aq, - , a3 where a; = b;/B. The question
is: does there exist a packing with total size greater than or equal to k7 It is easy
to verify that the answer is “yes” if and only if 3-PARTITION has a solution.  []

From above theorems, we see computing v;yr is N'P-hard, although frustrating,
it at least gives us an information that the polynomial algorithm does not exist unless
P = N'P. By the same approach, we further study the complexity of computing
UrRra, 18 it as difficult as solving v;nyr? We answer this question in the theorem
below.

Theorem 3.3.3. For fized k (k > 2), to find vpga(N) is N'P-hard.

Proof. First we show the corresponding decision problem is in NP. Consider the
linear program of the fractional bin packing game , we know from the theory
of the linear programming that the optimal solution y* lies in the basic solution
set, so y* has at most n + 1 nonzero entries, and the objective function ¢’y can be
computed in O(n?), which implies the decision problem is in the class NP. Next
we show this problem is A'P-hard by reducing from PARTITION.

Given a set S of n positive integers, S = {by, -+ ,b,}, and > ;" b; = 2B (b; <
B), does there exist S, Sy such that S;(JS2 = 5, $1(1S2 = 0 and >, . bi =
2 hies, bi = BY

Now we construct a bin packing game of k bins, and item set [ = {1,2,--- ;n+
k — 1}, with item sizes ay, a9, -+ , Gpygk—1, Where

a; = %, for i € {1,--- ,n},
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a;=1,forie{n+1,--- n+k—1}

The question is: does there exist a packing with total size no less than k?

(=) If PARTITION has a solution, then there exist sets Sy, Sy satisfying S; | J S2 =
S, 51 Se = 0 and D obes; i = D peq, bi = B. Let Iy = {a|b; € S1}, I = {ai|b; €
S}, so Zaieh a; = Zaieb a; = 1. We put Iy, I, into the first 2 bins, and the re-
maining k£ —2 items n+1,n+2,--- ,n+k —2 into the remaining k£ — 2 bins, thereby
having vpga(N) > k.

(<) Assume vpga(N) > k, then each bin is full. Let Iy = {1,2,---,n}, then
the rest of items excluding the set Iy have total size k — 1. We can always find an
optimal feasible set I; such that I; C I and Zaieh a; = 1. Let Iy = Iy\I1, then we
have D, o ai =), ¢, = 1. So I, I are the partition of /o. By multiplying B
on each element of I, I, we also get a partition of S. O

Now one may ask: can we further conclude the strong N'P-hardness for arbitrary
number of bins? The answer is probably ‘no’ . Since computing vgr, is in P when
items sizes greater than a given € (even for arbitrary k).

3.4 Core Membership

Compared to assert the emptiness of the core, an alternative question is: given an
instance of a game (N, v) and the allocation vector z, is x in the core? In the case of
bin packing game (N, v;yr), now it becomes clear to answer this question, by using
similar arguments as we have shown in the previous section.

Theorem 3.4.1. Given any instance of the bin packing game of fixred number of bins,
to assert whether an allocation vector lies in the core is N'P-hard and is strongly
NP-hard for arbitrary number of bins.

Proof. We first show the strong NP-hardness for arbitrary number of bins. We
prove this by using the same reduction as we have shown in the proof of Theorem
3.3.2; we construct k =t bins and 3k items of sizes ay, ag, - - , as, where a; = b;/B
for 1 <4 < 3k. Clearly, "% a; = k. Let = (a1, as,-- -, as, 0,--- ,0)” be a payoff
vector, where a; is the payoff to player ¢ and 0 is the payoff to each bin. It is easy
to check that = € C(vyy7) if and only if 3-PARTITION has a solution. If k is fixed,
then a similar reduction from PARTITION can be applied here. O

As a direct corollary of Theorem [3.4.1] to identify the e-core membership of an
allocation vector is also N'P-hard. Without proof we claim

Corollary 3.4.2. Given € € [0,1] and any instance of the bin packing game of fixed
number of bins, to assert whether an allocation vector lies in the e-core is N'P-hard
and 1is strongly N'P-hard for arbitrary number of bins.



CHAPTER 3. COMPLEXITY RESULTS 26

3.5 Core Emptiness

Moreover, Liu (2009) [I1] proved the N'P-hardness of identifying the core emptiness
of a given instance of the bin packing game. First we consider the case for fixed
number of bins.

Theorem 3.5.1. [11] The problem of deciding whether an instance of the bin packing
game with a fized number of k bins (k > 2) has an empty core is N'P-hard.

Pmof. We prove this by reduction from PARTITION: Given a set of 2t integers
= {b1,bs, -+ , by}, and Z?tzl b; = 2B, does there exist subsets 51,52 of S with
51 NSy =0 and S; U S, = S satisfying ijesl b; = ij652 b
We construct a bin packing game of k > 2 bins, and item set I = {1,2,--- , 2t +

2k} of sizes aj,as - -+, agipy1, where
a; = b;(1 —2¢)/2B, for all 1 <1 < 2t;
a2t41 = €,

a; = 1/2, for all 2t + 2 <1 < 2t + 2k.

Next we show that the PARTITION has a solution if and only if the bin packing
game has a nonempty core.

(=) Suppose the PARTITION problem has a solution, i.e. there exist subsets
Si,S5 of S with S NSy =0 and S; U Sy = S satisfying Zb cs, b Zb s, b
Let I ={i | b; € S1}, I, = {i | b; € So} then we put items of I together Wlth item
2t+1,2t+2 into the first bin and items from 2¢t+3 to 2¢+ 2k into the remaining k—1
bins, so we get vin7(N) =k = vpra(N). By Theorem we know C(vrnt) # 0.

(<) If the PARTITION has no solution, then we get v;nr (V) = k — e by putting
items from 1 to 2t 4+ 1 into the first bin and items from 2t + 2 to 2t + 2k — 1 into
the remaining £ — 1 bins. In fact, we see

i (oo To) -me (Z0-20) 12 i

i€l i€la €S 1€S2

where S, S5 are the partition of S, and Iy, I5 are the associated item set with respect

to 81,99, ie. I1o={i|b; € S12}. Let e < then above inequality becomes

(1+B

111111[1;1 (Zal Zm) > 1_26 > €.

i€l i€l

Thus we can not expect a subset I’ of items {1,2,---,2t} satisfying >, ., a; €
[1/2 —¢,1/2].

We denote the core allocation vector by x = (@1, -+ , Toriop, =+, Togisr) !, Where
Totpokt1s - -+ » Togsk are the payoffs to each bin. By Lemma[1.3.2] we further assume
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x; = a be the payoff to the item that has size 1/2, 2t + 2 < i < 2t + 2k;

x; = [ be the payoff to each bin, 2t + 2k + 1 <1 < 2t + 3k.

Since item 2t + 2k is not packed into any bin in the optimal packing, we have o =
0. Besides, if we consider the coalition consisting of 1 bin and items 2t+2k—1, 2t+2k,
by definition of the core we have

B=a+p>1

Namely 8 > 1 and Z?ff“gk x; > k> vinr(N), so we get a contradiction and this
implies C'(vynr) = 0. O

Next we continue our problem, but to consider the case when the number of bins
is arbitrary.

Theorem 3.5.2. [11] The problem of deciding whether an instance of the bin packing
game with arbitrary number of bins has an empty core is strongly N'P-hard.

Proof. We prove the result by reduction from 3-PARTITION, which is already
known as strongly NP-hard. Given a set S of 3t positive integers, denote by
S = {by,by, - by}, and Y20 b, = t- B (B/4 < b; < B/2), does there exist a
partition Sy, Ss,--- ,S; such that the sum of the numbers in each subset is equal?

Now we construct a bin packing game of £ = t 4+ 1 bins and item set I =
{1,2,--- ,4t + 3} of sizes ay,aq, -+, agys3, where

a; =b;/B,1=1,2,--- 3t

a;=1—¢€1=3t+1, -4t

a; =1/2, 1 =4t + 1,4t + 2,4t + 3.

Next we show that the 3-PARTITION has a solution if and only if the bin packing
game has a nonempty core.

(=) Suppose 3-PARTITION has a solution, i.e. there exist subset Sp,---,S;
with S; N S; =0, Vi, j and U!_|S; = S satisfying ijesq- bj = B forall 1 <i < 3t.
Let I; = {i | b; € S;} for all 1 < j <t. By putting I, I, , I, into the first ¢ bins,
and items 4t + 2,4t 4 2 into the (¢ + 1)-th bin, then we get vinr(N) =k = vpgra(N).
By Theorem [2.2.2] the core C'(v;nr) # 0.

(<) If the 3-PARTITION does not have a solution, then it is easy to see
vint(N) < k. We next show that in any optimal packing of the grand coalition
N, at least one of items 4t + 1,4t 4 2,4t + 3 is not packed into any bin. Suppose
this condition is violated, i.e. all items are packed, then there exists a single item,
denoted by 4t + 1, is not together with item 4¢ 4+ 2 or 4¢ + 3 in any bin, and we
further assume the item 4¢ + 1 is packed into the first bin. Since B/4 < b; < B/2,
we also have B/4 < b; < (B — 1)/2, which yields,

1 1

- <
1°%=5"3p
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So except for item 4t + 3, the first bin contains exact one another item from the set
{1,2,---,3t}. Then we have
(N) <k L
v - —.
INT < 5B

Let € < 1/(2tB), we have vinp(N) < k — te. However, if we put items from 3¢ + 1
to 4t into the first ¢ bins and items 4t + 1,4t + 2 into the (¢ + 1)-th bin, then we get
the contradiction

’U[NT(N) > t(l — 6) +1=k—te> U[NT(N).

From Lemma [1.3.2] in an core allocation the payoff to each of items 4t + 1, 4t 42
and 4t + 3 is 0. Since a coalition of a single bin and any two of items 4t + 1, 4t + 2
and 4t + 3 has a value of 1, in a core allocation the payoff to each bin is at least 1.
As a result, the total payoff of any core allocation is required to be no less than k,
which is greater than vy, (V). O



Chapter 4

Exact Algorithms

4.1 Introduction

Based on previous discussions, now we set about our task of identifying the emptiness
of the e-core. Theorem says that the minimal tax rate of a bin packing game

N - vrra(N) — vinr(N)
Emin(N) = vrra(N) '

Thus in this chapter, we primarily discuss the algorithms of computing vy and

UFRA-

Working along the route of the linear programming, first we introduce the matrix
form of the bin packing game and the fractional bin packing game , which
will be easier for computation. The problems in the matrix form requires a input of
the feasible matriz, and we will present an algorithm that can generate this feasible
matrix systematically, according to the item sizes. However, when the number of
the different feasible sets grows exponentially large, we are not able to enumerate
all feasible vectors, to overcome this difficulty, we still want to generate the feasible
matrix automatically, but instead, only the feasible vectors which have the potential
to improve the value function are needed. This approach will be later discussed as
the column generation method (refer to Gilmore and Gomory [7, [§]).

4.2 Linear Programming

The most straightforward idea of computing v;y7 and vpgra is to solve the linear
program (INT) and (FRA) (2.3). However, the formulations of (INT) and
(FRA) are not suitable for writing codes or figure out by hand. In this section we
introduce the corresponding matrix form of them, which perfectly suits our purpose
of calculation.

29
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Consider a bin packing game with £ > 1 bins and item set I = {1,2,--- ,n},
which has sizes a1, ay, -+ ,a,. We refer to a = (a1, as, -+ ,a,)’ as the size vector.
A vector b; € {0,1}" is called a feasible vector if a’b; < 1, so the feasible set
fi ={i| bij =1, b; is a feasible vector}. Moreover, let F' = |F| be the number of
different feasible vectors, where F is the set of all feasible sets and B € {0,1}"*F
be the feasible matrix

B=(by by -+ bp).
Then the linear program (INT) and (FRA) can be written in the following matriz
form.

max a’ By,
s.t. By < ey,
ery <k,
y €{0,1}",
where e, = (1,1,---,1)T € R® and ep = (1,1,--- ,1)T € RY,

(4.1)

max a’ By,
s.t. By < ey,
ery <k,
y € [0,1]".
Besides, if we let

B €n
= (" 0), H- H I T Y { ]
e k
then (4.1) and (4.2) can be equivalently written as
max ¢’ Hy
s.t. Hy < g, (4.3)
y €{0,1}",
max ¢! Hy
s.t. Hy < g, (4.4)
y=0.

The two problems are full rank, which is to say

Lemma 4.2.1. B and H are full rank, namely,

F pu—
rank(B) =n, rank(H) = {n, "
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Proof. Every item itself is a feasible set, then B and H has the form

1 1 1 *
1
B = , H= *
*
L (1 1 1 i
By elementary column transformations, we can see B and H are full rank. O]

Under matrix formulations of the bin packing game and the fractional bin packing
game, now we can explicitly solve them, although not in polynomial time. Indeed,
in the linear program and (4.2)), the input involves the number of bins F,
the size vector a and the corresponding feasible matrix B. However, a general bin
packing game does not give the feasible matrix, we need an algorithm to generate it
automatically, according to the size vector a. Please refer to appendix [A] for more
detail.

4.3 Column Generation Approach

4.3.1 Simplex Method

Given A € R™*" ¢,b,x € R", z,b > 0, consider the standard form of the linear
programming problem of the form

max ¢’z
s.t. Ax = b,
z > 0.

c’'z is called the objective function, and any nonstandard form of LP problems can

be transformed into the standard form. For example, if z is free, let 27,2~ > 0,
and replace by xT — 2~ then we get all nonnegative variables.

Consider Az = b and rank(A) = m < n. Let B be the matrix obtained by
choosing m linear independent columns of A, and let N denote the matrix formed
by the other columns of A. Then g = B~'b is called the basic solution and the
components of x g are called basic variables. Correspondingly, other variables xy are
called nonbasic variables and we call the vector formed by these nonbasic variables
nonbasic solution. Hence the equation Ax = b can be written in terms of zp and

IN.
Brg+ Ny =b= xx = B 'b— B"'Nay.
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The objective function
v =chap+chany = cEB b+ (¢ — cEB™'N)xy.

Taking derivative of the objective function with respect to b, the shadow price of the
associated constraint is defined by AT = ¢LB~!. Similarly, taking derivative with
respect to xy defines the reduced cost of a variable u” = ¢§, — ATN. To apply the
column generation to the fractional bin packing game, we will use the expression of
1! to generate possible feasible vectors.

4.3.2 Apply Column Generation to (FRA)

As an application of the simplex method, the column generation method is started
by creating a submodel of the fractional bin packing game (master problem) which
contains a set of feasible vectors. Obviously, the initial set is not necessarily optimal.
Then after solving this submodel and using its byproduct shadow price, we are able
to formulate an auxiliary model (feasible vector generation model) (subproblem).
Solving this auxiliary model identifies a feasible vector which is then added into the
fractional bin packing game submodel to improve its objective. The fractional bin
packing game with this extra feasible vector, is then solved. By using the updated
shadow price, the process is then repeated until the submodel contains the optimal
set of feasible vectors. By the proof of Theorem we know the optimal set of
feasible vectors consists of at most n + 1 feasible vectors. So in practice, the total
number of new feasible vectors generated by the auxiliary model is quite small and
so the overall algorithm is quite efficient.

We know from the simplex method that, the reduced cost of a variable gives
the changing rate of the objective function for one unit increase in the bound of the
variable. During a simplex iteration, one of nonbasic variables is introduced into the
basis, and consequently a basic variable leaves the basis to become nonbasic. For
the case, as in our problem , where all variables are nonnegative and nonbasic
variables are vanished, such an exchange is only of interest (for a maximization prob-
lem) when the corresponding component of the reduced cost ¢k — AT N is positive.
In this particular case, the objective function value (vy;) of the master problem will
increase when the value of the corresponding component of xy is increased. As soon
as all components of the reduced cost vector become negative, no improvement in
the v,,; can be made, and the current basic solution zp = B7'b is optimal. The
iterative solving of the fractional bin packing game submodel and the feasible vector
generation program is summarized below.

Algorithm-Column Generation (CG)
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Initialize master problem
WHILE reduced cost>0

Solve master problem

Solve subproblem

Add the feasible vector to master problem
ENDWHILE

The master problem is defined by the LP model of the fractional bin packing game
and we restate it as below
(master problem) max a’ By,
s.t. Br <el,

egx <k,

z € 0,1]".
Note that the matrix B only consists of a initial set of feasible vectors, rather than
all feasible vectors.

Let A € R™ be the shadow price of the first inequality and p € R be the shadow
price of the second inequality. Let z be the newly generated feasible vector, then
the value of z should be less than or equal to 1, i.e. a’z < 1. The corresponding
reduced cost = ¢k —ATN = (a¥ — A7)z — p. Our feasible vector generation model
is to maximize the reduced cost with respect to z, i.e.,

(subproblem) max (a’ — A7)z
s.t. alz <1,
z € {0,1}".

Let p; =a;,— X\, w; = a;, 1 =1,2,--- ,nand W = 1, then to solve the subproblem
is indeed to solve a KNAPSACK problem: given n items 1,2,--- ,n and each item
has a value p; and weight w;, and a knapsack with total capacity W, to maximize
the total value of the knapsack on condition that the total weight of items do not
exceed the capacity W. We know the KNAPSACK problem is N'P-hard, thus
in each iteration, we solve a N'P-hard problem, more specifically, we often use
the dynamic programming to solve the KNAPSACK problem, which is known as
pseudo-polynomial.

In practical, when the number of feasible sets can not be enumerated, the column
generation algorithm can be used to compute the value function of the fractional bin
packing game, since it only provides the vector that has the potential to improve the
objective value, and without the redundant feasible vectors, the master problem can
be efficiently solved. Besides, under some rules of rounding the fractional solution,
this also gives a way of approaching the value function of the corresponding bin
packing game. More specifically, we give an example to show how it works.
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4.3.3 Example

Given 2 bins and 4 items with size vector a = (1/2,1/2,1/2,2/3)".  Compute
vrra(N) by column generation.

Each item itself is obviously a feasible set, the initial set of feasible vectors can
be naturally chosen as below

1 000

0100
B =

0010

0001

1st iteration: solve master problem and we get
y=(1/3,1/3,1/3, 1), wpra(N)=7/6, X=(0,0,0,1/6)", p=1/2,
then solve subproblem we get
z=(1,1,0,00", p=1/2.

Since reduced cost p > 0, we add z to the master problem, which gives

o O O
o O = O
O = O O
_ o O O
S O = =

2nd iteration: solve master problem and we get
y=(0,0,0,1,1)F, wpra(N)=5/3, X=(0.2342,0.2342,0,0.1351)", p = 0.5315,
then solve subproblem we get
z=1(0,1,1,00", p=0.2342.
Since i > 0, we add z to the master problem, which gives

0

o O O =
O O = O
O = O O
S O = =
O = = O

0
0
1
3rd iteration: solve master problem and we get

y=1(0,0,0,1,1/2,1/2)", wpra(N) =5/3, X=(0,0.4398,0,0.1064)", p = 0.5602,
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then solve subproblem we get
z=(1,0,1,0)", p=0.4398.

Since > 0, we add z to the master problem, which gives

1000101
B:0100110
0010011
0001000

4th iteration: solve master problem and we get
y=1(0,0,0,1/2,1/2,1/2,1/2)", wppa(N)=11/6, X=(1/6,1/6,1/6,0)", p=2/3,
then solve subproblem we get
z=(1,1,0,00", p=0.
Since p = 0, the algorithm terminates and we get the optimal solution

y=(0,0,0,1/2,1/2,1/2,1/2)", and vpra(N) = 11/6.



Chapter 5

Approximation Algorithms

5.1 Introduction and Terminologies

In chapter [ we studied the exact but non-polynomial algorithm for bin packing
games and fractional bin packing games, however, in most practical cases, we just
want to find a nice but not necessarily optimal solution for them, with the require-
ments that the computation time is in poly-time and the output is as close to the
optimum value as possible. This is the motivation of why we study the approx-
imation algorithm. For a given approximation algorithm, how do we evaluate its
performance? In other words, given approximation algorithms A and B, what is the
reason of saying A performs better or worse than B? In the following we introduce
some terminologies about performance measures of approximation algorithms, and
later on we go into detail to analyze the performance of the approximation algo-
rithms of computing the value functions of the bin packing game and the fractional
bin packing game.

Before start, we first look at the classical bin packing problem (see [2]) which is
already know as a AN'P-hard problem.

(Classical bin packing problem) In the classical one-dimensional bin packing prob-

lem, we are given a sequence I = {1,2,--- ,n} items, each with a size a; € (0, 1] and
are asked to pack them into a minimum number m of subsets (bins) By, By, -+ , B,
such that >°, p a; <1, 1<j <m.

In the case of classical bin packing problem, the standard metric for worst-case
performance is the asymptotic worst-case performance ratio. For a given instance [
and algorithm A, let A(I) be the output of the algorithm, i.e. the number of bins
used when A is applied to list 7, and denote by OPT'(I) the optimal number of bins
for a packing of I. The absolute worst-case performance ratio is defined to be

Rya=inf{r >1:V I,A(I) <r-OPT(I)}.

36
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The asymptotic worst-case performance ratio R is defined to be
RY =inf{r >1:3C > 0,A(I) <r-OPT(I) for all I, with OPT(I) > C'}.

Given an instance of the classical bin packing problem, there are some well
known simple algorithms: Next Fit (NF), First Fit (FF), and First Fit-Decreasing
(FFD). Their absolute worst-case performance ratios are Ryp = 2, Rpp = 17/10
and Rppp = 11/9 (refer to [9] for more detail).

So one may ask whether it is possible to apply these algorithms to bin packing
games. If possible, what is the worst-case performance ratio for each algorithm? To
answer these questions, we first need similar definitions of worst-case performance
ratio for bin packing games.

Consider an instance N of the bin packing game and a given approximation
algorithm A. The value function of the bin packing game is denoted by v;n7(NV),
and the output value of A is denoted by A(NN) when it is applied to N . Similar
to the classical bin packing problem, to evaluate the performance of A, the absolute
worst-case performance ratio R4 is defined to be

Ro=1inf{r <1:V N,A(N) >r-vinr(N)}.
The asymptotic worst-case performance ratio R is defined to be
RY =inf{r <1:3C >0,A(N) >r-vnr(N) for all N, with v;yr(N) > C}.

Moreover, algorithm A is called an a-approzimation algorithm if A(N) > a-vinr(N),
and « is the approzimation ratio. If &« = R4 we say « is a tight bound.

Next, we present some approximation algorithms of bin packing games and to
discuss their approximation ratios.

5.2 Approximate vyt

To compute vyy7, one may naturally think about the greedy algorithm, i.e., compute
the largest feasible set in each iteration and pack it into a bin. However, as we have
shown in Theorem [3.3.1] the bin packing game is N'P-hard even when k = 1, thus
computing the largest feasible set is also N'P-hard. Besides, even if we do not care
the time cost of the greedy algorithm, it is also not a reliable algorithm for the bin
packing game. For instance, consider 5 items with sizes a1 = ay = 1/2 —2¢, a3z = 4e,
as = az = 1/2+ €. The greedy algorithm gets value 3/2 + € while v;yr(N) = 2 — 2e.
Therefore, the greed algorithm is neither efficient nor exact for bin packing games.

Look back the algorithms of solving the classical bin packing problem, we want to
apply those ideas to compute v;y7. To do this, the next we show another version of
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the algorithm NF, F'F and FF' D, which are designed for solving the value function
of bin packing games. After that, to see how well do they work, we further prove
their worst-case performance ratios. Additionally, we will consider a special case of
the bin packing game, i.e. given a constant B > 0 and the number of bins less than
B, then we propose a (1 — €)-approximation algorithm for computing v;y7.

5.2.1 Algorithm NF,FF and FFD

Given an instance of the bin packing game, the input includes the number of bins &
and the number of items n as well as the item sizes aq, as, - - - , a,. We will introduce
the algorithm Next Fit (NF), First Fit (FF) and First Fit-Decreasing (FFD) for
bin packing games. For easy of description, we denote by by, bs, - - - , by the feasible
packing which is generated by the algorithm, i.e. the items of the feasible set b; are
packed into the j-th bin. NF, FF, FFD are proceeded as follows.

Next Fit (NF)
Initialize =0
FOR all bins 1< p <k DO
IF 3je{ip1+1,--- ,n—1}, s.t. gii11771+1a2->1
THEN let i, := min{j| Zg;.lp_lﬂ a; > 1}
ELSE
THEN let 7, :=n
ENDIF
Pack items into the p-th bin , which is b, = {i,—1+ 1,41 +2, -+ ,ip}
IF all items are used, i.e. i, =n
Break
ENDIF
ENDFOR
Output total size of packed items of all bins

First Fit (FF)

Initialize by =by=---=b, =10

FOR all items ¢ (1 <i<mn)DO
Compute the smallest index j, s.t. Eiebj a; <1
bj :==0b; U{i}

ENDFOR

Output total size of packed items of all bins

First Fit-Decreasing (FFD)
Sort item sizes by decreasing order a; > ag > - > ay
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Apply First Fit algorithm

Slightly different from algorithms for the classical bin packing problem, the output
of these algorithms is the total size of the packed items, instead of the number of
bins. However, the crucial ideas of the algorithms for bin packing games are almost
the same with those of for the classical bin packing problem. Having introduced the
above approximation algorithm NF, FF and FFD, now we are curious about their
performance for the bin packing games.

5.2.2 Performance of NF,FF and FFD

Having been aware of performance measures of the approximation algorithm, in this
section we show the approximation ratios of the algorithm NF, FF and FFD.

Theorem 5.2.1. RY, =1/2.

Proof. If all items are packed into the k£ bins by NF, then NF(N) = vy (V).
Suppose NF ends after the k-th iteration and there exists some items not packed
into any bin. Let by, bs, - - , by be the feasible packing obtained by NF', where b; is
the set of items in the j-th bin and let o(b;) = >_,;c,. a; be the value of the j-th bin,
1 <j <k Forall j, if o(b;) > 3, then A(N) > k/2 > v;yp(N)/2. If not, we first
assume k > 2 and consider the following 2 cases.

Casel: there exists a b;(1 < j < k), such that o(b;) < 1/2. We have

i=1 i=j+2
j—1 k—j7—1
>+ 14—
2 T 2
_ E > UINT(N).
2~ 2

The second last inequality holds since b, is not empty, then exists an item ¢ € b;1,
and we know from the process of algorithm NF that i is packed into the (5 + 1)-th
bin if o(b;) + a; > 1, so we have o(b;) + a(bj11) > 1.
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Case2: o(by) < 1/2,0(b;) > 1/2 (j =1,2,--- ,k). We have

k:—2
> —41
:E>UINT<N)
2~ 2

Note the fact that, if o(b;) < 1/2, then o(b;—1) > 1/2 and o(b;+1) > 1/2. So if there
are more than 1 bin with the total size of the packed items less than 1/2, by similar
proof we can also get the same conclusion.

To show 1/2 is a tight bound on condition k > 2, consider an instance of 2 bins,
and 4 items with sizes {1,14¢,1,1}. It is easy to see NF(N) = 1+¢€,v;n7(N) = 2.
If 1/2 is not a tight bound for NF, ie. 36 > 0, s.t. NF(N) > (3 + 6)vinr(N).
Thus in this particular instance,

NF(I):Hez(1

5 +8)2=1+20

Let € = §, we have § > 20 and this is a contradiction. This means no matter
how small the § is, we can always construct a counterexample such that NF(I) <
(3 + 0)vrnr(N). Hence 1/2 is a tight bound, that is to say Ry = 2. O

Remark: NF may approximate arbitrarily bad when & = 1. To show this, we
give 2 items with sizes ¢,1, so we have NF(N) = ¢, vyyr(N) = 1, which is to
say, NF(N) > € - viyr(N). The approximation ratio goes to 0 when we let € be
sufficiently small.

Theorem 5.2.2. Ry, =1/2.

Proof. Assume k > 2, by the same proof with Theorem [5.2.1] it is easy to see
R > 1/2. We give an example to show 1/2 is a tight bound of FF and the proof is
also similar to that of the Next-Fit in Theorem [5.2.1] Consider a bin packing game

with 2 bins, and 6 items with sizes {5 + ¢, 5 + ¢, 3,3, 3, %} ]

Theorem 5.2.3. Rppp = 1/2.
Proof. We know FFD performs no worse than NF, so if & > 2, Rppp > 1/2. We

only need to show FFD(N) > 1/2 when k = 1. Since all items are sorted in
decreasing order by size, if Y, a; > 1, then at least 1/2 of bins should be filled;
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if > ,a; <1, then FF(N) = vinr(N), so we are done. Consider an instance of
the bin packing game of 2 bins, and 6 items with sizes {% + €, % + €, %, %, %, %} By
similar proof to Theorem m, it is easy to see 1/2 is also a tight bound, thus we
have RFFD = 1/2 ]

Based on above analysis, we found NF, FF and FFD perform no better than a 1/2
approximation ratio. However, for the classical bin packing problem (minimization
problem), W. F. de la Vega and G. S. Lueker [4] showed the existence of a (1 + ¢)-
approximation algorithm, i.e., A(I) < (14 €)OPT(I). This encourages us to think
of the (1 — €)-approximation algorithm for computing vyy7.

5.2.3 (1 — ¢)-Approximation algorithms

The bin packing game we have mentioned in formal chapters are all in standard form,
i.e. item sizes are in (0,1] and the capacity of each bin is 1. Now we consider the
integer form of the bin packing game, namely, item sizes only take positive integer
values, which do not exceed the capacity of each bin B. We can easily see that the
two different forms of the bin packing game are indeed equivalent, by dividing the
bin capacity to each item and let the capacity of the bin to be 1. Under the integer
form, a natural way of reduce the hardness of this problem is to restrict the largest
number to be bounded by a constant C, i.e. B < C. Let ¢ = 1/C, then in the
standard form, it is identical to assume item sizes to be greater than or equal to .

In this way, we are able to make our problems easier, and at first we try to solve
our problem in this special case.

Lemma 5.2.4. Gwen ¢ > 0,B > 0 and the bin packing game of all item sizes
greater than €, and k < B, then there exists a polynomial algorithm for computing
U[NT(N> .

Proof. Since all item sizes are larger than e, there are at most |1/€] number of items
in each bin. Let M = |1/¢], so the number of different feasible sets is bounded by

()G (5) -0

It is easy to see p(n) is polynomial in n. To obtain v;yr(N), we need to choose k
feasible sets, such that the sum is maximal. The number of choices is polynomially

bounded by
e () (%)

Enumerating these feasible sets, we can get v;y7(N) in polynomial time. O
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In this lemma, we can not get rid of the requirement k& < B. Reviewing the proof
of Theorem that the 3-PARTITION can be reduced to the bin packing game,
which has all item sizes greater than 1/4. Therefore, the problem of computing
vinr(N) is also strongly N'P-hard even when all item sizes greater than a given
e(<1/4).

Next under the assumption & < B, we present the (1 — ¢)-approximation algo-
rithm of computing vy (N).

Theorem 5.2.5. Given B > 0 and the bin packing game with number of bins k < B,
there exists a (1 — €)-approximation algorithm for computing vinr(N).

Proof. For given € > 0, let I} = {i | a; > €,i € I}, I, = I\I;, where we assume [
be the item set. First we try to solve vy according to I;. By Lemma this
is polynomially solvable. Next we want to add the items of I, into these bins as
much as we can, on condition that the total size of the packed items in each bin
does not exceed 1. Applying algorithm FF to I, if all items are packed into the
k bins, we have A(N) = v;yr(N); if not, we suppose by, by, -+ , b be the feasible
packing generated by F'F', where b; is the set of the items in the j-th bin and let
a(bj) = Ziebj a; be the value of the j-th bin. By the process of FF we see for all j,
we have o(b;) > 1 — €. This means

AN) = (1 — )k > (1 — e)urnr(N).

5.3 Approximate vppg

To approximate vpr4, we use the same way as we have shown in Section [5.2.3 First
we only consider the restricted version of the bin packing game, and further to prove
it is polynomially solvable; then for the general case of the bin packing game, we
split the item set into 2 parts—one part is polynomially solvable and in another part,
we expect an algorithm to well approximate the optimal value.

Lemma 5.3.1. Given 0 < € < 1 and the fractional bin packing game of all item
sizes greater than €, there exists a polynomial algorithm for computing vpra(N).

Proof. If k > n, we just need to pack each item into the first n bins. So we can
always assume k < n. Since sizes of all items are larger than €, there are at most
|1/€] items in each bin. Let M = [1/e€], so the number of feasible sets is bounded

by (7;>+<72l)+-~+(;4)—p<”)'
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It is easy to see p(n) is polynomial in n. Now we look at the linear program of the
fractional bin packing game,

max a’ By,

s.t. By < ef,
epy <k,
y€[0,1)",

where F is the number of feasible sets and B € {0, 1}"*¥". The input consists of the
number of bins k, the size vector a and the feasible matrix B. Denote by |L| the
encoding length of the input, then

|L| € O(n+n x F) € O(np(n)),

which is polynomial in n. We know the linear programming can be solved poly-
nomially if the input length is polynomially bounded (eg. Karmarkar’s Alogrithm,
[13]), that is to say, the polynomial algorithm for computing vpgra(N) exists. [

Theorem 5.3.2. V 0 < ¢ < 1, there exists a (1 — €)-approzimation algorithm for
computing vpra(N).

Proof. Given € > 0, let Iy = {i | a; > €,i € I}, I, = I\, where we assume [ be
the item set. First we try to solve vpra according to [;. By Lemma [5.3.1] it is
polynomially solvable. Next we want to improve the result by adding items from I
to the current solution as much as we can. Refer to the LP model of the fractional bin
packing game , suppose Y1, Y2, - -, Yr € (0, 1] be the optimal solution according
to I; and fi, fo,- -+, f, be the associated feasible sets. As is shown in the proof of
Theorem [3.3.3] the number of feasible sets in the optimal solution is at most n + 1,
so r is polynomially bounded. Since items fractionally appear in these feasible sets,
we use the following way to add items of I3 to them (bins) as much as we can.

Let Iy = {iy, i, -+ , 4} with sizes {a;,, as,, -+ ,a;, } and let y;;, = 1forall 1 < j <
t, which is used for recording the usable fractional parts of each item, so the initial
value is 1. Let o(f;) = 3., a; be the value of the j-th feasible set, 1 < j <.

Algorithm-Fractional First Fit (FFF)
FOR all items a;, 1 <7<t DO
WHILE y,, # 0 DO
Compute the smallest index I, s.t. o(f;)+a; <1
IF vy —y =0
THEN fi:= fiU{i}, v, =vi, —
ELSE
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Let y;; :=0

Break f; into 2 parts in following way:
foo=Hudis}, u =y
Jo = Jis Y =y — vy,

Delete fj

ENDIF
ENDWHILE
ENDFOR

We further give some explanations for Fractional First Fit (FFF). FFF can be viewed
as an extension of First Fit (FF) algorithm, which packs fractional parts of items
into bins. For instance, to improve the current solution, we can first apply FF to
I, if item a;; can be packed into f;, which has a fractional index y;, then we put
y; of item ¢; into bin f; and 1 — y; of item ¢; into other possible bins. Since there
are t iterations, and in each iteration we compute the smallest index [, which can
be done in O(n?), so the running time of FFF € O(t - O(n?)) € O(n?).

Therefore, using items of Iy by algorithm FFF the current solution can be im-
proved. If FFF fully used all items, then A(N) = v;nr(N); if not, we know from
the process of FFF that, for all 1 < j < k, o(f;) > 1 — € holds and this implies
AN) > (1 =k > (1 —e)vnr(N). O

5.4 The Minimal Tax Rate

As far as we have discussed, we have fortunately found the (1 — €)-approximation
algorithm for v;yr (only instances with k& < B) and vpra, now we are able to
approximate the minimal tax rate €,,;,.

Theorem 5.4.1. Consider a bin packing game (N, v;nr), where N consists of k bins
and item set I and let €,,;,(N) be the minimal tax rate for N. For fized § > 0, there
is a polynomial algorithm A to approzimate €min(N), s.t. |ean) — €min(N)| < 0.

Proof. Given § > 0, Faigle and Kern [6] showed that C.(v;ny7) # 0 when £k >
A8[e™17°. Tf k > 48[6711°, we can take e4n) = 0. So we may assume k < 48[6711°.
By theorem [5.2.5) and [5.3.2, there exists a (1 — §)-approximation algorithm for

computing v;nr(N) and vpra(IN) and the approximation values are denoted by
A[NT(N)7 AFRA(N> respectively. Let €A(N) =1- A]NT(N)/AFRA(N), we get

vint(N) > Ane(N) > (1= 0)vine(N),

vpraA(N) 2 Apra(N) > (1 = 6)vrra(N).
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We have
Arnt(N) (1 —d)vinr(N)
€ =1- "L <1- =0+ (1 —=0)emin(N) <+ emin(N),
UINT(N ) J UINT(N )
A 2 1= G = ) = 75 o = i)
Combining the above two inequalities, we get |e4n) — €min(N)| < 0. O]

Corollary 5.4.2. Consider a bin packing game (N,v;yr), where N consists of k
bins and item set I. For fized 6 > 0, there is a polynomial algorithm to compute an
€* with the properties

1. € -core Ce(vrnT) 18 MONEMPLy;
2. € — €nin(N) < 9.

Proof. Let v = 4/2, by Theorem we know there exists a (1 —)-approximation
algorithm A to compute €, (/N ), and we denote by €4(y) the approximation result.
So

|€A(N) - Emzn(]\/v)| S -
Let € = eanv) + 7, then 0 < € — €, (N) < 2y =. O



Chapter 6

Applications and Discussions

6.1 Summary of Conclusions

The bin packing game is a specific example of the N-person cooperative game, which
primarily concerns the formation of coalitions among players. Centered around
the question of finding an core allocation vector for a given instance of the bin
packing game, we started by introducing a generalized definition—the e-core, then
our problem becomes how to find the nonempty e-core. Obviously, 1-core always
exists for any instance of the bin packing game, so the question is in fact to find the
minimal € such that the e-core is not empty.

However, it is not easy to see whether a problem has a nonempty e-core. To
see this, a straightforward idea is to formulate the linear program of this allocation
problem (AP), then to solve (AP) is a way of finding the e-core. Indeed, if the objec-
tive value equals to the earning of the grand coalition, then the core exists; otherwise
there exists some € such that the e-core is not empty. In order to compute the €,
we studied the dual problem of (AP), which is the so called fractional bin packing
game, and thereby giving a sufficient and necessary condition for the existence of
the e-core, i.e. the e-core exists if and only if € > (vpra(N) — vinT(N))/VERA(N).

The next is to compute the minimal € which ensures a nonempty e-core and the
main results of this report are also based on above analysis. Specifically speaking,
we showed computing the value function of the bin packing game (v;yr) and the
corresponding fractional bin packing game (vpga) is N'P-hard, and further conclude
that given an allocation vector, to assert whether it lies in the e-core is also NP-
hard. Moreover, we showed the problem of deciding whether an instance of the bin
packing game has an empty core is NP-hard.

Therefore, polynomial algorithms for computing v;yr and vpra do not exist
unless P = NP. Faced by this situation, we have to choices: the first is to solve
these N'P-hard problems exactly but non-efficiently (not in poly-time), to do this,

46
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we introduced a matrix form of the linear program for the bin packing game and the
fractional bin packing game, which is easier for calculations. Besides, we applied the
column generation approach to the fractional bin packing game, and this method
successfully solves large instances of fractional bin packing games; the second choice
is to find the approximation algorithms that can well approximate the optimal value
as well as the running time is polynomial. For the bin packing game, we considered
a special case of it: the number of bins is bounded by a constant, and we proposed
the (1 — e)-approximation algorithm for it; while for any instance of the fractional
bin packing game, we found the (1 — ¢)-approximation algorithm.

Based on approximation algorithms of computing v;y7 and vpr4 and given § > 0,
we finally proposed an approximation algorithm for computing the minimal € within
the error §.

6.2 Problems to be Solved

There are still some problems to be solved. Reviewing Conjecture which is pro-
posed by Woeginger (1995) [6], it still has no answer for general case of bin packing
games. To verify its possibility of the correctness, we made a lot of computational
test, and surprisingly found the trend that the more items and bins we have, the gap
between vrpra and vyyr becomes less. Besides, we even failed to find an instance of
the bin packing game such that vpra(N) — vinp(N) > 1/4. So our problem is

problem 1: is vpra(N) — vinr(N) bounded by a constant for all instances of the
bin packing game?

For this problem we have an interesting observation. Consider the 3-PARTITION
problem of 3t positive integers by, b, - - - , b3y, where Zf’il b =1-Band B/4 <b; <
B/2, the question is: does there exist a partition S, Ss, -+ ,S; such that the sum
of the numbers in each subset is equal?

As we have shown before, we construct an instance of the bin packing game by
letting k = t and a; = b;/B for all 1 < i < 3t, then vyyp(N) > k if and only if
3-PARTITION has a solution. Since a; > 1/4 for all i, by Lemma vrra(N)
can be computed in polynomial time. Therefore, if vpra(N) < k, we certainly have
vint(IN) < k, which also implies 3-PARTITION do not have a solution. Conversely,
there must exist some instance N such that vpra(N) > N and vinp(N) < N,
otherwise we can polynomially solve 3-PARTITION and this leads to P = N'P.

We assume P # NP and let N be the instance of the bin packing game satisfying
vint(N) < k and vpgpa(N) > k, where N consists of k bins and n items. We
construct another bin packing game N’ by letting &' = k and a, = 1/3+¢€(1/3 — a;)
for 1 < ¢ < n. It is easy to see that the two instances are in fact equivalent, since
N’ has the same feasible sets with N. In this case, at least one item (denoted by a;)
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is not packed into any bin in the optimal packing of N, so we have

1 1
vrra(N) — vinT(N) = vppa(N') — vinr(N') > 3 + €(§ —a;) R

1
3

So there exists an instance N such that the gap vpra(N) — viyr(N) is around
1/3, however, an example of gap larger than 1/4 is not known yet.

Moreover, in Theorem we stated that deciding whether an instance of the
bin packing game has an empty core is N'P-hard and we proved this by reduction
from PARTITION. However, given ¢ > 0 the same reduction can not be simply
applied to the case of e-core. So our question is to find a proper N'P-hard problem
so that it can be reduced to the problem of deciding whether an instance of the bin
packing game has an empty e-core, namely to answer

problem 2: let UB = inf{e | exits an instance of the bin packing game, s.t.
the e-core is empty} and given 0 < € < UB, is the problem of deciding whether an
instance of the bin packing game has an empty e-core N'P-hard?

6.3 Applications

In this section we show some practical problems which can be modeled as bin packing
games. In applicable aspect of view, the application of our research on bin packing
games is the motivation of why we study this subject and this can also be viewed
as the application of game theory.

6.3.1 Packing Problems

The literal explanation of bin packing games is just the problem of packing items.
Specifically speaking, given k£ bins and n items with sizes a1, ao,--- ,a,, a basic
problem is to pack these items into the k bins maximizing the total size of the
packed items. For example, an ocean shipping company distributes k& ships on the
shipping line from China to the Netherlands, and each ship has a capacity C, i.e.
the total weight of the loaded cargos can not exceed C. Every month the £ ships
set sail from China and transport cargos to the Netherlands. Note that each item
of cargos has weight 0 < a; < C, to maximize the profit for a single trip, so our
problem is to maximize the loadings of the k ships.

It is clear that to solve this problem is exactly the same with computing the
value function of a bin packing game. As a further remark, the value function of
the bin packing game is in fact a special case of the multiple KNAPSACK problem:
given k knapsacks, each has a capacity C' and n items, each item has a value v; and
weight a;, 1 <1 < n, the problem is to find a packing maximizing the total value of
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the knapsacks on condition that the total weight of each knapsack does not exceed
C. If we let v; = a;, for 1 < i < n, then the multiple KNAPSACK problem becomes
a question of the bin packing game.

6.3.2 Allocation Problems

The initial incentive of our research is to find the core allocation of the total earning
of the grand coalition. Thus, allocation problems in real life also have much to do
with bin packing games.

Suppose the orders of a software company are completed by work teams—each
work team is divided into groups, and each group has a leader and the employees of
the work team are distributed to the leaders. We consider a work team of k leaders
and n employees, in order to finish a project, the leaders’ job is to make the blue
print of their work and to guide their subordinates, while the employees are the
real persons to do the actual project of the work. Since employees have different
individual abilities, we use the index 0 < a; < 1 as an evaluation of the abilities of
each person, which means, exists some constant C if the leader paid a; energy to
the employee i, then he can earn a; - C' euros for his company, otherwise he earns
nothing. We assume a employee can not be guided by 2 leaders at the same time
and the total energy of a leader is 1, then the sum of the energy the leader pays to
his subordinates can not exceed 1. The first problem is to distribute these employees
to the leaders maximizing the total profits of the company; the second question is
to find a core allocation vector to each employee (including the leaders) such that
every one is satisfied.

It is easy to see that this problem is a standard characterization of the bin
packing games in a actual application. However, the core allocation does not exist
for many instances of the bin packing game. A secondary solution is to tax the
earning of each employee by a rate €, therefore the second question becomes to find
an e-core allocation vector for the total work team. By using the algorithms we have
introduced for computing the minimal tax rate, we are able to solve this practical
problem.



Appendix A

Generate Feasible Matrix

Given a size vector a = (ay,ag, -+ ,a,)" € (0,1]", the associated feasible vector b,
is defined by a’b; < 1, b; € {0,1}". The feasible matrix B consists of all feasible

vectors, i.e.
B = (b by -+- bp), where F' is the number of different feasible vectors.

Let b; = (b1, baj, -+ ,bn;)T, then the corresponding feasible set f; = {i|b; = 1}.
Obviously, every item itself can be a feasible set.

Given a = (1/4,1/2,2/3)T, we take this example to illustrate the sketch of our
algorithm. First we discard the capacity constraint a”b; < 1 and observe that the
feasible matrix has the form

1001101

Pob=101010 11 =[p p ps ps p5s P D1-
0010111

The matrix P; implies all combinations of items and satisfies that the number of
items in each set is most 3. Similarly, we define the matrices P, P, by

100
Po=10 1 0| =[p p2 ps,
00 1
100110
Po=10 1010 1| =1[p p ps ps ps Ds)-
001011

We see P; is a submatrix of P, while P, is also a submatrix of P; and note that
the matrices P;, P», P; only depend on the number n and the maximal number s
(1 < s <mn) of items we choose in a set. Therefore, a natural idea is to recursively
generate the matrix Ps.

20
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Observe that, by knowing P, we only need to add columns that have 3 nonzero
components, and the easiest way of realizing this purpose is to make use of the
vectors which have 2 nonzero entries, i.e. ps. In fact, we compute the largest index
n, such that p, 4 = 1, then one of the next positions n, +1,n,+2,--- ,n can take
the value 1. Nevertheless, we can not use ps, pg since pss = p3g = 1, otherwise we
have no free position to add new items. However, in order to know which column
has 2 nonzeros, we define indexes 71, ro to record its start column number and the
end column number.

Now we are able to generate P3, but it may contain non-feasible vectors. So the
next is to consider the capacity constraint. In every recursive iteration, before adding
a new vector ¢ to the current matrix, we compute a’q and if it does not exceed 1,
then we add ¢ to our feasible matrix, otherwise throw it away. Our algorithm is
described as below.

Algorithm-Generate Feasible Matrix
To recursively genrate matrices B_1, B_2 --- B_n
In the s-th iteration
Use B,_; (columns from 7; to 7“2) to generate
the new vector ¢ which has s nonzero entires
IF a’q <1
THEN add g to Bs_3
ELSE
Discard q
ENDIF
Update 7,79
END

The MATLAB code of the above algorithm is pasted as follows.

function [B,r1,r2]=GetMatrix(a,n,s)
if s>1
%get the matrix with the maximal number of items <= s-1
[B,r1,r2]=GetMatrix(a,n,s-1);
r3=r2;Jrecord the position of r2
for i=ril:r2
p=B(:,1i);%take the i-th column of B
%hcompute the next position, which may enable a new feasible vector
np=n+1;
while p(np-1)==0
np=np-1;
end
for j=np:n
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g=p;%to create a new feasible vector
q(j)=1;%then add another item to to the position j
%if the value of the new feasible vector does not exceed 1
if a’*q<=1
B=[B,q];%add this new feasible vector to B
r2=r2+1;%set the end column number
end
end
end
%if we found the feasible vector which has s nonzero components
if r2>r3
r1=r3+1;%then set the start column number to rl
else
return;
end
else
B=eye(n);
ri=1;
r2=n;
end
end
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