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Abstract

A theoretical description and a simulation model for a coherent control model
was derived and was experimentally verified. First, a simplified version of the
coherent control model, where no distinction is made between pendula lengths,
masses and spring constants, was considered and the equations of motion for that
particular system were derived. This theoretical description was then analyzed,
after which it was expanded to include all relevant parameters in the system.

The theoretical description was then implemented in a simulation model
and this simulation model was subjected to various tests to ensure that is was
performing as expected. To that end, both the experimental set-up and the
simulation model were driven with a continuous sinusoidal shaped drive signal,
of which the driving frequency w was iteratively increased from small to large
values and the response of both systems was measured and compared. After
verifying that the response of the simulation model adequately predicted the
output of the experimental set-up, the lengths of various pendula were changed
and the predicted response from the simulation model was compared to the
response of the experimental set-up.

In the final part of the research, the link between CARS and the coherent
control model was briefly discussed. The theory behind using a drive pulse
instead of a continuous sinusoidal shaped drive signal was explained and the
simulation model was subsequently subjected to a drive pulse to analyze its re-
sponse. Lastly, the drive pulse was altered in the phase spectrum and the output
of the simulation model was compared to the unaltered drive pulse response.
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Chapter 1

Introduction

1.1 Coherent anti-Stokes Raman spectroscopy

Coherent anti-Stokes Raman spectroscopy, also known as CARS, is a spec-
troscopy method used to visualize specific bonds in a molecule. A narrow-band
pulse! could theoretically be used to excite one particular bond in a molecule, the
energy that is stored in that bond will quickly dissipate into other bonds in the
same molecule, leading to a loss of detection signal. To reduce the loss of detec-
tion signal, a method called coherent control is often used. It works by shaping
the pulse that is originally used to excite one specific bond to now excite all
bonds in the molecule in such as way that the vibrations will (de)constructively
interfere so that only the bond of interest will remaing vibrating.

1.2 Description of the demonstration model

In order to make the concept of coherent control comprehensible, a demonstra-
tion model - a system of five coupled pendula driven by a motor - has been built
previously. The pendulum model is schematically drawn in figure 1.1. The set-
up consists of five coupled pendula, each coupled to its neighbouring pendula if
present and also to a central drive axle. This drive axle is controlled by a motor
which can in turn be controlled by a computer. This way, the pendulum model
can be driven using various drive pulses in order to demonstrate the effect of
an unoptimized and an optimized pulse. Using motion sensors, the movement
of each pendulum is sent back to the computer which can in turn process the
data and make changes to the drive pulse, if necessary.

To illustrate how each pendulum is connected to the drive axle and to neigh-
bouring pendula, a close-up of the schematic drawing has been made, see figure
1.2.

IThis is a pulse with a selective range of frequencies
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Pendula-coupling spring

Axle-coupling spring Motor compartment

Ball bearing connection
Mass

Drive axle

Figure 1.1: Schematic overview of the coherent control model
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Figure 1.2: Schematic close-up of the connections between neighbouring pendula
and the drive axle
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If there were no springs to attach each of the pendula to the axle or to a
neighbouring pendulum, the pendula would be able to swing freely, independent
of the drive axle’s motion. This is achieved by using ball bearings to connect
each pendulum to the axle as indicated in the schematic close-up. This way,
the pendula can only be indirectly driven by the drive axle through the axle-
coupling springs and each pendulum will affect the motion of its neighbouring
pendula through the pendulum-coupling springs.

1.3 Thesis outline

The goal of this thesis is to analyze this pendulum set-up and to describe it
theoretically. In Chapter 2, a simplified version of the pendulum set-up will be
used to derive a simple theoretical model, after which this model will be briefly
analyzed. Then this simple model will be expanded to include all relevant
parameters in the system. Using this extended theoretical description of the
set-up, a simulation model will be constructed in Chapter 3. The validity of
this model will then be discussed in Chapter 4 and a few predictions will be
made using it. In Chapter 5, drive pulses as used in CARS will be sent into the
simulation model and the response of the system will be analyzed in the case
that the pulses are optimized and are unoptimized. Finally, the results of the
report will be discussed and the conclusions will be presented at the end of the
report.



Chapter 2

Theoretical description of the
set-up

In this chapter, a theoretical model of the pendulum set-up will be derived.
First, a simple version of the set-up will be used to build a simple simulation
model. This model will be analyzed to verify that the output is as can be
expected, after which the model will be expanded to include parameters such
as damping and varying spring constants.

2.1 The basics, simple system, amplitude response

Now that a clear picture has been formed of the pendulum set-up, it can be
theoretically described so that a simulation model can be built. It is wise to start
with a simple model in order to be able to analyze the simulation step by step,
and to make sure that it is performing as it should. For this, initially the lengths
[ of the different pendula as well as their masses m and the spring constants of
each type of spring in the system are chosen to be the same. Damping will also
not be considered initially.

As mentioned, each of the pendula will ultimately be indirectly driven by a
motor. The motor will turn a drive axle which will have an angle of « relative
to the vertical. Through a coupling spring, with spring constant , that is
connected to the drive axle and the pendulum itself, a force will be exerted on
the pendulum. That force will be nonzero when the angle between the drive
axle and the pendulum, which is defined to be 6,, — y, is nonzero, where 6,, is
the angle of the nth pendulum relative to the vertical.

Additionally, each pendulum is connected by pendulum-coupling springs,
with spring constant s, to its neighbouring pendula. That way each pendulum
will affect and will be affected by its neighbouring pendula. However, because
of the set-up, not all pendula have two neighbours, some only have one. See
Figure 1.1 for a schematic drawing, illustrating this.
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The kinetic energy T7 and the potential energy U; of pendulum 1, which has
only one neighbour, is given by

1 . 1 :
T1 = im(ﬁll)z = §ml29%

U

1 1.
mgy + 5“(91 -7+ 5“(91 — 0)?

1 1._
= —mglcos(01) + 55(91 -)*+ §f‘€(91 —0)?

Where g is the gravitational acceleration and y is the vertical position of the
mass!.
For pendula that have two neighbouring pendula (namely pendula 2 through

4) the kinetic and potential energies are given by

1 . 1 .
T == 2 = “mi%02
n 2m(enl) 2ml 62
1 2 1 ~, 2 1 ~ 2
Un = mgy+ 55(971 - '7) + 5”(971 - gnfl) + 5’%(971 - 9n+1)

1
—&(0n — Opy1)?

1 1
= —mglcos(6,) + 5/{((9” — )+ SE(O, — 1)+ 5

2

where n € {2,3,4}.
Finally, for pendulum 5, which like pendulum 1 only has one neighbouring
pendulum, the kinetic and potential energies are given by

1. 1 .
Ty = §m(05l)2 = §ml29§

Us

1 1.
mgy + 5/@(95 -7+ 5/‘6(95 —04)*
1 1
= —mglcos(05) + 5/{(95 -7+ 5/%(05 —0,)?

Going one step further, the Lagrangians L,, =T, — U, for n € {1,2,3,4,5}
are then given by

L, = %leH.% + mglcos(6r) — %m(@l - 7)? - %"%(91 — 65)?

Ly = %mlzeg + mglcos(63) — %ﬁ(@z —)? - %R(ez —61)% - %’%(92 —03)?
Ly — %mﬂeg + mglcos(fs3) — %H(eg —v)% - %Fﬂ(% —0a) — %F@(@s —04)°
L, = %leHZ + mglcos(04) — %H(94 —)? - %"%(94 —03)% — %’%(94 —05)?
Ly = %leGE + mglcos(0s) — %H(Qs —7)? - %ff(@s — 04)?

1Here y = 0 at the center of the drive axle and is defined to be negative downward.



CHAPTER 2. THEORETICAL DESCRIPTION OF THE SET-UP 9

The equations of motions for this system now follow from Lagrange’s equa-
tion?,
0 (0L oL 0
ot <89n> a0,
Carrying out the differentiation for each Langrangian gives a set of five coupled
non-linear second order differential equations

01 + 9sin(01) + a(6y —v) + b(01 — 02) = 0
02 + §sin(02) + a(f2 — ) +b(02 — 61) + b(02 — 03) = 0
By + $sin(03) + a(fs — ) +b(0s — 02) + b(05 — 02) = 0 (2.1)
01+ $sin(0s) + a(fs — ) + b(0s — b3) + b(6s — 05) = 0
05 + $sin(0s) + a(fs —v) + b(05 — 04) 0
where
K K
= P e

The next step now is to take a trial solution and substitute it in (2.1). The
motion of each pendulum is expected to be oscillatory, so a solution of the
following form will be attempted

971, — @nezwt

Where w is the driving frequency and ©,, can be complex.> These trial
solutions are complex functions that are being used for their great efficiency.
Only the real part of each solution is physically significant, so after the final
step of the solution, the real parts of 8,, should be taken, if one is interested in
the time dependent solution.

In (2.1), a small angle approximation will be made, resulting in sin(6,,) = 6,,.
Also, it is assumed that the driving motion can be described by v = ~ge™*,
where 7q is a real number.*

Substituting the trial solutions into (2.1) and canceling the common expo-

nential factor yields

—w2@1 + %@1 +a
—w?0y + %@2 + a(©y — ’yo)
—w?03 + %@3 +a(O3 — )
7w2®4 + %@4 +a @4 — ’}/0)
—w2@5 + %@5 + a(@5 — ’70) + b(@5 — @4) = 0

2This is Lagrange’s equation when dissipative forces are not considered. Those forces will
be considered in section 2.3.

3 A complex amplitude has a magnitude and a phase, which are the two arbitrary constants
necessary in the solution of a second-order differential equation. Thus, the trial solution can
be equally written as 0, = |On| ei(@t=¢n)  When there is no damping, the pendula will either
carry a zero or 7 phase with respect to a sinusoidal driving signal. As a result the amplitude
will always be real. Therefore, the complex amplitude is especially useful when a damped
system is being considered, because the solution in this case might carry any phase.

4The driving amplitude is not allowed to be complex, such that it carries a zero phase.
The phases of the pendula are then automatically defined with respect to the driving signal.

©1 =)
1= 7 (@2—63) _

(03 —04) = (2.2)

+ 4+ +
O O O O

S

w

!

O
vf/\/\/
++ +
S S O
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This constitutes a set of coupled second order linear differential equations,
which allows the introduction of the transformation matrix M. Collecting terms
with a common factor ©,, yields

0, 1
O, 1
M @3 = ano 1 (2 3)
Oy 1
Os 1
where
I5] —b 0 0 0
-b f+b b 0 0
M= 0 -b pB+b b 0
0 0 -b B+b b
0 0 0 —b B
and
=+ 4a+b

l

In order to find the amplitude (and phase) response, (2.3) has to be solved
for ©,,. Using Cramer’s rule [?], the solution is given by

_ det(My)
On = det(M)

where M,, is the matrix formed by replacing the the n-th column of M by the
vector ay[11111]7.

As the simple system (i.e. equal [, k, %, and m and without damping) is
being considered, an exact solution can be found. This exact solution has been
obtained and is found to be

a’o
o, =40 2.4
—wr+ 9 +a (2.4)

2.2 Analyzing the result

The next step in further expanding this theoretical model is to analyze the result
so far, to ensure that this derivation is correct and to understand the behaviour
that this model describes.

To start, from (2.4), the amplitude |©,,| and the phase response can be
plotted against the driving frequency w. The result of this plot can be found in
Figure 2.1.
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Figure 2.1: Left: Pendula amplitude versus driving frequency -y with equal pen-
dulum lengths and no damping. Right: Pendula phase versus driving frequency
Yo with equal pendulum lengths and no damping.

This is a somewhat surprising result, as (2.4) is independent of n and b as
can also be seen in the amplitude and phase response. Thus it can be concluded
that in this case all pendula have the same amplitude response, all have a zero
phase shift with respect to each other and they act as if there is no coupling
between them. It would appear to be that no matter what the driving frequency
is, not all of five expected eigenmodes - that are to be expected since this system
has five pendula - can be excited®. To better understand this behaviour and to
verify that this result is in fact correct, the eigenmodes and eigenfrequencies of
this system will now be derived.

2.2.1 Eigenmodes and eigenfrequencies

The eigenmodes and corresponding eigenfrequencies of the system can be found
by considering the system without driving (i.e. setting 7o to zero), because
eigenmodes are characteristics of the system, independent of the system being
driven or not. It is expected then, when the system is driven at a certain
eigenfrequency, that its corresponding eigenmode will be excited. However, this
happens not to be the case.

5Tn fact, it will be shown in the following section that only one eigenmode can be excited
and maintained using driving.
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The simple system being considered does not include damping, which changes
the eigenfrequencies of the system. The degree of damping in an oscillating sys-
tem is commonly described in terms of the quality factor @) of the system. If
the system’s quality factor, @, is large enough, the eigenfrequencies approach
those of an undamped oscillator, as will be shown in section 2.2.1.2. Therefore,
the eigenmodes and eigenfrequencies of the undamped system will be derived in
the following section, followed by a similar derivation for the damped system.

2.2.1.1 Eigenfrequencies and eigenmodes

Finding the eigenmodes of the system is subject to solving

0, 0
0, 0
M| e [=] 0 (2.5)
04 0
05 0

Equation (2.5) has non-trivial solutions if and only if det(M) = 0. The charac-
teristic equation represented by this determinant is an equation of degree n in
w? and its roots might be labelled w?. The w, are the eigenfrequencies of the
system and can be shown to be

(g +al) + al)

N 29+2al+3bz+sz

(2.6)

29+2al+5bz+\sz

i\/29—|—2al+3bl V/5bl

\/29 + 2al + 5bl — /5bl
ws =+ 2

Note that all of the w, are real, as should be the case without damping, or
else the total energy of the system would decrease monotonically with the time.
As all of the roots are distinct, the system is non-degenerate - that is, every
mode is distinguishable. The different eigenmodes follow from subsituting the
squared radicals w? in (2.5) and solving for the amplitude vector accordingly.
They can be shown to be
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1 -1
1 $(VB+1)
mo= 1 T2 = 0
1 —3(V5+1)
1 1
-1 1
-3(vV5-1) —1(V5+3)
3 = 0 4 = V5 +1 (2.7)
(V5 -1) -1(V5+3)
1 1
1
(V5 -3)
5 = —/5+1
(V5 -3)
1

These eigenvectors constitute an orthogonal set as their inner product is zero,
(7;|7;) = 0 (¢ # j), which is to be expected, since M is symmetric. The princi-
ple of superposition then applies to the set of linearized differential equations.
Thus, the general solution for #,, must be written as a linear combination of the
solutions for each of the k = 5 (where k is the number of oscillators) values of r,

On(t) = ©f ™"+ O, 17+ 0 e + 0, e + O e’

— —iwst iwat — —iwat twst — _—iwst
+6 36 w3 +@Z)4ezw4 +@n,4€ Twa +®;5€Zws +9n,56 Tws

n7

k k
. + twet — —twyt
= g 0, € —|—E 0, €
r=1 r=1
k
— § (@Z,relwrt'i_@;,re_lwrt)

r=1

Because it is only the real part of 6,,(¢) that is physically meaningful, the final
solution is (see also section 2.1)

k k
0,(t) =R Z (©F e+ 0, e )| = Z (0, .cos(wyt) + O, .cos(wyt))

r=1 r=1
(2.8)
This set of solutions does still have 2k arbitrary constants for each equation
for 0, giving a total of 2k? = 50 unknown arbitrary constants. However,

the relation between different ©,, , is given by the eigenvectors 7,. Let 7, ,
designate the mth component of the rth eigenvector. Then for a given r,

91,1" : @2,7" . @S,T . 94,1" : @5,7" =My N2 N30 - My “ 151



CHAPTER 2. THEORETICAL DESCRIPTION OF THE SET-UP 14

These relations reduce the number of arbitrary constants with a factor k, namely
to 2k = 10, just as expected, because there are 5 equations of motion that are
of second order. The values of these constants are completely specified by the
initial conditions of the system.

Equation (2.8) is the homogenous solution. In case of driving with damping,
this is then the transient solution and the steady state solution is given by the
particular solution. A particular solution would again be of the form 6, , =
€n€iwt.

2.2.1.2 Effects of damping

In section 2.3 it will be shown how the equations of motion will change when
damping (p) is being included. The results will already be used in this sub-
section, to elaborate on the eigenfrequencies and eigenmodes of the damped
system. The transformation matrix slighty alters with ‘uw added to its diago-
nal elements

B+ iuw —b 0
' —b B+b+ipw - 0
0 0 e BHiuw
with
=+ 4a+b

l

In a similar way as in subsection 2.2.1.1, the complex eigenfrequencies follow
from M’ as

1. —1u2l +al +2g
w1 = 5/“ + \/41
L —2p2l + 29 + 2al + 3bl + /5bl
w2 = okt 2
_1,2 _
oy — lmi 1p2l+ 29 + 2al + 3bl — /5b (2.9)
2 2l
Ll —2p2l + 2g + 2al + 5bl + v/5bl
W= oh 21
Ly —2p2l + 29 + 2al + 5bl — /5bl
Ws = gHt 2

Which reduce to the same eigenfrequencies as (2.6) when there is no damping
(u = 0). It can be shown that the eigenvectors remain unchanged when damping
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is included, thus the same set of eigenvectors given by (2.7) applies.

In case of damping, it is the real part of w, which determines the angular
frequency of the oscillatory motion. The imaginary part of w, produces terms
of the form e~S(“r)t in the expression for 6,(t) and therefore determines the
rate at which energy is being dissipated from the system.

If the Q-factor of the system is high enough, this will yield a small value
for p1, such that p? will be negligible, resulting in unchanged eigenfrequencies
compared to the undamped system. Experiments have been done on the pen-
dulum, and they are discussed in Chapter 4. It will be shown in that Chapter,
that the @-factor for a single uncoupled pendulum will be around 28, which is
fairly high. Therefore, in general, damping cannot be neglected as it will influ-
ence the behaviour of the system, but it does not have a profound effect on the
eigenfrequencies of the system.

2.2.1.3 The eigenmode paradox

Different simulations were performed for the system being driven at one of
the values of w,. It became evident soon, that only one of the five calculated
eigenmodes could be excited and maintained, for both the system with and
without damping. This was eigenmode 77;, the mode in which every pendulum
has the same amplitude and phase. The reason for this happening can be
explained by considering one of the other eigenmodes - say, 77> - and observing
what happens when the system is being driven at the accompanying resonance
frequency ws. For simplicity, no coupling between pendula will be considered
intially, meaning that b = 0. See Figure 2.2 for a schematic respresentation of
the maximum amplitudes of eigenmode 7.

Figure 2.2: Schematic representation of eigenmode 7j>. The dotted line indicates
zero amplitude.

As can clearly be observed from the figure, this eigenmode is completely
symmetric - meaning that pendula 1 and 5 have the same amplitude but opposite
phase, pendula 2 and 4 also have the same amplitude but opposite phase and
pendulum 3 does not deviate from its equilibrium. If the set-up was put in
that initial condition of the eigenmode, experienced no damping and was left
undriven, it would remain in this eigenmode for all eternity and in the case of
damping, this eigenmode would obviously die out after a said period of time.
Adding driving to this eigenmode, however, complicates things. It is therefore
wise to once again schematically represent what happens when driving is added
to the equation. See Figure 2.3 for a schematic representation of this eigenmode,
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)
)I( X x ).(

Figure 2.3: Schematic representation of the forces on the different pendula in
eigenmode 72 in the case of driving at different moments in the drive cycle.

in the case of driving.

In part 1 of this figure, the set-up is placed in the initial conditions of eigen-
mode 775. The green arrow next to the left-most pendulum graphically represents
the maximum amplitude of this particular pendulum. At exactly this moment,
the drive axle is brought in motion. The red arrows indicate the direction in
which the drive axle is then turning - this is arbitrarily chosen upward to begin
with - and also indicate the force that is (indirectly) exerted on each pendu-
lum by the drive axle. The blue arrows represent the direction in which each
pendulum would move if undriven.

After half a period of the drive motion, the situation of the system will
then be as presented in part 2 of the figure. The pendula that were below the
dotted line in part 1 of the figure were pushed beyond their undriven maximum
amplitude by the motion of the drive axle, whereas the pendula below the
dotted line were slowed down and now have an amplitude that is less than their
undriven maximum amplitude. To illustrate that the amplitude of the left-most
pendulum has increased, a pink arrow was drawn alongside the original green
arrow to indicate the new amplitude of that pendulum.

In the second part of the motion of the drive axle, the forces on each pendu-
lum will now be in the opposite direction and are represented in part 3 of the
figure. Following the same reasoning as before, part 4 of the figure indicates
the situation after a full drive cycle was completed and a clear picture can be
formed as to what will happen with the entire system if this motion will take
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place for a long period of time. Again, the green and pink arrows together with
a new blue arrow were added to illustrate that the amplitude of the left-most
pendulum has increased after a full drive cycle.

The motion of this particular eigenmode will obviously die out as the pendula
that initially move in-phase with the motor will be accelerated and the pendula
that are 7w rad out of phase will be slowed down. In the case where there is
no coupling between pendula, the out-of-phase pendula will simply slow down,
and then start to move in-phase with the motor, meaning that all pendula will
eventually swing in-phase with each other. Since there is no coupling, b = 0 and
wy = wi- this follows from (2.6) - and the systems motion will explode®. In the
case where coupling between pendula is being considered, the motion is all but
simple and beating will occur as the energy will be redistributed evenly across
all pendula, meaning that after a transient period the pendula will eventually
swing in-phase and all with the same finite amplitude - as in this case ws # wq
and the system will therefore not explode.

This conclusion can now be extended to each of the different eigenmodes
of this system, yielding that in the driven case, none but eigenmode 77 can be
excited when the system is being driven at the eigenfrequencies belonging to
the respected eigenmodes, as was predicted by (2.4), ensuring that this model
is in fact correct so far.

2.3 The extended system

In section 2.1, a theoretical model of the experimental set-up was derived which
does not include damping, different lengths and masses of the pendula or differ-
ent spring constants. In the experimental set-up, these parameters may differ
significantly, causing behaviour that the basic theoretical model cannot repro-
duce. Since this model should accurately describe the behaviour of the ex-
perimental set-up, all of these different parameters should be included in the
theoretical model. In this section it will be described how this is done.

2.3.1 Damping

In Lagrangian mechanics, the Rayleigh dissipation function can be used to in-
clude viscous forces and thus damping[3]. The definition of the Rayleigh dissi-
pation function is given by

D= % Z > ;% (2.10)

j=1k=1

61In this ideal linear, uncoupled system, the relative phase between the drive signal and the
system is 0 rad for w < wjy and is 7 rad for w > wy. The phase will be %w rad only at exactly
w = wj. If the phase is zero, the axle-coupling springs are not stretched and will exert no force
on the pendula. If the phase is 7w rad, the motor will exactly counteract the movement of the
pendulum, also resulting in no net force or addition of energy. Only at exactly w = w1, the
motor can continuously drive the system and thus add energy continuously. If no damping is
being considered, the energy has nowhere to go, so the amplitudes blow up.
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Where m denotes the total amount of generalized coordinates in a system (in this
case five), §; and 6; denote the time derivatives of the generalized coordinates
and pj are damping constants.

Equation (2.10) suggests that there are viscous forces that depend on the
velocities of the different pendula and even on the relative velocities between
pendula. In the experimental set-up, the coupling between neighbouring pen-
dula is quite small when compared to the coupling between the pendula and the
driving axle - the spring constants of the pendulum-coupling springs are roughly
ten times smaller. Therefore, it is assumed that the damping constants p;; for
j # k are negligible and these terms can be ignored in the dissipation function.
Furthermore, it is assumed that damping due to air friction is significantly larger
than damping due to dissipation of heat in for example the axle-coupling springs
or the ball bearings. This results in p; = p for each value of j and k.

The aforementioned then implies that the dissipation function for this system
is given by

1 . . . . .
D= 5u(9%+9§+6‘§+6‘2+6‘§) (2.11)
In the case of damping, Lagranges equation per pendulum is now given by

o (oL\ oL oD
ot ] 90, 90,
Which, including (2.11), then yields

=0

01 + 2sin(01) + a(6r — ) + b(61 — 0) + b, 0
02 + $sin(02) + a(fa — ) + b(02 — 91) + (0 —03) +pby = 0
05 + 9sin(0s) + a(03 — ) + b(0s — 02) +b(05 — 0s) + b3 = 0
01+ 9sin(0s) + a(0y — ) +b(0s — 03) +b(0s — 05) + by = 0
95 =+ Sin(95) =+ a(95 — ) + b((95 — 94) + pé5 = 0

Linearizing and filling in the same trial solution as before, this yields

—UJ2@1 + %@1 +a
—w?0y + %@2 +a(02 — v

E Y0) + iwuO, =
Yo)
—w?03 + %@3 +a(©3 — )
( )
( )

(01— 62)

(@2 - @1) +b(02 — O3) +iwuOy =

(03 — O2) +b(O3 — O4) +iwuO3 =
—w?Oy + 404+ a(04 — 0 ( )
—w2@5+%65+a ©5 — ( )

04— 0O3) + b(®4 — @5) + iwu®4 =
O5 — O4) + iwuOs; =

o O o oo

+b
+b
+b
+b
+b

Which is the same as (2.2) when there is no damping (x = 0).

2.3.2 Pendula lengths and masses

By far the most obvious parameter that can be changed in the experimental
set-up is the length of a particular pendulum. Less obvious but still relevant is
the fact that their masses will differ as well.



CHAPTER 2. THEORETICAL DESCRIPTION OF THE SET-UP

19

By assuming different lengths [,, and different masses m,, and deriving the

equations leading up to (2.2), this will yield

7w2@1 + lg @1 +a1( )+b1( )+Zwu@1
—w2@2 + @2 + CLQ(@Q — ’}/0) + b2(@2 — @1) + bQ(@Q — @3) + iw,u@g
—w?O3 + Z@)s + a3(©3 —70) + b3(03 — O2) + b3(O3 — O4) +iwuO;
7&)2@4 + %@4 + a4(@4 — ’}/0) + b4(@4 — @3) + b4(@4 — @5) + 1wp©y

( )+ bs( )

—w?0O5 + i@5 4+ a5(05 —v9) + b5(05 — O4) + iwuOs

Where now

K K

mogzr U =
nl

an =

mpl2

2.3.3 Spring constants

O O O OO

The final contributing factor in the experimental set-up that will be considered
is the variation between spring constants. In the experimental set-up they may
vary by as much as 60 percent for the pendulum-coupling springs and by 30
percent for the axle-coupling springs - not exactly insignificant. Their addition
to the theoretical description together with the previously added parameters

now transform (2.2) to assume the following form

—w?0; 4+ %@1 +a1(©1 —v) + b1(01 — O2) + iwuO; = 0
—w?07 + "2@2+a2(@27 0)+bz(@2*@1)+b3(@2*93)+2w#92 = 0
—w?O3 + O3 +a3(03 — 70) + ba(O3 — O2) + b5(03 — O4) +iwuO3 = 0
—w?04 + g ~O4+ a1(©4 —v0) + b6(04 — O3) +b7(04 — O5) +iwuO®s4 = 0
—w?O5 + g 205 +a5(05 —70) +08(05 — O4) + iwpOs = 0
Where now
Kn K1 K1 o Ko
a = ; = ; O = 03 = ——5,, 0y = ——5
" mpl2’ ! myl?’ mal3’ mal3’ msl3
k3 K3 Ky Fy
by = . — . — . —

6 = 7= 8 =
m3l§ ’ m4lz ’ m4lZ ’ m5l§

(2.12)

Taking all of these new parameters into consideration, (2.12) can be solved

using Cramer’s rule for each independent ©,, as before in section 2.1.



Chapter 3

Constructing the simulation
model

In order to be able to predict the behaviour of the system, the next step is
to make a simulation model that can receive an arbitrary drive input signal
and presents the response of the system, 6,,(¢). Initially, a model was built in
Simulink for its easy implementation, but quickly thereafter it became apparent
that Simulink was not the best choice for our needs as it required more steps
to change variables and process the results than is necessary. Therefore, a more
complete model was built in MATLAB using its built-in ODE45 functionality.
This chapter will briefly discuss how both the Simulink and MATLAB models
were built.

3.1 Simulink

To build this model, (3.1) was taken and each of the equations was rewritten
for §,. Then, using integrators, 6,, and 6, could easily be calculated using
Simulink. For example, see Figure 3.1 for the Simulink subsystem of pendulum
1. The same procedure was followed for all other pendula and the subsystems
were connected so that the complete system was now described in Simulink.

( 01— ) + b1(01 — 02) + by =
é2+%8in(92 +ag(fa — ) + ba(fa — 01) + b3(02 — 03) + b2 =
(
(

él-l—%sin 01) + a1 ( )
) ) ( ) ‘
03 + %sm 03) + az(03 —v) + ba(03 — 02) + bs5(03 — 04) + pbs
) ) ( )

) ( )

(3.1)

O~~~

04+ %Sm 04) + as(0a — ) + be(0a — 03) + b7 (04 — 05) + pbs
05 + %Sin(% +as5(05 — ) + bg(05 — 04) + 105 =

I
o o o oo

As an input for this Simulink model, initially a sine signal was added. This
meant that w and 7 could be adjusted and the system could be run for a
predefined amount of time. A graph was added which plotted 6,, as a function
of time.

20
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Figure 3.1: Simulink subsystem of pendulum 1

In the end, this model worked as expected and yielded proper results. For
example, it could be observed that when all pendula had equal lengths, the
amplitudes were all the same, no eigenmodes could be excited and at resonance
frequency their amplitude grew enormously.

3.2 MATLAB

The set of differential equations given by (2.12), can be numerically solved by
MATLAB using the ODE45 function that integrates over time. Even though
this function can only handle a set of first order differential equations, the set of
second order differential equations of can be solved by rewriting it as a system
of first order coupled differential equations, see (3.2).

An advantage of solving it numerically, is that now every type of function
for (t) might be imposed on the set of equations. A MATLAB file has been
programmed that solves these differential equations subject to its boundary
conditions, and plots 6,,(¢t). See Appendix B for the accompanying MATLAB
files.
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él = w1

0.2 = w2

6‘3 = w3

94 = w4

b5 = ws

w1 = aiv(t) — %sin(Ol) —a161 —b1(61 — 02) — pw1

wy = az'y(t) — %Sin(ez) — a0y — b2(02 — 91) — bg(@g — 93) — w2
ws = agy(t) — Lsin(f3) — azfs — ba(f3 — O2) — bs (03 — 04) — pws
wy = a4’y(t) — Hsin(&;) — a404 — b6(94 — 93) — b7(94 — 95) — w4
ws = asy(t) — lisi’n(95) — as0s — bg (05 — 04) — pws

5
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(3.2)

To illustrate the output of this model, an example output where the lengths,

masses and spring constants are chosen the same is shown in Figure 3.2.

pendulum 1 pendulum 2
T 05 T 05
o g
) O AVAVAVAVAVAVA ISR | SVAVAVAVAVAVAVA!
— N
© -05 © -05
0 5 10 0 5 10
time(s) time(s)
pendulum 3 pendulum 4
T 05 T 05
g g
S o N E o NN
(32] <
© -05 © -05
0 5 10 0 5 10
time(s) time(s)
pendulum 5
T 05
g
= ON\A/\AN\/\/\
LO
© -05
0 5 10
time(s)

Figure 3.2: Output of the ODE45 model.

One important benefit of this particular model is that it can be chosen to
adopt the linear approximation or the non-linear approximation, if desired.

In Chapter 4 pulses will be defined that will drive the system. These pulses
are computed discretely and are therefore only defined on certain time points,
say t,, yielding dt = t,,4+1 — t,. When ODE45 is solving the differential equa-
tions, it will calculate an optimal time step such that the spacing between suc-
cessive time points will not be equal. Problem is then that the pulse is undefined
at the time points generated by ODE45, because they do not match ¢,,. To avoid
this problem, a cubic spline interpolant is being used to interpolate between two

points.



Chapter 4

Validating the simulation
model

A critical step in designing a simulation model is verifying its validity before
predictions can be made using it. In order to verify the validity of the simulation
model that was derived in the previous chapter, both the simulation model
and the experimental set-up were exposed to an iterative test to (indirectly)
measure the maximum amplitudes of the pendula as a function of varying driving
frequencies. If these responses are - at least qualitatively - similar, this will
demonstrate the validity of the simulation model.

In the end, to demonstrate that this model can now also be used to predict
the behaviour of the experimental system, the lengths of some pendula will be
altered and the simulation result will be compared to the experimental result.

4.1 The testing procedure

The goal is to drive the pendula with a continuous sinusoidal signal v = vyycos(wt)
where w is iteratively increased from small to large frequencies. The pendula
will initially all be at rest. In the simulation model and the experimental set-up
the lengths of the different pendula will be chosen the same and are (for pen-
dula 1 through 5) 0.10m, 0.15m, 0.20m, 0.25m and 0.30m respectively. After a
transitional period, the motion of the pendula will become stable, meaning the
transient behaviour has died out and the maximum amplitude of each pendu-
lum can be determined. In this case it is imperative that the driving amplitude
Yo will be small enough to ensure linear motion. Even though in the end the
amplitudes will not quantitatively match!, the frequencies at which different
pendula start to resonate should match.

lSee section 4.1.2

23
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Figure 4.1: Maximum pendulum amplitude as a function of the driving fre-
quency. The solid lines represent analytical data and the dotted lines indicate
simulation data.

4.1.1 Simulation model

The simulation model was programmed to recieve the desired continuous sinu-
soidal input as the drive signal. Linearity is assumed, so the driving amplitude
can be arbitrarily chosen - here it was chosen to be v9 = 0.1 rad. All other
parameters in the simulation model will be chosen as they were determined in
[?]. As will be shown in section 4.1.3, the damping constant is determined to
be p = 0.1 and will be used here for a best approximation. The simulation was
driven for a sufficiently long time for the motion to become stable - roughly 150
seconds. In that case the maximum amplitude can safely be determined.

The result of this test can be seen in Figure 4.1. To illustrate that this result
is correct, the previously determined analytical response from section 2.1 was
added to the same graph.

It can be observed that both responses are in excellent agreement with each
other. Because the drive input is a cosine, there is a nonzero amplitude at
w = 0, and for all other frequencies the graphs match very well, meaning that
this method is perfect for testing the validity of the theoretical model by per-
forming the same measurement on the experimental set-up and comparing both
outcomes.
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— Motion sensor housing

Figure 4.2: Close-up of the motion sensor housing and the magnets on the ends
of the pendula

4.1.2 Experimental set-up

In the case of the experimental set-up, determining the maximum amplitude of
a pendulum is not directly possible. Instead, the set-up features magnetic flux
sensors in the motion sensor housing and small magnets attached to the end
of each pendulum, see Figure 4.2. This way the magnetic flux as a function
of time is measured, which can be interpreted as the velocity of the pendulum.
If a large magnetic flux is measured, this will indicate that the pendulum was
moving at a high velocity, which means that the pendulum in turn had a large
amplitude. Therefore, if the pendula are driven for a sufficiently long time for
the motion to become stable and the peak-to-peak voltage is determined during
this stable period, it will be proportional to the maximum amplitude measured
in the simulation model - only this time in volts.

Because the simulation model assumes linearity of the system, the driving
amplitude is chosen to be as small as possible. As is visible in Figure 4.1, the pre-
dicted maximum amplitude at resonance frequencies could exceed 7 rad, which
would cause anything but linear behaviour in the system. If chosen sufficiently
small, the experimental set-up is expected to behave approximately linear and
the best comparison can be made between both results.
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The experimental set-up was driven by a continuous sinusoidal signal for
160 periods of that particular signal. It was determined experimentally that the
motion of the pendula was then fairly stable and the peak-to-peak voltage could
safely be determined. After each measurement, the pendula were left to slow
down, after which the frequency would be increased and another measurement
could be performed. Since the simulation model predicts that the resonance
frequencies lie between 5 and 15 rad/s, the experimental set-up was driven for
frequencies in that same range.

The result of the measurement can be seen in Figure 4.3.
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Figure 4.3: Result of experimental measurements.

The most obvious difference between this result and the previously deter-
mined analytical one is that the resonance frequencies for pendula which have
short lengths lie far from the predicted frequencies but that the resonance fre-
quencies for the pendula with longer lengths match fairly well. Since the lengths
of the pendula influence the position of the resonance frequencies greatly, ad-
ditional testing was performed to determine the lengths of the pendula more
accurately.

To do this, each pendulum was disconnected from all springs, ensuring it
could swing freely. It was then left to swing for a certain period and the amount
of full-period swings in this period was counted. From this, the period of swing T’
could be determined and using the well known equation for the period of swing,
T =~ 2mw+/l/g, one can then determine {. This resulted in /1 ~ 0.155 m, lo ~ 0.183
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m, I3 ~ 0.205 m, l4 ~ 0.248 m and I/5 ~ 0.311 m. Using these corrected lengths
in the model results in a much better prediction of the resonance frequencies.
See Figure 4.4.
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Figure 4.4: Pendulum amplitudes versus driving frequency w with adjusted
pendulum lengths using the simulation model

Another difference between the simulation and the experimental measure-
ments is that the resonance peaks are nonsymmetric in the case of the ex-
perimental set-up. Approaching from the left, the amplitude per pendulum
increases quite abruptly as the resonance frequency of that particular pendu-
lum is reached, whereas to the right of the resonance frequency the pendulum
maintains a relatively large amplitude, even for frequencies far from the reso-
nance frequency. This nonsymmetry is very typical of nonlinear behaviour. To
illustrate this further, simulations were performed where in one case linearity
was assumed and in the other it was not. See Figure 4.5 for the result.

It is clearly visible that in the case of linearity, the peaks are symmetric,
whereas in the case of non-linearity they are not and - although due to the
extreme driving amplitude are exaggerated - resemble the experimental data.
This is not unsurprising since even at small amplitudes, non-linearity is very
much present in the experimental set-up. For a non-linear pendulum it is already
well established that the following equation holds for the period of swing



CHAPTER 4. VALIDATING THE SIMULATION MODEL 28

45r
Pendulum 1 |
4r Pendulum 2 |
Pendulum 3 !
= 357 Pendulum 4 |
£ 4l Pendulum 5 |
© g
g I
%- 25 I . |I|
|
= I |
s 2f [
m I 1
'g 15+ h | |
c - |
[
a
1
0.5

Driving frequency w (rad/s)

Figure 4.5: Pendula amplitudes versus driving frequency for linear and non-
linear assumptions. The solid lines represent non-linear assumptions and the
dashed lines represent linear assumption.
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Even though this equation does not hold exactly in the case of a coupled pendu-
lum, it might be expected that the dependence on 6y will also be present in the
coupled case. This equation then implies that as the maximum amplitude of a
non-linear pendulum increases, the amplitude response appears to shift to the
left in the frequency domain?. The amount of shift is a function of higher order
terms of 6y. This means that as 0y increases more and more, so does the shift to
the left in the frequency domain of the amplitude response. Eventually, the shift
will be so great that the resonance frequency, originally at w, is now shifted to
the left to a particular value of w. The pendulum will therefore resonate, but at
a frequency lower than the resonance frequency expected from the linear model!
As the pendulum still has a large 6y, but after resonating will decrease again - in
the linear amplitude response it has "gone over the top" - the shift will decrease,
meaning that the amplitude response shift becomes less. But here’s the catch:
0y decreases so it might be expected that the response might be similar to what

2This follows from the fact that the resonance frequency of a pendulum is given by wp =
2 /T
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was seen approaching from the left in the frequency domain - a quick increase
at first, so now a quick decrease. However, since 6y decreases, the shift to the
left of the amplitude response will also decrease, meaning that the maximum
amplitude will decrease less quickly. The shift will then slowly decrease until at
higher frequencies 6, becomes small enough so that the shift is virtually zero
again and matches the linear approximation.

Another difference between both results is that in the theoretical case the
peak amplitudes increase as w is increased, whereas in the experimental mea-
surements it can be observed that they in fact decrease as w is increased. As
the frequency in the driving software was increased, it was observed that the
maximum amplitude of the drive axle actually decreased. Of course, the ampli-
tude should remain the same if a proper comparison is to be made between the
theoretical and experimental set-up. When the driving amplitude 7 decreases,
so will the maximum amplitude of a pendulum. Apparently, as w increases, g
decreases faster than the maximum amplitudes of the pendula would increase,
if 79 remained constant as function of frequency. This then results in a net
decrease of the maximum amplitudes of the pendula as w increases, as was
observed.

The fact that the maximum amplitudes of the pendula in the theoretical
case increase is due to the fact that for constant g, the torque exerted on the
pendula by the drive axle, 7, remains constant for all w. From % = T, it
then follows that shorther pendula have a larger angular acceleration, meaning
that their maximum amplitudes will be larger.

The last major difference between both results is that there appears to be
a stronger coupling force between pendula, especially for pendula with shorter
lengths. In testing the simulation model, it was found that altering the values of
the coupling constants of the pendulum-couplinig springs by a relatively small
amount affects the response of the system greatly. It could be that due to the
self-made nature of the springs that although their properties were as measured
at first, over time their response has changed, causing this behaviour.

4.1.3 Estimation of the damping constant

As was discussed in section 4.1.1, most of the parameters in the system have al-
ready been determined in previous reports or can easily be measured - all except
for the damping constant p. In this section, an value for p will be determined
for completeness, where the experimental results found in the previous section
will be used for the determination.

To begin, in section 2.2.1.2, the quality factor was already briefly mentioned.
The @Q-factor for a single resonator is given by [3]

Q — mwresonance
I

For an uncoupled pendulum, but connected with a spring to the drive axle, the
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eigenfrequency is given by

wo =

~l

Subsituting this yields

my/9 +a

p= VIS (4.1)
Q

All parameters in (4.1) are known, except for @). Since the system has been

observed to be underdamped, it is expected that the system is a high-@Q system.
Therefore, the following equation for determining @) may be used

wo

= Aw

where Aw is the width of the amplitude curve at half of its maximum amplitude.
Since this system is coupled, the Q-factors of all five pendula will be determined
and averaged to provide a rough estimate of the Q-factor of the entire system.
See Figure 4.6 for an example of how wy and Aw was determined for pendulum
5.
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Figure 4.6: Aw is defined as the width of the amplitude curve at half of its
maximum amplitude.

After averaging and taking the worst case scenario, it was found that p = 0.1.
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This is a useful estimation, as there exists no analytical formula for multiple
coupled oscillators, that relates @ to the damping constant.

4.2 Adjusting the lengths

Now that the model has been analyzed and compared to the experimental set-
up, it was found to behave as expected, so predictions can now be made using
it. In this section, three different situations will be considered. For convenience,
the system will now be considered linear, as then the analytical solution for
the amplitudes of each pendulum can be used instead of using the simulation
model?.

4.2.1 Two pendula with equal lengths

For example, what happens when, instead of choosing the pendula to have the
lengths as defined in section 4.1, two of those pendula - say, pendula 1 and 5 -
have the same length?
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Figure 4.7: Pendula amplitude as a function of the driving frequency in the case
that pendula 1 and 5 have identical lengths.

3The analytical solution can calculate the amplitude response (not 6,,) much faster than if
the simulation model was used. It was already determined in section 4.1.1 that both results
are identical, so this method is valid.
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In the simulation model, this is easily altered. In this case the following
lengths were changed: [y =I5 = 0.311 m, and the other pendula lengths are as
previously defined. The result of this calculation is presented in Figure 4.7.

As can clearly be observed, the model predicts that in this case pendula
1 and 5 will both have roughly the same resonance frequencies* and they will
also have roughly the same amplitudes. Both pendula 1 and 5 will have much
larger maximum amplitudes if the driving frequency is chosen to be that of the
resonance frequency of these pendula whereas the other pendula will have a
relatively small amplitude. This situation was also tested in the experimental
set-up and the exact same behaviour was observed, meaning the model ade-
quately predicted this behaviour.

4.2.2 V-shape

Another interesting example is when the pendula lengths are chosen so that the
system is symmetric in shape. Take for example a V-shape, where [, =[5 =
0.155m, lo =14 = 0.183 m and I3 = 0.205 m.
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Figure 4.8: Pendula amplitude as a function of the driving frequency in the case
of the lengths being chosen in a V shape.

In the ideal case where all parameters are equal for all pendula except for

41t is important to note that not all other parameters are equal for both these pendula, so
their responses will be slightly different.
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the newly defined lengths, the expectation would be that there would only be
three resonance frequencies. In the case where the actual real parameters are
chosen, the result is as can be seen in Figure 4.8.

As can be seen, pendula 1 and 5 overlap very well, whereas pendula 2 and
4 overlap fairly well. This is obviously due to the non-ideal parameters of both
pendula 2 and 4, but not unimportantly also of their neighbouring pendula as
neighbouring pendula will greatly influence each other. This behaviour was once
again tested against the experimental set-up and the behaviour was as described
by the model.

4.2.3 All pendula with equal lengths

The final test will be where all pendula have the same length. As was derived
in Chapter 1, in that case there should be only one resonance frequency of
the system, and the amplitude responses as a function of the driving frequency
should overlap - provided that all parameters are equal per pendulum. In the
model, the lengths were chosen to be Iy = ls = I3 = l4 =I5 = 0.205 m. The
respounse is as shown in Figure 4.9.
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Figure 4.9: Pendula amplitude as a function of the driving frequency in the case
of the lengths being chosen equal for all pendula.

This graph shows by far the most interesting result. Where a perfect overlap
would be expected in the ideal case, it is obvious that in the experimental case
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no such thing will happen. To observe more closely what happens, a close-up is
shown in Figure 4.10.
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Figure 4.10: Close-up of the response in Figure 4.9.

Clearly the altering parameters have a profound effect on the behaviour of
this system. Upon testing, it was clear that setting all masses equal while keep-
ing other parameters as they were originally had no significant effect. However,
the same could be said of the pendulum-coupling spring constants, and to a
lesser degree of the axle-coupling spring constants. It appears that if only one
of these parameters differs slightly from pendulum to pendulum, the system
responds strongly in the sense that it will deviate relatively much from the ideal
case.



Chapter 5

A driving pulse

In Chapter 2, a theoretical description of the set-up was made, where continuous
driving was assumed of the form v = ygcos(wt) . In Chapter 4, the results of the
performed simulations were validated. It has been shown that the pendulum set-
up has five characteristic resonance frequencies, for five different lengths of the
pendula. By choosing one of these characteristic eigenfrequencies and driving
the system at this specific frequency with a continuous sinusoidal signal, it was
possible to excite one pendulum significantly more than the others.

However, the pendulum set-up was built to explain and investigate the anal-
ogy with CARS spectroscopy and coherent control. The point is that in CARS,
molecules will always be excited with a certain broadband light pulse - they
will be not be continuously excited. The reason for this is that the intensity of
the received CARS signals scales with the cube of the intensity of the incoming
signal, i.e. Icars = xI}y, where x is a proportionality factor. In general,
this constant y is very small, such that the incoming signal has to have a high
intensity to be able to measure the CARS signal. A light pulse can have a
much higher peak intensity than a continuous light beam while still outputtig
the same amount of power. Using a pulse, then, is desirable, otherwise a laser
with an output power in the order of MW would be required.

The problem is then translated back in terms of the pendulum model as
finding a driving pulse that will excite one pendulum significantly more than
other pendula. In this Chapter, an attempt will be made to find and define such
a pulse, where Chapters 2 and 4 will be used as guidelines.

5.1 General idea of the shaped pulse

From the CARS perspective, suppose that an incident pulse with a very narrow
frequency spectrum, such that it has one specific frequency, strikes a molecule.
This frequency can be chosen such that it matches the resonance frequency of
one specific bond in a molecule, therefore exciting this specific bond. However,
energy will immediately leak to other bonds due to coupling between adjacent
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Figure 5.1: Exciting a molecule with a pulse [5].

atoms, resulting in them being indirectly excited as well. See Figure 5.1 for a
schematic drawing.

The idea is then to take an incident pulse with a broader frequency spectrum,
that contains the frequencies of all bonds in the molecule with the right ampli-
tudes and phases for destructive interference, such that one specific bond will
be excited significantly more than others. See Figure 5.2 for another schematic
drawing of this situation.

Figure 5.2: Exciting the same molecule, but now with a shaped pulse [5].

This (broader) amplitude spectrum will be defined by a Gaussian centered
around a resonance frequency of a bond that should be excited (so for the pen-
dulum model at a resonance frequency of one specific pendulum). The width
of the Gaussian should be chosen such that it contains all of the systems reso-
nance frequencies, because specifically these frequencies could contribute to the
destructive interference of other bonds. Together with a properly chosen phase
spectrum, this input signal can excite the bonds in the molecule in the right
way so as to ensure that only one bond will be excited significantly more than
others - if only for a brief moment in time. This raises the question of what the
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phase spectrum should look like. The next section will elaborate on this.

5.1.1 Flipping the phase of the driving signal

In Chapter 2, it was shown how O,,(w) was derived. This formula is called the
frequency response or transfer function, because it describes how the system
responds to different frequencies. When applying a driving signal ~(t), the
response of a pendulum in the frequency domain, én(w), is given by the product
of the transfer function and the Fourier transform of ()

= [On(@)[e" [ w)]e’ ) (5.1)
= |0, (w)[[y(w)|eientes)

Now suppose that 4(w) has a frequency spectrum that is relatively wide
compared to the transfer functions ©,,(w) and envelopes these transfer functions
at the same time, as shown in Figure 5.3. Because the fourier transform of
a Gaussian is once again a Gaussian, this shape will be chosen for 4(w) for
convenience. The larger the width of the Gaussian envelope, the more it will
approach the Fourier Transform of a delta pulse, which is S {d(¢)} = 1. Thus,
if the width is chosen large enough, (5.1) simplifies to

On (W) = | (w)le!Prted) (5.2)

Equation (5.2) is an important result as it states that all of the frequency
components that ©,(w) contains, might be given an identical phase. Setting
the phase of the driving signal ¢4 opposite to ¢, would do the job

Pd = —Pn

The phase of a pendulum ¢,, changes as shown in Figure 5.3.

The phase of the driving signal should then be chosen equal to the light-blue
dashed line. The polar plot in Figure 5.4 illustrates this idea: if w increases, the
blue circle will be traced in the direction of increasing numbers. Its correspond-
ing phase ¢, then runs from 0 to 7. Now suppose the driving function traces
the green circle in the opposite direction as again indicated by the increasing
numbers. Its corresponding phase ¢4 then runs from 0 to —x. It is obvious
from (5.1), that their phases will add up to yield ©,,. The effect is then that
the net response lies across the positive real axis, because all vectors will add
up across these axis. Note that this would not be case when using a flat phase,
pq = 0, as then horizontal vector components would cancel out, resulting in a
net vertical vector, which at the same time is obviously less in magnitude than
would be the case if the phase of the drive signal is flipped.
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Figure 5.3: The amplitude and phase response for a system of five uncoupled
pendula. The Gaussian envelope which is multiplied with in the frequency
domain is shown as well. The blue dashed line represents the phase of this
envelope, and has the opposite phase of pendulum 3.
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Figure 5.4: Polar plot of the pendulum transfer function and the drive input
function.
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Figure 5.5: Changing the drivers phase by 7 at resonance frequency wg, will
bring the driver and pendulum back in phase again.

In the remaining part of this Chapter, derivations will be made using the
ideal phase response of the system for convenience, as the phase response does
not differ too much from the ideal case as long as p is not too large - which
it was previously determined not to be. Beside this, the driving axle of the
pendulum model will probably not be able to follow the exact phase response
due to its own resolution limitations.

In this ideal case, the phase jumps previously shown in Figure 5.3 will now
assume the form of Figure 5.5. This phase jump is chosen to occur when the
driving frequency equals wg, the resonance frequency of the pendulum that is
to be excited. Only this pendulum will be affected by this phase flip, since all
other pendula have amplitudes that are negligible at these frequencies, and a
phase flip there will go unnoticed. The effect of this phase flip is similar to what
was previously described for the non-linear case, although in this case, without
the phase flip in the drive signal, the amplitude components of the pendulum
would add up to a total of zero at ¢ = 0, whereas all amplitude components will
add up constructively if the phase flip 4s introduced. Therefore, this method
should theoretically produce a much better response of the pendulum that is to
be excited than before.

Coupling the pendula will introduce changes in the phase spectra of the
pendula, see Figure 5.6. The sharps peaks in the phase spectrum are due to
neighbouring pendula that are resonating. Thus driving the coupled system
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with a pulse with has the same shaped phase, cannot be expected to work as
well in the uncoupled case, but still it is expected to work better than if no
phase flip would be used.

Pendulum phases vs driving frequency with L =[0.1, 0.2, 0.3, 0.4, 0.5]

0 ==
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Pendulum 2
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Pendulum 4
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Figure 5.6: Phase behaviour of pendula in the coupled system, when using
lineair approximation.

In section 5.1.2, the shape of the actual pulse will be determined when its
phase spectrum is flat, i.e. ¢(w) = 0, followed by a numerically inverse Fourier
transformed pulse in section 5.1.4, with the altered phase spectrum shown in
Figure 5.5. These pulses will then be implemented as driving signals in the
simulations, such that the behavior of both pulses can be investigated.

5.1.2 Defining the (angular) frequency spectrum of the
pulse

From Fourier analysis it is known that

Flecoh- Tt cereso a9

In this case, only a symmetric amplitude spectrum makes sense, because the
corresponding time signal has to be real valued. Centering the Gaussian from
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(5.3) in frequency domain around +v, setting £ = %02, multiplying by an arbi-

trary constant « and adding a similar mirrored (in w = 0) Gaussian to preserve
symmetry, the new amplitude spectrum is then defined as

V2 (wtn)? (w=—1)?
Alw) = oY= e 5 p e nt (5.4)
o

Note that the value of o determines the width of the Gaussians, which has
to be chosen such that all of the system’s eigenfrequencies are present in the
amplitude spectrum, as explained in the previous section. Furthermore, v will
be chosen equal to the resonance frequency of a pendula. The corresponding
phase spectrum will only make sense when it is odd, because as was mentioned
before, the time signal has to be real valued. It is initially defined as

pa(w) =0
Such that the frequncy spectrum of the time signal is defined as
3(w) = Aw)eiea)

The signal in the time domain follows from the inverse Fourier transform

o0

1 .
W) = 5 [ At

—00
_ 1,242, _; ;
= e 2° t (6 zut+ezut)

i cos(vt) (5.5)

= 2ae72°
Apparently, v(t) is a sinusoid with a Gaussian envelope. A plot of the amplitude-
and phase spectrum of y(t), as well as y(t) itself with its Gaussian envelope is
shown in Figure 5.7. For convenience, the constants have been set toa =1; o =
1; v=>5.

5.1.3 Using MATLAB for the inverse Fourier transform

In the previous subsection, «(t) has been derived analytically. This becomes a
lot harder, if not impossible, when the phase spectrum will be changed. It was
therefore decided to use the Inverse Fast Fourier Transform function of MAT-
LAB, to transform the signal from frequency domain to time domain. Perform-
ing an inverse Fourier transform using MATLAB on the amplitude and phase
spectrum, shown in Figure 5.7, should yield the same result as the analytical re-
sult of (5.5). However, they will not match in general. This is due to periodicity
in the time domain assumed by the IFFT function, but the amplitude spectrum
defined by (5.4) transforms into 7(t), and is clearly non periodic. This problem
can be resolved quite easily: when calculating the inverse Fourier transform,
it should be calculated over a sufficiently long time interval. Comparing the
analytical with the numerical inverse Fourier transform has shown that a time
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Figure 5.7: On the left: amplitude and phase spectrum of v(t); On the right:
~(t) with the gaussian envelope.

interval from T = [-100 100] is more than sufficient, because both signals
could hardly be distinguished anymore. Effectively, MATLAB now sees a time
signal which is apparently long enough to treat it as 'non-periodic’. Another
consequence of MATLAB assuming periodicity is that the amplitude spectrum
will scale with the length of the time interval, thus A(w) ~ 1/T.

When performing an inverse Fourier transform, it is imperative that the sam-
pling frequency w; is high enough, in order to be able to follow high frequency
components. The minimum sample rate required to completely reconstruct the
time signal is the Nyquist frequency ws = 2wy, where wy is the bandwidth of the
frequency spectrum. From (5.4) it follows that a sampling frequency w, > v+40
will be more than sufficient. From the sample frequency, the corresponding time
step then follows as dt = 3—”

The aforementioned describes the main issues and most important basics of
the algoritm that carries out the inverse Fourier transform. See also Appendix
B.

5.1.4 Re-defining the phase spectrum

The phase spectrum of v(¢) will now be re-defined as explained in section 5.1,
such that the driver will be in phase with the pendulum for all of the frequencies
that the driving signal contains. This phase spectrum is show in Figure 5.8, and
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can mathematically be represented in terms of the Heaviside function H
pslw) = 7 [H(w — wo) — H(—w — wo))

Changing the phase spectrum of ~(¢) will not change the energy content of the
phase altered signal v;(t), because their amplitude spectrum is the same

1T - L7
By =5 [P o= o [ado= 5 [P
00 0 o0

From this, one would conclude that the response of the system to the original
pulse and phase altered pulse may be compared, since both signals put the same
amount of energy into the system. However, a problem arises as 7,(¢) will not
converge to zero as t — oo whereas () converges to zero quickly and is at
only one percent of its maximum when 102¢? > 4. Obviously, one would want
to drive the system with a pulse of a defined and finite duration. The difference
between (t) and v5(¢) can be qualitatively understood in terms of the frequency
spectrum. A flat phase spectrum, shown in Figure 5.7, results in y(¢) being built
up of cosines of different frequencies, centered around ¢ = 0. Because they have
different frequencies, the cosines will go out of phase as [t| > 0, resulting in
destructive interference - hence the signal converges to zero for large |t|. If
the flat phase spectrum is now altered to the one shown in Figure 5.8, again
cosines of different frequencies will add up. However, now not all of them will be
centered around ¢t = 0, therefore destroying the symmetry that ~(¢) has. This
in turn then partially destroys the (complete) destructive interference and the
signal will not converge to zero anymore.

To obtain a phase altered pulse with a finite duration, it was decided to cut
off v4(t), which defines a new signal «.(¢). The typical cut off time, designated
t., has been made dependent on the typical width of the original pulse. The
typical width of the pulse has been defined as the time at which ;o%t* = 8,
to be on the safe side (the amplitude of the pulse will then be negligible, as
it will be in the order of 10~* radians), or teypicalwidth = %. In general, this
value of ¢ will not be a root of v,, and it would be better to avoid . to be such
thatvys(t.) # 0 for practical reasons: the motor of the demo model always starts
with zero amplitude and defining a pulse which starts with a finite amplitude
is therefore not feasible in practice. If one would just ignore this, the actual
applied pulse would be slightly different.

An algorithm has been written that searches for the closest zero around
Leypicalwidth, see pendulum_ inverse_ fourier.m, added to Appendix B. This
newly found time value is then assigned t.. Note that because of symmetry,
once a root is known to be located at ¢ = t., another zero is automatically
located at —t.. Even though both pulses are now well defined on [—t. ],
cutting off v5(t) throws away a part of its energy content.
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Figure 5.8: On the left: amplitude and altered phase spectrum of y4(¢); On the
right: the original pulse v(¢) and the phase altered pulse ~;(t).
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Figure 5.9: (¢) and ~,(t) on a extended time domain.
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Therefore «.(t) has to be rescaled in order to have the same energy content
as y(t). This scaling factor is determined numerically by the algorithm and
follows as

E
scaling factor = )

Multiplying «%(¢) by this scalefactor then gives both signals the same energy
content. An example of the result can be seen in Figure 5.8 and on an extended
domain in Figure 5.9.

The system’s behavior to (t) and ~.(¢) to the uncoupled as well as the
coupled system will be tested in the next section.

5.2 Response of the system to both kind of pulses

In this section the response of the system to both kinds of pulses - the one with
and without phase flip - will be tested. The results will be easier to analyze
when the lengths of the pendula are not closely spaced, because then the transfer
functions would overlap. Therefore, the lengths are chosen to lie 0.1 m apart,
such that I; = 0.1; I, = 0.2; I3 = 0.3; Iy = 0.4; I5 = 0.5. Furthermore,
the coupling spring constants and masses will all be chosen identical. First,
simulations will be performed with the uncoupled system, where different values
for o will be taken. The reason for this is that it is already known how the
system will response when o is taken very small, because the time signal is
then approximately that of a continuous sinusoidal shape, which can be used
as a check. Secondly, the response of the coupled system to both pulses will be
simulated and this time only for a large value of o.

5.2.1 Uncoupled system, small o

The center frequency of the Gaussian, v, will be set to the resonance frequency
of pendulum 1, so the phase flip will also occur at this frequency. Initially a
small value for o will be chosen, so that the frequency spectrum is small and the
signal in the time domain is sinusoidally shaped with a large envelope. For the
case without a phase flip, the response of the system is shown in Figure 5.10.
With phase flip, the system responds as shown in Figure 5.11.

As can been seen in 5.10, all pendula respond to the pulse, and pendulum 1
does indeed have a significantly larger amplitude than the others. Because the
system was excited with the characteristic frequency of pendulum 1, it will keep
oscillating for a while until its damped out.

Observing the case with phase flip, shows that the response of pendulum
1 is now stronger: a relatively high amplitude is now present in a larger time
domain. The response of the other pendula has decreased slightly, but this
is mainly caused by ~,, which becomes smaller in maximum amplitude after
the phase shift. The same phase shift gives a longer (nonzero) signal in the
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time domain as explained in the previous section. Therefore, the pendula will
oscillate in a longer time domain, which can be observed as well.
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Figure 5.10: Response of the system, when no phase flip is applied.
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Figure 5.11: Response of the system, when a phase flip is applied.

5.2.2 Uncoupled system, large o

The range of eigenfrequencies of the pendula lies between 4.6 rad/s and 12.1 rad/s.
Setting o = 4 will then be large enough for the Gaussian envelope to contain all
of the resonance frequencies. This wide frequency spectrum will in turn yield a
very narrow pulse in the time domain. The response of the system for the case
without and with phase flip are again plotted. See Figures 5.12 and 5.13.
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Figure 5.12: Response of the system, when no phase flip is applied.
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Figure 5.13: Response of the system, when a phase flip is applied.
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Because the frequency spectrum is now wider, it also contains the character-
istic frequencies needed to excite other pendula. Therefore, they will oscillate
a said period of time, until they are damped out. Note the difference between
Figure 5.10 and 5.12, where only pendulum 1 oscillates over a longer time than
the other pendula.

If the phase flip is now applied, the system responds as shown in Figure 5.13.
Note that pendulum 1 now has a higher peak just after ¢ = 0, which was not
present in the case of no phase flip.
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Figure 5.14: Response of the coupled system to the pulse, when no phase flip is
applied.

5.2.3 Coupled system

When the system is coupled, the responses to both pulses are as shown in Figure
5.14 and 5.15. From the figures, it can be deduced that the maximum amplitude
of pendulum 1 has increased about 5 percent. However, at the same time the
amplitude of pendulum 2 has increased as well due coupling between these two
pendula. The other pendula also experience a neglible increase in amplitude,
probably caused by coupling as well, so pendulum 1 is effective stimulated the
most. Therefore, flipping the phase seems to work, even in the coupled case,
although the idea of the phase flip was based on the uncoupled case. But, of
course, this could be expected, as the phase spectrum of the uncoupled and
coupled case have many similarities.
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5.2.4 Experimental Setup

For a final comparison, a program in LabView was built, so that the system could
be driven with both pulse types. Simulations have shown that the difference in
reponse to both pulses is small. In combination with the fact that the driving
axle is not able to output the predefined amplitude, as mentioned in Chapter 4,
this unfortunately resulted in differences that could not be measured. Therefore
the experimental results are not included.
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Figure 5.15: Response of the coupled system to the pulse, when a phase flip is

applied.




Chapter 6

Conclusion, discussion and
recommendations

The coherent control model has been theoretically described and various im-
portant parameters in the system have been included. It has been shown that
in the configuration where all pendula were given the same length, none of the
systems eigenmodes can be stimulated when the system is driven.

Furthermore, a simulation model of the pendulum set-up has been built and
was experimentally verified. The simulation model was found to be able to
predict the behaviour of the pendulum set-up quite well.

Simulations performed in Chapter 5 have shown that using a phase shaped
pulse results in a slightly increased amplitude response of the involved pendu-
lum. Even though the phase shaping analysis was done for an uncoupled system,
simulations have shown that it also works for the coupled system - albeit to a
lesser extent.

Discussion and recommendations

Currently, the coherent control model is being controlled by the Ewvolutionary
Smart Learning Algorithm. A first initial guess for the driving signal is being
made by taking a cosine with a Gaussian envelope. Its center frequency in the
frequency domain is taken equal to the eigenfrequency of the pendulum - the
one to be excited. However, from the analysis in Chapter 2 it can be concluded
that the coherent control model has five different eigenfrequencies (when using
five different lengths), at which one pendulum is excited significantly more than
the others. For a coupled system, the system’s eigenfrequencies are not equal to
the eigenfrequencies of the pendula. It would therefore be a better initial guess
to start with the center frequency equal to an eigenfrequency of the system.
One of the reasons why the experimentally determined amplitude response
as a function of the driving frequency did not match the analytically determined
one, is because the maximum drive axle amplitude decreased as the driving fre-
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quency was increased. For a good comparison it is imperitive that the maximum
drive axle amplitude remains constant for all drive frequencies. Furthermore,
the motion of the drive axle is overall not very smooth. The amount of noise in
the drive signal - although negligible for large driving amplitudes - is an unde-
sired factor when performing real measurements. It was also noticed that the
maximum driving amplitude at a fixed driving frequency is not constant. It is
therefore recommended that further investigation is performed to find out what
is causing this behaviour in the drive axle.

Both the axle coupling springs and the pendula coupling springs were self
made, causing their spring constants to differ. The axle-coupling springs differ
by a maximum of 30 percent, whereas the pendula-coupling springs differ by as
much as 60 percent. When the objective is to use the model to explain CARS
to a random person, this will not make much of a difference. However, these
differences can no longer simply be neglected when performing (even simple) ex-
periments on the coherent control model, which turns out to be very disturbing.
If more detailed experiments are to be performed using the pendulum set-up, it
is therefore advised to order new factory produced springs that will result in a
less complex system.

The determination of the damping constant in the model was done by aver-
aging the @Q-factors of all the different pendula and determining p from those
factors. In reality, each pendula has its own value for p. For future simulations,
the implementation of these different p values in the simulation model could
therefore be considered and the effect on the system could be analyzed.
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driving amplitude as a function of time
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torque

width of Gaussian in frequency domain
offset frequency Gaussian in frequency domain
amplitude factor Gaussian in frequency domain
energy content
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measurements _analytical.m

% Calculate the amplitude response of the system analytically —
this method

% is much faster than using the simulation model itself to
determine the

% amplitude response as a function of the driving frequency.

maple restart;

format long

% Generic constants

g = 9.81;

% Masses of the pendula
ml = .235;

m2 = .240;

m3 = .25;

m4 = .255;

mb = .22;

% Lengths of the pendula
11=.1;

12=.15;

13=.2;

14 =.25;

15=.3;

% Spring constants of the axle springs
kappaasl = .13;

kappaas2 = .12;

kappaas3 = .101;
kappaasd = .112;
kappaash = .121;

% Spring constants of the coupling springs

kappaoverl 0.012;
kappaover2 = 0.016;
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kappaover3 = 0.010;
kappaoverd = 0.011;

% Special constants

al = kappaasl/(mls11"2);
a2 = kappaas2/(m2x12~2);
a3 = kappaas3/(m3x13°2);
a4 = kappaasd /(mdx14 ~2);
a5 = kappaasb/(mbx15"2);

bl = kappaoverl/(mlxll"~2);
b2 = kappaoverl /(m2x12°2);
b3 = kappaover2/(m2x12~2);
b4 = kappaover2/(m3x13"2);
b5 = kappaover3/(m3x13~2);
b6 = kappaover3/(mdx14~2);
b7 = kappaoverd /(mdx14 ~2);
b8 = kappaover4d /(mbx15"2);

% DEFINING THE MATRIX

syms t

A = [-t"2+4g/11+al+bl+j*t*mu, —bl, 0, 0, 0;...
—b2, —t"2+g/12+a2+b2+b3+j*t*xmu, —b3, 0, 0;...
0, —b4, —t"2+g/13+a3+b4+b5+jxt*mu, —b5, 0;...
0, 0, —b6, —t"24g/l4+ad44+bb64+b7+j*xt*mu, —b7;...
0, 0, 0, —b8, —t"2+4+g/15+a5+b8+j*t+mu];

% PENDULUM 1

B = [alxgammal, —bl, 0, 0, 0;...
a2xgammal, —t"2+g/124a24+b2+b3+jxt*mu, —b3, 0, 0;...
a3xgammal, —b4, —t"2+g/13+a3+bd+bs+jxt*xmu, —b5, 0;...
adxgammal, 0, —b6, —t°2+g/14+ad+b6+b7+j*t+xmu, —b7;...
abxgammal, 0, 0, —b8, —t"2+g/15+a5+b8+j*t+mu];

ampl=simplify (det (B)/det (A));

% PENDULUM 2
C = [—-t"2+g/l1+al4+bl+j*xt*xmu, alxgammal, 0, 0, 0;...
—b2, a2xgammal, —b3, 0, O0;...
0, a3xgammal, —t~2+g/134+a3+bd+b5+j*t+mu, —b5, 0;...
0, adxgammal, —b6, —t"2+g/l4+a44+b6+b7+jxt*mu, —b7 ;...
0, abxgammal, 0, —b8, —t"2+g/15+ab+b5+j*t*xmu];
amp2=simplify (det (C)/det (A));

% PENDULUM 3

D = [—t"2+g/11+al+bl+j*t*mu, —bl, alxgammal, 0, 0;...
—b2, —t"2+g/12+a2+b2+b3+j*t*mu, alxgammal, 0, 0;...
0, —b4, a3xgammal, —b5, 0;...
0, 0, adxgammal, —t"2+g/l44+ad+b6+b7+]j*t*mu, —b7;...
0, 0, abxgammal, —b8, —t"2+g/15+a5+b8+jxt*mu];

amp3=simplify (det (D)/det (A));

% PENDULUM 4
E = [-t"2+g/l1+al4+bl+j*t«mu, —bl, 0, alxgammal, O0;...
—b2, —t"2+g/124+a2+b2+b3+j*t*xmu, —b3, a2xgammal, 0;...
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0, —b4, —t"2+g/13+a3+b4+b5+jxt*mu, adxgammal, O0;...

0, 0, —b6, adxgammal, —b7;...

0, 0, 0, abxgammal, —t°2+g/15+ad5+b8+j*t+mu];
ampd=simplify (det (E)/det (A));

% PENDULUM 5

F = [-t"24g/l14+al+bl+jxt*mu, —bl, 0, 0, alxgammal;
—b2, —t"2+g/12+a2+b2+b3+j*t*mu, —b3, 0, a2xgammal ;...
0, —b4, —t"2+g/13+a3+b44b5+j*t*mu, —b5, a3xgammal ;
0, 0, =b6, —t"2+g/l4+ad+b6+4+b7+]j*t*xmu, adsgammal ;...
0, 0, 0, —b8, abxgammal|;

ampb=simplify (det (F)/det (A));

figure ( 'Name','Analytical measurement — tmp','NumberTitle', 'off")

% Plot the amplitudes verus the driving frequency
hold on

el=ezplot (abs(ampl) ,[5, 15, 0, 4]);
setcurve('color','red")

e2=ezplot (abs(amp2) ,[5, 15, 0, 4]);
setcurve('color ', 'blue")

e3=ezplot (abs(amp3) ,[5, 15, 0, 4]);
setcurve('color','green")

ed=ezplot (abs(amp4d) ,[5, 15, 0, 4]);
setcurve( 'color ', 'magenta')
eb=ezplot (abs(amps) ,[5, 15, 0, 4]);
setcurve('color','black")

hold off

% Get the data so that we can save it

x1= get(el "xdata');
yvl=get(el, 'ydata');
x2= get(eQ,'xdata');
yv2=get (e2, 'ydata');
x3=get (e3, 'xdata');
y3= get(e3,'ydata');
xd=get (ed, 'xdata');
yvd=get (ed, 'ydata');
xb=get (e5, 'xdata');
yh=get (e5, 'ydata');

% Determine the resonance frequencies of this system

[ ymax1 il] max(yl),
[ymax2 i2]=max(y2);
[ymax3 i3]= max(y3) ;
[ymax4 i4]=max(y4);
[ymax5 i5]= max(y5) ;
% And print them to the console

str = sprintf('Experimental:\n\twl = %f\n\tw2 = %f\n\tw3 = %f\n\tw4
= %f\n\twd = %f', x1(il), x1(i2), x1(i3), x1(i4),x1(i5));
disp (str)

% Now close the old plot
close (findobj( "type ', 'figure

', 'name','Analytical measurement — tmp'
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% And save the data

save('simulation analytical.mat', 'x1', 'x2', 'x3', 'x4', 'x5', 'yl
Y, 'y2', 'y3', 'yd!, lysv)

clear all

close all

measurements_simulation _and nonlinear vs_linear.m

% In this section we run a simulation from w =5 to w = 15 rad/s.
We

% compare the result from this simulation with the analytical
result in

% result _analytical _vs_simulation.m. We assume linearity , since the

% analytical result is linear as well.

% First , let's do some housekeeping
clear all

close all

clc

% Set frequency domain and resolution
omega low = 5;

omega_high = 15;

N=2000;

% Do the actual measurement (linearity is assumed)

[x maxima]=solution pulse continuous driving ([omega low omega high
]7 N, true);

progressbar (1) % otherwise the progress bar will open as well

% Save data

save simulation_analytical vs_ simulation.mat

clear all

close all

07
0

% In this section we are going to compare the effect of
nonlinearity vs
% linearity .

% Set frequency domain and resolution
omega low = 5;

omega_ high = 15;

N=2000;

% Do the actual measurements

% Non—linear

[xnonlinear maximanonlinear|=solution pulse continuous_ driving (|
omega low omega high], N, false);

progressbar (1) % otherwise the progress bar will open as well

% Linear
[xlinear maximalinear|=solution pulse continuous driving ([omega low
omega high], N, true);
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progressbar (1) % otherwise the progress bar will open as well

save simulation_ nonlinear vs_linear.mat
clear all
close all

solution pulse continuous driving.m

function [x maximal=solution pulse continuous driving(
frequency domain, steps, linear)

% Transfer neccesary variables to pulse continuous driving.m by
making them global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global 1
global 1_
global driving amplitude
global mu
global omega
global linearity
linearity = linear;

T T T UTCOoCOoU e ® O
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% Define the masses of the pendula

ml = .235;
m2 = .240;
m3 = .25;
m4d = .255;
mH = .22;

% Axle—coupling spring constants
kappa as 1 = 0.13;

kappa_as_2 = 0.12;

kappa as 3 = 0.101;

kappa_as_ 4 = 0.112;

kappa as 5 = 0.121;

% Pendula—coupling springs constants
kappa over 1 = 0.012;

kappa_over_2 = 0.016;

kappa over 3 = 0.010;
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47| kappa_over_4 = 0.011;
49|% The pendula lengths
1 1 =0.1;
51/1_2 = 0.15;
1 3 =0.2;
53[1°4 = 0.25;
1 5 = 0.3;
55
% Defining other constants
57|g = 9.81;
mu = 0.1;
59| driving amplitude = 0.1;
6l|a_1 = kappa_as_1/(mlxl 1°2);
a 2 = kappa_ as_ 2/(m2x] 2°2);
63|a_3 = kappa_as_3/(m3xl 3°2);
a 4 = kappa as 4/(mdxl 4°2);
65/a_5 — kappa as_5/(mdxl_5°2);
b_1 = kappa_over_1/(mlxl_1-2);
67|b 2 = kappa over 1/(m2xl 2°2);
b 3 = kappa_over 2/(m2xl 2A2);
69|b 4 = kappa over 2/(m3xl 3°2);
b 5 = kappa_over_ 3/(m3xl 3°2);
71|b 6 = kappa over 3/(mdxl 4”2);
b 7 = kappa_over_ 4/(mdxl 4°2);
73|b_8 = kappa_over 4/(mbxl 5°2);
75|% Initial angles
thetal 0 = 0;
77| theta2 0 = 0;
theta3 0 = 0;
79| thetad 0 = 0;
thetab 0 = 0;
81

83

85

87

89

91

93

95

97

99

% Initial angular velocities

omegal 0 = 0;

omega2 0 = 0;

omega3 0 = 0;
0
0

omegad 0 =
omegad 0

)

)

% Start— and end time of the numerical integration
t 0= 0,
t_end = 300;

% Creating an array, containing the initial conditions
theta 0 = [t 0 thetal O theta2 0 theta3 0 theta4 0 thetab 0
omegal 0 omega2 0 omega3 0 omegad 0 omegad 0];

% Pre—define arrays to contain the maximum amplitudes of each
pendulum at a

% specific driving frequency and also pre—define the x array that
we return

% (which is actually omega)

maximal = [];

maxima2 = [];

60
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maxima3d = [];

maxima4 = [];

maximab5 = [];

x =[]

% Keep track of which step we're at
indx=1;

progressbar ;

for i=linspace(frequency domain(1l), frequency domain(2), steps)
indx = indx+1;

% Set the current value for omega
omega = i;

% Append this value to our x array
x =[x i];
% Numerical integration by the ode45 function

[T,theta]=oded45(@pulse continuous driving ,[t 0 t end],theta 0)

% Figure out which element of the array corresponds to roughly
the last
% 50 seconds of data (ODE45 randomly chooses dt's)

search _ind = length (find (T<250));
% And finally , determine the maximum amplitude of the pendula
at this

% specific frequency and append it to yee bi array !
maximal=[maximal max(theta(search ind:end,2)
maxima2=[maxima2 max(theta (search ind:end,3)
maxima3=[maxima3 max(theta(search ind:end,4)
maxima4=[maxima4 max(theta (search ind:end,5)
maxima5=|[maxima5 max(theta(search ind:end,6)

% Update the progress bar to indicate that heavy machinery is
at work
progressbar (indx / steps);

end

% Finally , build a big ol' matrix o' loot! Har—har—har
maxima = cat (1,maximal,maxima2,maxima3, maxima4,maxima5) ;
end

61

3

pulse continuous_ driving.m

function dtheta = pulse continuous driving(t,theta)

% Return value of constants defined in oplossing pulse.m
global
global
global
global
global
global
global
global

N = O W N -
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global
global
global
global
global
global
global
global
global
global
global 1
global driving amplitude
global mu

global omega

global linearity

'—‘l'—"—"—"—‘U‘U‘U‘U‘U‘U‘
QU W N H -3 O W

% The actual driving signal, this can be arbitrarily chosen. In
this case,

% a cosine is chosen as the input.

f = @(t) driving amplitudexcos (omegaxt);

% The system of 5 second order differential equations has been
rewritten as
% a system of 10 first order differential equations.

dtheta (1) = 1; % d/dt(t) =1
dtheta (2) = theta(7);

dtheta (3) = theta (8);

dtheta (4) = theta(9);

dtheta (5) = theta (10);

dtheta (6) = theta(11);

% We consider two possible cases: linearity , or non—linearity
if linearity

dtheta (7) = —(g/l _1)=(theta(2)) — a_1x(theta(2)—f(theta(1l))) —
b 1x(theta(2)—theta(3)) —muxtheta(7);

dtheta (8) = —(g/1_2)x(theta(3)) — a_2x(theta(3)—f(theta(1l))) —
b 2x(theta(3)—theta(2)) — b 3x(theta(3)—theta(4)) — mux
theta(8);

dtheta (9) = —(g/1 _3)x(theta(4)) — a_ 3x(theta(4)—f(theta(l))) —
b _4x(theta(4)—theta(3)) — b_5x(theta(4)—theta(5)) — mux
theta (9);

dtheta(10) = —(g/1_4)«(theta(5)) — a_4x(theta(5)—f(theta(l))) —
b _6x(theta(5)—theta(4)) — b_T7x(theta(5)—theta(6)) — mux
theta (10);

dtheta(11l) = —(g/l_5)=*(theta(6)) — a_5x(theta(6)—f(theta(l))) —
b 8x(theta(6)—theta(5)) — muxtheta (11);

else

dtheta (7) = —(g/1 _1)*sin(theta(2)) — a 1x(theta(2)—f(theta(1)))
— b_1x(theta(2)—theta(3)) —muxtheta(7);

dtheta (8) = —(g/l_2)*sin(theta(3)) — a_2x(theta(3)—f(theta(l)))
— b _2x(theta(3)—theta(2)) — b _3«(theta(3)—theta(4)) — mux
theta(8);

dtheta (9) = —(g/l1 3)xsin(theta(4)) — a 3x(theta(4)—f(theta(l)))
— b_4x(theta(4)—theta(3)) — b_5%(theta(4)—theta(5)) — mux
theta (9);

dtheta(10) —(g/1l _4)*sin(theta(5)) — a_4x(theta(5)—f(theta(l))

) — b76iktheta(5)—theta(4)) — b _7x(theta(5)—theta(6)) — mux




53

55
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theta(10);
dtheta(11l) = —(g/l 5)xsin(theta(6)) — a_ 5x(theta(6)—f(theta(l))
) — b_8x(theta(6)—theta(5)) — muxtheta(11);
end

dtheta — dtheta';
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pendulum _inverse fourier.m

function [t _signal,z signal] = pendulum inverse fourier()

% Define constants

mu = 12.3396; % Offset frequency

sigma = 2.5; % Gaussian curve shaping factor

t start = —100; % Starting time in time domain

t_end = —t_ start; % End time is minus start time

alpha = 13 % Amplitude factor of the gaussian
curve

% Sampling frequency

ws = 50%(mu + 4xsigma);
% Corresponding time step
dt = (2xpi)/ws;

% Number of datapoints

N = (t_start—t_end)/dt +1;

% Making the number of datapoints 2"k for some integer k
N = 2" nextpow2 (N} ;

% defining the time array

t = linspace(t start ,t end,N);
% New time—step as N changed
dt = t(2)—t(1);

% New sampling frequency

ws = 2xpi/dt;

% Frequency array which spans N/2 points up to frequency ws/2
omega = linspace (0,ws/2,N/2);

% Function that describes the amplitude in frequency domain,

% scaled with T
amplitude = 1/(2x—t_start)=xalpha*sqrt (2% pi)/sigmaxexp(—(omega—mu)
.72/(2xsigma"~2));
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% For inverse fourier transforms, we need to flip this
Y%amplitude spectrum at 0.5xws
amplitude = |amplitude (1l:end) flipdim (amplitude(l:end) ,2) |;

% We will now manually construct a phase spectrum

fase = ones(1,length(amplitude));

[a,b] = max(amplitude);

for n = 1:(b—1)

fase(n) = 0;

end

for n = b:(length (amplitude)—b+1)

fase(n) = 0;

end

for n = (length (amplitude)—b):length (amplitude)
fase(n) = 03

end

% Determine the actual frequency spectrum of our signal
complex amplitude = amplitude.xexp(ixfase);

% Now we define our actual frequency array, which spans from
% 0 to ws
omega = linspace (0,ws,N);

% Plot our frequency amplitude spectrum
plot (omega, abs(complex amplitude))
xlabel ( "Angular frequency (rad/s)"')

ylabel ( 'Amplitude (a.u.)"')
title ([ "Amplitude spectrum [N=' num2str(N) ', \omega s=' num2str(ws
) ', \mu=' num2str(mu) ', \sigma=' num2str(sigma) ']'])

% Time domain

% It's now time to determine the time signal that belongs
% to this frequency spectrum

7Z = ifft (complex amplitude)*N; % times N for scaling

z = ifftshift (Z);

% This is a comparison result , the unchanged signal
y_orig = alphaxexp(—t. 2xsigma~2/2).x(exp(ixmuxt)+exp(—1i*muxt));
envelope = 2xalphaxexp(—t. " 2xsigma~2/2);

% Energy content of both signals
El = trapz(t,abs(y orig)."2);
E2 trapz(t,abs(z)."2);

% Plotting the result on time domain
figure
plot(t,abs(z).xcos(angle(z)),t,y_ orig)
hold on

plot (t,envelope, 'r"')
plot (t,—envelope, 'r")

hold off

xlabel ( 'angular frequency (rad/s)")
ylabel ( "\gamma')

title ('Real part of time signal')
xlim ([—10 10]);
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% The phase spectrum

figure

plot (omega, fase)

xlabel ( "Angular frequency (rad/s)")

ylabel( 'Phase (rad)')

title ('Phase as function of angular frequency')
% The imaginary part (should be around zero)
figure

plot(t,abs(z).+xsin (angle(z)))

xlabel ( 'Time (s)')

ylabel ( '\gamma')

title ('Imaginary part of time signal')

% The following part is to determine the cut off time
typical width = sqrt(16/sigma~2);
integer = 0;

for n = (length(t)/2):length(t)
if abs(t(n)—typical width)<dt
integer = n;

if abs(t(n)—typical width) > abs(t(n+1)—typical width)
integer = n + 1;
end
end
end
typical frequency = mu;
solution interval = (2xpi)/typical frequency;
ratio = round(solution interval/dt);
% Checking if ratio is an even number
if mod(ratio ,2) =— 0
ratio = ratio;
else
ratio = ratio+1;
end
intersect = 10" —2;

array = omnes(1,length(z));

% Searching for a zero of \gamma s (t)

for n = integer:(ratio/2+integer)

if abs(real(z(n))) < intersect
array(n) = abs(real(z(n)));
end
end
[value ,integer| = min(array);

% Define the signals on their new time domain
steps = round(typical width/dt);

t _signal = [t((end—integer —2xsteps):(integer+8*steps))|;
t = [t((end—integer):integer)|;

y_orig = [y _orig((end—integer):integer) |;

envelope = [envelope((end—integer):integer)|;
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z_signal = [zeros(1,length(z(l:end—integer —1)))

integer) zeros(l,length(z(integer+1:end)))];
z_signal = [z_signal({(end—integer —2xsteps):(int
z = [z((end—integer):integer) |;

eger+8xsteps)) |;

% Plotting the signals on their new time domain
figure

plot (t _s1gnal real (z_signal))

xlabel (' tlme( )’)

ylabel ( '\gamma s')

title ('Time signal on new time domain')

% Again determining their energy content
El = trapz(t,abs(y orig)."2);

E2 = trapz(t,abs(real(z))."2);

disp (E1)

disp (E2)

% C al(ulatmg the scale factor
scalefactor — sqrt (E1/E2) ;
z signal = z signalxscalefactor;

% Plotting the rescaled time signals

figure

plot(t,abs(z).xcos(angle(z))xscalefactor ,t,y orig);
hold on

plot (t,envelope, 'r');
plot (t,—envelope, 'r');

hold off

xlabel ( "time(s) ')

ylabel ( '\gamma s')

title ('Rescaled time signal')
xlim ([t (1) t(end)])

% Checking if they have the same energy content
El = trapz(t,abs(y_orig)."2);

E2 = trapz(t,abs(zxscalefactor).”2);

disp (EL)

disp (E2)

end

z({end—integer):

67

pulse.m

function dtheta = pulse(t,theta)

% Return value of constants defined in oplossing pulse.m
global
global
global
global
global
global
global
global
global

-
W = O W N
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global
global
global
global
global
global
global
global
global
global 1_
global driving amplitude
global mu

global time signal
global ifftZ

'—‘"—"—"—"—‘U‘U‘U‘U‘U‘
Gtk W N 00~ O

% The actual driving signal, calculated from the inverse Fourier
transform ,

% which is a discrete signal. Because ode45 calculates its own
optimal time

% step, the points at which f(t) is defined will not match the

% corresponding time values of ode45. Therefore an interpolation of
f(t) is

% calculated using a cubic spline interpolant .

f = @(t) driving amplitudexcsapi(time signal,real (ifftZ),t);

% The system of 5 second order differential equations has been
rewritten as
% a system of 10 first order differential equations.

dtheta (1) = 1; % d/dt(t) =1

dtheta (2) = theta(7);

dtheta (3) = theta(8);

dtheta (4) = theta(9);

dtheta (5) theta (10);

dtheta (6) = theta(1l1);

dtheta (7) = —(g/1_1)xsin(theta(2)) — a_1lx(theta(2)—f(theta(l))) —
b 1x(theta(2)—theta(3)) —muxtheta(7);

dtheta (8) = —(g/1_2)*sin(theta(3)) — a_2x(theta(3)—f(theta(l))) —
b 2x(theta(3)—theta(2)) — b _3x(theta(3)—theta(4)) — muxtheta(8)

dtheta(9) — —(g/l 3)*sin(theta(4)) — a 3#(theta(4)—f(theta(1))) —
b_4x(theta(4)—theta(3)) — b_5x(theta(4)—theta(5)) — muxtheta (9)

dtheta (10) = —(g/1_4)xsin(theta(5)) — a_4x(theta (5)—f(theta(1))) —
b _6x(theta(5)—theta(4)) — b_T7x(theta(5)—theta(6)) — muxtheta

10);

dtheEa(il) = —(g/1_5)xsin(theta(6)) — a_b5=*(theta(6)—f(theta(l))) —

b 8x(theta(6)—theta(5)) — muxtheta(11);

dtheta = dtheta';

solution _pulse.m

function solution pulse()

% First clean up everything
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clear
close
clc

all
all

% Pendula masses
m = mean([0.235 0.240 0.25 0.255 0.22]);

m 1 = m;

m_2 = m;

m_3 — m;

m 4 = m;

m 5 — m;

kappal = mean([0.13 0.12 0.101]);

kappa2 = mean ([0.012 0.016 0.010 0.011]);

% Axle—coupling spring constants

kappa_as_1 = kappal;
kappa as 2 = kappal;
kappa as 3 = kappal;
kappa_as_4 = kappal;
kappa as 5 = kappal;
% Pendula—coupling springs constants

kappa_over_1 = kappa2;
kappa over 2 = kappa2;
kappa_over_3 = kappa2;
kappa_over_ 4 = kappa2;

% Transfer
global g

neccesary variables

to pulse.m by making them

global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global

—_———— =g oo UTooToTUY® oy
QU WINH 0030 Ol WK UL WN

driving amplitude
mu

time signal

ifftz

% Defining the constants
g = 9.81;

global
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1 2 = 0.2;

173 = 0.3;

1 4 = 0.4;

1_5 = 0.5;

a_ 1 = kappa_as_1/(m_1x1 1°2);
a2 = kappa_as_2/(m 2«1 2 2),
a_3 = kappa_as_3/(m_3xl_3°2);
a4 = kappa_as_4/(m_4x1_ 4 2);
a_5 = kappa_as_5/(m_5xl_5°2);
b 1 = kappa over 1/(m 1x1 1°2);
b_2 = kappa_over_1/(m_2x1_2°2);
b 3 = kappa over 2/(m 2« 2-2);
b_4 = kappa_over_2/(m_3x1_ 3 2)7
b 5 = kappa over 3/(m 3«1 3°2);
b_6 = kappa_over 3/(m 4x]1 4°2);
b 7 = kappa over 4/(m 4xl 4 2)
b 8 — kappa over 4/(m 5%l _5°2);
mu = 0.1;

driving _amplitude = 1;

% Initial angles

thetal 0 = 0;

theta2 0 = 0;

theta3 0 = 0;

theta4 0 = 0;

thetab 0 = 0;

% Initial angular velocities
omegal 0 = 0;

omega2 0 = 0;

omegad 0 = 0;

omegad 0 = 0;

omegad 0 = 0;

% Calculating the inverse fourier transform of the frequency domain

[time signal,ifftZ] = pendulum inverse fourier;
% Start— and end time of the numerical integration
t_0 = min(time signal);
t _end = max(time signal);

% Creating an array, containing the initial conditions
theta 0 = [t_0 thetal 0 theta2 0 theta3 0 theta4 0 thetab 0
omegal 0 omega2 0 omega3d 0 omegad 0 omegabd 0]

% Numerical integration by the ode45 function
[T,theta]=ode45(@pulse ,[t_0 t end]|,theta 0);

% Plotting the numerical solutions

plot (T,theta(:,2),T,theta(:,3),T,theta(:,4),T,theta(:,5),T,theta
(:.6))5

legend ( "\theta 1','\theta 2','\theta 3','\theta 4',"\theta 5');

xlabel('time (s) ');

ylabel ( "amplitude (rad)"')
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% Plotting the numerical solutions in seperate figures

figure

subplot (3,2,1), plot(T,theta(:
n=1');

subplot (3,2,2), plot(T,theta(:
title ('n=2");

subplot (3,2,3), plot(T,theta(:
t)"), title('n=3");

subplot (3,2,4), plot(T,theta(:
title ('n=4");

subplot(3,2,5), plot(T,theta (:
title('n=5");

end

:2))
»3)
»4)
»5)

76) 9

, xlabel('"), ylabel(''), title('

'g'), xlabel(''),

ylabel ('"),

'r'), xlabel(''), ylabel('\theta(

'c'), xlabel('t(s)'), ylabel('"),

'm"), xlabel(''),

ylabel(''),




