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Abstract 

Literature has been studied to find potential causes of segmentation during motor learning of 

a  keying  sequence  in  an  attempt  to make  it  possible  to  predict  the  segmentation  of  any 

sequence for any person. A categorization of causes for segmentation (also patterns or salient 

points) of a keying sequence has been made; procedural causes, sequence based causes, and 

participant related causes. It was investigated whether participants will segment a sequence at 

a  salient point  in  the  sequence,  indicating predictability  in  segmentation might be possible. 

Inter hand transitions (IHTs) and runs of consecutive keys were chosen as salient points. Also, 

it  was  investigated  whether  a  sequence  entirely made  up  of  salient  points  with  one  key 

transition without  such  a  salient  point would  segment  at  the  ‘dull  point’,  it  did  not.  Little 

evidence  for a  successful prediction of  consistent  segmentation using  IHTs was  found, none 

using  runs.  Interpretation  of  the  data  was  hindered  by  finger  effects  due  to  incomplete 

balancing. Recommendations for future experiments are given. 
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Introduction 

A sequence of movements  that  is practiced over and over again can group consistently  into 

segments.  For  example, when  typing my  name  I  always  have  a  small  pause  between  two 

segments: "Mer" and "ijn". Thus, in this example a well practiced keying sequence groups into 

segments  of  several  responses.  This  report  will  attempt  to  find  potential  causes  of 

segmentation during motor learning of a keying sequence in an attempt to make it possible to 

predict the segmentation of any sequence for any person.  

There  are  several  sequence  production  paradigms  that were  used  to  investigate motor 

learning  (and segmentation), three  important and relevant paradigms will be discussed next, 

the serial reaction time task, the discrete production task, and the 2 x N paradigm. The Serial 

Reaction  Time  (SRT)  is  the most  popular  paradigm  to  investigate  implicit  learning, motor 

learning  and  chunking  (Jiménez,  2008). An  early  SRT  experiment,  conducted  by Nissen  and 

Bullmer  (1987)  consisted  of  four  lights  with  buttons  directly  below  them  and  required 

participants to respond as quickly as possible to a light by pressing the button directly below it. 

After each response the next stimulus was presented after a response to stimulus interval (RSI) 

of  about  200ms.  The  SRT  usually  repeats  a  (long)  sequence  over  and  over  again.  Another 

frequently used paradigm to investigate motor learning and chunking is the Discrete Sequence 

Production (DSP) task (e.g. Verwey, 1999). A DSP also task uses key specific cues which require 

an immediate response from the participant. However, a DSP generally does not contain a RSI 

(i.e.  when  the  response  is  detected,  the  next  stimulus  is  generated)  which  is  the  main 

difference between SRT and DSP. Sequences  in the DSP are usually comprised of six or eight 

items (Rhodes, Bullock, Verwey, Averbeck, & Page, 2004).  In the DSP sequences have  limited 

length  and  the  sequences  are  easily  recognized  from  the  first  stimulus  which  encourages 

internal (e.g. long‐term‐ or working‐memory‐guided) control (Rhodes et al., 2004). Finally, the 

2  x N  paradigm  (e.g.  Sakai,  Kitaguchi, & Hikosaka,  2003)  uses  LED  buttons  that  are  usually 

arranged in 4x4 matrices. Two LED buttons are illuminated simultaneously, this is called a set, 
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and participants have to sequentially press the  illuminated buttons. The correct order of the 

set of button presses is predetermined by the computer, and the participants have to find it by 

trial and error. Hyper sets of N consecutive sets are presented  in a fixed order. There are still 

other paradigms and many (small) variations of the paradigms discussed above, but they are 

not discussed here in detail. 

A  sequence  of  movements  can  be  segmented  consistently.  It  is  suggested  that 

segmentation occurs  to prevent overloading  the human  information processing capacity and 

allows  for more  specific  representations  (i.e. motor  chunks). A  chunk  is  a  group  of  several 

items  that  are  represented  in  memory  as  one.  According  to  Miller  (1956)  most  mental 

(sub)systems  seem  to  utilize  chunking;  among  which  are  processing  and memorization  of 

complex  stimulus  patterns  over  all modalities.  In motor  learning  chunking  is  also  found  to 

occur (e.g. Verwey, 1996). A motor chunk generally contains 3 to 5  individual motor memory 

unit and it appears that the exact size of a motor chunk varies between subjects and situations 

(Miller,  1956; Verwey,  2003b; Verwey &  Eikelboom,  2003; Verwey, Abrahamse, &  Jiménez, 

2009).  Chunking  can  be  a  strategy  in which  any multiple  items  can  be  used  in  a  relational 

structure to produce elaborate sequences or representations. This means that several motor 

chunks can be concatenated by a cognitive processor to form a longer sequence of movements 

(Verwey, 1996). Also, motor chunks are found to be robust in that chunks are available for use 

in different situations than in the situation they were acquired (Verwey, 2001). 

The  location  of  a  switch  between  two  consecutive  segments  (or motor  chunks)  can  be 

detected by a significantly longer pause. When the  last key press of the first chunk  is pressed 

the next chunk needs  to be  loaded  in  the motor memory,  this  takes some  time. This means 

that the time between the last key press of the first chunk and the first key press of the next 

chunk is longer compared to the other pauses between key presses (e.g. Verwey & Eikelboom, 

2003; Verwey et al., 2009). Further, whether a motor chunk has developed can be determined 
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by  testing whether  participants  can  produce  the  sequence without  information  about  the 

individual key presses within a chunk (Verwey, 1999).  

Motor  chunks  appear  to  be  forgotten or  strengthened  following  the  rules of  associative 

memory,  implying that anything that causes a sequence to be segmented  in a consistent way 

might be a significant cause for motor chunks to form. This report will try to shed light on the 

causes of segmentation and motor chunking, seeking a model  that might predict where and 

how motor  sequences  segment.  After  reviewing  a wide  array  of  literature  I  propose  three 

categories  of  potential  causes  of  consistent  segmentation  (i.e. motor  chunking)  in  a motor 

sequence; procedural related causes, sequence related causes, and participant related causes 

for segmentation (see figure 1). First taxonomy will be established after which each category 

will be discussed  in more detail. Finally, an experiment will be described  in which an attempt 

was made  to predict  the  segmentation of  several  sequences using  the  suggested causes  for 

segmentation. 

Procedural related segmentation causes are  imposed on the sequence and the participant 

and are external factors such as instruction or stimulus presentation. For example the setup of 

an experiment or more concrete:  the prestructured sequence  (e.g. Verwey et al., 2009) or a 

RSI (e.g. Stadler, 1993). Sequence related causes for segmentation describe the specifics of the 

(to be) learned sequence that might cause segmentation. For example, a run (i.e. a run consists 

of keys next to each other) from  left to right followed by a run from right to  left might cause 

both runs to form individual motor chunks (e.g. Koch & Hoffmann, 2000a). Participant related 

causes for segmentation of a sequence have their root  in the participant,  i.e., the physical or 

mental constraints of the human body. For example, the maximum number of  individual key 

presses that can be loaded in motor memory at once, up to 5 keys (Verwey, 2003b). As can be 

seen in figure 1 overlap between causes for motor chunking is assumed to be possible. When 

two  inducers  for motor  chunking  are  present  in  one  sequence  presumably  smaller motor 
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chunks are formed and  learning  is hampered (as found  in experiment 2  in Koch & Hoffmann, 

2000a). Next, the three categories and their supporting literature will be elaborated on. 

 

Figure  1:  Three  categories  of  potential  causes  of  segmentation.  Notice  that  categories 

might overlap causing potential difficulty in predicting sequence segmentation even when 

each separate category would be fully understood. 

Procedural causes for segmentation 
Procedural  causes  for  segmentation  are  related  to  the  experimental  setup.  Such  factors 

imposed  on  the  sequence  and  the  participant  as  external  factors  such  as  instruction  or 

stimulus presentation. It is well established that when pauses (i.e. RSIs) are introduced at some 

consistent  locations  in  a  sequence  during  the  practice  of  a  sequence  (i.e.  a  prestructured 

sequence)  these  pauses  are  found  to  induce  lasting  segmentation  that  continues  to  be 

executed even without RSIs present  in the stimuli and the  induced segmentation  is the same 

for  all  participants  (e.g.  Koch  &  Hoffmann,  2000a;  Verwey,  1996,  2003b,  in  preparation; 

Verwey et al., 2009; Verwey & Dronkert, 1996). Stadler (1993) investigated RSIs by alternating 

a repeating and a random structure in a SRT task. When a RSI was presented at the end of each 

sequence  during  practice  this  improved  learning  compared  to when no  RSI was  presented. 

When  the  RSI was  presented  at  random  locations  during  sequence  practice  this  hampered 

learning, but did not completely prevent it. It suggested that insertion of RSIs induces parsing 

of  the  sequence  into memory  chunks  (Stadler,  1993).  In  addition, Verwey,  Abrahamse  and 
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Jiménez  (2009)  recently  found  that  the  segmentation  pattern  of  a  sequence  that  was 

prestructured did not spontaneously transfer to other sequences (i.e. it did not induce similar 

segmentation  in  other  sequences  that  were  practiced  simultaneous).  Therefore  there  is 

evidence  that  there  is no  transfer of segmentation between sequences. This seems  to  imply 

that when  investigating  segmentation  in  a  sequence,  participants might  be  used  in  several 

(semi‐)simultaneous sequence learning tasks without fear of transfer of segmentation. 

When  a  series  of  movements  is  shown  (e.g.  a  series  of  quasi‐random  hand  and  arm 

movements  in  a  figure  drawing  task)  to  a  participant,  while  the  movements  during  the 

demonstration  are  segmented  into  sub‐series  the  participant  is  likely  to  copy  this 

segmentation when asked to repeat the movements (Agam, Galperin, Gold, & Sekuler, 2007). 

A similar finding was made for a series of movements shown and repeated on a screen (Rice & 

Sekuler, 2008). During  a  SRT when participants  are merely  looking  at  a  sequence of  stimuli 

during  practice  they  are  able  to  perform  at  a  similar  level  as  participants  who  actually 

practiced  the  sequence  via  key  presses.  This  suggests  that  participants  are  able  to  learn  a 

sequence  solely  by  observation  (Howard,  Mutter,  &  Howard,  1992),  at  least  for  some 

paradigms. However,  further  proof  for  observational  learning was  found  by  Lee  and White 

(1990). They found that when a participant (i.e. the observer) observed an unskilled participant 

(i.e.  the model)  improve on a  task  (e.g. a computer game  that  required  timing)  it generated 

more effective learning than observing a skilled model perform a task flawlessly (Lee, & White, 

1990).  In  addition,  it  is  found  that  even mental practice  alone  is  sufficient  to  increase  skill, 

though less efficient than actual physical practice (cf. for meta‐analyses; Feltz & Landers, 1983; 

Driskell, Copper, & Moran, 1994). 

The  amount  of  practice  has  an  effect  on  how  the  sequences  are  represented  in motor 

memory.  After  extensive  practice  of  a  keying  sequence  two  separate  learning  components 

seem  to  be  present  related  to  the  fingers  used;  an  effector‐dependent  and  an  effector‐

independent learning component. A learned sequence cannot transfer between effectors (e.g. 
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from left to right hand) when it is represented effector‐dependent, and it can transfer when it 

is effector‐independent. In SRT tasks evidence was found for effector‐independent learning in 

sequential keying. For example, Cohen et al. (1990) found in a SRT study effector‐independent 

learning in that learning transferred from a sequence that was practiced with three fingers to 

the same sequence executed with only one finger. Effector‐dependent learning in the SRT task 

seemed elusive but was found by Verwey and Clegg (2005) however only after a much longer 

practice  period  (i.e.  1,300  sequence  repetitions)  than  usual  in  SRT.  Also with  the DSP  task 

evidence for effector‐dependent and effector‐independent learning was found. In Verwey and 

Wright (2004) a sequence was practiced extensively with either three fingers of the same hand 

or two fingers from one hand and one finger from the other hand. When in the test phase the 

groups  from both hand  conditions  executed  the  same  and different  sequences  an  effector‐

dependent effect was found (Verwey & Wright, 2004). The difference between the findings of 

SRT and DSP might lay in the amount of practice common in both paradigms; limited practice 

in SRT  tasks  (i.e. usually around 100 sequence cycles) and extensive practice  in the DSP  task 

(i.e.  usually  more  than  500  cycles).  Further,  practice  appears  to  influence  the  effector‐

dependent  component  of  learning  as  more  practice  of  a  sequence  shows  more  effector‐

dependency (Park & Shea, 2003). However, the Park and Shea (2003) experiment did not use a 

sequential  keying  task  and  this  might  pose  problems  for  generalization  to  the  keying 

sequences paradigm,  they used  a pushing  exercise. Additionally,  effector‐dependent  effects 

might  also  be  attributed  to  extensively  practiced  sequences  relying  on  different  processors 

operating in parallel. When different fingers than the ones used in the practice are required to 

execute  the  sequence  the  contribution  by  effector‐specific  processors might  be  eliminated 

(Verwey, 2003a; de Kleine & Verwey, 2009). Further, effector specific  (i.e.  in  this case  finger 

specific) effects might be strongest for the index finger (see figure 2) as suggested by Verwey, 

Abrahamse and  Jiménez  (2009), six out of eight segmentation point  involved an  index  finger 

either before or after the slow IKI.  
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Figure  2:  Average  inter  key  intervals  for  each  individual  new  sequence  (right  column), 

along with the segmentation of these sequences (left column), and a graphical overview of 

the  temporal‐spatial  key  press  orders  in  each  of  three  subgroups  (middle  column).  The 

letters  on  top  indicate  the  key  positions  on  the  keyboard.  Keying  order  in  the middle 

column  for  each  sequence  is  from  top  to  bottom. Dashed  lines  indicate  relatively  slow 

transitions. Eight slow transitions occurred of which six at a hand transitions (From Verwey 

et al., 2009). 

In  conclusion,  results  from observational  learning  (e.g. Agam et al., 2007; Howard et  al., 

1992) are likely similar to the prestructured sequence effects (e.g. Stadler, 1993; Verwey et al., 

2009). The similarity  suggests  that external pacing  factors might be generalized  to all motor 

learning  paradigms.  Generalization  would  imply  that  any  segmentation  or  regular 

discontinuous pacing during the training of a motor sequence might be a potential cause of the 

formation  of motor  chunks.  Therefore,  it  seems  that  regular  discontinuous  pacing  induces 

parsing  of  the  sequence  into  chunks.  However,  continued  research  into  the  extent  of 
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generalization might be required, for example the amount of practice might have an effect on 

the extent to which parsing of a sequence  into memory motor chunks works under different 

paradigms. 

Summarizing, procedural  segmentation  causes  are  related  to  the procedural  setup of  an 

experiment. They  are  imposed on  the  sequence  and  the participant  and  consist of external 

factors: instruction, stimulus presentation, observational learning, and amount of practice.  

Sequence based causes of segmentation 
Sequence  based  causes  for  segmentation  describe  the  specifics  of  the  (to  be)  learned 

sequence that might cause segmentation. For example, a run (i.e. a run consists of keys next to 

each other) from left to right followed by a run from right to left might cause both runs to form 

individual motor chunks (e.g. Koch & Hoffmann, 2000a). 

Many  studies  found  that  regularities  in  the  sequence  caused  spontaneous  segmentation. 

Koch and Hoffmann (2000a, 2000b) suggested that there can be two categories of regularities 

in  a  sequence  that might be  responsible  for  the  spontaneous  segmentation of  a  sequence: 

statistical and relational regularities. The statistical regularities that will be discussed next are; 

statistical redundancy, finite state grammar and uniqueness of transition between consecutive 

stimuli. After  that  the  relational  regularities will be discussed.  Some of  this  research  comes 

from  language  studies  as  language  acquisition  requires  segmenting  a  continuous  language 

stream  into words, which makes  that  language  studies might  provide  us with  useful  ideas 

concerning segmentation. Last, inter hand transitions (IHT) will be discussed. An IHT is a point 

in  a  sequence  at which  participants  need  to  switch  between  hands  (e.g.  right  pink  to  left 

middle finger). 

On a side note, it is suggested that segmentation of longer sequences can be concealed by 

individual differences, however apparent regularities in the keying pattern can induce common 

segmentation  (as  can  be  seen  in  figure  3  taken  from  Verwey  &  Eikelboom,  2003).  Why 

segmentation appears at a particular position  in a sequence or why individuals often differ  in 



10 
 

their  segmentation  is  not  yet  fully  understood.  However,  several  causes  of  segmentation, 

some of which post hoc, have been  suggested  in  the  literature. Also,  some motor  learning 

literature does not mention segmentation or chunking, but does mention a difference in mean 

reaction  times between sequences or conditions. This might warrant  further  investigation,  if 

possible,  into  the causes of  this difference  in RTs. The difference  in RTs might be due  to an 

unnoticed segmentation of a sequence that was averaged out over the entire trial or averaged 

between  subjects,  thus  causing an  increase  in  the mean RT  (Verwey et al., 2002; Verwey & 

Eikelboom,  2003).  The  well  known  finding  that  the  mean  execution  time  increases  with 

sequence  length supports  this notion. This effect  is known as  the sequence  length effect on 

(mean production) rate (SLER) (Sternberg, Monsell, Knoll, & Wright, 1978; Rhodes et al., 2004). 

A longer sequence might be represented by more chunks in motor memory and as every chunk 

has a significant onset delay the mean RT  increases. This notion was supported by a detailed 

analysis of 6‐key sequences by Verwey (2003b) showing that SLER increases were due to a few 

slow  elements  in  each  6‐key  sequence,  while  the  fastest  elements  were  similar  to 

corresponding items in shorter (2‐key and 4‐key) sequences.  

A  potentially  useful way  of  quantifying  a  sequential  structure  is  the  information metric 

structure  in  which  information  can  be  expressed  in  percent  redundancy.  As  a  sequence 

becomes increasingly random, it decreases in redundancy. A completely random sequence has 

0% redundancy and a completely predictable sequence has 100% redundancy (Stadler, 1992; 

Stadler & Neely, 1997). For example, in Nissen and Bullemer's (1987) sequence DBCACBDCBA, 

the level can be one trial (D, B, C, etc.), pairs of trials (DB, BC, CA, etc.), triplets (DBC, BCA, CAC, 

etc.), and so on. If each level occurs in a sequence with equal frequency the redundancy is 0%. 

Redundancy  is  an  useful  way  to  express  that  relative  to  a  random  sequence  condition, 

participants in a repeating sequence condition have fewer unique runs of trials to practice, and 

they practice them more often (i.e. they are practicing a high redundant sequence). Therefore, 

it  seems  that  participants  exhibit  greater  implicit  learning  when  a  sequence  is  higher  in 
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redundancy, which was  confirmed  in  SRT  studies  by  Stadler  (1992)  and  Stadler  and  Neely 

(1997). The relevance of these studies for the investigation of segmentation of sequences lies 

in the possible predictions redundancy may provide for the  induced  location of segmentation 

points.  For  example,  redundant  levels  (e.g.  repetitions  of  a  triplet  ABC) might  evolve  into 

chunks. 

 

 

Figure 3: Three different versions of three‐ and six‐key sequences. I = index finger press, M 

= middle finger press, and R = ring finger press. Sequence IRMIMR involved a five‐element 

right‐to‐left‐to‐right regularity at intervals T2‐T3 (i.e., RMIMR). Sequence RMIRIM included 

a three‐element right‐to‐left regularity at intervals T1‐T3 (i.e., RMI). Sequence MIRMRI had 

no apparent  regularity. The RMIRIM  sequence appears  to have been  segmented  in  two 

parts (i.e., RMI and RIM) as can be determined from the long T4 interval which is the onset 

for the second segment (from Verwey & Eikelboom, 2003). 
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(a) SVDRFV    SVRFVDX  FVDRFVDX 

(b) SVDRFV    SVRFVDX  FVDRFVDX 

Figure  4:  Top:  A  typical  finite‐state  grammar, with  the  recursive  loop  RFV  highlighted. 

Below: Three sequences that are generated by the grammar. Chunks (denoted by different 

colors, with a maximum size of three letters) in line (a) were chosen random, while chunks 

for line (b) were not chosen random. Notice that one chunk can now implicitly encode for 

the recursive loop RFV that is present in all three sequences. This is more efficient, as less 

unique chunks are needed. (Perruchet & Pacton, 2006) 

Some  researchers have used  sequences  created by a  finite  state grammar  to  investigate 

implicit  learning  (e.g.  Jiménez, Mendéz,  &  Cleeremans,  1996).  Finite  state  grammar might 

provide an explanation of how participants are able to chunk efficiently. A finite state grammar 

consists of a set of rules that can be represented in a flow‐chart, following the flow‐chart from 

the IN‐ to the OUT‐node traversing several nodes with every path containing a symbol that will 

make up  the  sequence as each node  in  the grammar  is passed  (see  figure 4). A  finite  state 

grammar is capable of producing several sequences that share the same grammar, yet may be 

very different. Interestingly, when participants memorized a set of sequences which they knew 

were  generated  by  a  finite  state  grammar  they were  able  to  determine  significantly  better 

than  chance whether novel  sequences  followed  the  grammar or not. However, participants 
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were unable  to explicitly describe  the grammar or  rules  (Cleeremans, Destrebecqz, & Boyer, 

1998). Perruchet and Pacteau  (1990)  showed  that grammaticality  judgments by participants 

who  initially studied grammatical  letter strings did not differ  from  judgments by participants 

that  learned a  list of the bigrams making up these strings. These results  indicate a  fragment‐

based  or  chunking  approach  to  exploit  the  redundancy  of  the  training  material  by 

decomposing  it  into short chunks such as bigrams or  trigrams. New sequences are classified 

according  to how many chunks  they share with  the  training material.  Interestingly, segment 

selection  does  not  appear  to  be  random  (Perruchet  &  Pacteau,  1990;  Perruchet,  Vinter, 

Pacteau, & Callego, 2002) (see bottom figure 4, for an illustration). In a study by Perruchet and 

others (2002) participants were instructed to mark the ‘natural segmentation points’ in strings 

generated by a finite state grammar. Over practice participants noted segmentation that was 

increasingly  in  line with  the  structure  of  the  grammar,  a  result  that was  implemented  in  a 

computational model; PARSER (which is discussed in more detail in the appendix). According to 

the PARSER model chunks are formed on a random basis as the attentional processing of the 

information  is  capacity  limited.  The  formed  chunks  are  then  forgotten  or  strengthened 

following the rules of associative memory (Perruchet et al., 2002).  

In addition, Servan‐Schreiber and Anderson  (1990)  found  that participants who  studied a 

finite  state  grammar  via  generated  sequences  had  difficulty  detecting  violations  of  the 

grammar  if  the  chunks  they  had  formed  were  respected.  However,  the  use  of  chunking 

strategies in grammar learning was challenged in another study. It was stated that a chunking 

strategy  is  used  when  little  information  about  the  grammar  is  available,  but  when  more 

information  is  available  chunking  strategies  seem  to  disappear  and  more  abstract 

representations  of  the  grammar  rules  are  used  (Meulemans  &  van  der  Linden,  1997). 

Unfortunately,  these  studies  might  not  generalize  well  to  motor  learning  as  they  used 

recognition of sequences and the discrimination of higher order representations of sequences 

instead of the production of sequences that are the  interest of  this article. However,  it does 
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show  that  participants  tend  to  use  chunking  strategies when  little  information  is  available 

about a sequence. Little (explicit) information is usually available to the participant in most SRT 

or  DSP  tasks.  Therefore,  (chunking)  strategies  used  by  participants  in  finite  state  grammar 

research might share some similarities to strategies used in SRTs and DSP tasks.  

A predictable  structure  in  a  sequence  seems  to  enhance  (implicit)  learning;  for  example 

uniqueness  of  transition  between  consecutive  stimuli  (Cohen,  Irvy, &  Keele,  1990).  In  their 

experiment a distracter task was inserted in the intervals between responses and subsequent 

stimuli  of  the  primary  task,  which  appeared  to  block  attention  to  the  relation  between 

successive events. A  sequence  that has unique  transitions between  consecutive  stimuli  (e.g. 

15243,  after  a  1  always  a  5)  could  be  learned  during  the  distracter  task.  A  sequence with 

transitions between consecutive stimuli of which none are unique (e.g. 132312, a 1 is followed 

by a 2 or a 3, etc.) was much harder to learn during the distracter task and seemed to require 

more  attention  for  learning.  Interesting  note,  a  chunking  strategy  (132  –  312) might  have 

solved this. Unfortunately, due to the nature of their experiment (i.e. a SRT with a 200ms RSI) 

delays  in  certain  inter  key  intervals  (IKIs)  revealing  a  chunking  strategy  would  have  been 

obscured by the RSI and no such analysis was made (Cohen et al., 1990).  

Concluding the statistical patterns, even in a sequence with no apparent pattern, segments 

might be chosen randomly or not. However, statistical pattern research seems to indicate that 

segments are not chosen at random even if the sequence has no apparent structure (Perruchet 

& Pacteau, 1990).  

Relational structures  in sequences consist of systematic relations  in the successive stimuli 

or  responses  (Restle, 1970), which Koch and Hoffmann  (2000a) named “relational patterns”. 

Such  patterns  are  beneficial  to  learning.  An  example  of  a  relational  pattern would  be  the 

sequence 123321, which can be split  into two triplets. In both triplets the  individual numbers 

are  related  by  transpositions;  the  numbers  are  ascending  and  descending  runs  of  three 

consecutive keys. Further, the triplets are related by an inversion, the first triplet is inverted by 
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the second. Relational patterns can occur at different levels and can be similar or different for 

each level in a sequence, i.e., levels similar to the levels described by Stadler (1992) (e.g. a level 

can be one stimulus, or pairs of stimuli, or triplets of stimuli, etc.). Several relational patterns 

or classes of transitions are distinguished; repetitions, transpositions, alterations or inversions 

(Restle,  1970;  Koch  &  Hoffmann,  2000a)  (for  more  details  on  these  transitions,  see  the 

appendix). Participants  in SRT studies sometimes report noticing certain relational structures, 

for  example  a  right  to  left  run  in  Hoffmann  and  Koch  (1997).  In  an  SRT  study  Koch  and 

Hoffmann  (2000a)  compared  two  statistical  identical  sequences  (of  24  items  each)  while 

varying  the  relational  pattern  structure  (i.e.  triplet  runs).  It  appeared  that  sequences 

containing  runs  (i.e.  relational patterns)  showed  a  significant  learning  effect  and  sequences 

without any runs did not. Examining the mean RT‐pattern after some practice blocks revealed 

that the sequence appeared to have been chunked  into triplets (which were all runs of three 

consecutive  keys).  It  was  suggested  that  relational  patterns  facilitate  the  formation  of 

consistent chunks which  improves  learning  (Koch & Hoffmann, 2000a). Note  that a  run  (as  I 

define it) does not necessarily consist of three consecutive keys; more or less keys are possible 

as long as the keys are consecutive. An informal analysis I conducted (visual inspection of RTs) 

on data from de Kleine (2009) seemed to indicate that the boundary of a run of two keys was 

likely to have a slow RT (i.e. five out of six possible occurrences). A run of three keys seemed 

even more likely to have a slow RT at its boundary (i.e. two out of two). 

Another sequence based potential cause for segmentation is an inter hand transition (IHT), 

this  is a point  in a  sequence at which participants need  to  switch between hands  (e.g.  right 

pink to left middle finger). The opposite of an IHT is a within hand transition (WHT) (e.g. right 

pink to right middle finger). Participants performing a sequence in a DSP task that requires an 

IHT seem to form segmentation points at a transition between the hands, see figure 2. An IHT 

might  cause  the  effector‐specific  processor  to  load  another  reference  frame;  the  spatial 

reference frame from the other hand (Verwey et al., 2009). However, the amount of practice 
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might be an  interacting  factor as  the earlier described effector‐specific  representation might 

only  form  after  (extensive)  practice.  Koch  and  Hoffmann  (2000a)  found  that  participants 

divided  a  sequence  that  contained  relational patterns  (triplets)  into  chunks  in  a predictable 

way; segmentation occurred at the triplets which contained relational patterns. However, they 

did  report  some  irregularities  in  the  triplet  segmentation  pattern  and  two  out  of  three 

reported  irregularities  could  be  ascribed  to  IHTs  (Koch  &  Hoffmann,  2000a).  Thus,  with 

extensive practice effector‐specific representations of keying sequences can be formed which 

might be caused by a sequence segmenting at an IHT.  

In  conclusion, motor  sequence  learning  seems  to  benefit  from  patterns  in  a  sequence. 

Three types of patterns can occur; statistical, relational, and  inter hand transitional patterns. 

Statistical  patterns  can  be  statistical  redundancy,  finite  state  grammar,  and  uniqueness  of 

transition  between  consecutive  stimuli.  Relational  patterns  can  be  relational  structures  in 

sequences.  IHTs are  the points  in a  sequence at which participants need  to  switch between 

hands. All patterns in a sequence might facilitate the parsing of the sequence into manageable 

sized  segments  (motor  chunks),  which  can  be  loaded  into  the  motor  memory  buffer  as 

proposed by Verwey (1996).  

Participant related causes for segmentation 
Large  individual differences  can be  found  in  the  segmentation of  a  sequence.  There  are 

factors that have their root in the participant and can have an influence on the segmentation 

of a sequence, i.e., the physical or mental constraints of the human body.  

Working memory  size  seems  finite,  something Miller  (1956)  already  proposed  and  this 

might  be  an  indication  that  the maximum  size  of  a  chunk  that  can  be  loaded  into motor 

working memory is also finite. Much (implicit) evidence for the finite size of motor memory has 

been found. Most sequences seem to segment in smaller parts even if a single larger segment 

would  be more  economical  (e.g. Verwey,  1996,  2001). Also, most  sequences  seem  to have 

some slow elements and which element is slow might differ between participants (e.g. Verwey 
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& Eikelboom, 2003; Sakai et al., 2009). One might argue  that segmentation  is always due  to 

some pattern or regularity; however a 2003 study seems to indicate that lasting segmentation 

does  occur  even  without  a  pattern  or  regularity  (Verwey  &  Eikelboom,  2003).  Thus,  the 

capacity  limitation of the working memory might determine the boundaries of motor chunks. 

This  is exactly what Bo and Seidler  (2009)  found, visuospatial working memory could predict 

the  learning  and  chunking  pattern.  A  larger  visuospatial  working  memory  leads  to  faster 

learning and bigger motor chunks (Bo & Seidler, 2009). 

Individual  errors  at  the  beginning  of  learning  were  suggested  by  Sakai,  Kitaguchi,  and 

Hikosaka (2003) to be an important factor in the formation of chunks. In their 2 x n study they 

found  that  interruption  of  sequence  production  caused  by  errors  may  have  induced  a 

breakpoint  in  sequence  representation  which  persisted  even  after  extensive  learning  and 

during error‐free performance (Sakai et al., 2003).  

Strategy during the practice phase of a DSP task experiment might be an  important factor 

in the eventual formation of chunks (Verwey, 1996). A strategy relying on chunks was found in 

most participants as  indicated by high start‐to‐within segment ratios, while some participants 

used a different representation not indicated by sequence grouping (Verwey, 1996).  

Concluding, motor sequence  learning seems to be  influenced by  three participant related 

factors. The size capacity of the motor memory seems to determine the maximum boundaries 

of  chunks.  Errors  made  early  during  practice  might  evolve  into  chunks  (as  found  in  2xn 

studies). And finally, participant strategy might facilitate or impede formation of chunks. 

Summarizing the model 
Recapitulating  the  large  amount  of  discussed  literature,  procedural  segmentation  causes 

are related to the procedural setup of an experiment. They are imposed on the sequence and 

the  participant  and  consist  of  external  factors:  instruction,  stimulus  presentation, 

observational learning, and amount of practice.  
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Three types of patterns can be found in sequence related causes; statistical, relational, and 

inter hand transitional patterns. Statistical patterns can be; statistical redundancy, finite state 

grammar, and uniqueness of  transition between consecutive stimuli. Relational patterns can 

be relational structures  in sequences; runs and key transition classes. IHTs are the points  in a 

sequence at which participants need to switch between hands (the opposite is WHT).  

Three participant related factors seems to influence motor sequence learning. The capacity 

of  the  motor  memory  seems  to  determine  the  maximum  boundaries  of  chunks  for  an 

individual. Errors made early during practice might evolve  into  chunks  (in 2xn  studies). And 

finally, participant strategy might influence the formation of chunks. 

As  seen  above many  factors  can  induce  segmentation.  It  seems  that  all  factors  that  are 

beneficial  to  segmentation  introduce  a  (persistent)  pattern  in  a  sequence.  Each  beneficial 

pattern is a salient point in a sequence as it provides structure and stands out from the rest of 

the sequence. The rest of the sequence  is made up of dull points  (which are the opposite of 

salient points), dull points are points in a sequence where there is not a pattern and which do 

not stand out. Compare this to a row of  light bulbs;  if a few are switched on they are clearly 

salient. However, when all but a few are switched on the active bulbs are no longer salient. In 

this  case  it  is  even  possible  that  the  bulbs  that  are  off  (i.e.  the  dull  points  in  a  sequence) 

become salient. A salient point might  facilitate the parsing of the sequence  into manageable 

sized segments which might be consolidated  into a motor chunk over practice. Motor chunks 

can then be loaded into the motor memory buffer as proposed by Verwey (1996).  

Further,  I  propose  that  participants  will  attempt  to  make  their  segments  as  large  as 

possible, due to a larger chunk being more efficient than a smaller one (i.e. in a sequence of 8 

keys 2 chunks of 4 keys seems more efficient than 8 chunks of 1 key). Note that this will not be 

tested directly  in this experiment. Choosing the segmentation point might not be a conscious 

process,  it  is  more  likely  that  when  segmentation  occurs  at  a  next  salient  point  the 

segmentation might not consolidate as the segment  is unable to  fit  in the motor memory at 
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once, resulting in segmentation at a previous salient point. It should be noted that at or after 

every chunk the motor memory is supposedly empty (cf. CQ models, see the appendix) and the 

search  is restarted  for a salient point that  is closest before the  limit of the motor memory  is 

reached. Also, the size of the motor memory  is not the same for everyone,  likely resulting  in 

different segmentation  for different participants. This might become especially obvious  in an 

irregular sequence (i.e. a sequence without regularities) as an  irregular sequence  is expected 

to be segmented at the maximum motor memory size and not at a salient point as it contains 

none. A similar  statement might be made about a  sequence  that contains a  salient point at 

every key transition (e.g. a sequence with an IHT at every key). Such a sequence might also be 

expected to segment at the maximum motor memory size. 

Summarizing,  I propose that a participant will segment a sequence before the  limit of the 

memory  size  is  reached,  making  segmentation  more  and  more  urgent  as  the  limit  is 

approaching. In a sequence that contains salient points the last salient point before the limit of 

the motor memory  is  reached  is  likely  to be  chosen as a  segmentation point, as  the  salient 

point facilitates the parsing of the sequence into segments. 

Hypotheses 
This paper will use  the  causes  for  segmentation  found  in  the  literature  in an attempt  to 

make  predictions  about  the  segmentation  of  a  sequence.  It  will  be  tested  whether  the 

proposed model is able to predict the segmentation of a sequence. Unfortunately it is not easy 

to make segmentation predictions for any sequence for every participant, due to the individual 

differences  in  motor  memory  capacity.  If  the  sequence  contains  salient  points  that  are 

scattered too  far,  the segment between two salient points might exceed the motor memory 

capacity of some participants and unpredictable segmentation might ensue. Fortunately  it  is 

easy to develop sequences with salient points at all but a few positions. This provided us with 

an interesting notion that was tested in the experiment: where will a sequence segment that is 
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entirely made  up of  salient  points with one  key  transition without  a  salient  point  (the  dull 

point)? It is expected such a sequence might segment at the dull point. 

Unfortunately  the  scope  of  this  experiment  does  not  allow  for  thorough  experimental 

investigation of all possible causes for segmentation. A choice had to be made which potential 

causes  are  tested.  Constructing  sequences  in  which  salient  points  can  be  manipulated  is 

difficult.  Therefore,  two  potential  causes  for  segmentation  that  are  relatively  easy  to 

manipulate were  chosen;  IHT  and  run.  A  run  of  two  keys  can  contain  a  dull  point  at  the 

transition between the two keys. In addition, runs of two keys and IHTs are easy to incorporate 

in a sequence. Also, the location in a sequence of IHTs and runs can be manipulated, they can 

occur at different  locations  in a sequence or at  the same  location  (e.g. a  run and  IHT at  the 

same location: left index finger to right index finger).  

This  experiment  used  the  DSP  paradigm  as  it  seems  best  suited  to  investigate  the 

segmentation of a sequence (i.e. the formation of chunks) as it encourages internal control and 

as each  key press  takes  so  little  time  that  individual  inter  key  intervals  (IKIs)  are  likely only 

caused  by  the  action  of  the  underlying mechanisms  such  as  the motor  buffer  loading.  The 

internal control is encouraged by the limited sequence length and because the sequences are 

recognized  easily  because  there  are  only  a  limited  number  of  sequences  that  might  be 

composed  (Rhodes  et  al.,  2004). Other  paradigms  seem  less  suitable,  for  example  the  SRT 

paradigm  might  hide  segmentation  caused  by  chunking  in  the  sequence  because  of  the 

commonly  used  interval  between  the  response  and  the  next  stimulus.  Further,  the  2  x  N 

paradigm might inherently contain segments of 2‐key length. However, it is recognized that in 

most serial order paradigms some form of segmentation has been reported. Also, spontaneous 

appearance of chunks  in a 2 x N task (in a 2 x 10 hyper set) was reported by Sakai, Kitaguchi, 

and  Hikosaka  (2003)  suggesting  that  the  2  x  N  paradigm  might  be  applicable  when 

investigating segmentation. 
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In this experiment it was  investigated whether a sequence would segment at a run. It was 

expected  that  a  run would  cause  segmentation  (at  the  run  boundary).  Additionally,  it was 

investigated whether a sequence would segment at an IHT. It was not expected that the IHTs 

would result in a consistent segmentation as all but one key‐transfer would be an IHT. Also, it 

was investigated whether a sequence would segment at the dull point (i.e. no IHT and no run 

(boundary)),  it  was  expected  it  would  as  the  dull  point  might  'stand  out'.  Finally,  it  was 

investigated which of these potential causes for segmentation would be more  likely to cause 

segmentation. This might be indicated by a more pronounced difference in RTs, i.e., a potential 

cause  for  segmentation  that  is  more  likely  to  cause  segmentation  will  cause  consistent 

segmentation in more participants. Therefore, this open question was answered by comparing 

the difference between the differences: run versus no‐run, and IHT versus WHT. The size of the 

difference  indicates  the  potency  of  a  pattern  (i.e.  potential  cause  for  segmentation).  For 

example, the difference between run and no‐run might be 60ms and the difference between 

IHT  and WHT might  be  10ms.  This  would  indicate  that  a  run  is  a more  potent  cause  for 

segmentation. 

 

Methods 

Participants 
Psychology  students  from  the  University  of  Twente  (n=56;  17  male  and  39  female) 

participated  after  informed  consent.  Ages  ranged  from  18  to  30  and  averaged  at  21.2 

(SD=2.35).  Participation was  rewarded  by  a  credit  required  for  an  obligatory  subject  pool. 

Participants were randomly assigned to one of the 7 sequence conditions (Table 1). 

Task and procedure 
The task consisted of a DSP task with sequences of 7 keys. Four fingers (not using thumbs) 

of each hand were placed on a qwerty‐keyboard at keys a s d f for the left hand and j k l ; for 

the  right  hand.  A  trial  began  with  the  presentation  of  an  8‐key  representation.  The 
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representation  consisted  of  eight  horizontally  aligned  black  outlined  squares  of white  on  a 

white background which was filled to  indicate that the corresponding key had to be pressed. 

When the correct key was depressed the box turned white again and the next box was filled 

and so forth. When all keys from the 7‐key sequence were pressed, which concluded the trial, 

the next trial was presented after a 1200 ms non aging interval. To reduce differences between 

sequences  and  participants  one  finger  was  never  used  (i.e.  the  right  pink)  since  a  7‐key 

sequence cannot use 8  fingers. Each participant performed two sequences, a sequence  from 

each  condition.  The  order  of  the  two  sequences  was  selected  randomly.  Participants 

performed four blocks (three practice and one test block) of 40 trials per sequence per block, 

resulting in each sequence being performed 160 times. An informal analysis of results from de 

Kleine  (2009) showed clear segmentation of sequences  from 150 repetitions. When an error 

was made an error message  appeared  and  a pause of 1000 ms was  inserted  to  irritate  the 

participants so that they would prevent further errors after which the sequence was continued 

starting at the erroneous key. 

Two  possible  causes  for  segmentation were  investigated,  runs  and  IHTs.  The  sequences 

used attempted  to only manipulate  the  sequence  related potential causes  for  segmentation 

that were  relevant  for this study  (i.e.  run and  IHTs) and keep other sequence related causes 

constant or absent. As mentioned earlier, it was impossible to create a sequence with just one 

IHT that met the criteria: sufficient length to expect segmentation, and not repeating any keys. 

Therefore,  all  key  transitions  in  the  sequence were  IHTs  except  for one,  i.e.,  a within hand 

transition (WHT). 

Two  sequences  of  7  keys  each  were  used  in  this  experiment:  called  separated  and 

combined.  In the separated sequence the run and the  IHTs occur at separate  locations  in the 

sequence  (i.e.  a  run  and  a WHT  occur  at  the  same  location:  left  pink  to  left  ring).  In  the 

combined sequence the run and an  IHT occur  in the same  location  (i.e. a run and  IHT at the 

same  location:  left  index  finger  to  right  index  finger).  The  separated  sequence  used  was 



23 
 

2351647 (represented on the keyboard as SDJAKFL) and the combined sequence was 5462713 

(JFKSLAD).  

In the sequence from the separated condition, 2351647 (SDJAKFL), the  first key transition 

(2‐3) is a run as the keys are next to each other and it is not an IHT. The second key transition 

(3‐5)  is the end of a run and an IHT. The rest of the key transitions are also IHTs. Thus,  in the 

separated condition the dull point (no run boundary and no IHT) is located in the middle of the 

run at the second key. 

In  the  sequence  from  the  condition  combined,  5462713  (or  SDJAKFL),  the  first  key 

transition (5‐4) is a run as the keys are next to each other but the first transition also contains 

an IHT. The last key transition (1‐3) is not a run (not adjacent keys) and not an IHT. The rest of 

the  key  transitions  are  all  IHTs.  Thus,  in  the  combined  condition  the  dull  point  (no  run 

boundary and no IHT) is located at the end of the sequence at key 7 and most importantly, it is 

not located within a run. 

Additionally,  in  an  attempt  to  cancel  fingers  effects,  both  sequence  conditions  were 

balanced across  fingers.  It  is possible that some  fingers are  faster or slower  than others and 

this might  interfere with the results. Therefore,  it  is  important to counter this possible effect 

by  counterbalancing  the  sequences,  so  finger effects will  average out. Balancing  is done by 

rotating the sequence one key at a time (i.e. placing the last key in front of the next sequence). 

This  yields  7  versions  of  each  sequence,  see  table  1.  The  created  sequences  are  balanced 

across  participants.  For  example,  participant  one  (and  participant  8,  and  15,  ...,  etc) would 

execute SDJAKFL, while participant two would execute sequence LSDJAKF, and so forth. 
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Table 1    

The  sequences used  in  the experiment as  represented by  the  corresponding keys on  the 

keyboard. A run  (i.e. two consecutive keys next to each other)  is enclosed by dashes, the 

dashes represent the run boundaries  (‐). An  IHT  is denoted by a vertical  line  (|). The dull 

point  is  denoted  by  the  dash  (*),  not  that  these  are  always WHTs.  Each  sequence was 

balanced across all the keys, see text for more details, resulting in 7 sets of sequences. 

 

Sequences for 

participant 

Condition separated:  

Run separated from IHT 

Condition combined:  

Run and IHT combined 

1  ‐S*D‐|J|A|K|F|L  ‐J|F‐|K|S|L|A*D 

2  L|‐S*D‐|J|A|K|F  D|‐J|F‐|K|S|L|A 

3  F|L|‐S*D‐|J|A|K  A*D|‐J|F‐|K|S|L 

4  K|F|L|‐S*D‐|J|A  L|A*D|‐J|F‐|K|S 

5  A|K|F|L|‐S*D‐|J  S|L|A*D|‐J|F‐|K 

6  J|A|K|F|L|‐S*D‐  K|S|L|A*D|‐J|F‐ 

7  D|J|A|K|F|L|S  F|K|S|L|A*D|J 

 

Design and analysis 
Inter key  interval  (IKI) was defined as  the time between the onset of the stimulus and  its 

consecutive key press (stimulus onset co‐occurred with depression of the previous key). All IKIs 

were  recorded  and  saved  for  analysis  to  determine  if  and where  consistent  segmentation 

(implicating  chunking) occurred. T1  indicated  the  time between  the  first  stimulus onset and 

depression of  the  first  key. The  IKIs T2‐T7 preceded  key presses 2  through 7. T1s were not 

included in the analysis as they are always slow due to the onset delay (i.e. they are always the 



25 
 

first key of the first chunk). The first two trials of every block and trials  in which one or more 

errors  had  been made were  excluded  from  analysis.  Participants  performed  four  blocks  of 

trials: the first three blocks were learning blocks, the last block was the test block. All analyses 

will be based on the test block.  

Whether segmentation was present was calculated by comparing the response times that 

were associated with the first key of a segment with those of later keys (i.e. not the first key in 

an alleged segment). Further,  if some participants exhibit consistent segmentation (i.e. at the 

same key) the RT at  this key will be slower. This effect will  increase when more participants 

exhibit consistent segmentation. 

To  test  the prediction  that  a  run would  cause  segmentation,  all  run boundary  IKIs were 

averaged and compared against the average of all other IKIs, and checked for significance using 

a  paired‐sample  t‐test.  If  the  run  boundaries  are  found  to  be  significantly  slower,  run 

boundaries are likely the location of the start of a chuck. 

The prediction that the  IHTs would not cause segmentation was tested together with the 

prediction  that  a  dull  point  would  cause  segmentation.  All  IHT  IKIs  were  averaged  and 

compared to the average of all WHT IKIs (which are the dull points), and checked for significant 

difference using a paired‐sample t‐test.  If significant difference  is  found, the direction of the 

difference indicates which prediction is confirmed. If the average of the IHTs is faster than the 

WHT (or dull points) it would appear that the sequences are segmented consistently at the dull 

points and not at an IHT. 

To ascertain which of the tested potential causes for segmentation would be more likely to 

cause segmentation, a comparison was made of the difference between the differences:  run 

versus  no‐run,  and  IHT  versus WHT.  Differences were  calculated  by  subtracting  the  salient 

point from the other IKIs (i.e. run ‐ no‐run, and IHT ‐ WHT). The size of the differences indicates 

the potency of the patterns  (i.e. potential causes  for segmentation). The difference between 

the differences was checked for significance with a paired‐sample t‐test. 
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Finally,  error  analysis was  conducted  to  ascertain whether  there was  a  speed  accuracy 

trade‐off. To conduct an error analysis arcsine transformations were performed on mean error 

rates before the data was subjected to ANOVAs.  

Apparatus 
The experiment was programmed  in E‐prime 2.0 and ran on a PC with a CRT monitor. The 

responses were  inputted by the participant on a standard qwerty‐keyboard. The participants 

were  seated  in  front  of  a  17  inch  CRT monitor  at  an  approximate  viewing  distance  of  60 

centimeters however the distance was not strictly controlled. 

 

Results 

T1s were not  included  in the analysis as they are always slow due to the onset delay. The 

first  two  trials of  every block  and  trials  in which one or more  errors had been made were 

excluded from analysis. Participants performed four blocks of trials: the first three blocks were 

learning blocks, the  last block was the test block. All analyses will be based on the test block 

(block 4). 

To  test  the prediction  that  a  run would  cause  segmentation,  all  run boundary  IKIs were 

averaged and compared against the average of all other IKIs, and checked for significance using 

a  paired‐sample  t‐test.  Keys  at  run  boundary  (M=297.2,  SD=87.3)  and  no  run  (M=311.5, 

SD=85.9) had a difference in RTs that approached significance; t(47)=‐1.82, p=0.075. Keys that 

were  run  boundaries  were  executed  faster  than  no  run  keys,  and  this  difference  was 

approaching significance. 

The prediction that the  IHTs would not cause segmentation was tested together with the 

prediction  that  a  dull  point  would  cause  segmentation.  All  IHT  IKIs  were  averaged  and 

compared to the average of all WHT IKIs (which are the dull points), and checked for significant 

difference  using  a  paired‐sample  t‐test.  IHTs  (M=314.4,  SD=84.9)  and  WHTs  (M=311.5, 
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SD=105.4)  had  a  difference  that was  not  significant;  t(55)=.31,  p>.20.  IHTs were marginally 

slower than WHTs but the difference was small and not significant. 

To ascertain which of the tested potential causes for segmentation would be more likely to 

cause segmentation, a comparison was made of the difference between the differences:  run 

versus no‐run, and  IHT versus WHT. The size of  the differences  indicates  the potency of  the 

patterns (i.e. potential causes for segmentation). The difference between the differences was 

checked  for significance with a paired sample  t‐test. The differences  run versus no‐run  (M=‐

14.1, SD=62.5) and IHT versus WHT (M=7.3, SD=53.9) was approaching significance; t(47)=1.78, 

p=.08. Note the negative difference between run and no‐run, showing that no‐run boundaries 

were slower than run boundaries, see figure 5.  

 

 

Figure 5: The mean response times for run/no‐run (squares) and IHT/WHT (spades). 

Segmentation was  expected  to  start with  a  Run  or  IHT.  Thus  Run  and  ITH were 

expected to be slower. The no‐Run and WHT IKIs were expected to be faster as they 

would be the (faster) execution of the segment. 
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Table 2  

Error percentages  (%) per Key as a  function of Block with  their  respective means. 

The  error  percentages  from  both  sequences  (separated  and  combined)  were 

averaged for this table as the sequences did not differ significantly. 

    Key  1  2  3  4  5  6  7  Mean 

Block  1    2,6 3,2 2,2 3,0 3,6 3,0 3,1 2,9 

  2    2,2 2,6 2,2 3,2 2,6 2,3 2,7 2,5 

  3    1,8 2,5 2,4 2,7 3,2 2,6 2,2 2,5 

  4    1,7 2,6 2,4 3,3 3,1 2,8 2,3 2,6 

  Mean    2,1 2,7 2,3 3,0 3,1 2,7 2,6  

 

Errors were  analyzed with  a  2  (sequences  separated  vs.  combined)  x  4  (block)  x  7  (key) 

ANOVA  (note  that  T1s  were  included  for  the  error  analysis).  Error  rates  did  not  differ 

significantly  between  sequences  separated  and  combined.  Error  rates  between  blocks 

approached significance but were not significant; F(3, 3132)=2.17, p>.05. Error rates between 

keys did differ significantly; F(6, 3129)=4.48, p<.001. This could be attributed mostly to a lower 

percentage of errors at the first key, see table 2. 

 

Discussion 

Runs of consecutive keys 
Recapitulating, in this experiment it was determined whether a sequence would segment at 

runs.  It was  expected  that  a  run  of  two  consecutive  keys would  cause  segmentation.  This 

would mean that the  IKIs at the boundaries of the run would be executed slower on average 

than other  IKIs  (i.e.  the  start of a chunk would  lay at a  run boundary). However,  the  results 

from this experiment seemed to indicate that run boundary‐keys were executed faster than no 

run  keys.  This  is  the  opposite  of what was  expected  on  the  basis  of  findings  by  Koch  and 
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Hoffmann (2000a). They found consistent segmentation at runs of three consecutive keys (i.e. 

the  first  IKI  of  a  run  was  slower)  and  they  concluded  that  runs  were  the  cause  of  the 

segmentation. Runs of two keys as used  in this experiment might be a  less potent cause  for 

segmentation than runs of more keys.  

Additionally,  in  the  Koch  and Hoffmann  (2000a)  study  the  sequences  consisted  of more 

runs  (e.g. 123 234 345). Perhaps a  repetition of  salient patterns  (such as  runs) makes  them 

more  prone  to  consistent  segmentation.  This makes  sense when  the motor  program  for  a 

sequence might become more generic or abstract when there is a clear repetition of the same 

salient pattern. For example, when a sequence of three runs would have to be stored in a low 

abstract  level  it would be stored  in  individual key presses  (e.g. 123789456). When  this same 

sequence is stored in chunks of three (e.g. 123 ‐ 789 ‐ 456) it might become more economical. 

Each chunk might be loaded  in the motor memory buffer as  it were one piece of  information 

instead of three pieces of information (e.g. Verwey, 1996). Perhaps the repetition of runs as a 

salient pattern provides  the possibility of a more generalized  recall  (e.g.  'start with' 1  'count 

three  keys'  ‐  'start  with'  7  'count  three  keys'  ‐'start  with'  4  'count  three  keys').  In  this 

generalized model of a sequence all that needs to be stored would be the start point of  the 

runs (i.e. 1 ‐ 7 ‐ 4). 

Inter hand transitions and dull points 
In this experiment  it was also  investigated whether a sequence would segment at  IHTs.  It 

was not possible to create a sequence that met the requirements with only one IHT. Therefore, 

it was  determined  that  sequences  be  used with  IHTs  at  all  but  a  few  positions.  This  also 

provided  the  interesting notion: where will a  sequence  segment  that  is entirely made up of 

salient points with one key transition without a salient point (the dull point)? It was expected 

such a sequence might segment at the dull point, as the dull point might 'stand out' since there 

is only one such dull point. It was not expected that any single IHT would result in a consistent 

segmentation. Therefore, all IHT IKIs were averaged and compared to the average of all WHT 
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IKIs  (which  are  the dull points).  It was  found  that  IHTs were marginally  slower  than WHTs, 

indicating that chunk boundaries  (which are expected to be slower) might  lay at  IHTs. Chunk 

boundaries  are  not  likely  located  at  the WHTs. However,  the difference was  small  and  not 

significant.  

Thus,  there was  a difference  found between  IHTs  (slower)  and WHTs  (faster) but  it was 

found to be small and not significant. In total (over all used sequences) there were more IHTs 

(n=72)  than WHTs  (n=12)  in  the sequences used. Even  if segmentation occurred at  IHTs and 

never at WHTs,  it  seems  logic  that not all  IHTs were  chosen as a  chunking point.  It  is more 

likely  that only a  few  IHTs  (perhaps  just one per  sequence) would be  chosen as a  chunking 

point. Also it seems likely different participants chose different IHTs as their chunking point as 

different  participants might  have  different motor memory  capacities  (Bo  &  Seidler,  2009). 

Considering this  it seems a few slow  IHTs (chunk starting points) are averaged with the other 

IHTs  (faster as they are not chunking points)  leading to an overall mean  for  IHTs that  is only 

slightly slower than the mean for WHT (with no chunking points). This might possibly explain 

the somewhat ambiguous results.  

Pattern potency 
Finally, it was determined which of these potential causes for segmentation would be more 

likely to cause segmentation. This was an open question and it was investigated by comparing 

the difference between the differences: run‐boundary versus no‐run, and IHT versus WHT. The 

size  of  the  differences  indicates  the  potency  of  the  patterns.  This  means  that  a  larger 

difference between IKIs with the salient point and IKIs without the salient point indicates that 

the pattern is more potent.  

As  discussed  above  runs  did  not  induce  consistent  segmentation,  on  the  contrary  run 

boundaries were executed  faster  than no‐run boundaries. Additionally,  it was discussed  that 

IHTs might have induced segmentation albeit not consistent. Therefore, I feel I must conclude 

that IHTs are more potent causes for segmentation than runs (of two consecutive keys).  
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Concluding  while  noting  that  there  was  little  definitive  evidence,  the  results  from  this 

experiment  seem  to  indicate  that  a  sequence will  not  segment  at  a  run or  at  a dull  point. 

Additionally, it is likely that a sequence will segment at an IHT but not at all IHTs. Finally, an IHT 

seem to be a more potent cause for segmentation than a run. 

Difficulties with the design 
Interpretation of  the  results  should be  viewed with  suspicion due  to  a possible problem 

with finger effects. A finger effect  is the premise that some fingers might be faster or slower 

than others and  this might  interfere with  the  results. Therefore,  it  is  important  to balance a 

sequence across fingers. Balancing means that the sequence  is rotated one key at a time (i.e. 

placing the  last key  in front of the next sequence). This yielded 7 versions of each sequence, 

see table 2. However, there is a problem with the balancing over fingers. The WHT and the run 

boundaries are always performed by the same few fingers. The WHT  is always performed by 

the  left hand and differs between S‐D (left ring ‐  left middle) and A‐D (left pink ‐  left middle). 

Run boundaries differ between D‐J (left middle ‐ right index), L‐S (right ring ‐ left ring), and F‐K 

(left  index  ‐  right middle).  Therefore  possible  finger  effects might  have  contaminated  the 

results. 

These difficulties show the importance of properly counterbalancing fingers. Unfortunately 

balancing makes  for  a  cubic  growth of  sequences  in  the design used here  as each  key  in  a 

sequence  requires  another  sequence  to  balance  for  it.  Further,  not  all  sequences  can  be 

balanced across  fingers without compromising some properties of  the sequence  itself  (e.g. a 

property such as just one run).  

Another possible way to combat the finger effects might be using  longer sequences made 

up of triplets (or other number of keys). In such a sequence each triplet is a new condition with 

properties such as a run or an IHT. This resembles a design used by Koch & Hoffmann (2000a). 

Even though Koch and Hoffmann did not use finger balancing, this approach would allow for 

easy finger balancing as only three keys in the triplets have to be balanced. However, it might 
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be wise  to balance  the order of  the  triplets  themselves and  then  this approach might even 

require more sequences: (ntriplets x 3) x ntriplets = nsequences. 

Finally,  the  amount  of  practice  of  sequences  in  this  experiment  might  have  obscured 

segmentation.  In  this  experiment  participants  performed  each  sequence  160  times.  An 

informal  analysis of  results  from de Kleine  (2009)  showed  clear  segmentation of  sequences 

from 150 repetitions. However, most DSP tasks use over 500 sequence repetitions (e.g. Rhodes 

et  al.,  2004).  Perhaps  more  sequence  repetitions  might  consolidate  the  sequence 

segmentation in consistent sequence or chunks.  

Future directions 
This paper gives a fairly exhausting view of causes for segmentation  in a motor sequence. 

When  investigating chunking,  it seems  important to consider all the causes  for segmentation 

discussed here. The review of the literature and the discussed causes for segmentation might 

provide  other  motor  sequence  researchers  with  a  hint  of  what  might  happen  with  their 

sequence before they put the sequence to the test. However, as illustrated by the experiment 

in this paper consistent segmentation might be quite elusive. 

The most important questions that remain are: What is the potency of the other causes for 

segmentation? And what (if any)  is their (inter)relation? Many causes for segmentation were 

not  investigated  in  this  paper. However,  it  is  still  interesting  if  any  or  all  of  the  suggested 

causes for segmentation are equally powerful in causing segmentation, i.e. will some causes be 

preferred over other causes. The  literature provided  in the  introduction does seem to hint  in 

such a direction. Most, if not all, procedural causes are likely to largely influence segmentation 

such as the prestructured sequence. Participant related causes such as WM size might also be 

very important. Sequence related causes such as relational patterns in the sequence seem less 

potent.  However,  more  research  is  needed  to  determine  their  potency  and  the  relation 

amongst the causes. 
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In this experiment it seemed that IHTs were more potent than runs. Runs did not seem to 

induce  segmentation.  However,  it  is  possible  this  was  an  interaction  effect  (i.e.  this 

combination of causes for segmentation caused no segmentation at run boundaries). In other 

words, it might be possible that when a run is combined with another cause for segmentation 

a  run will  cause  segmentation. Also,  combined with another  cause  for  segmentation an  IHT 

might  possibly  not  cause  segmentation  at  all.  Therefore, more  research  seems  possible  to 

determine such interaction effects between causes for segmentation. 
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Appendix 

Internal models 
Several  internal models will  be discussed here;  some models  are  capable  of  capturing  a 

theory of how a sequence might be chunked (e.g. RTM‐model and PARSER), other models give 

insight into the workings of the sequence learning and production system (e.g. N‐STREAMS).  

Hierarchical models provide a way to represent how a sequence might be represented or 

constructed  in  the  brain  as  demonstrated  by  Restle  (1970)  with  his  RTM‐model.  The 

hierarchical model provides the operators transpose (T), repeat (R) and mirror (M), note that 

the  operators  are  somewhat  similar  to  the  relational  patterns  described  above.  Given  the 

alphabet  (1  2  3  4),  the  hierarchical  model  might  represent  the  sequence  (1  2)  by  T(1), 

sequence  (2  2)  by  R(2)  and  sequence  (1  2  4  3)  by M(1  2). Operations  can  also  be  applied 

hierarchically and can be represented by a structural tree (see figure A1). The time it takes to 

produce the individual responses might be computed by assuming that traversing branches in 

the  tree  takes  an  operation which  takes  a  fixed  amount  of  time.  Resulting  in  traversing  3 

operators (T, R and T) for the first item and 1 operator (T) for the second item in the T(R(T(1))) 

example from figure A1. The timing for the keys of this sequence might be (3x 1x 2x 1x 3x 1x 2x 

1x) with  x  being  the  time  it  takes  to  complete  an  operation  (Povel &  Collard,  1982).  This 

hierarchical model requires movement n to trigger movement n + 1, which in turn is necessary 

for  triggering movement n + 2, and  so on; a  reflex chain  (Rosenbaum et al., 2007). A  reflex 

chaining hierarchical model does predict that some  items might have  longer RTs than others. 

However,  it does not provide  insight  into the motor chunking of a sequence and  is unable to 

explain why  a well  learned  sequence  that  consists  of  several  concatenated  chunks  can  be 

scrambled  and  still  be  produced  better  than  a  random  sequence  as  long  as  chunks  are 

respected. 
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Figure A1: Structural tree for RTM‐code T(R(T(1))) producing sequence (1 2 1 2 2 3 2 3) by 

traversing from left to right through the branches (from Povel & Collard, 1982). 

Fortunately  for  our  quest  for  the  causes  of  segmentation  reflex  chaining  has  had  an 

alternative  since  the  influential  Lashley  (1951)  paper;  “The  problem  of  serial  order  in 

behavior”.  Lashley  (1951)  proposed  that  the  solution  to  the  serial  order  problem  (i.e.,  the 

solution to the problem of how behaviors are sequenced)  lies  in that the nervous system can 

“predispose  the  actor  to  behave  in  particular  ways  in  the  future”  (i.e.,  make  plans  for 

behavior),  therefore,  eliminating  the  need  to  ascribe  triggers  to  sensory  feedback.  Lashley 

(1951)  stressed  that  plans  for  behavior  are  organized  hierarchical  and  since  then  much 

evidence for this notion has been found (see for reviews Rhodes et al., 2004; Rosenbaum et al., 

2007).  One  piece  of  evidence  for  hierarchical  plans  that  is  particularly  interesting  for  us 

pertains to the  fact that the  long‐term  learning of  (motor) skills  is naturally characterized by 

the process of  forming  ever  larger hierarchical units or  chunks  (Miller, 1956; Rhodes  et  al., 

2004; Rosenbaum et al., 2007). In other words, chunks might be seen as hierarchical plans for 

motor behavior, i.e., chunks are hierarchical motor plans. 
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Figure A2: Operations performed by the PARSER model. 

Rosenbaum et al. (1986) describe a sequential effect called the parameter remapping effect 

which  suggests  that  hierarchical motor  plans  are  updated  rather  than  replaced  when  the 

following motor plan needs  to be executed. Parameters  that were mapped  into a plan  for a 

response  persist  after  the  plan  has  been  executed  and  extra  processing  is  required  if  a 

parameter has  to be  replaced  should  the  following plan  require a different parameter. This 

was supported by their finding that  in keyboard sequence typing performance, repetitions of 

finger tapping sequences suffer if the number of consecutive taps by the same finger changes 

from cycle  to cycle  (Rosenbaum et al., 1986). Later Rosenbaum et al.  (2007) added  that  the 

plan‐change method of plan formation  is computationally economical. It  is presumably easier 

just  to  deal  with  differences  than  always  to  build  new  structures.  Finally,  the  parameter 

remapping  effect might  cause  the  often  occurrence  of  segmentation  at  irregularities  in  a 

sequence  since an  irregularity  such as an  inversion causes a  thorough  revision of  the action 

plan which makes a  longer delay seem  inevitable. This  longer delay might be solidified  into a 

memory  chunk with  practice  in  a  similar way  as  external  pacing  in  the  practice  phase  can 

induce segmentation as discussed earlier (e.g. Verwey, 1996). 
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A possible way  in which chunks might be  formed  is described by  the PARSER model  (see 

figure A2), a model proposed to explain segmentation in artificial language studies (Perruchet 

& Vinter, 1998). The frequency of stimuli (individual  items or subsequences)  in the formation 

of  chunks  has  had  attention  as  many  chunking  models  implement  associative  learning 

principles. However, forgetting  is due  in  large part to the  interference generated by the prior 

or subsequent events that are related  in some way to the target event (Perruchet & Pacton, 

2006). The PARSER model is centered around a single vector called the percept shaper (PS). PS 

is  the  internal  representation of  the displayed material and each  representation can carry a 

weight that can be manipulated. The weight represents the familiarity of the person with the 

percept. When a new  sequence  in analyzed percepts are  randomly created  (step a  in  figure 

A2). The percept is checked for familiarity (step b in figure A2) and when it is not recognized it 

is created  (step c  in  figure A2) or else  its weight  is  increased  (step e  in  figure A2). Eventually 

this results in frequently co‐occurring segments becoming heavy weights (Perruchet & Vinter, 

1998).  Notice  that  the  PARSER  model  has  some  similarities  to  the  statistical  redundancy 

proposed by Stadler (1992) discussed earlier. 
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Figure A3: Macrocircuit  illustrating the global architecture of the N‐STREAMS model. Only major 

components  and  links  between  them  are  depicted  here,  but  the  associated  simulation model 

shows how  these major parts  can be  fully  implemented as neural networks. At  the  core of N‐

STREAMS is a competitive queuing (CQ) system. This includes a plan working memory (WMp) and 

a choice field capable of choosing (for performance) the most active remaining plan in WMp. The 

CQ  core  is augmented by a declarative WM  (WMd) and a  closely associated adaptive  cortical 

chunking system, which learns to recognize and recall the parallel sequence representations that 

pass through the WMd. Sites of learning between WMd and the cortical chunking subsystem are 

shown as semi‐circles. Additional sites of learning are located in the other major augmentation of 

the CQ core, namely the cerebellar side  loop. The upper cerebellar side loop generates a parallel 

output  to  the CQ plan  layer  (WMp). The  lower  cerebellar  side  loop  illustrates  the  cerebellum’s 

output‐to‐input recurrence, which allows the N‐STREAMS model to utilize item‐to‐item associative 

links as a subsidiary sequencing mechanism (From Rhodes et al., 2004). 

As pointed out by Rhodes et al.  (2004)  the  class of parallel  sequence production models 

(e.g. Grossberg, 1978)  that are known as  competitive queuing  (CQ) may  inherently describe 

motor chunking.  In a CQ model there are two  layers; a parallel planning  layer  in which more 

than  one  plan  representation  (for  example  an  unpacked motor  chunk  consisting  of  several 
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keys) can be active at one time and a competitive choice  layer  in which the most‐active plan 

representation is chosen by a competition run, a maximum activation finding which is a winner 

takes all  (WTA) process. WTA coding can be produced by a competitive neural network with 

strong inhibitory connections in which the node receiving the largest total signal suppresses all 

other activation. When an action  is chosen by  this competitive choice  layer, a strong output 

signal  is  generated  and  the  corresponding plan  in  the planning  layer  is deleted,  leaving  the 

remaining most‐active plan to be selected till no plans remain and the complete action plan is 

produced (Carpenter, 2001; Rhodes et al., 2004). 

The  name N‐STREAMS  is  an  acronym  for Neural  Substrates  That  Rehearse,  Encode, And 

Memorize  Sequences  (see  figure  A3).  It  captures  the  hypothesis  that  several  substrates 

capable of sequence representation combine their outputs to compose a stream of behavioral 

outputs. Perceived sequential stimuli are represented in a declarative working memory (WMd) 

that uses the standard CQ format, similar to the CQ model described above. The order of the 

stimuli  determines  the  activation  of  the  corresponding  activation.  Upon  preparation  to 

produce  an  already  represented  sequence  the WMd  loads  the  representation  via  a  buffer 

loader into the plan working memory (WMp) which serves as the plan layer of the CQ model. 

Transfer  between  the  two WMs  can  also  be  voluntary  and  serves  four  functions.  First,  it 

transforms  the declarative  representation  into a plan  representation. Secondly, after  the CQ 

generated  the complete sequence  it  is empty. The WMd  is still  loaded enabling  the  transfer 

and  re‐initialization  of  the  WMp  with  the  sequence.  Each  new  transfer  affords  another 

rehearsal  by  the  CQ  system  of whatever  sequence  is  stored  in WMd,  including  any  novel 

sequence  not  yet  stored  in  long  term memory  (LTM).  Third,  each WM  transfer  generates 

signals  that  facilitate  the  consolidation of  the  chunk  into  an unsupervised  LTM  in  a  cortical 

circuit. Finally, every WM transfer also generates signals that guide LTM (supervised)  learning 

in  a  cerebellar  circuit  (cf.  Carpenter  &  Grossberg,  1987  for  a  review  of  unsupervised  and 

supervised learning). These two types of LTM included in N‐STREAMS are complementary. The 
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cortical  chunk‐learning  circuit  recruits  a  new  node  to  serve  as  a  compressed  LTM 

representation, and recognizer, of each novel sequence registered in the WMd. The cerebellar 

circuit  learns both sequence chunks and  individual  inter‐response  transitions  from  the WMp 

and the  item execution system respectively. After  learning occurs, the cerebellar mechanism 

becomes able  to anticipate and preempt  slower  cortical  loading of  the appropriate gradient 

into the production buffer as well as to speed up the execution of individual responses within 

the sequence (Bullock, 2005; Rhodes et al., 2004). 

The fact that mental practice appears to be able to increase motor skill (e.g. Driskell et al., 

1994) might be explained by N‐STREAMS as the transfer of representations between the WMs 

which is voluntary and the transfer provides a learning signal for the cerebellar module.  

 


