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1. Introduction

1 Introduction

Mathematical optimization can be used to solve many economic problems
concerning logistics and production. Collecting all information relevant for
the problem, one can ‘simply’ select a solution optimizing a certain global
objective from some set of available alternatives. However, quoting Kan-
torovich [7], many of these classical optimization problems do not relate to
realistic situations: “I want to emphasize again that the greater part of the
problems of which I shall speak, relating to the organization and planning
of production, are connected specially with the Soviet system of economy
and in the majority of cases do not arise in the economy of a capitalist so-
ciety”. Even more, “There [capitalism] the choice of output is determined
not by the plan but by the interests and profits of individual capitalists”.
Kantorovich is emphasising the fact that in capitalist economics, solving
economic problems where certain decisions are left to individuals instead
of a central authority, using classical optimization, is useless. For example,
people may have a personal objective that induces a preference that does
not match with the performance of the system as a whole. In those cases
people might, based on their own and other peoples preferences, act strate-
gically in order to manipulate the decision made by the central authority.
Due to this strategic behaviour of individuals, classical optimization fails.
The mathematical models to analyse such strategic situations are studied in
Game Theory [12, 11].

A special class of games in Game Theory are games with incomplete in-
formation. Whereas otherwise, the preferences of individuals are assumed to
be known to other individuals as well as to the central authority, in games of
incomplete information the actual preferences of people are private informa-
tion. In this type of games, (additional) manipulation of people may occur
by reporting a false preference. An additional complication in comparison
to ‘normal’ games, is that individuals do not know which decisions are ben-
eficial for other people, as this depends on those peoples’ preferences. To
be able to optimize a given objective for games with incomplete information
we need a different optimization technique. In 2007 the Nobel prize in Eco-
nomics was awarded to Leonid Hurwicz, Eric Maskin, and Roger Myerson
for having laid the foundations of mechanism design theory [1]. Quoting
Sandholm [13]: “Mechanism design is the art of designing the rules of the
game such that a socially desirable outcome is reached despite the fact that
each agent acts in its own self-interest”. In other words, mechanism de-
sign helps to optimize some global objective, accounting for the fact that
individuals might, based on private preferences, act strategically.
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In this thesis we consider a classical single machine scheduling problem.
Given is a set of risk-neutral jobs that need to be processed non-preemptively
on a single machine, that can handle only one job at a time. These jobs act
selfishly as they all have a personal objective: to be processed as soon as
possible. Each job has a processing time p; and a disutility w; for waiting
one unit of time, which both can be private information. We refer to the
private information of a job as its type. Although jobs do not known the
actual type of other jobs, we assume that they do share common beliefs
about other jobs’ types in terms of (discrete) probability distributions. An
allocation rule, taking the role of central authority, assigns to each (possibly
untruthful) report of jobtypes, a schedule o, denoting the order in which the
jobs are processed on the machine. We assume that jobs’ preferences over
possible schedules are expressed as —w;S;(0), where Sj(0) is the start time
of job j in schedule o.

Depending on their disutility for waiting, jobs are compensated for wait-
ing in the form of a payment. In this setting a mechanisms consists of an
allocation rule and a payment scheme, defining the payments jobs receive
to be compensated for waiting. The payments influence the objectives of
jobs as follows. Let us denote the utility of job 7 when schedule ¢ is chosen
and it receives payment 7;, by m; —w;S;(0), referred to in the literature as
quasi-linear utility with respect to payment 7; [9]!. We assume that jobs
seek to optimize their (expected) utility. We only consider direct revela-
tion mechanisms, that is, mechanisms in which the only decision made by
jobs, is the report of their type. Even more, by making use of Myersons’
famous revelation principle [10], we may restrict ourselves to truthful or in-
centive compatible mechanisms, which are mechanisms where jobs have the
incentive to report their type truthfully. More specific, Bayes-Nash incentive
compatible (BNIC) mechanisms motivate jobs to report truthfully, provided
that other jobs also do so, whereas (stronger) dominant strategy incentive
compatible (DSIC) mechanisms motivate jobs to report truthfully regardless
of what other jobs do. In this setting our goal is to find mechanisms that
minimize the expected total payment made to the jobs, while motivating
jobs to report their weight truthfully (either BNIC or DSIC).

This problem, mainly the special case of 1-dimensional types (public
processing times p; and private w;), has been considered earlier in a paper
by Heydenreich et al. [5]. They prove that serving jobs in order of non-
increasing ratio of modified weights over processing times, w;/p;, is optimal

Note that for a given schedule o, the utility is also linear in wj, i.e. jobs have linear
utility.
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[10], i.e. minimizes the payments made to the jobs while being Bayes-Nash
incentive compatible. Moreover, Heydenreich et al. [6] prove that Bayes-
Nash incentive compatibility and dominant strategy incentive compatibility
is equivalent in the sense that if there exists a mechanism that is Bayes-
Nash incentive compatible, then there exists a dominant strategy incentive
compatible with the same expected total payment. Finally, in search for a
closed formula for the optimal mechanism also in the 2-dimensional setting
(both p; and w; private), Heydenreich et al. [5] propose an example to show
that optimal mechanisms in the 2-dimensional setting in general do not
satisfy a condition called IIA, independence of irrelevant alternatives. This
example gives a hind towards intractability of the 2-dimensional mechanism
design problem. However, that example was flawed.

Motivated by the questions left open in [5], in this thesis we are inter-
ested in getting more insight into properties of (optimal) mechanisms for the
2-dimensional setting. In particular, we are interested in the IIA condition,
the minimal condition that an optimal mechanism should have if a closed
formula were to exist. Constructing a new example by hand to prove that
optimal mechanisms in the 2-dimensional setting in general do not satisfy
ITA, turned out to be difficult and time consuming. Therefore we decided
to switch to a more systematic approach, i.e. optimal mechanism design by
mathematical programming, also known as automated mechanism design
[2, 13]. In automated mechanism design the mechanism is designed ‘auto-
matically’ for the setting and objective at hand, where automatically refers
to the use of IP solvers.

In the flavour of recent work on automated mechanism design as pro-
posed by Conitzer and Sandholm [2, 13|, we formulate the optimal mecha-
nism design problem for this scheduling application as Mixed Integer Linear
Programming Problem (MIP). This MIP formulation allows us, using ILOG
CPLEX as solver for the MIPs, to compare optimal solutions for different
types of mechanisms in the scheduling problem. Indeed, by this approach
we are able to reconfirm that optimal mechanisms in the 2-dimensional set-
ting in general do not satisfy ITA, reconfirming a theorem formulated in [5].
Additionally we use this MIP to prove that for the 2-dimensional setting,
BNIC and DSIC are in general not equivalent in the sense that there is an
instance where the minimal expected total payments achieved by the DSIC
mechanism exceed those of the optimal Bayes-Nash mechanism. Besides
these general results, we compare different types of mechanisms in specific
types of instances to possibly strengthen our findings.

The organisation of this thesis is as follows. In Section 2 first we dis-
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cuss the well known theory for the non-strategic single machine scheduling
problem, after which we give a detailed sketch of the strategic problem we
consider in the remainder of this thesis. Also in this section, we discuss the
results Heydenreich et al. found for the 1-dimensional setting of the problem
as well as some related theorems by Manelli and Vincent [8] and Gershkov
et al. [4]. In Section 3 we propose a MIP formulation for the optimal mech-
anism design problem, for both BNIC and DSIC mechanisms, which is the
most important part of our solution method. A complete description of our
solution method, including implementation details, is discussed in Section 4
whereas the re results of our research can be found in Section 5. Finally we
conclude this thesis with a summary of our results and some recommenda-
tions for future research.
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2 Optimal Mechanisms for Scheduling

In this section we start by discussing the non-strategic version of the single
machine scheduling problem. Then we switch to the strategic single ma-
chine scheduling problem. First we discuss the 1-dimensional setting for
this problem as well as some results by Heydenreich et al [5]. Even more,
we elaborate on some related results by Manelli and Vincent [8] and Ger-
shkov et al. [4]. Eventually we switch to the 2-dimensional single machine
scheduling problem together with the flawed counterexample that formed
the starting point for our research.

2.1 Single Machine Scheduling Problem

Let us consider the standard single machine scheduling problem. Given is a
set of jobs J = {1,...,n}, which have to be processed non-preemptively on a
single machine that can handle one job at a time. Each job j has a processing
time p; and a disutility for waiting one unit of time, also called its weight
wj, both publicly known. Let & = {o|o is a permutation of (1,...,n)} be
the set of feasible schedules, i.e. the order in which jobs are processed on the
machine. Denoting by o; the position of job j in schedule o, the start or
waiting time of job j is represented by Sj(o) =3, o; Pk Note that we do
not assume idle time, i.e. jobs are processed immediately after one another.

In this setting, all decisions are made by a central authority, e.g. sched-
uler, who chooses an order in which to process the jobs and we do not need
to account for strategic behaviour of jobs. One of the standard objectives
for this problem is to minimize the sum of weighted completion times, or
equivalently, minimize the sum of weighted start times. Note that the latter
is identical to the total disutility for waiting. This standard objective is
optimized by a well known list scheduling algorithm known as Smith’s rule
[14], i.e. scheduling jobs in order of non-increasing ratio of weight over pro-
cessing time w;/p;. From this standard single machine scheduling problem
we switch to the strategic version of this problem, which we consider in the
remainder of this thesis.

2.2 The 1-Dimensional Setting

A first departure from the non-strategic setting is that in the strategic setting
we have a set of selfish jobs that act strategically. For the 1-dimensional set-
ting we assume that p;, the processing time of job j, is still publicly known,
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whereas w;, the weight of job j, is private information®. Although the weight
of a job is private information, other jobs share common beliefs about jobs’
types in terms of probability distributions. Let W; = {wjl, ... ,w;nj} de-
note the set of possible weights of job j. The corresponding (finite discrete)
probability distribution is ¢; and ¢;(w;) denotes the probability associated
with w;j. Both W; and ¢; are public information. The set of all type
profiles is denoted by W = IL;c;W; and ¢ is the joint probability distribu-
tion of w = (wy,...,wy) € W, ie. ¢(w) = II;¢;(w;). For each job j, let
W_j = yx;Wi, let w_; € W_; and let ¢_; be the corresponding proba-
bility distribution. Note that (w;,w_;) is the type profile where job j has
type w; and the types of all other jobs are w_;.f

In this setting, a mechanism consists of an allocation rule f and a pay-
ment scheme w. We consider only direct revelation mechanisms, which are
mechanisms in which the only decision made by jobs, is the report of their
type. For the remainder of this thesis we denote by w; a job’s true weight
and we denote by w; the reported weight of a job, which may be both true
and false. Let w_; and w_; be defined analogously. Based on the reported
types, an allocation rule f, taking the role of central authority, chooses a
schedule o. In other words, the allocation rule is a mapping from the set of
type profiles to the set of schedules, that is f: W — &. Job j is compen-
sated for its waiting time by payment 7;, assigned by the payment scheme
7. To express the appreciation of a job for a certain schedule and payment
scheme we have to introduce some extra notations. Given job j’s waiting
time S; and its weight w;, it encounters a valuation of —w;S;(o) for schedule
o. This means the earlier the better, with a cost of w; per one unit of time.
Additionally receiving a payment 7}, its utility is expressed by m; —w;S;(0),
i.e. we assume what is called quasi-linear utility [9]. Denote by

ESj(f,@5) = Y (@, w-3))p—j(w-)

w,jeW,j

the expected waiting time of job j if it reports weight w; and allocation rule f
is applied. Note that f(w;,w—;) = o and therefore we write S;(f(w;,w—;)) =

2Usually the private information of a job is referred to as its type, but since for the
1-dimensional setting the only private information of a job is its weight, for this setting
we use weight and type interchangeably.
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Sj(O’). Let3
Erj(iy) = Y (g, wg)p(w)
'wijij
be the expected payment to job j if it reports weight ;.

Definition 1. A mechanism (f,m) is incentive compatible if jobs have the
incentive to report their weight truthfully, i.e. a job obtains highest utility by
reporting its true weight. More specifically, a mechanism is:

e dominant strategy incentive compatible (DSIC) if for every job j and
every two types wj, w; € Wj, and any report w_; of other jobs,

i (wj, w—j) — w;Si(f(wy, w—j)) = mj (W, w—5) — w;S;(f (W, ).
(2.1)
If for allocation rule f there exists a payment scheme w such that
(f,m) is DSIC, then f is called implementable in dominant strategies.
The payment scheme w is referred to as a dominant strategy incentive
compatible payment scheme.

e Bayes-Nash incentive compatible (BNIC) if for every job j and every
two types w;,w; € W;, under the assumption that all jobs apart from
j report truthfully,

Erj(w;) —w; ES;(f,wj) > Emj(w;) — w; ES;(f,105). (2.2)

If for allocation rule f there exists a payment scheme 7 such that (f, )
1s BNIC, then f is called Bayes-Nash implementable. The payment
scheme 7 is referred to as an Bayes-Nash incentive compatible payment
scheme.

Our definition requires jobs to be truthful instead of playing other strate-
gies. This however, is no loss of generality by Myersons’ revelation principle
[10], as incentive compatible, direct revelation mechanisms can be designed
to achieve the same equilibrium payment of any other mechanism*. Note

3Note that we define ES;(f,w;) and E;(10;) only for true reports of jobs other than
job j. We only need these definitions in a setting where all other jobs report truthfully, as
we only consider solutions where truthful reports are an equilibrium. To define ES;(f, ;)
and E7;(w;) more generally, would require to take the probability distributions for un-
truthful reports of w_; of other agents into account.

4The proof for the revelation principle for direct revelation mechanisms is as follows.
Let us denote by s; the strategy of job j, i.e. s;(w;) is the weight job j reports, given
his true weight w;. Now we can turn any direct revelation mechanism with equilibrium
s = (s1,...,5n) and allocation rule g in an incentive compatible mechanism, by defining
allocation rule f(ti,...,tn) = g(s1(t1),...,sn(tn)), i.e. allocation rule f = g o s simply
simulates the equilibrium strategies of the jobs.
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that dominant strategy incentive compatibility is the strongest equilibrium
one can ask for. Regardless of w_j;, the report of other jobs, reporting its true
type is optimal for every job. Bayes-Nash incentive compatibility is a weaker
condition and is trivially implied by dominant strategy incentive compati-
bility. Intuitively, it says the following: given that jobs are risk-neutral and
that all jobs apart from job j report truthfully, taking expectations over the
possible type profiles of other jobs, it is optimal for job j to report its weight
truthfully.

Moreover, rationality of jobs participating in the game is expressed by
the following definition.

Definition 2. A dominant strategy incentive compatible mechanism (f, )

is individually rational (IR) if for every job j, every true type w; € W; and
any report wW_; of other jobs,

mj(wj, w—j) — w;S;(f(wj, w—3)) = 0. (2.3)

In other words, individual rationality for DSIC mechanisms implies that

the utility of a job reporting its true weight should be positive, regardless

what other jobs report. For BNIC mechanisms we have a slightly different
definition.

Definition 3. A Bayes-Nash incentive compatible mechanism (f,m) is in-
dividually rational (IRE) if for every job j and every true type w; € Wj,

Emj(w;) —w; ES;(f,w;) = 0. (24)

For BNIC mechanisms rationality implies that the expected utility of
a job reporting its true weight should be positive. Note that we speak of
BNIC mechanisms and therefore the reports of other jobs are assumed to
be truthful.

In [5], Heydenreich et al. consider for the scheduling problem so far intro-
duced here, the minimal expected total payment made to the jobs achieved
by an allocation rule. For the DSIC setting we assume jobs to maximize
their utility, whereas for the DSIC setting we assume jobs to maximize their
expected utility.

Definition 4. An optimal mechanisms (f, ) is a mechanism that is Bayes-
Nash incentive compatible, individually rational and minimizes the expected
total payment made to jobs. Allocation rule f is called an optimal allocation
rule and payment scheme 7w an optimal payment scheme.



2. Optimal Mechanisms for Scheduling

Heydenreich et al. [5] give an explicit formula for the optimal mechanism
in the 1-dimensional setting®. The optimal allocation rule f is a modifica-
tion of Smith’s rule. Ergo, for the 1-dimensional scheduling problem the
optimal allocation rule is rather simple; scheduling jobs in non-increasing
order of weight over processing time ratios, using certain modified weights.
Important to mention is that both the modified weights and the payment
to a job can be computed using only the characteristics (type and distribu-
tion) of the job itself. Furthermore Heydenreich et al. [6] prove that for the
1-dimensional scheduling problem at hand BNIC and DSIC mechanisms in
some sense are equivalent. They show there exists a mechanism that is dom-
inant strategy incentive compatible and individually rational, and achieves
the same expected total payment as the optimal mechanism defined above.

Manelli and Vincent [8] obtain a similar result for single item auctions
with what they refer to as linear utilities. They investigate the model in
which a single indivisible object is divided among finitely many agents. The
valuation of the agents for the object is private information, although as in
our case, from each agent’s viewpoint, those valuations are independently
distributed according to known distributions. They prove that for this set-
ting, there exists a mechanism that is Bayes-Nash incentive compatible if
and only if there exists a dominant strategy incentive compatible mecha-
nism that generates the same expected payments and utilities. For general
settings with linear utility and 1-dimensional types Gershkov et al. [4] prove
that in settings with only two possible outcomes, e.g. two schedules, BNIC
and DSIC is equivalent. However, they also show by counterexample that
such an BNIC-DSIC equivalence can only be valid in restrictive environ-
ments, as in general, BNIC and DSIC are not equivalent as soon as there
are at least three possible outcomes.

2.3 The 2-Dimensional Setting

Having analysed the 1-dimensional setting of the scheduling problem, ques-
tions arise whether the results from Heydenreich et al. hold for a setting
where both the weight and the processing time of a job are private infor-
mation. Analogously to the 1-dimensional case, the processing time of job j
is some element from the set P; = {p}, cey p?-j }. For the 2-dimensional set-
ting, t;, the type of job j is a combination of its weight and processing time
and is denoted by (wj, p;). The types are drawn from the set W; x P;, the
type space of job j, also denoted by T}, according to some publicly known

5Optimal mechanism do not need to be unique.
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probability distribution ¢;. Then ¢;(w;,p;) is the probability associated
with type (wj,pj). As for the 1-dimensional setting we will denote by t;
and p; job j’s true type and processing time respectively, whereas reports
fj and p; can be both true and false. The set of all type profiles we denote
by T' = Ijc;(W; x P;) and T_; = IL,+;(W, x P,) is the set of type profiles
of all jobs except job j. We denote by ¢ the joint probability distribution
of t = (wi,p1,...,wn,pn) €T, ergo ¢(t) = I;¢;(w;,p;). Let t_; and ¢_;
be defined analogously. Redefining the type of a job, the expressions for the
expected start time and payment to a job also slightly change. Denote by

Si(f,wj,p5) - Z Si(f((w5,D5),t—5)) - (t—;)

t_ €T,

the expected start time of job j when it reports type (w;,p;) and allocation
rule f is applied. And let®

Eﬂ'j(ﬂ)j,ﬁj) = Z Wj((wjvﬁj)vt—j)d)—j(t—j)

t,]'GTfj

be the expected payment to job j when it reports type (w;,p;). Now the
processing time of a job is private information too, jobs have to report both
their weight and processing time. Whereas for their weight, jobs could over-
and understate it, we make the following assumption on a jobs possible
report of its processing time.

Assumption 1. We assume that jobs can only overstate their processing
time, that is, jobs can only report a larger processing time then their true
processing time.

This assumption is made, since reporting a lower processing time than
its true processing time can easily be punished by pre-empting the job early
(after the reported time). Note that by regarding the processing time of a
job as private information, the valuation of a job for a schedule does now
also depend on private information of other jobs, namely the processing time
of jobs that are scheduled before job j.

For the 2-dimensional setting also the definitions of BNIC and DSIC
change.

Definition 5. A mechanism (f, ) is:

SNote that as for the 1-dimensional setting both ES;(f,@;,5;) and Em;(i;,H;) are
defined only for truthful reports of other jobs.

10
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e dominant strategy incentive compatible if for every job j and every two
types (w;,p;),(W;j,p;) € T; such that p; < p;, and any report t_; of
other jobs,

mi((wg, pj), t—5) — w;Si (f (wy, py), t-5)) >
75 (w5, P5), t—5) — w;S;(f(wy,p5),t-5)). (2.5)

e Bayes-Nash incentive compatible if for every job j and every two types
(wj,p;),(wj,p;) € T; such that pj < p;, under the assumption that all
jobs apart from j report truthfully,

Emj(wj,pj) — w; ES;(f,wj,p;) >
Erj(w;, pj) — w; ES;(fw5,Pj)- (2.6)

Note that as for the 1-dimensional setting this definition requires jobs to
be truthful instead of playing other strategies. Furthermore also for the 2-
dimensional setting, Bayes-Nash incentive compatibility is trivially implied
by dominant strategy incentive compatibility. The definition for individual
rationality for a DSIC or BNIC mechanism for the 2-dimensional setting
read as follows.

Definition 6. A dominant strategy incentive compatible mechanism (f, )
is individually rational (IR) if for every job j, every true (wj,p;) € Tj and
any report f_j of other jobs,

mi((wj, ps), t—5) — wiSi(f((wy,p5),t-5)) > 0. (2.7)

Definition 7. A Bayes-Nash incentive compatible mechanism (f,m) is in-
dwidually rational (IRE) if for every job j and every true type (w;,p;) € T},

Erj(wj,pj) —w;ES;(f, wj,p;) > 0. (2.8)

As for the 1-dimensional setting we seek to find the minimal expected
total payment made to the jobs achieved by an allocation rule. Let f be an
allocation rule, then we denote by E7/(-) a payment scheme that minimizes
the expected total payment made to the jobs among all payment schemes
that make f Bayes-Nash implementable and IRE. Then Ex/ (t;) denotes the
payment to agent j declaring type fj under payment scheme Ex/. Analo-
gously, we denote by 7/ (1) a payment scheme that minimizes the expected
total payment made to the jobs among all payment schemes that make f
implementable in dominant strategies and IR. And W{ (tj,t—;) denotes the

11



2. Optimal Mechanisms for Scheduling

payment to agent j declaring type fj and given the report of types of other
jobs t_;, under 7/, Finally EP™"(f) and P™"(f) denote the correspond-
ing minimal expected total payments made to the jobs, achieved by payment
scheme Enf and nf respectively. Analogously to the 1-dimensional setting,
an optimal mechanism is a mechanism that is Bayes-Nash incentive compat-
ible, individually rational and minimizes the expected total payment made
EP™"(f) to jobs.

As a matter of fact, optimal mechanisms for the 2-dimensional setting do
not seem to have a simple characterisation as in the 1-dimensional setting.
In order to give a hint towards the intractability of the 2-dimensional optimal
mechanism design problem, Heydenreich et al. [5] give an example to show
that the optimal mechanism does not in general satisfy a condition known
as ITA.

Definition 8. We say that an allocation rule f satisfies independence of
irrelevant alternatives (IIA) if the relative order” of any two jobs ji and
j2 is the same in the schedules f(t1) and f(t2) for any two type profiles
t1,ta € T that differ only in the types of jobs from J\ {j1,ja}.

In other words, an allocation rule f satisfies IIA if the relative order of
two jobs is independent of all other jobs. Heydenreich et al. try to show by
counterexample that the optimal allocation rule for the 2-dimensional setting
does in general not satisfy ITA. In [5] they suggest an instance with three
jobs, where the minimal expected payments achieved by an allocation rule
that is ITA, exceed the minimal expected payments achieved by an allocation
rule that does not satisfy the IIA condition. However, this example was
flawed.

The equivalence of BNIC and DSIC for the 2-dimensional setting has not
been analysed by Heydenreich et al. and will be discussed in the remainder
of this thesis, together with the search for a new example regarding the ITA
property of optimal mechanisms.

"The relative order of two jobs j1 and j2 in a schedule is the position of job j; relative
to the position of job j2 and the other way around.

12
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3 Mathematical Programming Formulations

In Section 2 we discussed a single machine scheduling problem that was
analysed by Heydenreich et al. The driving questions behind our research
have been getting more insight into optimal mechanisms, as well as trying
to prove or disprove BNIC-DSIC equivalence for the 2-dimensional setting
of this problem. As both questions have been attacked using the same
approach, we will first give a detailed description of our approach, where we
will later come back to the results.

The initial direction of our research was to find a new instance to prove
that the optimal allocation rule for the 2-dimensional setting does in general
not satisfy the ITA condition. This would give a hint towards intractability of
the optimal mechanism design problem. Creating and checking an instance
by hand turned out to be rather difficult and time consuming. Therefore we
decided to use a mathematical programming approach, a more systematic
approach that has recently become known as automated mechanism design.
In the words of Conitzer and Sandholm [2, 13], in automated mechanism
design “the mechanism is computationally created for the specific prob-
lem instance at hand”. An advantage of automated mechanism design over
(manual) mechanism design is that it easily can be used in settings beyond
those that have been studied using (manual) mechanism design. Further-
more it may yield better mechanisms because the mechanisms are tailored
to the specific setting. A disadvantage is that the optimal mechanism design
problem has to be solved anew for every instance.

Applying the concept of automated mechanism design we model and
solve the optimal mechanism design problem for the 2-dimensional setting
by formulating the problem as a mathematical program (MP), to be pre-
cise a mixed integer (quadratically constrained) program (MI(QC)P). This
allows us to compare different types of mechanisms. Given an instance, the
input for the mixed integer program consists of a set of jobs j € {1,...,n}
with associated types t; = (wj,p;) € T; and probabilities ¢;(t;) for type t;,
as defined in Section 2. We enumerate type profiles ¢t = (t1,. .., t,) with cor-
responding probability distribution ¢(¢) as well as schedules o, from which
follows o;, the position of job 7 in schedule ¢. Having defined these param-
eters we can calculate Sisj, the start or waiting time of job j in schedule o
while the type profile is ¢. In addition, we introduce binary variables

I 1 if schedule o is assigned to type profile ¢
te 0 otherwise

for both the BNIC and DSIC setting. In other words, variables z;, pre-
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cisely encode the allocation rule of the desired mechanism. Furthermore for
the BNIC setting we introduce continuous variables E7;(t;) and ES;(t;)
representing the expected payment to and the expected start time of job
J, reporting type t; respectively. For the DSIC setting we only introduce
continuous variables 7, ; representing the payment to job j given the over-
all type profile ¢t and schedule o. A solution of the integer program is an
allocation rule, together with a corresponding payment scheme.

3.1 Bayes-Nash Implementations

The problem of finding an optimal mechanism, i.e. a mechanism that is
Bayes-Nash incentive compatible, individually rational and among such mech-
anisms minimizes the expected total payments that have to be made to the
jobs, can be represented by the following mixed integer program.

minZZ%(tj)Eﬂj(tj) (3.1a)

Y a,=1 Vi (3.1b)

ESj(tj) = ) Strjttod—j(t—;) Vit (3.1¢)
t_j,o
Emj(tj) > w;j(t;) ESj(t)) Vit (3.1d)

Eﬂ'j(t;) > Eﬂ'j(t?)
— w; () (Esj(tf) - Esj(t;i)) ¥, (L, 85 e T (3.1e)
xe € {0,1} (3.1f)
Enj, ES; >0 (3.1g)

Continuous variables Em;(t;) denote the expected payment to job j hav-
ing type t;, as defined in Section 2.3. Together they define the payment
scheme of the Bayes-Nash incentive compatible optimal mechanism. Objec-
tive (3.1a) minimizes the expected total payments made to all jobs, whereas
constraints (3.1b) enforce a feasible allocation rule by assigning exactly one
schedule to each type profile. Note that the notation of ES;(t;), the variable
for the expected start time of a job, is slightly different from the notation
in Section 2.3. In Section 2.3 the expected start time was explicitly defined
only for allocation rule f and type t;, where the same result is now ob-
tained in (3.1c) by summing also over all schedules ¢ and multiplying by
the corresponding binary x;, variable.

14
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The individual rationality and incentive constraints are represented by
(3.1d) and (3.1e) respectively, although the latter are somewhat rearranged®.
According to Definition 5 the incentive constraints only hold for pairs of
(t5, t;“) for which processing time of job j having type ¢}, is smaller or equal
to processing time of job j having type t?, as jobs cannot overstate their
processing time. This is implemented by defining constraints (3.1e) only for

i 4k bn
(t5,t7) € T°" where
b i 4k ‘ k
T = {(t, t7) | p;(t5) < p;(tf)}-

Finally constraints (3.1f) express the integrality of the x4, variables and con-
straints (3.1g) express the bounds on the expected payment to and expected
start time of job j.

3.2 Dominant Strategy Implementations

To compare BNIC and DSIC mechanisms, we build a mathematical program
for the DSIC setting, too. The problem of finding a mechanism that is
dominant strategy incentive compatible, individually rational and among
such mechanisms minimizes the expected total payments that have to be
made to the jobs, can be represented by the following mixed integer program.

min Z Z Z O(t)Tioj (3.2a)

Y a,=1 Vi (3.2b)
Ttoj > W;(t)StejTio Vit, o) (3.2¢)
Tioj = o'y — Wi(t)(Sverj — Stoj)

+ M (x4 — 1) VYo,o 5, tt)eT® (3.2d)
T, € {0,1} (3.2¢)
Tioj >0 (3.2f)

Note that this MIP is very similar to the one discussed in Section 3.1. There
are however some important dissimilarities concerning the variables and the
individual rationality and incentive constraints. In (3.2), the variables for
the expected payments are replaced by variables m;,;, representing the pay-
ment to job j given the overall type profile ¢ and schedule o. As we still

8Note that we introduce w;(t;), representing the weight of job j when having type t;.
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seek to minimize the expected total payments made to the jobs, the objec-
tive is represented by (3.2a). Intuitively one would say that we only need to
define payments for all type profiles ¢ and jobs j, as ultimately to each type
profile will be assigned only one schedule ¢. However, up front we do not
know which schedule is assigned to which type profile and therefore we also
have to introduce payments for all schedules ¢. The constraints that enforce
a feasible allocation rule remain unchanged and are represented by (3.2b).
In the DSIC setting we no longer need expected start times and therefore
constraints (3.1c) can be omitted and the individual rationality constraints
translate to (3.2c). These constraints? are stronger than constraints (3.1d),
as individual rationality has to hold not only in expectation, but for every
type profile - schedule combination that is chosen by the allocation rule.

In addition to changing the start time and payment variables, we have
to introduce a big-M construction for the rearranged incentive constraints
(3.2d). This is to enforce that the incentive constraints are tight for type
profile - schedule combinations that are chosen by the allocation rule and are
trivially fulfilled otherwise!'®. As for the BNIC setting jobs cannot overstate
their processing time, constraints (3.2d) only hold for pairs of type profiles
(t,t") such that the processing time of job j under type profile ¢ is smaller
or equal than its processing time under type profile t'. Also the reported
types of other jobs must be equal in both ¢ and ¢’. Even more, when the
type profiles are identical, the incentive constraints in combination with the
MP are fulfilled trivially, hence we do not define them when ¢t = ¢. A
schematic representation of 7%, the set for which the incentive constraints
are defined, can be found in Table 1. In this table +, — and +— represent
that the corresponding condition is fulfilled, not fulfilled or either of both,
respectively. Note that for type profile-schedule combinations not chosen by
the allocation rule, both constraints (3.2c) and (3.2d) are trivially fulfilled.
Therefore, for these combinations, the payments are automatically set to 0
due to the minimizing objective and for each ¢ we are left with only one o
for which m,; > 0. Finally constraints (3.2e) express the integrality of the
x4, variables and constraints (3.2f) express the bounds on the payment to
job j when the type profile is ¢t and schedule o is chosen.

9Note that we introduce w;(t), representing the weight of job j when the overall type
profile is t.

0Note that in the experiments we did not tune M to a small value in order to tighten
the constraints. Instead we have set it to a value of 1000 to make it sufficiently large.
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tj#t, toj=t_, pi(t)<pit) €T

+ + + +
+— -~ - -
+— +— -~ -

Table 1: Schematic representation of 7%, the set of type profile pairs for
which the dominant strategy incentive constraints are defined.

3.3 Independence of Irrelevant Alternatives

Using mathematical programs (3.1) and (3.2) we can compare BNIC and
DSIC mechanisms. However, to check whether the optimal allocation rule
does in general satisfy IIA, we must be able to add constraints to MIP
(3.1) that imply the ITA condition!!. By adding the following quadratic
constraints
Loy < (0f — O'Z')(J;- — ) Tto Ty Y (t,t) e T, 0,0, 5,i#j (3.3)
to the mathematical formulation of the Bayes-Nash optimal mechanism de-
sign problem, the solution of the modified program is an allocation rule that
satisfies ITA, together with a corresponding payment scheme!?.
The constraints are based on the fact that if the relative order of job
j and job i in schedule ¢ and o' is different, i.e. (0; — 0y)(0} — 0}) < 0,
then not both z;, and xy, can equal 1. However, we must pay attention
for which pairs (¢,t") we define the ITA constraints. By definition of ITA we
are interested only in pairs (¢,¢') that differ only in the types of jobs from
J\{i,j}, so tj = t; and t; = t;. Furthermore, if also t = ¢, constraints
(3.3) in combination with the MIP are fulfilled trivially and therefore we
only define the ITA constraints for ¢t # ¢. The set of pairs (¢,¢') that have
these properties we denote by T%%. A schematic representation 7%¢ can be
found in Table 2. But even more, if ¢ = j we would set either x;, = 0 or
zyor = 0, although the relative order of the job j and job ¢ is identical and

"Not to by adding the ITA constraints to MIP (3.2), one might also try to (dis)prove
that the allocation rule that is implementable in dominant strategies and minimizes the
total expected payments made to jobs, satisfies the IIA condition. However, that is behind
the scope of this thesis.

12 After the research was finished, we found out that the same result can be retrieved by
adding constraints z:, + 24+ < 1 for the same ¢,t’, 0, o', j,i. This substitution leads to a
linear program also for the ITA condition and therefore to shorter running times. However
these results have not been added to this report.
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we would make the MP infeasible. Therefore the IIA constraints are defined
only when (t,#') € T% and i # j. Finally note that by adding the ITA
constraints to MIP (3.1), the MIP changes to a mixed integer quadratically
constraint program (MIQCP).

ti=t, ti=t t#£t €The

+ + +

+- 4- -
+- -+ -
+- 4= - —

Table 2: Schematic representation of 7%, the set of type profile pairs for
which the ITA constraints are defined.

3.4 Implementation of MP Formulations

The MIPs and MIQCPs proposed in the previous section are solved using
ILOG CPLEX. This is a tool for solving several kinds of mathematical op-
timization problems, among them MIPs and MIQCPs. It is folklore that
reformulating constraints or even the complete mathematical program can
have a substantial influence on the solving time of the MP, therefore we seek
to ‘massage’ the MPs in order to minimize the solving time. One can think
of adding or removing constraints and eliminating variables. At default
settings, ILOG CPLEX uses several techniques to preprocess problems by
simplifying constraints, reducing problem size, and eliminating redundancy
and symmetry. However, these techniques can be seen as a black-box and
therefore we additionally tried to modify the MPs ourself to improve the
solving time.

One of the most obvious modifications is to get rid of quadratic con-
straints (3.3). There are several ways to linearise these constraints and we
use a very basic one. We replace all products ;s in the program by
binary variables 3,4, so that we obtain

/ p—

Ytot' o’ S (U] - O'i)(O'j U;)ytat’o" v (ta t/) € Tiia7 g, Ulajai 7é j (34)

as new IIA constraints. To assure that the variables v, attain the same
value as the original product x4,z we have to add the following con-
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straints.
Ytot' o’ < Zgo Vt,o', t/,O'I (35&)
Yoo < Ti/g! Vit ot o (3.5b)
Ytot' o' > Tte + Tygr — 1 v t,0, t/, OJ (350)

We can define the yy, variables for all ¢,0,t" and ¢’ as in (3.5). However,
we only need them to replace all z;;zp products occurring in the MP.
Therefore we define the y variables and corresponding constraints (3.5) only
for t and ¢’ for which (¢,t') € T,

In constraints (3.3) there is a lot of symmetry since xi,Ty e = Tpor Tip.
Replacing these quadratic constraints by introducing y variables, the sym-
metry remains (Yioro' = Yp'o'to).- 10 get rid of this symmetry, we define
both the quadratic and linearised IIA constraints as well as the y variables
and constraints (3.5) only for ¢,0,t', 0’ such that ¢ - |G| +o0 <t -|S| + o,
assuming that the types and schedules are ordered in some arbitrary way.
This way, we reduce the number of variables and constraints by roughly a
factor two. Note that we do not define them when t - |&S|+ 0 =t - |&|+ o,
as this implies that ¢ = ¢/, hence (¢,t') ¢ T,

With our last modification we can even further reduce the number of
ITA constraints. Let us consider the value of (0; — 0;)(0; — o) for different
0,0',4,j. At this point for all cases where (0; — 0;)(0’; — 07) # 0 the IIA
constraints are defined. However, (o; — 0;)(0j — 0;) > 0 implies (0 —
ai)(a; —o}) > 1 as o0; is integer and in this case the ITA constraints are
redundant. Therefore we need to define constraints (3.3) and (3.4) only for

(0j —0i)(of —07) <O.
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4 Solution Method

In the previous section we formulated mathematical programs for different
types of mechanisms in the 2-dimensional scheduling problem. In this section
we give an extensive description of the method we use to compare BNIC
and DSIC mechanism, fulfilling the IIA constraints or not, whereas the
computational results themselves can be found in Section 5.

First we systematically generate instances at random, which we use for
our research. Then we construct, using the instances, the proper mathe-
matical programs and finally we optimally solve the MPs to find answers
to our research questions mentioned in Section 3. All components have
been realized in a program written in C++, which successively executes the
components, one by one described in this section.

4.1 Generating Instances

Our first step is to generate instances, which are necessary to test our hy-
potheses on. The size of the instances we generate depends on the research
question we focus on. As the definition of ITA is irrelevant for instances with
one or two jobs, for this part of the research we only generate instances with
three or more jobs. To investigate similarities between BNIC and DSIC we
also generate instances with two jobs. We do not want the solving time of
the MPs to be too long and therefore we initially focus on smaller instances.
If we do not find any results using these instances we subsequently increase
the number of jobs and/or types of a job.

The input arguments of the C4++ program consist of the number of jobs
and if desired the number of types per job. One can also decide to generate
instances with a random number of jobs or types per job. Given the number
of jobs and types per job, the program generates for each type of a job a
corresponding weight, processing time and probability.

The weights and processing times of a job chosen first, are chosen uni-
formly over the discrete integer set {1,...,10}. However, to ensure that we
do not encounter equal weights or processing times for a job, we iteratively
generate a weight or processing time and delete its value from the set from
which we chose the last value. From the new set we obtain, we again se-
lect uniformly a new weight or processing time. We will denote this type
of distribution by (discrete, ‘uniform’). The probabilities of the types of
a job cannot be chosen randomly over a discrete set, as the sum over the
probabilities of the types of a job must be equal to 1. Instead, per job j, for
each jobtype t; we select uniformly a number v;» from the discrete integer
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Figure 1: Graphical representation of instance in Appendix B.

set {0,...,100}. Afterwards we divide the selected numbers v} by >, vj-,
the sum of all numbers chosen for the jobtypes of job j. This leaves us
with probabilities ¢;(¢;), which all have the same expected value. However,
eventually we only need instances with probabilities rounded to one-tenths
or one-hundredths. Therefore we round down all probabilities except for the
last one, which we set to the remaining probability!3. We will denote the
obtained distribution by (discrete, E(t;) ~ E(t})). Note that initially we
use probabilities rounded to one-tenths, whereas we round the probabilities
to one-hundredths if we do not obtain results with the former. An overview
of the type, range and distribution of the elements of a job’s type can be
found in Table 3.

Property Symbol Type Range Distribution

Weight wj Integer [1,10] Discrete ‘uniform’
Processing time  p; Integer [1,10] Discrete ‘uniform’
Probability type ¢;(t;)  Decimal [0.0,1.0] Discrete, E(t;) ~ E(t})
Probability type ¢;(¢;)  Hundredths [0.00,1.00] Discrete, E(t;) ~ E(t})

Table 3: Type, range and distribution of the elements of a type of a job.

To select ‘random’ numbers from some discrete set, we use the rand()
function in C++. This is a pseudo-random integral number generator con-
taining an algorithm that returns a sequence of apparently non-related num-
bers each time it is called. The algorithm uses a seed to generate the series,
which should be initialized to some distinctive value using srand(). Choos-
ing the same seed value will lead to the same ‘random’ sequence and thus
makes it possible to reproduce the experiments any time. An example of an
instance we generate for our research is sketched in Figure 1.

Once proven or disproven that optimal mechanisms do in general satisfy

13Note that in this way we ‘pollute’ the expected values E.
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the ITIA condition, or that BNIC and DSIC in general is equivalent, we
seek to specify our general results. To test our results on more specific
instances, we therefore generate instances with specific properties. One type
of instances we investigate are instances for which the types of job have a
product distribution.

Definition 9. A product distribution is a probability distribution of which
the marginal distributions are pairwise stochastically independent.

In the 2-dimensional scheduling problem the pair (wj, pj) equals t;, the
type of job j. Suppose that the weight and processing time of job j have
probability distribution ¢; and ; respectively™®. Then ®;, the probability
distribution associated with type ;, is a product distribution if for all w; €
W; and p; € P holds ¢;(wj,pj) = ¢j(w;) - ¥j(pj). In other words, ¢; is a
product distribution if the probability associated with having type (w;, p;)
is the product of the marginal distributions ¢ and ¢ for having weight w;
and processing time p;, respectively.

4.2 Instance File Format

The information of an instance is written to a text file in a specific format.
The first line contains only the number of jobs, whereas the second line
contains the number of types per job, separated by a white space. The
remainder of the text file consists of a single line for each type, the types
sorted per job, in ascending order of weight and processing time. These
lines state the weight, processing time and probability of a type of a job
respectively, each separated by a white space. In Appendix B can be found
the text file corresponding to the instance shown in Figure 1.

4.3 Computational Procedure and Details

After generating an instance and constructing its corresponding text file,
the C++ program builds from this text file a mathematical program for two
types of mechanisms we would like to compare. The MPs are solved using
ILOG CPLEX v12.2.0.0 on a computer equipped with an Intel Core Duo
processor P9500 at 2.53GHz and 4GB RAM under WINDOWS operating
system. To be able to solve the MPs, the C++ program constructs a CPLEX
LP format file, which is a file format in which one can enter a problem in

" Note that distributions ¢; and v, are generated in the same way as distribution ¢; (¢;)
in Table 3.
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a natural, algebraic LP formulation (see Appendix C!%). As we want to
compare different types of mechanisms, e.g. BNIC or DSIC, fulfilling the
ITA constraints or not, one can give as input arguments the settings to be
compared.

Surprisingly, it turned out that the solving time of the mathematical pro-
gram with quadratic ITA constraints (3.3) is in many cases smaller than the
solving time of the mathematical program with linearised IIA constraints.
For smaller instances the solving time is of the same order, whereas for larger
instances with more jobs or jobtypes, the solving time of the MIP can be-
come on average more than 10 times larger that of the MIQCP. Even more,
the size of the LP files for the MIP is much larger than that of the MIQCP.
Therefore, both for the BNIC and DSIC setting, we use the quadratic ITA
constraints. The remaining modifications to the MP mentioned in Section
3.4 are all applied as they all contribute to a small improvement in the
solving time.

The two LP files containing the MPs for the types of mechanisms we
would like to compare, we solve calling CPLEX from within the C++ pro-
gram using the ILOG CPLEX callable library. Whenever the program runs
into an instance for which there is a difference in objective between the two
MPs, the program saves both the instance and the corresponding LP files.
Finally, after finding a specified number of such instances, the program ter-
minates and we can analyse the results we found. The Pseudo-code of the
complete C++ program is sketched in Appendix D.

In Table 4 we show some computational properties for different instances
and different types of mechanisms. The properties we consider here are:

- In the first column we report |J|, the number of jobs of the instance we
consider. Note that the number of different schedules for this instance
is |J|.

- Then we report the number of jobtypes t; for each job j. Here we
denote by 1 — 1 — 4 an instance with three jobs, where both job 1 and
2 have one type and job 3 has four types. This means that in total
there are 1 -1 -4 = 4 different type profiles.

- In column three we report the setting we consider, where ‘BN’ de-
notes the Bayes-Nash incentive compatible setting and ‘DS’ denotes
the dominant strategy incentive compatible setting.

- Whether we consider the ITA constraints and if so, which IIA con-
straints we add to the MP, can be found in column four. By ‘no’

15This CPLEX file corresponds to the BNIC setting of the instance shown in Figure 1
and in Appendix B.
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# Jobs # Jobtypes Setting ITA  # Var # Constr LP (kb) Build (ms) Read (ms) Solve (ms)
2 1-4 BN no 18 22 1.1 1.1 1.5 2.6

2 1-4 DS no 24 52 2.7 1.2 1.6 5.1

2 4—-4 BN no 48 48 3.0 1.2 1.6 3.5

2 4—4 DS no 96 336 17.5 2.2 2.1 22.4

2 6—6 BN no 96 102 6.8 24 2.3 8.1

2 6—6 DS no 216 1188 64.0 7.6 5.4 177.7
3 1-1-4 BN no 36 24 2.22 1.3 1.6 2.8

3 1-1-4 BN quad 36 24 5.49 1.6 2.1 15.9

3 1-1-4 BN lin 276 588 21.26 2.7 2.2 15.5

3 1-1-4 DS no 96 364 18.78 2.0 1.9 11.5

3 1-1-6 BN no 52 43 3.66 1.1 1.6 3.1

3 1-1-6 BN quad 52 43 11.83 2.3 3.3 39.8

3 1-1-6 BN lin 628 1429 51.88 5.7 3.4 30.4

3 1-1-6 DS no 144 870 44.47 3.8 3.2 31.8

3 1-4-4 BN no 114 50 7.5 2.1 2.5 7.5

3 1-4-4 BN quad 114 50 34.3 6.3 6.3 214.8
3 1-4-4 BN lin 4530 12242 468.7 53.1 29.1 529.4
3 1-4-4 DS no 384 2608 138.9 13.6 9.1 1343.4
3 1-6-6 BN no 242 104 17.1 3.3 3.1 11.9

3 1-6-6 BN quad 242 104 122.9 15.5 15.8 963.3
3 1-6-6 BN lin 23138 65120 2558.7 213.3 122.0 6287.5
3 4—-4-4 BN no 408 112 28.7 4.3 4.5 13.1

3 4—-4—-4 BN quad 408 112 199.2 28.1 26.5 1799.0
3 4—4—-4 BN lin 73368 213040 8684.4  927.9 588.0 72031.5

Table 4: Computational properties for different instances and different types of mechanisms.
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we mean that we do not consider ITA constraints, whereas linear and
quadratic ITA constraints are represented by ‘lin’ and ‘quad’ respec-
tively.

- In column five and six we state the number of variables and constraints
for the MP of the corresponding setting. Note that in the number
of constraints we do not count the objective and the bounds on the
variables.

- The size of the ILOG CPLEX LP file which is build by our C++
program can be found in column seven. Note that the size of the LP
is in kilobyte.

- In the last three columns we state the average build, read and solve
time of an instance in seconds. By build time we mean the time it
takes for C++ to build the corresponding CPLEX LP file for a given
instance. The time it takes for CPLEX to read the LP file we denote
by the read time. Finally the solve time is the time it takes CPLEX
to solve the MP that is in the LP file. Note that for instances with
4 or more jobs and more than 16 type profiles, except for the MP for
the Bayes-Nash setting without ITA constraints, CPLEX runs out of
memory. For smaller settings the average is taken over 1000 instances,
whereas for settings larger than the setting with 3 jobs, and 1 —4 —4
jobtypes, we take the average over 100 instances.
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5 Computational Results

With use of the mathematical programs proposed in Section 3, which we
have implemented as discussed in Section 4, we are able to test two main hy-
potheses for the 2-dimensional scheduling problem. This resulted in a proof
by counterexample that the optimal allocation rule in the 2-dimensional
setting in general does not satisfy the ITA condition, as well as in a coun-
terexample which proofs that BNIC and DSIC for the 2-dimensional setting
in general is not equivalent. In this section we address both main results as
well as some side results.

5.1 Optimal Mechanisms and ITA

First we discuss the result on the optimal allocation rule for the 2-dimensional
scheduling problem, concerning the IIA condition. By formulating the opti-
mal mechanism design problem as MP, and generating problem instances at
random, we have been lucky in finding an instance for which for the optimal
allocation rule, the relative order of two jobs is dependent of the other jobs.
Thus, we have ultimately found a proof for the following theorem, stated in

[5].

Theorem 1. The optimal allocation rule for the 2-dimensional setting does
i general not satisfy independence of irrelevant alternatives.

Proof. Consider the following instance with three jobs. Both job 1 and
job 2 have a type space containing only one type, type (w1,p1) = (2,1) and
(w2, p2) = (9, 8) respectively. Job 3 has type space (w3, p3) € {1,3,5}x{5,7}
and the corresponding probabilities for its types are listed below.

¢3(1,5) = 0.24 $3(1,7) = 0.24 $3(3,5) = 0.02
$3(3,7) = 0.24 $3(5,5) = 0.16 $3(5,7) = 0.10

A graphical representation of the instance is sketched in Figure 2. We will
show that for this instance the unique allocation rule that is Bayes-Nash
implementable, individually rational and minimizes the expected total pay-
ments, does not satisfy independence of irrelevant alternatives. The instance
has three jobs and therefore we have 3! = 6 different schedules. We denote
by schedule 213 the schedule where job 2 is scheduled first and job 3 is
scheduled last. Job 1 and job 2 both have only one possible type, whereas
job 3 can have 6 types. Therefore the type profile is only dependent on the
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Figure 2: Graphical representation of the instance for which the optimal
allocation rule does not satisfy the IIA condition.

type of job 3. We will denote these six type profiles by different cases

case a : (ws,p3) = (1,5) case b: (ws,p3) = (1,7)
case ¢ : (w3, p3) = (3,5) case d : (w3, p3) = (3,7)
case e : (ws,p3) = (5,5) case f : (w3, p3) = (5,7).

For this instance ITA implies that for all six cases, i.e. type profiles, the
allocation rule must choose a schedule in which the relative order of job 1
and job 2 is the same'%. Therefore the allocation rule must choose schedules
from either {123, 132,312} or {213,231, 321} for all six cases.

As an example we compute the minimal expected total payments achieved
by allocation rule f, that assigns the following schedules to reported types.

case a — 123 case b — 123 case ¢ — 132
case d — 123 case e — 132 case [ — 312

Since we consider a BNIC setting, we take into account individual rationality
constraints (2.8) and incentive constraints (2.6). For job 1 and 2 we do
not need to take into account incentive constraints as they only have one
type. In order to evaluate the individual rationality constraints we need to
compute the expected start times for job 1 and 2. These are computed by
considering the start time of the job in the schedules assigned to the six
cases and account for the probability for each case. For job 1 the minimal
expected payment that is enforced by the individual rationality constraint,
equals

Er(2,1) = w; - ESi(£,2,1)
:2~(0.24-0+0.24-0+0.02-0+0.24-0+0.16'0+0.10'7)
= 1.40

16We do not need to consider the relative order of job 3 as job 1 and job 2 only have
one type.
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whereas for job 2 we have

Eﬂ-g(ga 8) = w2 - ESZ(f? 97 8)
=9-(024-14+024-14+0.02-64+0.24-1+0.16-6+0.10- 8)
= 23.40.

For job 3 we have to take into account both the incentive and the indi-
vidual rationality constrains, both implying a lower bound on the expected
payments. Note that although we still refer to them as expected start times,
the start times for job 3 are not expected since job 1 and job 2 have only
1 type. Therefore we only have to consider the start time of job 3 in the
schedule assigned to the corresponding case. Individual rationality (IRE)
for job 3 requires

Exi(1,5), Exf(1,7)>1.9 =
Exf(3,7)>3-9=27
Ex{(3,5)>3-1=3
Enf(5,5)>5-1=
Eri(5,7)>5-0=

There are 21 incentive constraints'” and therefore it may seem hard to check
if all constraints are fulfilled. However, due to the individual rationality
constraints (2.8), the left-hand side of incentive constraints (2.6) is triv-
ially greater or equal to zero. Therefore we only need to consider incentive
constraints for which the right-hand side is greater than zero. For these con-
straints we modify the payments in order to fulfil the incentive constraints.
This will influence also the right-hand side of the other incentive constraints
and therefore we iteratively check all incentive constraints for which the
right-hand side is greater than zero and modify the payments until all in-
centive constraints are fulfilled'®. In our first iteration we observe that the

1"Remember that we assume that jobs can only overstate their processing time.

8In [5] Heydenreich et al. compute the minimal (expected) payments for an allocation
rule f by searching for the shortest path in a type graph T7 of a job. In this sense our
‘algorithm’ is the Bellman-Ford algorithm [3] where we iteratively try to relax all edges.
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only incentive constraints that remain are

Eri(1,5) = 1-ES3(f,1,5) > Exd(3,5) — 1- ES3(f,3,5)
Exf(1,5) —1-ESs5(f,1,5) > Ex}(3,7) —1- ES3(f,3,7)
Exf(1,5) —1- ES3(f,1,5) > Ex}(5,5) — 1- ES3(f,5,5)
Exi(3,5) — 3- ESs(f,3,5) > Exl(5,5) — 3- ES3(f,5,5)
Exf(1,7)—1-ESs5(f,1,7) > Ex}(3,7) — 1- ES3(f,3,7).

By setting E?T:J;(l, 5), Ewg(l, 7) > 27 and ET('?J:(?), 5) > 5 these constraints are
fulfilled and in our second iteration we notice that no right-hand side of any
incentive constraint is greater than zero. Therefore the minimal payments
to job 3 are

Exi(1,5) = Ex{(1,7) = Ex{(3,7) = 27
Exl(3,5) = Enl(5,5) =5
Ex)(5,7) = 0.

Now we have computed the minimal expected payments to all jobs, we can
compute the minimal expected total payment achieved by allocation rule f.

EP™"(f) =1-Er{(2,1)+1-Ex}(9,8)+ Y ¢s(ts) Enf(ts)
t3€Ts
=140+23.40+0.24-27+0.24-27+0.02-5
+0.24-274+0.16-5+0.10-0
=45.14

In the same way we can compute the minimal expected total payments
achieved by all other 2-3% — 1 = 1457 allocation rules that are ITA. For this
instance it turns out that allocation rule f is the unique Bayes-Nash im-
plementable allocation rule that achieves minimal expected total payments,
while satisfying the ITA condition.

Now consider allocation rule g, that chooses for each case/type profile
the following schedule.

case a — 123 case b — 123 case ¢ — 231
case d — 123 case e — 132 case [ — 312

This allocation rule clearly does not satisfy the ITA condition as the relative
order of job 1 and job 2 in the schedule chosen for case ¢ is different from
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the relative order in the schedule chosen for the rest of the cases, although
the types of job 1 and job 2 are for all cases identical. Using exact the same
approach as for allocation rule f, we can calculate the payment scheme
corresponding to allocation rule g. For job 1 and 2 again only considering
the individual rationality constraints, the minimal payments to job 1 and job
2 are Em{(2,1) = 1.92 and E7§(9,8) = 22.32. Computing by the individual
rationality constraints for job 3 a lower bound on the expected payments
and again iteratively checking the incentive constraints, leads to

(1,5) > 27 Erd(1,7) > 27 Erd(3,5) > 26

1
(3,7) > 27 Exd(5,5) > 5 Exd(5,7) > 0.

g
E'ﬂ'?é
Ems

For allocation rule g the minimal expected total payment is

EP™"(g) =1-Ex{(2,1)+1-Ex§(9,8) + Y _ ¢s(ts)Emi(ts)
t3€Ts
= 1.92 4+22.32 +0.24 - 27+ 0.24 - 27 + 0.02 - 26
+0.24-27+0.16-5+0.10-0

= 45.00.
This proves the claim. O

Now Theorem 1 has been proven, an obvious question is for which spe-
cific instances the optimal allocation rule for the 2-dimensional scheduling
problem does satisfy the IIA condition. A type of instance we have investi-
gated, is one in which jobtypes have a product distribution (see Definition
9). For this type of instance we were not able to find an example for which
the optimal allocation rule does not satisfy the ITA condition.

Conjecture 1. For the 2-dimensional scheduling problem, where the types
of a job have a product distribution, the optimal allocation rule satisfies the
ITA condition.

Despite extensive computational research, we were not able to find an
instance contradicting Conjecture 1. Further research will have to verify our
conjecture.

5.2 BNIC-DSIC Equivalence

Our second research question is whether for the 2-dimensional single machine
scheduling problem, there always is a DSIC mechanism that achieves the
same expected total payment as the optimal BNIC mechanism. Using exact
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the same solution method as in the previous section, we came to the following
result.

Theorem 2. For the 2-dimensional scheduling problem there is in general
not a mechanism that is dominant strategy incentive compatible, individu-
ally rational and minimizes the expected total payment made to jobs, that
achieves the same expected total payments as the optimal mechanism.

Proof. Consider the following instance with two jobs. Job 1 has type space
Wix Py ={5,7} x{3,7} and job 2 has type space Waox Py = {2,4, 7} x{5,6}.
The corresponding probabilities for the jobs’ types are

$1(5,3) =05  ¢1(5,7)

?2(2,5) =0.2  ¢2(2,6)
$2(7,5) =03  ¢2(7,6)

03  ¢(7,3)=01 ¢1(7,7)=0.1
0.0  ¢9(4,5)=0.0 $2(4,6) =0.5
0.0.

We will show that for this instance there is no allocation rule that is dom-
inant strategies implementable and achieves the same expected total pay-
ments as the optimal allocation rule.

The instance has 2 different schedules and as job 1 has four types and
job 2 has six types, there are 24 different type profiles. We will denote each
of these type profiles (w1, p1); (w2, p2) by a different case.

case a = (5,3),(2,5) case b = (5,3),(2,6) case ¢ = (5,3), (4,5)
case d = (5,3), (4,6) case e = (5,3), (7,5) case f = (5,3),(7,6)
case g = (5,7),(2,5) case h = (5,7),(2,6) case i = (5,7),(4,5)
case j = (5,7),(4,6) case k = (5,7),(7,5) case | = (5,7),(7,6)
case m = (7,3),(2,5) case n = (7,3),(2,6) case o = (7,3), (4,5)
case p = (7,3),(4,6) case ¢ = (7,3),(7,5) case r = (7,3),(7,6)
case s = (7,7),(2,5) case t = (7,7),(2,6) case u = (7,7),(4,5)
case v = (7,7),(4,6) case w = (7,7),(7,5) case ¢ = (7,7),(7,6)

Let us first compute the payments made by the optimal mechanism.
In total there are 224 = 16.777.216 allocation rules. For this instance the
unique optimal allocation rule f assigns the following schedules!® to each
case.

case a,b,d,g,h,m,n,0,p,q,s,t,u,v,w — 12

case ¢,e, f, 1,5, k, l,r,x — 21

19As in Section 5.1, schedule 12 represents the schedule where job 1 is processed before
job 2.
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Computing the expected start times of job 1, the individual rationality con-
straints for this job state

Eni{(5,3)>5-ES\(f,5,3)=5-1.5=1.5
Ex{(5,7)>5-ES\(f,5,7) =5-4.5 = 22.5
Exf{(7,3)>7-ES\(f,7,3)=7-00=0
Exi{(7,7)>7-ES\(f,7,7) =7-0.0 = 0.

As in the previous section we iteratively regard the incentive constraints for
which the right-hand side exceeds zero. It happens to be that already in
the first step all incentive constraints are fulfilled. Therefore, for job 1 the
payments are determined only by the individual rationality constraints. For
job 2 the individual rationality constraints state

Enf(2,5) > 9.2 Enf(2,6) > 9.2 Ex
Enf(4,6) > 10.0 Exd(7,5) > 7.0 En

The incentive constraints for which the right-hand side exceeds zero are

Exnf(2,5) —2- ESy(f,2,5) > Ex}(4,5) —2- ESy(f,4,5)
Exd(2,5) —2- ESy(f,2,5) > Ex}(4,6) —2- ESy(f,4,6)
Enf(2,5) —2- ESy(f,2,5) > Exl(7,5) — 2 ESy(f,7,5)
Enl(2,6) —2- ESy(f,2,6) > Enl(4,6) — 2 ESy(f,4,6)
Exnf(4,5) — 4 ESy(f,4,5) > Ex}(7,5) —4- ESy(f,7,5)

From this follows that ExJ(2,5), Exf(2,6) > 14.2 and Exf(4,5) > 7. Re-
garding anew the incentive constraints with right-hand side greater than
zero, we notice that already in the second iteration, all incentive constraints
are fulfilled. Therefore the expected total payment achieved by allocation
rule f is

EP™M(f) = Y d1(t)Br](t1) + Y dalt2) By (ta)

t1€T1 to€Ts
=05-754+03-2254+0.1-04+0.1-0+0.2-14.2

+0.0-1424+0.0-70+0.5-10.04+0.3-7.0+0.0-0.0
= 20.44.

Our second step is to find the allocation rule that is dominant strat-
egy implementable, individually rational and minimizes the expected total
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payments made to jobs. This happens to be allocation rule f, the same
allocation rule that is optimal for the BNIC setting. As we consider a DSIC
setting, we take into account individual rationality constraints (2.7) and in-
centive constraints (2.5). Apart from the fact that we consider the IR and
DSIC constraints, we apply the same method as for the BNIC setting. De-
note by 7'('{(0[) and ﬁg(a) the payment to job 1 and job 2 for case «, under
allocation rule f, respectively. For example, if « = (¢1,%2), we denote by
7['{ () the payment to job 1, given that it reports type ¢; and job 2 reports
type to. The individual rationality and incentive constraints for job 1 and
job 2 imply

ey>25 wle)>25 ()42 @) >25
) >30 w25 wW)>42  wl(r)>42
71'{(1‘) > 42

) >12 o) =12 wd =12 wl(g) >14
) >14  wlm)>21 wln)>12  wl(0)>21
) >12  wll@)>21  rf(s)>49  rf(t)>28
(u)>49 wlw)>28  af(w)>49

whereas all other payments equal 0. Using this payment scheme we can
compute the expected payment to job j when it reports type ¢, in order to
compare it to the expected payment in the BNIC setting?’. We notice that
all expected payments are similar, except for the expected payment to job
2 reporting type (2,5), which occurs in cases a,g, m,s. Let us denote by
(t1,(2,5)) the case where job 1 reports type t; and job 2 reports type (2,5),
then for the DSIC setting we have

S pi(t) m(1,(2,5) =0.5-12+0.3- 14+ 0.1-21 +0.1-49 = 17.2
t1€Ty

while in the BNIC setting we have E7r£(2,5) = 14.2. The raise of this
expected payment by 3, compared to the BNIC case, should be solely re-
sponsible for the raise in expected total payments to the jobs in comparison
to the BNIC setting. The minimal expected total payment achieved by al-
location rule f for the DSIC setting can be computed by summing over all
cases for all jobs and multiplying by the corresponding probability. Denoting

20The expected payment in de BNIC setting is under the assumption that all jobs other
than job j report truthfully.
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by ¢(i) the probability on case, or equivalently, type profile i, we have

P =33 > bilty)éi(t_j)ml (tj,t-5) = 21.04.
jEJ t]‘ETj tijT,j
Note that as expected, P™"(f) — EP™"(f) = 0.2-3 = 0.6, due to the
raise in expected payment to job 2, reporting type (2,5), and the fact that
$2(2,5) = 0.2. O

As for the previous section, there still might be specific instances for
which BNIC-DSIC equivalence holds. However, instances where types of
jobs have product distributions do not belong to that group.

Theorem 3. For the 2-dimensional scheduling problem, where types of jobs
have a product distribution, Bayes-Nash and dominant strategy incentive
compatibility is not equivalent.

Proof. Consider the following instance with two jobs. Job 1 has type space
Wy x P = {3,6} x {2,5} and job 2 has type space Wa x Py = {4,5,9} X
{1,8}. Note that the probability distribution ¢; for the type of job j is a
product distribution and therefore we have weight probabilities ¢;(w;) and
processing time probabilities 1;(p;).

1(3) =04 1(6)=0.6 ¢1(2) =

¥a(8) = 0.5.

Note that from these probabilities follow the corresponding probabilities for
types of jobs. We will show that for this instance there is no DSIC mecha-
nism that is individually rational and achieves the same minimal expected
total payments as the optimal mechanism.

Computing the minimal expected total payments for both the BNIC and
DSIC setting, is similar to the previous example and therefore we omit most
of the steps. The instance has 2 different schedules and 24 different type
profiles, which we all denote by a different case.

0.3
0.4 (1) =

case a = (3,2),(4,1) case b= (3,2),(4,8) case ¢ = (3,2),(5,1)
case d = (3,2),(5,8) case e = (3,2),(9,1) case f = (3,2),(9,8)
case g = (3,5), (4,1) case h = (3,5), (4,8) case i = (3,5),(5,1)
case j = (3,5),(5,8) case k = (3,5),(9,1) case | = (3,5),(9,8)
case m = (6,2), (4,1) case n = (6,2), (4,8) case o = (6,2),(5,1)
case p = (6,2),(5,8) case ¢ = (6,2),(9,1) case r = (6,2),(9,8)
case s = (6,5),(4,1) case t = (6,5), (4,8) case u = (6,5),(5,1)
case v = (6,5), (5,8) case w = (6,5),(9,1) case ¢ = (6,5), (9,8)
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For each of these cases we must compute the (expected) payments made to
the jobs. Let us first compute the expected total payments made by the
optimal mechanism. In total there are 2?4 = 16.777.216 allocation rules. It
turns out that for this instance there are two optimal allocation rules. We
will consider optimal allocation rule f, that assigns the following schedules
to each case.

case b,d, h,m,n,o,p,t,v — 12
case a,c,e, f g i, 5,k 1, q,r s, u,w,xz — 21
Considering individual rationality constraints (2.8) and incentive constraints

(2.6) for both job 1 and job 2, we obtain lower bounds on the expected
payments.

En{(3,2) > 12.60 Ex{(3,5) > 15.00 Eni(6,2) > 10.80
Ex{(3,2) > 12.60

Enf(4,1) > 4.14 Exf(4,8) > 19.10 Enf(5,1) > 4.14
Exf(5,8) > 13.50 Exf(9,1) > 0.90 Enf(9,8) > 0.00

This leaves us to compute the expected total payment achieved by allocation
rule f, which is

EP™™(f) = 3" g1(t)En](t) + Y da(ta) Enf(to)

t1€T to€Th

=0.12-12.60 4+ 0.28 - 15.00 + 0.18 - 10.80 4- 0.42 - 12.60
+0.20-4.14+0.20-19.10 + 0.10 - 4.14 + 0.10 - 13.50
+0.20-0.90 4-0.20 - 0.00

= 19.54.

Now we compute the payments achieved by the allocation rule that is
dominant strategy implementable, individually rational and minimizes the
expected total payments made to jobs. This is allocation rule g, that assigns
the following schedules to each case.

case b,d, h,m,n,o,p,r, t,v — 12

case a,c, e, f,g,4,5,k,1,q,s,u,w,xz — 21

As we consider a DSIC mechanism, we take into account individual ratio-
nality constraints (2.7) and incentive constraints (2.5). Combining these
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constraints we compute for each case the payments to job 1 and job 2.

mi(a) > 6
m(g) > 6
(1) > 48
i (w) > 6
m5(a) > 2
73 (e) > 2
m(0) > 18
79 (t) > 25

m(c) > 6
mi(i) > 6
m(q) > 6
7 (z) > 48
75(b) > 10
7§ (h) > 20
m3(p) > 18
m9(u) >5
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i (f) > 48
i (k) > 6
7 (u) > 6
7J(d) > 10
79 (n) > 18
mJ(s) > 5
5 (w) > 5

This finally gives us the minimal expected total payment for allocation rule

PUg) =" > bilty)e—(t—j)md(t) ;) = 19.612

jed tjel;jt_;eT_;

which claims our proof.

O]

Although BNIC-DISC equivalence neither holds for instances where types
of jobs have a product distribution, there might be other specific instances
for which BNIC is equivalent to DSIC. This has to be revealed by further
(computational) research.
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6 Conclusion

We have considered a strategic scheduling problem analysed by Heydenreich
et al, where a set of selfish, risk neutral jobs have to be processed non-
preemptively on a single machine. For the 2-dimensional setting of this
scheduling problem, both the weight and processing time of a job, referred
to as a job’s type, are private information. The service provider assigns
a schedule to each possible report of types, and compensates jobs for their
waiting time in the form of payments. For this setting we sought to get more
insight into optimal mechanisms, i.e. incentive compatible mechanisms that
minimize the expected total payments made to jobs.

In the flavour of recent work on automated mechanism design as pro-
posed by Conitzer and Sandholm, we have proposed a mathematical pro-
gramming formulation for the 2-dimensional optimal mechanism design prob-
lem. Although the corresponding mathematical programs are too extensive
to solve for real-world instances, they are well suited for solving smaller
instances up to four jobs to test and generate hypotheses.

Systematically generating small instances at random, we constructed
MPs for different types of mechanisms in the mechanism design problem,
which we subsequently solved using ILOG CPLEX. This way, we found an
example to prove that the optimal allocation rule in general does not satisfy
a condition called independence of irrelevant alternatives (IIA). This gives
a hint towards intractability of the 2-dimensional optimal mechanism de-
sign problem. However, despite extensive computational research, we could
not find a similar result for instances where jobtypes have a product dis-
tribution. This leads to the conjecture that for these specific instances the
optimal allocation rule does satisfy the IIA condition. Therefore, for in-
stances where jobtypes have a product distribution, possibly there exists an
explicit formula for the optimal payment scheme.

Moreover we have proposed an example to prove that Bayes-Nash in-
centive compatibility and dominant strategy incentive compatibility is in
general not equivalent for the 2-dimensional scheduling problem. That is,
in general there is not a DSIC mechanisms that achieves the same expected
total payment as the optimal Bayes-Nash mechanism. Even more, BNIC-
DSIC equivalence does not even hold for instances where jobtypes have a
product distribution.
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7 Future Research

Although we have answered a number of questions around the 2-dimensional
single machine scheduling problem, many remain open. There are several
directions for future research which can be taken to further analyse the
2-dimensional scheduling problem.

A possible direction is to do more computational research using the
mathematical programs we proposed in this thesis. Concerning optimal al-
location rules satisfying the ITA condition, one could do more computational
research on instances where jobtypes have a product distribution. Further-
more one could investigate other specific instances, for which the optimal
allocation rule might satisfy the ITA condition. For example, one could in-
vestigate if the optimal allocation rule that is implementable in dominant
strategies and achieves the minimal expected total payments, satisfies the
ITA condition. For BNIC-DSIC equivalence likewise, there can be searched
for specific instances for which BNIC-DSIC equivalence does hold.

In order to do more computational research, it would be convenient to
improve the MPs such that the solving time by ILOG CPLEX decreases.
Presumably, further reducing the number of constraints or variables, or re-
ducing symmetry will not drastically change the solving time. However, a
completely different mathematical programming formulation might lead to
significant changes. One can think of a formulation where we do not define
a schedule o by explicitly assigning a job to a position, but by choosing the
relative order of jobs. We would define binary variables

1 if job 4 is processed before job j given type profile ¢

dij(t) = )
0 otherwise

which together with some additional constraints encode a feasible allocation

rule. The advantage of this formulation is that we can very easily impose

ITA by defining binary variables

1 if job ¢ is processed before job j given type t; and ¢;

dij(tiyt;) :{ 0 ) !
otherwise

instead of variables d;;(t). Now, by definition, the relative order of jobs i
and j does not depend on the reported types of other jobs. Possibly, the
solving time of the MPs which are constructed using this new formulation,
reduces substantially. This would allow one to solve more instances in the
same amount of time, or to solve instances with an increased number of jobs
or jobtypes. Important is to note, that as the solving time by ILOG CPLEX
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is being decreased, the time it takes C++ to build a LP file containing the
MP for a given setting, becomes a more substantial. However, this step of
the C++ program has not been optimized, and therefore we expect that the
time it takes to build a LP file can be decreased easily.

Finally one could choose to leave the direction of computational research
and switch to a more manual approach. By analysing the individual ratio-
nality and incentive compatibility definitions very carefully, one could try to
find by hand, specific instances for which the optimal allocation rule satis-
fies the ITA condition or BNIC-DSIC equivalence holds. However, one could
also, using mathematical programming formulations, analyse the effect of
certain properties of instances on the expected total payments. In this way
one might generate hypotheses backed by empirical evidence, which after-
wards can be subjected to theoretical analysis.
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A Symbols and Abbreviations

Symbol Description

J Set of jobs {1,...,n}

wj True weight of job j

w; Reported weight of job j

W; Weight-set of job j, i.e. {wi,... ,w;-nj}

w_j True weight vector for all jobs except job j

w_j Reported weight vector for all jobs except job j

W_; Set of all w_;

w Weight vector (wy,--- ,wy,)

W Set of all weight vectors

Dj True processing time of job j

Dj Reported processing time of job j

P; Processing time-set of job j, i.e. {pl,... ,p?j}

t; True type of job j

Nj Reported type of job j

T; Type-set of job j

o} Probability distribution for jobtypes of job j

t_j True type vector for all jobs except job j

f_j Reported type vector for all jobs except job j

T_; Set of all t_;

O—j Probability distribution associated with ¢_;

t Type profile, i.e. (t1,...,t,)

T Set of all type profiles

10) Joint probability distribution of w

;) Probability distribution associated with w; (only when ¢ is
a product distribution)

Vj Probability distribution associated with p;(only when ¢ is a
product distribution)

o Schedule in which jobs are order on machine

G] Set of all schedules

oj Position of job j in schedule o

S;(o) Start time of job j given schedule o

f Allocation rule

T Payment scheme

(f,m) Mechanism

T Payment to job j in payment scheme 7
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Symbol

Description

—w;S;(0)
mj — w;S;(0)

ES;(f.15)

l(E,t-5)

Bl ()

B’ (t;)

EPminf)

Valuation of job j for schedule o when its true weight is w;
Utility of job j for schedule o when its true weight is w; and
it additionally receives payment m;

Expected start time of job j, when allocation rule f is ap-
plied and it reports type ¢;

Expected payment to job j when it reports type t;
Payment scheme that minimizes the expected total pay-
ments made to the jobs, when allocation rule f is applied
(DSIC setting)

Payment made to job j when payment scheme 7/ is applied,
it reports type t} and the other jobtypes are t_; (DSIC set-
ting)

Payment scheme that minimizes the expected total pay-
ments made to the jobs, when allocation rule f is applied
(BNIC setting)

Payment made to job j when payment scheme 7/ is applied
and it reports type ¢; (BNIC setting)

Minimal expected total payment made to the jobs when al-
location rule f is applied (DSIC setting)

Minimal expected total payment made to the jobs when al-
location rule f is applied (BNIC setting)

Abbreviation Description

BNIC
DSIC
IR

IRE
ITA

MP
MIP
MIQCP

Bayes-Nash incentive compatible

Dominant strategy incentive compatible
Individually rational (DSIC setting)
Individually rational (BNIC setting)
Independence of irrelevant alternatives
Mathematical program

Mixed integer program

Mixed inter quadratically constrained program
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B Instance File Format

The text file shown below corresponds to the instance shown in Figure 1,
which can be found in Section 4.1.

LU N N 0N~ W
0 W 0 Wk 3+~
O OO O =

N O = =
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The LP file shown below corresponds to the instance shown in Figure 1 and

in Appendix B.

C CPLEX LP file

Minimize

Pi_0.0 + Pi_1.0 + 0.4 Pi_2.0 4+ 0.6 Pi_2_3

obj:
Subject To

o
[
1O 10 10
[ |
O — AN
[ |
HKoKM
++ +
RN
RS
MKW
++ +
[apRaniNan]
[ |
S — AN
[ |
KoKW
++ +
AN AN AN
[ |
S — AN
[ |
WKW
++ +
— o
[ |
O — AN
[ |
HKoKW
++ +
S99
RS
MoMK
— o
o O 0O

x_3.0 + x.3.1 + x.3.2 4+ x.3.3 + x.3.4 + x.3.5 =1
-4 x 0.2 —-5.6 x0.3 —1.6 x0.4— 5.6 x.0.5—6

x3.2 — 84 x3.3 - 2.4 x34—-84x35+3S00=020

c4:
cH:

-4 x00—-56 x0.1 —-5.6 x04—-1.6 x0.5—-26
x3.0 -84 x3.1 -84 x34—-24x35+S5.10=0

c6:

- 20 x.0.0 — 10 x-0-1 — 20 x.0.2 — 10 x-0_.3 + S_2.0 =

0

cT:

- 20 x.1.0 — 10 x-1.1 — 20 x-1.2 — 10 x-1.3 + S_2_1 =

0

c8:

- 20 x.2.0 — 10 x-2_.1 — 20 x-2.2 — 10 x-2.3 + S_.2.2 =

0

c9:

- 20 x.3.0 — 10 x3.1 — 20 x.3.2 — 10 x-3.3 + S_2.3 =

0

clO:

0
0

Pi_0.0 — 10 S_.0.0 >
Pi.1.0 — 10 S_-1.0 >

cll:

cl2:

Pii2.0 — 7 S.2.0>=0
Pii2.1 —4 S.2.1 >0
Pii2.2 —9 S.2.2>=0

Pii2.3 — S.2.3>=0

cl3:

cl4:

cl5:

cl6:

Pi_2.0 — Pi_2.1 — 7 S.2.0 4+ 7 S_2.1 >=0
Pi_2.0 — Pi_2.2 — 7 S.2.0+ 7 S.2.2>=0
Pii2.0 - Pil2.3 -7 S.2.0+7 S.2.3>=0

- Pi20+ Pii2.2 49 S.2.0-9 S.2.2>=0

cl7:

cl8&:

cl9:

c20:

- Pi21 4+ Pi 2.2 4+9S.2.1 -9 S.2.2>=0

c21:

Pii2.2 —Pi23 -9 S.22+9 5.23>=0

- Pi.2.0 + Pi_2.3 + S_.2.0 — S_2.3 >

c22:

0

c23:

- Pi_2.1 + Pi.2.3 +S5.2.1 - S.23>=0

c24:

- Pi2.2 +Pi 2.3 4+ 5.2.2 - S.23>=0

c25:
Bounds

0<=x00<=1
0 <= x.0_1 <=1
0 <=x.02<=1
0 <= x.03<=1
0<=x.04 <=1
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™ o o~
_

L |
VvV VV VYV
0

x_.1.4 <=1

0 <=

0 <= x_1.5 <=1
0<=x.2.0<=1

0 <= x3.1 <=1
0 <= x.3.2<=1
0 <=x3.3<=1
0 <=x.34<=1
0 <=x35 <=1

Binaries

x_1_.0 x_1_1
x_2_.1 x_.2_.2

x_0_.5

x.0.2 x.0.3 x.0_4
x_1.3 x_.1_4 x_1_.5

x_0_1

x_0_0

x_2_3

x_2_0

x_1_2

x.2_.5 x.3.0 x.3_.1 x.3.2 x.3_.3 x.3.4 x.3.5

x_2_4

End
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D Pseudo-Code C++ Program

Algorithm 1: The C++ program realising all steps of the solution
method

Input: Set of tasks and processors
Output: Mapping of tasks to processors

maxcnt = #counterexamples to be found;
cent = 0;
while cnt < mazcent do
begin generate instance
read/generate # jobs;
for i < # jobs do
read/generate # types per job;
for j < # types per job do
‘ generate wj, pj, @;;
end
end
write instance to text file;

end
begin construct MPs
read types of mechanisms S7 and Sy to be compared;
read instance text file ;
for 51,55 do
Construct MP ;
Write MP to CPLEX LP file;
end
end
begin Compare MPs
opt; = solution MP for S using ILOG CPLEX;
opte = solution MP for Sy using ILOG CPLEX;
if opty # opte then
Save instance;
Save CPLEX LP file for 57, So;
ent + +;
end

end

end

47



	Preface
	Introduction
	Optimal Mechanisms for Scheduling
	Single Machine Scheduling Problem
	The 1-Dimensional Setting
	The 2-Dimensional Setting

	Mathematical Programming Formulations
	Bayes-Nash Implementations
	Dominant Strategy Implementations
	Independence of Irrelevant Alternatives
	Implementation of MP Formulations

	Solution Method
	Generating Instances
	Instance File Format
	Computational Procedure and Details

	Computational Results
	Optimal Mechanisms and IIA
	BNIC-DSIC Equivalence

	Conclusion
	Future Research
	References
	Symbols and Abbreviations
	Instance File Format
	CPLEX LP file
	Pseudo-Code C++ Program

