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1 Inleiding

Een verband is het systeem waarmee stenen in een muur worden gelegd. Een verband dat iedereen kent is
het halfsteensverband. Hierbij verspringt elke strekkenlaag een halve steen. De verticale voegen zijn dus
altijd een steenhoogte lang, maar de horizontale voegen lopen helemaal door. Hoewel een halfsteensver-
band voor een solide muur zorgt, is er tegenwoordig behoefte aan een afwisselender verband. Een verband
dat aan deze behoefte voldoet is het polymetrische verband. Dit verband wordt gekenmerkt door de ver-
schillende formaten stenen die in het verband zijn verwerkt. Maar hoewel het polymetrische verband
willekeurig oogt, is er een wel degelijk een structuur aanwezig. Het gehele verband is een opeenstapeling
van zich herhalende patronen. Binnen deze patronen worden zowel alle horizontale als verticale voegen
onderbroken. Uiteraard zullen de randen van deze patronen niet geheel recht zijn, aangezien dit geheel
doorlopende voegen zou veroorzaken. Op dit moment tekenen architecten polymetrische verbanden met
de hand, een handeling die enkele dagen in beslag kan nemen. Om gaten op te vullen is het regelmatig
nodig om stenen te breken in kleinere stenen. Het breken van stenen kost de metselaar tijd en gebroken
stenen zijn minder mooi.
Het is nuttig om het tekenen van polymetrische verbanden te automatiseren. Enerzijds om de architect
kostbare tijd te besparen, anderzijds om het aantal te breken stenen te minimaliseren. In dit verslag
beschrijven we een methode die, gegeven de afmetingen van het patroon en de beschikbare types stenen,
de juiste stenen kiest en deze plaatst in een polymetrisch verband. Onze methode maakt gebruik van
Mixed Integer Linear Programming (MILP), een wiskundige techniek waarbij een lineaire doelfunctie
wordt gemaximaliseerd, gelet op een aantal lineaire voorwaarden. Deze doelfunctie en voorwaarden
bevatten deels geheeltallige variabelen. Onze methode is gebaseerd op MILP-modellen van twee dimen-
sionale cutting stock en bin packing problemen. Tot dusver zijn deze modellen voornamelijk toegepast
op het laden van pallets en het verdelen van een plaat in delen. Voor zover wij weten is er nog niet eerder
onderzoek gedaan naar een ILP-model dat metselpatronen creëert.
In sectie 2 geven we een formele omschrijving van ons probleem. In sectie 3 behandelen we de modellen
waar ons model op gebaseerd is, beschrijven we twee veelgebruikte ILP modellen voor het twee dimen-
sionale knapsack probleem en geven we enkele aanpassingen om aan de specifieke eigenschappen van
metselpatronen te voldoen. In sectie 4 beschrijven we de cyclische eigenschap van ons probleem en hoe
we deze modelleren. In sectie 5 beschrijven we hoe we het onderbreken van voegen modelleren. In sectie
6 beschrijven we hoe we wiskundig de schoonheid van een patroon kunnen uitdrukken en hoe we het
model uitbreiden om de schoonheid te bevorderen. Hoewel ons uiteindelijke model aan het eind van deze
sectie staat, adviseren we de lezer om alle secties door te lezen, aangezien het model zo begrijpelijker
is. In sectie 7 beschouwen we enkele varianten op ons model. In sectie 8 laten we door middel van een
reductie zien dat er waarschijnlijk geen efficiënte oplosmethode voor ons probleem bestaat. In sectie
9 leiden we voorwaarden af, waaronder er een oplossing bestaat in de tweede fase van ons model. In
sectie 10 beschrijven we de applicatie die we hebben gemaakt, waarmee ons model wordt toegepast om
patronen te genereren. In sectie 11 beschouwen we de resultaten van het testen van ons model op enkele
instanties, en vergelijken we deze met andere methoden. In sectie 12 geven we onze aanbevelingen voor
vervolgonderzoek.
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2 Probleemomschrijving

Een basispatroon is een rechthoek in een tweedimensionaal coördinatenstelsel met de linkeronderhoek
in (0, 0). Het basispatroon heeft een breedte W en een hoogte H. Ons doel is om het basispatroon te
bedekken met een aantal ongebroken en gebroken rechthoekige stenen b ∈ B door voor elke steen de
linkerzijde xb en de onderkant yb te kiezen. Elke ongebroken steen heeft een (steen)type i ∈ T. Voor elk
steentype i zijn de de volgende parameters gegeven:

• De breedte wi en de hoogte hi,

• Het minimale aantal li en het maximale aantal ui stenen van type i dat mag worden geplaatst.

• Ti is het aantal stenen van een gelijk type dat een steen van type i mag raken.

Als een deel van het basispatroon dat niet bedekt kan worden met ongebroken stenen, moeten er stenen
worden gebroken om hiermee dit deel alsnog te bedekken. Gebroken stenen hebben een breedte en een
hoogte, maar er zijn geen restricties op het aantal gebroken stenen of het aantal gebroken stenen dat
andere gebroken stenen mag raken. Tussen de stenen lopen horizontale en verticale voegen. Om ons
model simpel te houden, modelleren we een voeg als een lijn zonder dikte. Aangezien boven elke steen
een uniek (deel van een) horizontale voeg loopt en rechts van elke steen een uniek (deel van een) verticale
voeg, tellen we de dikte van een verticale voeg bij de breedte van de stenen op en tellen we de dikte
van een horizontale voeg bij de hoogte van de stenen op, zoals te zien is in figuur 1. Als we het in dit
verslag dus over de hoogte van een steen hebben, bedoelen we de hoogte plus de dikte van een horizontale
voeg. Met de breedte van een steen bedoelen we de breedte plus de dikte van een verticale voeg. We
zeggen dat een voeg doorloopt als het een ononderbroken lijn is van de ene naar de andere kant van het
basispatroon. Voegen die niet doorlopen, zijn onderbroken. Zie figuren 1 en 2 voor een verduidelijking
van de bovenstaande begrippen. In deze en andere figuren in dit verslag geven we, tenzij anders vermeld,
het basispatroon aan met een donkergroene streeplijn, stenen met gekleurde rechthoeken, zijdes van
stenen met zwarte lijnen en voegen met zwarte streeplijnen.

Er moet aan de volgende voorwaarden worden voldaan:

• Van elk steentype moeten de juiste hoeveelheden stenen worden gebruikt.

• Stenen moeten zich (gedeeltelijk) in het basispatroon bevinden.

• Stenen mogen niet overlappen.

• Alle voegen moeten worden onderbroken.

Daarnaast streven we de volgende doelen na, van belangrijk naar minder belangrijk:

• Het maximaliseren van de totale oppervlakte van het aantal niet gebroken stenen.

• Het zo goed mogelijk verspreiden van stenen van gelijke types over het patroon.

• Het minimaliseren van de som van het aantal stenen van een gelijk type dat steen b raakt over alle
stenen b.
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Figuur 2: Het basispatroon, steentypes en voegen

3 Bestaande modellen

In deze sectie beschrijven we de modellen waar ons model op is gebaseerd. Voor zover wij weten is
er niet eerder onderzoek gedaan is naar ILP modellen voor metselverbanden. Wel bestaan er vele
wiskundige theorieën over zogeheten cutting en packing problemen. Bij cutting stock problemen wordt
een object (plaat) in verschillende delen verdeeld (geknipt). Bij twee-dimensionale packing problemen
wordt een object (pallet) geladen met verschillende objecten (dozen). Omdat we voor ons probleem ook
een rechthoekige ruimte moeten vullen met rechthoeken die niet mogen overlappen, heeft het zin om
deze problemen te bestuderen. [6] geeft een uitgebreide bibliografie van artikelen over cutting en packing
problemen, gesorteerd op dimensie en oplosmethode. De meeste methodes zijn slechts toepasbaar in
situaties met specifieke eigenschappen. In vele modellen, zoals beschreven in onder andere [5] is één van
deze eigenschappen de restrictie tot guillotine cuts. Een plaat wordt opgedeeld in verschillende delen,
die ook weer opgedeeld worden in verschillende delen. Hierbij kunnen delen slechts verdeeld worden met
een rechte lijn van de ene kant naar de andere kant van het deel. Hoewel deze restrictie erg praktisch is
in situaties met machines die daadwerkelijk platen met een rechte lijn in tweëen delen, is deze bij onze
toepassing minder practisch. Bij metselpatronen willen we namelijk geen lange doorlopende voegen.
[1] definieert simple tiling, wat inhoudt dat geen verzameling van twee of meer rechthoeken een nieuwe
rechthoek vormt. Hoewel deze eigenschap beter is met betrekking tot het onderbreken van voegen, lijkt
ons het eisen van simple tiling een te sterke voorwaarde die veel goede oplossingen uitsluit. In ILP
modellen zijn makkelijker aanpassingen te maken om ze te gebruiken voor onze specifieke toepassing.
[2] Beschrijft een ILP model voor cutting problemen zonder guillotine cuts te eisen. We beschrijven
dit model in sectie 7.3. [3] beschrijft een ILP model om chips te positioneren op een printplaat. Ook
hier worden rechthoekige objecten op een grotere rechthoek geplaatst en mogen deze niet overlappen.
[4] beschrijft een ILP model waarin hij een packing probleem oplost in twee fasen. Onze methode is
gebaseerd op de modellen van [3] en [4]. We beschrijven deze twee modellen in subsecties 3.1 en 3.2.
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3.1 Het Basismodel

Zoals hierboven genoemd beschrijft [3] een ILP model om chips te positioneren op een printplaat. Het
doel is om de chips dusdanig te plaatsen dat ze niet overlappen. Hieronder beschrijven we de parameters,
variabelen en voorwaarden uit [3] om overlap te voorkomen, aangepast op onze toepassing. In plaats
van een printplaat nemen we een basispatroon, en in plaats van chips nemen we stenen. Een verschil
met onze toepassing is dat de te gebruiken chips gegeven zijn, in tegenstelling tot de te gebruiken
hoeveelheden van elke steen. We beschrijven het model van [3] enkel om de methode ter voorkoming
van overlap te illustreren. In sectie 3.2.3 beschrijven we hoe we een verzameling stenen kiezen bij een
gegeven verzameling beschikbare steentypes.

3.1.1 Parameters

We hebben een verzameling B van rechthoekige stenen. Elke steen heeft een breedte wb en een hoogte
hb. Deze stenen moeten worden geplaatst in een rechthoeking basispatroon in een twee-dimensionaal
assenstelsel met de linker onderhoek in de oorsprong. Het basispatroon loopt horizontaal tot (W, 0) en
verticaal tot (0, H). Merk op dat we in dit model nog niet met steentypes werken.

3.1.2 Variabelen

Als beslissingsvariabelen nemen we de coördinaten, (xb, yb) van de linker onderkant van de stenen. We
zeggen dat een steen c zich rechts van steen b bevindt als de de linkerzijde van steen c zich rechts van de
rechterrzijde van steen b bevindt, dus als xc ≥ xb + wb. We introduceren de binaire variabele zxbc met

zxbc =

{
0 als c zich rechts van b bevindt
1 in andere gevallen

(1)

We zeggen dat een steen b zich onder steen c bevindt als de de onderkant van steen c zich boven de
bovenkant van steen b bevindt, dus als yc ≥ yb + hb. We introduceren de binaire variabele zybc met

zybc =

{
0 als b zich onder c bevindt
1 in andere gevallen

(2)

3.1.3 Voorwaarden

We hebben aan twee soorten voorwaarden voldoende om het basispatroon te vullen. Ten eerste mogen
de stenen niet buiten het basispatroon vallen:

0 ≤ xb ≤W − wb ∀b ∈ B (3)
0 ≤ yb ≤ H − hb ∀b ∈ B (4)

Daarnaast mogen de stenen niet overlappen. Hiervoor gebruiken we de binaire variabelen zxbc en zybc. Als
zxbc = 0, dan moet steen b links van steen c worden geplaatst. Echter, als zxbc = 1 dan mag dit geen
beperkingen opleveren. Door in de volgende voorwaarden M groot genoeg te nemen zal de linkerhelft
van de voorwaarden zo groot zijn dat er altijd aan de voorwaarde wordt voldaan als zxbc = 1. Zie ook
figuur 3. Een M die groot genoeg is, is M = max{W,H}.

Mzxbc + xc ≥ xb + wb ∀b 6= c ∈ B (5)
(6)

8



b c

d

yb

yb + hb = yd

xb

xb + wb

xc

Figuur 3: Er wordt aan de voorwaarden voldaan, dus de stenen overlappen niet

Met een analoge redenatie voor verticale overlap gelden de volgende voorwaarden.

Mzybc + yc ≥ yb + hb ∀b 6= c ∈ B (7)

Als stenen b en c niet overlappen moet steen b zich rechts, links, onder of boven steen c bevinden. Dus
minimaal 1 van de binaire variabelen zxbc, z

x
cb, z

y
bc, z

y
cb moet 0 zijn.

zxbc + zxcb + zybc + zycb ≤ 3 ∀b 6= c ∈ B (8)

Ons doel is om een patroon te creëeren waarin geen enkele steen overlapt. Als er dus waardes voor de
variabelen bestaan waarvoor aan alle voorwaarden wordt voldaan, bestaat er een oplossing en anders
niet. Op dit moment hebben we nog geen doelfunctie nodig.

3.1.4 Het Basismodel

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.

Parameters

wb ∈ N de breedte van steen b

hb ∈ N de hoogte van steen b

W ∈ N de breedte van het basispatroon
H ∈ N de hoogte van het basispatroon
M = max{W,M}

Variabelen

xb ∈ R de positie van de linkerzijde van steen b

yb ∈ R de positie van de onderkant van steen b

zxbc =

{
0 als c zich rechts van b bevindt
1 in andere gevallen

zybc =

{
0 als b zich onder c bevindt
1 in andere gevallen

Geen doelfunctie
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Voorwaarden

0 ≤ xb ≤W − wb ∀b ∈ B

0 ≤ yb ≤ H − hb ∀b ∈ B

Mzxbc + xc ≥ xb + wb ∀b 6= c ∈ B

Mzybc + yc ≥ yb + hb ∀b 6= c ∈ B

zxbc + zxcb + zybc + zycb ≤ 3 ∀b 6= c ∈ B

3.2 De Twee Fasen Aanpak

Het model van sectie 3.1 is effectief voor printplaten waar meestal niet meer dan tien chips op geplaatst
hoeven te worden. Echter gebruiken wij ons model voor tientallen stenen. We hebben voor elke mogelijke
combinatie van stenen vier binaire variabelen. Dit aantal is te hoog is om binnen redelijke tijd een
oplossing te vinden. Om het aantal variabelen te beperken gebruiken we een twee fasen aanpak, gebaseerd
op [4]. In de eerste fase kiezen we voor elk steentype het aantal te plaatsen stenen voor elke verticale
laag, om pas in de tweede fase de precieze posities van de stenen te bepalen met het model uit sectie 3.1.
Bij deze aanpak wordt het aantal binaire variabelen op twee manieren gereduceerd. Ten eerste kunnen
stenen die geen laag gemeenschappelijk hebben niet overlappen. Er is dus twee binaire variabelen nodig
voor slechts elk tweetal stenen dat een laag gemeenschappelijk heeft. Ten tweede hebben we in de tweede
fase geen variabelen meer nodig voor de horizontale posities van stenen, aangezien deze al vast liggen.

3.2.1 Parameters

Vergeleken met het model van sectie 3.1 zijn er twee belangrijke verschillen. Ten eerste gebruiken we in
de eerste fase stenentypes i ∈ T in plaats van stenen. Zoals beschreven in sectie 2 is elke steen van een
bepaald steentype. De twee fasen aanpak stelt ons in staat om in de eerste fase de input en het aantal
variabelen te beperken door met steentypes in plaats van stenen te werken. Een tweede verschil is dat
we de verticale positie discretiseren. De patroonhoogte H wordt opgedeeld in een verzameling L van L

gelijke lagen [0..`] met hoogte H
L . Laag l loopt verticaal van lH

L tot (l+1)H
L . We plaatsen voor elke steen

b de onderkant op gelijke hoogte met de onderkant van een laag l. We noemen l de basislaag van b. We
zeggen dat steen b zich in laag l bevindt als de onderkant van l niet lager is dan onderkant van b en de
bovenkant van l niet hoger is dan de bovenkant van b. Een steen b met hoogte hb bevindt zich nu in
hb

L
H lagen. Vanaf nu geven we het aantal lagen van een steen van type i aan met hi. Merk op dat niet

elke combinatie van patroon met steentypes is te modelleren met deze parameters. Als voor een steen b
van type i geldt dat hb LH niet een geheel getal is, dan past een steen van type i niet in een geheel aantal
lagen en is dit steentype niet bruikbaar. De twee fasen aanpak is dus alleen mogelijk als elk steentype
in een geheel aantal lagen past. Gelukkig voldoen in de praktijk de meeste verzamelingen steentypes die
gebruikt worden voor polymetrisch metselen hieraan.
W is de patroonbreedte en wi geeft de breedte van een steen van type i aan. Werken met types in plaats
van stenen stelt ons in staat om in plaats van een vaste hoeveelheid stenen, het aantal te gebruiken
stenen per type te laten kiezen. Elk steentype i ∈ T heeft een maximaal aantal te plaatsen stenen ui en
een minimaal aantal te plaatsen stenen li. Elke laag l ∈ L heeft een breedte W .

3.2.2 Het Roteren van Stenen

Het roteren van een steen (over een hoek van 90 graden) modelleren we als volgt: We voegen voor elk
steentype i met wi en hi een nieuw steentype i′ toe met wi′ = hiH

L en hi′ = wiL
H , mits wiL

L een geheel
getal is. Merk op dat de verzameling T bestaat uit steentypes en oriëntaties. Voor het gemak zullen we
deze verzameling aanduiden met ’type’.

10



3.2.3 Fase één: Laag Kiezen

In de eerste fase kiezen we voor elke steen een laag, zonder ons druk te maken over de horizontale posities
van de stenen. Hiervoor gebruiken we de geheeltallige variabele yli, het aantal stenen van type i waarvoor
we basislaag l kiezen. Het totale aantal stenen van type i moet tussen li en ui liggen:

li ≤
∑
l∈L

yli ≤ ui ∀i ∈ T (9)

Daarnaast moeten stenen geheel binnen het basispatroon worden geplaatst, dus ook de bovenkant van
een steen moet binnen het basispatroon vallen:

yli = 0 ∀i ∈ T,∀l ∈ L s.t. l + hi > L (10)

Als l ≤ m ≤ l + hi − 1, dan zal een steen van type i met basislaag l zich ook in laag m bevinden.

b

l

hi

H

l + hi

l + hi − 1

Figuur 4: Steen b van type i bevindt zich in alle lagen van l tot en met l + hi − 1

Daarom introduceren we een indicator variabele, Diml die 1 is als een steen van type i met basislaag l
zich ook in laag m bevindt en anders 0 is:

Diml =

{
1 l ≤ m ≤ l + hi − 1
0 in andere gevallen.

De som van alle breedtes van stenen en verticale voegen die zich in laag m bevinden moet kleiner dan of
gelijk zijn aan de laagbreedte W . Nu kunnen we de volgende voorwaarden definiëren die ervoor zorgen
dat de stenen in hun laag passen:∑

l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L (11)

Tenslotte hebben we een doelfunctie. Ons doel is om een zo klein mogelijk oppervlakte op te vullen met
gebroken stenen. Om dit te bereiken maximaliseren we het oppervlakte dat wordt gevuld met ongebroken
stenen.

max
∑
i∈T

∑
l∈L

yliwihi (12)

3.2.4 Fase twee: Horizontale Posities Kiezen

Na de eerste fase weten we voor elk steentype hoeveel van deze stenen zich in welke lagen bevinden.
In de tweede fase zullen we de stenen op de juiste horizontale posities plaatsen, waarbij rekening wordt
gehouden met het voorkomen van overlap. Dit gaat op een vergelijkbare manier als in ons basismodel
in sectie 3.1. Daarom is het noodzakelijk om met een verzameling stenen B te werken in plaats van
steentypes T. Deze verzameling creëeren we door voor elk type i en elke laag l yli stenen te creëeren.
Steen b ∈ B heeft breedte wb = wi, heeft steentype tb = i en bevindt zich in lagen l, . . . , l + hi − 1. Om
dit aan te geven gebruiken we de binaire parameter ybl.

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

(13)
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Daarnaast creëeren we voor iedere laag m die niet helemaal gevuld is (
∑

l∈L,i∈T

Dilmwiyli < W ) een

gebroken steen b die hb = 1 laag hoog is met breedte W − wb =
∑

l∈L,i∈T

Dilmwiyli. Deze steen bevindt

zich alleen in laag m, dus ybm = 1 en ybl = 0 voor l 6= m. Steen b krijgt een nieuw type tb = ib. Door het
toevoegen van deze gebroken stenen wordt in de tweede fase het hele patroon gevuld. We introduceren
analoog aan ons basismodel in sectie 3.1 de volgende beslissingsvariabelen. Hier is xb ∈ R de horizontale
positie van steen b.

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

(14)

In tegenstelling tot het basismodel staan de verticale posities van de stenen (de lagen) al vast, dus hier
hebben we geen variabelen voor nodig. Nu kunnen we dezelfde voorwaarden als in sectie 3.1 gebruiken.

De linker- en rechterzijde moeten in het patroon liggen:

0 ≤ xb ≤W − wb ∀b ∈ B (15)

Stenen mogen niet overlappen:

Mzbc + xc ≥ xb + wb ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (16)
zbc + zcb ≤ 1 ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (17)

In tegenstelling tot het basismodel gelden deze voorwaarden alleen voor stenen die een laag gemeen-
schappelijk hebben.

3.2.5 Het Twee Fasen Model

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.

Fase 1:
Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml ∈ [0, 1]

{
1 l ≤ m ≤ l + hi − 1
0 in andere gevallen

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

max
∑
i∈T

∑
l∈L

yliwihi

Voorwaarden

yli = 0 ∀i ∈ T,∀l ∈ L s.t. l + hi > L∑
l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L

12



Fase 2:
Parameters

wb ∈ N de breedte van steen b

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

M = 3W

Variabelen

xb ∈ R de horizontale positie van steen b

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

Geen doelfunctie

Voorwaarden

0 ≤ xb ≤W − wb ∀b ∈ B

Mzbc + xc ≥ xb + wb ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1
zbc + zcb ≤ 1 ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1

13



4 Cycliciteit

In sectie 3.2 hebben we een rechthoekig basismodel gevuld met stenen van verschillende steentypes. In
een muur zal dit patroon zich horizontaal en verticaal herhalen, zoals in figuur 5a. Zoals te zien is lopen
zowel de horizontale als de verticale voegen aan de randen van de patronen helemaal door, hetgeen niet
gewenst is.

a) b) c)

open ruimte uitsteeksel

s

Figuur 5: Het basispatroon, het cyclische patroon en het verschoven cyclische patroon

Echter is het niet nodig ons te beperken tot rechthoekige patronen. Naast het onderbreken van voegen is
een ander voordeel van meer vormen toestaan, het vergroten van het aantal mogelijke oplossingen. Een
uitbreiding op ons model is te zien in figuur 5b. We werken nog steeds met een rechthoekig basispatroon,
dat gestippeld wordt weergegeven. Echter staan we nu toe dat stenen voor een deel binnen en voor een
deel boven of rechts van het basispatroon worden geplaatst. Hierdoor heeft een patroon één of meer
rechthoekige uitsteeksels aan één kant. Als dit het geval is, moet aan de andere kant van het patroon op
dezelfde hoogte of breedte ruimte voor identieke rechthoeken leeg blijven, zodat de patronen in elkaar
passen. We noemen het nieuwe patroon dat is afgebeeld met een doorgetrokken lijn het cyclische patroon.
We beschrijven dit model in sectie 4.1. Een volgende stap is om de patronen per hoogte een bepaalde
lengte s horizontaal te verplaatsen als in figuur 5c. Net als in het cyclische patroon steken er rechthoeken
uit het basispatroon en wordt er aan de andere kant een identieke rechthoek leeggehouden. Echter hoeven
de verticale open ruimtes niet op dezelfde breedte te zijn als de uitsteeksels met een identieke vorm. In
plaats daarvan worden ze een lengte s verplaatst. Dit patroon noemen we het verschoven cyclische
patroon. Het verschoven cyclische patroon heeft drie voordelen boven een cyclisch patroon. Ten eerste
zijn er meer mogelijkheden om de stenen te plaatsen. Voor s = 0 zijn namelijk alle oplossingen van het
cyclische patroon ook mogelijk. Ten tweede worden er meer horizontale voegen te worden onderbroken,
omdat het mogelijk is dat een voeg in een hoger patroon al wordt onderbroken (zie ook sectie 7.4). Een
derde voordeel is dat het patroon moeilijker te herkennen is, waardoor het verband willekeuriger oogt.
We beschrijven dit model in sectie 4.2

4.1 Het Cyclische Patroon

In deze sectie beschrijven we hoe we het twee fasen model uit sectie 3.2 zo aanpassen dat we cyclische
patronen kunnen vullen. Het is nu mogelijk dat een steen b zich slechts voor een deel in basispatroon
P bevindt, maar ook in een ander basispatroon Q. Omdat alle (cyclische) patronen identiek zijn, zal
een steen b′, van hetzelfde type als steen b, maar dan uit een ander basispatroon P ′ zich dus ook voor
een deel in basispatroon P bevinden en wel op dezelfde plaats als waar steen b zich in basispatroon Q
bevindt. Zie ook figuur 6.

Kijken we alleen naar basispatroon P , dan maakt het niet uit of we steen b of steen b′ op de plek van
steen b′ plaatsen. Als we kiezen voor steen b, dan is het patroon als het ware cyclisch. Steen b die aan
één kant het basispatroon verlaat, komt het basispatroon aan de andere kant weer binnen. We zeggen
dat steen b het patroon doorbreekt. We zeggen dat een steen het patroon verticaal doorbreekt als deze
zich voor een deel in het basispatroon en voor een deel boven het basispatroon bevindt. We zeggen dat
een steen het patroon horizontaal doorbreekt als deze zich voor een deel in het basispatroon en voor een
deel rechts van het basispatroon bevindt. Het verticaal doorbreken van het patroon modelleren we in
de eerste fase, bij het toewijzen van lagen aan steentypes. Het horizontaal doorbreken van het patroon
modelleren we in de tweede fase bij het voorkomen van overlap.
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xb

b

xb + wb −W

PP ′ Qb′

Figuur 6: Een patroon wordt omgeven door identieke patronen

4.1.1 parameters, variabelen, voorwaarden

Een eerste verschil met het model van sectie 3.2 is dat elke laag nu is toegestaan als basislaag. Daarom
laten we voorwaarde (10) vallen. Ten tweede moeten we de indicator variabele, Diml aanpassen. Diml

is 1 als een steen van type i met basislaag l zich ook in laag m bevindt en is anders 0. Voor m ≥ l is
geldt nog steeds dat als m− l ≤ hi − 1, dan zal elke steen van type i met basislaag l zich ook in laag m
bevinden. Maar het is nu ook mogelijk dat een steen van type i met basislaag l zich ook in laag m met
m < l bevindt zoals in figuur 7 te zien is. Dit is alleen het geval als m− l+L ≤ hi − 1 In beide gevallen
geldt dat m− l + nL ≤ hi − 1, waarbij n een geheel getal is, zo dat 0 ≤ m− l + nL ≤ L. In de rest van
dit verslag zullen we m − l + nL met n een geheel getal zo dat 0 ≤ m − l + nL ≤ L, noteren als m − l
mod L. Diml wordt nu

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen.

(18)

b

b

l

hi
H

H

Figuur 7: Steen b van type i bevindt zich in alle lagen van l tot en met l + hi − 1− L

In de tweede fase modelleren we het horizontale doorbreken van het patroon. De linkerzijde van een
steen kan zich nu overal in het basispatroon bevinden. Om het horizontaal doorbreken van het pa-
troon te modelleren zou het mooi zijn als we op een soortgelijke wijze als met vergelijking (18) konden
modulorekenen. Dit zou de volgende vergelijkingen om overlap te voorkomen opleveren.

Mzbc + xc ≥ xb + wb mod W ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (19)
zbc + zcb ≤ 1 ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (20)
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Helaas zijn deze vergelijkingen vanwege de modulo operator niet lineair en daarom niet bruikbaar in ons
MILP model. In plaats daarvan introduceren we de binaire variabele

Wb =

{
1 als steen b het patroon horizontaal doorbreekt
0 in andere gevallen

Dit houdt in dat xb + wb −WbW zich binnen het basispatroon bevindt.

In plaats van voorwaarden 15 nemen we de volgende voorwaarden, die ervoor zorgen dat de linker en
rechterzijde van de stenen binnen het cyclische patroon vallen:

0 ≤ xb ≤W − ε ∀b ∈ B (21)
0 ≤ xb + wb −WbW ≤W ∀b ∈ B (22)

de ε is om identieke oplsossingen uit te sluiten door te voorkomen dat een steen met de linkerzijde op
W (dezelfde positie is als 0). Het is van belang dat ε niet te groot is, om te voorkomen dat we relevante
oplossingen uit sluiten. Een ε die klein genoeg is is GGD(W,w1, w2, . . . ). In plaats van voorwaarden
(16) nemen we de volgende voorwaarden voor het voorkomen van overlap:

Mzbc + xc ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (23)

Als een steen c het patroon horizontaal doorbreekt, moeten we er rekening mee houden dat deze een
andere steen b aan twee kanten kan overlappen, zoals te zien is in figuur 8b. Daarom is een definitie
nodig waarin een steen zich zowel links van als rechts van een andere steen kan bevinden. We hanteren
we vanaf nu de volgende definitie: Een steen v bevindt zich rechts van steen b als xc ≥ xb + wb −WbW .

We kunnen voor elk tweetal stenen b en c met een gemeenschappelijke laag drie gevallen onderschei-
den. In het eerste geval doorbreekt noch steen b noch steen c het patroon horizontaal, zoals in figuur 8a.
In dit geval bevindt steen b zich rechts van steen c of bevindt steen c zich rechts van steen b, dus geldt
zbc + zcb ≤ 1, net als in het model uit sectie 3.2. In het tweede geval doorbreekt één van de stenen het
patroon, zoals in figuur 8b. In dit geval moet zowel steen b zich links van steen c bevinden als steen c zich
links van steen b. Dus zowel zbc als zcb moeten gelijk aan 0 zijn en geldt zbc + zcb ≤ 0. In het derde geval
doorbreken beide stenen het patroon. Aangezien de stenen een laag gemeenschappelijk hebben, zouden
ze in dit geval overlappen, hetgeen we willen uitsluiten. De volgende voorwaarden die (17) vervangen,
voldoen in alledrie de gevallen.

zbc + zcb ≤ 1−Wb −Wc ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1 (24)

Als Wb + Wc = 0 doorbreken beide stenen het patroon niet, en geldt zbc + zcb ≤ 1, als Wb + Wc = 1,
doorbreekt 1 steen het patroon en geldt zbc + zcb ≤ 0. Tenslotte is het onmogelijk dat beide stenen het
patroon doorbreken, aangezien dan Wb + Wc = 2 zou zijn. Hierdoor geldt dat zbc + zcb ≤ −1, wat niet
kan omdat zbc en zcb positief zijn.

4.1.2 Het Cyclische Model

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.

Fase 1:
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xc

xc + wc −W

W

cb

xb + wb

xc

cb

xb + wb

c

xb

a)

b)

Figuur 8: a) geen steen doorbreekt het patroon, dus hoeft alleen zbc 0 te zijn. b) steen c doorbreekt het
patroon, dus zowel zbc als zcb moet 0 zijn

Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

max
∑
i∈T

∑
l∈L

yliwihi

Voorwaarden

∑
l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L

Fase 2:
Parameters

wb ∈ N de breedte van steen b

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

ε = GGD(W,w1, w2, . . . )
M = 3W
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Variabelen

xb ∈ R de horizontale positie van steen b

Wb =

{
1 als steen b het patroon horizontaal doorbreekt
0 in andere gevallen

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

Geen doelfunctie

Voorwaarden

0 ≤ xb ≤W − ε ∀b ∈ B

0 ≤ xb + wb −WbW ≤W ∀b ∈ B

Mzbc + xc ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1
zbc + zcb ≤ 1−Wb −Wc ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1

4.2 Het Verschoven Cyclische Patroon

In deze sectie beschrijven we hoe we het cyclische model uit sectie 4.1 zo kunnen aanpassen dat we
verschoven cyclische patronen kunnen vullen. Zoals vermeld in sectie 4 hoeven in een verschoven cyclisch
patroon de verticale open ruimtes niet op dezelfde breedte te zijn als de uitsteeksels met een identieke
vorm, maar worden ze een lengte s naar rechts verplaatst. Stenen die het patroon verticaal doorbreken
bevinden zich bovenin het patroon op een andere horizontale positie dan onderin het patroon. We
moeten voor elke steen b ∈ B nu onderscheid maken tussen reguliere lagen l (die we gewoon ’lagen’
blijven noemen) die tussen de basislaag van b en de bovenkant van het basispatroon liggen en onderlagen
m die tussen de onderkant van het basispatroon en de basislaag van b liggen.

4.2.1 Parameters, variabelen en voorwaarden

We introduceren een nieuwe binaire parameter yLbl.

yLbl =

{
1 als steen b zich (onder andere) in onderlaag l bevindt
0 in andere gevallen

(25)

Bijvoorbeeld, een steen b die zich in lagen 2, 3, 0 bevindt, heeft nu yb2 = 1, yb3 = 1, yLb0 = 1. In
tegenstelling tot het cyclische model is yb0 = 0. Zie ook figuur 9

b′

b

1

2

3

4 yb3 = 1, yL
b3 = 0

yb2 = 1, yL
b2 = 0

yb0 = 0, yL
b0 = 1

yb1 = 0, yL
b1 = 0

l

s

Figuur 9: De lagen en onderlagen van steen b
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Een steen b die het patroon verticaal doorbreekt, heeft zijn linkerzijde in zijn onderlagen op xb + s. Het
is mogelijk dat xb + s niet binnen het basispatroon ligt. Daarom introduceren we een binaire variabele
W s
b .

W s
b =

{
1 als xb + s buiten het basispatroon ligt
0 in andere gevallen

(26)

Analoog aan (22) leidt dit tot de volgende voorwaarden:

0 ≤ xb + s−W s
bW ≤W ∀b ∈ B|yLb0 = 1 (27)

De linkerzijde van steen b in een onderlaag m bevindt zich op xb+s−W s
bW . Dus als xb+s−W s

bW+wb >
W , dan doorbreekt steen b in een onderlaag het patroon horizontaal. Daarom introduceren we nog een
binaire variabele, W s2

b .

W s2
b =

{
1 als steen b in een onderlaag (laag 0) het patroon horizontaal doorbreekt
0 in andere gevallen

(28)

0 ≤ xb + wb + s−W s
bW −W s2

b W ≤W ∀b ∈ B|yLb0 = 1 (29)

We zeggen dat steen c zich in zijn onderlaag rechts van b bevindt als xc −W s
cW + s ≥ xb +wb −WbW .

We zeggen dat steen b zich rechts van c in zijn onderlaag bevindt als xb ≥ xc +wc + s−W s
cW −W s2

c W .
Om de overlap tussen stenen b die het patroon niet verticaal doorbreken en stenen c die het patroon wel
verticaal doorbreken te modelleren gebruiken we binaire variabelen z(2)

bc en z(2)
cb , waarbij z(2)

bc = 0 aangeeft
dat c in zijn onderlaag rechts van b ligt en z

(2)
cb = 0 aangeeft dat c in zijn onderlaag links van b ligt:

z
(2)
bc =

{
0 als c zich in zijn onderlaag rechts van b bevindt
1 in andere gevallen

(30)

z
(2)
cb =

{
0 als b zijn rechts bevindt van c in zijn onderlaag
1 in andere gevallen

(31)

(32)

Dit leidt tot de volgende voorwaarden (die met het oog op de layout iets anders zijn opgeschreven dan
hierboven):

Mz
(2)
bc + xc −W s

cW + s ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1 (33)

Mz
(2)
cb + xb − s+W s

cW ≥ xc + wc −W s2
c W ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1 (34)

z
(2)
bc + z

(2)
cb ≤ 1−Wb −W s2

c ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1 (35)

4.2.2 Het Verschoven Cyclische Model

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.
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Fase 1:
Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

max
∑
i∈T

∑
l∈L

yliwihi

Voorwaarden

∑
l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L

Fase 2:

Parameters

wb ∈ N de breedte van steen b

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

yLbl =

{
1 als steen b zich (onder andere) in onderlaag l bevindt
0 in andere gevallen

ε = GGD(W,w1, w2, . . . )
M = 3W
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Variabelen

xb ∈ R de horizontale positie van steen b

s ∈ R de horizontale verplaatsing van het patroon

Wb =

{
1 als steen b het patroon horizontaal doorbreekt
0 in andere gevallen

W s
b =

{
1 als xb + s buiten het basispatroon ligt
0 in andere gevallen

W s2
b =

{
1 als b het patroon horizontaal doorbreekt in een onderlaag
0 in andere gevallen

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

z
(2)
bc =

{
0 als c zich in zijn onderlaag rechts van b bevindt
1 in andere gevallen

z
(2)
cb =

{
0 als b zijn rechts bevindt van c in zijn onderlaag
1 in andere gevallen

Geen doelfunctie

Voorwaarden

0 ≤ xb ≤W − ε ∀b ∈ B

0 ≤ xb + wb −WbW ≤W ∀b ∈ B

0 ≤ xb + s−W s
b ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1

0 ≤ xb + wb + s−W s
bW −W s2

b W ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1
Mzbc + xc ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1
zbc + zcb ≤ 1−Wb −Wc ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1

Mz
(2)
bc + xc + s−W s

cW ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

Mz
(2)
cb + xb − s+W s

cW ≥ xc + wc −W s2
c W ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

z
(2)
bc + z

(2)
cb ≤ 1−Wb −W s2

c ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1
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5 Het Onderbreken van Voegen

In sectie 4 hebben we een model uitgewerkt dat naast basispatronen ook cyclische en en verschoven
cyclische patroon kan vullen, waarbij overlap tussen stenen wordt voorkomen. Maar het voorkomen
van overlap is niet de enige eis die we aan onze modellen stellen. Eén van de eigenschappen van een
polymetrisch metselwerk is dat geen enkele voeg helemaal doorloopt. Zoals beschreven in sectie 2 zeggen
we dat een voeg doorloopt als het een ononderbroken lijn is van de ene naar de andere kant van het
basispatroon. Voegen die niet doorlopen zijn onderbroken. Zie ook figuur 10.

Figuur 10: De voegen gerepresenteerd door zwarte streeplijnen lopen helemaal door. Alle andere voegen,
inclusief de randen van het patroon worden onderbroken.

5.1 Parameters,variabelen,voorwaarden

Een horizontale voeg op laag l wordt onderbroken, dan en slechts dan als er zich in laag l een niet-
onderkant van een steen bevindt. Dit kunnen we eenvoudig bereiken door in de eerste fase een extra
voorwaarde toe te voegen. Analoog aan (11) introduceren we een indicator variabele, D′iml die aangeeft
dat een steen van type i met basislaag l zich ook in laag m 6= l bevindt als D′iml = 1:

D′iml =

{
1 m− l − 1 mod L ≤ hi − 2
0 in andere gevallen.

Merk op dat Diml en D′iml een term −1 verschillen. Dit is zodat de onderkant van een steen van type
i niet wordt meegerekend. Voor m = l geldt: m − l − 1 mod L = L − 1 > hi − 2 dus D′iml = 0. Als
m 6= l is D′iml = Diml. Elke laag m moet door minimaal één steen worden onderbroken, wat leidt tot de
volgende voorwaarden: ∑

i∈T,l∈L
D′imlyli ≥ 1 ∀m ∈ L (36)

Het onderbreken van verticale voegen kan alleen in de tweede fase en is minder eenvoudig. Ten eerste is
het, vanwege de continue horizontale positie, minder duidelijk wanneer een voeg doorloopt en wanneer
deze wordt onderbroken. We zeggen dat een verticale voeg op horizontale positie x onderbroken wordt
als de linkerzijde xb van een steen b binnen een marge µ van x ligt. Een verticale voeg op positie x loopt
dus door als de linkerzijdes van alle stenen minimaal een marge µ van x afliggen. Voegen die helemaal
doorlopen kunnen zich alleen aan de zijkanten van stenen bevinden. Omdat zich aan elke rechterzijde
van een steen een linkerzijde van een andere steen bevindt, volstaat het om slechts naar alle linkerzijdes
van stenen te kijken. Als voor alle stenen c die zich onder andere in laag l bevinden, de voeg aan de
linkerzijde van die steen ergens onderbroken wordt, dan wordt elke voeg onderbroken. We kijken naar
de bovenste laag, `. Als alle linkerzijdes xb van stenen b die zich niet in laag ` bevinden een marge µ van
de linkerzijde wc van steen c in laag ` afliggen, dan zal de voeg aan de linkerzijde van steen c worden
onderbroken.
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We introduceren de volgende binaire variabelen:

W−µc =

{
1 als xc − µ buiten het basispatroon ligt
0 in andere gevallen

Wµ
c =

{
1 als xc + µ buiten het basispatroon ligt
0 in andere gevallen

z
(3)
bc =

{
0 als xc minimaal een marge µ rechts van xb ligt
1 in andere gevallen

z
(4)
bc =

{
0 als xb minimaal een marge µ rechts van xc ligt
1 in andere gevallen

Dit leidt tot de volgende voorwaarden:

0 ≤ xc − µ+W−µc W ≤W ∀c ∈ B|yc` = 1 (37)
0 ≤ xc + µ−Wµ

c W ≤W ∀c ∈ B|yc` = 1 (38)

xb ≤ xc − µ+W−µc W +Mz
(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0 (39)

xb +Mz
(4)
bc ≥ xc + µ−Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0 (40)

We introduceren de binaire variabele z(5)
cl die aangeeft of een voeg in laag l wordt onderbroken:

z
(5)
cl =

{
0 als de voeg op xc in laag l wordt onderbroken
1 in andere gevallen

(41)

Zie figuur 11. Als de voeg op xc in laag l wordt onderbroken en W−µc = 0 en Wµ
c = 0, dan moet xb

minimaal µ links of rechts van xc afliggen, dus is z(3)
bc = 0 of z(4)

bc = 0. Echter, als W−µc = 1 of Wµ
c = 1,

dan moet aan beide voorwaarden worden voldaan, dus moet zowel z(3)
bc = 0 als z(4)

bc = 0.

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0, ybl = 1 (42)

Maar dit is niet de enige manier waarop een verticale voeg onderbroken kan worden. Stenen b ∈ B die
de bovenkant van het patroon doorbreken kunnen ook verticale voegen onderbreken. Zoals beschreven
in sectie 4.2 bevindt de linkerzijde van een steen b zich in zijn onderlagen op xb −W s

bW + s.

Analoog aan (39) en (40) geldt:

xb + s−W s
bW ≤ xc − µ+W−µc W +Mz

(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|yLb0 = 1 (43)

xb + s−W s
bW +Mz

(4)
bc ≥ xc + µ+Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|yLb0 = 1 (44)

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yLb` = 1 of yLb0 = 1 (45)
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xc

µµ

xc

µ µ

W

Figuur 11: In de bovenste situatie moet xb in het blauwe gebied links van de linker grens of rechts van
de rechter grens liggen. In de onderste situatie moet xb links van de rechter grens en rechts van de linker
grens liggen.

Merk op dat z(3)
bc en z

(4)
bc nog niet gedefinieerd waren voor b ∈ B|yLb0 = 1 in voorwaarden (39) en (40),

omdat alle stenen met een onderlaag ook zich in de bovenste laag ` bevinden. De volgende voorwaarde
zorgt ervoor dat elke verticale voeg minimaal in 1 laag l ∈ L wordt onderbroken:∑

l∈L
(1− z(5)

cl ) ≥ 1 ∀c ∈ B|yc` = 1 (46)

5.2 Het Verschoven Cyclische Model Met Onderbreken

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.

Fase 1:
Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen

D′iml =

{
1 m− l − 1 mod L ≤ hi − 2
0 in andere gevallen.

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

max
∑
i∈T

∑
l∈L

yliwihi
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Voorwaarden

∑
l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L

∑
i∈T,l∈L

D′imlyli ≥ 1 ∀m ∈ L

Fase 2:
Parameters

wb ∈ N de breedte van steen b

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

yLbl =

{
1 als steen b zich (onder andere) in onderlaag l bevindt
0 in andere gevallen

ε = GGD(W,w1, w2, . . . )
µ ∈ R de marge waarbinnen een voeg als doorlopend wordt beschouwd
` ∈ N de bovenste laag

M = 3W
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Variabelen

xb ∈ R de horizontale positie van steen b

s ∈ R de horizontale verplaatsing van het patroon

Wb =

{
1 als steen b het patroon horizontaal doorbreekt
0 in andere gevallen

W s
b =

{
1 als xb + s buiten het basispatroon ligt
0 in andere gevallen

W s2
b =

{
1 als b het patroon horizontaal doorbreekt in een onderlaag
0 in andere gevallen

W−µc =

{
1 als xc − µ buiten het basispatroon ligt
0 in andere gevallen

Wµ
c =

{
1 als xc + µ buiten het basispatroon ligt
0 in andere gevallen

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

z
(2)
bc =

{
0 als c zich in zijn onderlaag rechts van b die geen onderlaag heeft bevindt
1 in andere gevallen

z
(2)
cb =

{
0 als b zich in zijn onderlaag rechts van c bevindt
1 in andere gevallen

z
(3)
bc =

{
0 als xc minimaal een marge µ rechts van xb ligt
1 in andere gevallen

∀b|yb` = 0,∀c|yc` = 1

z
(3)
bc =

{
0 als xc minimaal een marge µ rechts van xb + s−W s

bW ligt
1 in andere gevallen

∀b|yLb0 = 1,∀c|yc` = 1

z
(4)
bc =

{
0 als xb minimaal een marge µ rechts van xc ligt
1 in andere gevallen

∀b|yb` = 0,∀c|yc` = 1

z
(4)
bc =

{
0 als xb + s−W s

bW minimaal een marge µ rechts van xc ligt
1 in andere gevallen

∀b|yLb0 = 1,∀c|yc` = 1

z
(5)
cl =

{
0 als de voeg op xc in laag l wordt onderbroken
1 in andere gevallen

∀c ∈ B|yc` = 1

Geen doelfunctie
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Voorwaarden

0 ≤ xb ≤W − ε ∀b ∈ B

0 ≤ xb + wb −WbW ≤W ∀b ∈ B

0 ≤ xb + s−W s
bW ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1

0 ≤ xb + wb + s−W s
bW −W s2

b W ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1

0 ≤ xc − µ+W−µc W ≤W ∀c ∈ B|yc` = 1
0 ≤ xc + µ−Wµ

c W ≤W ∀c ∈ B|yc` = 1

Mzbc + xc ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1
zbc + zcb ≤ 1−Wb −Wc ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1

Mz
(2)
bc + xc + s−W s

cW ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

Mz
(2)
cb + xb − s+W s

cW ≥ xc + wc −W s2
c W ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

z
(2)
bc + z

(2)
cb ≤ 1−WbW −W s2

c ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

xb ≤ xc − µ+W−µc W +Mz
(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0

xb +Mz
(4)
bc ≥ xc + µ−Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0, ybl = 1

xb + s−W s
bW ≤ xc − µ+W−µc W +Mz

(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|∃l ∈ L s.t. yLbl = 1

xb + s−W s
bW +Mz

(4)
bc ≥ xc + µ−Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|∃l ∈ L s.t. yLbl = 1

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yLb` = 0 of yLbl = 1∑

l∈L
(1− z(5)

cl ) ≥ 1 ∀c ∈ B|yc` = 1

27



6 De Schoonheid van het Patroon

Een typisch door de twee fasen aanpak gegenereerd patroon ziet er als in figuur 12.

Figuur 12: Een patroon waarin stenen niet overlappen en elke voeg wordt onderbroken

Geen enkel paar stenen overlapt, en noch horizontale noch verticale voegen lopen door. Toch is het de
vraag of het gegenereerde patroon mooi is. De schoonheid van een patroon is uiteraard erg subjectief en
niet eenvoudig in wiskundige formules uit te drukken. Desalniettemin kunnen we in patronen bepaalde
concrete eigenschappen vinden die een negatief aandeel hebben in de schoonheid van het patroon. In
figuur 12 zijn ’clusters’ van stenen van gelijke types te vinden. Bijvoorbeeld de vier groene stenen recht
boven elkaar in het midden en de grote gele stenen bovenin naast elkaar. Over het algemeen vindt
men een patroon mooier als stenen met gelijke types meer verspreid zijn. In deze subsectie geven we
verschillende voorwaarden en doelfuncties om de spreiding van stenen met gelijke types te bevorderen.

6.1 Het Verticaal Verspreiden van Stenen

Zoals we in de probleemomschrijving van sectie 2 hebben beschreven, is één van onze doelen het ver-
spreiden van de stenen. Omdat het bedekken van een maximaal oppervlakte onze prioriteit is, vervangen
we de eerste fase door twee nieuwe fases, 1.1 en 1.2. In fase 1.1 zoeken we de maximaal te bedekken
oppervlakte O. In fase 1.2 kiezen we de lagen van de stenen zo, dat stenen met gelijke soorten zo goed
mogelijk over de lagen verspreidt worden, waarbij oppervlakte O gevuld wordt. Het model in fase 1.1
is dus eigenlijk precies gelijk aan het model dat we in sectie 3.2.3 hebben beschreven. Voor fase 1.2
gebruiken we wederom dezelfde beslissingsvariabelen, parameters en voorwaarden als in het model van
sectie 3.2.3, alleen nu voegen we een extra voorwaarde toe, die ervoor zorgt dat het maximale oppervlakte
O behaald wordt: ∑

i∈T

∑
l∈L

yliwihi = O (47)

Aangezien we nu hoe dan ook het maximale oppervlakte behalen, kunnen we met een nieuwe doelfunctie
de stenen verspreiden. Hiervoor gebruiken we een doelfunctie die de som van de kwadraten van de
variabelen yil minimaliseert. Dit werk als volgt. Stel dat er een oplossing bestaat met yil = n + 1 en
yik = n − 1. In dit geval leveren deze variabelen een bijdrage van (n + 1)2 + (n − 1)2 = 2n2 + 2 aan
de doelfunctie, terwijl we door de stenen te verspreiden met yil = n en yik = n deze een bijdrage van
slechts 2n2 leveren aan de doelfunctie. Door de som van de kwadraten te minimaliseren, verspreiden we
de stenen:

min
∑
i∈T

∑
l∈L

y2
il (48)
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Het minimaliseren van de som van de kwadraten zorgt ervoor dat zo min mogelijk stenen met gelijke
types in precies dezelfde lagen terecht komen. Daarentegen wordt er geen rekening gehouden met stenen
die slechts 1 of 2 lagen van elkaar verwijderd zijn. Ook wordt er slechts op de basislaag van de stenen
gelet. Bij de volgende doelfunctie wordt wel rekening gehouden met de afstand tussen de lagen waarin
stenen van gelijke types worden geplaatst. Voor k ≥ l is het aantal lagen tussen k en l gelijk aan
min(k − l, l − k + L). Omdat we willen dat de stenen zo ver mogelijk uit elkaar liggen, geven we
elke combinatie yilyik een gewicht mee dat omgekeerd evenredig is aan de afstand tussen de stenen:
−min(k − l, l − k + L)

min
∑
i∈T

∑
l∈L

∑
k∈L|k≥l

−min(k − l, l − k + L)yilyik (49)

Merk op dat beide doelfuncties kwadratisch zijn, waardoor ons model niet meer met standaard MILP-
technieken opgelost kan worden en de rekentijd groter is. Echter blijkt dat in de praktijk de rekentijd
in de tweede fase dusdanig groter is, dat een kwadratische doelfunctie in de eerste fase geen beperkende
factor is.

6.2 Clusters Beperken

In sectie 6.1 hebben we de stenen verticaal verspreid met een kwadratische doelfunctie. Het is een
minder goed plan om de stenen horizontaal te verspreiden met een kwadratische doelfunctie, omdat het
horizontaal plaatsen van stenen gebeurt in de tweede fase. Omdat we hierbij veel meer binaire variabelen
gebruiken, zal een kwadratische doelfunctie de rekentijd dusdanig verhogen dat het met de hand sneller
gaat. Gelukkig kunnen we de stenen ook verspreiden door het aantal stenen van een gelijk type dat elkaar
raakt te beperken. Hiervoor moeten we eerst raken definiëren. Twee stenen b en c raken elkaar als ze
horizontaal of verticaal een gemeenschappelijke zijde hebben, of als ze diagonaal een gemeenschappelijk
punt hebben. Stenen b en c raken elkaar dus niet als er boven, onder en in de lagen van steen b een
laag is waar c niet in zit. Om dit te omschrijven in lineaire voorwaarden, creëeren we na de eerste
fase voor elke steen en laag binaire raaklaag parameters yTbl en yLTbl . yTbl = 1 voor alle lagen l waarin
b zich bevindt zonder het patroon te doorbreken en één laag boven deze lagen mits ook deze laag het
patroon niet doorbreekt en 0 voor andere lagen. yLTbl = 1 voor alle lagen waarin b zich bevindt na het
patroon te hebben doorbroken en één laag daarboven en 0 voor andere lagen. Een verduidelijking van
deze variabelen is te zien in figuur 13

b′

b

1

2

3

4 yT
b3 = 1, yTL

b3 = 0

yT
b2 = 1, yTL

b2 = 0

yT
b0 = 0, yTL

b0 = 1

yT
b1 = 0, yTL

b1 = 1
l

Figuur 13: De lagen, onderlagen, raaklagen en raakonderlagen van steen b

We introduceren de geheeltallige parameter Ti ∈ N. We willen dat een steen van type i zo min mogelijk
meer dan Ti stenen van hetzelfde type raakt. Hierbij introduceren we een positieve geheeltallige excess
variabele σb ∈ N+ die aangeeft hoeveel stenen van hetzelfde type i een steen b meer raakt dan Ti.

We gebruiken voorwaarden op een soortgelijke manier als voor het voorkomen van overlap als in de
tweede fase van sectie 4. Er zijn alleen drie verschillen. Het eerste verschil is dat we nu kijken naar
stenen van gelijke types die een raaklaag gemeenschappelijk hebben. Een tweede verschil is dat er nog
een extra ruimte ε tussen de stenen moet, zodat ze elkaar daadwerkelijk niet raken. Hiervoor gebruiken
we ε =GGD(W,w1, w2, . . . )
Het is mogelijk dat xb+wb+ε buiten het basispatroon ligt. Daarom introduceren we de volgende binaire
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variabele.

WT
b =

{
1 als xb + wb + ε buiten het basispatroon ligt
0 in andere gevallen

(50)

(51)

Dit leidt tot de volgende voorwaarde.

0 ≤ xb + wb + ε−WT
b W ≤W ∀b ∈ B (52)

(53)

Een derde verschil is dat we raken in tegenstelling tot overlap niet geheel verbieden. In plaats daarvan is
ons doel dat een steen van type i zo min mogelijk meer dan Ti stenen van hetzelfde type raakt. Hiervoor
introduceren we de binaire variabele z(6)

cb die aangeeft of steen b steen c van rechts raakt.

z
(6)
cb =

{
0 als b c niet van rechts raakt
1 in andere gevallen

(54)

We introduceren tevens de binaire variabele z(7)
cb die aangeeft of stenen b en c elkaar raken.

z
(7)
cb =

{
0 als b en c elkaar niet raken
1 in andere gevallen

. (55)

Dit leidt analoog aan (23) en (24) tot de volgende voorwaarden:

Mz
(6)
bc + xc −WcW ≥ xb + wb + ε−WT

b ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTcl = 1, tb = tc (56)

z
(6)
bc + z

(6)
cb ≤ 1 + z

(7)
bc −WT

c −WT
c ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTcl = 1, tb = tc (57)

Voor stenen c met een onderlaag introduceren de binaire parameter WTs
c

WTs
c =

{
1 als xc + wc + s−W s

cW + ε buiten het basispatroon ligt
0 in andere gevallen

(58)

(59)

0 ≤ xc + wc + s+ ε−W s
cW −WTs

c W ≤W ∀c ∈ B|∃l ∈ LyTLcl = 1 (60)

We introduceren de binaire variabele z(8)
cb die aangeeft of steen b in zijn onderlaag steen c van rechts

raakt.

z
(8)
cb =

{
0 als b c niet van rechts raakt
1 in andere gevallen

(61)

Dit leidt tot de volgende voorwaarden:

xc + s−W s
c ≥ xb + wb + ε−WT

b W −Mz
(8)
bc ∀b 6= c ∈ B|∃l ∈ Ls.t.yTbl = yTLcl = 1, tb = tc (62)

Mz
(8)
cb + xb ≥ xc + wc + s+ ε−W s

cW −WTs
c W ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTLcl = 1, tb = tc

(63)

z
(8)
bc + z

(8)
cb ≤ 1−WTs

c −Wb + z
(7)
bc + z

(7)
cb ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTLcl = 1, tb = tc

(64)
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Nu kunnen we eenvoudig tellen hoeveel stenen van hetzelfde type elke steen raakt.

∑
c∈B|tc=i

z
(7)
bc ≤ Ti + σb∀i ∈ T,∀b ∈ B|tb = i (65)

Tenslotte willen we zoals gezegd het aantal stenen σb dat meer wordt geraakt dan ≤ Ti minimaliseren.
Hiervoor gebuiken we de volgende doelfuntie:

min
∑
b∈B

σb

6.3 Het Verschoven Cyclische Model Met Onderbreken, Kwadratisch lagen
kiezen en Clusters beperken

Met de bovenstaande parameters, variabelen en voorwaarden ziet het model er als volgt uit.

Fase 1.1:
Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen

D′iml =

{
1 m− l − 1 mod L ≤ hi − 2
0 in andere gevallen.

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

max
∑
i∈T

∑
l∈L

yliwihi

Fase 1.2:
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Parameters

wi ∈ N de breedte van steen van type i
hi ∈ N het aantal lagen van steen van type i
W ∈ N de breedte van het patroon
L ∈ N het aantal lagen in het patroon
ui ∈ N het maximaal aantal te plaatsen stenen van type i
li ∈ N het minimaal aantal te plaatsen stenen van type i

Diml =

{
1 m− l mod L ≤ hi − 1
0 in andere gevallen

D′iml =

{
1 m− l − 1 mod L ≤ hi − 2
0 in andere gevallen.

O ∈ R de maximaal te bedekken oppervlakte berekend in fase 1.1

Variabelen

yli ∈ N het aantal stenen van type i met basislaag l

Doelfunctie

min
∑
i∈T

∑
l∈L

y2
il

Voorwaarden

∑
l∈L,i∈T

Dilmwiyli ≤W ∀m ∈ L

∑
i∈T,l∈L

D′imlyli ≥ 1 ∀m ∈ L

∑
i∈T

∑
l∈L

yliwihi = O

Fase 2:

Parameters

wb ∈ N de breedte van steen b

ybl =

{
1 als steen b zich (onder andere) in laag l bevindt
0 in andere gevallen

yLbl =

{
1 als steen b zich (onder andere) in onderlaag l bevindt
0 in andere gevallen

yTbl =

{
1 als steen b zich (onder andere) in raaklaag l bevindt
0 in andere gevallen

yTLbl =

{
1 als steen b zich (onder andere) in onderraaklaag l bevindt
0 in andere gevallen

ε = GGD(W,w1, w2, . . . )
µ ∈ R de marge waarbinnen een voeg als doorlopend wordt beschouwd
` ∈ N de bovenste laag

M = 3W
Ti ∈ N het aantal stenen van gelijk type dat een steen van type i mag raken

32



Variabelen

xb ∈ R de horizontale positie van steen b

s ∈ R de horizontale verplaatsing van het patroon
σb ∈ N+ het aantal stenen van hetzelfde type i dat een steen b meer raakt dan Ti

Wb =

{
1 als steen b het patroon horizontaal doorbreekt
0 in andere gevallen

W s
b =

{
1 als xb + s buiten het basispatroon ligt
0 in andere gevallen

W s2
b =

{
1 als b het patroon horizontaal doorbreekt in een onderlaag
0 in andere gevallen

W−µc =

{
1 als xc − µ buiten het basispatroon ligt
0 in andere gevallen

Wµ
c =

{
1 als xc + µ buiten het basispatroon ligt
0 in andere gevallen

WT
b =

{
1 als xb + wb + ε buiten het basispatroon ligt
0 in andere gevallen

WTs
b =

{
1 als xb + wb + s−W s

bW + ε buiten het basispatroon ligt
0 in andere gevallen

zbc =

{
0 als steen c zich rechts van steen b bevindt
1 in andere gevallen

z
(2)
bc =

{
0 als c zich in zijn onderlaag rechts van b die geen onderlaag heeft bevindt
1 in andere gevallen

z
(2)
cb =

{
0 als b zich in zijn onderlaag rechts van c bevindt
1 in andere gevallen

z
(3)
bc =

{
0 als xc minimaal een marge µ rechts van xb + s−W s

bW ligt
1 in andere gevallen

∀b|yLb0 = 1,∀c|yc` = 1

z
(4)
bc =

{
0 als xb minimaal een marge µ rechts van xc ligt
1 in andere gevallen

∀b|yb` = 0,∀c|yc` = 1

z
(4)
bc =

{
0 als xb + s−W s

bW minimaal een marge µ rechts van xc ligt
1 in andere gevallen

∀b|yLb0 = 1,∀c|yc` = 1

z
(5)
cl =

{
0 als de voeg op xc in laag l wordt onderbroken
1 in andere gevallen

z
(6)
bc =

{
0 als c b van rechts raakt
1 in andere gevallen

z
(8)
bc =

{
0 als c b in een onderlaag van rechts raakt
1 in andere gevallen

z
(7)
cb =

{
0 als b en c elkaar raken
1 in andere gevallen
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min
∑
b∈B

σb

Voorwaarden

0 ≤ xb ≤W − ε ∀b ∈ B

0 ≤ xb + wb −WbW ≤W ∀b ∈ B

0 ≤ xb + s−W s
b ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1

0 ≤ xb + wb + s−W s
bW −W s2

b W ≤W ∀b ∈ B|∃l ∈ L s.t. yLbl = 1

0 ≤ xc − µ+W−µc W ≤W ∀c ∈ B|yc` = 1
0 ≤ xc + µ−Wµ

c W ≤W ∀c ∈ B|yc` = 1

0 ≤ xb + wb + ε−WT
b W ≤W ∀b ∈ B

0 ≤ xc + wc + s+ ε−W s
cW −WTs

c W ≤W ∀c ∈ B|∃l ∈ LyTLcl = 1

Mzbc + xc ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1
zbc + zcb ≤ 1−Wb −Wc ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = ycl = 1

Mz
(2)
bc + xc + s−W s

cW ≥ xb + wb −WbW ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

Mz
(2)
cb + xb − s+W s

cW ≥ xc + wc −W s2
c W ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

z
(2)
bc + z

(2)
cb ≤ 1−WbW −W s2

c ∀b 6= c ∈ B|∃l ∈ L s.t. ybl = yLcl = 1

xb ≤ xc − µ+W−µc W +Mz
(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0

xb +Mz
(4)
bc ≥ xc + µ−Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yb` = 0, ybl = 1

xb + s−W s
bW ≤ xc − µ+W−µc W +Mz

(3)
bc ∀c ∈ B|yc` = 1,∀b ∈ B|∃l ∈ L s.t. yLbl = 1

xb + s−W s
bW +Mz

(4)
bc ≥ xc + µ+Wµ

c W ∀c ∈ B|yc` = 1,∀b ∈ B|∃l ∈ L s.t. yLbl = 1

z
(3)
bc + z

(4)
bc ≤ 1 + 2z(5)

cl − (W−µb +Wµ
b ) ∀l ∈ L,∀c ∈ B|yc` = 1,∀b ∈ B|yLb` = 0 of yLbl = 1∑

l∈L
(1− z(5)

cl ) ≥ 1 ∀c ∈ B

Mz
(6)
bc + xc ≥ xb + wb + ε−WT

b ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTcl = 1, tb = tc

z
(6)
bc + z

(6)
cb ≤ 1 + z

(7)
bc −WT

b −WT
c ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTcl = 1, tb = tc

Mz
(8)
bc + xc + s−W s

c ≥ xb + wb + ε−WT
b W ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTLcl = 1, tb = tc

Mz
(8)
cb + xb ≥ xc + wc + s+ ε−W s

cW −WTs
c W ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTLcl = 1, tb = tc

z
(8)
bc + z

(8)
cb ≤ 1−WTs

c −Wb + z
(7)
bc + z

(7)
cb ∀b 6= c ∈ B|∃l ∈ L s.t. yTbl = yTLcl = 1, tb = tc

∑
c∈B|tc=i

z
(7)
bc ≤ Ti + σb ∀i ∈ T,∀b ∈ B|tb = i
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7 Alternatieve Modellen

Er zijn andere mogelijkheden om ons probleem te modelleren. We hebben de volgende varianten onder-
zocht.

7.1 Een Alternatief voor Cycliciteit

In sectie 4 hebben we het model cyclisch gemaakt door Wb toe te voegen. In plaats van deze variabele,
kunnen we het model ook cyclisch maken door te eisen dat als xb > xc + wc, moet gelden dat xc >
xb + wb −W . In dit geval mag de rechterzijde van een steen dus buiten het model vallen:

0 ≤ xb ≤W ∀b ∈ B (66)

Mzxbc + xc ≥ xb + wb ∀b 6= c ∈ B|∃l ∈ Ls.t.ybl = ycl = 1 (67)
Mzxbc + xb ≥ xc + wc −W ∀b 6= c ∈ B|∃l ∈ Ls.t.ybl = ycl = 1 (68)
zbc + zcb ≤ 1 ∀b 6= c ∈ B|∃l ∈ Ls.t.ybl = ycl = 1 (69)

(70)

We hadden dit model aanvankelijk gëımplementeerd, maar bij de horizontale verplaatsing aan het model
zagen we geen andere optie dan alsnog binaire variabelen W s

b toe te voegen. Vandaar dat we in het
gehele model met binaire variabelen hebben gewerkt.

7.2 Een Alternatief voor het Onderbreken van Verticale Voegen

Voor het onderbreken van verticale voegen, kijken we naar de linkerzijden van alle stenen in de bovenste
laag, zoals beschreven in sectie 5. Aanvankelijk hadden we het onderbreken van verticale voegen op een
eenvoudigere manier gemodelleerd, door een verzameling H = [0, . . . ,W − 1] van horizontale posities te
definiëren en te eisen dat op elk van deze horizontale posities h ∈ H een voeg wordt onderbroken. We
introduceren we de volgende binaire parameters:

W−µh =

{
1 als h− µ buiten het basispatroon ligt
0 in andere gevallen

(71)

Wµ
h =

{
1 als h+ µ buiten het basispatroon ligt
0 in andere gevallen

(72)

(73)
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En we introduceren de volgende binaire variabelen:

z
(9)
bh =

{
0 als xb minimaal een bepaalde marge µ links van h ligt
1 in andere gevallen

(74)

z
(10)
bh =

{
0 als xb minimaal een bepaalde marge µ rechts van h ligt
1 in andere gevallen

(75)

z
(11)
bh =

{
0 als de linkerzijde van b in zijn onderlagen minimaal µ links van h ligt
1 in andere gevallen

(76)

z
(12)
bh =

{
0 als de linkerzijde van b in zijn onderlagen minimaal µ rechts van h ligt
1 in andere gevallen

(77)

z
(13)
hl =

{
0 als de linkerzijde van geen enkele steen b in laag l ∈ L minder dan µ van h afligt
1 in andere gevallen

(78)

In plaats van voorwaarden (37) tot en met (46) gebruiken we nu de volgende voorwaarden:

xb ≤ h− µ+W−µh W +Mz
(9)
bh ∀h ∈ H∀b ∈ B (79)

xb +Mz
(10)
bh ≥ h+ µ−Wµ

hW ∀h ∈ H,∀b ∈ B (80)

z
(9)
bh + z

(10)
bh ≤ 1 + 2z(13)

hl − (W−µh +Wµ
h ) ∀l ∈ L,∀h ∈ H,∀b ∈ B|ybl = 1 (81)

xb + s−W s
bW ≤ xc − µ+W−µh W +Mz

(11)
bh ∀h ∈ H,∀b ∈ B|∃l ∈ L s.t. yLbl = 1 (82)

xb + s−W s
bW ≥ h+ µ+Wµ

hW −Mz
(12)
bh ∀h ∈ H,∀b ∈ B|∃l ∈ L s.t. yLbl = 1 (83)

z
(11)
bh + z

(12)
bh ≤ 1 + 2z(13)

hl − (W−µh +Wµ
h ) ∀l ∈ L,∀h ∈ H,∀b ∈ B|yLb` = 0 (84)∑

l∈L
(1− z(13)

hl ) ≥ 1 ∀h ∈ H (85)

Hoewel dit model een stuk simpeler oogt, zijn er veel meer binaire variabelen, met name als de stenen
grote breedtes hebben. Het aantal horizontale posities is namelijk veel groter dan het aantal stenen in
de bovenste laag.

7.3 Een Alternatief voor de Gehele Tweede Fase

Voor een variatie op ons model, gebaseerd op [2] introduceren we een verzameling H van horizontale
posities. In de tweede fase definieren we in plaats van een continue varibele xb, een binaire variabele
xbh voor elke horizontale positie h ∈ H, die aangeeft dat de linker onderhoek van steen b ∈ B zich
op horizontale positie h bevindt als xbh = 1. Dit resulteert in een simpeler model. We definieren de
parameters obhh′ en oLbhh′ voor b ∈ B, h ∈ H, h′ ∈ H die respectievelijk aangeven dat een steen b zich
(onder andere) op positie h′ zou bevinden als zijn linker onderhoek zich op positie h bevindt als obhh′ = 1
en dat een steen b die het de bovenkant van het patroon doorbreekt zich in een de onderste lagen (onder
andere) op positie h′ zou bevinden als zijn linker onderhoek zich op positie h bevindt als oLbhh′ = 1. Dus
obhh′ = 1 voor

h ≤ h′ ≤ h+ wb − 1 ∪ h−W ≤ h′ ≤ h+ wb − 1−W (86)

en obhh′ = 0 in andere gevallen.

En oLbhh′ = 1 voor

h+ s ≤ h′ ≤ h+ s+ wb − 1 ∪ (87)
h−W ≤ h′ ≤ h+ wb − 1−W ∪ (88)
h−W ≤ h′ ≤ h+ wb − 1−W (89)
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en oLbhh′ = 0 in andere gevallen.

Het is belangrijk dat we in deze vergelijkingen de horizontale positie waar steen b eindigt niet meerekenen.
Nu kunnen we namelijk voorkomen dat stenen overlappen door te eisen dat elke horizontale positie in
elke laag slechts door één steen wordt bedekt :

∑
h∈H

 ∑
b∈B|zbl=1

obhh′xbh +
∑

c∈B|zL
bl=1

oLbhh′xbh

 ≤ 1 ∀h′ ∈ H,∀l ∈ L (90)

Daarnaast moet elke steen precies éénmaal worden geplaatst:∑
h∈H

xbh = 1 ∀b ∈ B (91)

De voorwaarde dat elke voeg moet worden onderbroken is ook een stuk eenvoudiger te modelleren. Een
voeg op een horizontale positie wordt onderbroken als op elke horizontale positie in tenminste één laag
geen linker rand van een steen wordt geplaatst, dus als de som van de lengtes van alle stenen kleiner is
dan de patroonhoogte H.

∑
b∈B

xbh

(∑
l∈L

zbl + xb,h−s mod W

∑
l∈L

zLbl

)
≤ H − 1 ∀h ∈ H (92)

Voorkomen dat stenen van dezelfde types elkaar aanraken gaat op een soortgelijke manier als in model uit
sectie 6. Analoog aan de lagen en raaklagen introduceren we nu de binaire parameter oTbhh′ die aangeeft
dat een steen b op positie h positie h′ raakt als oTbhh′ = 1. Ook introduceren we de binaire parameter
oTLbhh′ die aangeeft dat een steen b op positie h die de bovenkant van het patroon doorbreekt positie h′ in
de onderste lagen raakt als oTLbhh′ = 1.

oTbhh′ =

{
1 als h ≤ h′ ≤ h+ wb ∪ h−W ≤ h′ ≤ h+ wb −W
0 in andere gevallen

(93)

oTLbhh′ =


1 als h+ s ≤ h′ ≤ h+ s+ wb∪

h−W ≤ h′ ≤ h+ wb −W∪
h−W ≤ h′ ≤ h+ wb −W

0 in andere gevallen

(94)

We voorkomen clustering door te eisen dat in geen enkele laag twee stenen van gelijke types i elkaar
raken als Ti = 0

∑
h∈H

 ∑
b∈B|zT

bl=1,tb=i

oTbhh′xbh +
∑

c∈B|zT L
cl =1

oTLbhh′xbh

 ≤ 1 + Ti ∀i ∈ T,∀h′ ∈ H,∀l ∈ L (95)

Helaas is het in dit model slechts mogelijk om aan te geven dat 0 of 1 stenen elkaar mogen raken
met Ti = 0 respectievelijk Ti = 1. Om clusters van maximaal twee stenen toe te staan, moeten we
vergelijkbare voorwaarden gebruiken aan die in 6. Een andere manier om stenen van gelijke types meer
te spreiden die in plaats van, of in combinatie met de vorige voorwaarden gebruikt kan worden is door
met een kwadratische doelfunctie de verdeling van stenen met gelijke types over horizontale posities te
spreiden:

min
∑
t∈T

∑
h∈H

∑
b∈B|tb=i

x2
bh (96)
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Voordelen van deze methode zijn dat de voorwaarden veel eenvoudiger zijn en dat de schoonheid
bevorderd kan worden met een kwadratische doelfunctie. Een nadeel is dat er met name bij grote
stenen en patronen erg veel horizontale posities zijn wat veel variabelen en voorwaarden tot gevolg heeft.

7.4 Een discrete horizontale verplaatsing

We hebben in sectie 4.2 kort genoemd dat het mogelijk is dat een horizontale verplaatsing van s tot gevolg
heeft dat er minder voegen onderbroken hoeven te worden. Om dit duidelijk te maken introduceren
we een verzameling H van horizontale posities [0,. . . ,W-1]. Stel, in een patroon met patroonbreedte
W = 8 wordt de verticale voeg op horizontale positie 1 onderbroken. Bij een horizontale verplaatsing
van bijvoorbeeld s = 3 worden in hogere patronen achtereenvolgens voegen op horizontale posities
1, 4, 7, 2, 5, 0, 3, 6, 1, 4, . . . onderbroken. Echter, bij s = 4 worden slechts voegen op horizontale posities
4, 1, 4, 1, . . . onderbroken. In dit geval moeten naast voegen op horizontale positie 1 ook voegen op
horizontale posities (2 of 6), (3 of 7) en (4 of 0) worden onderbroken. De horizontale posities waar voegen
onderbroken worden hangen dus af van de grootste gemeenschappelijke deler van de patroonbreedte W
en de verplaatsing s. Omdat deze operatie niet lineair is in s is het onmogelijk deze eigenschap te
modelleren met een continue s. Een mogelijke oplossing is om in plaats van een continue s de binaire
variabelen s0, s1, . . . , sW−1 toe te voegen, waarbij sx = 1 een horizontale verplaatsing van x betekent.
Omdat we slechts 1 horizontale verplaatsing hebben, geldt:∑

x∈H

sx = 1 (97)

Nu kunnen we overal s vervangen door
∑
x∈H

sxs. Als de horizontale verplaatsing copriem is met de

patroonbreedte W , dan hoeft er slechts 1 voeg onderbroken te worden. Anders creëeren we GGD(W, s)
verzamelingen Vn ⊂ H van W

GGD(W,s) voegen op afstand GGD(W, s) van elkaar. Zodra één voeg uit een
verzamelingen wordt onderbroken, zullen in hogere patronen alle voegen uit deze verzameling worden
onderbroken. Daarom hoeft er in elke verzameling slechts 1 voeg onderbroken te worden. We hebben
besloten de horizontale verplaatsing continu te houden, omdat met name voor grote stenen, het aantal
horizontale posities erg groot is, wat resulteert in een groot aantal binaire variabelen. Daarnaast zijn de
voordelen van een discrete horizontale verplaatsing klein, omdat het in de praktijk niet moeilijk blijkt
om alle voegen te onderbreken.

7.5 Variabele laaghoogten

In de praktijk is het mogelijk dat de verschillende lagen l ∈ L verschillende hoogtes hl hebben. Als dit
het geval is, kunnen we niet meer zeggen dat een steentype i uit hi lagen bestaat, aangezien dit aantal nu
afhangt van de verschillende lagen. We zullen daarom in deze subsectie met hi de hoogte van een steen
van type i aangeven. Het gebruik van variabele laaghoogten heeft tot gevolg dat we in de eerste fase per
steentype afzonderlijk moeten kijken in welke lagen m een steentype i met basislaag l zich bevindt. Een

steen van steentype t met basislaag l bevindt zich ook in laag m voor m > l als hi >
m−1∑
k=l

hk. Een steen

van steentype t met basislaag l bevindt zich ook in onderlaag m voor m < l (wat alleen kan als deze

steen het patroon verticaal doorbreekt) als hi >
∑̀
k=l

hk +
m−1∑
k=0

hk. Daarom passen we Diml als volgt aan:

Diml =



1 m > l, hi >

m−1∑
k=l

hk

1 m = l

1 m < l, hi >
∑̀
k=l

hk +
m−1∑
k=0

hk

0 in andere gevallen.
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Daarnaast kunnen we niet elk steentype in elke basislaag plaatsen. Als een steentype bijvoorbeeld hoogte
2 heeft, laag 1 heeft hoogte 1, en laag 2 hoogte 2, dan kan dit steentype niet laag 1 als basislaag hebben,
omdat de bovenkant van een steen van dit type in het midden van laag 2 zou uitkomen. Een steentype i
mag dus niet in basislaag l worden geplaatst als de bovenkant van een steen van type i in dit geval niet
samenvalt met de onderkant van een andere laag m. Daarom voegen we de volgende voorwaarden toe:

yli = 0∀l ∈ L, i ∈ T,@k ∈ Ls.t

m−1∑
k=l

hk = hi of
∑̀
k=l

hk +
m−1∑
k=0

hk = hi (98)

7.6 Gebroken stenen met negatieve breedte

In sectie 2 hebben we ons probleem eenvoudig omschreven door de lengten en breedte van voegen bij
die van de stenen op te tellen. Verder hebben we de voegbreedte nergens meer genoemd. In de meeste
gevallen is deze ook niet nodig, maar in de praktijk kan dit toch een probleem opleveren: Als we na
de eerste fase de verzameling B van stenen creëeren, kan het zijn dat we een gebroken steen b creëeren
met een breedte wb die kleiner is dan de voegbreedte wv, wat in de praktijk inhoudt dat deze steen een
negatieve breedte heeft. Om dit uit te sluiten, eisen we in fase 1 dat de ruimte die over is in een laag of
groter dan of gelijk is aan de voegbreedte, of precies 0 is. Hiervoor gebruiken we een binaire variabele zl.

zl =

{
1 als er in laag 0 geen ruimte over is
0 in andere gevallen

(99)

In plaats van voorwaarden 11 gebruiken we nu de volgende voorwaarden:∑
l∈L,i∈T

Dilmwiyli ≤W − wv + wvzl ∀m ∈ L (100)

∑
l∈L,i∈T

Dilmwiyli ≥ zlW ∀m ∈ L (101)
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8 Complexiteit van het probleem

Hoewel onze methode prima werkt voor instanties met kleine hoeveelheden stenen, bestaan er instanties
met grote hoeveelheden stenen, waarvoor onze methode niet binnen redelijke tijd een oplossing vindt.
Echter ligt dit meer aan het probleem dan aan onze methode. In deze sectie laten we zien dat het
probleem dusdanig complex is, dat er geen efficiënte oplosmethode bestaat. We doen dit door het
probleem ’partitie’, waarvan we weten dat dit probleem np-hard is, te reduceren tot ons probleem.

8.1 Reductie en partitie

Het partitie-probleem is als volgt: Gegeven is een verzameling S van gehele getallen i1, i2, . . . , in. Is S
op te delen in twee disjuncte subverzamelingen S1 en S2 die S overdekken, zo dat

∑
i∈S1

ij =
∑
i∈S2

ij? We

weten van partitie dat er waarschijnlijk geen oplosmethode bestaat die dit probleem in polynomiale tijd
oplost. Reductie werkt als volgt: Als we elke instantie van partitie kunnen oplossen door deze instantie
te omschrijven als een instantie van ons probleem, dan kunnen we elke instantie van partitie oplossen
met een oplosmethode van ons probleem. Omdat we weten dat partitie waarschijnlijk niet efficiënt op te
lossen is, is ons probleem waarschijnlijk ook niet efficiënt op te lossen. Als we niet eisen dat alle voegen
onderbroken moeten worden, is de reductie eenvoudig, en deze geven we in subsectie 8.2. Hoewel het
eisen dat alle voegen onderbroken moeten worden het probleem waarschijnlijk niet eenvoudiger maakt,
is dit niet triviaal, en misschien niet eens waar. Daarom geven we in subsectie 8.3 een reductie waarbij
we wel eisen dat voegen onderbroken moeten worden.

8.2 Reductie zonder het onderbreken van voegen

Als we niet eisen dat alle voegen onderbroken hoeven te worden kunnen we partitie als volgt reduceren
tot ons probleem. Voor elke instantie van partitie I1 kunnen we een instantie van ons probleem I2
creëeren. Hiervoor nemen we een patroon bestaande uit 2 lagen met W = 1

2

∑
ij∈S

ij Voor elk element

ij ∈ S creeëren we een steentype t die 1 laag hoog is met breedte ij en die precies 1 keer geplaatst moet
worden lt = ut = 1. Nu is de som van de oppervlakten van de stenen precies gelijk aan de oppervlakte
van het patroon.
Als er een oplossing bestaat voor I2, dan zijn alle stenen over de twee lagen zijn verdeeld. Er zijn geen
gebroken stenen omdat de som van de oppervlaktes van de stenen gelijk is aan de oppervlakte van het
patroon en alle stenen geplaatst moeten worden. Als we bij I1 nu de breedtes van de stenen in de ene
laag in S1 stoppen en de breedtes van de stenen in de andere laag in S2, dan geeft dit een oplossing voor
I1.
Als I1 een oplossing heeft, dan kunnen we de stenen corresponderend met elementen uit S1 in de ene
laag plaatsen en stenen corresponderend met elementen uit S2 in de andere laag. Omdat elke steen zich
slechts in één laag bevindt, kunnen we alle stenen per laag achter elkaar plaatsen zonder dat er overlap
plaatsvindt, en hebben we ook een oplossing voor I2 probleem. Dus als I2 geen oplossing heeft, zal I1
ook geen oplossing hebben.

Een voorbeeld van een oplossing van I2 waarbij S bestaat uit {2, 3, 4, 5, 6} is gegeven in figuur 14a

8.3 Reductie met het onderbreken van voegen

Als we wel eisen dat voegen onderbroken moeten worden, zijn voor een reductie extra stenen nodig die
de voegen onderbreken. Daarnaast is mogen deze extra stenen niet leiden tot extra oplossingen die niet
corresponderen met een partitie. We creëeren onze nieuwe instantie I3 als volgt:
We nemen een patroon bestaande uit 4 lagen met W =

∑
ij∈S

ij + 3 zoals in figuur 14b. Voor elk element

ij ∈ S creeëren we een steentype t die 1 laag hoog is met breedte ij en die precies 1 keer geplaatst
moet worden lt = ut = 1. Daarnaast creëeren we een steentype bestaande uit 3 lagen met breedte 1
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Figuur 14: Een oplossing van een instantie met stenen met breedtes 2,3,4,5 en 6

dat precies 2 keer geplaatst moet worden (in figuur 14b stenen 1 en 4), een steentype bestaande uit 1
laag met breedte

∑
ij∈S

ij + 2 dat precies 2 keer geplaatst moet worden (stenen 2 en 3), en een steentype

bestaande uit 1 laag met breedte 1
2

∑
ij∈S

ij + 1 dat precies 2 keer geplaatst moet worden (stenen 5 en 6).

Wegens symmetrie en de cycliciteit van het patroon, kunnen we steen 1 in lagen 0,1 en 2 plaatsen met
de linkerrand op de linkerrand van het patroon. Nu kunnen stenen 2 en 3 niet in lagen 0 of 2, omdat dit
tot doorlopende voegen leidt. Stenen 2 en 3 passen niet samen in één laag. Daarom plaatsen we de ene
steen (steen 2) in laag 1 en de andere (steen 3) in laag 3. Omdat er in laag 1 geen plek meer is voor steen
4, plaatsen we deze in lagen 2,3 en onderlaag 0. Stenen 5 en 6 passen niet in lagen 1 en 3 en passen ook
niet samen in één laag. Daarom moet één steen (steen 5) in laag 0 en één steen (steen 6) in laag 2. Door
stenen 5 en 6 aan dezelfde kant tussen stenen 1 en 4 plaatsen, ontstaat aan de andere kant in zowel laag
0 als laag 2 een aaneengesloten ruimte die precies 1

2

∑
ij∈S

ij breed is. Alle voegen worden onderbroken en

de voegen van alle stenen die we in deze open ruimtes plaatsen, worden onderbroken door stenen 2 en 3.
Analoog aan het bewijs bij de reductie zonder het onderbreken van voegen kunnen we nu aantonen dat
met een oplossing van I3 ook een oplossing van I1 te vinden is, en dat het ontbreken van een oplossing
voor I3 ook inhoudt dat I1 geen oplossing heeft.
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9 De Oplosbaarheid van de Tweede Stap

Een nadeel van de tweefasen aanpak is dat het mogelijk is dat de stenen in de eerste fase zo over de lagen
worden verdeeld, dater in de tweede fase geen oplossing mogelijk is, terwijl er door de stenen anders
over de lagen te verdelen wel een oplossing mogelijk is. In dit hoofdstuk geven we voorbeelden van
instanties waar er in de tweede fase geen oplossing mogelijk is en voorwaarden die voldoende zijn (maar
niet noodzakelijk) om het bestaan van een oplossing in de tweede fase te garanderen.
Zelfs zonder de voorwaarde dat voegen helemaal moeten doorlopen zijn er voorbeelden van problemen
die geen oplossing hebben.

9.1 Een instantie zonder oplossing

Voor de eerste paar voorbeelden zullen we geen rekening houden met het onderbreken van voegen. In
het eerste voorbeeld gaan we voor het gemak uit van een niet-cyclisch probleem: Een steen moet geheel
binnen het basispatroon geplaatst worden. Zie figuur 15.
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Figuur 15: Een noncyclisch voorbeeld waarin er in de tweede fase geen oplossing mogelijk is

Merk op dat qua oppervlakte elke laag groot genoeg is om de stenen er in te passen. Dit zou dus een
mogelijke oplossing kunnen zijn van de eerste fase. We mogen dus de lagen van de stenen niet meer
veranderen en moeten nu horizontale posities kiezen, zo dat alles past. Stenen 1,2,3 en 4 kunnen alleen
op de manier zoals uitgebeeld in het figuur worden geplaatst (of gespiegeld). Vervolgens zijn er twee
mogelijke horizontale posities voor steen 5, posities 2 en 3. Als we steen 5 op horizontale positie 2
plaatsen zoals in de figuur, dan is er geen plek voor steen 6. En als we steen 5 op horizontale positie
3 plaatsen, dan is er geen plek meer voor steen 7. Er is dus geen oplossing mogelijk. Met behulp van
dit voorbeeld is het eenvoudig aan te tonen dat ook in het cyclische geval een voorbeeld is te verzinnen
waarin geen oplossing mogelijk is, zie figuur 16
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Figuur 16: Een cyclisch voorbeeld waarin er in de tweede fase geen oplossing mogelijk is
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Door één steen toe te voegen die precies alle lagen vult (in dit voorbeeld steen 9) kunnen we voor elk
niet-cyclisch probleem een equivalent cyclisch probleem creëeren.

9.2 Een constructie voor instanties met stenen met maximaal twee lagen

Als in het noncyclische geval elke steen maximaal maximaal twee lagen hoog is, is er altijd een oplossing in

de tweede fase. Deze oplossing is als volgt te construeren: plaats eerst alle stenen b ∈ B met
∑
l∈L

ybl = 2,

dus die in twee lagen geplaatst moeten worden. Plaats deze stenen met even basislaag zover mogelijk naar
links (dus tegen de rand of tegen een al geplaatste steen) en plaats de stenen met een oneven basislaag
zo ver mogelijk naar rechts. In elke laag is het nog niet gevulde deel nu helemaal aaneengesloten. Nu
zijn alleen de stenen die 1 laag hoog zijn nog over, en door deze zo ver mogelijk naar links (of rechts) te
plaatsen, past alles in deze aangeengesloten lege laag, zie ook figuur 17. Hier zijn eerst stenen 1,2,3 en 4
links geplaatst en stenen 5,6 en 7 rechts geplaatst, waarna de rest van de stenen er tussen in passen.
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Figuur 17: Een oplossing voor stenen met maximale hoogte en breedte 2

9.3 Tegenvoorbeelden voor instanties bestaande uit enkel stenen van n × 1
en 1× n

In het noncyclische geval waar elke steen 1 × n of n × 1, n ≥ 3 is, is niet altijd een oplossing mogelijk.
Voor bijvoorbeeld stenen van 1 bij 5 kunnen we het volgende tegenvoorbeeld construeren. Zie figuur 18.
Steen 1 kan niet in kolom 3,4, of 5, Anders zou er geen ruimte zijn voor stenen 2 en 3. Als we steen 1 in
kolom 2 of 6 zouden plaatsen, moeten stenen 2 en 3 dezelfde kolommen en is er nog maar 1 kolom over
voor stenen 4 en 5 die dus zouden overlappen. Steen 1 moet dus aan de rand. Wegens symmetrie maakt
het niet uit of hij in kolom 1 of 7 staat. We kiezen kolom 1.
Nu zijn er twee mogelijkheden voor stenen 4 en 5. (kolom 2 en 7 of andersom) Wederom wegens symmetrie
maakt het geen verschil. We kiezen voor steen 4 kolom 2.
Nu is er slechts 1 plek voor steen 6. Na het plaatsen van deze steen is er geen plek meer voor steen 7.
Er is dus geen oplossing mogelijk. Merk op dat als we voor steen 4 kolom 7 hadden gekozen, stenen 6
en 7 wel zouden passen, maar 8 en 9 niet.

Vergelijkbare tegenvoorbeelden zijn makkelijk te construeren voor grotere n. Voor 1× 4 en 1× 3 is het
echter een stuk moeilijker. We geven ook tegenvoorbeeld voor 1 × 3. Zie figuur 19. Er zijn slechts drie
manieren waarop stenen 6,7 en 8 kunnen staan. In elk van deze manieren staan stenen 2.1, 2.2 en 2.3
naast elkaar. Er zijn slechts drie manieren waarop stenen 9,10 en 11 kunnen staan. In elk van deze
manieren staan stenen 3.1, 3.2 en 3.3 naast elkaar. Omdat de stenen 2.1,2.2 en 2.3 en stenen 3.1,3.2 en
3.3 naast elkaar moeten staan, is de situatie met stenen 1,2.1,2.2,2.3,3.1,3.2,3.3,4 en 5 vergelijkbaar met
die in het 1×5 voorbeeld. Steen 1 moet dus aan de rand en steen 5 of steen 4 moet aan de rand. Wegens
symmetrie maakt het niet uit welke steen. We kiezen steen 5. Nu moeten stenen 9 en 10 in kolommen 1
en 5, en kan noch steen 12 noch steen 13 in kolommen 1 of 5. Hierdoor is er geen plek meer voor steen
14.
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Figuur 18: Geen mogelijke oplossing in het noncyclische geval met stenen van 1x5

9.4 Een constructie voor cyclische instanties met stenen met maximaal drie
lagen

In het cyclische geval hebben we, als alle stenen maximaal 3 lagen hoog zijn, een constructie. Sorteer
alle stenen met twee of drie lagen eerst van kleinste basislaag naar grootste basislaag, dan van kleinste
bovenste laag naar grootste bovenste laag. Plaats nu de eerste steen (het maakt niet uit op welke
horizontale positie, aangezien het patroon toch cyclisch is). Plaats vervolgens de linkerzijde van elke
steen c ∈ B op de positie van de rechterzijde van de daarvoor geplaatste steen b ∈ B, xc = xb + wb.
Dit is altijd mogelijk. Stel namelijk dat een te plaatsen steen c ∈ B zou overlappen met een andere
steen b ∈ B, dan hebben deze stenen een laag l ∈ L gemeenschappelijk. Wegens het sorteren zal elke
steen di ∈ B die tussen b en c geplaatst is een basislaag die lager is dan de basislaag van c hebben
en een bovenste laag die hoger is dan de bovenste laag van b. Alle deze stenen zullen dus ook laag l
gemeenschappelijk hebben. Omdat b en c overlappen en c later is geplaatst, moet de rechterkant van c

minimaal en hele patroonlengte rechts van de linkerzijde van b zijn geplaatst. Dus wb+wc+
∑
i

wdi > W

en dit kan niet, omdat in de eerste fase de stenen zo zijn verdeeld dat de som van de breedtes van alle
stenen in laag l niet groter is dan W .
Omdat de stenen gesorteerd waren van kleinste onderste laag naar grootste onderste laag, zal elke steen
b die later is geplaatst dan een steen c zich niet in een laag onder een laag van c bevinden. Omdat de
stenen daarna van kleinste bovenste laag naar grootste bovenste laag zijn gesorteerd, en stenen alleen
uit 2 of 3 lagen bestaan, zal elke zal elke steen c die eerder is geplaatst dan een steen b zich niet in een
laag hoger dan een laag van b bevinden. Daarom is er, zodra alle stenen die twee of drie lagen hoog
zijn geplaatst zijn, in elke laag een aaneengesloten open ruimte waar we de rest van de stenen (die uit
1 laag bestaan) plaatsen. Voor stenen die het patroon doorbreken geldt hetzelfde argument, maar dan
met onderlagen. We moeten nu de horzontale verplaatsing wel zodanig kiezen dat de laatst geplaatste
steen die het patroon doorbreekt in zijn onderlaag direct links van de eerst geplaatste steen zit. Deze
constructie is dus alleen mogelijk als we werken met een horizontale verplaatsing, of als het patroon niet
verticaal wordt doorbroken. Deze constructie is uitgebeeld in figuur 20. Eerst worden stenen 1 tot en
met 7 gesorteert en geplaatst. Steen 7 doorbreekt het patroon horizontaal en een horizontale verplaatsing
s = 3 zorgt dat steen 7 in zijn onderlaag direct links van steen 1 zit. Vervolgens zijn er in elke laag
aaneengesloten open ruimtes en kunnen we stenen 8,9,10 en 11 plaatsen.
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Figuur 19: Geen mogelijke oplossing in het noncyclische geval met stenen van 1× 3

9.5 Oplossingen als voegen onderbroken moeten worden

Als we wel in acht nemen dat elke voeg onderbroken moet worden, vallen er oplossingen af. Zonder
horizontale verplaatsing is er in een cyclisch 3× 3 of kleiner patroon is helemaal geen oplossing mogelijk.
We geven hier het bewijs voor het 3× 3 geval. Er kunnen geen stenen van lengte of breedte drie worden
gebruikt. Als we dit namelijk wel doen, is de zijde van 3 een doorlopende voeg. Er zijn 3 horizontale en 3
verticale voegen die ergens moeten worden onderbroken. Een steen van 1×2 of 2×1 onderbreekt 1 voeg
en een steen van 2× 2 onderbreekt 2 voegen. Elke voeg die wordt onderbroken kost dus een oppervlakte
van 2. Met een oppervlakte van 9 kunnen we dus geen 6 voegen onderbreken. Voor de patronen kleiner
dan 3× 3 is het bewijs eenvoudiger.

In een cyclisch 4 × 4 patroon zijn er precies 2 oplossingen mogelijk, spiegelingen en verplaatsingen
uitgezonderd. Deze oplossingen zijn te zien in figuur 21. We tonen als volgt aan dat er niet meer
oplossingen mogelijk zijn. We kunnen geen stenen van 1× 4 gebruiken, omdat er aan de lange zijde van
deze stenen zich een doorlopende voeg bevindt. Stenen van 1× 1 onderbreken geen voeg, dus voor elke
oplossing met een steen van 1× 1 kunnen we ook een oplossing vinden waarin we deze stenen weglaten.
We hoeven dus slechts te kijken naar stenen van 1× 2 en 1× 3. Zie figuur 21a. Stel dat we steen 1 van
1× 3 plaatsen. In dit geval moeten de voegen boven en onder de lange zijde van deze steen nog worden
onderbroken. Dit kan alleen door nog een steen (steen 2) van 1 × 3 te plaatsen. Voor deze steen geldt
hetzelfde, dus is nog een steen (steen 3) van 1× 3 nodig. Tenslotte moeten we de voegen onder en boven
steen 3 onderbreken met steen 4. Zoals in figuur 21a te zien is worden de voegen aan de lange zijdes van
steen 4 onderbroken door steen 1. Na het plaatsen van steen 1 werd elke steen op 1 positie gedwongen.
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Figuur 20: Een cyclische oplossing voor stenen met maximale hoogte en breedte 3

Merk op dat er geen ruimte meer is voor een steen van 1 × 2. Er is dus slechts 1 mogelijke oplossing
waarin stenen van 1× 3 voorkomen, en hierin komen geen stenen van 1× 2 voor. Dit houdt in dat, als
er een oplossing is met stenen van 1× 2, hier dus ook geen stenen van 1× 3 in voorkomen.
Zie figuur 21b. Stel dat we steen 1 van 1× 2 plaatsen. In dit geval moeten de voegen boven en onder de
lange zijde van deze steen nog worden onderbroken. Omdat we geen stenen van 1× 3 kunnen gebruiken,
kan dit alleen door nog twee stenen (2 en 3) van 1 × 2 te plaatsen. Voor deze steen geld hetzelfde,
dus plaatsen we stenen 4 en 5 om de voegen aan de lange zijde van steen 2 te onderbreken en plaatsen
we steen 6, die samen met steen 5 de voegen aan de lange zijde van steen 3 onderbreekt. Tenslotte
volstaan stenen 7 en 8 om samen met stenen 2 en 3 de voegen aan de lange zijdes van stenen 4, 5 en
6 te onderbreken. Na het plaatsen van steen 1 werd elke steen op 1 positie gedwongen, spiegelingen en
verplaatsingen van alle stenen uitgezonderd. Merk op dat het hele patroon gevuld is. Er is dus slechts 1
mogelijke oplossing waarin stenen van 1× 2 voorkomen. Er zijn dus precies twee oplossingen.
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Figuur 21: Twee oplossingen voor een cyclisch 4× 4 patroon waarbij alle voegen worden onderbroken

46



10 De Applicatie

Om de in dit verslag beschreven modellen toe te passen hebben we in delphi een applicatie, ’Pattern-
builder’ geschreven. Patternbuilder kan instanties invoeren, laden en opslaan in een Microsoft Access
database. Daarnaast kan Patternbuilder voor elke instantie het juiste MILP opstellen en deze laten
oplossen door de solver CPLEX 12.1. In dit hoofdstuk beschrijven we de mogelijkheden van Pattern-
builder.

10.1 Invoerschermen

Patternbuilder heeft twee invoerschermen. In het steentypesinvoerscherm (zie figuur22) worden de
breedte, hoogte, naam en kleur van steentypes ingevoerd. Merk op dat andere parameters, zoals het
minimaal aantal te gebruiken stenen per type kunnen verschillen per patroon, dus deze worden niet
ingevoerd met het steentypesinvoerscherm. Op deze manier kunnen steentypes worden gebruikt voor
verschillende patronen.

Figuur 22: Het steentypesinvoerscherm

In het patroneninvoerscherm (zie figuur23) kunnen worden de breedte, aantal lagen, hoogte per laag
en de hoogte en breedte van voegen van patronen ingevoerd. Het is mogelijk om afzonderlijke lagen
verschillende hoogtes te geven, zoals beschreven in sectie 7.5. Daarnaast kan nu per steentype i worden
ingevoerd hoeveel stenen van type i er minimaal en maximaal in het patroon mogen worden geplaatst,
hoeveel stenen er van type i minimaal en maximaal mogen worden geroteerd (waarbij voor de applicatie
een geroteerd steentype i als nieuw steentype j wordt beschouwd en het aantal stenen van gelijk type
dat een steen van type i of j mag raken. Het patroon en alle steentypes waarvan er tenminste maximaal
1 steen moet worden geplaatst, worden in de juiste verhouding weergegeven.

10.2 Het Hoofdscherm

In het hoofdscherm (zie figuur24) kunnen opgeslagen patronen worden geladen. Geladen patronen waar
nog geen oplossing voor is gevonden worden op dezelfde manier weergegeven als in het patroneninvoer-
scherm.

10.2.1 Oplosknoppen

Om patternbuilder een oplossing te laten zoeken zijn er drie knoppen, die corresponderen met de drie
fases. Door op de ’Plaats stenen’-knop te drukken creëert Patternbuilder voor elk steentype dat minimaal
één keer geroteerd kan worden een nieuw steentype, zoals beschreven in sectie 3.2.2 beschreven. Vervol-
gens controleert Patternbuilder eerst welke stenen niet in een geheel aantal lagen passen en geeft aan
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Figuur 23: Het patroneninvoerscherm

voor welke stenen dit geldt. Als alle stenen in een geheel aantal lagen passen wordt een MILP voor fase
1 opgesteld en opgelost. Tenslotte worden de stenen in de juiste lagen weergegeven in de patroondisplay.
Merk op dat het hierbij mogelijk is dat de stenen overlappen.
Als vervolgens op de ’Verspreid stenen’-knop wordt gedrukt, word met het model van fase 1.2 uit sectie
6.1 een oplossing gezocht waarbij dezelfde oppervlakte wordt gevuld met ongebroken stenen, maar de
stenen beter over het patroon verspreid zijn. Hierbij gebruiken we doelfunctie 48. Daarna wordt een
verzameling stenen gecreëerd, zoals beschreven in sectie 3.2.4.
Met de ’Plaats stenen’-knop wordt een MILP voor fase 2 opgesteld en opgelost. Daarna worden de stenen
op de juiste positie in de patroondisplay weergegeven, zoals te zien is in figuur 24 Stenen die het patroon
horizontaal doorbreken worden zowel links als rechts weergegeven en stenen die het patroon verticaal
doorbreken worden zowel onder als boven weergegeven. Voor elke knop geldt, dat Patternbuilder een
bericht geeft of binnen de beschikbare tijd een oplossing is gevonden en of deze oplossing al dan niet
gegarandeerd optimaal is.

10.2.2 Opties

Bij het oplossen kan de gebruiker kiezen uit verschillende opties. ’Cyclisch’ geeft aan dat we het cyclische
model uit sectie 4.1.2 gebruiken. ’Horizontale verplaatsing’ geeft aan dat we het verschoven cyclische
model uit sectie 4.2.2 gebruiken. ’Voegen onderbreken’ geeft aan dat we werken met het verschoven
cyclische model met voegen onderbreken uit sectie 5.2, en ’Clusters beperken’ geeft aan dat we werken
met het verschoven cyclische model met voegen onderbreken en clusters beperken uit sectie 6.3.
Daarnaast zijn er drie waarden vrij te kiezen. Bij ’Voeg telt als onderbroken vanaf afstand in mm’ is de
marge µ uit sectie 5 te kiezen. Bij ’Minimale breedte gebroken stenen in mm’ is de minimale breedte
van een gebroken steen te kiezen door deze bij de voorwaarden uit sectie 4.2.2 bij de voegbreedte op te
tellen. Bij ’Tijdlimiet in seconden’ kan de gebruiker bepalen hoe lang CPLEX er over mag doen om een
optimale oplossing te vinden. Als CPLEX nog geen optimale oplossing heeft gevonden als de tijdlimiet is
overschreden, dan geeft Patternbuilder een bericht dat de gevonden oplossing niet gegarandeerd optimaal
is, of dat er geen oplossing is gevonden.

10.2.3 Testtabellen

Een verkregen oplossing wordt niet alleen visueel in de patroondisplay weergegeven, maar de waarden
van verschillende variabelen zijn te lezen in de testtabellen. Een gebruiker zal aan het display genoeg
hebben, maar met name bij het vinden van bugs zijn de testtabellen van pas gekomen.
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Figuur 24: Het hoofdscherm

10.2.4 Oplossingen

Gevonden oplossingen kunnen worden opgeslagen in een Access database. Deze oplossingen bevatten
enkel de afmetingen van het patroon en de afmetingen, positie en kleur van de stenen. Het verwijderen
van patronen of steentypes heeft niet tot gevolg dat deze oplossingen niet meer geladen kunnen worden.
Opgeslagen oplossingen kunnen bij ’Oplossingen’ geladen worden. Met ’Verplaats stenen .. mm naar
rechts/boven’ kunnen alle stenen in een oplossing verplaatst worden als de gebruiker vindt dat dit een
mooier resultaat oplevert. Met de ’Maak SVG’-knop kunnen oplossingen worden opgeslagen met het
Scalable Vector Graphics (SVG) formaat. Hierbij heeft de gebruiker de keuze om al dan niet de rand van
het patroon weer te geven, om de stenen al dan niet in kleur weer te geven, om één patroon of een een
blok van drie bij drie patronen weer te geven, en om in het drie bij drie blok de patronen in het midden
en de hoeken grijs weer te geven. Een voorbeeld van een oplossing is SVG formaat is te zien in figuur 25
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100mm

Figuur 25: De output van Patternbuilder in SVG formaat

11 Resultaten

We hebben onze verschillende modellen getest op een Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz proces-
sor met 2,00GB RAM geheugen. Hierbij hebben we niet alleen gelet op de snelheid van onze methode,
maar hebben we ook subjectief naar de schoonheid van het patroon gekeken. Ten eerste hebben we
gekeken naar drie instanties die zijn getest in [4] om onze resultaten te kunnen vergelijken met de resul-
taten uit dit artikel. Instantie W1 bestaat uit een patroon van 22 lagen met hoogte 1 en breedte 16. Er
is 1 steentype van 3 bij 5. Instantie W2 bestaat uit een patroon van 1000 lagen met hoogte 1 en breedte
1000. Er is 1 steentype van 205 bij 159. Instantie W3 bestaat uit een patroon van 40 lagen met hoogte
1 en breedte 33. Er is 1 steentype van 4 bij 7. Daarnaast is instantie W4 een geroteerde versie van W3,
dus met 33 lagen met hoogte 1 en breedte 40. Er is 1 steentype van 4 bij 7. Bij deze 4 instanties zijn de
voeglengte en voegbreedte 0. Alle stenen zijn onbeperkt te plaatsen en draaien. Daarnaast hebben we
gekeken naar twee theoretische instanties met vier steentypes van respectievelijk 1 bij 1, 1 bij 2, 1 bij 3
en 2 bij 2. In de eerste instantie (T1) bestaat het patroon uit 10 lagen met hoogte 1 en breedte 10. In de
tweede instantie (T2) bestaat het patroon uit 12 lagen met hoogte 1 en breedte 12. Bij beide patronen
zijn zowel de voeghoogte als de voegbreedte 0. Tenslotte hebben we gekeken naar twee instanties met
een realistische verzameling steentypes die ook in de prakijk wordt gebruikt. We hebben steentypes van
respectievelijk 40 bij 210, 50 bij 210, 100 bij 210 en 160 bij 260. De eerste instantie (R1) bestaat uit een
patroon met 8 lagen met breedte 700. Lagen 1, 4 en 7 hebben hoogte 50, en de andere lagen hebben
hoogte 60. De tweede instantie (R2) bestaat uit een patroon met 10 lagen met breedte 1100. Lagen 1,
4, 7 en 10 hebben hoogte 50, en de andere lagen hebben hoogte 60. Bij beide instanties zijn zowel de
voeghoogte als de voegbreedte gelijk aan 10. Daarnaast hebben we gekozen voor een minimale breedte
van gebroken stenen van 30 en een µ van 10. We hebben T1, T2, R1 en R2 op deze instanties getest. Bij
het kiezen en verspreiden van stenen hebben we onderscheid gemaakt tussen niet-cyclisch (NCK, NCV),
cyclisch (CK, CV) en cyclisch met onderbreken (CKO, CVO). We hebben de oplossing van CVO gebruikt
om de stenen te plaatsen met de volgende modellen: niet-cyclisch (NCP), cyclisch (CP), verschoven cy-
clisch (VCP), verschoven cyclisch met voegen onderbreken (VCPO) en verschoven cyclisch met voegen
onderbreken en clusters beperken (VCPOC). Bij VCPOC hebben we voor alle steentpes Ti = 2 genomen.
Bij W1, W2, W3 en W4 hebben we alleen gekeken naar het niet-cylische model, omdat dit vergelijkbaar
is met het model van Wu, waarbij dozen op pallets moeten worden geplaatst. Wel hebben we kleine
tijden afgerond op milliseconden, om deze beter te kunnen vergelijken met de resultaten in het artikel
van Wu. Bij de andere instanties hebben we afgerond op hele seconden. De resulaten staan in tabel 11.
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W1 (23) W2 (30) W3 (46) W4 (46) T1 (37) T2 (47) R1 (23) R2 (41)
NCK 78ms 4s 416ms 500ms 0s 0s 0s 4s
NCV 7s 19s 0s 37s
CK 0s 0s 1s 6s
CV 10s 23s 2s 152s
CKO 0s 0s 0s 67s
CVO 9s 21s 11s 46s
NCP 78ms - - 2s 0s 157 ms 0s 0s
CP 1s 2s 0s 119s
VCP 0s - 0s 26s
VCPO 7s - 0s 21s
VCPOC 8s - 0s 192s

Ons model wist de kleine instantie W1, net als het model van Wu, in minder dan een seconde op te
lossen. Echter had ons model meer moeite met W2: Ons model had voor de eerste fase 4 seconden nodig
tegen 0.09 seconden voor het model van Wu en kon de tweede fase zelfs geen oplossing vinden binnen
een minuut. We vermoeden dat de extra duur in de eerste stap ligt aan de 1000 lagen, waarvan er in
een groot aantal toch geen stenen geplaatst kunnen worden. In de tweede stap moet ons model rekening
houden met 1000 gebroken stenen wat de rekentijd niet ten goede komt. In het model van Wu wordt
een methode gebruikt om de lagen waar toch geen stenen geplaatst kunnen worden uit te sluiten en zo
het aantal variabelen en voorwaarden te reduceren. Echter is deze methode voor onze toepassing niet
nodig: In de praktijk worden in alle lagen wel stenen geplaatst. W3 was één van de lastigste instanties
voor het model van Wu dat 2.61 seconden over de eerste fase deed en 0.11 seconden over de tweede fase.
Hoewel ons model weer te veel lagen had om tot een oplossing te komen in de tweede fase, kwamen we
door het patroon te draaien in W4 tot een veel snellere oplossing.
Uit de theoretische en realistische instanties blijkt dat ons model voor een instantie met 40 stenen aan
een paar minuten genoeg heeft om een oplossing te vinden. Er is wel een groot verschil tussen de tijd
die nodig is voor het verspreiden van stenen vergeleken met het plaatsen van stenen en het model met
het beperken van clusters vergeleken met de andere modellen waarin de stenen worden geplaatst. In de
praktijk zal er qua kwaliteit niet veel verschil tussen een goede en de optimale oplossing zitten. Daarom
is het belangrijk om een tijdlimiet te gebruiken, zodat er binnen redelijke tijd een oplossing kan worden
gevonden bij het verspreiden van stenen en het beperken van clusters.
Op de schoonheid van de resultaten is nog wel wat aan te merken. Bij de theoretische instanties werden
alle stenen mooi verdeeld, maar bij de realistische instanties worden de steentypes niet altijd goed verdeeld
in fase 1.2. Figuur 26 is een oplossing van R1, waarbij de stenen optimaal verspreid zijn. Echter bevinden
alle geroteerde groene stenen zich in de bovenste laag. We vermoeden dat de oorzaak hiervan is dat het
in fase 1.1 behaalde oppervlakte vaak alleen met bepaalde combinaties van stenen in de juiste lagen te
behalen is. Hierdoor zijn er te weinig oplossingen mogelijk in fase 1.2 om de stenen goed genoeg te kunnen
verspreiden. Bij de theoretische instanties wordt in fase 1.1 de hele oppervlakte gevuld met ongebroken
stenen, en is er in fase 1.2 geen moeite met het goed verspreiden van de steentypes. Figuur ??s een
oplossing van T1 waar alle stenen mooi verspreid zijn. Wat verder opvalt is dat er in een groot deel van
de oplossingen lange voegen zijn die slechts in één laag worden onderbroken. Dit is niet te voorkomen,
maar wat helpt is een zo klein mogelijk aantal lagen te nemen, zodat de voegen minder lang zijn. De
conclusie is dat het belangrijk is om met patronen met een klein aantal lagen te werken. Enerzijds voor
de snelheid, anderzijds om lange verticale voegen tegen te gaan.
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Figuur 26: Een oplossing van R1

Figuur 27: Een oplossing van T1

12 Aanbevelingen voor Vervolgonderzoek

In dit verslag hebben we een methode beschreven om patronen voor polymetrische metselwerken te gener-
eren. Toch zijn er nog vele punten in de methode waar verbetering mogelijk is. Een aantal verbeteringen
hebben te maken met het eindresultaat. Een mooi patroon is natuurlijk slechts een deel van het totale
metselwerk. Het is nuttig om de applicatie zo uit te breiden dat het patroon in sommige delen van de
muur iets kan worden aangepast om bijvoorbeeld deuren en ramen te bevatten. Daarnaast is het nuttig
om rekening te houden met het in elkaar overlopen van de patronen van twee muren die samenkomen in
de hoek van een gebouw. We vermoeden dat deze verbeterpunten wiskundig niet ingewikkeld zijn, maar
dat het veel tijd kost om deze goed in een applicatie te implementeren.

Maar ook qua wiskunde zijn er punten die verbeterd kunnen worden. We hebben verschillende varianten
onderzocht voordat we op onze methode uitkwamen, maar uiteraard zijn er meer methodes mogelijk. Zo
hebben we in al onze methoden gebruik gemaakt van de voorwaarde dat in elke laag elke steen b niet
met steen c mag overlappen. In plaats daarvan zou de voorwaarde dat in elke laag direct rechts van elke
steen b zich precies één steen c mag bevinden, misschien tot snellere resultaten kunnen leiden. In sectie
11 hebben we beschreven waarom we denken dat de stenen niet optimaal worden verspreid. Wellicht dat
het mogelijk is fase 1.1 en 1.2 samen op te lossen met een gecombineerde doelfunctie. Ook is er meer
mogelijk met de gebroken stenen. In dit verslag hebben we slechts gekeken naar het beperken van de
totale oppervlakte van gebroken stenen. In de praktijk is het wellicht nuttiger om te kijken naar een
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combinatie van het aantal gebroken stenen en de oppervlakte hiervan. Ook is het een goede toevoeging
om gebroken stenen te creëeren die uit meerdere lagen bestaan.
Daarnaast is het natuurlijk niet noodzakelijk om mixed integer linear programming te gebruiken, maar
zijn er ook heuristieken mogelijk. We vermoeden wel dat in de twee fasen aanpak de eerste fase niet veel
sneller kan, maar voor de tweede fase verwachten we dat er snellere heuristieken mogelijk zijn.

In sectie 9 hebben we een aantal voorbeelden gegeven waarin er al dan niet een oplossing mogelijk
is in de tweede fase. Hoewel meer onderzoek naar voorwaarden wanneer een oplossing mogelijk is niet
erg nuttig is voor onze toepassing, waarbij in de praktijk vrijwel elke instantie een oplossing heeft, is het
wiskundig gezien zeker interessant om dit verder te onderzoeken. In [4] wordt ook gebruik gemaakt van
de twee fasen aanpak, en we vermoeden dat de twee fasen aanpak kan worden gebruikt om het vinden
van oplossingen in vele twee dimensionale packing problemen te versnellen.
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