Let the weekend begin!

A solution for solving the Weekend Scheduling Problem for ORTEC Harmony

Master thesis Industrial Engineering and Management
Frédérique Versteegh
frederiqueversteegh@gmail.com

June, 2009

Committee:
Dr. ir. E.W. Hans (University of Twente)
Dr. ir. G.F. Post (University of Twente)
Drs. M. Hoogstrate (ORTEC)

University of Twente
School of Management and Governance

Department of Operational Methods for Production and Logistics

Preface

Starting to write your thesis feels like finishing a great period of life. Finishing writing your
thesis feels like starting a new period in life. T thank all my friends and my family for the great

experience that my student time was.

Graduation is sometimes a rough experience, but every rough moment forces you to learn and
to grow. I thank ORTEC for offering me this research project and especially for the chance they
have given me to go to Calgary. This was a very challenging and interesting experience in which
ORTEC gave me the confidence of successfully accomplishing the project. I thank my supervisor
at ORTEC, Monique Hoogstrate, for her support, her critical views, the valuable lunch breaks,
and for the nice period we have had. I thank my colleagues at ORTEC for their support, and

especially my roommate, Egbert van der Veen, who I have bothered with many questions.

I thank my first supervisor at the University of Twente, Erwin Hans, for his enthusiasm, his
critical views, and for challenging me to a higher level. I thank Gerhard Post for his role as

second supervisor.

Graduation knows some tough periods. I thank my boyfriend, Ralf Stamps, and my two dear
friends, Golein Klein Bramel and Els Hettinga, for brightening me up in hard times and for not

blaming me that I was not always in the best mood.

Last but not least, I thank my parents and my brothers for their support, the chances they have

given me, and the freedom to explore.

To learn is to discover things of which you did not even know that you did not know them.

Management summary

Introduction

This research is performed within the Product Knowledge Center of ORTEC. ORTEC is one of
the largest providers of advanced planning and optimization software solutions and consulting ser-
vices. We study the assignment of weekend shifts in ORTEC’s decision support software solution
for workforce scheduling, called ORTEC Harmony. The assignment of weekend shifts is of great
importance to customers, as weekends have an impact on the social life of employees and thus on
employee satisfaction. In addition, unfulfilled demand in weekends is hard to cover and expen-
sive, as irregularity allowances have to be paid for those hours. Harmony has the functionality
to automatically create schedules. In a case study we analyze three real-life cases from practice
that use this functionality. These customers use a two-step approach to schedule: weekend shifts
as a priori step, followed by the remaining shifts. The current alternatives in Harmony to create
satisfying schedules are very time-consuming. Even the best approach (varies per user) regularly
leads to unfulfilled weekend demand and does not always satisfy user requirements. Users prefer
an equitable schedule in which every employee works approximately the same number of weekend
shifts and shift types.

Research objective
The objective of this research is to improve the assignment of weekend shifts such that unfulfilled

demand is minimized and user requirements are satisfied as much as possible. The problem

addressed by this objective is referred to as the Weekend Scheduling Problem.

Solution approach

We model the Weekend Scheduling Problem as a Quadratic Integer Programming model. For this

problem we propose a stand-alone solution, the Weekend Planner. The Weekend Planner can be

embedded in Harmony, both as an individual planner and as an element of the current optimiza-
tion engine. The Weekend Planner assigns weekend shifts to employees using an intelligent form
of list scheduling. Working a shift means working a specific shift type in a specific weekend, for
the whole weekend. For the selection of shifts and resources, the Weekend Planner uses selection
rules based on flexibility and busyness. First, the least flexible shift is selected. In case of a tie,
the shift is selected based on randomness. Second, the least busy and least flexible resource is
selected. Again, in case of a tie, the resource is selected based on randomness. Constraints on
availability and on the maximum allowed number of weekends to work are taken into account.
The creation of one schedule ends with a local search method. Random sampling is used to create

diversity in the resulting schedules.

Results

The Weekend Planner is tested on three real-life cases from practice and on 400 random instances.
Randomly generated instances with parameter ranges typically seen in practice are used to test
the robustness and sensitivity of the Weekend Planner. Computational experiments show that
the Weekend Planner solves 89% of the instances - i.e., all shifts are assigned - and solves 67.5%
of the instances to optimality. The results deviate on average 3.8% from optimal. The Weekend
Planner is most sensitive for cyclical schedules and schedules in which every employee needs to

work its maximum number of weekends, in other words a tight schedule.

Computational experiments on the three real-life cases show that the Weekend Planner outper-

forms Harmony on all aspects and improves schedules by 15% to 400%.

Conclusions

The Weekend Planner is a suitable method for solving the Weekend Scheduling Problem. The
Weekend Planner decreases the unfulfilled demand and delivers more equitable schedules than
Harmony does. The Weekend Planner focuses on weekend related constraints and therefore is a

user-friendly and not time-consuming method.

Recommendations

We recommend to use a more extensive local search method in the Weekend Planner, which is
already available in Harmony, to decrease the deviation from optimal and decrease the number of

unassigned shifts, if any. Finally, we recommend to implement the Weekend Planner in Harmony.

Contents

1 Introduction

1.1 Context e
1.2 Problem description
1.3 Research objective
2 Context
2.1 Harmony’s optimization engine oo
2.1.1 Hard and soft constraints L
2.1.2 Model formulation
2.1.3 Automatic planners
2.1.4 Algorithm of Harmony’s optimization engine
2.2 Casestudy
2.3 Performance and scheduling alternatives in Harmony
2.3.1 Performance. Lo
2.3.2 Alternatives to schedule weekend shifts in Harmony
2.4 Requirements for Weekend Planner 0oL
2.5 Related research

3 Modeling

3.1 Modeling assumptions
3.2 Mathematical problem definition 0000
3.3 Quadratic Integer Programming modelo

10
11
12
12

15
15
16
17
19
20
22
24
24
25
27
28

CONTENTS 7
4 Weekend Planner design and description 35
4.1 Terminology 35
4.2 Weekend Planner design o L 35
4.3 Weekend Planner description Lo 36
4.3.1 Select shift 38
4.3.2 Select resource L 39
4.3.3 Assign shift to resource Lo L L 40
434 TLocalsearch 40
4.3.5 Sampling 41

4.4 Alternative algorithm designs and model extensions 41
4.4.1 Alternative algorithm designs 41
4.4.2 Model extensions 43
Computational results 45
5.1 Experiment approach 45
5.2 Generation of random instances 46
5.3 Test results on random instances L. 47
5.4 Sensitivity analysiso Lo 49
5.4.1 Algorithm settings L o 49
5.4.1.1 Precision 49

54.1.2 Number of samples. L. 54

5.4.1.3 Number of local search iterations o4

5.4.2 Instance parameters Lo 55
5.4.2.1 Sensitivity of single parameters 56

5.4.2.2 Combination of parameters 56

5.5 Alternative algorithm designs oo 57
5.6 Comparison results for case studyo 59
5.6.1 Performance indicators 59
5.6.2 Results for cases with Harmony 60

CONTENTS

8
5.6.2.1 Settings
5.6.2.2 Calgary Health Region
5.6.2.3 Belgian Police
5.6.24 Kennemer Gasthuis Haarlem
5.6.2.5 Conclusions on case study results

5.6.3 Comparison Harmony results with Weekend Planner results

6 Conclusions and recommendations

6.1 Conclusions e

6.2 Recommendations L

A Preliminary study - Calgary Health Region

A1l Introduction to Calgary Health Region
A2 Process
A2.1 Current processo
A22 Conclusion L
A3 Control
A3.1 Harmony changes oo
A.3.2 Definition of scheduling requirements in the software
A3.3 Conclusion
A4 Performance
A.4.1 Quality of cyclical schedule
A42 Conclusion Lo

B Experimental results

C Sensitivity analysis

C.1 Instance size
C.2 Availability
C.3 Scope . . . L
C.4 Tightness of schedule Lo L

CONTENTS 9
C.5 Cyclical 91
D Regret-based random sampling 95

Chapter 1

Introduction

This research describes improvements for a workforce scheduling algorithm that is used in a
software solution for workforce scheduling called ORTEC Harmony (in the remainder called
Harmony), a product of ORTEC. ORTEC is one of the largest providers of advanced planning

and optimization software solutions and consulting services.

This research analyzes a problem in one of Harmony’s modules: the optimization engine, which is
used to automatically generate workforce schedules. First, it analyzes the current performance of
Harmony regarding the planning of weekend shifts using a case study. The main current issues are
inability to cover demand and to create an equitable division of weekend shifts. To solve these
issues we propose a heuristic approach, the Weekend Planner, for the assignment of weekend
shifts. The Weekend Planner consists of an intelligent form of list scheduling followed by a local
search. The selection rules used in the list scheduling are based on selecting the least flexible
shift and the least flexible resource. We describe the implementation of the Weekend Planner
and test its robustness and the sensitivity of the solution. Finally, we compare the results of the

Weekend Planner with Harmony’s results for three real-life cases from practice.

Section 1.1 shortly describes the context in which this research has taken place and discusses
ORTEC and Harmony. Section 1.2 describes the problem, followed by the research objectives

and research questions in Section 1.3.

10

Context 11

1.1 Context

ORTEC

ORTEC is one of the largest providers of advanced planning and optimization software solutions
and consulting services. ORTEC’s solutions result in optimized fleet routing and dispatch, vehicle
and pallet loading, workforce scheduling, delivery forecasting and network planning. ORTEC has
over 700 employees in several offices in Europe and North America and an extensive customer

base in a large number of industries, including:

trade, transport, and logistics

oil, gas, and chemicals
e consumer packaged goods

e health care

professional and public services

This research takes place at ORTEC’s Product Knowledge Center (PKC) in Gouda, the Nether-
lands. PKC transfers product knowledge and delivers finished products to market units and
partners and is the link between ORTEC Software Development (OSD) and the market units.
They are responsible for release management, documentation and trainings, product consultancy,
and support. OSD also supports this research. OSD is responsible for developing and building
ORTEC software.

Harmony

Harmony is an advanced planning solution for workforce scheduling. It is used in organizations
that operate in an environment where work is carried out at irregular times and/or where the
workload is fluctuating during operating hours. Typical customers can be found in health care
and in security industry. Harmony offers the possibility of creating shift rosters in a rapid and
well-organized manner. One of its goals is to automatically generate the closest to optimal
workforce schedules for a set of resources (employees) and a set of shifts, constrained by rules

(hard constraints) and criteria (soft constraints).

Harmony provides the functionality to create a schedule in two ways: manually, by letting the

user assign shifts to employees, or automatically, by using the optimization engine that is included

12 1. Introduction

in the software. In both ways the user is able to define legislation, company specific rules, and
regulations in the software. Harmony takes these into account to check if it is allowed to assign

a shift to an employee on a certain day.

Harmony has two different types of schedules: cyclical schedules and non-cyclical schedules.
Cyclical schedules are schedules repeating at regular intervals (i.e. every 4 weeks). A non-cyclical

schedule is a schedule with a start and end date.

1.2 Problem description

The performance of the optimization engine does not meet several important requirements of some
customers. In a case study (Section 2.2) we describe three customer situations, both cyclical and
non-cyclical, and the problems they encounter when using the optimization engine. In that case
study, the optimization engine appears not to be able to deliver schedules that meet or improve
the quality of manually created schedules. ORTEC feels the need to investigate the abilities
to improve the performance of the optimization engine. This results in the following problem

description:

The optimization engine in Harmony does not meet all requirements regarding the assignment of

shifts.

1.3 Research objective

In a preliminary study (Appendix A), we found that having a good assignment of weekend shifts
is crucial for creating a good schedule. In that same study we found that one of the main
performance problems of the optimization engine for cyclical schedules is its inability to create
a proper assignment of weekend shifts. The following case study (Section 2.2) examines two
more cases and shows that this problem not only arises in the optimization engine for cyclical
schedules, but also in the optimization engine for non-cyclical schedules. This makes the inability
to create a proper assignment of weekend shifts a generic problem within Harmony. To improve
the overall performance of Harmony we thus have to improve the assignment of weekend shifts.
The objective of this research is to develop a solution with a performance improvement that
results in the same number of unassigned weekend shifts (or less) and an improved score on key
performance indicators as defined by users in the case study. We call this solution the Weekend
Planner. We expect that by minimizing the number of unassigned weekend shifts, the total

number of unassigned shifts is minimal as well, as the weekend shifts are the most crucial shifts

Research objective 13

in the schedule. The general principle of Harmony is that the first priority is to assign as many
shifts as possible, while minimizing the penalties for soft constraints. Therefore, penalties on non-
key performance indicators are of less importance in this research. This results in the following

research objective:

Improve the assignment of weekend shifts for ORTEC Harmony, such that the total number of

unassigned shifts and the penalties on key performance indicators are reduced.
To be able to achieve the research objective, this research investigates the following subjects:

o Context

1. How does the algorithm currently work in Harmony?
Description of the algorithm and current possibilities to plan in Harmony (Section
2.1).

2. What are the current problems with weekend shifts in more detail?

Analysis of three real-life cases from practice, performance, and scheduling alternatives
(Sections 2.2 - 2.4).

e Model

1. What is the mathematical formulation of the problem?

Definition of the Weekend Scheduling Problem and a Quadratic Integer Programming

formulation (Sections 3.1 - 3.3).
o Algorithmic improvements

1. What requirements should be considered when deciding on the algorithmic improve-

ment?

Summarize found requirements in previous chapters (Section 4.2).

2. How can we solve the Weekend Scheduling Problem?
Description and design of the Weekend Planner (Chapter 4).

e Results

1. Is the solution robust?

Approach of experiments and results of tests (Sections 5.1- 5.3).

14 1. Introduction

2. How sensitive is the solution for various parameters?

Sensitivity analysis for algorithm settings and instance parameters (Section 5.4).

3. What is the performance result of implementing the improved algorithm, when testing

on the case study?

Analysis of Harmony’s results compared with results of the Weekend Planner (Section
5.6).

In this report we will use performance and implementation characteristics as measures for the
algorithm. By performance we mean the quality of the schedule, which is measured in number of
unassigned shifts and the amount of penalties for not meeting soft constraints. Implementation
characteristics are for example the flexibility of the algorithm, the running time, independence of

third-party software, and complexity of the implementation.

Chapter 2

Context

This chapter discusses the context and some background information on this research. Section
2.1 explains how the optimization engine in Harmony currently works, including explanation of
constraints, the different automatic planners available in Harmony, a model formulation, and the
algorithm itself. Section 2.2 discusses a case study in which we analyze the problems regarding
weekend shifts of three users of Harmony. Section 2.3 summarizes the current performance of the
optimization engine and Section 2.4 describes the requirements for the solution. For information
used in this chapter we refer to Fijn van Draat et al. (2005) and Van der Put (2005).

2.1 Harmony’s optimization engine

The goal of the optimization engine of Harmony is to generate qualitatively good schedules,
such that for as many shifts as possible the required number of employees is assigned, while all
hard constraints and as many soft constraints as possible are satisfied. Hard constraints make
schedules that do not satisfy these constraints infeasible; soft constraints act as quality measures
for a schedule. Section 2.1.1 discusses the hard and soft constraints used in Harmony. Section
2.1.2 discusses the mathematical formulation of the workforce scheduling problem that Harmony
solves. Section 2.1.3 explains the different automatic planners available in Harmony. Section

2.1.4 describes the algorithm of the optimization engine.

15

16 2. Context

2.1.1 Hard and soft constraints

Numerous constraints are involved in personnel scheduling, both hard and soft constraints. Hard
constraints impose rules on the schedule, making it infeasible when one of the hard constraints
is violated. The optimization engine in Harmony never violates a hard constraint. The soft
constraints are a measure for the quality of a schedule. Not satisfying a soft constraint increases
the cost of the schedule, or in other words: imposes a penalty on the schedule (see formula (2.2)
in Section (2.1.2)). In Harmony, the hard constraints are mostly incorporated in the so-called
labor rules; the soft constraints are incorporated in the scheduling criteria (valid for all employees

in the schedule) and work agreements (apply to individual employees).

Hard constraints

The hard constraints can be divided into four categories:

1. Legislation: these constraints apply to all employees. Examples of these constraints are:

e A maximum of x hours of work in y week(s)
e In x days there should be a period of rest of at least y hours

o After a night shift the rest time should be at least z hours

2. Industry agreements, such as collective labor agreements: these constraints apply to all em-
ployees that work in the sector or industry for which the agreement has been set. Examples

of these constraints are:

o At least x weekends off in a period of y weeks

o A weekend off is defined as a time slot of at least x hours without labor, including
Saturday 00:00 AM until Monday 04:00 AM.

3. Organizational/departmental level: extra constraints can be defined within an organization

or a department. An example of such a constraint is:
e At most x shifts of work in a row

4. Personal level: constraints that only apply to certain employees, based on their individual

contract or requests. Examples of these constraints are:

e An employee should (not) work on a specific day of the week

Harmony’s optimization engine 17

e An employee can only work shifts of type x and y

e An employee can only work shifts for which he is qualified

The constraints mentioned above are just examples for the specific categories, some constraints
can appear in more categories with different parameter values. For example, legislation can
subscribe a maximum number of 60 hours per week, but for the specific industry rules may say

that a lower maximum number of 50 hours per week applies.

Soft constraints

The soft constraints can be divided into the following three categories:

1. Organization or department criteria: these apply to all employees of the organization/department.

Examples of these criteria are:

e No stand-alone shifts

o In a weekend assign either no, or otherwise x shifts

2. Group criteria: apply to certain groups of employees, such as part-time employees. Exam-

ples of these criteria are:

e Shifts series should be between x and y shifts for employees working v to z hours per
week
o At least z shifts of type y in a period of w weeks for employees working v to z hours

per week
3. Individual criteria: preferences of individual employees, such as:

e Employee = prefers shift y on day z

2.1.2 Model formulation

In Harmony, a penalty or cost function is used to define the quality of a schedule. The cost of
the schedule increases with a penalty each time a criterion is violated. To be able to distinguish
between important and less important soft constraints, each constraint has a weight and a severity
type assigned to it. The user sets the weight for each criterion, which is multiplied with the

severity when a criterion is not met. The severity depends on the excess of the value of the

18 2. Context

criterion (how much over or under the defined criterion boundaries) and on the way the severity
is calculated (depending on the criterion the excess is taken linearly or quadratically). The
severity thus differs every time a criterion is broken. An example of severity is when the criterion
describes a maximum of 4 shifts in a row and 6 shifts in a row are planned, then the criterion is

exceeded by 2 shifts. If the excess of this criterion is taken quadratically, the severity is 4.

The value of the cost function is the weighted sum of the unsatisfied soft constraints. A qualita-
tively good schedule is a schedule with a minimum number of unassigned shifts and an objective
value of the cost function that has a minimum amount of penalties given the number of unas-
signed shifts. We call a schedule an individual, the objective is to improve the score of that
individual. The score of an individual consists of the penalties per resource and the penalties
for the unassigned shifts. The weight used for the criterion that involves the unassigned shifts is
usually set to 1,000,000, whereas weights for other criteria are in the range of 1 to 1,000. This
section discusses the problem description of Harmony’s workforce scheduling model. First we

introduce some notation:

e R is the set of resources (employees), r is an element of the set if r € R

S is the set of shifts, s is an element of the set if s € §

e (' is the set of criteria, ¢ is an element of the set if c € C
o w, is the weight assigned to criterion c

e w,, is the weight for an unassigned shift (= 1.000.000)

e G is the severity of how criterion c is not met

G. if resource r violates criterion ¢
o o(r,c) = ,
0 otherwise

~ 1 if shift s is unassigned
o o(s) =

0 otherwise

The cost function per resource f(r) can be defined as:

F0) =3 we - ol 0) 2.1)

ceC

The score for an individual schedule consists of the score of all resources and the penalty for

unassigned shifts: the higher the score is, the better. The score for an individual can then be

Harmony’s optimization engine

19

Shift Sequence
Planner

@

Vacant Shifts
Planner

Optimization
Engine

Calls in Harmony

Calls in Harmony

Calls in Harmony

111

Greedy insertion
Local search

Calls X

Greedy insertion

Calls

Genetic algorithm
Local search
VNS

Figure 2.1: Relation between automatic planners in Harmony

defined as:

Score Individual = — Z Z we - @(r,c) — Z We,,-P(S)

reR ceC

2.1.3 Automatic planners

Harmony contains three different automatic planners:

(2.2)

o Shift Sequence Planner: the user defines possible shift sequences: a consecutive combination
of shifts that occur often, i.e. DDDD (four day shifts in a row) or DDEE (two day shifts

followed by two evening shifts). This planner tries to schedule as many shift sequences

against the lowest possible cost, using a greedy insertion followed by a local search.

o Vacant Shifts Planner: assigns the unassigned shifts using a greedy insertion. This planner

sorts the unassigned shifts based on several criteria and assigns each shift to the best

available resource (based on cost function) for which the rules are not violated. This Vacant

Shifts Planner does not reconsider assigned shifts.

o Optimization engine: optimization engine with a genetic algorithm and a local optimizer

that generates a complete schedule. Section 2.1.4 describes the algorithm of the optimization

engine in more detail.

The user can call these three planners individually.

Internally however, there is interaction

between these planners. Figure 2.1 shows the relation between the three described planners. Our

research focuses on the optimization engine. In the next subsections we extensively discuss the

algorithm currently used in the optimization engine.

20 2. Context

2.1.4 Algorithm of Harmony’s optimization engine

This section discusses the algorithm of Harmony’s optimization engine’s, which consists of three

steps:

1. Genetic algorithm
2. Local optimization

3. Variable Neighborhood Search (VNS)
The philosophy behind this algorithm is twofold:

e robust - the algorithm is robust for instance characteristics (input data) and problem defi-

nitions (changing constraint and/or criteria set);

o control possibilities - the planner can adjust weights for criteria etc.

The remainder of this section describes the three steps of the algorithm.

Genetic algorithm

The first phase of the algorithm consists of a genetic algorithm. A genetic algorithm is a ran-
domized search process based on the principles of natural evolution and ’survival of the fittest’.
For general information on genetic algorithms we refer to Goldberg (1989). The first step of the
algorithm is to generate an initial population, called generation 0. The user sets a value for the
number of individuals in the population that has to be created. Harmony uses the Vacant Shifts
Planner to create generation 0. To make sure to get different unique individuals, the algorithm
divides the resources randomly in two groups and uses the Vacant Shifts Planner to first assign
as many shifts as possible to the resources of the first group and then assigns as many remain-
ing shifts as possible to the resources of the second group. This procedure is repeated until the

algorithm has created enough unique individuals for generation 0.

The next step of the genetic algorithm consists of a global optimization until no further im-
provements can be found within an acceptable amount of time. The global optimization uses
mutation- and crossover operators to create new individuals out of the existing population and
uses selection methods to extract the next generation out of the current population. The ’fittest’
individuals, the ones with the best score on the cost function, have a better chance to survive

into the next generation, but it depends on the selection method which individuals make it to

Harmony’s optimization engine 21

1-opt move 2-opt move 1-opt-2 move 2-opt-2 move

Figure 2.2: 1-opt and 2-opt moves

the next generation. This process of creating generations continues until no further improvement

is found during a certain period.

Local optimization

Once the global optimization stops, the algorithm continues with a local search consisting of a
1-opt and 2-opt search on the best schedule found in the genetic algorithm. A 1-opt move (Figure
2.2) takes one shift and assigns it to the first feasible resource that is better than the current
assignment. A 2-opt move consists of selecting two shifts that are currently assigned to different
resources. If exchanging them is feasible and results in an improvement, the exchange takes place.
The schedule is said to be 1-optimal when the schedule cannot be improved by a 1-opt change.
When the schedule is 1-optimal the algorithm starts a 2-opt search. When it finds one 2-opt
improvement, the algorithm returns to the 1-opt search, until the schedule is 1-optimal again.
When the schedule is also 2-optimal, the algorithm starts a 1-opt-2 search: a l-opt search in
which 2 shifts are moved to another resource. The algorithm returns to the 1-opt-1 search every
time an improvement is found, it continues the local search until it reaches a 2-opt-3 optimal

schedule, or until no further improvements can be found within a reasonable amount of time.

Variable Neighborhood Search

When the algorithm reaches local optimality with respect to 1- and 2-opt moves, the third part of
the optimization engine starts: Variable Neighborhood Search (VNS). The VNS tries to further
improve the best solution so far by escaping from the found local optimum. VNS ’kicks’ the
schedule to another neighborhood and finds the local optimum in that neighborhood using the
second phase of this algorithm (Figure 2.3). If this local optimum is better then the one found
so far, the algorithm continues with this schedule. The ’kick’ consists of either unassigning all
shifts of three to five resources, which are drawn with a chance proportional to their scores, or
unassigning a random block of 25 or 50 shifts. If a kick does not result in a schedule with an

improved score, the algorithm goes back to the current best schedule and tries a new kick. The

29 2. Context

Solution space

Kick to other

. Local optimum
neighborhood

Figure 2.3: Variable Neighborhood Search

algorithm continues until the time set by the user is spent or until an optimal solution is found,
in other words when a schedule is found with a value 0 for the objective function as described
in formula 2.2. When the value of formula 2.2 is 0, the schedule has no unassigned shifts and

violates no soft constraints.

2.2 Case study

Appendix A describes a preliminary study performed at a customer of Harmony: Calgary Health
Region (CHR). CHR uses a new module in Harmony: the optimization engine for cyclical sched-
ules. In this study the problem of assigning weekend shifts as described in Chapter 1 first became
clear. This section summarizes their problems with respect to weekend shifts. To test whether
this performance problem only appears in the new functionality, this section also discusses two
cases of other ORTEC customers that use the optimization engine for non-cyclical schedules: the

Belgian police and a Dutch hospital, the 'Kennemer Gasthuis Haarlem’.

Calgary Health Region

At Calgary Health Region various problems arise with respect to weekend shifts. As mentioned be-
fore, Calgary Health Region uses cyclical schedules. The most important problem they encounter
is that the optimization engine is not able to assign all required weekend shifts to employees,
while the resulting unassigned shifts can be assigned if the user makes a manual assignment.

Next, Calgary Health Region wants weekend shifts to be assigned for a complete weekend, they

Case study 23

do not want employees to work only a Saturday or only a Sunday. In the current performance of
Harmony single weekend shifts sometimes are assigned. A third problem is that the assignment of
weekend shifts is not equitable, not regarding the amount of the same shift types and not regard-
ing the number of weekends an employee works. This last problem arises especially when more
employees than weekend shifts are available, in which case the weekend shifts are not divided
equally over all employees. This results for example in one employee working three weekends and
somebody else working only one weekend. It is neither equitable when one employee works two

weekends of night shifts and another employee works two weekends of day shifts.

Belgian Police

The Belgian Police also uses the optimization engine in Harmony to schedule their employees.
They use non-cyclical schedules. The problems they encounter when making schedules are com-
parable to those at Calgary Health Region: not all shifts are assigned to employees, not every
employee works the same number of weekend shifts, and employees get assigned single weekend
shifts. The first problem arises especially when employees already have for example a vacation,
training, or occasional activities (such as alcoholic beverage control) scheduled in the scheduling
period, so more constraints are placed on that resource. They also want an equitable division of
the types of shifts to be worked among employees. Their workaround to create reasonable sched-
ules is to use the Shift Sequence Planner and manual tweaking for the weekend shifts followed
by the optimization engine to schedule the remaining shifts. Nevertheless, this workaround does
not solve all problems mentioned before. They still encounter difficulties to divide weekend shifts
equally over employees when they already have leave scheduled in the scheduling period. They
use different rules than Calgary Health Region when scheduling for weekends; all rules that do
not directly influence weekend shifts are turned off. They do use rules to stimulate an equitable

division of the number of shifts and shift types.

Kennemer Gasthuis Haarlem

The planning department of the Dutch hospital Kennemer Gasthuis in Haarlem uses the opti-
mization engine in Harmony to make non-cyclical schedules for their nursing departments. To
schedule the weekend shifts they also use the Shift Sequence Planner. They use the optimization
engine to assign the remaining shifts. If they do not use this workaround, the optimization en-
gine assigns single weekend shifts and if Harmony does assign two weekend shifts in one weekend,
these shifts often are of a different type (i.e. one day and one evening shift). For the Kennemer

Gasthuis this workaround mostly solves their issues, but it is a labor-intensive method, which

2 2. Context

they see as an important disadvantage.

2.3 Performance and scheduling alternatives in Harmony

Section 2.3.1 summarizes the current performance of Harmony’s automatic planners. Section

2.3.2 summarizes the possibilities currently available in Harmony to schedule weekend shifts.

2.3.1 Performance

From the case study we derive four major problems with respect to scheduling weekend shifts in

Harmony. The optimization engine does not always:

1. schedule all weekend shifts, whereas a feasible solution does exist for all weekend shifts.

2. divide the weekend shifts equitably over all employees: not all employees work the same

number of shifts and shift types during weekends.
3. assign either zero or two shifts in a weekend.

4. assign two shifts of the same type in a weekend.

Of course, it is interesting to know why the optimization engine is not able to meet the require-
ments above. Especially the first problem is interesting, as a feasible solution does exist and the
optimization engine does not even have to take requirements 2 to 4 into account here. The cause
of this problem lies in the way the algorithm is set up. The first phase of the genetic algorithm
constructs an initial population in a greedy way using the Vacant Shifts Planner. The Vacant
Shifts Planner starts with assigning shifts on day 1 of the schedule, then day 2, and so on until
the last day of the schedule. Of course, on the first weekend it is easy to assign all available shifts
to employees, as for all employees the schedule is still empty. Nevertheless, by the end of the
schedule it becomes harder to assign the available shifts to employees, as they all already have
shifts that are not necessarily optimal in their schedule. The schedules resulting from this phase
are thus often schedules with unassigned shifts in the last weekend(s) of the schedule. The start
solution for the local search is thus of insufficient quality. The unassigned shifts cannot be as-
signed to an employee using the Vacant Shifts Planner (otherwise they would have been assigned
in the first phase of the genetic algorithm), this means that a 1-opt change is not possible for
assignment of these shifts. A 2-opt change is not helpful either, as this would mean changing

an unassigned shift with an assigned shift, resulting in the same number of unassigned shifts.

Performance and scheduling alternatives in Harmony 25

Resource Y Resource Y Shif i

Resource X sShift. i

Figure 2.4: A 3-opt change in which an unassigned shift gets assigned

A 3-opt change for example, could give a better result, as Figure 2.4 shows, but unfortunately
Harmony’s local search does not include 3-opt. Because of the quality of the start solution for

the local search, the local search has to make a too large improvement.

Problems 2, 3, and 4 are problems the optimization engine simply does not take into account if
the user does not define soft constraints for these subjects. In the three cases described in Section
2.2 the users did define the corresponding constraints, but as they are soft constraints, Harmony
can, and obviously does, violate them. This shows that solving problem 2, 3, and 4 by defining

soft constraints is not sufficient for the users of the optimization engine.

2.3.2 Alternatives to schedule weekend shifts in Harmony

The previous sections show that the performance of the optimization engine is not sufficient for
weekend shifts. Scheduling all shifts in one step is too complicated. Fortunately, the optimization
engine as explained above is not the only possibility in Harmony to plan weekend shifts. This

section summarizes the current possibilities in Harmony to schedule weekend shifts.

We have seen in the case study that these three customers schedule weekend shifts apart from
the rest of the planning period. Weekend shifts are then scheduled as an a priori step, followed
by the optimization engine for the remaining shifts. We could argue that the used sequence of
scheduling decreases the flexibility for non-weekend shifts. Tests on the three cases have shown
(see Table 2.1) that the reversed order (first non-weekend shifts followed by weekend shifts) on
average increases the quality of the non-weekend shifts by only 6.4%. The quality is measured as
the sum of all penalties on soft constraints that the users have defined. The reversed order also
leaves on average 40% of the weekend shifts unassigned, where scheduling weekend shifts as a
priori step leaves on average only 1.5% of all non-weekend shifts unassigned. In both sequences,
the first step has no remaining shifts. Summarized, scheduling weekend shifts as a priori step
only slightly decreases the flexibility of non-weekend shifts, but the total number of unassigned

shifts is minimized in comparison with non-weekend shifts as a priori step.

26

2. Context

Calgary .
Belgian | Kennemer
Health . . Average
. Police Gasthuis
Region
Penalty increase with 12% 4.6% 2.5% 6.4%
weekend shifts as a priori
step
Remaining non-weekend 1.7% 1.5% 1.3% 1.5%
shifts with weekend shifts as
a priori step
Remaining weekend shifts 40% 29% 50% 40%
with non-weekend shifts as a
priori step

Table 2.1: Comparison of results for weekend shifts as a priori step to non-weekend shifts as a
priori step

Unassigned shifts on weekend days are of more influence to a company than unassigned shifts

on non-weekend days. It is hard (nobody wants to give up a free weekend) and expensive (pay

irregularity allowances) to get these unassigned shifts filled. Next, the assignment of weekend

shifts has the most influence on the social life of employees. To keep your employees satisfied, it

is important to schedule weekend shifts as much as possible according to employee preferences.

We thus conclude that a two-step approach with scheduling weekend shifts as an a priori step is

the best scheduling method. For this a priori step Harmony has several options:

o Optimization engine for weekend shifts only

In this alternative the user runs the optimization engine only for weekend shifts. The
advantage of this option compared to planning all shifts at the same time is that weekend
shifts get preference over non-weekend shifts. This results in a better assignment of weekend
shifts compared to using the optimization engine for all shifts at the same time. On the
other hand, this option is not forced to schedule consecutive shifts in a weekend. This
results in single weekend shifts and in consecutive shifts of different shift types. The user
can define criteria to stimulate consecutive shifts of the same shift type, to prevent single
weekend shifts, and to stimulate an equitable division of shifts. These criteria are soft, so
the optimization engine is not forced to meet the criteria and can prefer to schedule another
shift. The optimization engine for weekend shifts also faces the problem of not being able
to assign all shifts to resources as described above for the optimization engine in general.
Although, this option might result in fewer remaining shifts, because only weekend shifts

are taken into account, but the problem can still arise.

Requirements for Weekend Planner 27

o Optimization engine for weekend shifts only with non-weekend rules and criteria turned off

The user defines rules and criteria for a schedule. Some of these rules and criteria do not
concern weekend shifts. Although these rules do not directly concern weekend shifts, the
planner checks on them. It might have a positive influence on the resulting schedule when
these rules are turned off during the assignment of weekend shifts. Further advantages and

disadvantages are equal to the option above.

o Shift sequence planner

The user predefines shift sequences. For weekend shifts they start on Friday or Saturday
and consist of 2 or 3 consecutive shifts. The shift sequence planner tries to assign as many
shift sequences as possible to resources. The user can predefine the priority of a sequence
and whether that sequence is valid for the whole department or only for selected employees.
The advantage of this option is that for weekends only sequences are scheduled that the
user wants, so no single weekend shifts and no consecutive shifts of different shift types
(unless the user prefers so). The disadvantage is that this option does not try to divide
the shifts equally over all employees. The user can define criteria to stimulate an equitable

division, but again, these are soft criteria and thus not always met.

o Plan manually

A last option to improve a schedule is to tweak manually. Users often (if not always) make
manual adjustments after using one of the above described options to improve the resulting

schedule and adjust it to their preferences.

2.4 Requirements for Weekend Planner

This section discusses which requirements the Weekend Planner has to satisfy. These requirements
can be split into two parts: general requirements, resulting from within ORTEC, and requirements
for the resulting schedules of the Weekend Planner, which follow from the users of the optimization

engine.
The main general requirements for the Weekend Planner are:
o Implementation: it has to be possible to implement the solution in the current structure of
Harmony.

o Generic: over 200 customers use Harmony and they all have to be able to work with the

Weekend Planner. Aside from the three customers from the case studies, the consultants’

28 2. Context

perception is that the problem occurs at many customers. This emphasizes the need for a

generic solution.

o No workarounds: as described in Section 2.2 several users of the optimization engine cur-
rently use workarounds to create reasonable schedules. Workarounds are available in Har-
mony, but as the problem is generic, it is important to come up with a solution that makes
workarounds unnecessary. The Weekend Planner finally has to become part of a one-step-

scheduling process for the user.

The main requirements for the resulting schedules of the Weekend Planner are:

o All weekend shifts assigned to employees, if a feasible solution exists;

Weekends divided equitably over all employees;

No stand-alone weekend shifts;

The same shift-type for all shifts in one weekend.

2.5 Related research

Burke et al. (2004) overview papers that are written on personnel scheduling problems in health
care. The third section discusses both exact as well as approximation solution methods for
personnel scheduling problems. Main conclusions of this article are that exact solution methods
are not an option in practice, because they cannot cope with the enormous search space for
real life problems, but they can form a good starting point and can aid heuristic methods. The
current state of the art is represented by interactive approaches that incorporate problem specific
methods and heuristics together with powerful meta heuristics, constraint based approaches,
and other search methods. Very few of the presented solutions are suitable for directly solving
difficult real world problems. Many of the discussed models are too simple to be directly applied
to e.g. hospital wards. The solutions that are suitable for solving real world problems pose many
restrictions on the problems they can solve (such as maximum instance size, existence of specific

constraints, etc.).

Chapter 3

Modeling

This chapter describes the mathematical model of the problem discussed in this research. Section
3.1 gives the assumptions of the model, Section 3.2 describes the mathematical problem definition,

followed by a quadratic integer programming model in Section 3.3.

3.1 Modeling assumptions

As with every translation of real life situations into a mathematical model, several assumptions
have to be made. Assumptions can also be useful to decrease the problem size and to keep the
problem from becoming too complicated. This section describes the assumptions we make for

the problem as described in Chapter 2.

e we only consider the planning of weekend shifts in this research. This planning of weekend

shifts is a pre-processing of the planning of the complete schedule;
¢ all employees cost the same, i.e. wages are not taken into account;
o demand for shifts is equal on Saturdays and Sundays;
e in the model we use weeks as indices for time, the week represents a complete weekend;

o if a resource works in a certain week in the model, he works both on Saturday and on

Sunday and the same shift type on both days;

¢ a shift is a period of work, for example a morning assignment from 7 AM - 3 PM, or an

afternoon assignment from 1 PM - 9 PM etc.

29

30 3. Modeling

We realize that the above list is not complete; factors like contract hours and age related require-
ments are not taken into account in this stage of the research. We will discuss some important

possible extensions of the model in Section 4.4.2.

3.2 Mathematical problem definition

This section starts by introducing the sets we use in the remainder of this research:

SETS

R resources (index r)

w weeks (index t)

W+ subset of W, = {t > 0}
S shift types (index s, z)

In the remainder of this research we will use shift as a unique combination of a week and a shift

type:

Definition 3.1. Shift(s,t)
Shift(s,t) is the unique combination of shift type s in week ¢.

We define our Weekend Scheduling Problem (WSP) in Definition 3.2.

Mathematical problem definition 31

Definition 3.2. (Weekend Scheduling Problem)
GIVEN: A finite set of time periods W, a set of resources R, a set of shift types S, the following
parameters:

dys demand: number of resources needed for shift(s,t)

{1 if resource r is available for shift(s,t) (vacation, skills, etc.)

frts 0 otherwise
we, maximum number of weekends resource r can work in w, weeks
Wy number of weeks in which resource r can work we, weekends,
1 if resource r works in week ¢ (£<0)
ot 0 otherwise

and the following decision variables

1 if resource r works shift type s in week ¢
X, is) P t=0,..., W
0 otherwise
c 1 if resource r is allowed to work shift type s in week ¢
rts 0 otherwise

GOAL: Does there exist a binary vector z = (X,s), such that the deviation between the number
of weekends a resource works and the average workload per resource, and the deviation between
the number of shifts a resource works of each allowed shift type is minimized (an equitable
division of weekend assignments over the resources) for cyclical schedules (variant a) and non-
cyclical schedules (variant b) and such that the following constraints, of which the mathematical
formulation is given in Section 3.3, hold:

e demand dy; is satisfied in every week t for every shift type s (constraint 3.4);
e every resource works at most one shift type per week (constraint 3.5);
e every resource only works shifts that it is allowed to work (constraint 3.6);

e every resource works maximum we, weekends in w, weeks (constraint 3.8a for cyclical
schedules and constraint 3.8b for non-cyclical schedules).

The next section presents a formulation to solve this Weekend Scheduling Problem.

32 3. Modeling

3.3 Quadratic Integer Programming model

This section describes a quadratic integer programming formulation (QIP) of WSP (Definition
3.2). First, we discuss the formulation of the objective function, followed by the formulation of

the complete model and the explanation of the constraints.

Objective function

The objective function consists of two parts. The first part establishes a minimization of the dif-
ference between the number of weekends a resource works and the average workload per resource.
This difference is taken quadratically because a deviation of 4 for one resource is worse than a

deviation of 1 for four resources for example. This first part of the objective is as follows:

. gdts
mlnz ZXmgs — W (3.1)
T t,s

The second part of the objective function consists of the minimization of the deviation from an
equitable division of shift types for each resource. The goal of this objective is to make sure
that each resource works approximately the same number of weekends of each shift type that
that resource is allowed to work. For example, two resources working both one weekend with
day shifts and one weekend with night shifts is preferred over one resource with two weekends of

night shifts and the other resource working two weekends of day shifts.

This deviation is formulated as the difference in the number of weekends worked between all
possible combinations of shift types s and z for each resource. We only take the value of a worked
weekend with shift type s into account if the resource would have been allowed to work shift
type z as well. To accomplish this, we multiply variable X,,;s with the parameter for availability
for shift type z: a,t, and vice versa. To make sure we take all possible combinations of shift
types into account, we compare for each resource the number of weekends worked with shift type
s to the number of weekends worked with shift type z, if the ordinality of z is larger than the
ordinality of s. As the deviation consists of positive and negative deviation, we need to take the
absolute value:

minz Z Z (artz - Xots — Qpts - Xriz) (3.2)

T szlord(s)<ord(z) | t

To convert the above objective into a linear formulation, we first introduce two assisting vari-

ables:

Quadratic Integer Programming model 33

P Assisting variable for the positive deviation from an equitable division of shift types
s and z for resource 7
Zray Assisting variable for the negative deviation from an equitable division of shift types

s and z for resource r

+

s represent the positive

Next, we introduce two extra constraints to make sure that 2, and z,,

z

respectively negative deviation:

+
Zrgx > E (artz c Xt — Qpis Xrtz) VT‘, S, 2
t

Z;sz > 5 (arts Xtz — Qpts - Xrts) VT‘, S, 2
t

and to make sure that for each resource only one of the two assisting variables gets a nonzero
value:

+
Zpsy >0 Vr, s, z

Zpgy 2> 0 Vr, s, z

Now we can replace formula (3.2) by the following linear minimization:

min Z Z (25 + 2rs2)

T s,zlord(s)<ord(z)

The two parts of the objective function are not equally important. The equitable division of the
number of shifts is most important. An increase in penalty for the division of the number of
shifts over an equal decrease in penalty for the division of shift types should be prevented. That
is why we give both parts of the objective function a weight, o (for the part on the division of

the number of shifts) and 3 (for the part on the division of shift types), where « is larger than .

QIP formulation

The preceding sections lead to the following QIP formulation for the Weekend Scheduling Prob-

lem:

Zdts 2
min Z a- ZXNS — TT‘ + - Z (2 + 21s2) (3.3)
t,s

r s,zlord(s)<ord(z)

34 3. Modeling

st > Xpe = dis Vi s (3.4)
T
d X <1 Vo, t (3.5)
S
Xrts < Yrts Vr, t, § (36)
Cris < aps Vo, t, s (37)
(t+w,.—1)mod|W|
ZX”S < we, YV, t (3.8a)
T=t s
(t+wr—1)
Z (ZXTTS)+qTT < we, Vr,t=—-w.+1,..., W+’ —w, +1 (3.8b)
T=t s
Z;;Z > Z (artz : Xrts — Qrts * Xrtz) VT’, S, 2 (39)
t
Zr_sz > Z (arts ' Xrtz — Qrtz - X'rts) VT, S, % (3.10)
t
zh, > 0 Vr, s, z (3.11)
Zrgr = 0 Vr, s, z (3.12)
Xrs € 40,1} Vr, t, s (3.13)

Constraints (3.4)-(3.8b) describe the constraints as given in Definition 3.2. Constraint (3.4)
enforces that the demand is met. Constraint (3.5) forces a resource to work maximal one shift
per day. Constraint (3.6) assures that a resource only works the types of shifts it is allowed to
work. Constraint (3.7) makes sure that resources are only allowed to work a shift if they were
available for that shift according to parameter a,;s. Constraints (3.8a)/(3.8b) make sure that
a resource does not work more weekends than the maximum number it is allowed to work by
contract. Constraints (3.9) and (3.10) are the extra constraints to eliminate the absolute value

from the objective function.

Chapter 4

Weekend Planner design and

description

This chapter proposes a solution to solve the WSP: the Weekend Planner. Section 4.1 explains
some of the terminology used. Section 4.2 discusses the main considerations in designing the

Weekend Planner. Finally, Section 4.3 describes the proposed heuristic.

4.1 Terminology

In this chapter we use the definitions of weeks and shift types as used earlier in this research. So
by a week we mean a complete weekend. By a shift(s,t) we mean the unique combination of a
week and a shift type. A resource is an employee who can work shifts. The goal is to assign shifts

to resources according to the WSP with its constraints as described in Chapter 3.

4.2 'Weekend Planner design

This section summarizes the main insights for solution design from Chapter 2. Creating a schedule
in one integral step is too complicated (as results in Section 5.6.2 also show). Users of Harmony’s
optimization engine currently schedule in two sequential steps. The best scheduling sequence
has shown to be scheduling weekend shifts as a priori step (see Section (2.3.2)), followed by the
remaining, non-weekend shifts. For the a priori step various methods are used, ranging from
manual scheduling to using one of Harmony’s automatic planners or a combination of methods.

They schedule the remaining shifts with Harmony’s optimization engine. This two-step approach

35

36 4. Weekend Planner design and description

results in a satisfying schedule according to users, but the a priori step is labor-intensive. As
Harmony’s optimization engine is suitable for the scheduling of the non-weekend shifts, we focus

on a new method for the a priori step: the Weekend Planner.

The Weekend Planner has to take the following objectives into account in lexicographic order of

importance:

1. create an assignment of weekend shifts with zero remaining shifts (if possible)

2. create an assignment of weekend shifts with an equitable division of the number of weekends

worked

3. create an assignment of weekend shifts with an equitable division of shift types

Because of the way we have modeled the WSP, the Weekend Planner automatically takes the

following two requirements, which also follow from Chapter 2, into account:

e create an assignment of weekend shifts without stand-alone weekend shifts

e create an assignment of weekend shifts with consecutive shifts of the same shift type

As the current possibilities in Harmony do not focus on the above objectives, this research pro-
poses a solution that is not based on the current structure of the available algorithms in Har-
mony. We propose a heuristic approach, the Weekend Planner, which uses an intelligent form
of list scheduling to select shifts and to assign them to resources. The Weekend Planner assigns
shift(s,t) to an employee, which means that if an employee works shift(s,t), the employee works
shift type s on Saturday and Sunday of the corresponding week ¢. List scheduling takes objective
2 into account if the selection rules are set up accordingly. To meet objective 1, the Weekend
Planner will schedule the least flexible shifts and the least flexible resources first. List scheduling
does not take objective 3 into account. Therefore the last step of the Weekend Planner is a local

search with the objective to improve the equality of the division of shift types.

4.3 Weekend Planner description

This section describes the following steps of the Weekend Planner (Algorithm 4.1) for one solution

in more detail:

e Select shift (Section 4.3.1)

Weekend Planner description 37

Algorithm 4.1 Weekend Planner
for Number of Samples
while (remainingShifts > 0) and (availableResources > 0)
Select shift
Select resource
Assign shift to resource
Update availability
Check weekend constraint
end
Local search
if Solution is better than BestSolutionSoFar
BestSolutionSoFar := Solution
end
end

e Select resource (Section 4.3.2)
e Assign shift to resource (Section 4.3.3)

e Local search (Section 4.3.4)

Because of randomness in the Weekend Planner, we apply a sampling technique, which we explain
in Section 4.3.5.

The Weekend Planner uses selection rules for the construction of a solution. To make sure that
the largest number of shifts is scheduled, it is important to schedule the least flexible shifts and
the least flexible resources first. The last shifts to schedule are the shifts with the most flexibility.
Flexibility depends on the total number of comparable shifts that still have to be scheduled, and
on the number of resources that are still available for that shift. The least flexible shift is assigned
to the least flexible resource. Flexibility of resources depends on the number of shifts already
assigned to a resource in the planning period and on the number of shifts a resource is available

for. We only take feasible shift-resource combinations into consideration.

The Weekend Planner uses four rules to select a shift(s,t) and four rules to select a resource. If the
first rule results in a tie, the Weekend Planner uses the second rule, etc. However, some selection
rules calculate a ratio for each shift(s,t) or for each resource. A ratio will hardly ever result in
a tie, which means that the Weekend Planner probably does not frequently use the succeeding
selection rules. That is why we use a parameter k for precision. We test various values for k in
Chapter 5 to determine the best scenario. In both the selection of a shift(s,t) and a resource, the
last selection rule is based on randomness. To test the influence of randomness, Chapter 5 also

analyzes how often the Weekend Planner uses each selection rule.

38 4. Weekend Planner design and description

4.3.1 Select shift

The Weekend Planner uses the following rules in decreasing order of importance to select shift(s,t):

1. Shift(s,t) with the lowest flexibility ratio: "unfulfilled demand for shift(s,t)/ remaining avail-

able resources”

<2Xrts*dts>
shift(s,t) for which ~~ SV

15 minimal.
The shift that this rule selects is the least flexible shift, because for this shift less resources
are available than for all other shifts. So this shift is the hardest shift to plan and for this

reason has to be assigned to a resource first.

This rule results in a tie when two ratios are equal. Note: both are rounded on k decimals;

k is an experimental factor.

2. Shift(s,t) with the smallest number of shifts still to be scheduled:
shift(s,t) for which <dt5 — ZXTts> 18 minimal.

If the first rule results in multiple possible shifts, the shift(s,t) with the smallest absolute
number of shifts to be scheduled is selected. For example: take shift(A,1)(shift type A
in week 1) and shift(B,1)(shift type B in week 1). For shift(A,1) still 2 shifts have to be
assigned and there are 4 available resources. For shift(B,1) still 20 shifts have to be assigned
and there are 40 available resources. Both shifts have a flexibility ratio of -0.5, but assigning
shift(A,1) is less flexible than assigning shift(B,1), so shift(A,1) is selected.

3. Select first shift in time line

From the remaining shifts, this rule selects the shift that is closest to the start of the
planning period. This is important because resources have a history, so the weeks closest
to the previous planning period are more influenced by this history than weeks more to the
end of the planning period. Shifts close to the start of the planning period are less flexible
than shifts later in the planning period, due to more constraints on the number of weekends
that still can be worked.

4. Select random shift

If the first three rules result in multiple possible shifts, a random shift is taken.

Weekend Planner description 39

4.3.2 Select resource

The Weekend Planner uses the following four rules in decreasing order of importance to select a
resource for the selected shift(s,t) :

1.

"Least busy resource”: resource with lowest number of weekends scheduled in scheduling

period:

resource for which Y X5 is minimal.
t,s
This rule makes sure that each resource is assigned to approximately the same number of
weekends, as is stated in the objective function of the WSP. The resource with the lowest

number of assigned shifts is chosen.

"Least flexible resource”: resource with lowest number of available shifts that the resource

1s allowed to work :

resource for which » Y5 - <dts — ZXTts> 18 minimal.
t,s r

A resource that is allowed to work ten of the available shifts (shifts still to be scheduled) is

more flexible than a resource that is allowed to work only four available shifts. The number

of shift types a resource is allowed to work influences this rule, but also the number of weeks

a resource has requested vacation for. This rule selects the least flexible resource.

. Resource for which the flexibility ratio of the least flexible other shift(s,t) that that resource

is allowed to work in the same week t as the selected shift(s,t), is mazimal. This rule
finds for each resource the least flexible shift that that resource is allowed to work in week
t, except for the selected shift. This rule then selects the resource(s) for which the least
flexible shift is most flexible (of all found least flexible shifts). This is thus the resource for
which the other shifts that that resource can work, have the most flexibility, so the Weekend
Planner does not lose much flexibility with assigning the selected shift to this resource. The
other shifts this resource could work in the same weekend are the ’easiest’ to plan, as their

ratio is maximal. This rule selects:

<2Xrts*dts>
resource for which min

7 I~y is mazimal for given t of selected shift(s,t).
s|Yrts=1 o s

For example, consider selected shift(A,1), for which two resources ’compete’. Resource 1 is
allowed to work type shift(A,1) and shift(B,1). Resource 2 is allowed to work type shift(A4,1)

40 4. Weekend Planner design and description

and shift(C,1). The flexibility ratio for shift(B,1) is -0.3 and for shift(C,1) -0.2. Shift(B,1)
is thus harder to assign than shift(C,1). So resource 1 is more 'needed’ for shift(B,1) than
resource 2 is 'needed’ for shift(C,1). It is more flexible to assign shift(A,1) to resource 2 in

this step.

4. Select random resource

If the above rules result in multiple resources, select a random resource from the remaining

resources.

4.3.3 Assign shift to resource

Once a resource has been selected, the selected shift is assigned to the selected resource. The
availability variable Cys is updated for resource r after every assignment of shift(s,t) to that
resource. The availability for the selected resource is set to 0 for all shift types in the week of
the selected shift. Next, the algorithm performs a check on the number of weekends a resource
works to check on the weekend constraint (constraints 3.8a/3.8b in Section 3.3) and adjusts the

availability parameter if necessary.

The process of selecting shifts and resources continues until all shifts have been assigned to

resources, or until no more shifts can be assigned to resources.

4.3.4 Local search

The Weekend Planner stimulates an equitable division of the number of shifts. Thus far, it does
not focus on an equitable division of shift types. Therefore, we perform a 2-opt local search
to improve the division of shift types. The 2-opt local search included in the Weekend Planner
evaluates shift swaps for each combination of two assigned shifts in the same week. The swap is
made if it results in a lower value of the objective function and thus in a more equitable division
of shift types (Algorithm 4.2).

The local search iterates a given number of times over all employees to find improvements. The
number of iterations is bounded by a maximum, but stops earlier when no improvements are found
in the last iteration. Chapter 5 analyzes various values for the maximum number of iterations to

determine the best scenario.

Alternative algorithm designs and model extensions 41

Algorithm 4.2 2-opt Local Search included in the Weekend Planner
While (improvement found in last iteration) and (Nolterations<MaxIterations)
for all Weeks
for every 2 resources that work in the same week, but different
shift types
if resources are allowed to work each others shift type
Exchange shifts and calculate new score
if new score < current score then keep exchange
else change shifts back

end
end
end
end
end

4.3.5 Sampling

As there is a random component in the construction algorithm, not every solution for an instance
has to be the same. One solution might be better than another, generated with other random
values. The Weekend Planner creates a solution a number of times (as requested by the user) and
selects the best solution to give back as output. This process is called random sampling (Kolisch
and Drexl, 1996). As randomness only affects the last selection rule of both shift and resource, the
influence of randomness and thus of sampling might be small. Chapter 5 addresses the influence

of randomness and analyzes various number of samples to determine the best scenario.

4.4 Alternative algorithm designs and model extensions

This section discusses some alternative designs of the Weekend Planner (Section 4.4.1). Next,
the Weekend Planner is a generalized form of the cases that occur in practice. Section 4.4.2
summarizes a few extensions that frequently occur and the way they can be included in the
Weekend Planner.

4.4.1 Alternative algorithm designs
Take random shift in time

An option for alternative design is to exclude the selection rule select first shift in time line. An

argument to exclude this rule is that this rule always favors the start of the planning period.

42 4. Weekend Planner design and description

This could result in problems towards the end of the planning period. Chapter 5 addresses the

consequences of excluding this rule.

Regret-based random sampling

Regret-based random sampling (RBRS) is a randomized construction heuristic often used in
scheduling, proposed by Kolisch and Drexl (1996). This method uses priority rules to value
solution building blocks. In the Weekend Scheduling Problem the shifts and resources are the
solution building blocks, and for example the flexibility of a shift determines the priority of
that shift. Instead of simply selecting the building block with the highest priority, this method
calculates a probability for each building block based on its priority. The higher the priority,
the higher the probability of a building block is. RBRS then selects a building block from all

candidates, using their probabilities. This method also uses sampling (see Section 4.3.5).

This method calculates priority v; for building block j using a priority rule. The user defines
the priority rule. Given a priority v;, we calculate the regret factor r;, which is the non-negative

difference of the priority v; and the worst of all building block priorities:
r; =v; —min{v;}, if a high v implies a high priority
(2

rj = max {v;} — vj, if a high v implies a low priority
1

The higher the regret factor r; is, the more regret you have of not selecting the building block.
Based on the regret factor we calculate the probability P; of a solution building block being

drawn:
(rj +1)”

2 (ri+1)7

7

P; = (4.1)
The parameter « is the so-called bias-factor. the larger « is chosen, the larger the effect of the

regret factor is.

As an alternative design, we apply regret-based random sampling to the Weekend Scheduling
Problem, based on the selection rules of the Weekend Planner. We adjust the described general
form of RBRS to be suitable for the WSP. We calculate a separate probability for the selection
of a shift and for the selection of a resource. We here describe the method to select a shift, the
same holds for resource selection. The probability in the standard RBRS is based on only one
priority rule. The Weekend Planner uses various priority rules to select a shift. We calculate the
regret and probability per shift per priority rule as in the general RBRS. This results in three
probabilities P; for each shift. We define a weight w; for each priority rule ¢, such that the weights

Alternative algorithm designs and model extensions 43

of shift selection sum up to 1. We then multiply each weight with the corresponding probability

and sum these values for all three priority rules:
Po=) wi P
i

Each shift then has one probability Ps, based on which a shift is selected. The priorities of all

shifts obviously sum up to 1.

The standard formula to calculate a probability (formula 4.1) increases the regret with 1, such
that each building block has a nonzero probability of being drawn. The Weekend Planner contains
selection rules in which priority and regret are based on the flexibility ratio of shifts. The regret
is thus always < 1. Increasing the regret with 1 would destroy the proportion between the
probabilities for different shifts, as this increase is larger than the regret itself. For priority rules
based on ratios (the first shift selection rule and the third resource selection rule) we increase the
regret with (.01 instead of 1 preventing a destruction of proportions, but maintaining a nonzero

probability for each building block:

(Tj + 0.01)7
> (r; +0.01)7

7

Pj:

The selection rules that the Weekend Planner uses are defined as consecutive rules. RBRS uses
priority rules as independent rules. Consecutive rules are not necessarily suitable for independent
use. The second shift selection rule selects the shift(s,t) with the smallest number of shifts still to
be scheduled, if the first rule (select the least flexible shift(s,t)) results in a tie. Independently,
the second rule does not make sense: the shift(s,t) with the smallest number of shifts still to be
scheduled should not get a high priority. We thus set the weight of this priority rule for use in
RBRS to 0.

4.4.2 Model extensions

FTE (Full Time Equivalent) The Weekend Planner stimulates an equitable division of the
absolute number of shifts. However, when not all resources work the same FTE, users might

prefer to divide the weekends in proportion to the FTE. To accomplish this, the first rule to
ZXT'tS

. t,s . ..
select a resource has to be changed to : resource for which ~gp— is minimal.

Night shifts In some industries, it is common that employees have to work no or a limited

number of night shifts after having reached a certain age. To include not working night shifts in

44 4. Weekend Planner design and description

the Weekend Planner, the availability a,+s has to be set to 0 for resource r for all ¢ and for all shift
types s that are night shifts. To include a maximum number of night shifts, an extra constraint
should be added that checks the number of night shifts for an employee after each assignment of

a shift (comparable with the check on the maximum number of weekends constraint).

Chapter 5
Computational results

This chapter describes the results for the Weekend Planner. Section 5.1 gives the experiment

approach and a further outline of this chapter.

5.1 Experiment approach

The experiment consists of the following steps:
1. Determine the best scenario of the Weekend Planner:

(a) Test Weekend Planner on a diverse set of random generated instances (Section 5.2 and
5.3)

(b) Analysis of the sensitivity of the Weekend Planner for various parameters (Section
5.4):

i. Algorithm settings

ii. Instance parameters

(c) Test alternative designs (Section 5.5)

2. Test the best scenario of the Weekend Planner on three real-life cases from practice and

compare these results with Harmony’s results (Section 5.6)

45

46

5. Computational results

5.2 Generation of random instances

For the tests we use randomly generated test instances. To generate these instances we first

randomly assign shifts to employees. Second, we choose the instance parameters such that the

assignment of shifts to employees is optimal. Third, we calculate the objective value for this

Instance.

1. Randomly assign shifts to employees

We create a large number of employees and randomly assign shifts to them. In this way we

have created many different employees/schedules of which we can choose some that form a

feasible and optimal schedule in the next step.

2. Choose instance parameters such that schedule is optimal

(a)

We randomly choose instance parameters. See Table 5.1 for these parameters and the
possible values. These bounds are based on values that occur often in practice. The
scope is defined as the maximum number of weekends an employee is allowed to work
in a period (thus defined as z out of y weeks). The tightness is defined as the ratio
of the number of weekends an employee has to work over the maximum number of
weekends an employee is allowed to work. From the tightness we can thus calculate
the number of weekends that each employee should work if each employee works the

same number of shifts.

Parameter \ Values ‘
Number of employees [10..70]
Number of weeks [4,6,8,10,13]
Scope [1/2,2/4,3/4,2/5]
Tightness [1/max ..1]
Cyclical [true, false]
Number of shift types [1..6]

Table 5.1: Parameter settings for testing random instances

We select the chosen number of employees randomly from the large number of employ-
ees created in step 1, such that the created schedule is feasible and optimal. Feasibility
is assured by selecting employees that have a schedule for the right number of weeks,
the right number of weekends worked, with the right number of shift types, and for
which is checked that the schedule is feasible for the chosen scope in combination with

being cyclical or not. Optimality is assured because of equality in the division of the

Test results on random instances 47

number of shifts and equality in the division of shift types. Equality in the division
of the number of shifts is assured because every employee works the same number
of weekends: the chosen value in step (a). Equality in the division of shift types is
assured because only employees are selected that work the same number of shifts of
every shift type (or one more of some shift types when the number of shift types is

not a multiple of the number of weekends every employee works).

Based on the assigned shifts, we calculate the corresponding demand. To make the
instance more realistic, not all employees are available for all shifts (i.e. in case of
vacation). For every shift(s,t) that an employee does not work in the created schedule,
the availability of the employee for that shift is randomly set to 0 (not available) or 1
(available). The randomness of the availability is influenced by an instance parameter,
a randomly chosen value between 0 and 1 that gives the probability of employees in

that instance being available for a shift.

3. Calculate objective value for instance

Now that all parameters are chosen such that the schedule is optimal, we can calculate the

objective value. As we know that the schedule is optimal, we thus know the optimal value

for this instance. The next section compares the results of the Weekend Planner with the

optimal value.

5.3 Test results on random instances

This section evaluates the results of the Weekend Planner on random instances on the following

performance indicators:

o Dewviation from optimal solution

For each instance the absolute as well as the relative deviation from the optimal solution

is measured. The results also show the average over a large number of instances of the

absolute and relative deviation from optimal. The deviation is the difference between the

test result and the optimal solution according to formula 3.3.

o Remaining shifts

For each instance the number of shifts that the Weekend Planner has not been able to

assign to employees.

48 5. Computational results

Setting ‘ Value ‘
Precision 1
Number of samples 20
Local search iterations 5)
a (weight on first part objective function) 2
B (weight on second part objective function) 1

Table 5.2: Algorithm settings for tests on the Weekend Planner

We use 400 random instances, for which we know the optimal solution. The number of 400 is
selected based on preliminary tests that show the average deviation from the optimal solution

becoming a flat and stable line with 400 instances.

Table 5.2 illustrates the settings used to test the Weekend Planner. The values for o and 3 are
found by tests that are not illustrated here. Section 5.4.1 analyzes the sensitivity of the Weekend

Planner for the other settings.

Deviation from optimal solution

Figure 5.1 shows the absolute and relative deviation from the optimal solution for each of the

400 instances. In 67.5% of these instances the Weekend Planner has found the optimal solution.

Figure 5.2 shows the average absolute and relative deviation from the optimal solution. The
average absolute deviation is 13.9; the average relative deviation is 3.8% from optimal. The
figures show that for some cases the deviation from optimal is very high. This deviation is
mainly caused by a non-equitable division of shift types. Figure B.1 in appendix C shows the
total penalty, the penalty for an equitable division of the number of shifts, and the penalty for an
equitable division of shift types. This figure shows that the graph for the total penalty is equal or
quite close to the penalty for an equitable division of shift types for all instances. In the optimal
solution every employee works exactly the same number of shifts, which means that the penalty
for an equitable division of the number of shifts is 0. When the total penalty in the Weekend
Planner is equal to the penalty for the equitable division of shift types, we know that the division

of the number of shifts is optimal.

As the deviation from optimal is mainly caused by a non-equitable division of shift types, this
means that all employees work the optimal number of shifts, just not the optimal shift types. We
expect that the division of shift types improves by interchanging shifts between employees. The
local search in the Weekend Planner already does this, but it is a simple and basic local search.

A more extensive local search tries more and different shift swaps. We thus expect that a more

Sensitivity analysis 49

extensive local search, as is already available in Harmony, decreases the penalty for an equitable

division of shift types and so decreases the deviation from optimal.

Remaining shifts

Figure 5.3 shows the number of remaining shifts for each instance. For 89% of the instances the
Weekend Planner has found a solution with 0 remaining shifts. The average number of remaining
shifts is 0.85 shift per instance (measured over all 400 instances). For some instances the number
of remaining shifts is quite high. The sensitivity analysis in Section 5.4.2 analyzes the influence of
the different instance parameters on the results of the Weekend Planner and the possible causes

for high remaining shifts.

5.4 Sensitivity analysis

This section analyzes the sensitivity of the Weekend Planner for variation in the algorithm settings

(Section 5.4.1) and for the different values of instance parameters (Section 5.4.2).

5.4.1 Algorithm settings
This section analyzes the sensitivity of the Weekend Planner for the following algorithm settings:

e Precision parameter k (Section 5.4.1.1)
e Number of samples (Section 5.4.1.2)

e Number of iterations in the local search (Section 5.4.1.3)
For each of these settings, we analyze the influence of different values for a setting on the number
of instances with remaining shifts, the average number of remaining shifts per instance, the

number of instances for which the Weekend Planner finds the optimal solution, and the average

deviation from the optimal solution.
5.4.1.1 Precision

Figures 5.4 and 5.5 show the influence of the precision setting on the deviation from optimal

and on the remaining shifts. Both figures show that the best results, although with a small

5. Computational results

] | | |

I |

e

|
i
N PN TP

50

[| , I T T
palL LA STl oDl a B a T b TAA g I AN AT s, A
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390
Replications
— Relative deviation from optimal —— Absolute deviation from optimal

Figure 5.1: Absolute and relative deviation from the optimal solution for the Weekend Planner

51

Sensitivity analysis

- Tewndo Wo1j UoeIASp 31NjoSqe abesany Tewndo Wo1j UoNeIASp aAE|a aBeIany

IQUR]J PUSE9AN o) I10J uomnjos remydo o1} UIOI] UOIJRIASD SAIJR[OI PUR 2)njosqe a8eIoAy :g'C 2In3I]

suoneoyday
06€ 08 0L& 09¢ 0SE OvE 0E€E 0Z€ OTE OOE 06z 082 0LZ 092 0SZ Oz 0€Z 0zz 0Tz 00Z 06T 08T OLT 09T OST OFT OET 0ZT OIT 00T 06 08 0L 09 0S or og oz ot
T
—— [__ r ~ \
— —_— — I~ \ [I°
M~)
AN LI,
[) |
1T
S T
oo~ NN .
N
—_ | T~~~ - o
~ ~_J st

5. Computational results

52

|

I

|
|

I

[
) [A

I

I
[

|

al

I

A

/

100

110

120

130

|
|
Y |

140 150 160 170 180 190 200 210 220 230 240 250

Replications
— Remaining shifts

260

2

300

310

320

330

340

350

360

370

380

390

Figure 5.3: Remaining shifts

Sensitivity analysis 53

The effect of the precision on the deviation from optimal,
samples = 20, local search iterations = 5
40,00% 16,00%
+ 14,00%
38,00%
g £
S +12,00% S
2 =
8 <
o
2 36.00% 1 10,00% 2
= S e
T 3=
£ =
£ + 8,00%
2 34,00% v 5 °
3 g
H _ 1600% 3
2
= 32,00% <
-+ 4,00%
30,00% T T T 2,00%
0 1 2 3 4
precision
‘—Non-opumal instances —— Average absolute deviation from optimal —— Average relative deviation from optimal I

Figure 5.4: The effect of precision on the deviation from optimal

The effect of the precision on remaining shifts,
samples = 20, local search iterations =5

20,00%

o
©
®

o
Q
S

18,00%

o
©

16,00%

o
@
&

shifts

14,00%

instance

o
®
&

12,00%

o
®
®

Instances with remaining
Average number of
remaining shifts per

10,00%

o
®
N

8,00%

o
®

0 1 2 3

precision

IS

—— Instances with remaining shifts —— Average number of remaining shifts I

Figure 5.5: The effect of precision on the remaining shifts

difference, are achieved with a precision of 1. A precision of 1 means that the selection rules
compare ratios rounded on 1 decimal. The small positive difference is explained by the influence
of randomness. Randomness has more influence with a lower precision, because then a rule
based on ratios more often results in ties and the random selection rules are more often called.
The average usage of rules confirms this, although this difference is small too. The use of
random selection rules increases from 11% (for a precision of 3) to 16% (for a precision of 1) for
shift selection and from 39% to 42% for resource selection. For shift selection, the first rule is
based on comparing ratios. A precision of 1 instead of a precision of 3 increases the usage of the
second shift selection rule from 45% to 72%. More selection factors are thus of influence with a

lower precision, which gives a slightly better result.

54 5. Computational results

The effect of the number of samples on the deviation from optimal,
precision = 1, local search iterations = 5

50,00% 20,00%
48,00% 18,00%
g 100 16,00% ¢
£ 4400% 14,00% %
g 42,00% 12,00% %]
g a000% 10,00% 5%
£ 38,00% ' o °
236,00% 8,00% g
< 34,00% 600% Z
32,00% 4,00%
30,00% 2,00%

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21

Number of samples

Non-optimal instances

Awerage absolute deviation from optimal —— Average relative deviation from optimal |

Figure 5.6: The effect of the number of samples on the deviation from optimal

The effect of the number of samples on remaining shifts,
precision =1, local search iterations = 5
17,00% 13
16,00%
\ 12

2 1500% _
£ \ 53
5 1e0% 1y
] SE e
= 2 13,00% EZ o
£= 1 258
=G 12,00% e <2
@ o¢F £
8 g
S 11,00% 095 g
5 gE
g z5
2 10,00%
= - 08

9,00%

8,00% 0,7

0 5 10 15 20 25
Number of samples
‘—Instances with remaining shifts —— Average number of remaining shifts I

Figure 5.7: The effect of the number of samples on the remaining shifts

5.4.1.2 Number of samples

Figures 5.6 and 5.7 show the influence of the number of samples on the deviation from optimal
and on the remaining shifts. The figures show that the higher the number of samples, the better
the results are. We have set 20 samples as the maximum test value, because of running time.
The figures also show that the largest improvement in results is achieved in the lower number of
samples. An increase from 1 to 5 samples achieves more improvement than an increase from 15
to 20 samples for example. The best results are obviously achieved with the largest number of
samples, in this case 20. If running time becomes an issue, then 10 or even only 5 samples give

good results too.

5.4.1.3 Number of local search iterations

Figures 5.8 and 5.9 show the influence of the number of local search iterations on the deviation

from optimal and on the remaining shifts. As the local search does not look at the remaining

Sensitivity analysis 55

The effect of the number of local search iterations on the deviation from optimal,
precision = 1, samples = 20
40,00% 20,00%
18,00%

38,00%
P 16,00% ¢
2 2
g 14,00% =
@ 36,00% S _
< 12,00% § §
= s <
E 1000% § &
= 34,00% b
5 800% g
5
< 32,00% 600% 2

4,00%
30,00% 2,00%
0 1 2 3 4 5 6 7 8 9 10 11
Number of local search iterations
} Non-optimal instances absolute devation from optimal —— Average relative devation from optimal |

Figure 5.8: The effect of the number of local search iterations on the deviation from optimal

The effect of the number of local search iterations on remaining shifts,
precision =1, samples = 20

11,20% 0,86
> 11,00% 0,85
£ =
= 58
S 10,80% 084 3 o
£ 2 g
c g EGE
£
£ £ 1060% 083 2 5 8
B o2
g gE=
S 10,40% r082 g g
g 3
]
= 10,20% 0,81

10,00% 08

0 2 4 6 8 10 12 14 16
Number of local search iterations
‘—\nslances with remaining shifts —— Average number of remaining shifts |

Figure 5.9: The effect of the number of local search iterations on the remaining shifts

shifts, Figure 5.9 shows a flat line. Figure 5.8 shows that the deviation from optimal improves
with a higher number of local search iterations. But the figure also shows that 5 iterations is the

best value, as more local search iterations do not find any more improvements.

5.4.2 Instance parameters

This section gives the conclusions on the sensitivity of the Weekend Planner for various instance

parameters, which are analyzed in Appendix C in detail:

e Instance size: number of employees and number of weeks (Appendix C.1)
e Awailability: probability that employees are available for shifts (Appendix C.2)

e Scope: the number of weekends an employee is allowed to work in a certain period (i.e. =

out of y weekends) (Appendix C.3)

56 5. Computational results

o Tightness of schedule: the average number of weekends per employee divided by the maxi-

mum number of weekends an employee is allowed to work (Appendix C.4)

e Cyclical: whether it concerns a cyclical or a non-cyclical schedule (Appendix C.5)

For each of these parameters, we analyze the influence on the deviation from the optimal value
(relative and absolute) and on the number of remaining shifts. Section 5.4.2.1 concludes on the
sensitivity of single parameters. Section 5.4.2.2 analyzes the influence of interesting combinations

of the above listed parameters that follow from the analysis per parameter.

5.4.2.1 Sensitivity of single parameters

This section shortly concludes on the results on the Weekend Planner’s sensitivity for the various
parameters. The first paragraph gives a conclusion on the deviation from optimal, followed by a

conclusion on the remaining shifts.

The deviation from optimal is mainly influenced by the length of the schedule, the availability,
and the tightness of the schedule: all factors that clearly increase the complexity of the instance.
As said before, the deviation mainly consists of a penalty for a non-equitable division of shift
types. Therefore we expect that the deviation decreases when the Weekend Planner uses a more

extensive local search.

Parameters that influence the number of remaining shifts are the scope for the maximum number
of allowed weekends to work, the tightness of the schedule, and whether a schedule is cyclical
or not. The number of weeks has an influence as well, although this influence seems to have an
interaction with other parameters, as there is no clear increase or decrease in remaining shifts

visible.

The Weekend Planner is mainly sensitive cyclical schedules and schedules with a tightness of 1.
Next to that, we expect that the Weekend Planner is highly sensitive for certain combinations of
schedule lengths and scopes when regarding the number of remaining shifts. We will investigate
this in Section 5.4.2.2.

5.4.2.2 Combination of parameters

This section analyzes the influence of combinations of values for the parameters scope and number
of weeks for schedules with a tightness of 1. We only analyze schedules with a scope of ’2 out of
4’ and ’2 out of 5’, as Appendix C.3 shows that the number of remaining shifts is most sensitive

for these values. Figures C.19 - C.20 show the corresponding graphs.

Alternative algorithm designs 57

For schedules with a tightness of 1 and a scope of ’2 out of 4’, the number of remaining shifts is
mainly high for schedules with a length of 6 or 10 weeks. For schedules with a tightness of 1 and
a scope of '2 out of 5’, the number of remaining shifts is mainly high for schedules with a length
of 8, 10, or 13 weeks. The Weekend Planner is mainly sensitive for instances with a schedule
length that is not a multiple of the scope period (i.e. 6 and 10 are not a multiple of 4; 8 and 13

are not a multiple of 5).

It is easily explained that a schedule length of 13 is not such a problem for instances with a

scope of 2 out of 4’: the maximum number of weekends an employee can work in this instance is

[#2°

The schedule thus becomes a little easier: you have more weeks to schedule the same number of

J = 6, the same number as if the schedule would have been 12 weeks, which is a multiple of 4.

weekends. In the case of a schedule length of 6 or 10 weeks, the maximum number of weekends is
respectively 3 and 5. This is one weekend more than for the schedule lengths that are a multiple
of 4 (2 weekends for 4 weeks; 4 weekends for 8 weeks). The schedule is thus more complex,
sometimes resulting in a high number of remaining shifts. Also very tight schedules with longer
schedule lengths (8 and 10 weeks) that are a multiple of the scope form a problem sometimes.
The results on the combinations of 8 weeks with a scope of "2 out of 4" and 10 weeks with a scope
of 2 out of 5’ show this.

An important remark on these findings is the probability that the described instances occur in
practice. As said before, the Weekend Planner is mainly sensitive for cyclical schedules. A cyclical
schedule in which the schedule length is not a multiple of the period of the scope will not very
often happen in practice: rules are not easily checked and make a lot less sense. Users will select,

if possible, a more logical schedule length.

5.5 Alternative algorithm designs

Select random shift in time

Tests have shown that excluding the rule to select the first shift in the time-line results in an
improvement in comparison with the results found in Section 5.3, see Table 5.3 for a comparison.
We would have expected this rule to deteriorate the results, because employees can have a history,
which has more influence on the start of the planning period than towards the end of it. Obviously
this expectation was not correct. The increased influence of randomness has a more positive

influence on the results than selecting the first shift in the time-line.

58 5. Computational results

Scenario Average # % of Average Average % of non-
remaining instances relative absolute optimal
shifts per with deviation deviation instances

instance remaining from from
shifts optimal optimal
Base design 0.85 11% 3.8% 13.9 32.5%
of Weekend

Planner

Select 0.78 9.75% 3.5% 13.2 30.5%
random

shift in

time

Regret- 1.16 14% 10.9% 28.4 7%

based

random

sampling

Table 5.3: Comparison results Weekend Planner with alternative designs

Regret-based random sampling

We have performed tests on the Regret-based random sampling method as described in Section
4.4. We have tested various values for bias-factor «v and for the weights w; for resource selection.
Table D.1 in appendix D summarizes all performed tests. We have set the weight on the second
and third shift selection rule to 0 for all tests, because the second rule does not make sense
independently and the first alternative design option shows that excluding the third rule gives
better results. We have tested 30 samples per instance, so 10 more than we have used in the tests
on the Weekend Planner as randomness has more influence in Regret-based random sampling.
Table 5.3 states the best achieved result with this method.

The results for Regret-based random sampling stay far behind on the results of the Weekend Plan-
ner (up to 200% deterioration on the average relative deviation from optimal). The increased
influence of randomness does not have a positive contribution on the results of the Weekend Plan-
ner. The Weekend Scheduling Problem appears to be so complicated that too much randomness
heavily deteriorates results. Increasing the number of samples can improve the results of Regret-
based random sampling. As the gap between the results of Regret-based random sampling and
the current Weekend Planner is very large, the number of samples will have to increase strongly.
Even then, it is questionable how good the results will be seen the current gap and of course

running time will also increase heavily then.

Comparison results for case study 59

5.6 Comparison results for case study

This section summarizes the results for the three cases from the case study. It analyzes both
the results for the various methods of planning in Harmony (Section 5.6.2) and the results for
the Weekend Planner (Section 5.6.3). Both sections use performance indicators to analyze the

results. Section 5.6.1 describes the used performance indicators.

5.6.1 Performance indicators

To be able to compare solution methods, we have defined performance indicators. This section
describes the performance indicators for the scheduling of weekend shifts. Section 5.6.2 compares
the solution methods from Section 2.3 for the cases from the case study using these performance

indicators.

Remaining shifts

This is the difference between the demand of weekend shifts and the number of weekend shifts
that is assigned to resources. In other words, the shifts that should be assigned to a resource,
but that are still vacant. The unassigned shifts are measured in number of unassigned weekend

shifts, i.e. in Harmony each weekend has two shifts that have to be assigned.

Equitable division of number of weekend shifts

An equitable division of number of weekends means that every resource works approximately the
same number of weekends. This means that the difference between the number of weekends a
resource works and the average workload per resource should be as low as possible. This indicator
is quantified by using formula 3.1, which is described in Section 3.3. The three cases from the
case study all use an equitable division of the absolute number of weekends (so they do not divide

weekends in proportion to FTE).

Equitable division of shift types in weekend shifts

An equitable division of shift types in weekend shifts means that every resource works approxi-
mately the same number of weekend shifts of each shift type. So it is more equitable to have two

employees working one weekend of day shifts and one weekend of night shifts than one employee

60 5. Computational results

working two weekends of night shifts and one employee two weekends of day shifts. This indicator

is quantified by using formula 3.2, which is described in Section 3.3.

Single weekend shifts

This is the number of weekends in which only one shift is assigned. For example a shift on

Saturday followed by a free Sunday.

Consecutive weekend shifts of different shift types

This is the number of weekends in which more than one shift type is planned.

5.6.2 Results for cases with Harmony

This section discusses Harmony’s results for the three cases from the case study. For each case
the section first gives the user settings, followed by the results. Section 5.6.2.1 gives the general

settings used in testing.

5.6.2.1 Settings

To run Harmony the user has to input the time the algorithm is allowed to run and the number
of schedules the genetic algorithm starts with. In all tests performed in this section except for
the optimization engine for the complete schedule, the algorithm is allowed to run for 1 hour
(but will stop earlier if an optimal schedule is reached) and the genetic algorithm starts with 2
schedules. The test for the optimization engine for the complete schedule is allowed to run for 2

hours, as it is more complex than the planning for weekend shifts only.

The soft constraints users have defined are maintained in the tests. The section on each case
summarizes the used constraints. The weights on the constraints have the same value in the tests

as in the original cases.

Comparison results for case study

’ scenario Performance indicators
remaining . . weekends
. equitable | equitable . .
shifts o o single with
division division .
(week- . weekend | different
number shift . .
end . shifts shift
of shifts types
days) types
current schedule 0 0 6 0 0
optimization engine 14 4 26 12 1
for complete schedule
shift sequence 8 8 22 0 0
planner
optimization engine 5 4 30 1 2
for weekend shifts
opt. eng. weekend 0 0 30 0 0
shifts non-weekend
rules off

Table 5.4: Results Calgary Health Region

5.6.2.2 Calgary Health Region

User settings

Tests are performed on a department with 42 employees, a four-week cyclical schedule with 3
different shift types on weekend demand. Employees are allowed to work a maximum of two out

of four weekends and every employee is allowed to work only one or two shift types.

Calgary Health Region has defined the following soft constraints:

e No stand-alone weekend shifts

o Consecutive shifts have the same shift type.

Results

The results in Table 5.4 show that the current schedule, that Calgary Health Region has made
manually, is clearly better than the schedules generated with Harmony. The second line in the
results table shows the main reason for this research. When using the optimization engine for the
complete schedule, the resulting schedule is far from optimal regarding the weekend shifts with

14 unassigned weekend shifts.

62 5. Computational results

The three other approaches, which all need a second step to come to a complete schedule, give
better results for the weekend shifts. The optimization engine for weekend shifts only with non-
weekend rules turned off gives the best results. The penalty for a not equitable division of shift
types is still quite high, but at least this method results in no unassigned shifts, which is the

most important performance indicator.

This instance of Calgary Health Region scores high on tightness of the schedule: every employee
has to work the maximum of two weekends to be able to assign all shifts. This means that if
a planning method is able to result in zero remaining shifts, that the penalty for an equitable
division of the number of shifts is automatically zero as well. This is the case for the optimization

engine where non-weekend rules are turned off.

5.6.2.3 Belgian Police
User settings

Tests are performed on a department with 28 employees, an eight-week non-cyclical schedule with
5 different shift types on weekend demand. Employees are allowed to work a maximum of three

out of four weekends.

The Belgian Police has defined the following soft constraints:

o Give every employee preferably one weekend of shifts of every shift type

e No stand-alone weekend shifts

The first rule emphasizes both an equitable division of the number of shifts and an equitable

division of shift types.

Results

Table 5.5 shows the results for the Harmony tests on the case of the Belgian Police. For this case
we only compare four results, because this user already plans using only weekend rules. So we
left the scenario of using the optimization engine for weekend shifts with all rules on (including
week rules) out of this analysis. For this case it also holds that the current schedule is obviously
better than all other scenarios. Next, the scenario with the optimization engine with non-weekend
rules turned off also is the only other scenario with zero remaining shifts. In this case the shift

sequence planner does give a better result on single weekend shifts and weekends with different

Comparison results for case study

’ scenario

Performance indicators

remaining . . weekends
. equitable | equitable . .
shifts o o single with
division division .
(week- . weekend | different
number shift . .
end . shifts shift
of shifts types
days) types
current schedule 0 126 120 0
shift sequence 14 172 189 0
planner
optimization engine 1 272 230 57 28
for complete schedule
opt. eng. weekend 0 254 240 52 20
shifts non-weekend
rules off

Table 5.5: Results Belgian Police

shift types, as their occurrence is impossible with the shift sequence planner. The Belgian Police

currently uses the shift sequence planner followed by manual assigninents and improvements.

5.6.2.4 Kennemer Gasthuis Haarlem

User settings

Tests are performed on a department with 28 employees, a four-week non-cyclical schedule with
4 different shift types on weekend demand. Employees are allowed to work a maximum of two

out of four weekends.

The Kennemer Gasthuis Haarlem has defined the following soft constraint:

o Give every employee preferably one weekend of shifts of every shift type

This rule stimulates both an equitable division of the number of shifts and an equitable division

of shift types.

It is remarkable that this user has not defined any rules on stand-alone weekend shifts or consec-
utive shifts of the same type, while they say to have a strong preference for these two criteria.
The reason is that this user always uses the shift sequence planner for weekend shifts, which pre-
vents the planner automatically from assigning stand-alone weekend shifts or consecutive shifts

of different types.

64 5. Computational results

scenario ‘ Performance indicators ‘
remaining . . weekends
. equitable | equitable . .
shifts o o single with
division division .
(week- . weekend | different
number shift . .
end . shifts shift
of shifts types
days) types
current schedule 0 46 94 0 0
shift sequence 0 52 88 0 0
planner
optimization engine 7 48 102 13 15

for complete schedule

optimization engine 0 54 91 11 23
for weekend shifts
opt. eng. weekend 0 50 90 10 24

shifts non-weekend

rules off

Table 5.6: Results Kennemer Gasthuis Haarlem

Results

Table 5.6 shows the results for the Harmony tests on the case of the Kennemer Gasthuis Haarlem.
In this case the results of the current schedule are approximately equal to those of the shift
sequence planner. This is a logical result, because this user uses the shift sequence planner and
hardly makes any manual adjustments. The optimization engine for the complete schedule is
the only scenario that results in remaining shifts for this case. On the equitable division of the

number of shifts and shift types all five scenarios have comparable scores.

5.6.2.5 Conclusions on case study results

The current possibilities in Harmony give diverse results for the three cases. The results of the
shift sequence planner and the optimization engine with non-weekend rules turned off are closest
to the current case schedules. We do have to make a remark on the number of remaining shifts
when using the shift sequence planner for some cases. Remaining shifts are unacceptable for

users, so this method is not always preferable either.

Although it appears to be a good idea to combine these two scenarios: use the shift sequence
planner and turn off all non-weekend rules, this is not appropriate for all cases. In the case of
the Belgian Police the non-weekend rules were turned off in all scenarios and the result for the

shift sequence planner was not good at all.

Comparison results for case study 65

An important disadvantage of turning off the non-weekend rules is the workload for users. Turning
on and off rules is quite labor-intensive, whereas users strongly prefer to perform as least actions
as possible. Another disadvantage of all shown scenarios is that most of them are worse than the
current schedules, which leads to the conclusion that manual improvements seem to be inevitable

with the current alternatives in Harmony.

We have discussed the disadvantages of the current possibilities in Harmony. As this section
shows that the performance of Harmony differs per case, users should do some try-and-error for
each case to see what scenario works best. The goal of the Weekend Planner is to take away the

described issues. Section 5.6.3 shows the results for the cases using the Weekend Planner.

5.6.3 Comparison Harmony results with Weekend Planner results

This section gives the results of the Weekend Planner for the three cases and compares these
results with Harmony’s results. We use the best found scenario for the Weekend Planner: the
alternative design without the select first shift in time-line-selection rule. We use the following
algorithm settings: precision =1, samples = 20, local search iterations = 5. The Weekend Planner

solves all three cases in 15-30 ms.

Table 5.7 shows the value of the performance indicators for the results of the Weekend Planner.
For all three cases the Weekend Planner has zero remaining shifts. This is, at least for Calgary
Health Region and the Belgian Police, an important improvement in comparison with Harmony’s

results.

For Calgary Health Region the result of the other four performance indicators is equal to their
current, completely manually made, schedule. According to them, this is the optimal score
achievable for this instance. We can thus conclude that the Weekend Planner performs very well
for this case. The schedule of the Weekend Planner is 400% better than the best scenario in
Harmony for the equitable division of shift types.

For the Belgian Police the result for the equitable division of the number of shifts is an improve-
ment of more than 57% compared to their current schedule and more than 68% compared to
Harmony’s best result.. The result for the equitable division of shift types is around 23% worse
than their current schedule and 22% better than Harmony’s best result. As described earlier, we
expect the result for this performance indicator to improve with a more extensive local search.
We have to remark here that Harmony’s best result on these two performance indicators resulted

in 14 remaining shifts and is thus even worse than the percentages mentioned here.

For the Kennemer Gasthuis the results are slightly better than their current schedule and Har-

66 5. Computational results
case Performance indicators ‘
remaining . . weekends
. equitable | equitable . .
shifts o o single with
division division .
(week- . weekend | different
number shift . .
end . shifts shift
of shifts types
days) types
Calgary Health 0 0 6 0 0
Region
Belgian Police 54 148
Kennemer Gasthuis 39 78

Table 5.7: Weekend Planner results for case study

mony’s best schedule (an improvement of 15% on the equitable division of the number of shifts

and an improvement of 17% on the equitable division of shift types).

Overall, we conclude that the Weekend Planner performs very well for the three cases. The results

on the performance indicators are equal to or better than the current schedules and are all better

than Harmony’s results. The improvement in terms of percentages varies per case from 15% to
68% for the equitable division of the number of shifts and from 17% to 400% for the equitable

division of shift types.

Chapter 6

Conclusions and recommendations

This research is performed within ORTEC’s Product Knowledge Center. The objective is to
develop a method to improve the assignment of weekend shifts for ORTEC Harmony such that
the total number of unassigned shifts and the penalties on key performance indicators are reduced.
We have developed a construction heuristic, the Weekend Planner, to reach this objective and
we have tested this solution in computational experiments. This chapter discusses the main

conclusions and recommendations.

6.1 Conclusions

The current problems with the assignment of weekend shifts in Harmony’s automatic plan func-
tionalities follow from a case study on three real-life cases. These problems include schedules
in which demand is not satisfied and non-equitable schedules in which employees do not work
approximately the same number of shifts and shift types. In addition, the current alternatives in

Harmony to create suitable schedules are very time-consuming.

Based on the problems found when using Harmony’s automatic plan functionalities, we have
modeled the Weekend Scheduling Problem (WSP) described in this research using a Quadratic
Integer Programming formulation. The requirements for the solution for the WSP consist of
solving the current problems in Harmony and it has to be possible to embed the solution in
Harmony. Unsatisfied demand and equitability of a schedule are considered as key performance
indicators. We have developed a Weekend Planner to solve the WSP. The Weekend Planner
consists of a construction heuristic followed by a local search method. The construction heuristic

iteratively selects a shift and a resource to assign that shift to. The selection of a shift is based on

67

68 6. Conclusions and recommendations

three consecutive selection rules that assess the flexibility of a shift. The selection of a resource
is based on three consecutive selection rules that on one hand assess the flexibility of a resource
and on the other hand stimulate the equitable division of the number of shifts. The final local
search method strives for a more equitable division of shift types. A random sampling method

that iterates over the Weekend Planner creates multiple schedules and selects the best one.

We have tested the robustness of the Weekend Planner on 400 randomly generated instances,
based on values often seen in practice. These tests show that the Weekend Planner is reasonably
robust. It is mainly sensitive for cyclical schedules in which every employee has to work its
maximum number of weekends and which have an irregular combination of schedule length and
constraint on the number of weekends an employee is allowed to work. The sensitivity analysis
also shows that the higher the number of samples, the better the resulting schedules. The analysis
also shows that the higher the number of samples, the smaller the improvement is. We have used

20 samples per schedule, more samples only results in minor improvements.

Tests on three real-life cases from practice to compare the Weekend Planner with Harmony show
that the Weekend Planner outperforms Harmony on all aspects. The Weekend Planner creates
feasible schedules with no unfulfilled demand, and an improvement in the equality of the number
of shifts (15% to 68%) and in the equality of shift types (17% to 400%). As the results of the
Weekend Planner are according to users’ requirements, no or little manual improvements have to

be made.

Concluding, we provide a solution that improves the assignment of weekend shifts compared to
the current results of ORTEC Harmony. The Weekend Planner is less time-consuming and thus

a user-friendly method.

6.2 Recommendations

Based on the conclusions in the previous section, we give some recommendations for ORTEC in

this section.

We recommend ORTEC to embed the Weekend Planner in the current structure of Harmony. The
third shift selection rule should not be implemented as better results are obtained without this
rule. We recommend to give Harmony users the choice whether they want weekend sequences to
start on Fridays or on Saturdays, and to give them the possibility to define sequences themselves.
When the user does not define sequences, the Weekend Planner should use the standard sequences

as proposed in this research.

The current structure of the Shift Sequence Planner can be used for implementation of the

Recommendations 69

Weekend Planner. The construction heuristic of the Shift Sequence Planner then has to be
replaced by the Weekend Planner. Defined shift sequences for weekend shifts should be scheduled

with the Weekend Planner, other sequences are then scheduled by the current method.

We recommend to adjust the optimization engine of Harmony in such a way that it first schedules
all weekend shifts before starting with the remaining shifts. As first step, the optimization engine
should call the Weekend Planner. If the user has defined weekend sequences, it should use these.

If not, it should use the standard sequences as defined in this research.

We recommend to use the local search method that is currently available in Harmony as post-
processing instead of the local search method of the Weekend Planner. Harmony’s local search
is more extensive than the local search we have used in the Weekend Planner and it also tries to

minimize the number of remaining shifts, which our local search does not do.

Bibliography

Burke, E., P. de Causmaecker, G. van den Berghe, H. van Landeghem, "The State of the Art of
Nurse Rostering’, Journal of Scheduling 7, pp. 441-499, 2004.

Fijn van Draat, L., G. Post, B. Veltman, W. Winkelhuijzen, "Harmonious personnel scheduling’,

Medium Econometrische Toepassingen 14, pp 4-7, 2006.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, 1989.

Kolisch, R. and A. Drexl, ’Adaptive Search for Solving Hard Project Scheduling Problems’, Nawval
Research Logistics 43, pp 23-40, 1996.

Van der Put, M., Master thesis, Delft University of Technology, 2005.

70

Appendix A

Preliminary study - Calgary Health
Region

A.1 Introduction to Calgary Health Region

The Calgary Health Region is one of the largest fully-integrated, publicly-funded health care
systems in Canada. Serving a population of over 1.2 million people, the Region is home to some
of the fastest growing communities in the country. The Calgary Health Region (CHR) serves the
city of Calgary as well as a group of smaller communities - a total area the size of Switzerland.
29,000 employees and 2,300 physicians provide service in over 100 locations, including 12 hospitals,
4 comprehensive health centers, 41 care centers, and a variety of community and continuing care

sites.

In March 2008, CHR purchased Harmony from ORTEC. They require Harmony to be able to
automatically create cyclical rosters, for which ORTEC needed to make adjustments in Harmony;,
as this was not yet available in the software. The adjustments to be made are split up in different
phases. In phase 1, delivered in the first week of August 2008, the functionality of the optimization
engine for cyclical schedules is integrated in the software. In phase 2, delivered in November 2008,
more functionalities that are necessary for CHR will be integrated. This preliminary research
has taken place in September-October 2008. Although phase 2 was not delivered yet, Harmony
should already have enough functionalities to create correct cyclical schedules. A cyclical schedule

is also called a rotation, the personal schedule of an employee is called a rotation line.

The Rotation Management team of CHR has tested the new software as delivered in phase 1.

Except for the functionalities to be delivered in phase 2, working with the phase 1 version of

71

72 Appendix A. Preliminary study - Calgary Health Region

Harmony did not completely satisfy the needs of CHR. It was not clear yet what was exactly
their problem. From the 23rd of September 2008 until the 24th of October 2008, I have visited the
Rotation Management Team and worked with them to define their problem and find a solution

for it.

The Rotation Management Team of CHR makes rotations for departments of hospitals in the
Health Region that request a new cyclical schedule. The Rotation Management Team creates a
general cyclical schedule, which will be converted to a daily schedule by the department schedulers.
Lead times tend to be quite long at this moment. From start to end it takes approximately 3
months to create a new cyclical schedule. Waiting time for a new cyclical schedule is four to eight
months. The Rotation Management Team wants to shorten lead times. Therefore, they have
purchased Harmony to support the consultants with creating cyclical schedules, which should

shorten cycle time and thereby also waiting time and thus total lead time.

This study analyzes the working process of the Rotation Management Team (Section A.2), the
control of Harmony (Section A.3) and the performance of Harmony at CHR (Section A.4). Each
section describes the current status, the changes we have made and gives a conclusion on the

subject.

A.2 Process

A.2.1 Current process

The schedules of employees of CHR are cyclical. Depending on the unit they work 4, 8, or 12
week cyclical schedules. Every employee has its own unique line in the schedule (called a rotation
line), so CHR in general does not use block rotations. With a block rotation we mean a cyclical
schedule in which every employee works the same line, but every employee starts in a different
week of the line. The cyclical schedule will be used until the manager feels the need to change
the cyclical schedule, which can for example be forced by complaints of employees. A change
of employees or a change in union rules does not necessarily have to be a reason to change the
cyclical schedule. A vacant position will be posted including the rotation line to be worked. A
change in union rules might result in cyclical schedules not being contract-compliant anymore,
but the cyclical schedule only has to be adapted when employees request it. They might just as

well like their rotation line, although it is not contract-compliant anymore.

Cyclical schedules are generally made by the unit managers. When they have a cyclical schedule
they want to use, they send it to their scheduler, who inputs the cyclical schedule in ESP, the
software CHR currently uses for daily planning. In 2006 CHR set up a Rotation Management

Process 73

Team that supports managers with their cyclical schedules and the scheduling process. The
Rotation Management Team works on a request-basis. A manager of a unit within CHR can
request a consultation of the Rotation Management Team when they want to review or renew
the cyclical schedule of their unit. The Rotation Management Team consists of five rotation
consultants, a rotation analyst and a rotation assistant. The rotation analyst and the rotation
assistant support the consultants, who are responsible for making the cyclical schedules and are
the direct contact persons for the unit managers. The next paragraph discusses the consultation

process in more detail.

A consultation starts when a manager submits a request form. The manager provides information
about the current cyclical schedule, possible grievances, vacancies and expected time line when
filing a request. One of the consultants then gathers unit information from the unit scheduler
in the scheduling office, does a preliminary analysis of the current cyclical schedule and plans
an initial meeting with the unit manager. In this initial meeting the manager provides more
detailed information on the unit, for example the occupancy requirements, and challenges. The
unit manager and the consultant also discuss the current cyclical schedule, what they both do and
do not like about it. The consultant reviews the schedule mainly from a contract perspective, the
manager mainly from an employee and unit perspective. They set a time line for the process of
developing a new cyclical schedule, discuss the next steps, and discuss whether the manager wants
the consultant to ask the unit employees for their preferences in a new schedule or not. In most
cases the manager has to gather additional information after the first meeting. Meanwhile the
rotation analyst gathers additional information on budget, actual needed staff based on workload
data, etc. The consultant sets up a requirements summary, presents the project and its purposes
to the employees of the unit and, where applicable, hands out the employee survey. Manager and
consultant then have a review meeting to finalize the data, after which the consultant builds a new
cyclical schedule, which takes approximately 1-5 days, depending on the size and complexity of
the unit. More discussions with the manager follow to improve and finalize the cyclical schedule.
In practice this results in an endless ongoing iterative process of building a cyclical schedule,
managers changing their preferences, consultants building again, managers coming up with new

preferences, etc.

In general, rotation lines are built for certain employees, so employee requests are applied to a
specific line in the cyclical schedule. However, when a cyclical schedule is ready, the employees
have to approve their line. If only one of the employees does not approve his/her rotation line, all
employees have to pick a line by seniority. Seniority is based on the number of years the employee
has been working for the same union. Finally, a by all employees approved cyclical schedule is

sent to the scheduler, who inputs the cyclical schedule in ESP.

74 Appendix A. Preliminary study - Calgary Health Region

Currently, the consultants make the cyclical schedules using an FExcel template. In the template
various calculations are shown. Union rules have to be checked manually. When consultants start
making a cyclical schedule, they first plot the weekends, followed by the full time lines and then
they plot the remaining shifts. Obviously, this is a time consuming process. Harmony can reduce
the time spent on cyclical schedules drastically by checking the rules automatically and using the

optimization engine.

A.2.2 Conclusion

The iterative process of managers defining preferences and consultants building a cyclical schedule
is not suitable in combination with the use of Harmony, as this will increase the workload con-
siderably for the rotation analyst, who has to input unit preferences. A possible way to improve
processes in combination with Harmony is to first analyze what information the consultants need
from the managers and what subjects managers need to decide on. The consultants can do this
by keeping track of the subjects that managers bring up during the iterative process. The con-
sultants should make a list of all information they need to gather from managers and only start
building the cyclical schedule once they have all necessary information. They should also make
clear to managers that after a certain deadline, preferences cannot be changed anymore. This
will mean that a consultant has multiple meetings with a manager before starting to build the
cyclical schedule, instead of starting to build after the first meeting as it is right now. Building
the cyclical schedule will be done later in the process compared to the current situation, but will

be considerably faster as it is not an iterative process anymore.

When implementing the new software, CHR obviously has to review their roles and has to decide
on responsibilities in the new process. Based on this study, the advice to CHR is to implement
the following roles and responsibilities. Before the first meeting between a consultant and an
unit manager, the rotation assistant creates the unit in Harmony, inputs all employees and the
corresponding data, the current shifts, occupancy requirements, and the current cyclical schedule.
The consultant then takes information about the current cyclical schedule to the unit manager
and discusses it. When changes in preferences, shifts, baseline and employee data have become
clear, the rotation assistant updates the unit in Harmony. After discussing the requirements with
the consultant, the rotation analyst creates work agreements for the unit and sets up scheduling
criteria, including unit preferences. The consultant is responsible for making a new cyclical

schedule.

Control G

A.3 Control

A.3.1 Harmony changes

As Harmony did not include an optimization engine to create cyclical schedules, ORTEC has
made changes to Harmony for CHR. The main new functionality in phase 1 was the automatic
planner for cyclical schedules, delivered in July 2008. Another problem CHR came across is that
the minimum demand of a unit mostly does not contain enough shifts to cover the employees FTE.
Therefore, CHR needs to add shifts over baseline to complete employees FTE’s. ORTEC will be
able to include functionalities for these additional requirements in phase 2. More functionalities
that this study has shown CHR needs in the cyclical schedule, such as visually showing certain
data and calculations and using daily requirements for combinations of 8 and 12 hour shifts in

one unit (as there is overlap between those shifts), will be addressed in phase 3 or later.

A.3.2 Definition of scheduling requirements in the software

The scheduling requirements in CHR consist of union rules, work agreements and general schedul-
ing criteria. Employees of CHR belong to four different unions: UNA, HSAA, AUPE GSS, AUPE
AUX. It depends on the position to which union an employee belongs. Most employees belong
to either UNA (Registered Nurses) or AUPE AUX (Licensed Practical Nurses). Different labor
rules are set up for each union, depending on the number of hours per shift (8, 10 or 12), so i.e.
UNA 8, UNA 12, etc. Work agreements are linked to individual employees and contain informa-
tion about the shift pattern to be worked, the preferred number of shifts in a row (depending on
FTE), and the minimum number of days to be worked (depending on FTE and union rules, i.e.
40% day shifts for UNA employees). Examples of shift patterns are: only evenings, only nights,
a day/evening pattern or a day/night pattern.

The setup of the above described work agreements was not done efficiently and the setup of labor
rules was not a correct translation of CHR processes and rules to the software. To improve both
of these areas, we have changed the setup of the work agreements to be more efficient and robust.
To every employee now several work agreements are added. The general scheduling criteria are
used unit-wide for preferences, such as no stand-alone shifts, working complete weekends (no
parts of it), etc. Together with one of the CHR employees I have corrected and tested the labor

rules, which has resulted in a correct translation of the rules in Harmony.

76 Appendix A. Preliminary study - Calgary Health Region

A.3.3 Conclusion

The members of the Rotation Management Team have significantly improved their knowledge of
the use of Harmony during the month we have worked together. Their knowledge currently is at
a sufficient level to start working with Harmony. All rules and regulations are set up correct in

Harmony.

A.4 Performance

A.4.1 Quality of cyclical schedule

While testing the software in Calgary, the software did not give a satisfying result. We have
tested on a unit that one of the consultants already made a new cyclical schedule for, manually.
Even after running for a night, Harmony was not able to come up with a result close to the
manually made cyclical schedule. The result was a higher number of unassigned shifts (9 in
Harmony compared to 1 in the manually made cyclical schedule) and a lower quality of the
cyclical schedule (more penalties on criteria in the Harmony cyclical schedule). We found two

main bottlenecks in Harmony:

e not being able to create a good cyclical schedule for the full-time lines

e not being able to assign all weekend shifts

In the manually made cyclical schedule it is possible to achieve a good line for full time employees
and to assign all weekend shifts. To overcome these two main problems for CHR, I have come up
with a short-term solution. This solution consists of 3 consecutive steps. When performing these
steps, the cyclical schedule Harmony finds is considerably better than just using the optimization

engine.

1. Input full time lines manually.

2. As the weekends are quite tight in most cases, it is best to optimize them separately. So
run the optimization engine for the weekend shifts. Weekends then have to be tweaked
manually, to divide them equally over all employees and to assign weekends Harmony could

not assign yet. In most cases you can find those assignments manually.

3. Use the optimization engine to plan all remaining unassigned shifts. The consultants will
then start tweaking to increase the quality of the schedule, as there always are unit specific

preferences Harmony cannot deal with.

Performance 77

Although this 3-steps approach improves the quality of the cyclical schedule and reduces the time
spent on making a schedule, the preferred situation of course would be that Harmony could do
this automatically. Besides that, we still encounter some problems when using the planners in the
cyclical schedule in Harmony. The shift sequence planner only plans the shift sequences and does
not optimize them. This results in an inefficient assignment of shift sequences, what makes the
shift sequence planner at this moment a tool with little value for the cyclical schedule. Another
important issue is optimizing the weekends using the optimization engine in step 2. Planning
the weekend shifts results in a reasonable assignment, although Harmony is not able to plan all

weekend shifts, whereas this is possible by manual assignment.

A.4.2 Conclusion

As described in Section A.4.1 planning the weekends and full time lines are difficulties in Harmony.
It is quite intuitive that Harmony cannot find the full time lines, as only 2 or 3 lines are contract
compliant whereas a huge number of lines exist that Harmony tries to fill in. The chance that
Harmony finds exactly one of the few contract compliant lines is quite small. Inputting the full
time lines manually thus seems to be most efficient. For the assignment of weekend shifts it is
quite important to find a solution in Harmony. The impact of having a bad weekend assignment

is enormous, for several reasons both in- and outside of Harmony.

Harmony related reasons are that weekends are involved in many rules, which makes the assign-
ment of a vacant weekend shift complicated once all other shifts are planned. Weekends are quite
tight in most cases. What we mean by ’tight’ is that there are just as much weekends to be
assigned as total number of weekends employees are allowed to work. This means that only a
few possible assignments for the weekends exist. The need for planning weekends first, separately

from all other shifts, arises from the tightness of weekends.

In meetings with unit managers in Calgary we also found several non-Harmony related reasons
for the large impact of a bad weekend assignment. First, having vacant shifts on weekends means
that you have to find employees to cover those shifts. An employee rather covers a regular day
shift than a weekend shift and on a weekend you have to pay irregularity allowance, which does
not happen on regular days. Covering weekend shifts is thus more complicated and costly than
regular shifts, so managers rather not have vacant shifts on the weekends. Second, weekend shifts
have a large impact on the private life of employees. Weekends are the moments most other
people do not work, children do not go to school, etc. Most employees thus want to have at least
some weekends off to spend time with family or friends. This importance of weekends also calls

for a fair and equitable division of weekend assignments among employees, so not one employee

78 Appendix A. Preliminary study - Calgary Health Region

working three weekends and somebody else working just one weekend.

Considering the importance of having a good weekend assignment combined with the inability
of Harmony to deal with weekends in a satisfying way leads to the conclusion that we have to

improve Harmony on the part of weekend assignment.

Appendix B

Experimental results

79

Appendix B. Experimental results

80

wol |

I \
ol ||] |- b o
o] [L] o] _ i]
ol |1l [y FETE Ul o T N T | I
wol [T M RV A AT IR ARV e AV I
of 1l CIA T TP WYY PRIARTIRWATATAN

/ WV AU WY VT LY T WY U WAL T L N WAL VY .

0
Replications

— Objective value —— Score equal amount of shifts ___—— Score equal division of shift types _J

Figure B.1: Total penalty for random instances, specified in penalty for equal number of shifts and equal division of shift types

Appendix C

Sensitivity analysis

C.1 Instance size

This section analyzes the influence of the instance size on the results of the Weekend Planner.
The instance size is determined by the number of employees and the number of weeks (length of
the schedule). See Figures C.1 - C.3 for the graphs on the number of employees and Figures C.4
- C.6 for the graphs on the number of weeks.

Number of employees

The number of employees does not have an obvious influence on the remaining shifts or on the
deviation from the optimal value. The number of remaining shifts and the absolute deviation from
optimal slightly increase with a higher number of employees. As instances with more employees

have more shifts to schedule, this is a logical increase.

Number of weeks

The number of weeks appears to have more influence on results than the number of employees.

The higher the number of weeks, the higher the deviation from optimal (both relative as well as

81

82 Appendix C. Sensitivity analysis

140

130

120

110

100
20
80 d
70 -

50 2
40
30
20 . . - .

10 L] . . .

0 H . : s s s s

.
.
.
.
XY
.
.

T T T T T T T T T T T T T
10 15 20 25 30 35 40 45 50 55 60 65 70
Number of employees

e Relative deviation from optimal .

Figure C.1: Relation between number of employees and relative deviation from optimal solution

650 e
600
550
500
450
400
350
300
250
200
150

100 . .
50 : o
$ et edoessss HIPE

T
10 15 20 25 30 35 40 45 50 55 60 65 70
Number of employees

e Absolute deviation from optimal .

Figure C.2: Relation between number of employees and absolute deviation from optimal solution

Availability 83

34
32

28
26
24
22
20
18
16
14
12

©

oN MO
>
3

T
10 15 20 25 30 35 40 45 50 55 60 65 70
Number of employees

* Remaining shifts

Figure C.3: Relation between number of employees and remaining shifts

absolute). The remaining shifts appear to be equal sensitive for instances of 6, 8, and 10 weeks.
Instances of 13 weeks appear to have a better result on remaining shifts. The schedule lengths of
6, 8, and 10 weeks have relatively high remaining shifts, but no clear correlation is visible. That is
why we assume that there is another parameter that influences the number of remaining shifts in
combination with certain schedule lengths. The next sections analyze possible other parameters

and combinations of parameters

C.2 Availability

This section analyzes the influence of the availability of employees on the results of the Weekend

Planner. See Figures C.7 - C.9 for the corresponding graphs.

We expect that the lower the availability of employees, the more difficult the instance is. For
the deviation from optimal this expectation appears to be true. The lower the availability, the
higher the deviation from optimal is. On the contrary, the availability does not have an obvious

influence on the number of remaining shifts.

84 Appendix C. Sensitivity analysis

140
130
120
110
100
90
80
70 -

50 °
40
30
20
10

9 10 11 12 13
umber of w eeks

IS
o
o]
~

* Relative deviation from optimal .

Figure C.4: Relation between number of weeks and relative deviation from optimal solution

650 s
600
550
500
450
400
350
300
250
200
150 -
100 -

50

9 10 11 12 13
Number of w eeks

IS
3
o
~
o]

* Absolute deviation from optimal .

Figure C.5: Relation between number of weeks and absolute deviation from optimal solution

Availability

85

AT eSS

o-jeeee

9 10 11 12
Number of w eeks

* Remaining Shifts

Figure C.6: Relation between number of weeks and remaining shifts

13

140

130
120

110
100

90
80

70 -
60 -

40

30
20

10

®cscsce |we
moe
-
X3

Availability

e Relative deviation from optimal .

Figure C.7: Relation between availability and relative deviation from optimal solution

86 Appendix C. Sensitivity analysis

650 =
600
550
500
450
400
350
300 .
250 °
200
.

150 - . . - .
100 . -

50 . s 3 * . .

6 i] i i i i i i :
0 1

Availability

o Absolute deviation from optimal |

Figure C.8: Relation between availability and absolute deviation from optimal solution

C.3 Scope

This section analyzes the influence of the scope for the maximum number of allowed weekends to

work on the results of the Weekend Planner. Figures C.10 - C.12 show the corresponding graphs.

The scope does not have an obvious influence on the deviation from optimal, all scopes have
comparable results, where 2 out of 4 weekends and 3 out of 4 weekends have slightly worse
results. The graphs show a more obvious correlation for the number of remaining shifts. A scope

of 2 out of 4 weekends and 2 out of 5 weekends result in the highest numbers of remaining shifts.

Scope

34
32
30 .
2
26
24 .
22 .
20
18 °
16
14 .
12 . .
10
8 hd .
: . . : .
4 . .
2 : . . . : .
0 T
0
Availability
Figure C.9: Relation between availability and remaining shifts
140
130
120
110
100
90
80 .
H .
70 .
60 e
50
:
40
304
o 3]
20 J o
10 4 . ’
0 i i '
0 1 2 3

Scope (0 = max 1/2 w eeks, 1 = max 2/4 w eeks, 2 = max 3/4 w eeks, 3 = max 2/5 w eeks)

e Relative deviation from optimal .

Figure C.10: Relation between scope and relative deviation from optimal solution

88

Appendix C. Sensitivity analysis

650

600

550
500

450

400
350

300

200

150

1004

50

0 1 2

Scope (0 =max 1/2 w eeks, 1 = max 2/4 w eeks, 2 = max 3/4 w eeks, 3 = max 2/5 w eeks)

* Absolute deviation from optimal .

Figure C.11: Relation between scope and absolute deviation from optimal solution

O FFTTITTT T

1
Scope (0 = max 1/2 w eeks, 1 = max 2/4 w eeks, 2 = max 3/4 w eeks, 3 = max 2/5 w eeks)

* Remaining Shifts

N-leeoe

Figure C.12: Relation between scope and remaining shifts

w-lseese

Tightness of schedule 89

140
130
120
110
100

90

80

. 8
70 o
60 e
50 .
. . . o
40
o : : :
20 ° . . . M . . E
. . . o
H o
10 . s, H - - H
0 . s &] s M <
T T T T T T T T T T T T T T T T T T i
01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 08 09 095 1

Weekends/ maximum nr per employee

e Relative deviation from optimal .

Figure C.13: Relation between tightness of schedule and relative deviation from optimal solution

C.4 Tightness of schedule

This section analyzes the influence of the tightness of the schedule on the results of the Weekend
Planner. The tightness of the schedule is calculated as the average number of weekends per

employee divided by the maximum number of weekends employees are allowed to work. This

(number of weeks) - (mazimum number of weekends per period) Figures C.13 -

maximum is calculated as: (period for which mazimum is calculated)

C.15 show the corresponding graphs.

The tightness of the schedule has an obvious influence on both the deviation from optimal as
well as on the number of remaining shifts. The deviation from optimal increases approximately
linearly with an increase in tightness, where schedules with a maximum tightness of 1 also have
the largest deviation. The number of remaining shifts increases only slightly with an increase
in tightness, but the number of remaining shifts for schedules with a tightness of 1 is extremely

high. Almost all instances with unacceptable high remaining shifts, have a tightness of 1.

90 Appendix C. Sensitivity analysis

650 v
600
550
500
450
400
350
300

200
150 e

100 -
50 -

o ove o

T T T T
0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95
Weekends/ maximum nr per employee

Jome o

e Absolute deviation from optimal .

Figure C.14: Relation between tightness of schedule and absolute deviation from optimal solution

T T T T T T T T T
0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95
Weekends/ maximum nr per employee

e Remaining shifts

X3
.
Jo o
.
8000000000000

Figure C.15: Relation between tightness of schedule and remaining shifts

Cyclical 91

140
130
120
110
100
90
80
70
604
50
40
30
20 i
10

.

® o emoce o 0 o

Cyclical (O=false, 1=true)

| e Relative deviation from optimal .

Figure C.16: Relation between cyclical and relative deviation from optimal solution
C.5 Cyeclical

This section analyzes whether a schedule being cyclical or not has an influence on the deviation

from optimal and on the remaining shifts. Figures C.16 - C.18 show the corresponding graphs.

For both cyclical and non-cyclical schedules the deviation from optimal is comparable, with a
slightly higher deviation for cyclical schedules. This is explained by cyclical schedules being more
complex as constraints for the end of the schedule have to be checked with the beginning of the
schedule. For non-cyclical schedules this is not the case, which makes non-cyclical instances a
little easier to solve. The difference in complexity between cyclical and non-cyclical schedules is
best shown on the side of the remaining shifts. The number of remaining shifts is clearly higher

for cyclical schedules than for non-cyclical schedules.

92

Appendix C. Sensitivity analysis

650

600
550

500

450

400

350
300

200
150

100

50

Figure C.17: Relation between cyclical and absolute deviation from optimal solution

Cyclical (O=false, 1=true)

| e Absolute deviation from optimal .

o-[FFTT

Cyclical (O=false, 1=true)

* Remaining shifts

Figure C.18: Relation between cyclical and remaining shifts

(8000000000000

Cyclical

93

40

35

30

25

20

15

10

8 9
Number of Weeks

* Remaining shifts

10

11 12

13

Figure C.19: The number of remaining shifts per schedule length for schedules with a tightness
of 1 and a scope of working a maximum of 2 out of 4 weekends

32

30

28

26
24

22

20

18

16
14

12

oN A~ O ®

Figure C.20: The number of remaining shifts per schedule length for

8 9
Number of Weeks
* Remaining shifts

10

of 1 and a scope of working a maximum of 2 out of 5 weekends

11

12 13

schedules with a tightness

94

Appendix C. Sensitivity analysis

Appendix D

Regret-based random sampling

95

Appendix D. Regret-based random sampling

Shift Resource
w1 wa w3 wy wa w3 v Average | % of in- | Average | Average % of
re- stances relative absolute non-
maining with re- devia- devia- optimal
shifts maining tion tion in-
per shifts from from stances
instance optimal optimal
1 0 0 0.5 1 05 0 2 1.29 15% 14.9% 35.5 81.25%
1 0 0 0.5] 04 | 0.1 2 1.455 17% 12.4% 30.8 78%
1 0 0 0.5 103 | 0.2 2 1.545 16.5% 11.6% 29.2 78%
1 0 0 0.5 103 | 0.2 3 1.325 16.5% 11.1% 28 79%
1 0 0 0.5 103 | 0.2 4 1.155 14% 10.9% 284 7%
1 0 0 0.6 | 0.3 | 0.1 2 1.52 19.5% 11.1% 28.6 80%
1 0 0 0.7 1 02| 0.1 2 1.6 18.5% 9.9% 25.9 78.5%

96

Table D.1: Results for Regret-based random sampling in the Weekend Planner

