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Introduction

Chapter 1  Introduction

Network flow theory is a mathematical treatment of flows in networks. Network flow is
important because it can be used to express a wide variety of different kinds of problems.
Different kinds of networks have been studied since many years with both theoretical and
application’ point of view. Network of flows have endless applications in daily life, some of
the examples are electrical power grids, cellular networks, transportation networks, neural
networks, financial networks, flow of nutrients and energy between different organizations in
a food web, and last but not least is the World-Wide Web.

In this thesis we have considered a network flow problem which is basically motivated from
the research article [1]. The description of the problem and the tasks to investigate are as

follows:

Description: We consider a closed network such as depicted in the following figure

m. m

€1 €4

v

€s €s

v

We assume that the edges all have equal length (one) and that on every edge. The
information/material is transported with equal and constant speed; this means that on every

edge the following partial differential equation holds
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The arrow in the figure indicates way the information flow. At the vertices no information can
be lost. Hence at every vertex the total amount of incoming equals the total amount of out-
coming. However, the outflow may not be equal to all connected edges. The outflow is

weighted by w;; .

Main tasks:

1) The 1* task is to formulate the partial differential equations together with the relations

at the vertices as an abstract differential equation on the state space L ((0 1); R”),

where n is the number of edges.

2) The 2" task is to prove that this (homogeneous) differential equation generates a
contraction semigroup on the state space.

3) Add an input at one of the vertices, and show that for every square integrable input
function, there exists a unique solution of the inhomogeneous abstract differential
equation.

4) As output, the flow at one of the edges is chosen. After the well-posedness question
similar to the one above has been answered, the following optimal control problem is
studied

min J.||y(t)||2 +||u(t)||2 dt
0

The final aim is to solve this optimal control problem. It is expected that by the special
structure of the coupled partial differential equations the solution to this problem can be

formulated in a matrix equation.

To investigate the above network of flow and to complete the aforementioned tasks we have
divided this thesis into five main chapters. Where needed the chapter is further subdivided
into different sections.

Chapter 1 (current chapter) is basically introductory chapter, wherein we have explained the

importance of network of flows by giving the various applications in real life. The main

Infinite dimensional system theory for networks of flows | Final Project 2011



Introduction

problem of the thesis is given along with the related tasks which gives clear idea to the reader

regarding the later research work in this project.

Chapter 2 is basically preliminary review of the relevant background information [1], [2],
[5]. This knowledge is necessary to understand which will help later to solve the problem and
to complete the tasks. In this chapter along with various important definitions, theorems we
have given some important theorems, lemmas and explain the Port-Hamiltonian and boundary
control systems. All the information given and explained in this chapter provides the solid

back ground to proceed further in this thesis to complete the tasks.

In Chapter 3 we have discussed two important theorems; the results of these theorems are
used later in this thesis at different occasions. The most important part of this chapter is two
explanatory examples. In these examples; we have considered two different closed networks
of flows (one of these is the same as given in problem description) which hold linear transport
equation. Hamiltonian matrices have been created for these networks of flows. On the basis
of these matrices we have shown that one of these networks flows generate the contraction

semigroup, and for one network the contraction semigroup doesn’t hold.

The network for which the contraction semigroup generated is further continued to obtain the
inhomogeneous abstract differential equation and finally shown that the classical solution for

this network of flow exists.

In Chapter 4 first we studied the relevant literature [2], [4], [9], [11] regarding the boundary
control system and port-Hamiltonian system for boundary control problems. Next we add an
input to the closed network (for which the contraction semigroup generated) and obtain the
inhomogeneous abstract differential equation. Further we showed that the port-Hamiltonian
system is boundary control system for this network of flow. Later we proved that the system
is well-posed as well, and the unique solution (classical solution) for this network of flow

exists.

Chapter 5 is the final concluding chapter, in this chapter we have concluded different tasks
which we have done in this thesis. The ultimate results which we have deduced during the

research work are given in this chapter.
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Chapter 2 Background Information

This chapter describes the background information [1], [2] needed to proceed with our
project/thesis. First section is about the semigroup, next section treats information regarding
port-Hamiltonian linear systems, and last section provides the description of the boundary
control system and boundary observation for port-Hamiltonian system.

2.1 STRONGLY CONTINUOUS SEMIGROUP
In this section; we introduce strongly continuous semigroup (C,-semigroup) and their
generators.
Definition:
Let X be a Hilbert space. T (t), ., is called a strongly continuous semigroup (C,- semigroup)
if the following holds

1. Forallt>0, isabounded linear operator on X ,i.e. T(t) eL(X) ;
2. T(0)=1;

3. T(t+7)=T@{)T(zr) forall t,z>0

4. Forall x,e X , we have that [T (t)x, — X, |, converges to zero, when t10, i.e.,

T (- )is strongly continuous at zero.

We call X the state space.

2.1.1 Infinitesimal generator of C, - semigroup

Let T(t),5, bea C,-semigroup on the Hilbert space X , if the following limit exists

tlo t

Then we say that X, is an element of the domain of A, or we can say x, € D(A), we define
AX, as

T - X

Ax, = lim TOX =%
t40 t

and say that Ais the infinitesimal generator of the strongly continuous semigroupT (t),g -

This definition implies that every strongly continuous semigroup has unique generator.

Infinite dimensional system theory for networks of flows | Final Project 2011
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2.1.2 Theorem
Let T(t);, be a strongly continuous semigroup on the Hilbert space X with infinitesimal
generator A. Then the following results hold:

a. For X, € D(A) and t>0we have T (t)x,€ D(A)

b. %(T(t)xo): AT (t)x, = T(t) Ax, for x, € D(A), t>0

dn

tn

(T(t) %)= A"T(t)x, = T(t) A" x, for x, € D(A"), t>0
t

d. T(®)%— %= [T(s)Ax,ds for x, € D(A)
0

t t
e. jT(s)x ds € D(A) and AIT(S)X ds =T(t)x— x forall xe X and D(A)is dense in X
0 0

f. Aisaclosed linear operator.

This theorem implies that for x, € D(A) the function x defined by x(t) =T (t) X, satisfies

the abstract differential equation x(t) = Ax(t) .

2.2 ABSTRACT DIFFERENTIAL EQUATION

In this section; we showed how to rewrite a p.d.e. as an abstract differential equation.
Note that for partial differential equations the question of existence and uniqueness of

solutions is more difficult than ordinary differential equation.

As the theorem 2.1.2 shows that for x, € D(A) the function x(t) =T (t) X, is a solution of

abstract differential equation

X(t) = Ax(t) | XO) =X o )

2.2.1 Classical solution

A differentiable function x:[0, «o] - X s called a classical solution of eq:2.1

If forall t>0 we have x e D(A) and eq:2.1 is satisfied.

Infinite dimensional system theory for networks of flows | Final Project 2011
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2.2.2 Lemma
Let Abe the infinitesimal generator of the strongly continuous semigroupT (t),s, , then
for every x, € D(A) ,the map t 5T (t)X, is the unique classical solution of eq:2.1.

This lemma shows that the classical solution is uniquely determined for x, € D(A) .

2.3 CONTRACTION SEMIGROUPS

In this section, we studied the other implication and restrict ourselves to infinitesimal
generator of contraction semigroup on (separable) Hilbert space and also discussed the

dissipative operator.
Definition:
Let T(t),., be a C, -semigroup on the Hilbert space X , then T(t),,, is called

contraction semigroup, if [T(t)| <1 ,forevery t>0.

2.3.1 Dissipative operator

A linear operator A: D(A) c X — X is called dissipative if Re( Ax, x) <0 ,xe D(A)

2.3.2 Theorem (Lumer-Phillips Theorem)
Let A be a linear operator with domain D(A) on a Hilbert space X , then A is the
infinitesimal generator of a contraction semigroup T (t),,, on X if and only if A is
dissipative and has ran (1 — A) = X .
This theorem shows that the generators of contraction semigroup are precisely those

dissipative operators, for which I — A, is surjective.

2.3.3 Theorem

Let A be a linear, densely defined and closed operator on a Hilbert space X . Then A is

the infinitesimal generator of a contraction semigroup T (t),5, on X if and only if A

and A" are dissipative.
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2.4 PORT-HAMILTONIAN SYSTEM

In this section; we studied that how port-Hamiltonian system generates contraction
semigroup [2]. Hamiltonian differential equation form an important sub class with
ordinary and partial differential equations, these includes their linear and non linear
differential equations which appear in many physical models. We restrict ourselves to

linear differential equation and normally omit the terms, linear, first order.

2.4.1 Linear, first order port-Hamiltonian system
Definition:
Let B, eK"™" be invertible and self-adjoint, let P,eK"*"be the skew-adjoint, i.e.,
P'=-P, and let He Lw([a,b]; K”x”) such that H(&)" = H(E), mI <H(E) <M |
for ae & e[a,b] and constants m, M >0 independent of &£. The Hilbert space

X = LZ([a,b]; K" )with the inner product space

b
(1,905 = [0 HE 1(0) d
then the differential equation
OX 0 0
5(510 = F’lg(H(é) X(§, 1)) +Po£(H(5)X(§, t))
is called a linear, first order port-Hamiltonian system.

2.4.2 Generation of contraction semigroup:

We applied some general results to the port-Hamiltonian systems, i.e., we considered

partial differential equation of the form

%((g,t) = a%(ﬂ(g) X(E1)) +PoH(E)X(E) oo (2.2)

We want to characterize (homogenous) boundary conditions such that eq: 2.2 possess a
unique solution. For that, we write the p.d.e. as the abstract ordinary differential equation

(in the absence of spatial dependence)

Infinite dimensional system theory for networks of flows | Final Project 2011
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d
d_’t‘(t) - a%(H(g)x(t,g)) +RH(E) x(1)

we consider the operator
d
Ax =P —(Hx) + Ry (HX)
dé
on the state space
X =L%([a,b]; K")
with inner product
1 b
(f,9)x =2 JO@HE) f(§) d¢
a
and domain
D (A)={ xeX /HxeH ([a,b]; K") }

Here Hl( [a,b]; K”) is the vector space of all functions from [a,b] to K", which are
square integrable , absolutely continuous and the derivative is again square integrable ,

that is

Hl( [a.b]; K”):{ f eLZ([a,b] : K”)| f isabsolutelycontinuousand% € Lz([a,b] : K”) }

Here A,is the maximal domain. In order to guarantee that eq: 2.2 possess unique solution

we have to add boundary conditions. It is better to formulate boundary conditions in the
boundary effort and boundary flow, which are defined as

e =5 ( (1) + (1)(@) , fr=(RENE) - R @)

respectively.

As the boundary flow is determined by Hxand not by x. Therefore we formulate the

boundary conditions in Hx variable. So we consider the boundary conditions

Infinite dimensional system theory for networks of flows | Final Project 2011
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W, {H(b) X(b’t)} _o0 | o 2.3)

H(a) x(a,t)

To formulate the boundary conditions directly in x or Hx at £ =aand & = bis not the

best choice for characterizing generators of contraction semigroups. It is better to
formulate them in the boundary effort and boundary flow. We write this as matrix vector

ij =R {EE i;g} ................................. (2.4)

with Ry e K*"*2" defined as

ST

here the matrix R;is invertible, we can write any condition which is formulated in

product, i.e.

(Hx)(b) and (Hx)(a) into an equivalent condition which is formulated in f and e, .

Using eq: 2.4, we write the boundary condition eq:2.3 (equivalently) as

f (t

", { o )} .

e, (t)

where Wy =Wy Ry". Thus we study the operator
d
Ax = I%@(H X) + Py (HX) e, (2.5)

with domain

D(A) :{XE *([a,b];K") | HxGHl([a,b];K"),w{fﬂ = o} ............. (2.6)

2.4.2.1 Theorem:

Consider the operator Adefined in eq:2.5 and eq:2.6 associated to a port-Hamiltonian

system, that is, the assumption of definition 2.4.1 are satisfied. Furthermore, Wy, or

Infinite dimensional system theory for networks of flows | Final Project 2011
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equivalentlyWy , is an nx 2n matrix of rankn. Then the following statements are

equivalent.

1. A isthe infinitesimal generator of a contraction semigroup on X
2. Re{Ax,x)<0 forevery x e D(A)

3. W ZWg >0
this theorem characterizes the matrices Wg for which the operator A with domain eq: 2.6
generates a contraction semigroup.

Proof: The proof of this theorem is given in [2].

2.5 INHOMOGENEOUS ABSTRACT DIFFERENTIAL EQUATION

If A is the infinitesimal generator of a C, - semigroup T(t),», , then the classical

solution of the abstract homogeneous Cauchy initial value problem
X(t) =Ax(t) , t=0 , x(0)=x,eD(A)
is given by x(t) =T(t)X, . We consider the abstract inhomogeneous Cauchy problem is
of the form
X(t)=Ax({t)+f(@t), t>0 ; X(0) = X,
here we assume that f is continuous differentiable i-e fe C([O,r];X). The above

equation is also called an abstract evolution equation or abstract differential equation.

2.6 PORT-HAMILTONIAN SYSTEM AS BOUNDARY CONTROL SYSTEM:

We add a boundary control to a port-Hamiltonian system and showed that the assumptions
of a boundary control system are satisfied. The port-Hamiltonian system with control is

given by
X 0
5@’0: Pla—(H(é)X(df,t))+PO(H(§)X(§,t)) ....................... (2.7)
B fa(t)
u(t) =Wsg lLa (t)} .............................. (2.8)

Infinite dimensional system theory for networks of flows | Final Project 2011



Background Information

We make the following assumptions.

2.6.1 Assumption

e P e K" "isinvertible and self-adjoint.
He Lw([a,b] KT ) H (&) is self-adjoint for a.e. £ e [a,b] and there exist

M,m >0 suchthat ml <H(&) < M I forae. &< [a,b]
{WB,].

B,2

o W= :l e K" has full rank.

We can write the port-Hamiltonian system eq: 2.7—2.9 as boundary control system

X(t) =U x(t) , X(0) = x,

Bx(t) = u(t)
By defining
Ux=PR—(HX)+P(HX) i, (2.10)
D U) :{XE L?([a.,b]; K" ) | HxeH*([a,b]; K" ), Wg , La}o} ......... (2.11)
0
N
BX=Wgy| “ |, worrrrrrrremrinn (2.12)
1,
D(B)= D(U)  rrrrrmrresrsinrrnneens (2.13)

we choose the Hilbert space X = LZ([a,b] ; K”) , With the inner product space

<f1g>X:

N |-

b
[Ty HE) () dé

as the state space. The input space U equals K™ , where m is the number of rows of W 4

.We are now in the position to show that the controlled port- Hamiltonian system is indeed

a boundary control system. For this, we have the following theorem:

Infinite dimensional system theory for networks of flows | Final Project 2011
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2.6.2 Theorem

If the operator

Ax = Pl%(Hx) FR(HX) oo (2.14)
With domain
f W
D (U) =1{x e X |HxeH'([a,b] ; K") , { a}e ker| >l (2.15)
€ Weg -
generates a C,—semigroup on X ,then the system eq:2.7-2.9 is a boundary control
systemon X.
Remark:

An essential condition in the above theorem is that Agiven by (2.14) with the domain

(2.15) generates a C, — semigroup . Theorem 2.4.2.1 and assumption 2.6.1 imply that this
. . . 0 1 . .
holds in particular when P,” = — Byand Wy - Wg" >0 . Since the term B H can be

seen as is a bounded perturbation of eq:(2.10) with Py = 0, theorem 2.4.2.1 showed that

A given by eq:2.14 with domain eq:2.15 generates a C,—semigroup when

WOIW*>0
BIO B = VY -

The above theorem 2.6.2 is useful for proving the bounded semigroup when the operator
generates the contraction semigroup.
2.7 FLOWS IN NETWORKS

We consider a finite network, modelled by a simple directed graph [1] , [3]. We denote
V ={v,,...,v,} the set of vertices and E={e,,...,e,} the set of (directed) edges of the

graph. The edges are parameterizes on the interval [0, 1]. The vertex e;(0)is thus called
the head and the vertex e; (1) the tail of the edgee; € E. The edge e is an incoming edge

for the vertex v;if v, =e;(0) holds, and it called an outgoing edge for v;if v; = e;(1) holds.

Infinite dimensional system theory for networks of flows | Final Project 2011
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We assume that in every vertex there is at least one incoming as well as at least one

outgoing edge.

We will use the following graph matrices to describe the structure of the network.

2.7.1 Definitions

i.  The outgoing incidence matrix @ = (goi_j) has entries

nxm

~ 1, vtail of e
P~ 0, else ;

ii.  The outgoing incidence matrix @ *= (goi+j) has entries
m

nx

. 1, v head of e
P = 0, else;

iii.  The weighted outgoing incidence matrix is @ = (co.‘

) . where
nxm

0< o <lsatisfy o, = 0 < ¢ =0and ZL“}I—} =1forall i=1,...,n.

iv.  The weighted adjacency matrix is defined as A = (a ik)

nxn

v.  The weighted adjacency matrix of the line graph is defined as

Remark:

Both adjacency matrices A and B are column stochastic, hence

|Al, =1 and [B], =1.

w

. T T
Furthermore, the relation (cD‘) A= B(CD;V) holds.

Infinite dimensional system theory for networks of flows | Final Project 2011
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Chapter 3 Explanatory Examples

In this chapter we discussed how different research questions, as stated in the research
aim, can be answered and how the objectives can be fulfilled. Basically we have treated
two different networks of flows (as two examples) in this chapter. In order to validate
theories obtained from the previous research studies, which have been summarized in the

previous chapter, and subsequently apply them to these two examples.

3.1 THEOREMS

3.1.1 Theorem

If A generates contraction semigroup T, with respect to (.,.),then A generates

bounded semigroup T,.,with respectto (., .).

where we have
(f,9= ig(é)*f(f) dé  (Natural norm)
and
<f,9>H=ig(§)*H(§)f(§)d§ ; ml<H()<MI

Proof:

Given: Agenerates Contraction semigroup with respectto (., .),, means that we have

e T bea C,-semigroup with respectto (.,.), (so it holds all the conditions of C,
-semigroup).

o [TOX|,<|x], :Vt=0, xel’(ab)
To Prove: A generates bounded semigroup T with respectto (., .)

To prove A generates semigroup ; first we need to show that both (., .),, and (.,.) are

equivalent. for this we have
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[x[Fu=(xx)y : ml<HE<MI
and
(%,X),, <(x,MIx)
= xP,<Mx[P . Q)
Also
(%,x),, = (x,mlx)
= IxPEmx (ii)

Combining (i) and (ii) ,we get
m| x [* <[ x ||,>< M| |* (which is the definition of equivalent norms)
Thus both norms |. |, and | .| are equivalent. so A holds all the conditions of semigroup
with respectto (., .) .
Now to prove the boundedness; we have
ITO x|, < | x|, (As A generates contraction semigroup)

then we have
1 1 M
[TOxP< ST O < = [x]f s = |xf
M
- IT@x| < C|x| (-.'C:H)

The above expression shows the boundedness. Hence proved that A generates bounded

semigroup with respect to. , .).

3.1.2 Theorem

Let Q be a given (square) matrix. There exists a self-adjoint matrix ‘H’ that satisfying

ml <H <Ml and Q°HQ — H < 0 ifand only if the following two conditions are

satisfied.

1. The eigen values of Q satisfy |1|<1.

2. The eigen values of Q lying on the unit circle.
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Proof:
Given: Hisconstant and Q*HQ — H <0 oo (i)  holds.

To prove: conditions (1) and (2) should be satisfy.

1- consider A be eigen value of Q with the corresponding eigen vector

Vi

Vi

then vsatisfies the matrix equation Qv= Av, so we need to show that A lies in unit

circle. so the (i) will become

V'Q*HQV —Vv'Hv<0

= |)b|2 V'HV — V'Hv <0
& (|47 -V Hv <0
< 2| <1

Hence condition 1 is satisfied.

2- Assume that Q has the eigen values not on the unit circle then there does not exist H
such that

Q'HQ -H <0 holds
Hence it is given that (i) holds. So eigen values of Q lying on the unit circle.
Conversely:
Given: The eigen values of Q satisfy|1|<1.
The eigen values of Q lying on the unit circle.

To prove: H is constant and Q*"HQ — H < 0holds.
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We split the Hilbert space X = X;+ X,. Where X; =span{v,}; v, is the corresponding
eigen vector of generalized eigen values || <1land X, =span{v}; v, is eigen vector
with|A| =1.

consider X = X,

here Q has the eigen values not on the the unit circle, so H does not satisfy equation (i).

Assume that there exist H such that

-]

0

n=
This satisfies

Q"HQ -H=~-1I

As Q has the Jordan block structure so it is not diagonalizable. It also has generalized

eigen values.

Now consider X = X,

A . . .0

Then Q= .
. .0

o . . 0 24

n

here Q is transition/stochastic matrix.

A . . . 0Y\(A4 . . .0

Q' Q=] . . . . =1
. . 0] . . 0.
o . . 0 A)Jlo . . 0 4

n

We obtainQ Q=1 . here the eigen values of Q lies on the unit circle.
This mean that Q"1 Q — | < 0holds only when H= 1 (constant valued matrix).

Hence Q*HQ — H <0 . This completes the prove.
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3.2 EXAMPLE 1

We consider a network such as depicted in Figure 1.

-
Bt

€1 €4

€5

Figure 1

We assume that the edges all have equal length (one) and that on every edge the
information/material is transported with equal and constant speed. This means that on
every edge the following partial differential equation holds

0z

sz
ot

()=

(&t) ;  €e[01] , t=0 i, (30)
m

Boundary condition: ¢ z;(t.1) = ;Y. ¢, 2 (t,0)
k=1

Initial condition: 2,(0,&) = f;(¢)

The arrow in the figure indicates way the information flow. At the vertices no information

can be lost. Hence at every vertex the total amount of incoming equals the total amount of
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out-coming. However, the outflow may not be equal to all connected edges. The outflow

is weighted by a;; .

3.21

1.

Methodology
Formulate the partial differential equations together with the relations at the vertices as

an abstract differential equation on the state space Lz([o,l];SR”) wheren is the

number of edges.

To prove that this (homogeneous) differential equation generates a contraction
semigroup on the state space.

Add an input at one of the vertices, and show that for every square integrable input
function, there exists a unique solution of the inhomogeneous abstract differential
equation.

As output the flow at one of the edges is chosen. After the well-posedness question
similar to the one above has been answered, the following optimal control problem is
studied

min J‘||y(t)||2 +||u(t)||2 dt
0

The final aim is to solve this optimal control problem. It is expected that by the special

structure of the coupled partial differential equations the solution to this problem can be

formulated in a matrix equation.

Abstract Differential Equation:

The given p.d.e. eq:3.1 can be written in abstract differential equation as

with the state space

Xx:=L*([0,1];C")

we define the operator

A:= diag (;—5]
j=1,..,m
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with domain D (A) :{z c Hl([O,l] , cm)| z(1) e rg(go;)T Aooz ()= ¢ z(0)

T
In the domain of A, the first condition z (1) erg (qoa_)) means that in every vertex the
total incoming flow is distributed in (given) weighted proportions to the outgoing edges.

the second condition ¢, z (1) = ¢, z (0)is the Kirchhoff’s law in each vertex.

e  Generation of Contraction semigroup:

Consider the linear transport equation

0z 0
) o

In the given p.d.e eq:3.1 we have;

RTINS (3.2)

R = Identitymatrix , H &)= Identitymatrix and R =0

with Boundary conditions on vertices(from flow diagram):

2,(1) = 0
2,(1) =2,(0)
23(1) =0

2,(1) = 23(0)
25(1) = ,(0) + z,(0) + z,(0)
25(1) = z5(0)

and we have the operator
d
Az =P —(Hz)+ Ry(Hz)
dg
with domain
D(A) = {z&X/Hz e H'([a,b];K" )}

Here Hl([a,b] : K“) is the vector space of all functions from [a,b] to K", which are

square integrable , absolutely continuous and the derivative is again square integrable , that is

Hl( [0.1]; C”) ={ f eLZ([O,l] ; C”)| f isabsolutelycontinuousand%e LZ([O,l] ; C”) |3
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e Formulation of Boundary Conditions:
In order to formulate the boundary conditions into boundary effort and boundary flow which

are (in our examplel)

_ 1

((H@) +(Hy)(0))

&|

f, =%(P1(Hz>(1> “R(H2)(0))

here P, = Identitymatrix and
H (&)= Identity matrix

The boundary variables e;and f,will be

1 0 0 0 0 0][z®W] [1 0 0 0 0 01 z(0)]
01000 0/|z® 0100 0 0}z
. _1//001000 23(1)+00100023(O)
> J2110 0 010 0]|z@ 0001 0 0}z
0000 1 0[]z 0000 1 0[2z(0)
00000 1]/z@®]| |0 0 0 0 0 1] z(0)]
finally we obtained

z;(1) + ,(0)

2,(1) + 2,(0)

e — 1 z3(1) + 23(0)

J2 z,(1) + 74(0)

z5(1) + z5(0)
Z5(1) + 25(0)

and
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10 000 0][1 00
01000 0/010
(_1]/0 0100 0]001
> J21l0 0 01 0 00 0O
000O0T1O0/|000
00000 1]j0 00
1 0
01
0 0
0 0
0 0
0 0

hence we get
oL
N

7,(1) |
2,()
z3(1)
2,(2)
z5(1)

R O O O O O

| 25(2) |

o O O O O o O B O O O
R O O O O O

o O O O O o B O O O O

o B O O O O

o O O O O

(1) — z,(0)
2,(1) — 2,(0)
23(1) — 25(0)
2,(1) — 2,(0)
z5(1) - z5(0)
z5(1) — 2(0)

As we have the boundary conditions as follows:

[7,(1)

23(1)

O O O O o o
|

we can write the above conditions as

Wi H() z(1,t)
BIH@) z(0,t)

where

z,1) - 7(0)

z,(1) —25(0)
z5(1) — 2,(0) — 24,(0) - z4(0)
10] | z@) - z(0)

O O O o +— O

, t>0

o O O O O

o O B O O O

O kB O O O O

R O O O O o

[2,(0) ]

2,(0)
23(0)
2,(0)
z5(0)

1Z6(D) |
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1000000 O O O O O]
010000-10 00 0 O
W _|0010000 00 0 00
B 10001000 0 -1 0 0 0
0000100 -10 -1 0 -1
0000010 0 0 0 -1 0]

the boundary conditions on vertices can be written in terms of boundary effort and boundary

flow as
fo(t
A
e, (t)
- PR -P
where Wg =Wy Ry ; and R, = iz Ll Il}
i 0O 00 0O l 0O O 0 0 0
2 2
i l 00 0O —l l 0 0 0 0
2 2 2 2
0 O i 0 0O 0 0 l 0 0 0
We = i 1 21 1
0O 0= =00 0 o -— = 0 0
2 2 2 2
g 1ottt 1 4, 1 , 1 11
2 2 2 2 2 2 2 2
0O 0 0O l l 0 0 0 0 —l l
L 2 2 2 2]

Now we need to prove one of the condition of the theorem 2.4.2.1

Wy X Wg >0

SO
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1 0 0 0 O

2

0 0 0 0O
W, XW;=[0 0 % 0 0 O

0 000 0O

0000 -10

|10 000 0 O]

It is clear that eigen values of the above matrix are not positive, hence the condition of the
theorem 2.4.2.1does not hold.

Now for verification purpose we will investigate the other condition Re{ Az,z)< 0 of

theorem 2.4.2.1

L dz - dz
Re(Az,z)= [—z(§)+z(§)—]d5
{ dé dé

L GEGIN

-~ [Rk@

- (2007~ 207)
or we can write it as

Re(Az,2) = [ 4(1) - 2,(0)” |+] 2,0 - 2,(0)* | + | 25(1)* - ,(0)° | +
[ 2,07 - 2,00 | + [ 20)° = 25(0)* | + [ (1 - 25(0)° |

by using the boundary conditions on vertices (from the flow diagram), we have

Re(Az,z) :[ 0- 21(0)2] + [21(0)2— 22(0)2} +[ 0- z3(0)2]
(2007 - 2,07 | + | (2(0) + 2,0+ 2 )" - %5(0)* | + [ (0 - 20’ ]

finally we obtained

Re(Az,z) = 22,(0)z,(0) + 22,(0) z5(0) +224(0) z,(0)
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Hence it is clear that the real part is not positive. So we conclude here, H (&)= Identity matrix

is not a good choice for generating the contraction semigroup. Also theorem 2.4.2.1 does not
hold. Hence for this network flow; we cannot generate contraction semigroup by choosing
H (£)= Identity matrix

Now we need to find such constant valued Hamiltonian diagonal matrix, which can satisfy
theorem 2.4.2.1.
3.2.2 Formulation of Hamiltonian (diagonal) matrix

We need to find Hamiltonian which will satisfy the conditions of the theorem 2.4.2.1,

consider the constant valued Hamiltonian matrix is in the form

» 0 0 O O O
0O b 0 0 0 O
H - 0 0 y»» 0 0 O
|0 0 0 y, 0O O
0 0 0 0 » O
0 0 0 0 0 Oy
we already defined the operator as
A:diagi
98
So
r T
%T [y, 0 0 0 0 O0[zg]
g 0O b 0 0 0 O0]|z
1 0 0 0 0 0|z
Re(Az,2)= [ & 3y
0 0 0 0 y 0 0]z
' 0O 0 0 O 01|z
%16 6 0 0 0 st
oe | L Ve || %6 |
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.
0 0 0 o o0]%]
1 B¢
0y, 0 0 0 0
0 0 », 0 0 O
L, 1, 13 1, I I dé
0 0 0 O 0l
0 0 0 0 7(;; s
Vel 7z
- -1 ¢ |
¢ o
= (= 7z (@) + . . . +yez(8)? |d
{ 5 | 1a(8) 7625(8)” | dé
2 2
=nm@ + ez

= 1| 2@ - 20 |+ 72| 220) - 2,(0)° | + 75 221)° - 2,(0)° |
74 207 = 2,007 ] + 76 2507 - 2,(0)* | + 75| 2,17 - 2,(0)° ]

Now by using the conditions on vertices (from the flow diagram), we get

=1] 0 =207 ]+ 7,407 - 2,07 ] + 7] 0 - 7,(0)]
7422007 = 2407 ] + 15| (2(0) + 2,0+ 2, 0)) - 5(0)* | + 15[ %0 - 2 (0’ ]

Finally we obtained

Re(Az,2)=2,(0)*[ - 71 + 72] + 2,(0)* [~ 72 + 7] + 25(0)* [ = 75 + 74| +24(0)°[ = 74 + 75] +
25(0)2[— Vs + V]| + 26(0)2[_ Ve + 75) + 275 25(0) 24,(0) + 275 24(0) 25(0) +2 75 2,(0) z5(0)

To prove Re(Az,z)< 0 we need to prove the following:

( +7/2) 0

( 7/+7/4)S0

(—7s +76) <0

— Y2t 7s Vs Vs

[ ~ Y4+ 7s rs | =<0
Y5 —Y t7Vs
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There are no such constants values of y's to satisfy the above inequalities, because H

becomes a Jordan block structure. Hence there is no such Hamiltonian, in the form of

diagonal matrix, which satisfies the theorem 2.4.2.1.

So we can’t move further with this example for other two parts of methodology. Now we are
only interested to find the constant valued Hamiltonian matrix, which is not a diagonal matrix.

To find such Hamiltonian which satisfy Re < Az,z><0 , we need to formulate Hamiltonian

matrix; by using theorem 3.1.2.

3.2.3 Formulation of Hamiltonian (non-diagonal) matrix:
As we have the boundary conditions eq: 3.3 on vertices (from the flow diagram: Figure 1)

Now we can write the above BCs from network flow as:

z(1)=Qz(0)
z;(1)) [0 0 0 0 0 0](z(0)
Z,(1) 1 0 0 0 0 0/|z,(0)
z;(1)| |0 0 0 0 0 0 ||2z3(0)
z,(1) 0 01 0 0 O0]|z40)
z:(1) 01 01 01]|zs(0)
zg(1)) [0 0 0 0 1 0 [(z4(0)
Q
here Q is transition matrix.

+1

-1

. 0
Eigen valuesof Q= 0 <1

0

0

and
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00 0 1 0O
001 0 0O
. . 0 0 0 0 01
generalized eigen vectors 'V =
00 0 0 1 0
11 0 -1 0-1
-1 1 -1 0-1 0]
now consider
2 0 1 -1 1 -1
o 2 -1 -1 -1 -1
HovY - 1 -1 2 0 1 O
-1 -1 0 2 0 1
1 -1 1 0 2 O
-1 -1 0 1 0 2]

SO

H™ = ™) (V?)*; Therefore invertible, eig(H) = {5_;/1_7 : 5+;/ﬁ ,1} (all multiplicity 2)

H*=NV")(V*) =VV =H; .. His self adjoint
now

We need to show that Q* HQ-H <0

0 -1 -2 0 -2 0
1 0 1 3 1 3
O'Ho_p_|2 L 0 0 0 0
03 0 0 0 1

21 0 0 0 0

03 0 1 0 O]

Has eigen values {-4.1,-2.8,-1,0,0,2.5,5.3} £ 0

. Q"HQ-H <o
The Jordan canonical form of Q is

D=V Qv
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and

-1 0 0 0 0O
01 0 0 0 O
0 0 01 0 O
D:
00 0 0 0 O
00 0 0 0 1
100 0 0 0 0
So we need to show that
D*ID-1<0
[0 0 0 0 0 0]
00 0 0 00O
. 00 -1 0 0O
DID-1=
00 0 0O 0 O
00 0 0 -1 0
100 0 0 0 0
-1
-1
i . 0
eigen values (D' I D-1) = 0 <0
0
0
SO
D'ID-1<0
Hence *A’ generates the Contraction semigroup.
As we suppose V* HV = |
then
H=(v*) 1V
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[3/2 0 1/2 0 1/2 0
0 3/2 0 1/2 0 1/2
1/2 0 3/2 0 1/2 0

=l 12 0 32 0 12

1/2 0 1/2 0 1/2 0
0 1/2 0 1/2 0 1/2]

or

[ 1 0 1/3 0 1/3 0 |

0 1 0 1/3 0 1/3

L 313 0 1 0 1/3 0

2l 0 1/3 0 1 0 1/3

1/3 0 1/3 0 1/3 0
0 1/3 0 1/3 0 1/3]

with this Hamiltonian, when we calculate.. Q" HQ-H;

We get;
0 0 0 0 0 0]
0 2/3 0 0 0 0
0" HO H_o 0 0 0 0 0
1o o0 0 -2/3 0 O
0 0 0 0 0 0
0 0 0 0 0 0
now
-2/3
-2/3
. . 0
Eigen values (Q"HQ—-H) = 0 <0
0
0
SO
(Q'HQ-H)<0
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&
1 0 0 0 -1 0]
o1 0 0 0 -1
5 300 1.0 -1 0
Y210 0 0 1 0 -1
10 -1 0 4 0
0 -1 0 -1 0 4|

hence the following Hamiltonian matrix satisfied theorem 2.4.2.1

] N

o Nk, O Nw
O Nk o Nlw o

o Nlw o N
o Nw o Nk o

o Nk o N
o Nk o NP

| =
| =

o Nk
o Nk
o Nk

N |-

i |

So for this non-diagonal Hamiltonian matrix H, Ais the infinitesimal generator of

N
N

contraction semi group on X.
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EXAMPLE 2

Consider the following closed network of flow [1].

Figure 2

Assumptions:

Material flowing with constant speed c; on each edge e; with no friction or loss.

In each node v; of the network the material is redistributed according to certain weight

;-

e Take the weights for all 0 < o <1 on the edges.

Simplified Physical model:

This situation can be described by a system of linear transport equation on the edges
0 0
5Zj(§1t) =C;j %Zj(éi)

e Initial condition: z;(&,0) = h;
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e Boundary conditions at vertices

Outgoing flow on edge (e; )= (a)i‘j > ) incoming flows into vertexv; .

So from the flow diagram; we have the following conditions

7 (1) = o 25(0)
z,(1) = 7,(0)
z,(1) = (1- ) z5(0) ; (choose a= % ) (3.4)

z,(1) = 25(0)
z5(1) = 7,(0) +24(0)

Typical phenomena of flows in networks:

The mass distribution on edges e, and e; will always satisfy the relation I
-

3.3.1 Methodology
The methodology remains the same as given in section 3.2.1 for this network
Abstract Differential Equation:

2(t) = Az(t) , t>0
2(0) = f

on state space X = L ([0,1];0”’)

dg

define operator A= diag (i)
j=1,...m

with domain D (A) :{zE Hl([o,l] , cm)| z(1) e rg(go;)T Aoz ()= ¢ z(0)

Generation of Contraction Semigroup:
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Consider the partial differential equation

0z 0
5(&0 = ?@,t)

here we have
P, = ldentitymatrix , H(&)= Identitymatrix and P, =0
so the partial differential equation will be

0z i

(&)= % (I3 E2CE0) (3.5)

The corresponding abstract differential equation of the above p.d.e is

dz d
—(t)=R—(Hz (t
consider the operator
Az= F}i(Hz (t))
dé

on the state space X = L?([0,1]; C")

with the inner product
1F o
(Fo)x=5]9(8) H(E (&) d¢
0

and the domain

D(A)={ zeX/HzeH!([0.];C") }

here Hl([O,l] , C”) is the vector space of all functions from [0,1] to C", which are square

integrable , absolutely continuous and the derivative is again square integrable , that is

Hl( [0.1]; C”) ={ f eLZ([O,l] ; C”)| f isabsolutelycontinuousand%e LZ([O,l] ; C”) |3

Formulation of Boundary Conditions:
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To formulate the boundary conditions from the flow diagram in the boundary variables e,and

f,. We have the boundary effort

;1) + z,(0)
1 z,(1) + 2,(0)
€ = —=1230) + z3(0)
V2 2,2 +2,(0)
z5(1) + z5(0)

and boundary flow is:

;1) - ,(0)
1 2,(1) — 2,(0)
fo=—|2(1) - 2(0)
V2 2,() — 24(0)
z5(1) — z5(0)

we have the conditions in the vertices (from the flow diagram: Figure 2) (eq:3.4), we can write
the boundary conditions in the following form

W{H(l) z(1,t)}:0 | 150

H() z(0,t)

so the boundary conditions will become

10000 O O O 0 -

| =

0100O0-1 0 O 0
z(1
m7]_,
z(0)
00010 O O0O-1 0

2
0
001000000—%
0
cooo0o01 0 -1 0 -1 O

W,

now the boundary conditions in terms of boundary effort and boundary flow can be defined as
f,(t
" { o 1 iy
e, (t)
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AV D1 1 P1 _Pl
so , we get
L 0O 0 O L L 0 0 0 1
2 4 2 4
11 0 O 1 L 0 0 0 0
2 2 2 2
Wg=[0 O Lo 1 o L1 o 1
2 4 2 4
0 O 11 0 0 0 1 1 0
2 2 2 2
S O O T S
2 2 2 2 2 2]

To prove the contraction semigroup; by using the theorem 2.4.2.1, we need to show that:
Wg 2 Wg >0

where

Now (using Matlab) , we obtain

0.375 o -1 o 0
4
0 0 0 0 0
Wy S W, = —% 0 0375 0 0
0 0 0 0
0 0 o o -1
I 2

To check the positivity of the above matrix the eigen values must be positive.

eigen values of Wg 2> W, are
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Nk BFP o oNR

*#0

Hence the theorem 2.4.2.1 does not satisfy.

now for verification purpose we will check the other condition of the theorem 2.4.2.1 i-e

Re(Az,2)< 0
L4z - dz
Re( Az, 2)= (——z(:)+z(:y——]d:
{ dé dé
=%&@ﬁ@ﬁ;

LG

- 2w -20?)

by using the conditions on vertices from the flow diagram, finally we get
1 2
Re(Az,z)= —225(0) + 2,(0)z,(0)
The above expression shows that the condition Re( Az,z)< 0 doesn’t hold.

thus theorem 2.4.2.1 does not satisfy; so we cannot obtain the contraction semigroup on
LZ([O,l] ; C”) when H(&) = Identitymatrix and P, = Identity matrix_

now we need to find the constant valued Hamiltonian diagonal matrix; which satisfies

theorem 2.4.2.1.

3.3.2 Formulation of diagonal Hamiltonian matrix

Consider the Hamiltonian is in the following form;
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v 0 0 0 O
0O, 0 0 O
H=|10 0 % 0 O
0 0 0 9, O
0 0 0 0
as we have the operator
A = diag 9
o¢

let’s find the second condition of theorem 2.4.2.1; which is

Re(Az,z2)<0
and we know
a
o (v, 0 0 0 0YzY
. 0 y3b 0 0 O
Re<Az,z>:j 0 0 5 0 O +(z
0 0 0 0 y O
dzz \0 0 0 0 y5)\z
0&
1
o
= [Zna@+ . . .+ 7s2s(8) ]dE
005

= [7121(5)"‘ ce et sZ5(6) ]t

o O O o

= 71[21(1)2 _21(0)2] +7,l2, (1)2 — 1 (0)2] + 73[23(1)2 _23(0)2]

+ 74[24 (W) =24 0)°] + 5[ 25 (1) ~ 25(0)°]

here by using the conditions on vertices; we get

Re(Az,z) = 21(0)2(— 71172 )+ 22(0)2(— V2175 ) + 23(0)2(— Y3 t7Va )

1 1
+ 24(0)2(_ Yat7s ) + 25(0)2 [Z 71t 273 - 75) +2752,(0) 24(0)

To prove Re(Az,z)< 0 ; we need to prove the following:

N )

o O o

0 O
0 O
ys 0
0 7,
0 O
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(_ Vot7Vs Vs ]<0
Vs —VatVs

To prove the above inequalities; we use here the Sylvester‘s criterion by choosing
1
Nn=r2=v3=74=1 & ’s=5

hence from this trick we finally obtain the new Hamiltonian as

10000
01000
_|00 100
00010
00001

2

So the second condition of the theorem 2.4.2.1,Re(Az,z)<0 with the above new

Hamiltonian satisfied.

Now for confirmation purpose we will check the other condition of the theorem 2.4.2.1;

which is Wg X W5 >0

For this, first we write the boundary conditions in terms of new variables (boundary effort and

boundary flow) e, and f, :
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10000
101000
e, =—=[ (0 01 00
\/500010
0000l
L 2|

and

for the Boundary flow;

so we have
1 0 0 0 0|2
. 0100O0{O0
f=—=/|0 01 0 0|0
\/5000100
_00002_0

(1) ]
2,(1)
z3(1)
2,(1)

| z5(D) |

o o+~ O

o+ O O

R O O O

o o o

O O O O B+

N, O O O O

o o+~ ©
o+ O O
R O O O

N O O O O

z (1) + 7(0)
2,(1) + 2,(0)
z3(1) + z3(0)
2,(1) + 2,(0)

~50 + 22,0

0 00O
1 000
0100
0 010
0 00 2
[z 10
z,(2) 01
z;)| +|0 O
z,(@) 00
1Zs()] [0 O

[2,(0) |
2,(0)
z3(0)
2,(0)

1 25(0) |

o ok ©O O

o r O O O

N ©O ©O O ©

o o o +

o o +— O

o~ O O

R O O O
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and finally we get

(1) — (0)
1 2,(1) - 2,(0)
fo=—=1123(1) — 23(0)
V2 z,(1) — 2,(0)
z5(1) — z5(0)

now we have the boundary conditions

-~ |HQ® z(1,t
Wy M 2(L,1) =0 |, t>0
H®) z(0,t)
here
1 0 00O 0 0 0 0 -1]
01 000 -1 0 O 0O O
VVB: 0 01 00O 0 0 O 0 -1
00010 0O 0 -1 0 O
10 0 0 0 2 0 -1 0 -1 0]
and
WB:VVBR(;l

1 0 0 0 1 1 0 0 0 —1

2 4 2 2

1 1 0 0 0 —1 1 0 0 0

2 2 2 2
Wg; =0 0 1 0 1 0 0 1 0o =
2 4 2
0 0 1 1 0 0 0 —1 1 0
2 2 2 2
R T T T S S
L 2 2 2 2 2 |
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So we check Wy X Wy >0

Wy W, =

|
o ob|lkroh|k
o O ON]|R

o O O O o
o O O O o
o O O O o

To prove the above matrix is positive , we need to show that the eigen values are positive.

SO

Eigen values(Wg X W )=

N|RPO O O O
vV
o

Hence the theorem 2.4.2.1 is satisfied, so operator A is the infinitesimal generator of
contraction semigroup on X with

o O o -
o O +» O
o » O O
R O O O

Nk O O O O

and

O
[

o O O O -

o O O +— O

o O B O O

o B O O O

N O O O O

Infinite dimensional system theory for networks of flows | Final Project 2011



Boundary Control System

Chapter 4 Boundary Control System

In this chapter we are in particular interested in systems with a control at the boundary of their
spatial domain. We have shown that these systems have well-defined solutions provided the
input is sufficiently smooth. In first section we discussed port-Hamiltonian as boundary
control system and describe some background information and theorems [2], which we
needed later in this chapter. In final section we studied the well-posedness and also used the
known result to show that the system is well-posed if and only if A is infinitesimal generator

of a C,- semigroup [2].
Definition (Boundary Control System):

Consider the following control system

X(t)=uUx(t) , X(0) = x,

X (t) =u(t)

where

U : DQU)c X-X is linear , the control function utakes values in the Hilbert space U and
boundary operators B: D(B) < X—-U is linear & satisfies D(U)c D(B) . This system is a

boundary control system if the following holds:
1. The operator A: D(A)—X with D(A)=D(U)Nker(B) and
A(X)= UX ; for x€ D(A) is the infinitesimal generator of C,-semigroup
(T@®).,0nX
2. There exists an operator B € L(U,X) s.t forall u €U we have Bue D(U), UBE

L(U,X) and BBu=u, u€eU.

4.1 PORT-HAMILTONIAN SYSTEMS AS BOUNDARY CONTROL SYSTEMS

We add a boundary control to a port-Hamiltonian system; we will show that the assumption of
a boundary control system is satisfied. The port-Hamiltonian system with control is given by

OX _p 0
g(é,t) =R o (HE)X(E, 1) ) + Ry (HE)X(E, 1) ) v, (4.2)
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f
ut) =Wg, L@((tt))} .............................. (4.2)
0
~ fo(t)
0 - WB,Z {ea (t) } ............................... (4.3)

We make the following assumptions.

4.1.1 Assumptions

e P e K" "isinvertible and self-adjoint.
e Hel” ([a,b] S ‘Gl ) H (&) is self-adjoint for a.e. £ < [a,b]and there exist M,m >0
such that ml < H (&) <M | for a.e. £ea,b]

w
e W, :{ B'l}eK”XZ” has full rank.
WB,Z

We can write the port-Hamiltonian system eq: 4.1—4.3 as boundary control system

x(t) =U x(t) , X(0) = X,

Bx(t) = u(t)
By defining
Ux= a%(Hx)+PO(HX) ................................... (4.4)
D U)= {x e *([a.b]; K”) | HxeH* ([a,b]; K" ),WBY2 La}_o} ......... (4.5)
0
N
BX=Wa 1| |, oo (4.6)
1,
D(B)= D(U)  ccrreemeeereemereccrrennnnen (4.7)

We choose the Hilbert space X = LZ([a,b] ; K”) , With the inner product space

b
(1.9)x =7 [ 1O HE) ) o
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as the state space and u(t)is a smooth control function. The input space U equals K™
where mis the number of rows of Wy ,. We are now in the position to show that the

controlled port- Hamiltonian system is indeed a boundary control system.

4.1.2 Theorem

If the operator

Ax = F’lé(Hx) FR(HX) oo (4.8)
With domain
f W
D (U) =1x e X [HxeH'([a,b] ; K" ) , { a}eker el R (4.9)
€ Weg -
generates a C, — semigroup on X ,then the system eq: 4.1-4.3 is a boundary control system
on X.
Remark:

An essential condition in the above theorem is that A given by eq: 4.8 with the domain eq: 4.9

generates a C,— semigroup . Theorem 4.1.2 and assumptions 4.1.1 imply that this holds in
. . 0 . . .

particular when P,” = — Byand Wy - Wg" >0 . Since the term PyH can be seen as is a

bounded perturbation of (4.4) with P, = 0, Theorem 4.1.2 shows that A given by eq: 4.8 with

0 1
domain eq: 4.9 generates a C, — semigroup when Wy L 0} W;" >0 .

4.1.3 Boundary observations for port-Hamiltonian System

We use the conditions on the boundary observation which guarantee that a certain balance
equation is satisfied, which is important. The standard Hamiltonian system with boundary
control and boundary observation is given by
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0

x(t) = F’lg(H X(8) ) + Py (HX() ) oo, (4.10)
(input) u(t) =Wy ij((tt))} .............................. (4.12)
B fa(t)
(output) y(t) = W L@ (t)} ............................... (4.12)

It is assumed that P, Hand W; satisfy the conditions of assumptions 4.1.1 . The output
equation is formulated very similar to the control equation. So we assume that the output
space Y = K¥ and thus W is a matrix of size kx2n.. Since we want the output to be

independent, we assume that W, has full rank.

4.1.4 Theorem

Consider the system eq: 4.10-4.12, satisfying assumptions 4.1.1, W, e K**?"and

W,
{WB} e KK+M>2"having full rank. Assume that the operator A defined by eq: 4.8 and eq:
C

4.9 generates C, — semigroup on X. then for every

f5(0)
e,(0)

4.10-4.12 has a unique (classical) solution, with Hx(t)e Hl([a,b] K" ) ,t>0, and the

uecC’([ab]; K" ), Hx(0)eH'([a,b]; K" )and U(O):WB{ } . the system eq;

output y is continuous.

Furthermore, if additionally P,"=— P, and k=n , then the following balance equation is

satisfied for every t > 0

d Liem v u(t)
FOR=5[vO Y O]R,w {y (t)}-

Now we continue with example 0, which explains the port-Hamiltonian system as boundary

control system.
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4.1.5 Example

Consider the controlled transport equation

62

e {H(é)z(é t)}

We add the input u(t)at vertexv,. Now we will discuss the following network (Figure 3) as

boundary control system and boundary observation.

first we consider the corresponding inhomogeneous differential equation

2(t) = Az(t) +u(t) ;2(0) = z,

here u(t) is smooth input function.

@ - <—u(t)

SH) €4

Figure 3
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here
1 0 0 0 0]
01000
R={0 01 0O
0 0010
10 0 0 0 2]
&
1 000 0]
0100 O
H=0 01 0 O
0001 O
|10 0 0 0 1/2]
where By =0

now we write the port-Hamiltonian system as control boundary system in the following way:
we have the Boundary Conditions on vertices from the flow diagram as

5 (D=3 2(0)

2 =20

z, 1)=2,(0)
2, (1)=25(0)+u(t)
Z5 (1)=2,(0)+2,(0)

We can write it as;
z,(D) - 23(0) = u(b)
2.(1) —%z5 (0)=0
2,(1)—2,(0)=0
2,0~ 75(0) =0
25(1) - 2,(0) - 2,(0) =0

Now to find Wy, :
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So

hence

where

To find Wy, :

we have

now

U(t) =2, (1) - 25(0)

or
Hz(1
u(t):(0001000—10 O) @
Hz(0)
WBJ
where
Wg, =Ws1Ry"
here
(1 0 0 0 O]
01000
1 (R -k
Rozﬁl , here =0 0 1 0 O
0 0010
10 0 0 0 2]

Wg,=(0 0 /2 /20 0 0 -Y2 12 0)

u®=(0 0 ¥2 20 0 0 42 42 O{H

0
{ fa}[(HZ)(l) - (HZ)(O)]
& | \(H2)@)+(Hz)(0)

2,0~ 25(0) =0
2,)-2,(0)=0
(-5 2(0)=0

25(1)-2,(0)-2,(0)=0
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0 (1 0000 0 0 00 -1

0[ (01000 -1 000 0| Hz)

0/ /001 00 0 0 0O -1|{Hz(0)

0) 00010 0 -10-10

\A;B,Z

&

Wg,=We2Ry*

1/2 0 0 0 1/8 1/2 0 0 0 -1/2
W_1/21/2000-1/21/2000
B2l 0 0 1/2 0 1/8 0 0 1/2 0 -1/2

0 1/2 0 1 0 0 -1/2 0 0 0

SO
1/2 0 0O 0 1/8 1/2 0 0 0 -1/2
0= 1/2 1/2 0 0 O -1/2 1/2 0 O O (fa]
0 0 1/2 0 1/8 O 0 1/2 0 -1/2 |(¢&
0O 1/2 0 1 O 0 -1/2 0 0 O

0 0 1/2 1/2 O 0 0 -1/2 1/2 O
1/2 0 0 0 1/8 1/2 0 0 0 -1/2
Wg=| 1/2 1/2 O 0 o -1/2 1/2 0 0 0

o o0 1/2 0 1/8 0 o 1/2 0 -1/2
0 1/2 0 1 0 0 -1/2 0 0 0

here Wy is full rank matrix.

Hence all the assumptions 4.1.1are satisfied. So we can write the port-Hamiltonian system

eq:4.1-4.3 as a boundary control system.

Now the standard Hamiltonian system with the boundary control and boundary observation is

given by :
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2(t)=Az(t) ; z(0)=z,
Bz(t)=u(t) whereueC([a,b];X)
by defining
CE
Az= oz (Hz)
D(A) = {z e L2([0,1]): C" |Hz e H'([a,b]);Ws , Lﬂ = 0}
0

f

Bz :WB{ej

D(B) = D(A)

We choose the Hilbert space X = L?([0,1]; C") with the inner product

(f.9)==] f(&)H(&)g(8) d&

N |-
O ——y

and

2(t) = %(Hz(t))
fa(t)
€ (t)]

f, (t)}
e, ()

smooth input u(t) =Wg [

smooth output y(t)=W, [

y(t) =25 (0)

now

Wec=(2 020000 00 0)
W =W Ry*

where
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10000
01000
_ 1R R _
Ro_ﬁl ,and R=|0 0 1 0 O
0 0010
10 0 0 0 2]

SO

Wc=(1 01001010 0)

So finally we have P,,H,&W;g which satisfies the conditions 4.1.1

W
now W ¢ is full rank matrix, also [WB] has full rank.
C

So we have

0 0 1/21/2 0 0 0 -1/2 1/2 0
12 0 0 0 1/8 1/2 0 0 0 -1/2
Wg) [1/2 1/2 0 0 0 -1/2 1/2 0 0
( ]: 0 0 1/2 0 1/8 0 0 1/2 0 -1/2
0 1/2 0 1 0 0 -1/2 0 0 0
1 0 1 0 0 1 0 1 0

has full rank.

Hence we have shown that port-Hamiltonian system for this network of flow (Figure 3) is
boundary control system. We also studied the boundary observation for this network of flow.

Finally we need to show that the system is well posed and hence A generates C,-semigroup.

In the following, first we discuss some background information [2] of well-posedness for
port-Hamiltonian system and then prove that the given port-Hamiltonian system is well-posed

and A is the infinitesimal generator of the C,-semigroup on X.
Definition (well-posed):

Consider the system

X(t)=uUx(t) , X(0) = X,

B x(t) =u(t)
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Cx(t) =y(t)
satisfying the following assumptions ;

1. The operators U: DQU)c X-=X , B: D(B) c X—U and €: D(U)c X-Y are linear
operators, D(U) c D(B) & X, U, Y are Hilbert spaces.
2. The operator A:D(A) »X with D(A)=D(U)N ker (B)and

Ax = UX for xe D (A)

is the infinitesimal generator of a C,-semigroup (T (t)),,, on X

3. There exists an operator B € L(U,X) s.t forall u €U we have Bue D(U), UBE
L(U,X) and
BBu=u, ueu.
4. The operator € is bounded from the domain of A to Y. Here D(A) is equipped with

the grapg norm.

We call this system is well-posed if there exists a t>0 and m >0 s.t for all
X, € D () and u e C?([0,7]; U)with u(0) =B X,

We have

o vz + oo |
0 0

In general it is not easy to show that a boundary control system is well-posed. However
there is a special class of system for which well-posedness can easily be proved.

4.2 WELL-POSEDNESS FOR PORT-HAMILTONIAN SYSTEMS

The port-Hamiltonian systems with boundary control and boundary observation, is of the

following form

%(é,t) = Pl%(H(e:)x(ej, 1)) + Py (H(E)X(E, 1) ) covverrrirenrri, (4.13)
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fa(t)
UM) =Wa | 7 0| e, 4.14
(t) B,{ea(t)} (4.14)
fo(t
0= WB{ o )} ............................... (4.15)
e
fa(t)
) = Wo!| 7 0| 4.16
y(t) CL@“J (4.16)
W
We assume that B, , Hand W = l: B’1:lsatisfy assumptions 4.1.1, thus in particular, for a.e.
B,2

éela,b], H(&) isself-adjoint n x n matrix satisfying 0 <mI <H(&) <M .

WB,l
Furthermore, W; =
WB

:l is a full rank matrix of size n x 2n. We assume that Wy , is
,2

a mx 2n matrix. The state space is given by the Hilbert space X = L? ([a,b] ; K”) with the

inner product

(F,0) == [T () HE)GE) dE o, (4.17)

N |~
QD C—— T

4.2.1 Theorem

Consider the port-Hamiltonian system eq: 4.13-4.16 and assume that the conditions of

assumptions 4.1.1. are satisfied. Furthermore, we assume that the multiplication operator

P, H can be written as

RH(E)=87(5)a(6)s(¢) . &elab]
where A is diagonal matrix-valued function, S is a matrix valued function and both A and S

are continuously differentiable on [a,b] ,

WB,].
rank |Wg , | =n + rank (W)
WC
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Let X be the Hilbert space LZ([a,b] ; K”) with inner product eq:4.17 . If the operator A

corresponding to the homogenous p.d.e., u=0, generates a C, — semigroup on X , then the
system eq: 4.13-4.16 is regular, and thus in particular well-posed.
Remark:

If A generatesa C,—semigroup on X ,then the system possesses classical solutions

for smooth inputs and initial conditions. Well-posedness implies that there exist solutions for
every initial condition and every square integrable input.
4.2.2 Lemma

Let P, and H satisfy the conditions of theorem 4.2.1,then A can be written as

o[ ol

Where A is a diagonal real matrix-valued function, with (strictly) positive function on the

diagonal, and © is a diagonal real matrix-valued function, with (strictly) negative functions

on the diagonal.

Remark:

In theorem 4.2.1 we asserted that under some weak conditions every port-Hamiltonian system
is well- posed provided that corresponding homogenous equation generates a strongly
continuous semigroup.

4.2.3 P H Diagonal

We now investigate when the p.d.e. with the control and observation at the boundary is well-

posed. We discussed in theorem 4.2.1 the situation that P, H is diagonal, i.e. when S=1 thus

we consider the following diagonal port-Hamiltonian system

S ] e o
A x (50| €| 0 @) [x (| T _
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where for every & e[a,b], A(¢) is a diagonal (real) matrix, with positive numbers on the

diagonal, and @(5) is a diagonal (real) matrix, with negative numbers on the diagonal.
Furthermore, we assume that Aand © are continuously differentiable and that

l:A(é) 0
0 0

A 0 I 0
H= and P = :
o oAl 1

The following boundary control and observation are of interest

:lis an nx n-matrix. As eq: 4.18 is a port-Hamiltonian system with

[A®)X (b, 1)

ug(t) = {@(a) X (a, t)} b e (4.19)
[A@x(a, 1)

Y, (t) = {@(b) X (b, t)}' ............................. (4.20)

4.2.4 Theorem

Consider the p.d.e. (eq: 4.18) with boundary control u, and boundary observation y, as

defined in eq: 4.19 and eq: 4.20 respectively.
The system defined by eq: 4.18-4.20 is well-posed and regular.

We equip the port-Hamiltonian system eq: 4.18 with a new set of inputs and outputs. The new

input ug is of the form

Ug=Kug(t) + Qy,(t) oo (4.21)

where K and Qare two square n x n-matrices with [K Q] of rank n. The new output is

of the form

XTI (s e YRV () N (4.22)

Where O, and O, arek x n-matrices. For system eq: 4.18 with input uand output y , we

have the following results:

e If K isinvertible, then the systemeq: 4.18, eq: 4.21 and eq: 4.22 is well-posed.

e If K is not invertible, then the operator A, defined as
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with domain
D(Ac) { l:g+(§):| e H'([a,b], K")|

9(¢)
K {A(b)g*(b)} + Q {A(a)g*(ﬂ = 0} ......... (4.24)
©(a)g_(a) ©(b)g_(b)

does not generate a C, — semigroup on LZ([a,b] ; K”) .

The part 2 implies that the homogenous p.d.e. does not have a well-defined solution, when K

is not invertible.
Proof: The proof of this theorem is given in [2]

Now we will continue example 4.1.5 and show that A generates C,-semigroup by showing

that the system is well-posed.

4.2.5 Example

Consider the Port-Hamiltonian System with boundary control and boundary observations will
be

20 _ \denthy matrix &R, =
a(é)_aé{H(e:)z(e:,t)} (P, = Identity matrix & P, = 0)

With the boundary conditions on vertices (from the flow diagram: Figure 3)
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2, ()= 25(0)
2,)=2(0)
2 0= 20

input  z, (1) =25(0)+u(t)
25 (1)=2,(0)+2,(0)
&

output  y(t) =z5 (0)

input will become

fo(t
u(t) =Wz, [ea((t;]
0
fa®) 1 (z(Lt)-z(01)
where [ea(t)]_ﬁ(z(l,t)u(o,t)]
&
Wg, :W Bl Rc;l;
P -P
RO_%(Il |1]
hence
u)=(0 0 0 10 0 0 -1 0 o)(l:'zz(((l)))]
WBJ
here
We :WBvl R(;l’
)

Wg,=(0 0 Y2 20 0 0 -12 /2 0)

hence the input will become

u®=(0 0 ¥2 420 0 0 42 42 O{H

0

now
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where
WE;2:WB2R()_1
and
0 (10000 O O 0O -1/2
0/ |01 000 -1 000 0 |(H)
0/ /0 01 00 0 0 0 0 -1/2]|\ Hz(0)
o) looo10 1 0-1 0
VV.B,Z
SO

1/2 0 0 0 1/4 1/2 0 0 0 -1/4
1/2 1/2 0 0 0 ~-1/2 1/2 0 0O 0
B.2 0 0 1/2 0 1/4 0 0 1/2 0 -1/4
0 1/2 0 1/2 1/2 0 -1/2 0 -1/2 1/2

12 0 0 0 1/4 1/2 0 0 0 -l/4

12 1/2 0 0 0 -1/2 1/2 0 0 0 |(f,
| o 0 1/2 0o 1/4 0 0 1/2 0 -1/4 (ea]

0 1/2 0 1/2 1/2 0 -1/2 0 -1/2 1/2

as we have ; (from BC's)

4 (D=2,

(D=2 y() (since y(t) =2 (0)
or

27, (D=y(®)
&
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%= y0)
or
27; (D) =y(t)
SO

yH)=(2 0 2 00 0 0 00 o)(HZ(l)]

Hz(0)

W

W, =W R;*
SO

Wc:(1010010100)
hence

yt)=(1 0 1 00 1 0 10 o)(:‘aj
0

finally we have the port-Hamiltonian system with boundary control & boundary observation

as ;
oz 0
== HE)ZE D i, 4.25
ot =z (H©E)] (4.25)
f
ut)=(0 0 2 y20 0 0 -1/2 12 O)Lﬂ ............... (4.26)
0
12 0 0 0 1/4 1/2 0 0 0 -1/4
1/2 1/2 0 0 0 -1/2 1/2 0 0 0 |(f,
= ..(4.27)
0O 0 1/2 0 1/4 0 0 1/2 0 -1/4 |
0 1/2 0 1/2 1/2 0 -1/2 0 -1/2 1/2
&
fa
y(t)=(1 0 1 00 1 0 10 0) o [ (4.28)
0
So we have
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which is

0 0 1/2 1/2 0 0 0 -1/2 1/2 0
1/2 0 0 0 1/8 1/2 0 0 0 -1/4
Wg=| 1/2 1/2 O 0 o -1/2 1/2 0 0 0
o 0 1/2 0 1/8 0 0 1/2 O -1
0 1/2 0 1 0 0 -1/2 0 0 0

WBl . . ng .
Furthermore, B, , H & Wy = W © | satisfy the assumptions (4.2.1) and Wg = W ~ | isa full

B,2 B,2

rank matrix of size 5x10.

e To prove that the system eq: 4.25-4.28 is well-posed; we will use the theorem 4.2.1.

and lemma 4.2.2.

As we have discussed that if the operator A corresponding to the homogenous p.d.e i-e u=0

generates a C,semigroup on X , then the system eq: 4.25-4.28 is a regular & thus in particular

well-posed.

Let P, & H satisfy the conditions of theorem 4.2.1, and according to the lemma 4.2.2 we can

write A as

In our case;

P,H is a diagonal matrix & its eigen values all are strictly positive, which are

PH =

o O O O -
o O O +— O
o O —» O O
o kB O O O
P~ o o o o
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the eigen valuesof PH=A=

L

finally we have

10000
01000
A={0 01 00
00010
10 0 0 0 1]

P,H Diagonal:

P,H is diagonal ;so we can write S =1,

Thus we consider the following diagonal port Hamiltonian system;

10000
01000

0z 0

E(é’t):a_ 0 0 1 0 0z(E,t) |oevverreen (4.29)
500010
10 0 00 1)

For every & €[0,1] , the above is a port Hamiltonian system with H=1 & P, =1

The following boundary control & observation are of interest:

Uy (t) =[A 200, )] (4.30)
&

Vo) =[A 2(a, )] oo (4.31)

According to theorem 4.2.4; we have for homogenous p.d.e. u(t)=0 and the boundary

conditions eq: 3.4 (from the flow diagram: Figure 3)

we have
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100 00|z (D)
01 0 0 0|z,® z,(2)
ut)=({0 0 1 0 0[] z0) |=|zQ)
0 0 01 0|z z,()
10 0 0 0 1(z() z:(1)
2(0)
2,(0)
Ys(t) =1 z5(0)
2,(0)
z5(0)
now we have the new input of the form:
10 0 0 O](z()) [0 O 0 0O -1/2](z,(0)
0 1 00 O0[[z,(1)] |O -1 0 0 0 |z0
O=u,(t)=(0 0 1 0 0f|z5(1)|+/0 0 O 0 -1/2}||z5(0)
0 00 10|lz)] |0 0 -1 0 0 | z40)
10 0 00 1]lzs(1)) |0 -1 0 -1 0 |(z5(0)
K Q

where Kand Q are two square 5x5matrices with [K QJofrank 5.

when we have

1000 0 10000
0100 O 01000
H={0 01 0 0|,R=|0 0100
0001 0 00010
0000 1/2] |00 00 2]

ut)=(0 0 0 10 0 0 -1 0 o)(HZ(l)]

Hz(0)

wBi
SO
Ws,=[0 0 2 Y20 0 0 -Y2 1/2 0]

()
O_WB'Z(%(O]
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0) (1 0000 0 00O -1
0|01 000 -1 0 00 0 Hz
0/ |0 0100 0 0 0 -1|\Hz(0)
0) lo 0001 1 0-10

VV.B,Z

1/2 0 0O 0 1/4 1/2 0 0 0 -1/2
1/2 1/2 0 0 0 -1/2 1/2 0 0 0
B.2 0O 0 1/2 0 1/4 O 0 1/2 0 -1/2
0 1/2 0 1/2 1/2 0 ~-1/2 0 -1/2 1/2

12 0 0 0 1/4 1/2 0 0 0 -1/2
1/2 1/2 0 0 0 -1/2 1/2 0 0 0 |(f
0 0 1/2 0 1/4 0 0 1/2 0 -1/2 (ea]
0 1/2 0 1/2 1/2 0 -1/2 0 -1/2 1/2

Hz(1)
y(t):(2 0 2 0000O00O0 0)
Hz(0)
W
and
Wc:(101001010 0)
Hence

yt)=(1 01 00 1 0 10 o)(:aj
0

As K is invertible, then the system eq: 4.29 - 4.31 is well posed (According to the theorem

4.2.3). Hence The operator “ A’ corresponding to the homogenous p.d.e i-e u =0 generates a

C,-semigroup on X = L2([0,1];K").
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Chapter 5 Conclusion

In this thesis, we discussed the linear transport equation for different networks of flows. We
were focused on our main tasks as discussed in Chapter 1 . First we formulated the abstract
differential equation then we were interested to generate the contraction semigroup by using
the port-Hamiltonian system with the state space X = L*([0,1];C"). Although in the start of
research work we were strict to the network flow as discussed in Chapter 1, but later we have
chosen two networks of flows in this thesis vis-a-vis Figure 1 and Figure 2. The main reason to
add one more network of flow is that we were unable to reach the conclusion on the basis of

only one network flow.
We deduced the following results:

i.  For first network flow (see Figure 1); we cannot generate the contraction semigroup by
choosing ldentity matrix as Hamiltonian. We also concluded that there does not exist
any diagonal Hamiltonian matrix which generates contraction semigroup for this

network of flow. Hence classical solution for this network of flow doesn’t exists.

ii.  For second network flow (See Figure 2); we also could not construct contraction
semigroup by using Hamiltonian = Identity matrix. Thus there does not exist unique
solution. So we formulated the new diagonal constant valued Hamiltonian matrix,
which generates the contraction semigroup and hence classical solution for this

network exists.

Finally we concluded that we cannot generate the contraction semigroup by using

Hamiltonian = ldentity matrix with the inner product space
1 1
(f, 9y =2 [ TEHE) 9() dg
0

Hence we can say that Ais not infinitesimal generator of C_ - Semigroup with the state space

X = L2([0,1];C") for both networks of flows as discussed in Chapter 3.

In Chapter 4 , we were interested to find the classical solution for second network of flow (for
the first network classical solution doesn’t exists). For this, we have shown port-Hamiltonian
system as boundary control system. Next we studied the well-posedness of the boundary
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control system. At the end we came to the conclusion that the System is well-posed and ‘A’ is
infinitesimal generator of C, - Semigroup, and with the help of some theorems in Chapter 4
we showed that classical solution for this boundary control System exist.

As we formulated the diagonal Hamiltonian matrix for both network of flows, to obtain the
contraction semigroup. So we were not able to obtain the good balance equation. Hence it is

not possible to minimize the boundary control problem and to formulate the solution in matrix

equation.
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