
 
 

    

 

UNIVERSITY OF TWENTE 
CHAIR 

APPLIED ANALYSIS & MATHEMATICAL PHYSICS (AAMP) 

Mathematics Department 

 

 

Master’s Thesis 

Infinite Dimensional System Theory  

for Networks of Flows 

By Sehar Iqbal 

 

 

 

 

Supervisor 

Prof.Dr. Hans Zwart 

 

 

 

 

Enschede, Netherlands 

February 24, 2012 

 

 



 
 

 

Acknowledgements 
 

I am very much thankful to my supervisor Prof. Dr. Hans Zwart and express deepest gratitude to him 

for his kind guidance, sincere advice and friendly attitude during my work. He welcomed me every 

time when I needed his help; it was due to his guidance and encouragement that I was able to 

complete this research work in time. I am obliged to Dr. Mikael Kurula for his time; I gain a lot from 

his experience and knowledge. Finally I am grateful to my husband Tariq Abbasi, without his 

support and encouragement the task would have been impossible. 



 

 
 

Table of Contents 3 

Table of Contents 
Table of Contents ................................................................................................................................3 

Chapter 1 Introduction ...............................................................................................................5 

Chapter 2 Background Information ...........................................................................................8 

2.1 Strongly Continuous Semigroup ..........................................................................................8 

2.1.1 Infinitesimal generator of 0C - semigroup ...................................................................8 

2.1.2 Theorem ......................................................................................................................9 

2.2 Abstract differential equation ...............................................................................................9 

2.2.1 Classical solution .........................................................................................................9 

2.2.2 Lemma ...................................................................................................................... 10 

2.3 Contraction semigroups ..................................................................................................... 10 

2.3.1 Dissipative operator ................................................................................................... 10 

2.3.2 Theorem (Lumer-Phillips Theorem) ........................................................................... 10 

2.3.3 Theorem .................................................................................................................... 10 

2.4 Port-Hamiltonian system ................................................................................................... 11 

2.4.1 Linear, first order port-Hamiltonian system ................................................................ 11 

2.4.2 Generation of contraction semigroup: ......................................................................... 11 

2.4.2.1 Theorem: ................................................................................................................... 13 

2.5 Inhomogeneous Abstract differential equation ................................................................... 14 

2.6 Port-Hamiltonian system as boundary control system:........................................................ 14 

2.6.1 Assumption................................................................................................................ 15 

2.6.2 Theorem .................................................................................................................... 16 

2.7 Flows in networks ............................................................................................................. 16 

2.7.1 Definitions ................................................................................................................. 17 

Chapter 3 Explanatory Examples ............................................................................................. 18 

3.1 Theorems .......................................................................................................................... 18 

3.1.1 Theorem .................................................................................................................... 18 



 

 
 

Table of Contents 4 

3.1.2 Theorem .................................................................................................................... 19 

3.2 Example 1 ......................................................................................................................... 22 

3.2.1 Methodology ............................................................................................................. 23 

3.2.2 Formulation of Hamiltonian (diagonal) matrix ........................................................... 29 

3.2.3 Formulation of Hamiltonian (non-diagonal) matrix: ................................................... 31 

Example 2 ..................................................................................................................................... 36 

3.3.1 Methodology ............................................................................................................. 37 

3.3.2 Formulation of diagonal Hamiltonian matrix .............................................................. 41 

Chapter 4 Boundary Control System ....................................................................................... 47 

4.1 Port-Hamiltonian systems as boundary control systems ...................................................... 47 

4.1.1 Assumptions .............................................................................................................. 48 

4.1.2 Theorem .................................................................................................................... 49 

4.1.3 Boundary observations for port-Hamiltonian System .................................................. 49 

4.1.4 Theorem .................................................................................................................... 50 

4.1.5 Example .................................................................................................................... 51 

4.2 Well-posedness for port-Hamiltonian systems .................................................................... 57 

4.2.1 Theorem .................................................................................................................... 58 

4.2.2 Lemma ...................................................................................................................... 59 

4.2.3 1P   Diagonal ........................................................................................................... 59 

4.2.4 Theorem .................................................................................................................... 60 

4.2.5 Example .................................................................................................................... 61 

Chapter 5 Conclusion ................................................................................................................ 69 

References ........................................................................................................................................ 71 

  
 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Introduction 

 

5 

Chapter 1    Introduction 

Network flow theory is a mathematical treatment of flows in networks. Network flow is 

important because it can be used to express a wide variety of different kinds of problems. 

Different kinds of networks have been studied since many years with both theoretical and 

application' point of view. Network of flows have endless applications in daily life, some of 

the examples are electrical power grids, cellular networks, transportation networks, neural 

networks, financial networks, flow of nutrients and energy between different organizations in 

a food web, and last but not least is the World-Wide Web. 

In this thesis we have considered a network flow problem which is basically motivated from 

the research article [1]. The description of the problem and the tasks to investigate are as 

follows: 

Description:  We consider a closed network such as depicted in the following figure  

   

 

                                  e3 

 

           e1                                            e4 

 

                                                                          e6              
           

                              e2                                                                      e5                              

 

 

 

We assume that the edges all have equal length (one) and that on every edge. The 

information/material is transported with equal and constant speed; this means that on every 

edge the following partial differential equation holds  

V1 V3 

V2 V4 

V5 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Introduction 

 

6 

 , ( , )z t z t
t
 


 


 

 

The arrow in the figure indicates way the information flow. At the vertices no information can 

be lost. Hence at every vertex the total amount of incoming equals the total amount of out-

coming. However, the outflow may not be equal to all connected edges. The outflow is 

weighted by i jw  . 

Main tasks: 

1) The 1st task is to formulate the partial differential equations together with the relations 

at the vertices as an abstract differential equation on the state space   2 nL 0,  1 ; R , 

where n  is the number of edges. 

2) The 2nd task is to prove that this (homogeneous) differential equation generates a 

contraction semigroup on the state space. 

3) Add an input at one of the vertices, and show that for every square integrable input 

function, there exists a unique solution of the inhomogeneous abstract differential 

equation. 

4) As output, the flow at one of the edges is chosen. After the well-posedness question 

similar to the one above has been answered, the following optimal control problem is 

studied 

 

2 2

0

min ( ) ( )y t u t dt


  

The final aim is to solve this optimal control problem. It is expected that by the special 

structure of the coupled partial differential equations the solution to this problem can be 

formulated in a matrix equation. 

To investigate the above network of flow and to complete the aforementioned tasks we have 

divided this thesis into five main chapters. Where needed the chapter is further subdivided 

into different sections.  

Chapter 1 (current chapter) is basically introductory chapter, wherein we have explained the 

importance of network of flows by giving the various applications in real life. The main 
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problem of the thesis is given along with the related tasks which gives clear idea to the reader 

regarding the later research work in this project. 

 Chapter 2  is basically preliminary review of the relevant background information [1], [2], 

[5]. This knowledge is necessary to understand which will help later to solve the problem and 

to complete the tasks. In this chapter along with various important definitions, theorems we 

have given some important theorems, lemmas and explain the Port-Hamiltonian and boundary 

control systems. All the information given and explained in this chapter provides the solid 

back ground to proceed further in this thesis to complete the tasks.   

In Chapter 3  we have discussed two important theorems; the results of these theorems are 

used later in this thesis at different occasions. The most important part of this chapter is two 

explanatory examples. In these examples; we have considered two different closed networks 

of flows (one of these is the same as given in problem description) which hold linear transport 

equation.  Hamiltonian matrices have been created for these networks of flows. On the basis 

of these matrices we have shown that one of these networks flows generate the contraction 

semigroup, and for one network the contraction semigroup doesn’t hold.  

The network for which the contraction semigroup generated is further continued to obtain the 

inhomogeneous abstract differential equation and finally shown that the classical solution for 

this network of flow exists.  

In Chapter 4 first we studied the relevant literature [2], [4], [9], [11] regarding the boundary 

control system and port-Hamiltonian system for boundary control problems. Next we add an 

input to the closed network (for which the contraction semigroup generated) and obtain the 

inhomogeneous abstract differential equation.  Further we showed that the port-Hamiltonian 

system is boundary control system for this network of flow. Later we proved that the system 

is well-posed as well, and the unique solution (classical solution) for this network of flow 

exists. 

Chapter 5 is the final concluding chapter, in this chapter we have concluded different tasks 

which we have done in this thesis. The ultimate results which we have deduced during the 

research work are given in this chapter. 
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Chapter 2     Background Information  

This chapter describes the background information [1], [2] needed to proceed with our 

project/thesis. First section is about the semigroup, next section treats information regarding 

port-Hamiltonian linear systems, and last section provides the description of the boundary 

control system and boundary observation for port-Hamiltonian system.     

2.1 STRONGLY CONTINUOUS SEMIGROUP 

In this section; we introduce strongly continuous semigroup ( 0 -semigroupC ) and their 

generators.   

Definition: 

Let X be a Hilbert space. 0( )tT t   is called a strongly continuous semigroup ( 0C - semigroup)  

if the following holds 

1. For all 0t  , is a bounded linear operator on X , i.e.  ( ) ( )T t L X  ; 
2.  (0)T I ; 
3.  ( ) ( ) ( )T t T t T     for all 0, t   

4. For all Xx 0    , we have that XxxtT 00)(  converges to zero, when 0t , i.e., 

 T is strongly continuous at zero. 

We call X the state space.  

2.1.1 Infinitesimal generator of 0C - semigroup  

Let 0)( ttT  be a   0C - semigroup on the Hilbert space X , if the following limit exists 

                                                      
t

xxtT
t

00
0

)(lim 


 

Then we say that 0x is an element of the domain of A , or we can say )(0 ADx  , we define 

0A x  as   

t
xxtTAx

t
00

00
)(lim 


  

and say that A is the infinitesimal generator of the strongly continuous semigroup 0)( ttT . 

This definition implies that every strongly continuous semigroup has unique generator.   
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2.1.2 Theorem  

Let 0)( ttT  be a strongly continuous semigroup on the Hilbert space X with infinitesimal 

generator A . Then the following results hold: 

a. For )(0 ADx   and 0t we have )()( 0 ADxtT   

b.   000 )()()( xAtTxtATxtT
dt
d

  for )(0 ADx  , 0t  

c.   000 )()()( xAtTxtTAxtT
dt
d nn

n

n
  for )(0

nADx  , 0t  

d. 
t

dsAxsTxxtT
0

000 )()(   for  )(0 ADx   

e.  
t

ADdsxsT
0

)()( and  
t

xxtTdsxsTA
0

)()( for all Xx and )(AD is dense in X  

f. A is a closed linear operator. 

This theorem implies that for )(0 ADx   the function x defined by 0)()( xtTtx  satisfies 

the abstract differential equation )()( txAtx  . 

 

2.2 ABSTRACT DIFFERENTIAL EQUATION 

In this section; we showed how to rewrite a p.d.e. as an abstract differential equation.  

Note that for partial differential equations the question of existence and uniqueness of 

solutions is more difficult than ordinary differential equation.    

As the theorem 2.1.2 shows that for )(0 ADx   the function 0)()( xtTtx  is a solution of 

abstract differential equation  

                       0)0(,)()( xxtxAtx         ………………………..  (2.1) 

2.2.1 Classical solution 

A differentiable function   : [0, ]x X  is called a classical solution of eq:2.1  

If for all 0t  we have ( )x D A and eq:2.1 is satisfied. 
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2.2.2 Lemma 

Let A be the infinitesimal generator of the strongly continuous semigroup 0( )tT t  , then 

for every 0 ( )x D A  , the map 0( )t T t x   is the unique classical solution of eq:2.1.  

This lemma shows that the classical solution is uniquely determined for 0 ( )x D A . 

 

2.3 CONTRACTION SEMIGROUPS 

In this section, we studied the other implication and restrict ourselves to infinitesimal 

generator of contraction semigroup on (separable) Hilbert space and also discussed the 

dissipative operator. 

Definition: 

Let 0( )tT t  be a 0C -semigroup on the Hilbert space X , then 0( )tT t   is called 

contraction semigroup, if ( ) 1T t    , for every   0t  . 

2.3.1 Dissipative operator 

A linear operator : ( )A D A X X   is called dissipative if Re , 0Ax x   , ( )x D A      

2.3.2 Theorem (Lumer-Phillips Theorem)  

Let  A  be a linear operator with domain ( )D A   on a Hilbert space X  , then A  is the 

infinitesimal generator of a contraction semigroup 0( )tT t   on  X  if and only if A  is 

dissipative and has ran ( )I A X  . 

This theorem shows that the generators of contraction semigroup are precisely those 

dissipative operators, for which I A , is surjective. 

2.3.3 Theorem 

Let A   be a linear, densely defined and closed operator on a Hilbert space X . Then A  is 

the infinitesimal generator of a contraction semigroup 0( )tT t   on   X  if and only if A   

and A  are dissipative. 
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2.4 PORT-HAMILTONIAN SYSTEM 

In this section; we studied that how port-Hamiltonian system generates contraction 

semigroup [2]. Hamiltonian differential equation form an important sub class with 

ordinary and partial differential equations, these includes their linear and non linear 

differential equations which appear in many physical models. We restrict ourselves to 

linear differential equation and normally omit the terms, linear, first order.     

2.4.1 Linear, first order port-Hamiltonian system  

Definition:   

Let 1
n nP   be invertible and self-adjoint, let 0

n nP  be the skew-adjoint, i.e.,

0 0P P    and let   , ; n nL a b     such that ( ) ( ) , ( )m I M I         

for a.e.  ,a b  and constants , 0m M   independent of  . The Hilbert space 

  2 , ; nL a b   with the inner product space 

                                 1, ( ) H( ) ( )
2

b

a

f g g f d   
     

then the differential equation  

                               1 0, ( ) ( , ) ( ) ( , )x t P x t P x t
t
    

 
  

   
  

 

is called a linear, first order port-Hamiltonian system. 

2.4.2 Generation of contraction semigroup: 

We applied some general results to the port-Hamiltonian systems, i.e., we considered 

partial differential equation of the form 

   1 0, ( ) ( , ) ( ) ( , ) ............................. (2.2)x t P x t P x t
t
    


 

   
   

 

We want to characterize (homogenous) boundary conditions such that eq: 2.2 possess a 

unique solution. For that, we write the p.d.e. as the abstract ordinary differential equation 

(in the absence of spatial dependence) 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Background Information 12 

                                        1 0( ) ( , ) ( ) ( )dx t P x t P x t
dt

  



   


 

we consider the operator  

   0 1 0
dA x P x P x

d
     

on the state space 

  2 , ; nX L a b   

       with inner product  

1, ( ) ( ) ( )
2

b

a

f g g f d   
     

and domain 

    nbaHxXxAD  ;,/)( 1
0 H  

Here   1 , ; nH a b   is the vector space of all functions from  ,a b to n , which are 

square integrable , absolutely continuous and the derivative is again square integrable , 

that is  

          1 2 2, ; , ; | is absolutelycontinuousand , ;n n ndfH a b f L a b f L a b
d

     

.   

Here 0A is the maximal domain. In order to guarantee that eq: 2.2 possess unique solution 

we have to add boundary conditions. It is better to formulate boundary conditions in the 

boundary effort and boundary flow, which are defined as 

                  1 ( ) ( ) ( ) ( )
2

e x b x a     ,     1 1
1 ( )( ) ( )( )
2

f P x b P x a      

respectively.  

As the boundary flow is determined by x and not by x . Therefore we formulate the 

boundary conditions in x  variable. So we consider the boundary conditions 
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( ) ( , )
0 , 0 .......................... (2.3)

( ) ( , )B
b x b t

W t
a x a t

 
   


 
 

To formulate the boundary conditions directly in x  or x  at a  and b  is not the 

best choice for characterizing generators of contraction semigroups. It is better to 

formulate them in the boundary effort and boundary flow. We write this as matrix vector 

product, i.e.  

 
 0

( )
................................. (2.4)

( )

x bf
R

e x a




  
        

 

with 2 2
0

n nR   defined as 

                                          1 1
0

1
2

P P
R

I I
 

  
 

 

here the matrix 0R is invertible, we can write any condition which is formulated in 

  ( )x b   and   ( )x a    into an equivalent condition which is formulated in f and e  . 

Using eq: 2.4, we write the boundary condition eq:2.3 (equivalently) as 

                                               
( )

0
( )B

f t
W

e t




 
 

 
                                                

where 1
0B BW W R  . Thus we study the operator 

                          1 0 ............................... (2.5)dAx P x P x
d

     

with domain 

     2 1( ) , ; | , ; , 0 ............. (2.6)n n
B

f
D A x L a b x H a b W

e




           
   

 

 

2.4.2.1  Theorem: 

Consider the operator A defined in eq:2.5 and eq:2.6 associated to a port-Hamiltonian 

system, that is, the assumption of definition 2.4.1 are satisfied. Furthermore, BW , or 
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equivalently BW , is an 2n n  matrix of rank n . Then the following statements are 

equivalent. 

1. A  is the infinitesimal generator of a contraction semigroup on X  
2. 0,Re  xAx   for every )(ADx   

3. 0*  BB WW  

this theorem characterizes the matrices BW  for which the operator A  with domain eq: 2.6 

generates a contraction semigroup.  

Proof: The proof of this theorem is given in [2].  

 

2.5 INHOMOGENEOUS ABSTRACT DIFFERENTIAL EQUATION 

If  A  is the infinitesimal generator of a 0C  - semigroup  0( )tT t   , then the classical 

solution of the abstract homogeneous Cauchy initial value problem 

0( ) ( ) , 0 , (0) ( )x t A x t t x x D A     

is given by 0( ) ( )x t T t x  . We consider the abstract inhomogeneous Cauchy problem is 

of the form 

0( ) ( ) ( ) , 0 ; (0)x t A x t f t t x x     

here we assume that f  is continuous differentiable i-e   0, ;f C X . The above 

equation is also called an abstract evolution equation or abstract differential equation. 

2.6 PORT-HAMILTONIAN SYSTEM AS BOUNDARY CONTROL SYSTEM: 

We add a boundary control to a port-Hamiltonian system and showed that the assumptions 

of a boundary control system are satisfied. The port-Hamiltonian system with control is 

given by 

                    1 0, ( ) ( , ) ( ) ( , ) ....................... (2.7)x t P x t P x t
t
    


 

   
 

  

                         ,1
( )

( ) .............................. (2.8)
( )B

f t
u t W

e t




 
  

 
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                              , 2
( )

0 ............................... (2.9)
( )B

f t
W

e t




 
  

 
 

We make the following assumptions. 

2.6.1 Assumption 

 1
n nP K  is invertible and self-adjoint. 

   , ; , Η ( )n nL a b    is self-adjoint for a.e.  ,a b and there exist 

, 0M m  such that ( )m I M I   for a.e.  ba,  

 ,1 2

, 2

B n n
B

B

W
W

W
 

   
  

 has full rank. 

We can write the port-Hamiltonian system eq: 2.7—2.9 as boundary control system 

                                

0( ) ( ) , (0)
( ) ( )

x t U x t x x
B x t u t

 




 

By defining  

                      
   1 0 ................................... (2.10)U x P x P x




   
  

     2 1
, 2( ) , ; | , ; , 0 ......... (2.11)n n

B
f

D U x L a b K x H a b K W
e




         
   

  

                          
,1 , .......................... (2.12)B

f
Bx W

e




 
  

   

                        ( ) ( ) ................................. (2.13)D B D U  

we choose the Hilbert space   2 , ; nX L a b K  , with the inner product space 

                                1, ( ) ( ) ( )
2

b

a

f g f g d   
     

as the state space. The input space U equals mK   , where m is the number of rows of ,1BW

.We are now in the position to show that the controlled port- Hamiltonian system is indeed 

a boundary control system. For this, we have the following theorem: 
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2.6.2 Theorem 

If the operator  

                       1 0 ................................... (2.14)Ax P x P x



   


 

With domain 

               ,11

, 2
( ) | , ; , ker ......... (2.15)

Bn

B

Wf
D U x X x H a b K

e W




            
     

 

generates a 0 semigroupC   on X ,then the system eq:2.7-2.9 is a boundary control 

system on .X  

Remark: 

An essential condition in the above theorem is that A given by (2.14) with the domain 

(2.15) generates a 0 semigroupC   . Theorem 2.4.2.1 and assumption 2.6.1 imply that this 

holds in particular when 0 0P P   and 
0

0
0B B
I

W W
I

 
 

 
  . Since the term 0P can be 

seen as is a bounded perturbation of eq:(2.10) with 0 0P  , theorem 2.4.2.1 showed that 

A  given by eq:2.14 with domain eq:2.15 generates a 0 semigroupC   when 

0
0

0B B
I

W W
I

 
 

 
. 

The above theorem 2.6.2 is useful for proving the bounded semigroup when the operator 

generates the contraction semigroup. 

2.7 FLOWS IN NETWORKS 

We consider a finite network, modelled by a simple directed graph [1] , [3]. We denote 

1{ ,..., }nV v v   the set of vertices and 1{ ,..., }nE e e  the set of (directed) edges of the 

graph. The edges are parameterizes on the interval [0, 1]. The vertex (0)je is thus called 

the head and the vertex (1)je the tail of the edge je E . The edge je is an incoming edge 

for the vertex iv if (0)i jv e holds, and it called an outgoing edge for iv if (1)i jv e holds. 
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We assume that in every vertex there is at least one incoming as well as at least one 

outgoing edge. 

We will use the following graph matrices to describe the structure of the network. 

2.7.1 Definitions  

i. The outgoing incidence matrix  i j n m
 


   has entries  

                       
1 ,

0 , ;
i j

i j
v tail of e

else
  

  

ii. The outgoing incidence matrix  i j n m
 


   has entries  

 

1 ,

0 , ;
i j

i j
v head of e

else
  


 

iii. The weighted outgoing incidence matrix is  w i j n m
 


    ,   where    

0 1i j  satisfy 0 0i j i j     and 1 1m
i jj 


 for all 1, . . . ,i n . 

iv. The weighted adjacency matrix is defined as     .
T

i k n n wa  
      

v. The weighted adjacency matrix of the line graph is defined as  

 

    .
T

i k m m wb  
      

Remark: 

Both adjacency matrices  and  are column stochastic, hence 

                     1 1   and 1 1  . 

Furthermore, the relation    T T
w w
      holds.   
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Chapter 3   Explanatory Examples  

In this chapter we discussed how different research questions, as stated in the research 

aim, can be answered and how the objectives can be fulfilled. Basically we have treated 

two different networks of flows (as two examples) in this chapter.  In order to validate 

theories obtained from the previous research studies, which have been summarized in the 

previous chapter, and subsequently apply them to these two examples.    

3.1 THEOREMS 

3.1.1 Theorem  

If A  generates contraction semigroup 0tT   with respect to H. , .  then A  generates 

bounded semigroup 0tT  with respect to . , .  . 

where we have  

, ( ) ( )
b

a

f g g f d             (Natural norm) 

and  

H, ( ) H( ) ( ) ; H( )
b

a

f g g f d m I M I          

Proof:  

Given: A generates Contraction semigroup with respect to  H. , .   means that we have 

 T  be a 0C -semigroup with respect to  H. , .     (so it holds all the conditions of 0C

-semigroup). 

 2
H H(t) ; t 0, L ( , )T x x x a b     

To Prove: A  generates bounded semigroup T  with respect to . , .   

To prove A  generates semigroup ; first we need to show that both H. , .   and  . , .   are 

equivalent. for this we have                                                         
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2
H H

H
2 2

H

H
2 2

H

 , ; H( ) MI

and
, ,MI

 M  ....... ( )

Also
, , I

  ............... ( )

x x x mI

x x x x

x x i

x x x m x

x m x ii

  



 



 

 

Combining (i) and (ii) ,we get  

2 2 2
H  M  m x x x   (which is the definition of equivalent norms) 

Thus both norms H.  and . are equivalent. so A  holds all the conditions of semigroup 

with respect to  . , .   .   

Now to prove the boundedness; we have 

                           H HT(t) x x                 (As A  generates contraction semigroup) 

then we have   

2 2 2 2
H H

1 1(t) ( )

(t) C ( C )

MT x T t x x x
m m m

MT x x
m

  

  
 

The above expression shows the boundedness. Hence proved that A  generates bounded 

semigroup with respect to . , . .          

            

3.1.2 Theorem  

Let Q be a given (square) matrix. There exists a self-adjoint matrix ‘H’ that satisfying  

H MmI I  and *H H 0Q Q    if and only if the following two conditions are 

satisfied. 

1. The eigen values of Q satisfy 1  . 

2. The eigen values of Q lying on the unit circle. 
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Proof: 

Given:    H is constant  and QHQ  H 0 .......................................( )i      holds. 

To prove:  conditions (1) and (2) should be satisfy.  

1- consider  be eigen value of Q with the corresponding eigen vector  

                                                 

1

n

v

v

v

 
  
 
 
 

 
 

 

then v satisfies the matrix equation Qv v , so we need to show that   lies in unit 

circle. so the ( )i  will become 

                                 v Q  H Q v v H 0v   

2 H H 0v v v v      

2( 1) v   H v 0  

1   

Hence condition 1 is satisfied. 

2- Assume that Q has the eigen values not on the unit circle then there does not exist H 

such that                                                                                

                                     H H 0Q Q      holds 

Hence it is given that (i) holds. So eigen values of Q lying on the unit circle. 

Conversely: 

      Given:    The eigen values of Q satisfy 1  . 

   The eigen values of Q lying on the unit circle. 

     To prove:  H is constant and QH Q  H 0 holds. 
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We split the Hilbert space 1 2X X X  . Where 1 { } ;k kX span v v is the corresponding 

eigen vector of generalized eigen values 1  and 2 { } ;k kX span v v is eigen vector 

with 1  . 

consider 1X X   

here Q has the eigen values  not on the the unit circle, so H does not satisfy equation (i).  

Assume that there exist H such that  

                                   
0

H
n n

n
Q Q






  

This satisfies  

                                 H H IQ Q     

As Q has the Jordan block structure so it is not diagonalizable. It also has generalized 

eigen values. 

Now consider 2X X  

Then    

1 . . . 0
. . .
. . .
. . 0
0 . . 0 n

Q





 
 
 
 
 
 
 
   

here Q  is transition/stochastic matrix. 

1 1. . . 0 . . . 0
. . . . . .
. . . . . .
. . 0 . . 0.

0 . . 00 . . 0 nn

Q Q I

 









   
   
   
    
   
   
   

  

 

We obtainQ Q I  . here the eigen values of Q lies on the unit circle.  

This mean that 0Q I Q I   holds only when H I (constant valued matrix).  

Hence QHQ  H 0  .   This completes the prove.     
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3.2 EXAMPLE 1 

We consider a network such as depicted in Figure 1. 

 

 

                                   e3 

 

           e1                                             e4 

 

                                                                         e6              
           

                             e2                                                                          e5                              

 

 

 

Figure 1 

 

We assume that the edges all have equal length (one) and that on every edge the 

information/material is transported with equal and constant speed. This means that on 

every edge the following partial differential equation holds  

     , , ; 0 ,1 , 0j jz z
t t t

t
  


 

  
 

 ………………….   (3.1) 

Boundary condition:         
1

,1 ,0
m

i j j i j i k k
k

z t z t    



   

Initial condition:                  0,j jz f   

The arrow in the figure indicates way the information flow. At the vertices no information 

can be lost. Hence at every vertex the total amount of incoming equals the total amount of 

V1 V3 

V2 V4 

V5 
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out-coming. However, the outflow may not be equal to all connected edges. The outflow 

is weighted by i j  . 

3.2.1   Methodology 

1. Formulate the partial differential equations together with the relations at the vertices as 

an abstract differential equation on the state space   2 0,1 ; nL   where n  is the 

number of edges. 

2. To prove that this (homogeneous) differential equation generates a contraction 

semigroup on the state space. 

3. Add an input at one of the vertices, and show that for every square integrable input 

function, there exists a unique solution of the inhomogeneous abstract differential 

equation. 

4. As output the flow at one of the edges is chosen. After the well-posedness question 

similar to the one above has been answered, the following optimal control problem is 

studied 

 2 2

0

min ( ) ( )y t u t dt


  

The final aim is to solve this optimal control problem. It is expected that by the special 

structure of the coupled partial differential equations the solution to this problem can be 

formulated in a matrix equation. 

 Abstract Differential Equation: 

The given p.d.e. eq:3.1 can be written in abstract differential equation as 

                          
   
 

, 0

0

z t A z t t

z f

  





 

with the state space 

  2: 0 ,1 ; nX L C  

we define the operator 

1,...,

:
j m

dA diag
d 

 
  

 
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with domain         1( ) H 0,1 , | 1 (1) (0)
TmD A z C z rg z z          

 

In the domain of A , the first condition    1
T

z rg 
 means that in every vertex the 

total incoming flow is distributed in (given) weighted proportions to the outgoing edges. 

the second condition (1) (0)z z    is the Kirchhoff’s law in each vertex. 

  Generation of Contraction semigroup: 

Consider the linear transport equation 

   , H ( , ) ................................................ (3.2)z t z t
t
  


 


 

︵ ︶  

In the given p.d.e eq:3.1  we have;  

               P Identity matrix1    ,     H ) Identity matrix ︵      and      0P 0  

        with Boundary conditions on vertices(from flow diagram): 

                                    

1

2 1

3

4 3

5 2 4 6

6 5

(1) 0
(1) (0)
(1) 0

..........................(3.3)
(1) (0)
(1) (0) (0) (0)
(1) (0)

z
z z
z
z z
z z z z
z z

 
  
  
  
   
 

  

 

          and we have the operator 

   0 1 0
dA z P z P z

d
     

with domain 

   1
0( ) X/H , ;KnD A z z H a b    

Here   1 , ; nH a b   is the vector space of all functions from  ,a b to n , which are 

square integrable , absolutely continuous and the derivative is again square integrable , that is 

          1 2 20,1 ; 0,1 ; | is absolutelycontinuousand 0,1 ;n n ndfH C f L C f L C
d

   .  
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 Formulation of Boundary Conditions: 

In order to formulate the boundary conditions into boundary effort and boundary flow which 

are (in our example1) 

                              1 (H ) (1) ( H ) (0)
2

e z z     , 

                          1 1
1 ( H )(1) ( H ) (0)
2

f P z P z    

here      1 Identity matrixP    and 

             H ( ) Identity matrix    

The boundary variables e and f will be 

 

1 1

2 2

3 3

4 4

5 5

6 6

(1) (0)1 0 0 0 0 0 1 0 0 0 0 0
(1) (0)0 1 0 0 0 0 0 1 0 0 0 0
(1) (0)0 0 1 0 0 0 0 0 1 0 0 01
(1) (0)0 0 0 1 0 0 0 0 0 1 0 02

0 0 0 0 1 0 0 0 0 0 1 0(1) (0)
0 0 0 0 0 1 0 0 0 0 0 1(1) (0)

z z
z z
z z

e
z z
z z
z z



     
     
     
     

      
    
    
    
      

 
 
 
 
 
  
  
       

 

finally we obtained 

1 1

2 2

3 3

4 4

5 5

6 6

(1) (0)
(1) (0)
(1) (0)1
(1) (0)2
(1) (0)
(1) (0)

z z
z z
z z

e
z z
z z
z z



 
  
 

  
 

 
     

and 
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1

2

3

4

5

6

(1)1 0 0 0 0 0 1 0 0 0 0 0
(1)0 1 0 0 0 0 0 1 0 0 0 0
(1)0 0 1 0 0 0 0 0 1 0 0 01
(1)0 0 0 1 0 0 0 0 0 1 0 02

0 0 0 0 1 0 0 0 0 0 1 0 (1)
0 0 0 0 0 1 0 0 0 0 0 1 (1)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0

z
z
z

f
z
z
z



     
     
     
     
      
     
     
             

1

2

3

4

5

6

(0)1 0 0 0 0 0
(0)0 1 0 0 0 0
(0)0 0 0 0 1 0 0 0
(0)0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 (0)
0 0 0 0 0 1 0 0 0 0 0 1 (1)

z
z
z
z
z
z

     
     
     
     
     
     
     
               

hence we get 

1 1

2 2

3 3

4 4

5 5

6 6

(1) (0)
(1) (0)
(1) (0)1
(1) (0)2
(1) (0)
(1) (0)

z z
z z
z z

f
z z
z z
z z



 
  
 

  
 

 
   

 

As we have the boundary conditions as follows: 

1

2 1

3

4 3

5 2 4 6

6 5

(1)0
(1) (0)0
(1)0
(1) (0)0

0 (1) (0) (0) (0)
0 (1) (0)

z
z z
z
z z
z z z z
z z

  
     
  

      
     
  

      

we can write the above conditions as 

H(1) (1, )
0 , 0

H(1) (0, )B
z t

W t
z t

 
  

 
  

where 
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1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0

BW

 
  
 

   
   
 

 

  

the boundary conditions on vertices can be written in terms of boundary effort and boundary 

flow as 

( )
0

( )B
f t

W
e t




 
 

 
 

where          1
0B BW W R   ;                and           1 1

0
1
2

P P
R

I I
 

  
   

1 10 0 0 0 0 0 0 0 0 0
2 2
1 1 1 10 0 0 0 0 0 0 0
2 2 2 2

1 10 0 0 0 0 0 0 0 0 0
2 2
1 1 1 10 0 0 0 0 0 0 0
2 2 2 2

1 1 1 1 1 1 1 10 0 0 0
2 2 2 2 2 2 2 2

1 1 1 10 0 0 0 0 0 0 0
2 2 2 2

BW

 
 
 
  
 
 
   

 
 
 

   
 
   

 

Now we need to prove one of the condition of the theorem 2.4.2.1
 

* 0B BW W   











0
0
I

I

 

so 
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*

1 0 0 0 0 0
2
0 0 0 0 0 0

10 0 0 0 0
2

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

B BW W

 
 
 
 
 
  
 
 
  
  

 

It is clear that eigen values of the above matrix are not positive, hence the condition of the 

theorem 2.4.2.1does not hold.  

Now for verification purpose we will investigate the other condition Re , 0Az z   of 

theorem 2.4.2.1 

 

1

0

1

0

1

0

2 2

Re , ( ) ( )

1 ( ) ( )
2
1 ( )
2
1 (1) (0)
2

dz d zAz z z z d
d d

z z

z

z z

  
 

 



 
    

 

   

   

 



 

or we can write it as  

2 2 2 2 2 2
1 1 2 2 3 3

2 2 2 2 2 2
4 4 5 5 6 6

Re , (1) (0) (1) (0) (1) (0)

(1) (0) (1) (0) (1) (0)

Az z z z z z z z

z z z z z z

                  
              

 

 

by using the boundary conditions on vertices (from the flow diagram), we have 

 

2 2 2 2
1 1 2 3

22 2 2 2 2
3 4 2 4 6 5 5 6

Re , 0 (0) (0) (0) 0 (0)

(0) (0) (0) (0) (0) (0) (0) (0)

Az z z z z z

z z z z z z z z

                 
              

 

finally we obtained 

2 4 4 6 6 2Re , 2 (0) (0) 2 (0) (0) 2 (0) (0)Az z z z z z z z      
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Hence it is clear that the real part is not positive. So we conclude here, H ( ) Identity matrix 

is not a good choice for generating the contraction semigroup. Also theorem 2.4.2.1 does not 

hold. Hence for this network flow; we cannot generate contraction semigroup by choosing

H ( ) Identity matrix   

Now we need to find such constant valued Hamiltonian diagonal matrix, which can satisfy 

theorem 2.4.2.1. 

3.2.2 Formulation of Hamiltonian (diagonal) matrix 

We need to find Hamiltonian which will satisfy the conditions of the theorem 2.4.2.1, 

consider the constant valued Hamiltonian matrix is in the form 

1

2

3

4

5

6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

H
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0










 
 
 
 

  
 
 
  
 

 

we already defined the operator as 

                                        
A diag





  

So 

1
1 1

2 2
1

3 3

4 40

5 5
6

6 6

0 0 0 0 0
0 0 0 0 0

.
0 0 0 0 0

Re , .
0 0 0 0 0

.
0 0 0 0 0
0 0 0 0 0

Tz z
z
z

Az z
z
z

z
z













                                                         

  

 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Explanatory Examples 30 

 

1
1

2

3
1 2 3 4 5 6

4

5
6

6

0 0 0 0 0
0 0 0 0 0

.
0 0 0 0 0

.
0 0 0 0 0

.
0 0 0 0 0
0 0 0 0 0

Tz

z z z z z z d

z















                                         

 

1
2 2

1 1 6 6
0

12 2
1 1 6 6 0

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
4 4 4 5 5 5 6 6 6

( ) . . . ( )

( ) . . . ( )

(1) (0) (1) (0) (1) (0)

(1) (0) (1) (0) (1) (0)

z z d

z z

z z z z z z

z z z z z z

    


   

  

  

     

  

               
              



 

Now by using the conditions on vertices (from the flow diagram), we get  

             

 

2 2 2 2
1 1 2 1 2 3 3

22 2 2 2 2
4 3 4 5 2 4 6 5 6 5 6

0 (0) (0) (0) 0 (0)

(0) (0) (0) (0) (0) (0) (0) (0)

z z z z

z z z z z z z z

  

  

               
              

 

Finally we obtained 

       
   

2 2 2 2
1 1 2 2 2 5 3 3 4 4 4 5

2 2
5 5 6 6 6 5 5 2 4 5 4 6 5 2 6

Re , (0) (0) (0) (0)

(0) (0) 2 (0) (0) 2 (0) (0) 2 (0) (0)

Az z z z z z

z z z z z z z z

       

      

              

       
 

To prove Re , 0Az z    we need to prove the following: 

                            

 
 
 

1 2

3 4

5 6

2 5 5 5

5 4 5 5

5 5 6 5

0

0

0

0

 

 

 

   
   
   

  

  

  

  
    
   
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There are no such constants values of ' s  to satisfy the above inequalities, because H 

becomes a Jordan block structure. Hence there is no such Hamiltonian, in the form of 

diagonal matrix, which satisfies the theorem 2.4.2.1.  

So we can’t move further with this example for other two parts of methodology. Now we are 

only interested to find the constant valued Hamiltonian matrix, which is not a diagonal matrix.  

To find such Hamiltonian which satisfy Re , 0Az z   , we need to formulate Hamiltonian 

matrix; by using theorem 3.1.2. 

3.2.3 Formulation of Hamiltonian (non-diagonal) matrix: 

As we have the boundary conditions eq: 3.3 on vertices (from the flow diagram: Figure 1) 

Now we can write the above BCs from network flow as: 

(1) (0)z Q z  

Q

    
    
    
    
    
    
    
           

1 1

2 2

3 3

4 4

5 5

6 6

z (1) z (0)0 0 0 0 0 0
z (1) z (0)1 0 0 0 0 0
z (1) z (0)0 0 0 0 0 0

=
z (1) z (0)0 0 1 0 0 0
z (1) z (0)0 1 0 1 0 1

0 0 0 0 1 0z (1) z (0)
 

here Q  is transition matrix. 

1
1

0
Eigen values of 1

0
0
0

Q

 
  
 

  
 
 
  
 

 

and 
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generalized eigen vectors V

 
 
 
 

  
 
 
 
 

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 1 0 -1 0 -1

-1 1 -1 0 -1 0

 

now consider  

H V V

 
 
 
 

   
 
 
 
 

2 0 1 -1 1 -1
0 2 -1 -1 -1 -1
1 -1 2 0 1 0

-1 -1 0 2 0 1
1 -1 1 0 2 0

-1 -1 0 1 0 2

 

so 

1 1 1H ( )( )V V    ; Therefore invertible, 5 17 5 17(H) , ,1 (all multiplicity 2)
2 2

eig
     
  

 

H ( )( ) H; H is self adjointV V V V         

now  

We need to show that H H 0Q Q    

H HQ Q

 
 
 
 

   
 
 
 
 

0 -1 - 2 0 - 2 0
-1 0 1 3 1 3
-2 1 0 0 0 0

0 3 0 0 0 1
- 2 1 0 0 0 0

0 3 0 1 0 0

 

Has eigen values  4.1, 2.8, 1,0,0,2.5,5.3   ≰ 0  

H HQ Q  ≰ 0 

The Jordan canonical form of Q is  

1D V QV  
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and 

0

D

 
 
 
 

  
 
 
 
 

-1 0 0 0 0 0
0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 

So we need to show that  

0D I D I

D I D I





 

 
 
 
 

   
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 0 0
0 0 0 0 -1 0
0 0 0 0 0 0

 

1
1

0
eigen values ( ) 0

0
0
0

D I D I

 
  
 

   
 
 
  
 

 

so 

0D I D I  
 

Hence ‘A’ generates the Contraction semigroup. 

As we suppose HV V I   

then 

  1 1H V I V
   
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H

 
 
 
 

  
 
 
 
 

3 / 2 0 1 / 2 0 1 / 2 0
0 3 / 2 0 1 / 2 0 1 / 2

1 / 2 0 3 / 2 0 1 / 2 0
0 1 / 2 0 3 / 2 0 1 / 2

1 / 2 0 1 / 2 0 1 / 2 0
0 1 / 2 0 1 / 2 0 1 / 2

 

or 

1 3 3
1 3 3

3 1 33H
3 1 32

3 3 3
3 3 3

 
 
 
 

  
 
 
 
 

0 1 / 0 1 / 0
0 0 1 / 0 1 /

1 / 0 0 1 / 0
0 1 / 0 0 1 /

1 / 0 1 / 0 1 / 0
0 1 / 0 1 / 0 1 /

 

with this Hamiltonian, when we calculate H HQ Q  ; 

We get; 

H HQ Q

 
 
 
 

   
 
 
 
 

0 0 0 0 0 0
0 -2 / 3 0 0 0 0
0 0 0 0 0 0
0 0 0 - 2 / 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 

now  

2 / 3
2 / 3
0

Eigen values ( H H) 0
0
0
0

Q Q

 
  
 

   
 
 
  
 

 

so  

( H H) 0Q Q    
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& 

1
3
2

P

 
 
 
 

  
 
 
 
 

1 0 0 0 -1 0
0 1 0 0 0 -1
0 0 1 0 -1 0
0 0 0 1 0 -1
-1 0 -1 0 4 0
0 -1 0 -1 0 4

 hence the following Hamiltonian matrix satisfied theorem 2.4.2.1 

                                       

3 1 10 0 0
2 2 2

3 1 10 0 0
2 2 2

1 3 10 0 0
2 2 2H

1 3 10 0 0
2 2 2

1 1 10 0 0
2 2 2

1 1 10 0 0
2 2 2

 
 
 
 
 
 
 
   
 
 
 
 
 
 
  

  

So for this non-diagonal Hamiltonian matrix  H,  A is the infinitesimal generator of 

contraction semi group on X.  
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EXAMPLE 2  

Consider the following closed network of flow [1].  

  

 

                                                                                                     

                                                       e1      α                       e3 

                                                                     

                                                                                              1-α 

                                                                       e5  

 

                                                        e2                                    e4 

 

 

 

 

Figure 2 

 

Assumptions: 

 Material flowing with constant speed jc  on each edge je  with no friction or loss. 
 In each node iv of the network the material is redistributed according to certain weight

ji . 
 Take the weights for all 10    on the edges. 

 

Simplified Physical model: 

 This situation can be described by a system of linear transport equation on the edges 
 

                                    ( , ) ( , )j j jz t c z t
t

 


 


   

 Initial condition:  ( ,0)j jz h           

V1 

V3 V2 

V4 
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  Boundary conditions at vertices 
 

Outgoing flow on edge    j i je   incoming flows into vertex iv . 

So from the flow diagram; we have the following conditions 

 

1 5

2 1

3 5

4 3

5 2 4

(1) (0)
(1) (0)

1(1) (1 ) (0) ; ( ) .........(3.4)
2

(1) (0)
(1) (0) (0)

z z
z z

z z choose

z z
z z z



 

 
  
 

   
 

 
     

 

Typical phenomena of flows in networks: 

The mass distribution on edges 1e and 3e  will always satisfy the relation 



1

 . 

3.3.1 Methodology 

The methodology remains the same as given in section 3.2.1 for this network 

Abstract Differential Equation: 

fz
ttAztz




)0(
0,)()(

 

on state space   mCLX ;1,02       

define operator 
mjd

ddiagA
,...,1












                 

with domain             1( ) 0 ,1 , | 1 (1) (0)
TmD A z H C z rg z z            

 

 

Generation of Contraction Semigroup: 
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Consider the partial differential equation
 

                      
  ),(, tzt

t
z 











 

here we have  

1P Identity matrix    ,     H ( ) Identity matrix       and      0 0P   

so the partial differential equation will be 

    , H ( ) ( , ) ........................................... (3.5)z t z t
t
  


 


 

 

The corresponding abstract differential equation of the above p.d.e is 

   H ( )dz dt P z t
dt d

 1  

consider the operator  

 H ( )dA z P z t
d

 1  

on the state space    nCLX ;1,02  

with the inner product  

     
1

0

1, H
2Xf g g f d        

and the domain 

    1( ) / H 0,1 ; nD A z X z H C    

here   nCH ;1,01  is the vector space of all functions from  1,0 to nC , which are square 

integrable , absolutely continuous and the derivative is again square integrable , that is 

          1 2 20,1 ; 0,1 ; | is absolutelycontinuousand 0,1 ;n n ndfH C f L C f L C
d

   .   

 

Formulation of Boundary Conditions: 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Explanatory Examples 39 

To formulate the boundary conditions from the flow diagram in the boundary variables e and 

f . We have the boundary effort  
































)0()1(
)0()1(
)0()1(
)0()1(
)0()1(

2
1

55

44

33

22

11

zz
zz
zz
zz
zz

e  

and boundary flow is: 
































)0()1(
)0()1(
)0()1(
)0()1(

)0()1(

2
1

55

44

33

22

11

zz
zz
zz
zz
zz

f  

we have the conditions in the vertices (from the flow diagram: Figure 2) (eq:3.4), we can write 

the boundary conditions in the following form 

H(1) (1, )
0 , 0

H(1) (0, )B
z t

W t
z t

 
  

 


 

so the boundary conditions will become 

11 0 0 0 0 0 0 0 0
2

0 1 0 0 0 1 0 0 0 0
(1)10 0 1 0 0 0 0 0 0 0
(0)2

0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 1 0

BW

z
z

  
 

 
   

    
  

 
   
  




 

 
 

now the boundary conditions in terms of boundary effort and boundary flow can be defined as 

0
)(
)(














te
tf

WB  
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where 1
0

~  RWW BB  ;           and 






 


II
PP

R 11
0 2

1

 

so , we get 

 













































2
1

2
10

2
10

2
1

2
10

2
10

0
2
1

2
1000

2
1

2
100

4
10

2
100

4
10

2
100

0000
2
1

2
100

2
1

2
1

4
1000

2
1

4
1000

2
1

BW
 

To prove the contraction semigroup; by using the theorem 2.4.2.1, we need to show that: 

0*  BB WW
 

where 











0
0
I

I

 

Now (using Matlab) , we obtain 







































2
10000

00000

00375.00
4
1

00000

00
4
10375.0

*
BB WW  

To check the positivity of the above matrix the eigen values must be positive. 

eigen values of *
BB WW   are 
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1
2
0
0  0
1
4
1
2

 
 
 
 
 
 
 
 
 
 
 
 
 


 

Hence the theorem 2.4.2.1 does not satisfy. 

now for verification purpose we will check the other condition of the theorem 2.4.2.1  i-e 

Re , 0Az z    

 
 

 22

1
0

1
0

1

0

)0()1(
2
1

)(
2
1

)()(
2
1

)()(,Re

zz

z

zz

d
d

zdzz
d
dzzAz















 











 

by using the conditions on vertices from the flow diagram, finally we get 

      
)0()0()0(

4
1,Re 42

2
5 zzzzAz 

 

The above expression shows that the condition Re , 0Az z     doesn’t hold.  

thus theorem 2.4.2.1
 
does not satisfy; so we cannot obtain the contraction semigroup on 

 
  nCL ;1,02  when H( ) Identity matrix     and  1P Identity matrix . 

now we need to find the constant valued Hamiltonian diagonal matrix; which satisfies 

theorem 2.4.2.1. 

3.3.2 Formulation of diagonal Hamiltonian matrix 

Consider the Hamiltonian is in the following form; 
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1

2

3

4

5

0 0 0 0
0 0 0 0
0 0 0 0H
0 0 0 0
0 0 0 0









 
 
 
 
 
 
 
 

 

as we have the operator 




 diagA  

let’s find the second condition of theorem 2.4.2.1; which is 

0,Re  zAz  

and we know 

 

1 1

1 1 1

2 21

3 31 5
0

4 4

5 5 55 5

0 0 0 0 0 0 0 0
0 0 0 0 . 0 0 0 0. .
0 0 0 0 . 0 0 0 0Re , . . .. .
0 0 0 0 . 0 0 0 0. .
0 0 0 0 0 0 0 0

T
z z

z

Az z z z

zz z

  
 

 
 

 
 

    
                                                        
      



T

d






 

 

 

1

1 1 5 5
0

1
1 1 5 5 0

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2
4 4 4 5 5 5

( ) . . . ( )

( ) . . . ( )

[ (1) (0) ] [ (1) (0) ] [ (1) (0) ]

[ (1) (0) ] [ (1) (0) ]

z z d

z z

z z z z z z

z z z z

    


   

  

 


  



  

     

   



 

here by using the conditions on vertices; we get 

     

  )0()0(2
4
1

4
1)0()0(

)0()0()0(,Re

425531
2

554
2

4

43
2

352
2

221
2

1

zzzz

zzzzAz











 



 

 

To prove Re , 0Az z    ; we need to prove the following: 
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 
 

1 2

3 4

1 3 5

2 5 5

5 4 5

0

0

1 1 0
4 4

0

 

 

  

  
  

   
 
   

       
  

         

 

To prove the above inequalities; we use here the Sylvester‘s criterion by choosing                 

                                
2
1&1 54321    

hence from this trick we finally obtain the new Hamiltonian as 

 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0H
0 0 0 1 0

10 0 0 0
2

 
 
 
 

  
 
 
 
 

 

 

So the second condition of the theorem 2.4.2.1, Re , 0Az z    with the above new 

Hamiltonian satisfied. 

Now for confirmation purpose we will check the other condition of the theorem 2.4.2.1; 

which is * 0B BW W   

For this, first we write the boundary conditions in terms of new variables (boundary effort and 

boundary flow) e and f : 
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1 1

2 2

3 3

4 4

5 5

(1) (0)1 0 0 0 0 1 0 0 0 0
(1) (0)0 1 0 0 0 0 1 0 0 0

1 0 0 1 0 0 (1) 0 0 1 0 0 (0)
2 0 0 0 1 0 0 0 0 1 0(1) (0)

1 1(1) (0)0 0 0 0 0 0 0 0
2 2

z z
z z

e z z
z z
z z



    
       
       
       
               
       
                   

  

and  

 

1 1

2 2

3 3

4 4

5 5

(1) (0)
(1) (0)

1 (1) (0)
2

(1) (0)
1 1(1) (0)
2 2

z z
z z

e z z
z z

z z



 
 
 

 
  
 

 
 
  
 

 

for the Boundary flow;  

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

P

 
 
 
 
 
 
 
   

so we have 













































































































































































)0(
)0(
)0(
)0(
)0(

2
10000

01000
00100
00010
00001

20000
01000
00100
00010
00001

)1(
)1(
)1(
)1(
)1(

2
10000

01000
00100
00010
00001

20000
01000
00100
00010
00001

2
1

5

4

3

2

1

5

4

3

2

1

z
z
z
z
z

z
z
z
z
z

f
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and finally we get 

 

1 1

2 2

3 3

4 4

5 5

(1) (0)
(1) (0)

1 (1) (0)
2

(1) (0)
(1) (0)

z z
z z

f z z
z z
z z



 
  
  
 

 
    

now we have the boundary conditions 

H(1) (1, )
0 , 0

H(1) (0, )B
z t

W t
z t

 
  

 


 

here  

1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 2 0 1 0 1 0

BW

 
  
  
  
   

  

and  

1
0

~  RWW BB  

 















































1
2
10

2
10

2
1

2
10

2
10

0
2
1

2
1000

2
1

2
100

2
10

2
100

4
10

2
100

000
2
1

2
1000

2
1

2
1

2
1000

2
1

4
1000

2
1

BW  
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So we check * 0B BW W   































00000
00000

00
4
10

4
1

00000

00
4
10

4
1

*
BB WW  

To prove the above matrix is positive , we need to show that the eigen values are positive. 

so  

0

2
1
0
0
0
0

)( * 

























 BB WWvaluesEigen  

 

Hence the theorem 2.4.2.1 is satisfied, so operator A is the infinitesimal generator of 

contraction semigroup on X with    

 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0H
0 0 0 1 0

10 0 0 0
2

 
 
 
 

  
 
 
 
 

 

and  

























20000
01000
00100
00010
00001

1P
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Chapter 4 Boundary Control System 

In this chapter we are in particular interested in systems with a control at the boundary of their 

spatial domain. We have shown that these systems have well-defined solutions provided the 

input is sufficiently smooth.  In first section we discussed port-Hamiltonian as boundary 

control system and describe some background information and theorems [2], which we 

needed later in this chapter. In final section we studied the well-posedness and also used the 

known result to show that the system is well-posed if and only if A  is infinitesimal generator 

of a 0C - semigroup [2].  

Definition (Boundary Control System):  

Consider the following control system    

( )x t   ॏ 0( ) , (0)x t x x  

  ( ) ( )
where
x t u t

 

ॏ : D(ॏ)⊂ X→X  is linear , the control function u takes values in the Hilbert space U and 

boundary operators ी: D(ी) ⊂ X→U is linear & satisfies  D(ॏ)⊂ D(ी) . This system is a 

boundary control system if the following holds: 

1. The operator A : D( A )→X with D( A )=D(ॏ)⋂ker(ी) and  

( )A x   ॏ x          ; for x ∈ D( A ) is the infinitesimal generator of 0C -semigroup 

  0( ) on XtT t


 

2. There exists an operator B ∈ (U,X)L  s.t  for all u  ∈U  we have B u ∈ D(ॏ), ॏB∈

(U,X)L  and ीBu = u ,  u ∈U. 

4.1 PORT-HAMILTONIAN SYSTEMS AS BOUNDARY CONTROL SYSTEMS 

We add a boundary control to a port-Hamiltonian system; we will show that the assumption of 

a boundary control system is satisfied. The port-Hamiltonian system with control is given by 

                    1 0, ( ) ( , ) ( ) ( , ) ....................... (4.1)x t P x t P x t
t
    


 

   
 
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                         ,1
( )

( ) .............................. (4.2)
( )B

f t
u t W

e t




 
  

 
 

                              , 2
( )

0 ............................... (4.3)
( )B

f t
W

e t




 
  

 
 

We make the following assumptions. 

4.1.1 Assumptions 

  nnKP 1 is invertible and self-adjoint. 

    )(,;,   nnbaL is self-adjoint for a.e.  ba, and there exist 0, mM
such that IMIm  )( for a.e.  ba,  

 nn

B

B
B W

W
W 2

2,

1, 











  has full rank. 

We can write the port-Hamiltonian system eq: 4.1—4.3 as boundary control system 

                                )()(
)0(,)()( 0

tutxB
xxtxUtx




 

 

By defining  

                      
   1 0 ................................... (4.4)U x P x P x




   
  

     2 1
, 2( ) , ; | , ; , 0 ......... (4.5)n n

B
f

D U x L a b K x H a b K W
e




         
   

 

                          
,1 , .......................... (4.6)B

f
Bx W

e




 
  

   

                        ( ) ( ) ................................. (4.7)D B D U  

We choose the Hilbert space   2 , ; nX L a b K  , with the inner product space 

                                
  



b

a

dgfgf  )()()(
2
1,
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as the state space and  ( )u t is a smooth control function. The input space U equals mK   , 

where m is the number of rows of ,1BW . We are now in the position to show that the 

controlled port- Hamiltonian system is indeed a boundary control system. 

4.1.2 Theorem 

If the operator  

                       1 0 ................................... (4.8)Ax P x P x



   


 

With domain 

               ,11

, 2
( ) | , ; , ker ......... (4.9)

Bn

B

Wf
D U x X x H a b K

e W




            
     

 

generates a 0 semigroupC   on X ,then the system eq: 4.1-4.3 is a boundary control system 

on .X  

 

Remark: 

An essential condition in the above theorem is that A given by eq: 4.8 with the domain eq: 4.9 

generates a 0 semigroupC   . Theorem 4.1.2 and assumptions 4.1.1 imply that this holds in 

particular when 0 0P P   and 
0

0
0B B
I

W W
I

 
 

 
  . Since the term 0P  can be seen as is a 

bounded perturbation of (4.4) with 0 0P  , Theorem 4.1.2 shows that A given by eq: 4.8 with 

domain eq: 4.9 generates a 0 semigroupC   when 
0

0
0B B
I

W W
I

 
 

 
. 

4.1.3 Boundary observations for port-Hamiltonian System 

We use the conditions on the boundary observation which guarantee that a certain balance 

equation is satisfied, which is important. The standard Hamiltonian system with boundary 

control and boundary observation is given by 
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       1 0( ) ( ) ....................... (4.10)x t P x t P x t



   


  

 
( )

( ) .............................. (4.11)
( )B

f t
input u t W

e t




 
  

 
 

 
( )

( ) ............................... (4.12)
( )C

f t
output y t W

e t




 
  

 
 

 

It is assumed that 1 ,P  and BW satisfy the conditions of assumptions 4.1.1 . The output 

equation is formulated very similar to the control equation. So we assume that the output 

space kY K  and thus CW is a matrix of size 2 .k n . Since we want the output to be 

independent, we assume that CW   has full rank. 

4.1.4 Theorem   

Consider the system eq: 4.10-4.12, satisfying assumptions 4.1.1, 2k n
CW K  and 

( ) 2B k n n

C

W
K

W
  

 
 

having full rank.  Assume that the operator A  defined by eq: 4.8 and eq: 

4.9 generates 0 semigroupC  on .X  then for every 

     2 1, ; , (0) , ;n nu C a b K x H a b K   and  
(0)

(0)
(0)B

f
u W

e




 
  

 
 , the system eq; 

4.10-4.12 has a unique (classical) solution, with   1( ) , ; , 0nx t H a b K t    ,  and the 

output y  is continuous. 

Furthermore, if additionally 0 0P P     and k n  , then the following balance equation is 

satisfied for every 0t    

                     2
,

( )1( ) ( ) ( ) .
( )2 B CW WX

u td x t u t y t P
y tdt

         
          

 

Now we continue with example 0, which explains the port-Hamiltonian system as boundary 

control system.   
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4.1.5 Example  

Consider the controlled transport equation 

 

                            H( ) ( , )z z t
t

 


 


 
 

 

We add the input ( )u t at vertex 3v . Now we will discuss the following network (Figure 3) as 

boundary control system and boundary observation.  

first we consider the corresponding inhomogeneous differential equation 

0( ) ( ) ( ) ; (0)z t Az t u t z z      

here  ( )u t  is smooth input function. 

 

 

 

                                                                                                     

                                                       e1    α             y(t)       e3 

 

                                                                        e5                   1-α 

 u(t) 

 

                                                           e2                               e4 

 

 

 

 

Figure 3 

V1 

V4 

V2 
V3 
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 here  

1

&

H

P

 
 
 
 
 
 
  

 
 
 
 
 
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 / 2  

where 0 0P   

now we write the port-Hamiltonian system as control boundary system in the following way: 

we have the Boundary Conditions on vertices from the flow diagram as 

                                         

1 5

3 5

2 1

4 3

5 2 4

1(1) (0)
2
1(1) (0)
2

(1) (0)
(1) (0) ( )
(1) (0) (0)

z z

z z

z z
z z u t
z z z






 

 

 

We can write it as; 

                                         

4 3

1 5

2 1

3 5

5 2 4

(1) (0) ( )
1(1) (0) 0
2

(1) (0) 0
1(1) (0) 0
2

(1) (0) (0) 0

z z u t

z z

z z

z z

z z z

 

 

 

 

    

Now to find ,1BW : 
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 
~

,1

4 3

~
1

,1,1 0

1 1
0 1

( ) (1) (0)

H (1)
( ) 0 0 0 1 0 0 0 1 0 0

H (0)

where

here

1 ,
2

BW

BB

u t z z
or

z
u t

z

W W R

P P
R here P

I I



 

 
   

 



 
 
  
   
  
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2



 

So 

 ,1 0 0 1 2 1 2 0 0 0 1 2 1 2 0BW    

 

hence 

 ( ) 0 0 1 2 1 2 0 0 0 1 2 1 2 0
f

u t
e




 
   

 
 

where                                
(H )(1) (H )(0)
(H )(1) (H )(0)

f z z
e z z




   
     

 

To find ,2BW : 

we have 

1 5

2 1

3 5

5 2 4

1(1) (0) 0
2

(1) (0) 0
1(1) (0) 0
2

(1) (0) (0) 0

z z

z z

z z

z z z

 

 

 

  

 

now 
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~
1

,2,2 0

H (1)
H (0)

&

BB

z
z

W W R

   
             
   
   



~

B,2W

0 1 0 0 0 0 0 0 0 0 -1
0 0 1 0 0 0 -1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 -1
0 0 0 0 1 0 0 -1 0 -1 0

 

,2BW

 
 
 
 
 
 

1 / 2 0 0 0 1 / 8 1 / 2 0 0 0 -1 / 2
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 8 0 0 1 / 2 0 -1 / 2
0 1 / 2 0 1 0 0 -1 / 2 0 0 0

 

,1
B

,2

so

0

now

W B

B

B

f
e

W
W

W





 
       
 
 

 
  
 



1 / 2 0 0 0 1 / 8 1 / 2 0 0 0 -1 / 2
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 8 0 0 1 / 2 0 -1 / 2
0 1 / 2 0 1 0 0 -1 / 2 0 0 0

0 0 1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2
1 / 2 0 0 0 1 / 8 1 / 2 0 0 0
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0

0 0 1 / 2 0 1 / 8 0 0 1 / 2 0
0 1 / 2 0 1 0 0 -1 / 2 0

 
 
 
 
 
 
 
 

0
-1 / 2

0
-1 / 2

0 0

 

here BW is full rank matrix.  

Hence all the assumptions 4.1.1are satisfied. So we can write the port-Hamiltonian system          

eq:4.1-4.3 as a boundary control system. 

Now the standard Hamiltonian system with the boundary control and boundary observation is 

given by : 
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  
0( ) ( ) ; (0)

( ) ( ) where , ;X

z t Az t z z

Bz t u t u C a b

 

 


 

by defining  

2 1
,2

,1

Az= ( )

( ) ([0,1]) : |H ([ , ]); 0

( ) ( )

n
B

B

Hz

f
D A z L z H a b W

e

f
Bz W

e
D B D A














        
   
 

  
 




 

We choose the Hilbert space 2 ([0,1]; )nX L  with the inner product   

1

0

1, ( ) H( ) ( )
2

f g f g d    
 

and 

 

C

5

( ) H ( )

( )
smooth input ( )

( )

( )
smooth output y(t)=W

( )
( ) (0)

B

z t z t

f t
u t W

e t

f t
e t

y t z















 
  

 
 
 
 





 

 

 
1

0

now

2 0 2 0 0 0 0 0 0 0C

CC

W

W W R









 

where 
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1 1
0 1

1 ,
2

P P
R and P

I I

 
 
  
   
  
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

 

so 

 1 0 1 0 0 1 0 1 0 0CW   

So finally we have 1 , H,& BP W  which satisfies the conditions 4.1.1 

now CW is full rank matrix, also B

C

W
W
 
 
 

has full rank. 

So we have 

B

C

W
W

 
 
 
  

   
   

 
  
 

0 0 1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0
1 / 2 0 0 0 1 / 8 1 / 2 0 0 0 -1 / 2
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 8 0 0 1 / 2 0 -1 / 2
0 1 / 2 0 1 0 0 -1 / 2 0 0 0
1 0 1 0 0 1 0 1 0 0  

has full rank. 

Hence we have shown that port-Hamiltonian system for this network of flow (Figure 3) is 

boundary control system. We also studied the boundary observation for this network of flow.   

Finally we need to show that the system is well posed and hence A  generates 0C -semigroup. 

In the following, first we discuss some background information [2] of well-posedness for 

port-Hamiltonian system and then prove that the given port-Hamiltonian system is well-posed 

and A is the infinitesimal generator of the  0C -semigroup on X. 

Definition (well-posed): 

Consider the system  

( )x t   ॏ 0( ) , (0)x t x x  

 ी ( ) ( )x t u t  
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ℭ ( ) ( )x t y t  

satisfying the following assumptions ; 

1. The operators ॏ: D(ॏ)⊂ X→X , ी: D(ी) ⊂ X→U and ℭ: D(ॏ)⊂ X→Y are linear 

operators , D(ॏ) ⊂ D(ी) & X, U, Y are Hilbert spaces. 

2. The operator A:D(A) →X with  D(A)= D(ॏ)∩ ker (ी)and  

                     Ax   ॏ x        for  x ∈ D (A) 

is the infinitesimal generator of a 0C -semigroup   0( ) on XtT t


 

3. There exists an operator B ∈ (U,X)L  s.t  for all u  ∈U  we have B u ∈ D(ॏ), ॏB∈

(U,X)L  and  

ीBu =u ,  u ∈U. 

4. The operator ℭ is bounded from the domain of A to Y. Here D(A) is equipped with 

the grapg norm. 

We call this system is well-posed if there exists a τ>0 and mτ ≥0 s.t for all   

0x ∈ D (ॏ) and   2 0, ;U with (0)u C u  ी 0x  

We have  

22 2 2
0

0 0

( ) ( ) ( )X Xx y t dt m x u t dt
 


 

    
 

  . 

 

In general it is not easy to show that a boundary control system is well-posed. However 

there is a special class of system for which well-posedness can easily be proved. 

4.2 WELL-POSEDNESS FOR PORT-HAMILTONIAN SYSTEMS 

The port-Hamiltonian systems with boundary control and boundary observation, is of the 

following form 

     1 0, ( ) ( , ) ( ) ( , ) ....................... (4.13)x t P x t P x t
t
    


 

   
 
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,1
( )

( ) .............................. (4.14)
( )B

f t
u t W

e t




 
  

 
 

,2
( )

0 ............................... (4.15)
( )B

f t
W

e t




 
  

 
 

   
( )

( ) ............................... (4.16)
( )C

f t
y t W

e t




 
  

 
    

We assume that 1 ,P  and 
,1

, 2

B
B

B

W
W

W
 

  
  

satisfy assumptions 4.1.1, thus in particular, for a.e.  

   , ,a b     is self-adjoint n n   matrix satisfying  0 .m I M I     

Furthermore ,      
,1

, 2

B
B

B

W
W

W
 

  
  

 is a full rank matrix of size  2n n . We assume that ,1BW   is 

a 2m n   matrix. The state space is given by the Hilbert space   2 , ; nX L a b K    with the 

inner product 

                                           1, ( ) ( ) ( ) .............. (4.17)
2

b

a

f g f g d   
     

4.2.1 Theorem 

Consider the port-Hamiltonian system eq: 4.13-4.16 and assume that the conditions of 

assumptions  4.1.1. are satisfied. Furthermore, we assume that the multiplication operator 

1P  can be written as 

         1
1 , ,P S S a b         

where  is diagonal matrix-valued function, S is a matrix valued function and both   and S

are continuously differentiable on  ,a b  , 

 
, 1

, 2

B

B C

C

W

rank W n rank W

W

 
 

  
 
 
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Let X be the Hilbert space   2 , ; nL a b K  with inner product eq:4.17 . If the operator A  

corresponding to the homogenous p.d.e., 0u  , generates a 0 semigroupC   on  X , then the 

system eq: 4.13-4.16 is regular, and thus in particular well-posed. 

Remark: 

If   A    generates a  0 semigroupC    on   X  , then the system possesses classical solutions 

for smooth inputs and initial conditions. Well-posedness implies that there exist solutions for 

every initial condition and every square integrable input.   

4.2.2 Lemma  

Let 1P   and  satisfy the conditions of theorem 4.2.1,then  can be written as 

                                             













0
0

            

Where  is a diagonal real matrix-valued function, with (strictly) positive function on the 

diagonal, and    is a diagonal real matrix-valued function, with (strictly) negative functions 

on the diagonal. 

Remark: 

In theorem 4.2.1 we asserted that under some weak conditions every port-Hamiltonian system 

is well- posed provided that corresponding homogenous equation generates a strongly 

continuous semigroup. 

4.2.3 1P   Diagonal 

We now investigate when the p.d.e. with the control and observation at the boundary is well-

posed. We discussed in theorem 4.2.1 the situation that  1P  is diagonal, i.e. when S I  thus 

we consider the following diagonal port-Hamiltonian system                  

 
 

 
 

 
 

, 0 ,
.................................... (4.18)

, 0 ,

x t x t
t x t x t

  

  
 

 

                            
  

 



 

 
Infinite dimensional system theory for networks of flows | Final Project 2011 

 

Boundary Control System 60 

where for every    , ,a b    is a diagonal (real) matrix, with positive numbers on the 

diagonal, and   is a diagonal (real) matrix, with negative numbers on the diagonal. 

Furthermore, we assume that  and  are continuously differentiable and that 

 
 
0

0





 
 

  
is an n n -matrix. As eq: 4.18  is a port-Hamiltonian system with 

0
0
 

   
and 1

0
0
I

P
I

 
   

. 

The following boundary control and observation are of interest 

                           

( ) ( , )
( ) , ............................ (4.19)

( ) ( , )

( ) ( , )
( ) . ............................. (4.20)

( ) ( , )

s

s

b x b t
u t

a x a t

a x a t
y t

b x b t









 
   

 
   

    

4.2.4 Theorem  

Consider the p.d.e. (eq: 4.18) with boundary control su and boundary observation sy as 

defined in eq: 4.19 and  eq: 4.20 respectively. 

The system defined by eq: 4.18-4.20 is well-posed and regular. 

We equip the port-Hamiltonian system eq: 4.18 with a new set of inputs and outputs. The new 

input su is of the form 

( ) ( ) .......................... (4.21)s s su u t Q y t    

where    and  Q are two square n n -matrices with  Q  of rank n . The new output is 

of the form 

1 2( ) ( ) .......................... (4.22)s s sy O u t O y t    

 Where  1O  and 2O  arek n -matrices. For system eq: 4.18 with input u and output y , we 

have the following results: 

 If     is invertible, then the system eq: 4.18, eq: 4.21 and eq: 4.22 is well-posed. 

 If   is not invertible, then the operator KA defined as 
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 
 

 
 

 
 

0
...................... (4.23)

0K

g g
A

g g

  

  
 

 

                          
                 

with domain 

 
 

  

 
 

 
 

1( ) , , |

( ) ( )
0 ......... (4.24)

( ) ( )

n
K

g
D A H a b K

g

b g b a g a
Q

a g a b g b








 

 

    
   

           
         

 

does not generate a  0 semigroupC   on   2 , ; nL a b K  . 

The part 2 implies that the homogenous p.d.e. does not have a well-defined solution, when    

is not invertible.  

 

Proof: The proof of this theorem is given in [2]       

 

Now we will continue example 4.1.5 and show that A   generates 0C -semigroup by showing 

that the system is well-posed.      

4.2.5 Example 

Consider the Port-Hamiltonian System with boundary control and boundary observations will 

be 

        1 0( ) H( ) ( , ) ( & )z z t P Identity matrix P o
t
  


 

  
 

 

With the boundary conditions on vertices (from the flow diagram: Figure 3) 
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1 5

2 1

3 5

4 3

5 2 4

5

1(1) (0)
2

(1) (0)
1(1) (0)
2

(1) (0) ( )
(1) (0) (0)

&
( ) (0)

z z

z z

z z

input z z u t
z z z

output y t z







 
 



 

input will become 

,1
( )

( )
( )B

f t
u t W

e t




 
  

 
 

 
~

,1

~
1

,1,1 0

1 1
0

( ) (1, ) (0. )1where
( ) (1, ) (0, )2

&

;

1
2

hence
H (1)

( ) 0 0 0 1 0 0 0 1 0 0
H (0)

B

BB

W

f t z t z t
e t z t z t

W W R

P P
R

I I

z
u t

z







   
     



 
  

 

 
   

 

 

here  

 

~
1

,1,1 0

,1

,
so

0 0 1 2 1 2 0 0 0 1 2 1 2 0

BB

B

W W R

W



 

 

hence the input will become 

 ( ) 0 0 1 2 1 2 0 0 0 1 2 1 2 0
f

u t
e




 
   

   

now 
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,2
( )

0
( )B

f t
W

e t




 
  

   

where 

~
1

,2,2 0BBW W R  

and 

/ 2
H (1)

/ 2 H (0)
z
z

   
             
   
   

~

B,2W

0 1 0 0 0 0 0 0 0 0 -1
0 0 1 0 0 0 -1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 -1
0 0 0 0 1 0 0 -1 0 -1 0

 

 

so 

,2BW

 
 
 
 
 
 

1 / 2 0 0 0 1 / 4 1 / 2 0 0 0 -1 / 4
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 4 0 0 1 / 2 0 -1 / 4
0 1 / 2 0 1 / 2 1 / 2 0 -1 / 2 0 -1 / 2 1 / 2  

 

0
f
e




 
          
 

1 / 2 0 0 0 1 / 4 1 / 2 0 0 0 -1 / 4
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 4 0 0 1 / 2 0 -1 / 4
0 1 / 2 0 1 / 2 1 / 2 0 -1 / 2 0 -1 / 2 1 / 2  

 

1

as we have ; (from BC's)
1(1) (0)
2 sz z

 

1 5

1

1(1) ( ) (since ( ) (0))
2

2 (1) ( )
&

z y t y t z

or
z y t

 


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 
~

3

3

1(1) ( )
2

2 (1) ( )

H (1)
( ) 2 0 2 0 0 0 0 0 0 0

H (0)
cW

z y t

or
z y t

so
z

y t
z





 
  

 

 

~
1

0

&

so
ccW W R  

 

 

1 0 1 0 0 1 0 1 0 0
hence

( ) 1 0 1 0 0 1 0 1 0 0

cW

f
y t

e






 
  

 

 

finally we have the port-Hamiltonian system with boundary control & boundary observation 

as ; 

                       H( ) ( , ) .................(4.25)z z t
t

 


 


   

 ( ) 0 0 1 2 1 2 0 0 0 1 2 1 2 0 ...............(4.26)
f

u t
e




 
   

 
 

0 ....(4.27)
f
e




 
        
 

1 / 2 0 0 0 1 / 4 1 / 2 0 0 0 -1 / 4
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 4 0 0 1 / 2 0 -1 / 4
0 1 / 2 0 1 / 2 1 / 2 0 -1 / 2 0 -1 / 2 1 / 2

 

& 

 ( ) 1 0 1 0 0 1 0 1 0 0 .............................(4.28)
f

y t
e




 
  

 
 

So we have  
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,1

,2

B
B

B

W
W

W
 

  
   

which is 

4

BW

 
 
 
 
 
 
 
 

0 0 1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0
1 / 2 0 0 0 1 / 8 1 / 2 0 0 0 -1 /
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 8 0 0 1 / 2 0 -1
0 1 / 2 0 1 0 0 -1 / 2 0 0 0  

 

Furthermore, 1P  , H & ,1

,2

B
B

B

W
W

W
 

  
 

 satisfy the assumptions (4.2.1) and ,1

,2

B
B

B

W
W

W
 

  
 

 is a full 

rank matrix of size 5x10. 

 

 To prove that the system eq: 4.25-4.28 is well-posed; we will use the theorem 4.2.1. 

and lemma 4.2.2. 

As we have discussed that if the operator A corresponding to the homogenous p.d.e i-e u=0

generates a 0C semigroup on X , then the system eq: 4.25-4.28 is a regular & thus in particular 

well-posed.  

Let 1P & H satisfy the conditions of theorem 4.2.1, and according to the lemma 4.2.2 we can 

write   as 

                   

0
0
 

    
 

In our case; 

1HP  is a diagonal matrix & its eigen values all are strictly positive, which are 

1H

1

P

 
 
 
 
 
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0
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1

1
1

the eigen values of H 1
1
1

P

 
 
 
   
 
 
 
 

 

finally we have 

                    1

 
 
 
  
 
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0  

1HP Diagonal: 

1HP is diagonal ;so we can write S I ; 

Thus we consider the following diagonal port Hamiltonian system; 

                ( , ) ( , ) ............(4.29)

1

z t z t
t
 



  
  
      

    
  
    

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0

 

For every [0,1]   , the above is a port Hamiltonian system with  1H &I P I   

The following boundary control & observation are of interest: 

( ) [ ( , )]...................(4.30)
&

( ) [ ( , )]....................(4.31)

s

s

u t z b t

y t z a t

 

    

According to theorem 4.2.4; we have for homogenous p.d.e. ( ) 0u t   and the boundary 

conditions eq: 3.4 (from the flow diagram: Figure 3)

                

 

 we have  
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1 1

2 2

3 3

4 4

5 5

(1) (1)
(1) (1)
(1) (1)( )
(1) (1)
(1) (1)1

s

z z
z z
z zu t
z z
z z

    
    
    
     
    
    
         

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0

 

1

2

3

4

5

(0)
(0)
(0)( )
(0)
(0)

s

z
z
zy t
z
z

 
 
 
 
 
 
 
 

 

now we have the new input of the form: 

0 ( )

1

s

K Q

u t

      
      
     
       
     
     
           

1 1

2 2

3 3

4 4

5 5

z (1) z (0)1 0 0 0 0 0 0 0 0 -1 / 2
z (1) z (0)0 1 0 0 0 0 -1 0 0 0
z (1) z (0)0 0 1 0 0 0 0 0 0 -1 / 2
z (1) z (0)0 0 0 1 0 0 0 -1 0 0
z (1) z (0)0 0 0 0 0 -1 0 -1 0 







 

where K and Q are two square 5 5 matrices with [ ]K Q of rank 5 . 

when we have 

1H ,

1/ 2 2

P

   
   
   
    
   
   
      

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0

 

 
~

,1

H (1)
( ) 0 0 0 1 0 0 0 1 0 0

H (0)
BW

z
u t

z
 

   
   

 ,1

so
0 0 1 2 1 2 0 0 0 1 2 1 2 0BW    

,2
( )

0
( )B

f t
W

e t




 
  

 
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1 H (1)
H (0)

0 1 0

z
z

   
              
   
   

~

B,2W

0 1 0 0 0 0 0 0 0 0 -1
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 -1
0 0 0 0 -1 0 -1 0

 

 

,2

2

2

2

0
2

BW

f
e




 
 
 
 
 
 

 
     
 

1 / 2 0 0 0 1 / 4 1 / 2 0 0 0 -1 /
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 4 0 0 1 / 2 0 -1 /
0 1 / 2 0 1 / 2 1 / 2 0 -1 / 2 0 -1 / 2 1 / 2

1 / 2 0 0 0 1 / 4 1 / 2 0 0 0 -1 /
1 / 2 1 / 2 0 0 0 -1 / 2 1 / 2 0 0 0

0 0 1 / 2 0 1 / 4 0 0 1 / 2 0 -1 /
0 1 / 2 0 1 / 2 1 / 2 0 -1 / 2 0 -1 / 2 1 / 2

 

 

 

~

H (1)
( ) 2 0 2 0 0 0 0 0 0 0

H (0)

1 0 1 0 0 1 0 1 0 0
Hence

( ) 1 0 1 0 0 1 0 1 0 0

cW

c

z
y t

z

and
W

f
y t

e








 
  

 



 
  

 

  

As K  is invertible, then the system eq: 4.29 - 4.31 is well posed (According to the theorem 

4.2.3). Hence The operator ‘ A ’ corresponding to the homogenous p.d.e  i-e 0u  generates a 

0C -semigroup on 2 ([0,1]; )nX L K . 
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Chapter 5 Conclusion  
In this thesis, we discussed the linear transport equation for different networks of flows. We 

were focused on our main tasks as discussed in Chapter 1 . First we formulated the abstract 

differential equation then we were interested to generate the contraction semigroup by using 

the port-Hamiltonian system with the state space 2 ([0,1]; )nX L C . Although in the start of 

research work we were strict to the network flow as discussed in Chapter 1, but later we have 

chosen two networks of flows in this thesis vis-à-vis Figure 1 and Figure 2. The main reason to 

add one more network of flow is that we were unable to reach the conclusion on the basis of 

only one network flow.  

We deduced the following results: 

i. For first network flow (see Figure 1); we cannot generate the contraction semigroup by 

choosing Identity matrix as Hamiltonian. We also concluded that there does not exist 

any diagonal Hamiltonian matrix which generates contraction semigroup for this 

network of flow. Hence classical solution for this network of flow doesn´t exists. 

 

ii. For second network flow (See Figure 2); we also could not construct contraction 

semigroup by using Hamiltonian = Identity matrix. Thus there does not exist unique 

solution. So we formulated the new diagonal constant valued Hamiltonian matrix, 

which generates the contraction semigroup and hence classical solution for this 

network exists. 

Finally we concluded that we cannot generate the contraction semigroup by using 

Hamiltonian = Identity matrix with the inner product space 

                                          
1

0

1, ( ) ( ) ( )
2Xf g f H g d        

Hence we can say that A is not infinitesimal generator of oC - Semigroup with the state space 

2 ([0,1]; )nX L C  for both networks of flows as discussed in Chapter 3. 

In Chapter 4 , we were interested to find the classical solution for second network of flow (for 

the first network classical solution doesn´t exists). For this, we have shown port-Hamiltonian 

system as boundary control system. Next we studied the well-posedness of the boundary 
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control system. At the end we came to the conclusion that the System is well-posed and ‘A’ is 

infinitesimal generator of oC - Semigroup, and with the help of some theorems in Chapter 4 

we showed that classical solution for this boundary control System exist.  

As we formulated the diagonal Hamiltonian matrix for both network of flows, to obtain the 

contraction semigroup. So we were not able to obtain the good balance equation. Hence it is 

not possible to minimize the boundary control problem and to formulate the solution in matrix 

equation. 
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