
Relaxations of the 3-partition problem

Sebastiaan J.C. Joosten

Department of Applied Mathematics, University of Twente,

Enschede, The Netherlands

Institute for Computing and Information Sciences, Radboud

University Nijmegen, Nijmegen, The Netherland

December 21, 2011

Preface

In order to obtain a master’s degree, all I have to do is answer the last question
at my final presentation. Before I will be allowed to answer it, however, a
number of tasks have to be performed. One of them is writing this thesis.

In order to be able to write this thesis, I needed something to write about.
I have been in the fortunate position to be able to do research on a quite wide
variety of subjects. Most of this research was carried out at the computer science
department of the Radboud University Nijmegen. I was situated in the formal
methods group, a very inspiring environment.

A�liated with this group - and a reason I chose this group - is Hans Zantema.
Hans Zantema is a professor at Eindhoven University of Technology, and part
time so at Radboud University Nijmegen. As such, Hans Zantema was my
supervisor during the course of my master’s research.

Hans Zantema proved to be a great supervisor for me. Hans was able to
inspire me into investigating a great variety of problems. While discussing my
progress, Hans would find new angles, new questions or solutions. By gently
steering me in the right direction, Hans was a tremendous help to keep me
focused.

My supervisor at my own university, the University of Twente, was Walter
Kern. Walter has also been a great help in the research I did. Like Hans, Walter
was able to come up with creative angles to look at problems. An important
contribution of Walter was to introduce me to bin packing games. This turned
out to be a very fruitful research direction, which ultimately led to the main
part of this thesis.

For writing this thesis, I decided to make a selection of results obtained
during my research. In making this decision, I selected a central topic that could
serve as a backbone for related results. This central topic is the 3-partition
problem. In particular, the nearly-feasible instances, a type of infeasible 3-
partition problem for which a certain half-integral relaxation has a solution.
Before I started writing this thesis, I have written an article on this very topic [9].
I wrote this together with my supervisor Hans Zantema, and it is currently in
submission. For me, writing this article has been a great practice. In addition,
it allowed me to obtain some focus while doing this research.

There are, however, some major di↵erences between the article [9] and this
thesis. While the article is focused on the nearly-feasible instances only, this
thesis covers other subjects as well. In writing this thesis, I have tried to elab-
orate on most of the text of the article. Only on a few places is the text in this
thesis identical to the text in the article. In those places, I have copied only
text that was written by myself.

I hope you enjoy reading this thesis. May it inspire you to ask many ques-

1

tions. Should you be fortunate enough to have read this thesis before my final
presentation, do not hesitate to ask your question there.

2

Contents

1 Introduction 4

2 3-partition problem 6

2.1 Introduction and notations . 6
2.2 Solving 3PART . 8

2.2.1 NP-completeness . 8
2.2.2 Using solvers . 11

2.3 Bin packing problems . 12

3 Nearly-feasible instances for 3PART 15

3.1 Solution graphs . 17
3.2 Finding nearly-feasible instances using solution graphs 19

3.2.1 Instances that are not locally minimal 23
3.3 Smallest nearly-feasible instance 24

4 Variations on nearly-feasible instances 26

4.1 Di↵erent relaxations for 3PART 26
4.2 Nearly-feasible instances for di↵erent decision problems 29
4.3 Bin packing games . 30

5 Conclusion and discussion 33

A Implementation details 34

A.1 Obtaining connected cubic multigraphs 35
A.2 Filtering graphs . 35
A.3 Obtaining 3PART instances from graphs 36
A.4 Obtaining 3PART instances . 36
A.5 Obtaining a solution to 3PART 37
A.6 Drawing a nearly-feasible solution 38

Bibliography 39

Index 41

3

Chapter 1

Introduction

The 3-partition problem is a problem where one has to partition 3q numbers
(allowing duplicates) into q groups of 3, such that each group has the same sum.
If all 3q numbers sum to N , this means that every group should have a sum of
� = N/q. The 3-partition problem is a well known NP-complete problem.

One approach to the 3-partition problem, is to compute a set of candidate
sets C, which constitutes of those sets that have 3 numbers that sum to �. Let C

a

denote all candidate sets in which the number a occurs. The 3-partition problem
only has a solution if the following linear program1 has an integer solution:

X

C2Ca

y
C

= 1 for all numbers a

A solution to a linear program can be found in polynomial time, while the 3-
partition problem is NP-complete. So assuming P 6= NP , there should exist
instances of 3-partition such that the above linear program is feasible but has
no integer solution. In this thesis we will find such instances.

The outline of this thesis is as follows. In Chapter 2 we describe the 3-
partition problem, some of its variations, and prove that it is NP-complete.
We conclude the chapter, in Section 2.3, by describing the closely related bin-
packing games. In Chapter 3 we give instances for which the linear program
has y

C

2 {0, 1/2, 1}, but no integer solution. Such instances are called nearly-
feasible. We look at di↵erent relaxations in Chapter 4. This consists of instances
where y

C

2 {0, 1/3, 2/3, 1}, but also instances for some other problems. The
chapter concludes with some notes on the bin packing problem.

In order to understand a certain chapter, not all preceding sections need to
be read. The dependency graph of the di↵erent sections is given in Figure 1.1.
The graph is read as follows: An arrow from Section x to Section y means that
Section x needs to be understood before reading Section y. This means that
Section 2.3 needs to be read before Section 4.3, but Section 4.2 can be skipped.

1One might argue that a linear program should always have a linear function that is to be
minimized (or maximized). In this thesis, we are only interested in feasibility, so we omit this
function.

4

2.1

2.2.1 2.2.2

2.3

3

4.2

4.3

3.1 4.1

3.2

3.2.1 3.3

Figure 1.1: Dependencies between sections.

5

Chapter 2

3-partition problem

This chapter is a general introduction to the 3-partition problem. We begin in
Section 2.1 by describing the 3-partition problem and giving a few examples of
instances. Section 2.2 gives some background on how the 3-partition problem
can be solved. Section 2.3 is about bin-packing games.

2.1 Introduction and notations

A 3-partition problem instance consists of 3q numbers, that should be divided
into q groups of 3 all having the same sum. Take for example the following
problem instances:

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 11

• 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 200, 22

• 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20

For disambiguation, we write a 0 symbol do distinguish between equal numbers.
In these examples, only the first instance has a solution, namely {1, 7, 11},

{2, 8, 9}, {3, 6, 10}, {4, 5, 100}. Note that the sum of each group is 19, and every
number is used exactly once. All 12 numbers in the second instance sum to 156.
This means that they should be split into four groups with a sum of 39 each
(since 4 ⇥ 39 = 156). Since there are no odd numbers, this is not possible. In
the third case, the sum per group should be 30 (again: 4 ⇥ 30 = 120, which
is the total sum). The number 5 in it cannot be combined with two others in
such a way that it forms a group of sum 30 (the reader may verify this). We
introduce some definitions in order to make observations such as these in a more
systematic way.

The 3-partition problem is an example of a decision problem. A decision
problem is described by an instance, and a notion of feasibility. A decision
problem can be seen as a yes or no question, where “yes” means that the problem
is feasible, and “no” means it is not. In this thesis, we mean by feasible that
the problem has a solution.

Definition (Decision Problem). A decision problem is described by:

1. A set of problem instances D.

6

2. A set of feasible problem instances, Y ✓ D.

When describing a decision problem, we usually describe what a problem
instance (member of D) will look like, and give a criterion to decide whether
the instance is feasible (that is, whether it is in Y or not). As was the case with
3-partition, this criterion can usually be defined in terms of a predicate p:

Y = {i 2 D | 9s. p(s, i)}

In this case, we call s a solution to our problem, and p will be our verification
procedure. If p can be computed in polynomial time on a Turing machine, we
say that the problem is in the class NP .

We give two more definitions in order to define 3PART as a decision problem.

Definition (Power set). The set of all subsets of some set A is denoted by
P(A), and is called the power set of A. The set of all subsets of size k of some
set A is denoted by P

k

(A) = {S 2 P(A) | |S| = k}.

Definition (Partition). We say that M is a partition of some set S if:

• M is a collection of non-empty subsets of S: M ✓ P(S)

• such that no element occurs in two of these subsets: 8S1, S2 2 M. S1 =
S2 _ S1 \ S2 = ;.

• and every element occurs once:
S
M = S.

Definition (3-Partition problem). The 3-partition problem (3PART) is a de-
cision problem given by (A,w) having |A| = 3q and w : A ! N. The objective
is to find � 2 N and a M ✓ {S 2 P3(A) |

P
a2S

w(a) = �}, such that M is
a partition of A. The feasible problem instances are those instances for which
such M exists.

For giving an instance, we write w(a1), . . . , w(a3q) for a1, . . . , a3q 2 A. For
any set S, the notation w(S) will be used as an abbreviation for

P
a2S

w(a).
Since we know q and the total sum of all sets, we also know the sum per set.
We refer to this sum per set � = w(A)/q.

A set of three elements {a, a0, a00} ✓ A such that w(a) + w(a0) + w(a00) = �
is called a candidate set . The set of all candidate sets is denoted by C:

C = {S 2 P3(A) | w(S) = �} (2.1)

Note that |C| 
�
k

3

�
2 O(k3), so calculating C is polynomial.

A solution of 3-PART consists of a vector ~y 2 {0, 1}C such that:

X

C3e

~y
C

= 1 for all e 2 A,

~y 2 {0, 1}C .
(2.2)

Note that the formulation above is an integer linear program, for which general
solvers exist. We will come back to this in Section 2.2.2.

Once we have obtained this system of equations (2.2), we have easy argu-
ments to why the second and third example have no solution: For the second
instance, there are no candidate sets. Therefore all equations read 0 = 1, which

7

shows a contradiction. In the third instance, there are four candidate sets. The
equation about the element 5 reads 0 = 1.

The equations also help us to find a solution for our first instance. The reader
may verify that, by choosing ~y{2,7,100} = 1, the values of ~y are determined by the
equations and we obtain the solution {2, 7, 100}, {1, 8, 10}, {3, 5, 11}, {4, 6, 9}.

2.2 Solving 3PART

It might seem like 3PART is a rather artificial problem: there are not many
practical situations in which one has to divide 3q integers in q triples of equal
sum. Nevertheless, 3PART is an important problem in combinatorics because
it belongs to one of the many NP-complete problems. A proof of this is shown
in [6]. NP-completeness implies that there is a certain di�culty to solving the
problem. We will learn about this in Section 2.2.1. Nevertheless, NP-complete
problems can be solved. We will look at various ways we might do this, using
known algorithms, in Section 2.2.2.

2.2.1 NP-completeness

Definition (NP-complete). A decision problem is NP-complete if:

1. P is NP. This means that there is a Turing machine that, given a feasible
decision problem and a proof, will verify (if the proof is of the right form)
that the decision problem is feasible in polynomial time (with respect to
the problem size, not to the proof size).

2. For any problem P 0 in NP, there is a polynomial-time reduction from P 0

to P .

The first known NP-complete problem is the satisfiability problem.

Definition (SAT). An instance of the satisfiability problem (SAT) is stated as
a sentence using predicates p1, . . . , pn and the operators “or” _ and “negation”
¬. The feasible instances are those for which one can assign “true” T or “false”
F to each predicate such that the sentence holds.

That is: let the assigned predicates p1, . . . , pn reduce to whatever is assigned
to them, let T _ T , T _ F , F _ T and ¬F reduce to T , and let F _ F and ¬T
reduce to F . If the sentence reduces to T , we say that it holds.

It can be shown that the class NP consists of those problems that can be
reduced in polynomial time (with respect to the input size of the problem) to
a satisfiability problem. By reduced (or a reduction) to problem X, we mean
reformulated in such a way that X has a solution if and only if the original
problem does. This result is known as the Cook-Levin theorem, which was
independently proven by Thomas Cook [1] and Leonid Levin [14]. We do not
get into the technical details here. Trivially, the satisfiability problem can be
reduced to itself in polynomial time (by not changing anything), so it is in NP
itself. It is therefore called NP-complete.

To prove that any other problem is NP-complete, we can show that there is a
polynomial-time reduction from the satisfiability problem, and apply the Cook-
Levin theorem. There are many NP-complete problems, of which some 300 can

8

be found in [7]. This reference uses 3-PART as a “basic” NP-complete problem,
from which many other NP-completeness results are proven. It also contains
a proof of the NP-completeness of 3-PART. This is done via a reduction from
3-dimensional matching, via the 4-partition problem. We will give a modified,
slightly stronger version of this proof, which shows NP-completeness of the
numerical 3-dimensional matching.

Definition (NkDM). The Numerical k-dimensional matching (NkDM) con-
sists of k sets S1, . . . , Sk

containing q distinct elements each, a weight function
for each set: w

i

: S
i

! N, and a bound �. Candidate sets C are given by:

C = {{s1, . . . , sk} | (s1, . . . , sk) 2 S1⇥· · ·⇥S
k

, w1(s1) + · · ·+ w
k

(s
k

) = �}

The objective is to find a set M ✓ C such that M is a partition of S1 [. . .[S
k

.

Definition (3-dimensional matching). A 3-dimensional matching consists of a
set M ✓ X ⇥ Y ⇥Z having |X| = |Y | = |Z| such that X, Y and Z are disjoint.
It is solvable if there is an M 0 ✓ M such that |M 0| = |X| and

S
M 0 = X[Y [Z.

It was established by Karp [10] that the 3-dimensional matching problem is
NP-complete.

Theorem 1. N4DM is NP-complete

Proof. This proof is based on [7]. It is easy to see that N4DM is in NP. To show
it is NP-hard, we give a reduction from 3-dimensional matching.

Let X = {x1, . . . , xq

}, Y = {y1, . . . , yq} and Z = {z1, . . . , zq} be the sets in
some 3-dimensional matching problem given by M . Without loss of generality
(if not, we would have a polynomial-time argument why this instance is not
feasible), assume that

S
M = X [Y [Z.

We create a N4DM with sets S1, . . . , S4. For each (x
i

, y
j

, z
k

) 2 M , there is an
element in each of these sets (so |S

n

| = |M |). Let s1, . . . , s4 be the corresponding
elements, then the weights are:

w1(s1) =

(
2q3 + i · q2 once

i · q2 otherwise

w2(s2) =

(
j · q once

q3 + j · q otherwise

w3(s3) =

(
k once

q3 + k otherwise

w4(s4) = 2q3 � i · q2 � j · q � k

The bound � is 4q3. By “once”, we mean that for each i (j, k), there is exactly
one element s1 (s2, s3) that gets the corresponding value. Such elements are
called “actual” elements, the others are called “dummy” elements. Note that
every candidate set {s1, s2, s3, s4} contains either three actual elements, or three
dummy elements, and that all weights of s4 are di↵erent.

A solution of N4DM can be obtained from a 3-dimensional matching solu-
tion M 0 by taking the actual elements corresponding to (x

i

, y
j

, z
k

) 2 M 0, and
using the dummy elements for (x

i

, y
j

, z
k

) 62 M 0. Vice versa, a solution to a

9

N4DM yields one for the original 3-dimensional matching by taking those M
that correspond to an s4 that are linked to actual elements only. Therefore the
N4DM is NP-hard.

Theorem 2. N3DM is NP-complete

Proof. This proof is loosely based on [7]. It is easy to see that N3DM is in NP.
To show it is NP-hard, we give a reduction from N4DM.

Let S1, . . . , S4 with weight functions w1, . . . , w4 be the original N4DM in-
stance having target sum � and q = |S1|. We create a N3DM with the sets
T1, T2, T3 having q + q2 elements each, weights w0

1, w
0
2, w

0
3 and as bound 7�.

“Regular” elements correspond to the original elements in S1, . . . , S4. The
regular elements from S1 and S2 go in T1 and T2, respectively. The regular
elements from S3 and S4 go in T2 and T3. In addition:

• T1 contains “paring” elements P = S3 ⇥ S4. T1 = S1 [P

• T2 contains “filler” elements F , |F | = q2 � q in total. T2 = S2 [S3 [F

• T3 contains “co-parinig” elements P 0 = {co(p) | p 2 P} (one for every
pairing element). T3 = S4 [P 0

The reader should verify that |T1| = |T2| = |T3| = q2 + q. All weights in the
original problem are less than �, so we add � a couple of times to distinguish
elements of di↵erent types. This is done such that every candidate set {t1, t2, t3}
either contains:

• An element from S1, one from S2, and one co-pairing element

• An element from S3, one from S4, and one pairing element

• A filler element, a pairing and a co-pairing element corresponding to the
pairing element.

8s1 2 S1 w0
1(s1) = w1(s1)

8s2 2 S2 w0
2(s2) = w2(s2) + 4�

8s3 2 S3 w0
2(s3) = w3(s3) + 2�

8s4 2 S4 w0
3(s4) = w4(s4)

8s3 2 S3, s4 2 S4 w0
1({s3, s4}) = 7� � w0

2(s3)� w0
3(s4)

= 3� � w3(s3)� w4(s4)

8s3 2 S3, s4 2 S4 w0
3(co({s3, s4})) = 7� � w0

1({s3, s4})
= 4� + w3(s3) + w4(s4)

8f 2 F w0
2(f) = 0

If there exists a solution for N4DM, then for every selected candidate set
{s1, s2, s3, s4}, select {s1, s2, co(s3, s4)} and {(s3, s4), s3, s4}. The remaining
q2 � q pairing elements can be combined with co-pairing and filler elements:
{p, f, co(p)}.

If the N3DM has a solution, note that there are only q2 � q filler elements.
Hence - to match every pairing element - q of the used candidate sets are of the
form {p, s3, s4}, and - to match the co-pairing elements - another q are of the
form {s1, s2, p0}. We can combine these pairs such that w0

1(p) + w0
3(p

0) = 7b.
This yields the desired {s1, s2, s3, s4} as the solution to N4DM.

10

Theorem 3. 3PART is NP-complete

Proof. We give the straightforward reduction from N3DM. Our set of elements
A is simply the union of the sets in the N3DM (or A = S1 [S2 [S3). Weights
are changed such that the candidate sets remain the same. If � is the target
sum of the N3DM instance, and w

i

are the N3DM weight-functions, then let
the 3PART weight-function be w(a) = w

i

(a) + 3 · i · � for a 2 S
i

. The target
sum of the 3PART is 19 · �. Solutions of the 3PART instance are solutions of
the N3DM and vice-versa.

2.2.2 Using solvers

For solving 3PART directly, one can either use heuristics [2], or use methods
that are slower than O(nk) for any k. Calculating the candidate sets C as
in equation (2.1), we have transformed the problem into an exact set-cover
problem. There are e�cient implementations for solving set-cover problems, for
example the “Dancing Links” algorithm [12]. In this section, we look at how
a SAT-solver would solve the problem, and at how an ILP-solver would. Since
implementations of such solvers vary, we don’t give complete descriptions or
algorithms, but show an example run based on the 3PART problem given by
the weights:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 11

To get to (2.2), we define and number the candidate sets:
Number {a a0 a00}

1 1 7 11
2 1 8 10
3 1 8 10’
4 2 7 10
5 2 7 10’
6 2 8 9
7 3 5 11
8 3 6 10
9 3 6 10’
10 3 7 9
11 4 5 10
12 4 5 10’
13 4 6 9
14 4 7 8
15 5 6 8

According to this numbering, we are looking for a vector ~y 2 {0, 1}15. An
ILP solver would try to find a vector y for which (2.2) holds having ~y 2 [0, 1]15.
This can be done in polynomial time, but the resulting ~y might not be integer.

Take for example:

~y1 = ~y3 = ~y5 = ~y6 = ~y7 = ~y8 = ~y11 = ~y13 = 1/2

~y
i

= 0 all other i

To find an integer solution, the ILP-solver can try two things:

1. Try adding y1 = 1 as a constraint and solve again. If there is a solution,
and it is integer, we are done. If there is no solution, we have deduced

11

y1 = 0. If there is a solution, but it is not integer, do the same trick on the
next non-integer variable. This method is called branching. ILP solvers
have heuristics for selecting non-integer variables.

2. Add a constraint such as:

~y8 + ~y11 + ~y13  1

We know this constraint must hold since the three sets mutually share an
element. However, the constraint does not hold in the solution found, so
we add it and try to solve our problem again. If no more such constraints
can be added, and the problem is still feasible, then there are integer
solutions. This step is called adding a cutting plane, since the inequality
~y8 + ~y11 + ~y13  1 can be drawn as a hyperplane in the solution-space of
~y.

If we wish to solve our problem by a SAT-solver, we should use Boolean
variables instead of integer variables. We choose to formulate this as:

_

C3e

p
C

for all e 2 A,

¬p
C

_ ¬p
C

0 for all C,C 0 2 C for which C \ C 0 6= ;
(2.3)

Note that this formulation is at worst quadratic in |C|.1 A SAT-solver takes a
logical formula as its input. By taking the conjunction of (2.3), we obtain such
a logical formula in conjunctive normal form. The formula has a solution if and
only if the original 3PART instance is feasible.

Note that the formula is of a very specific normal form: it is the conjunction
of clauses with either only positive terms, or exactly two negative terms. Since
3PART is NP-complete, a SAT problem of this specific form is NP-complete as
well.

2.3 Bin packing problems

In the previous section, we have seen the 3-dimensional matching and numer-
ical 3-dimensional matching problems. In this section, we look at bin packing
problems. As in Section 2.2, we will denote w(S) =

P
a2S

w(a) for any set S.

Definition (Bin packing problem). A bin packing problem is described by a
set of elements A with weights w : A ! N, a number of bins q and a bin size �.
The candidate sets are those subsets of A which “fit in a bin”.

C = {S 2 P(A) | w(S)  �}

A solution to the bin packing problem consists of q such candidate sets M ✓ C,
such that M is a partition of A.

1There are linear-size (in terms of |C|) transformations to SAT as well. Such transformation
require us to use more variables and this would make it more complicated to see that the
transformation is sound.

12

It is common to look at the least number of bins needed for a bin packing
problem, and di↵erent algorithms to compute this have been developed [15,
16, 5, 8]. Our interest in the bin packing problem, however, originates from
cooperative game-theory.

In relation to the bin packing problem, Faigle and Kern [3] defined bin
packing games, and the ✏-core of a game. A cooperative game is defined by a
set of players, N , and a value function v : P(N) ! R such that v(;) = 0. The
✏-core of a game is the set of functions x : N ! R satisfying:

x(N)  v(N)

8S 2 P(N) x(S) � (1� ✏)v(S)

In a bin packing game the players are given by bins and elements. We give
a slightly modified version of the bin packing game in order to be more concise
on notations.

Definition (Bin packing game). Let B be a set of q bins of size � 2 N, and
A a set of elements of some size w : A ! N such that 0  a  � for a 2 A
Candidate sets are defined as:

C =

(
S 2 P(A) |

X

e2S

w(e)  �

)

A bin packing game is a game with players A [B and value function v:

v(S) = max

|S|X

j=1

w(I
j

)

where the maximum is taken over all collections of pairwise disjoint subsets
I1, . . . , I|S| 2 C.

Some research was done on whether the ✏-core of a bin packing game is
empty. In [4] it was shown that for ✏ > 0 the ✏-core is nonempty if � is large
enough (� � 48✏�5 for ✏�1 2 N). There are bin packing games with an empty
✏-core if ✏ < 1

7 [3]. In [13] it was shown that this value 1
7 cannot be increased

if all weights are > �/3. In [11] it is shown that for ✏ � 1/3� 1/108 = 35/108,
the ✏-core is nonempty.

If all weights are > �/3, then the number of items per bin is at most two.
In this case, the least ✏ such that the ✏-core is nonempty is known to be 1

7 .
Allowing three items per bin complicates things, and no exact bound for ✏ is
known. Even for the case where weights are strictly between 1/2 and 1/4, this
value is not known.

To compute the least ✏ such that the ✏-core of a game is nonempty, it su�ces
to compute v(N) and a solution to the following Linear Program (LP):

max
~x

X

S2C
w(S) · ~x

S

subject to
X

S3a

~x
S

for all a 2 A

X

S2C
~x
S

 q

0  ~x
S

 1 for all S 2 C

(2.4)

13

Let ~x⇤ be the solution to this LP, and v0 the corresponding value:

v0 =
X

S2C
w0(S) · ~x⇤

S

Then the ✏-core is nonempty if and only if ✏ � (v0 � v(N))/v0 [4]. Note that
another way to define v(N) for bin packing games is via the following (ILP):

max
~x

X

S2C
w(S) · ~x

S

subject to
X

S3a

~x
S

for all a 2 A

X

S2C
~x
S

 q

~x
S

2 {0, 1} for all S 2 C

(2.5)

If ~x⇤ is the solution of this ILP, then v(N) =
P

S2C w(S) · ~x⇤
S

. Note that there
is a strong similarity between this ILP and (2.2). This leads us to consider
di↵erent relaxations of (2.2).

14

Chapter 3

Nearly-feasible instances for
3PART

In this chapter, we focus on 3PART. Whenever we refer to instances or solutions,
we mean instances and solutions to 3PART. Let w : A ! N indicate the weights
of the elements A of the 3PART instance. We write w(S) =

P
a2S

w(a) for any
set S. The set C indicates the candidate sets for the 3PART instance, which are
defined as in (2.1), that is:

C = {S 2 P3(A) | w(S) = �} (3.1)

Analogous to the LP relaxation (2.4), we look at the LP relaxation of (2.2).

X

C3e

~y
C

= 1 for all e 2 A,

~y 2 [0, 1]C .

(3.2)

Whenever (3.2) has a solution, there exists a fractional solution to (3.2). This
means that for some integer M , ~y ·M is integer again. In order to distinguish
between these di↵erent solutions of (3.2), we can multiply the entire formulation
by this factor M . This yields (3.3).

X

C3e

~y
C

= M for all e 2 A,

~y 2 {0, . . . ,M}C .
(3.3)

If we demand that M = 1, we obtain the original formulation (2.2). Hence
3PART instances for which (3.3) has anM = 1 solution are precisely the feasible
3PART instances. If we demand M = 2, we obtain those instances for which
(3.2) has a half-integral solution. This includes the feasible problems, plus some
other problems. Those other problems are the instances called “nearly-feasible”
[9].

Definition (Nearly-feasible). A nearly-feasible 3PART instance (A,w) is a
3PART instance for which (3.3) has a solution for M = 2, but not for M = 1.

15

Feasible instances

Nearly-feasible instances

All instances

Figure 3.1: Instances and feasibility

As an example of a nearly-feasible 3PART instance, consider the following
weights:

0, 1, 2, 3, 4, 5, 10, 16, 19, 24, 25, 28, 29, 36, 37, 45, 46, 70, 82, 84, 85, 88, 100, 113

There are 17 feasible sets, and (3.3) has a solution with M = 2. We look at this
solution in table 3.1.

C = {a, a0, a00} ~y
C

0, 19, 100 1
0, 37, 82 1
1, 5, 113 1
1, 36, 82 1
2, 4, 113 1
2, 29, 88 1
3, 16, 100 1
3, 28, 88 1
3, 46, 70 0
4, 45, 70 1
5, 29, 85 1
10, 24, 85 1
10, 25, 84 1
16, 19, 84 1
24, 25, 70 1
28, 45, 46 1
36, 37, 46 1

Table 3.1: A solution for (3.3) where M = 2

It is not immediate that 3.3 does not have a solution with M = 1. We
will illustrate this by looking at cycles in a graph. The same technique can
be applied to all the graphs in Figure 3.5, but we only give one graph as an
example.

Assume 3.3 has, for our example, a solution for M = 1. This means there
are 8 candidate sets in C which together form a partition of A. We have drawn
16 candidate sets in Figure 3.2, with a line between candidate sets whenever
they share an element. Hence two candidate sets that share a line cannot occur

16

together in the partition of A. We have drawn all but one candidate set, so we
should be able to find 7 disjoint candidate sets in the figure. This means that
we should be able to find 7 independent vertices. We can partition all of the
candidate sets drawn in the figure into three cycles of length 3, and one cycle
of length 7. If we are to select independent vertices, we can select at most one
of the candidate sets from the cycles of length 3 (in total 3), and three from
the cycle of length 7 (another 3). Hence we are not able to find 7 independent
vertices in the graph, and 3.3 does not have a solution for M = 1.

10, 24, 85

10, 25, 84

24, 25, 70

1, 36, 82

36, 37, 46

1, 5, 113 5, 29, 85

2, 4, 113

16, 19, 840, 19, 100

0, 37, 82 3, 16, 100

2, 29, 88

4, 45, 70

3, 28, 88

28, 45, 46

Figure 3.2: Solution graph of the example

3.1 Solution graphs

We formalize the way we draw graphs like the one in Figure 3.2. This will
provide us with useful notions about nearly-feasible instances. Note that we
based the graph on the candidate sets having ~y

C

= 1 in an M = 2 solution of
(3.3). Such a graph is called the solution graph. In case there are two elements
shared between two candidate sets, we wish to draw this as two edges. For this
reason, we define the solution graph as a multigraph.

Definition (Multigraph). A multigraph (V,E) consists of a non-empty set of
vertices V , and a function E : P2(V) ! N indicating the number of edges
between two vertices.

Definition (Solution graph). Let ~y be a solution of 3.3 for M = 2. The solution
graph of ~y is a multigraph defined by

V = {C 2 C | ~y
C

= 1} , E({C,C 0}) = |C \ C 0| (3.4)

Note that V should be non-empty in order for the solution graph to be
properly defined. If ~y

C

2 {0, 2}, this will not be the case. However, ~y
C

2 {0, 2}
implies that (3.3) has a solution for M = 1 (dividing everything by 2). For
nearly-feasible instances, there is a solution ~y such that V is nonempty and the
solution graph is properly defined. For this reason, we restrict to such ~y’s, which
we shall call a nearly-feasible solution.

17

Definition (Nearly-feasible solution). Consider a nearly-feasible 3PART in-
stance, with ~y a solution of 3.3 having M = 2. Then ~y is called a nearly-feasible
solution.

We state some properties that hold for every solution graph of a nearly-
feasible solution.

Theorem 4. Let (V,E) be the solution graph of nearly-feasible solution ~y. Then
(V,E) is cubic, that is: 8C 2 V.

P
C

0 6=C

E({C,C 0}) = 3.

Proof. Let A be the elements of the original 3-PART instance.
By (3.3),

P
C3a

~y
C

= 2. For C 2 V we have ~y
C

= 1, so for every a 2 C
there is exactly one C 0 6= C having a 2 C 0 and ~y

C

= 1. So, for C 2 V :P
C

0 6=C

|C \ C 0| = |C| = 3. Hence 8C 2 V.
P

C

0 6=C

E({C,C 0}) = 3.

Theorem 5. Let C be the candidate sets of an infeasible 3PART instance (A,w)
with |A| = 3q. Any q � 1 candidate sets are not pairwise disjoint.

Proof. Assume there are q � 1 such disjoint candidate sets. The total number
of elements in the 3PART instance is 3q, so there are exactly three elements
a1, a2, a3 not in these q � 1 disjoint candidate sets. The weight of each of the
q� 1 disjoint candidate sets is � and the total weight of all 3q elements is � · q.
We conclude that w(a1) +w(a2) +w(a3) = �, so {a1, a2, a3} is a candidate set.
Define ~y0 by

~y0
C

=

(
1 C is one of the q � 1 disjoint candidate sets or C = {a1, a2, a3}
0 otherwise.

By construction ~y0 is a solution to (3.3) for M = 1, contradicting the assumption
that the instance is nearly-feasible.

Corollary 1. In a solution graph (V,E) corresponding to the solution of a
nearly-feasible instance (A,w) with |A| = 3q, there are no q � 1 pairwise inde-
pendent vertices in V .

Proof. Immediate by the definition of a solution graph.

In some cases, we can find a smaller nearly-feasible instance in a straightfor-
ward way by looking at the solution graph. In order to exclude such cases, we
wish to restrict ourselves to nearly-feasible instances that are smallest in some
sense.

Definition (Locally smallest). A nearly-feasible instance with |A| = 3q is lo-
cally smallest if for every nearly-feasible solution, its solution graph (V,E) has
these properties:

• (V,E) is connected

• |V | = 2q

The following theorem states that our notion of locally smallest makes sense:

Theorem 6. Any nearly-feasible instance with |A| = 3q and q minimal, is
locally smallest.

18

Proof. To see that (V,E) is connected, we use minimality of q. Assume (V,E)
is not connected. Let V 0 be any connected component. Note that A �

S
V 0

with the original weight-function is a 3-PART instance. It must have a solution
to (3.3), since we can take the original values in g. This instance has a smaller
q (since V 0 is non-empty), so it cannot be nearly-feasible. Therefore, A�

S
V 0

must have a solution to (2.2). Using the same argument,
S
V 0 must also have a

solution to (2.2). By combinding the two solutions, A must have a solution to
(2.2) too. contradicting that the original 3-PART instance is nearly-feasible. We
conclude that (V,E) is connected. Note that we come to the same contradiction
when we let V 0 = V if A ⇢

S
V . Hence we conclude A =

S
V .

Every candidate set contains three elements, so |V | · 3 =
P

C2V

|C|. As
we have seen in the proof of Theorem 4, every element occurs in exactly two
candidate sets: 3|V | = 2 |A|. By definition of a 3-PART instance, |A| = 3q.
Hence |V | = 2q.

Since (V,E) is connected and |V | = 2q, the instance is locally smallest.

The solution graph drawn in Figure 3.2 is the unique solution graph for
our example instance. This means that the instance in our example is locally
smallest. If we would have added three elements with weights 0, 0, 119 to our
example, Figure 3.2 would still correspond to a solution graph, but the instance
would not be locally smallest.

3.2 Finding nearly-feasible instances using solu-
tion graphs

In the previous section, we have seen how we can create solution graphs from
nearly-feasible instances. In this section, we will try to create nearly-feasible
instances from solution graphs. Our aim in this, is to find a smallest nearly-
feasible instance, in terms of q. To do so, we find multigraphs that could be
solution graphs of locally smallest nearly-feasible instances. For this reason, we
look at connected cubic multigraphs.

The number of connected cubic multigraphs on 2n points is, up to isomor-
phism, 1, 2, 6, 20, 91, 509, 3608, 31856 for n = 1, 2, 3, 4, 5, 6, 7, 8[18]. To generate
these multigraphs, we can use the “genbg” package from the “nauty” program
[17]. After generating the multigraphs, we check the number of independent
points it has based on Corollary 1.

Every connected cubic multigraph on 2q points has an independent set of size
q � 1 for q  5. There are, up to isomorphism, 14 connected cubic multigraphs
on 12 points with no independent set of size 5. These graphs are drawn in
Figure 3.3. Generating these graphs takes less than a second. Details on how
we obtained these graphs are given in Appendix A.2.

The next question we ask ourselves is: which of these multigraphs is a solu-
tion graph. A locally smallest nearly-feasible instance to which either of these
graphs is a solution graph, will be a nearly-feasible instance for which q is min-
imal. This follows from the fact that there are no smaller solution graphs.

To ensure that a multigraph is the solution graph of some nearly-feasible
instance A with weights w, we need that the instance has a candidate set for
each vertex. Also, whenever two candidate sets are joined by one or two edges,
there have to be one or two elements they have in common. In other words,

19

Figure 3.3: All connected cubic multigraphs on 12 points with no independent
set of size 5.

we obtain our nearly-feasible instance by taking an element for each edge, and
requiring that the candidate sets to which they are incident contain them, and
have the correct total sum. The principle is illustrated in Figure 3.4.

h,i,j

h

h

i

i

j

j

Figure 3.4: The candidate set requires that h+ i+ j = �

Since there are 12 points in each of the multigraphs in Figure 3.3, this
amounts to 12 linear constraint of the type h+ i+ j = �. For our convenience,
we allow the weights to be fractions, and let � = 1. Once we have found
fractional weights that satisfy this, we can multiply by the denominators to get
integer weights. This gives us a system with 18 variables and 12 equalities. One
particular solution to this system would be to choose w(a) = 1

3 for all elements.
It is not di�cult to see that this yields a feasible 3PART instance (so it is not
nearly-feasible). In order to prevent this from happening, we demand that for
all edges h, i, j that do not meet in a single vertex, h + i + j 6= �. Note that
this amounts to

�18
3

�
� 12 = 804 inequalities on the 18 variables. We obtain the

following constraints:

w(a) + w(a0) + w(a00) = 1 For edges a, a0, a00 to which a vertex is incident

w(a) + w(a0) + w(a00) 6= 1 For edges a, a0, a00 to which no vertex is incident

To solve this problem, we have used the SMT-solver “Yices”, which has the
advantage of giving fractional solutions. Details about this are found in ap-
pendix A.3. There were solutions for all 14 cubic multigraphs, namely the ones
shown in Figure 3.5. We have drawn them as solution-graphs, indicating ele-
ments by their weights with a 0 added to distinguish between di↵erent elements
with equal weights.

20

76, 31, 0

76, 16, 15

31, 57, 19

0, 15, 92

16, 21, 70

67, 19, 2157, 8, 42

8, 92, 7

30, 70, 7

26, 67, 14

26, 30, 51

14, 51, 42

14, 50, 0

14, 25, 25’

50, 13, 10, 13, 51

25, 3, 36 25’, 3, 36

1, 8, 555, 51, 8

30, 4, 30’

30, 32, 2

4, 5, 55

30’, 32, 2

19, 30, 2919, 59, 0

30, 4, 44

29, 44, 559, 5, 14

0, 14, 64

4, 6, 686, 8, 64

38, 2, 38’

38, 7, 33

2, 8, 68

38’, 7, 33

17, 14, 81

17, 88, 7

14, 12, 86

81, 7, 24

88, 0, 24

12, 39, 61

86, 0, 26

54, 4, 54’

54, 3, 55

4, 47, 61

54’, 3, 55

47, 39, 26

17, 25, 24 25, 7, 34

24, 8, 34

0, 14, 52 6, 14, 46

6, 52, 8

46, 13, 717, 49, 0 49, 4, 13

4, 31, 31’

31, 30, 530, 5, 31’

11, 10, 51

11, 56, 5

10, 8, 54

51, 5, 16

56, 16, 0

4, 14, 54

8, 32, 32’

41, 31, 0

27, 4, 41 27, 14, 31

32, 1, 39 1, 39, 32’

21

96, 30, 0

96, 17, 13

30, 70, 26

0, 84, 42

17, 91, 18

13, 22, 91

70, 19, 37

26, 63, 37

20, 84, 22

20, 42, 64

64, 18, 44

19, 44, 63

51, 4, 34

51, 0, 384, 17, 68

34, 38, 17

0, 20, 691, 68, 20

12, 69, 8

76, 7, 6

76, 1, 12

7, 40, 42

6, 41, 42

40, 8, 41

37, 18, 57 37, 75, 0

18, 60, 34

57, 34, 21 75, 21, 16

0, 96, 16

60, 25, 27 9, 96, 7

9, 40, 63

7, 40, 65

63, 22, 27

25, 65, 22

14, 49, 65 0, 49, 7914, 42, 72

21, 42, 65 21, 28, 79

0, 28, 100

20, 36, 72 20, 8, 100

32, 8, 88

32, 22, 74

18, 22, 88

18, 36, 74

47, 17, 47’

47, 15, 49 47’, 15, 49

17, 18, 76

35, 0, 7618, 0, 93

4, 98, 9 4, 98, 9’

9, 9’, 93 38, 35, 38’

38, 57, 16 38’, 57, 16

90, 26, 0

90, 14, 12

26, 54, 36

0, 80, 36

14, 39, 63

12, 65, 39

54, 28, 34

20, 80, 16

63, 19, 34

20, 65, 31

16, 31, 69

28, 69, 19

37, 25, 60

37, 73, 12

25, 73, 2460, 12, 50

24, 0, 98

71, 1, 50

21, 0, 101 21, 98, 3

101, 3, 18

17, 87, 18

71, 17, 34

1, 87, 34

13, 10, 68

13, 73, 5

10, 9, 72

68, 5, 18

73, 18, 0

19, 72, 0

9, 41, 41’36, 19, 36’

36, 2, 53 36’, 2, 53 41, 47, 347, 3, 41’

Figure 3.5: 14 nearly feasible instances

22

3.2.1 Instances that are not locally minimal

The requirement that w(a) + w(a0) + w(a00) 6= 1 for edges a, a0, a00 to which no
vertex is incident might seem very strong. One might wonder whether solution-
graphs exist for which no such instance can be found. This chapter will show
that such graphs exist.

a, b, c

h, a, d i, b, e j, c, f

d, e, f

h

h

i

i

j

j

Figure 3.6: The structure of this graph requires that h+ i+ j = �

Take a look at Figure 3.6. It contains a solution graph with five candi-
date sets: {a, b, c}, {d, e, f}, {a, d, h}, {b, e, i}, {c, f, h}. Note that w({a, b, c}) =
w({d, e, f}) = � by the first two candidate sets. Summing the other three can-
didate sets yields that weights of all elements (including h, i and j) should sum
to 3�. Hence w({h, i, j}) = � and {h, i, j} forms a candidate set which is not in
the graph.

To find an example that has this graph as a solution graph, we remove this
one requirement. One such example is:

0, 3, 14, 15, 17, 18, 19, 21, 24, 27, 28, 31, 56, 71, 74, 75, 77, 79, 83, 84, 112, 132, 133, 143

Two corresponding solution graphs are shown in Figure 3.7. Note that only

14, 21, 132

14, 74, 79 17, 18, 132

17, 71, 79 18, 74, 75

19, 71, 77

15, 75, 7715, 19, 133

0, 24, 143

0, 83, 84

3, 21, 143

24, 31, 112

27, 56, 84

28, 56, 83

3, 31, 133

27, 28, 112

71,75,21

19, 71, 77

15, 75, 77

15, 19, 133

0, 24, 143

0, 83, 84

3, 21, 143

24, 31, 112

27, 56, 84

28, 56, 83

3, 31, 133

27, 28, 112

Figure 3.7: The structure of this graph requires that h+ i+ j = �

the first contains the structure of Figure 3.6. The latter shows that the instance
is not locally minimal, since |V | = 2q does not hold. This property is true
in general: any graph containing the structure of Figure 3.6, does not corre-
spond to the solution graph of a locally minimal nearly-feasible instance. To see

23

this, assume 3.6 is part of the solution graph of some locally minimal nearly-
feasible solution. Take the sets {a, b, c} and {d, e, f} twice, {h, i, j} once, and
{a, d, h}, {b, e, i}, {c, f, h} zero times. Leave the rest of the solution as it was,
and one may check that this yields a solution to which the solution graph has
fewer vertices.

3.3 Smallest nearly-feasible instance

From the previous section, we have learned the least q for which there is a nearly-
feasible instance, namely q = 6. In this section, we will use brute-force search to
find nearly-feasible instances having q = 6 in order to find the smallest nearly-
feasible instance. By “smallest”, we mean that its highest weight is minimal
among all nearly-feasible instances with q = 6. In this section, we give an
instance with weights  10 and q = 6. In order to prove that it is the smallest,
we have found all instances with q = 6 and weights  10.

Testing whether the instance has a solution to (3.3) for M = 1 and M = 2
is slow, however. Therefore, we have used the following observations to reduce
running-time to eight hours on a 1.6GHz netbook.

1. Every permutation of an instance is also an instance, and adding a con-
stant to all weights of an instance will also yield an instance. Therefore, we
only generate instances where the weights form a non-decreasing sequence
starting at 0.

2. The sum of all weights must be a multiple of 6, since � is integer.

3. If m is the highest weight in an instance in which the sum per set is �,
replacing weight w(i) with m � w(i) for all elements i creates another
instance in which the sum per set is 3m� �. Therefore, we only generate
instances where �  3

2m.

4. In a nearly-feasible instance of 18 elements, every element occurs in at least
2 candidate sets. Therefore, we only proceed with problems for which this
holds.

Using these conditions, 701827 instances remain to be checked. To determine
whether (3.3) has a solution, we use simplex to find an answer to (3.3). If (3.3)
does not have a solution, or the solution returned had M = 1, then the instance
was not nearly-feasible. If the solution returned was a M = 2 solution and there
is a candidate set ~y

A

= M , the instance is not nearly-feasible. In all other cases,
we check whether there are no k � 1 disjoint candidate sets to ensure that the
instance is not feasible. The remaining instances all turned out to be nearly-
feasible instances (so they had a solution in which M = 2). These instances
were:

• 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5, 8, 8, 10, 10

• 0, 0, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 6, 6, 9, 10, 10

• 0, 0, 1, 1, 2, 2, 2, 2, 4, 4, 4, 5, 5, 5, 8, 8, 9, 10

• 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 4, 5, 5, 5, 8, 10, 10

• 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 6, 6, 6, 6, 10, 10

24

• 0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 10, 10

• 0, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 5, 5, 5, 8, 9, 10

There are more instances than these seven. We mentioned previously that
every permutation of an instance is also an instance. Apart from this, we
can also apply the trick mentioned as item 3. This yields the following seven
instances:

• 0, 0, 2, 2, 5, 5, 5, 6, 6, 6, 8, 8, 8, 9, 9, 9, 10, 10

• 0, 0, 1, 4, 4, 6, 6, 6, 6, 6, 7, 7, 8, 9, 9, 9, 10, 10

• 0, 1, 2, 2, 5, 5, 5, 6, 6, 6, 8, 8, 8, 8, 9, 9, 10, 10

• 0, 0, 2, 5, 5, 5, 6, 6, 6, 6, 6, 8, 8, 8, 9, 9, 9, 10

• 0, 0, 4, 4, 4, 4, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10

• 0, 0, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10

• 0, 1, 2, 5, 5, 5, 6, 6, 6, 6, 6, 8, 8, 8, 8, 9, 9, 10

In particular, we proved:

Theorem 7. Every nearly-feasible instance with q  6, has an element with
weight 10 or higher.

By our examples, this theorem is tight.

25

Chapter 4

Variations on
nearly-feasible instances

In this chapter, we give variations on nearly-feasible instances. Section 4.1 looks
at variations on the way nearly-feasible is defined with respect to (3.3). Sec-
tion 4.2 extends the notion “nearly-feasible” to di↵erent NP-complete problems.
Section 4.3 looks at bin-packing games.

4.1 Di↵erent relaxations for 3PART

So far, we have focused on nearly-feasible instances. That is, instances where
there exist solutions to (3.3) for M = 2, but not for M = 1. Note that if (3.3)
has a solution with some M , then multiplying the corresponding solution ~y with
some constant n yields a solution (~y · n,M · n). As variation on the theme of
nearly-feasible instance, we will look at instances of 3PART where a solution
with M = 3 exists, but not with M = 1. We stumbled on one such instance
while looking for nearly-feasible instances:

0, 00, 000, 1, 10, 2, 3, 30, 4, 40, 400, 4000, 40000, 6, 60, 9, 10, 11

0, 1, 110, 1’, 11

1, 1’, 10

0’, 2, 10

0’, 3’, 9

2, 4’’’’, 6’

0’’, 3, 9

3, 3’, 6

0’’, 6, 6’

4’’, 4’’’, 4’’’’

4, 4’, 4’’ 4, 4’, 4’’’

Figure 4.1: A nearly feasible instance that has solutions with M = 3

This instance has a solution with M = 2 and with M = 3. Taking linear
combinations of these solutions yields a solution for every M > 1. Figure 4.1

26

shows that the instance is nearly-feasible. A solution with M = 3 is shown in
table 4.1. Note that the corresponding solution has two components: we have
suggestively placed a line in table 4.1 separating the elements with weight 4 from
the others. However, neither of the components yields an instance to 3PART
(there is no integer q to get |A| = 3q).

C = {a, a0, a00} y
C

0 11 1 2
0 11 1’ 1
00 2 10 2
00 6 60 1
000 3 9 1
000 30 60 1
000 6 60 1
1 10 10 1
10 2 9 1
3 30 6 1
3 30 60 1
4 40 400 1
4 40 4000 1
4 40 40000 1

400 4000 40000 2

Table 4.1: A solution for (3.3) where M = 3

Another variation would be to look at instances with a M = 3 solution, but
no M = 2 solution (implying that there is no M = 1 solution either). The
previous instance allows us to construct such an instance: we know that the
13 numbers 0, 00, 000, 1, 10, 2, 3, 30, 6, 60, 9, 10, 11 can yield an M = 3 solution. It
is also evident that there is no M = 2 solution, since 13 6= q · 3. To create
our instance, we repeat and scale these 13 numbers three times, such that no
candidate sets are formed between partitions. We make use of the following
theorem:

Theorem 8. Let A and A0 be (disjoint) sets and let w and w0 be corresponding
weight functions. Let C and C0 be the corresponding candidate sets according
to (3.1), with � and �0 as sum per set respectively. In addition, we require
w0(a0) 6= �0/3 for all a0 2 A0 and w(a) 6= �/3 for all a 2 A. Let A00 = A [A0

and w00 be defined:

w00(i) =

(
3w(i) + 3� · �0 i 2 A

9� · w0(i) + � i 2 A0

Then the candidate sets C00 of A00, w00 are exactly C00 = C [C0 with �00 = 9�0 ·
� + 3� as sum per set.

Proof. C [C0 ✓ C00 is immediate from the observation that the sum per set in
A00, w00 is �00 = 9�0 · � + 3�.

To show C00 ✓ C [C0, assume not: C 2 C00 contains elements from both A
and A0. We distinguish two cases: C either contains one or two elements from
A.

27

In the first case, C contains one element a 2 A, and two a01, a
0
2 2 A0. The

two elements have original weights w0({a01, a02}) = n 2 N, so w00({a01, a02}) =
9n · � + 2�. Using that all sets should sum to �00, and the definition of w00:

w00(a) = �00 � w00({a01, a02}) = 9�0 · � � 9n · � + �

w00(a) = 3w(a) + 3� · �0

Solving for w(a):

w(a) =
6�0 � 9n+ 1

3
· � (4.1)

Using 0  w(a)  � we get 0  6�0 � 9n+1  3. This means 2�0 � 2/3  3n 
2�0+1/3. Since n is integer, n = 2�0/3. Filling in n into 4.1 yields w(a) = 1

3 ·�,
a contradiction.

In the second case, C contains one element a0 2 A0 and two a1, a2 2 A.
Using that 0  w(a1)  � and 0  w(a2)  � we get:

6� · �0  w00({a1, a2})  6� · �0 + 6�

Again using that all sets should sum to �00:

3�0 · �  w00(a0)  3�0 · � + 3�

By definition w00(a0) = 9� ·w0(a0)+� for some integer w0(a0). Solving for w0(a0)
yields w0(a0) = �0/3, a contradiction.

Since both cases yield a contradiction, we conclude C00 = C [C0.

Trying to find smaller examples, we have looked for sets with |A| not a
factor of 3, while requiring that the candidate sets C yield a solution to 3.3.
This implies that the corresponding M is a multiple of 3. In order to be able
to apply Theorem 8, we require w(a) 6= �/3. Two of the smallest sets we found
were:

• A set of 10 elements: 0, 1, 1, 2, 2, 4, 4, 4, 5, 7

• A set of 11 elements: 0, 0, 1, 1, 2, 2, 4, 4, 5, 7, 7

Together, applying Theorem 8, this yields an instance with 10+11 = 21 elements
with no M = 1 or M = 2 solution, but with an M = 3 solution.

In an attempt to find even smaller instances, we in addition required that
w(a) + w(a0) 6= 2�/3 for all a, a0 2 A. We found:

• 13 elements: 0, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 13, 13

• 14 elements: 0, 0, 1, 1, 2, 2, 4, 4, 7, 7, 7, 11, 11, 13

By our requirement, we can add elements with weight �/3 to these instances
without making them feasible. This yields an instance of 18 elements which has
an M = 3 solution, but no M = 2 solution:

5, 5, 5, 5, 5, 0, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 13, 13

Note that we do not know whether the instance with these properties is
smallest in terms of � or weights.

28

1, 2 2, 3

1, 3

Figure 4.2: A nearly-feasible solution for set cover

1, 3, 5 2, 3, 6

2, 4, 5

1, 4, 6

Figure 4.3: A nearly-feasible solution for Exact cover by 3-sets

4.2 Nearly-feasible instances for di↵erent deci-
sion problems

In Section 2.2.1 we have seen various decision problems. In this section, we
take another look at some of them and give a nearly-feasible instance with the
least number of elements. For all these problems, C is defined in some way - a
variation of (2.1) or (3.1) - and the instance is called nearly-feasible if:

X

C3e

~y
C

= M for all e 2 A,

~y 2 {0, . . . ,M}C .

has a solution for M = 2, while for M = 1 there is no such ~y. Note that this
general definition is identical to our definition in the case of 3PART. We will
also give solution-graphs according to our previous definition.

Set-cover

A set cover problem over elements A is directly defined by candidate sets: C ✓
P(A). The smallest instance contains 3 elements, 1, 2, 3, with:

C = {{1, 2}, {2, 3}, {1, 3}}

Exact cover by 3-sets

The problem is the same as in the previous case, but this time we demand
that for every C 2 C we have |C| = 3. With the 6 elements: 1, 2, 3, 4, 5, 6 and
C = {{1, 3, 5}, {2, 3, 6}, {2, 4, 5}, {1, 4, 6}} we obtain a nearly-feasible instance.

3-dimensional matching

This time we have three sets: X,Y, Z. We require X,Y, Z to be disjoint and the
items to be coverd are A = X [Y [Z. This case, C is restricted to sets with

29

14, 49, 65 0, 49, 7914, 42, 72

21, 42, 65 21, 28, 79

0, 28, 100

20, 36, 72 20, 8, 100

32, 8, 88

32, 22, 74

18, 22, 88

18, 36, 74

Figure 4.4: A nearly-feasible solution for the Numerical 3-dimensional matching

exactly one element from X,Y and Z:

C ✓ {{s1, s2, s3} | (s1, s2, s3) 2 S1⇥S2⇥S3}

Our previous example provides us with a 3-dimensional matching: X = {1, 2},
Y = {3, 4}, Z = {5, 6} and C = {(1, 3, 5), (2, 3, 6), (2, 4, 5), (1, 4, 6)}.

Numerical 3-dimensional matching

Recall the definition of Numerical 3-dimensional matching:

Definition (N3DM). The Numerical 3-dimensional matching (N3DM) consists
of 3 sets S1, S2, S3 containing q distinct elements each, a weight function for
each set: w

i

: S
i

! N, and a bound �. Candidate sets C are given by:

C = {{s1, s2, s3} | (s1, s2, s3) 2 S1⇥S2⇥S3, w1(s1) + w2(s2) + w3(s3) = �}

The objective is to find a set M ✓ C such that M is a partition of S1 [S2 [S3.

All observations on 3PART hold for the Numerical 3-dimensional matching
problem, so we cannot hope to find an instance in which q < 6. Indeed, some of
the graphs in Figure 3.5 (namely all 3-colorable ones) provide us with nearly-
feasible instances for the Numerical 3-dimensional matching. For example, these
weights yield a nearly-feasible solution (Figure 4.4):

w1 : 0, 14, 18, 20, 21, 32

w2 : 8, 22, 28, 36, 42, 49

w3 : 65, 72, 74, 79, 88, 100

4.3 Bin packing games

We wish to apply some of the results we found on nearly-feasible instances to bin
packing games. We addressed the question whether the ✏-core is non-empty in
Section 2.3. Recall that we can answer this question by calculating the optimal
value for (2.4) and (2.5). For bin packing games in which all weights are > �/3,
there is a game with an empty ✏-core if and only if ✏ < 1

7 . Looking at games
with weights > �/3 implies that at most two items can be packed per bin. In

30

relation to 3PART, we look at weights in (�/4,�/2), which implies that at most
three items can be packed per bin.

Take a nearly-feasible 3PART problem given by 3q elements A and weights
w : A ! N, with bound �. There is a corresponding bin packing problem with
elements A, weights w0(a) = w(a) + M , q bins and bound � + 3M . If M is
su�ciently large, then at most three elements fit in each bin. There is a vector
~x⇤ (which is an optimal solution to (2.4)) such that every element gets packed:

X

S2C
w0(S) · ~x⇤

S

= w0(A)

This follows from taking the nearly-feasible solution. We also know that, since
the 3PART instance was not feasible, there is some element that does not get
packed in an optimal solution to (2.5). Suppose a0 is one such element, then
v(N)  w0(A)� w0(a).

The ✏-core is nonempty if and only if ✏ � (w0(A) � v(N))/w0(A). Suppose
the ✏-core is nonempty, then:

✏ � w0(A)� v(N)

w0(A)

� w0(A)� w0(A) + w0(a)

w0(A)
=

w0(a)

(� + 3M) · q

� M

(� + 3M) · q

If we take the limit of M ! 1, we see that the ✏-core is nonempty for ✏ < 1
3q .

Taking a smallest nearly-feasible instance yields that for ✏  1/18 there is a
game with an empty core. This proves that for ✏ < 1/18, there are games with
an empty ✏-core with all weights in (�/4,�/2).

We can do better than 1/18 by looking at elements and weights that do not
form a 3PART instance. Let B be a set of 3 bins of size � = 9 + 3M , and A a
set of 10 elements of respective size:

M, 1 +M, 1 +M, 2 +M, 2 +M, 4 +M, 4 +M, 4 +M, 5 +M, 7 +M

These are 10 elements taken from Section 4.1. We will use Theorem 8 to prove
that it is not possible to fill 3 bins with 9 out of 10 elements.

Proof. Observe that no element of A has weight �/3. We create a new 3PART
instance A0, w0 by taking disjunctive sets A1, A2, A3. Note that |A1| + |A2| +
|A3| = 30, hence we have a 3PART instance. The weights are chosen such that,
by Theorem 8, for each candidate set C: 9i. C ⇢ A

i

. From this, it follows that
there is no solution to the 3PART instance. By Theorem 5, we cannot even pick
9 disjoint candidate sets. This means that for some i, we cannot pick 3 disjoint
candidate sets of A

i

. Hence, we cannot pick 3 disjoint candidate sets of A.

We could, of course, have proven that it is impossible to fill 3 bins with 9
out of 10 elements by hand. This proof, however, is more general: it does not
matter what the weights of our 10 elements were, as long as no element has
weight �/3.

31

Chapter 5

Conclusion and discussion

When a decision problem is NP-hard, we have little hope of finding an e�cient
(polynomial-time) algorithm for it. Looking at a related decision problem in-
stead, such as the LP relaxation of an ILP, might solve the original problem in
some cases. A question that arises is: when does the relaxation fail to solve the
original problem.

In this research, we attempted to find examples of problem instances that
are infeasible, while the relaxation has a solution. In order to do so, we have
looked at the abstract structure of such instances, and used di↵erent types of
computer support to find the corresponding instances.

In this research, we have looked at di↵erent relaxations of 3PART. There
has been a focus on nearly-feasible instances, which are shown to exist. In
particular, the underlying structure was that of a cubic multigraph. In order to
find nearly-feasible instances, we have used graph-generation tools and SMT-
solvers.

One such nearly-feasible instance is given by the following weights:

0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5, 8, 8, 10, 10

We know that this instance is the smallest in terms of number of items. Out of
all instances with 18 items, the largest weight in it is smallest in this instance.
This is the main result of [9].

Apart from looking for nearly-feasible instances, we have found examples
for di↵erent variations. We have extended the notion of “nearly-feasible” to
the set-cover, set-cover by 3-sets, 3-dimensional matching, and numerical 3-
dimensional matching problem. For those problems, we were able to find the
smallest nearly-feasible instance in terms of number of items.

We have also looked at di↵erent relaxations of 3PART. For those, we do
not know whether we have found a smallest instance. However, one of these
relaxations provided us with a result to bin packing games.

One of the reasons we started our investigation of 3PART, is that it arose
as a question in bin packing games. We have seen that for ✏ < 1/9, there is
a bin packing game with an empty ✏-core with all weights in (�/4,�/2). The
corresponding bin packing game has 10 elements. This game corresponded to a
variation of 3PART.

33

Appendix A

Implementation details

This chapter is about everything that has to do with computers. It is included
to ensure that all results in this thesis are reproducible. This chapter assumes
the reader to have some experience in Haskell. Not all code is included in this
report. Should you be interested in running the code on your machine, please
contact me at sjcjoosten@gmail.com and I will send the required sources.







 






















Figure A.1: Combining computer programs, and the sections describing them.

An overview of all code is shown in Figure A.1. Connected cubic multi-
graphs are generated with the “genbg” package from the “nauty” program. An
alternative way to get connected cubic multigraphs, is by using a c++ program
written by Twan van Laarhoven. Both ways are described in Section A.1. The
resulting graphs can be filtered: we throw away graphs having q � 1 disjunct
points. After this step we are left with the graphs shown in Figure 3.3. The
next step is finding the actual instance. This involves calling an SMT-solver.
The call to the SMT-solver is described in Section A.3.

We can also generate 3PART instances without using a graph-structure.
This is described in Section A.4. Being given an instance, we are be able to
test whether it is nearly-feasible. The test whether it is feasible (it should not
be), is described in Section A.5. Finding a solution to (3.3), and drawing it as
a graph, is described in Section A.6.

34

A.1 Obtaining connected cubic multigraphs

Instructions for installing the “nauty” program can be found on the nauty page:
http://cs.anu.edu.au/ bdm/nauty/. The program we use is called “genbg”,
which is a program for generating bipartite graphs. We generate a graph with
3q vertices in one partition, which will represent the edges of our multigraph.
The 2q vertices in the other partition will represent the vertices. Since we are
looking for cubic multigraphs, we require that all vertices in the second partition
have degree 3. Since an edge is given by 2 vertices, we require that all vertices
in the first partition have degree 2. Finally, we require that the entire graph is
connected. The call to “genbg” now looks like this:

genbg -c -D2:3 -d2:3 18 12 -a

The switch -c requires connectedness, -D2:3 -d2:3 is to set the degrees, 18
12 is to set the number of vertices. In order to get readable output, we use the
switch -a. The output is a list of graphs, separated by newlines, of which the
first one is represented as:

123,124,567,568,9AB,CDE,FGH,9AI,3CD,7BF,4GH,8EI.

We interpret this as a multigraph as follows. All 2q vertices are listed, separated
by a comma. A vertex is represented by the edges to which it is connected, which
are labelled by single characters.

An alternative way to get connected cubic multigraphs, is by using a c++
program written by Twan van Laarhoven. I have modified the code slightly in
order to have it produce the same output format as “genbg”. The code of Twan
has the advantage of being slightly faster, and produces larger graphs as output
(“genbg” has built-in limits). It is 300 lines (7 pages) of code, and is available
on request.

A.2 Filtering graphs

To filter graphs, the graph is read, parsed, and we check whether there are q�1
independent vertices. To check whether there are q � 1 independent vertices,
we generate all sets of q � 1 independent vertices. As in the previous section,
a vertex is represented by a set of edges to which it is connected. All sets of
i independent vertices are given by allSets i. We use the auxiliary function
unforbidden to determine which vertices are independent of a given set. The
code is as follows:

import Data . List . Ordered (nubSort)

hasDist : : [[Char]] � > [[[Char]]]
hasDist inp = a l l S e t s (q � 1)
where

q = div (length $ (nubSort . concat) inp) 3
a l l S e t s 0 = [[]]
a l l S e t s i = [u : r | r<�a l l S e t s (i �1) , u<�unforbidden r]
unforbidden r = [a | a<�inp

, null r | | a < head r

35

, and $ map (no I s e c t a) r]
no I s e c t as bs = null [a | a<�as , a ‘elem ‘ bs]

A.3 Obtaining 3PART instances from graphs

As mentioned earlier, we create a SMT instance where three variables sum to 1
if and only if they represent edges that share a vertex. To determine whether
edges h, i, j share a vertex, we use together h i j. To build an SMT-term, we
use operators to combine terms. For instance, the operator OpAnd takes a list
of terms, which should all hold in order for the term to be true. The operators
OpEq and OpNeq take two numerical terms and requires both to be equal or
unequal. The operator OpAdd takes a list of numerical terms and returns its
sum. Constants are added via the function c.

The following SMT-term (over the variables w i for i <- elements) is con-
verted as input to our SMT-solver:

OpAnd ([(i f toge the r h i j then OpEq else OpNeq)
(c 1)
(OpAdd [w h ,w i ,w j])

| h <� elements , i <� e lements
, i > h , j <� elements , j > i
] ++ �� t r i v i a l i t i e s :
[between (c 0) (c 1) (w i) | i <� e lements])

where

between minbound maxbound tm
= OpAnd [OpLeq tm maxbound , OpGeq tm minbound]

The function together, and the set elements both depend on the input-graph.
There is an ordering on elements, such that we can remove duplicates (i>h,
j>i) in a convenient way.

A.4 Obtaining 3PART instances

In the previous section we generated instances by using a solution graph. In this
section we generate instances by simply trying out di↵erent weights. Since we
are looking for nearly feasible instances, we apply some of the criteria mentioned
in Section 3.3. These criteria are applied one by one, rewriting the program
along the way.

To generate all nearly-feasible instances with n = 3q elements having weights
in [0,m].

i n s t an c e s : : Int �> Int �> [[Int]]
i n s t an c e s 0 = [[]]
i n s t an c e s n m
= [w: ws | w<� [0..m] , ws<�i n s t an c e s (n�1) m]

However, we actually want instances in ascending order, so we may change the
last line:

i n s t an c e s n m
= [w:map ((+) w) ws

36

| w<� [0..m] , ws<�i n s t an c e s (n�1) (m�w)]

We want to say something about the total sum s. It should, for one thing,
be divisible by q. Therefore, we want to be able to generate all instances on n
elements, weights in [0,m] and total sum s.

instWithSum : : Int �> Int �> Int �> [[Int]]
instWithSum 0 0 = [[]]
instWithSum n m s

= [w:map ((+) w) ws
| w<�[max 0 (s � m⇤(n�1)) . .min m (div s n)]
, ws<�instWithSum (n�1) (m�w) (s�n⇤w)]

Using this new function, we can rewrite our old “instances” to get only those
instances where �  3

2m, such that � is integer.

i n s t an c e s : : Int �> Int �> [[Int]]
i n s t an c e s n m
= concat [instWithSum n m s

| beta<�[m. . div (3⇤m) 2]
, l et s=div (beta ⇤n) 3]

In generating the instances, we also required the maximum value m to be at-
tained, and the minimum 0 to be used.

A.5 Obtaining a solution to 3PART

There are two ways to find a solution to 3PART. One way is by applying
“hasDist” mentioned earlier to the candidate sets (let “Char” be the type of
an element). Another way is by implementing (2.3) we saw in Section 2.2.2. We
use an SMT-solver as in Section A.3. For a list of weights, the SAT-clause is
as follows:

OpAnd ([OpOr [p i | (s , i)<�c s e t s , elem v s]
| v<�e lements] ++
concat

[[OpNot (OpAnd [(p j) , (p i)])
| (s2 , i)<�c s e t s
, i<j , ove r lap s1 s2]

| (s1 , j)<�c s e t s
])

where

c s e t s : : [([Int] , Int)]
c s e t s = zip candSets [1 . .]
candSets
= [[a , b , c]

| (w1 , a)<�weights ’
, (w2 , b)<�drop a weights ’
, (w3 , c)<�drop b weights ’
, w1+w2+w3==div (sum weights ⇤ 3)

(length weights)]
weights ’ = zip weights [1 . .]
e lements = map snd weights ’

37

A.6 Drawing a nearly-feasible solution

To obtain the nearly-feasible solution, we used a package from “Hackage” called
“Numeric.LinearProgramming”. The operator :==: ensures sum of variables
on the left hand side sum to the numeric value indicated by the right hand
side. The operator :&: indicates that the sum of variables on the left hand
side should be between the bounds indicated by the value pair (min,max) on
the right hand side. On the left hand side, all variables (in our case “sets”)
are multiplied by a constant indicated by the list values, and summed. As an
example, suppose we have three variables x1, x2, x3, then x1 + 2 · x3 would be
expressed by the list [1, 0, 2].

The constraints are as follows:

[[i f (elem v c) then 1 else 0 | c<�s e t s] :==: 1
| v <� [0 . . (k�1)]]
++ [[i f (c==c ’) then 1 else 0 | c<�s e t s] :&: (0 , 1)

| c ’ <� s e t s]

In most cases, we obtained a nearly-feasible solution whenever there was one.
Drawing the solution as a solution graph was done using the candidate sets

for which the corresponding variable was > 0. To draw a graph, we converted
a nearly-feasible solution to a “neato” input file, and use “neato” to draw the
solution as a graph. In order to get the alignment as in this thesis, we change
this file by hand and enter the positions manually.

We give one such “neato” file as an example. The set-cover problem instance
of Figure 4.2 was generated using the following file:

digraph g {
node [shape=box pin="true" fixedsize="true"

fontsize=22 height=0.55 width=1.75];
edge [len=4 dir=none];
n0[label="1, 2" pos="0,0"];
n1[label="2, 3" pos="3,0"];
n2[label="1, 3" pos="1.5,1"];
n0->n1;n0->n2;n1->n2;

}

38

Bibliography

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[2] M. E. Dyer and A. M. Frieze. The solution of some random np-hard prob-
lems in polynomial expected time. Journal of Algorithms, 10(4):484 – 489,
1989.

[3] Ulrich Faigle and Walter Kern. On some approximately balanced combina-
torial cooperative games. Mathematical Methods of Operations Research,
38:141–152, 1993. 10.1007/BF01414210.

[4] Ulrich Faigle and Walter Kern. Approximate core allocation for binpacking
games. SIAM J. Discret. Math., 11:387–399, August 1998.

[5] Sndor P. Fekete, Jrg Schepers, Sandor P. Fekete, Tu Berlin, Or P. Fekete,
and J Org Schepers. New classes of fast lower bounds for bin packing
problems. In Mathematical Programming, pages 11–31, 2001.

[6] M. R. Garey. Complexity results for multiprocessor scheduling under re-
source constraints. SIAM Journal of Computing, 4:397–411, 1975.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979.

[8] Bissan Ghaddar, Miguel Anjos, and Frauke Liers. A branch-and-cut al-
gorithm based on semidefinite programming for the minimum k-partition
problem. Annals of Operations Research, pages 1–20, 2008. 10.1007/s10479-
008-0481-4.

[9] Sebastiaan JC Joosten and Hans Zantema. LP relaxation of 3-parition
instances. submitted .

[10] R. M. Karp. Reducibility among Combinatorial Problems. Complexity of
Computer Computations, 1972.

[11] W. Kern and X. Qiu. Improved taxation rate for bin packing games. In
A. Marchetti-Spaccamela and M. Segal, editors, First International ICST
Conference on Theory and Practice of Algorithms in (Computer) Systems,
TAPAS 2011, Rome, Italy, volume 6595 of Lecture Notes in Computer
Science, pages 175–180, Berlin, 2011. Springer Verlag.

39

[12] Donald E. Knuth. Dancing links. Technical report, Stanford University,
November 2000.

[13] Jeroen Kuipers. Bin packing games. Mathematical Methods of Operations
Research, 47:499–510, 1998. 10.1007/BF01198407.

[14] L. A. Levin. Universal sequential search problems. Probl. Peredachi Inf.,
9:115–116, 1973.

[15] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and com-
puter implementations. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[16] Silvano Martello and Paolo Toth. Lower bounds and reduction procedures
for the bin packing problem. Discrete Applied Mathematics, 28(1):59 – 70,
1990.

[17] Brendan D. McKay. nauty User’s Guide (Version 2.4). Australian National
University, ACT 0200, Australia, November 2009.

[18] N. J. A. Sloane. Sloane’s series A000421: Number of isomorphism classes
of connected 3-regular loopless multigraphs of order 2n, 2007.

40

Index

3-dimensional matching, 9
3PART, 7

bin packing game, 13, 30
bin packing problem, 13

candidate set, 7
Cook-Levin theorem, 8
cubic, 18

decision problem, 6

locally smallest, 18

multigraph, 17

NkDM, 9
N3DM, 10, 30
nearly-feasible, 15
nearly-feasible solution, 18
NP, 7
NP-complete, 8

power set, 7

reduced, 8

SAT, 8
solution, 7
solution graph, 17

41

