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Abstract

A theoretical description and a simulation model for a coherent control model
was derived and was experimentally veri�ed. First, a simpli�ed version of the
coherent control model, where no distinction is made between pendula lengths,
masses and spring constants, was considered and the equations of motion for that
particular system were derived. This theoretical description was then analyzed,
after which it was expanded to include all relevant parameters in the system.

The theoretical description was then implemented in a simulation model
and this simulation model was subjected to various tests to ensure that is was
performing as expected. To that end, both the experimental set-up and the
simulation model were driven with a continuous sinusoidal shaped drive signal,
of which the driving frequency ω was iteratively increased from small to large
values and the response of both systems was measured and compared. After
verifying that the response of the simulation model adequately predicted the
output of the experimental set-up, the lengths of various pendula were changed
and the predicted response from the simulation model was compared to the
response of the experimental set-up.

In the �nal part of the research, the link between CARS and the coherent
control model was brie�y discussed. The theory behind using a drive pulse
instead of a continuous sinusoidal shaped drive signal was explained and the
simulation model was subsequently subjected to a drive pulse to analyze its re-
sponse. Lastly, the drive pulse was altered in the phase spectrum and the output
of the simulation model was compared to the unaltered drive pulse response.
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Chapter 1

Introduction

1.1 Coherent anti-Stokes Raman spectroscopy

Coherent anti-Stokes Raman spectroscopy, also known as CARS, is a spec-
troscopy method used to visualize speci�c bonds in a molecule. A narrow-band
pulse1 could theoretically be used to excite one particular bond in a molecule, the
energy that is stored in that bond will quickly dissipate into other bonds in the
same molecule, leading to a loss of detection signal. To reduce the loss of detec-
tion signal, a method called coherent control is often used. It works by shaping
the pulse that is originally used to excite one speci�c bond to now excite all
bonds in the molecule in such as way that the vibrations will (de)constructively
interfere so that only the bond of interest will remaing vibrating.

1.2 Description of the demonstration model

In order to make the concept of coherent control comprehensible, a demonstra-
tion model - a system of �ve coupled pendula driven by a motor - has been built
previously. The pendulum model is schematically drawn in �gure 1.1. The set-
up consists of �ve coupled pendula, each coupled to its neighbouring pendula if
present and also to a central drive axle. This drive axle is controlled by a motor
which can in turn be controlled by a computer. This way, the pendulum model
can be driven using various drive pulses in order to demonstrate the e�ect of
an unoptimized and an optimized pulse. Using motion sensors, the movement
of each pendulum is sent back to the computer which can in turn process the
data and make changes to the drive pulse, if necessary.

To illustrate how each pendulum is connected to the drive axle and to neigh-
bouring pendula, a close-up of the schematic drawing has been made, see �gure
1.2.

1This is a pulse with a selective range of frequencies
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Figure 1.1: Schematic overview of the coherent control model

Figure 1.2: Schematic close-up of the connections between neighbouring pendula
and the drive axle
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If there were no springs to attach each of the pendula to the axle or to a
neighbouring pendulum, the pendula would be able to swing freely, independent
of the drive axle's motion. This is achieved by using ball bearings to connect
each pendulum to the axle as indicated in the schematic close-up. This way,
the pendula can only be indirectly driven by the drive axle through the axle-
coupling springs and each pendulum will a�ect the motion of its neighbouring
pendula through the pendulum-coupling springs.

1.3 Thesis outline

The goal of this thesis is to analyze this pendulum set-up and to describe it
theoretically. In Chapter 2, a simpli�ed version of the pendulum set-up will be
used to derive a simple theoretical model, after which this model will be brie�y
analyzed. Then this simple model will be expanded to include all relevant
parameters in the system. Using this extended theoretical description of the
set-up, a simulation model will be constructed in Chapter 3. The validity of
this model will then be discussed in Chapter 4 and a few predictions will be
made using it. In Chapter 5, drive pulses as used in CARS will be sent into the
simulation model and the response of the system will be analyzed in the case
that the pulses are optimized and are unoptimized. Finally, the results of the
report will be discussed and the conclusions will be presented at the end of the
report.



Chapter 2

Theoretical description of the

set-up

In this chapter, a theoretical model of the pendulum set-up will be derived.
First, a simple version of the set-up will be used to build a simple simulation
model. This model will be analyzed to verify that the output is as can be
expected, after which the model will be expanded to include parameters such
as damping and varying spring constants.

2.1 The basics, simple system, amplitude response

Now that a clear picture has been formed of the pendulum set-up, it can be
theoretically described so that a simulation model can be built. It is wise to start
with a simple model in order to be able to analyze the simulation step by step,
and to make sure that it is performing as it should. For this, initially the lengths
l of the di�erent pendula as well as their masses m and the spring constants of
each type of spring in the system are chosen to be the same. Damping will also
not be considered initially.

As mentioned, each of the pendula will ultimately be indirectly driven by a
motor. The motor will turn a drive axle which will have an angle of γ relative
to the vertical. Through a coupling spring, with spring constant κ, that is
connected to the drive axle and the pendulum itself, a force will be exerted on
the pendulum. That force will be nonzero when the angle between the drive
axle and the pendulum, which is de�ned to be θn − γ, is nonzero, where θn is
the angle of the nth pendulum relative to the vertical.

Additionally, each pendulum is connected by pendulum-coupling springs,
with spring constant κ̃, to its neighbouring pendula. That way each pendulum
will a�ect and will be a�ected by its neighbouring pendula. However, because
of the set-up, not all pendula have two neighbours, some only have one. See
Figure 1.1 for a schematic drawing, illustrating this.
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The kinetic energy T1 and the potential energy U1 of pendulum 1, which has
only one neighbour, is given by

T1 =
1

2
m(θ̇1l)

2 =
1

2
ml2θ̇21

U1 = mgy +
1

2
κ(θ1 − γ)2 +

1

2
κ̃(θ1 − θ2)2

= −mglcos(θ1) +
1

2
κ(θ1 − γ)2 +

1

2
κ̃(θ1 − θ2)2

Where g is the gravitational acceleration and y is the vertical position of the
mass1.

For pendula that have two neighbouring pendula (namely pendula 2 through
4) the kinetic and potential energies are given by

Tn =
1

2
m(θ̇nl)

2 =
1

2
ml2θ̇2n

Un = mgy +
1

2
κ(θn − γ)2 +

1

2
κ̃(θn − θn−1)2 +

1

2
κ̃(θn − θn+1)2

= −mglcos(θn) +
1

2
κ(θn − γ)2 +

1

2
κ̃(θn − θn−1)2 +

1

2
κ̃(θn − θn+1)2

where n ∈ {2, 3, 4}.
Finally, for pendulum 5, which like pendulum 1 only has one neighbouring

pendulum, the kinetic and potential energies are given by

T5 =
1

2
m(θ̇5l)

2 =
1

2
ml2θ̇25

U5 = mgy +
1

2
κ(θ5 − γ)2 +

1

2
κ̃(θ5 − θ4)2

= −mglcos(θ5) +
1

2
κ(θ5 − γ)2 +

1

2
κ̃(θ5 − θ4)2

Going one step further, the Lagrangians Ln ≡ Tn − Un for n ∈ {1, 2, 3, 4, 5}
are then given by

L1 =
1

2
ml2θ̇21 +mglcos(θ1)− 1

2
κ(θ1 − γ)2 − 1

2
κ̃(θ1 − θ2)2

L2 =
1

2
ml2θ̇22 +mglcos(θ2)− 1

2
κ(θ2 − γ)2 − 1

2
κ̃(θ2 − θ1)2 − 1

2
κ̃(θ2 − θ3)2

L3 =
1

2
ml2θ̇23 +mglcos(θ3)− 1

2
κ(θ3 − γ)2 − 1

2
κ̃(θ3 − θ2)2 − 1

2
κ̃(θ3 − θ4)2

L4 =
1

2
ml2θ̇24 +mglcos(θ4)− 1

2
κ(θ4 − γ)2 − 1

2
κ̃(θ4 − θ3)2 − 1

2
κ̃(θ4 − θ5)2

L5 =
1

2
ml2θ̇25 +mglcos(θ5)− 1

2
κ(θ5 − γ)2 − 1

2
κ̃(θ5 − θ4)2

1Here y = 0 at the center of the drive axle and is de�ned to be negative downward.
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The equations of motions for this system now follow from Lagrange's equa-
tion2,

∂

∂t

(
∂L

∂θ̇n

)
− ∂L

∂θn
= 0

Carrying out the di�erentiation for each Langrangian gives a set of �ve coupled
non-linear second order di�erential equations

θ̈1 + g
l sin(θ1) + a(θ1 − γ) + b(θ1 − θ2) = 0

θ̈2 + g
l sin(θ2) + a(θ2 − γ) + b(θ2 − θ1) + b(θ2 − θ3) = 0

θ̈3 + g
l sin(θ3) + a(θ3 − γ) + b(θ3 − θ2) + b(θ3 − θ4) = 0

θ̈4 + g
l sin(θ4) + a(θ4 − γ) + b(θ4 − θ3) + b(θ4 − θ5) = 0

θ̈5 + g
l sin(θ5) + a(θ5 − γ) + b(θ5 − θ4) = 0

 (2.1)

where

a ≡ κ

ml2
; b ≡ κ̃

ml2

The next step now is to take a trial solution and substitute it in (2.1). The
motion of each pendulum is expected to be oscillatory, so a solution of the
following form will be attempted

θn = Θne
iωt

Where ω is the driving frequency and Θn can be complex.3 These trial
solutions are complex functions that are being used for their great e�ciency.
Only the real part of each solution is physically signi�cant, so after the �nal
step of the solution, the real parts of θn should be taken, if one is interested in
the time dependent solution.

In (2.1), a small angle approximation will be made, resulting in sin(θn) ≈ θn.
Also, it is assumed that the driving motion can be described by γ = γ0e

iωt,
where γ0 is a real number.4

Substituting the trial solutions into (2.1) and canceling the common expo-
nential factor yields

−ω2Θ1 + g
l Θ1 + a(Θ1 − γ0) + b(Θ1 −Θ2) = 0

−ω2Θ2 + g
l Θ2 + a(Θ2 − γ0) + b(Θ2 −Θ1) + b(Θ2 −Θ3) = 0

−ω2Θ3 + g
l Θ3 + a(Θ3 − γ0) + b(Θ3 −Θ2) + b(Θ3 −Θ4) = 0

−ω2Θ4 + g
l Θ4 + a(Θ4 − γ0) + b(Θ4 −Θ3) + b(Θ4 −Θ5) = 0

−ω2Θ5 + g
l Θ5 + a(Θ5 − γ0) + b(Θ5 −Θ4) = 0

 (2.2)

2This is Lagrange's equation when dissipative forces are not considered. Those forces will
be considered in section 2.3.

3A complex amplitude has a magnitude and a phase, which are the two arbitrary constants
necessary in the solution of a second-order di�erential equation. Thus, the trial solution can
be equally written as θn = |Θn| ei(ωt−φn). When there is no damping, the pendula will either
carry a zero or π phase with respect to a sinusoidal driving signal. As a result the amplitude
will always be real. Therefore, the complex amplitude is especially useful when a damped
system is being considered, because the solution in this case might carry any phase.

4The driving amplitude is not allowed to be complex, such that it carries a zero phase.
The phases of the pendula are then automatically de�ned with respect to the driving signal.
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This constitutes a set of coupled second order linear di�erential equations,
which allows the introduction of the transformation matrixM. Collecting terms
with a common factor Θn yields

M


Θ1

Θ2

Θ3

Θ4

Θ5

 = aγ0


1
1
1
1
1

 (2.3)

where

M ≡


β −b 0 0 0
−b β + b −b 0 0
0 −b β + b −b 0
0 0 −b β + b −b
0 0 0 −b β


and

β ≡ −ω2 +
g

l
+ a+ b

In order to �nd the amplitude (and phase) response, (2.3) has to be solved
for Θn. Using Cramer's rule [?], the solution is given by

Θn =
det(Mn)

det(M)

where Mn is the matrix formed by replacing the the n-th column of M by the
vector aγ0[1 1 1 1 1]T .

As the simple system (i.e. equal l, κ, κ̃, and m and without damping) is
being considered, an exact solution can be found. This exact solution has been
obtained and is found to be

Θn =
aγ0

−ω2 + g
l + a

(2.4)

2.2 Analyzing the result

The next step in further expanding this theoretical model is to analyze the result
so far, to ensure that this derivation is correct and to understand the behaviour
that this model describes.

To start, from (2.4), the amplitude |Θn| and the phase response can be
plotted against the driving frequency ω. The result of this plot can be found in
Figure 2.1.
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Figure 2.1: Left: Pendula amplitude versus driving frequency γ0 with equal pen-
dulum lengths and no damping. Right: Pendula phase versus driving frequency
γ0 with equal pendulum lengths and no damping.

This is a somewhat surprising result, as (2.4) is independent of n and b as
can also be seen in the amplitude and phase response. Thus it can be concluded
that in this case all pendula have the same amplitude response, all have a zero
phase shift with respect to each other and they act as if there is no coupling
between them. It would appear to be that no matter what the driving frequency
is, not all of �ve expected eigenmodes - that are to be expected since this system
has �ve pendula - can be excited5. To better understand this behaviour and to
verify that this result is in fact correct, the eigenmodes and eigenfrequencies of
this system will now be derived.

2.2.1 Eigenmodes and eigenfrequencies

The eigenmodes and corresponding eigenfrequencies of the system can be found
by considering the system without driving (i.e. setting γ0 to zero), because
eigenmodes are characteristics of the system, independent of the system being
driven or not. It is expected then, when the system is driven at a certain
eigenfrequency, that its corresponding eigenmode will be excited. However, this
happens not to be the case.

5In fact, it will be shown in the following section that only one eigenmode can be excited
and maintained using driving.
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The simple system being considered does not include damping, which changes
the eigenfrequencies of the system. The degree of damping in an oscillating sys-
tem is commonly described in terms of the quality factor Q of the system. If
the system's quality factor, Q, is large enough, the eigenfrequencies approach
those of an undamped oscillator, as will be shown in section 2.2.1.2. Therefore,
the eigenmodes and eigenfrequencies of the undamped system will be derived in
the following section, followed by a similar derivation for the damped system.

2.2.1.1 Eigenfrequencies and eigenmodes

Finding the eigenmodes of the system is subject to solving

M


Θ1

Θ2

Θ3

Θ4

Θ5

 =


0
0
0
0
0

 (2.5)

Equation (2.5) has non-trivial solutions if and only if det(M) = 0. The charac-
teristic equation represented by this determinant is an equation of degree n in
ω2 and its roots might be labelled ω2

r . The ωr are the eigenfrequencies of the
system and can be shown to be

ω1 = ±
√

(g + al)

l

ω2 = ±

√
2g + 2al + 3bl +

√
5bl

2l

ω3 = ±

√
2g + 2al + 3bl −

√
5bl

2l

ω4 = ±

√
2g + 2al + 5bl +

√
5bl

2l

ω5 = ±

√
2g + 2al + 5bl −

√
5bl

2l

(2.6)

Note that all of the ωr are real, as should be the case without damping, or
else the total energy of the system would decrease monotonically with the time.
As all of the roots are distinct, the system is non-degenerate - that is, every
mode is distinguishable. The di�erent eigenmodes follow from subsituting the
squared radicals ω2

r in (2.5) and solving for the amplitude vector accordingly.
They can be shown to be
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~η1 =


1
1
1
1
1

 ~η2 =


−1

1
2 (
√

5 + 1)
0

− 1
2 (
√

5 + 1)
1



~η3 =


−1

− 1
2 (
√

5− 1)
0

1
2 (
√

5− 1)
1

 ~η4 =


1

− 1
2 (
√

5 + 3)√
5 + 1

− 1
2 (
√

5 + 3)
1

 (2.7)

~η5 =


1

1
2 (
√

5− 3)

−
√

5 + 1
1
2 (
√

5− 3)
1


These eigenvectors constitute an orthogonal set as their inner product is zero,
〈~ηi|~ηj〉 = 0 (i 6= j), which is to be expected, since M is symmetric. The princi-
ple of superposition then applies to the set of linearized di�erential equations.
Thus, the general solution for θn must be written as a linear combination of the
solutions for each of the k = 5 (where k is the number of oscillators) values of r,

θn(t) = Θ+
n,1e

iω1t + Θ−n,1e
−iω1t + Θ+

n,2e
iω2t + Θ−n,2e

−iω2t + Θ+
n,3e

iω3t

+Θ−n,3e
−iω3t + Θ+

n,4e
iω4t + Θ−n,4e

−iω4t + Θ+
n,5e

iω5t + Θ−n,5e
−iω5t

=

k∑
r=1

Θ+
n,re

iωrt +

k∑
r=1

Θ−n,re
−iωrt

=

k∑
r=1

(
Θ+
n,re

iωrt + Θ−n,re
−iωrt

)
Because it is only the real part of θn(t) that is physically meaningful, the �nal
solution is (see also section 2.1)

θn(t) = <

[
k∑
r=1

(
Θ+
n,re

iωrt + Θ−n,re
−iωrt

)]
=

k∑
r=1

(
Θ+
n,rcos(ωrt) + Θ−n,rcos(ωrt)

)
(2.8)

This set of solutions does still have 2k arbitrary constants for each equation
for θn, giving a total of 2k2 = 50 unknown arbitrary constants. However,
the relation between di�erent Θn,r is given by the eigenvectors ~ηr. Let ~ηm,r
designate the mth component of the rth eigenvector. Then for a given r,

Θ1,r : Θ2,r : Θ3,r : Θ4,r : Θ5,r = η1,r : η2,r : η3,r : η4,r : η5,r
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These relations reduce the number of arbitrary constants with a factor k, namely
to 2k = 10, just as expected, because there are 5 equations of motion that are
of second order. The values of these constants are completely speci�ed by the
initial conditions of the system.

Equation (2.8) is the homogenous solution. In case of driving with damping,
this is then the transient solution and the steady state solution is given by the
particular solution. A particular solution would again be of the form θn,p =
εne

iωt.

2.2.1.2 E�ects of damping

In section 2.3 it will be shown how the equations of motion will change when
damping (µ) is being included. The results will already be used in this sub-
section, to elaborate on the eigenfrequencies and eigenmodes of the damped
system. The transformation matrix slighty alters with iµw added to its diago-
nal elements

M′ =


β + iµω −b · · · 0
−b β + b+ iµω · · · 0
...

...
. . .

...
0 0 · · · β + iµω


with

β ≡ −ω2 +
g

l
+ a+ b

In a similar way as in subsection 2.2.1.1, the complex eigenfrequencies follow
from M' as

ω1 =
1

2
µi±

√
− 1

4µ
2l + al + 2g

l

ω2 =
1

2
µi±

√
− 1

2µ
2l + 2g + 2al + 3bl +

√
5bl

2l

ω3 =
1

2
µi±

√
− 1

2µ
2l + 2g + 2al + 3bl −

√
5bl

2l

ω4 =
1

2
µi±

√
− 1

2µ
2l + 2g + 2al + 5bl +

√
5bl

2l

ω5 =
1

2
µi±

√
− 1

2µ
2l + 2g + 2al + 5bl −

√
5bl

2l

(2.9)

Which reduce to the same eigenfrequencies as (2.6) when there is no damping
(µ = 0). It can be shown that the eigenvectors remain unchanged when damping
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is included, thus the same set of eigenvectors given by (2.7) applies.
In case of damping, it is the real part of ωr which determines the angular

frequency of the oscillatory motion. The imaginary part of ωr produces terms
of the form e−=(ωr)t in the expression for θn(t) and therefore determines the
rate at which energy is being dissipated from the system.

If the Q-factor of the system is high enough, this will yield a small value
for µ, such that µ2 will be negligible, resulting in unchanged eigenfrequencies
compared to the undamped system. Experiments have been done on the pen-
dulum, and they are discussed in Chapter 4. It will be shown in that Chapter,
that the Q-factor for a single uncoupled pendulum will be around 28, which is
fairly high. Therefore, in general, damping cannot be neglected as it will in�u-
ence the behaviour of the system, but it does not have a profound e�ect on the
eigenfrequencies of the system.

2.2.1.3 The eigenmode paradox

Di�erent simulations were performed for the system being driven at one of
the values of ωr. It became evident soon, that only one of the �ve calculated
eigenmodes could be excited and maintained, for both the system with and
without damping. This was eigenmode ~η1, the mode in which every pendulum
has the same amplitude and phase. The reason for this happening can be
explained by considering one of the other eigenmodes - say, ~η2 - and observing
what happens when the system is being driven at the accompanying resonance
frequency ω2. For simplicity, no coupling between pendula will be considered
intially, meaning that b = 0. See Figure 2.2 for a schematic respresentation of
the maximum amplitudes of eigenmode ~η2.

Figure 2.2: Schematic representation of eigenmode ~η2. The dotted line indicates
zero amplitude.

As can clearly be observed from the �gure, this eigenmode is completely
symmetric - meaning that pendula 1 and 5 have the same amplitude but opposite
phase, pendula 2 and 4 also have the same amplitude but opposite phase and
pendulum 3 does not deviate from its equilibrium. If the set-up was put in
that initial condition of the eigenmode, experienced no damping and was left
undriven, it would remain in this eigenmode for all eternity and in the case of
damping, this eigenmode would obviously die out after a said period of time.
Adding driving to this eigenmode, however, complicates things. It is therefore
wise to once again schematically represent what happens when driving is added
to the equation. See Figure 2.3 for a schematic representation of this eigenmode,
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1 2

43

Figure 2.3: Schematic representation of the forces on the di�erent pendula in
eigenmode η2 in the case of driving at di�erent moments in the drive cycle.

in the case of driving.
In part 1 of this �gure, the set-up is placed in the initial conditions of eigen-

mode ~η2. The green arrow next to the left-most pendulum graphically represents
the maximum amplitude of this particular pendulum. At exactly this moment,
the drive axle is brought in motion. The red arrows indicate the direction in
which the drive axle is then turning - this is arbitrarily chosen upward to begin
with - and also indicate the force that is (indirectly) exerted on each pendu-
lum by the drive axle. The blue arrows represent the direction in which each
pendulum would move if undriven.

After half a period of the drive motion, the situation of the system will
then be as presented in part 2 of the �gure. The pendula that were below the
dotted line in part 1 of the �gure were pushed beyond their undriven maximum
amplitude by the motion of the drive axle, whereas the pendula below the
dotted line were slowed down and now have an amplitude that is less than their
undriven maximum amplitude. To illustrate that the amplitude of the left-most
pendulum has increased, a pink arrow was drawn alongside the original green
arrow to indicate the new amplitude of that pendulum.

In the second part of the motion of the drive axle, the forces on each pendu-
lum will now be in the opposite direction and are represented in part 3 of the
�gure. Following the same reasoning as before, part 4 of the �gure indicates
the situation after a full drive cycle was completed and a clear picture can be
formed as to what will happen with the entire system if this motion will take
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place for a long period of time. Again, the green and pink arrows together with
a new blue arrow were added to illustrate that the amplitude of the left-most
pendulum has increased after a full drive cycle.

The motion of this particular eigenmode will obviously die out as the pendula
that initially move in-phase with the motor will be accelerated and the pendula
that are π rad out of phase will be slowed down. In the case where there is
no coupling between pendula, the out-of-phase pendula will simply slow down,
and then start to move in-phase with the motor, meaning that all pendula will
eventually swing in-phase with each other. Since there is no coupling, b = 0 and
ω2 = ω1- this follows from (2.6) - and the systems motion will explode6. In the
case where coupling between pendula is being considered, the motion is all but
simple and beating will occur as the energy will be redistributed evenly across
all pendula, meaning that after a transient period the pendula will eventually
swing in-phase and all with the same �nite amplitude - as in this case ω2 6= ω1

and the system will therefore not explode.
This conclusion can now be extended to each of the di�erent eigenmodes

of this system, yielding that in the driven case, none but eigenmode ~η1 can be
excited when the system is being driven at the eigenfrequencies belonging to
the respected eigenmodes, as was predicted by (2.4), ensuring that this model
is in fact correct so far.

2.3 The extended system

In section 2.1, a theoretical model of the experimental set-up was derived which
does not include damping, di�erent lengths and masses of the pendula or di�er-
ent spring constants. In the experimental set-up, these parameters may di�er
signi�cantly, causing behaviour that the basic theoretical model cannot repro-
duce. Since this model should accurately describe the behaviour of the ex-
perimental set-up, all of these di�erent parameters should be included in the
theoretical model. In this section it will be described how this is done.

2.3.1 Damping

In Lagrangian mechanics, the Rayleigh dissipation function can be used to in-
clude viscous forces and thus damping[3]. The de�nition of the Rayleigh dissi-
pation function is given by

D =
1

2

m̃∑
j=1

m̃∑
k=1

µjkθ̇j θ̇k (2.10)

6In this ideal linear, uncoupled system, the relative phase between the drive signal and the
system is 0 rad for ω < ω1 and is π rad for ω > ω1. The phase will be

1
2
π rad only at exactly

ω = ω1. If the phase is zero, the axle-coupling springs are not stretched and will exert no force
on the pendula. If the phase is π rad, the motor will exactly counteract the movement of the
pendulum, also resulting in no net force or addition of energy. Only at exactly ω = ω1, the
motor can continuously drive the system and thus add energy continuously. If no damping is
being considered, the energy has nowhere to go, so the amplitudes blow up.
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Where m̃ denotes the total amount of generalized coordinates in a system (in this
case �ve), θ̇j and θ̇j denote the time derivatives of the generalized coordinates
and µjk are damping constants.

Equation (2.10) suggests that there are viscous forces that depend on the
velocities of the di�erent pendula and even on the relative velocities between
pendula. In the experimental set-up, the coupling between neighbouring pen-
dula is quite small when compared to the coupling between the pendula and the
driving axle - the spring constants of the pendulum-coupling springs are roughly
ten times smaller. Therefore, it is assumed that the damping constants µjk for
j 6= k are negligible and these terms can be ignored in the dissipation function.
Furthermore, it is assumed that damping due to air friction is signi�cantly larger
than damping due to dissipation of heat in for example the axle-coupling springs
or the ball bearings. This results in µjk = µ for each value of j and k.

The aforementioned then implies that the dissipation function for this system
is given by

D =
1

2
µ(θ̇21 + θ̇22 + θ̇23 + θ̇24 + θ̇25) (2.11)

In the case of damping, Lagranges equation per pendulum is now given by

∂

∂t

(
∂L

∂θ̇n

)
− ∂L

∂θn
+
∂D

∂θ̇n
= 0

Which, including (2.11), then yields

θ̈1 + g
l sin(θ1) + a(θ1 − γ) + b(θ1 − θ2) + µθ̇1 = 0

θ̈2 + g
l sin(θ2) + a(θ2 − γ) + b(θ2 − θ1) + b(θ2 − θ3) + µθ̇2 = 0

θ̈3 + g
l sin(θ3) + a(θ3 − γ) + b(θ3 − θ2) + b(θ3 − θ4) + µθ̇3 = 0

θ̈4 + g
l sin(θ4) + a(θ4 − γ) + b(θ4 − θ3) + b(θ4 − θ5) + µθ̇4 = 0

θ̈5 + g
l sin(θ5) + a(θ5 − γ) + b(θ5 − θ4) + µθ̇5 = 0

Linearizing and �lling in the same trial solution as before, this yields

−ω2Θ1 + g
l Θ1 + a(Θ1 − γ0) + b(Θ1 −Θ2) + iωµΘ1 = 0

−ω2Θ2 + g
l Θ2 + a(Θ2 − γ0) + b(Θ2 −Θ1) + b(Θ2 −Θ3) + iωµΘ2 = 0

−ω2Θ3 + g
l Θ3 + a(Θ3 − γ0) + b(Θ3 −Θ2) + b(Θ3 −Θ4) + iωµΘ3 = 0

−ω2Θ4 + g
l Θ4 + a(Θ4 − γ0) + b(Θ4 −Θ3) + b(Θ4 −Θ5) + iωµΘ4 = 0

−ω2Θ5 + g
l Θ5 + a(Θ5 − γ0) + b(Θ5 −Θ4) + iωµΘ5 = 0

Which is the same as (2.2) when there is no damping (µ = 0).

2.3.2 Pendula lengths and masses

By far the most obvious parameter that can be changed in the experimental
set-up is the length of a particular pendulum. Less obvious but still relevant is
the fact that their masses will di�er as well.
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By assuming di�erent lengths ln and di�erent masses mn and deriving the
equations leading up to (2.2), this will yield

−ω2Θ1 + g
l1

Θ1 + a1(Θ1 − γ0) + b1(Θ1 −Θ2) + iωµΘ1 = 0

−ω2Θ2 + g
l2

Θ2 + a2(Θ2 − γ0) + b2(Θ2 −Θ1) + b2(Θ2 −Θ3) + iωµΘ2 = 0

−ω2Θ3 + g
l3

Θ3 + a3(Θ3 − γ0) + b3(Θ3 −Θ2) + b3(Θ3 −Θ4) + iωµΘ3 = 0

−ω2Θ4 + g
l4

Θ4 + a4(Θ4 − γ0) + b4(Θ4 −Θ3) + b4(Θ4 −Θ5) + iωµΘ4 = 0

−ω2Θ5 + g
l5

Θ5 + a5(Θ5 − γ0) + b5(Θ5 −Θ4) + iωµΘ5 = 0

Where now

an ≡
κ

mnl2n
; bn ≡

κ̃

mnl2n

2.3.3 Spring constants

The �nal contributing factor in the experimental set-up that will be considered
is the variation between spring constants. In the experimental set-up they may
vary by as much as 60 percent for the pendulum-coupling springs and by 30
percent for the axle-coupling springs - not exactly insigni�cant. Their addition
to the theoretical description together with the previously added parameters
now transform (2.2) to assume the following form

−ω2Θ1 + g
l1

Θ1 + a1(Θ1 − γ0) + b1(Θ1 −Θ2) + iωµΘ1 = 0

−ω2Θ2 + g
l2

Θ2 + a2(Θ2 − γ0) + b2(Θ2 −Θ1) + b3(Θ2 −Θ3) + iωµΘ2 = 0

−ω2Θ3 + g
l3

Θ3 + a3(Θ3 − γ0) + b4(Θ3 −Θ2) + b5(Θ3 −Θ4) + iωµΘ3 = 0

−ω2Θ4 + g
l4

Θ4 + a4(Θ4 − γ0) + b6(Θ4 −Θ3) + b7(Θ4 −Θ5) + iωµΘ4 = 0

−ω2Θ5 + g
l5

Θ5 + a5(Θ5 − γ0) + b8(Θ5 −Θ4) + iωµΘ5 = 0


(2.12)

Where now

an ≡ κn
mnl2n

; b1 ≡
κ̃1
m1l21

; b2 ≡
κ̃1
m2l22

; b3 ≡
κ̃2
m2l22

; b4 ≡
κ̃2
m3l23

b5 ≡ κ̃3
m3l23

; b6 ≡
κ̃3
m4l24

; b7 ≡
κ̃4
m4l24

; b8 ≡
κ̃4
m5l25

Taking all of these new parameters into consideration, (2.12) can be solved
using Cramer's rule for each independent Θn as before in section 2.1.



Chapter 3

Constructing the simulation

model

In order to be able to predict the behaviour of the system, the next step is
to make a simulation model that can receive an arbitrary drive input signal
and presents the response of the system, θn(t). Initially, a model was built in
Simulink for its easy implementation, but quickly thereafter it became apparent
that Simulink was not the best choice for our needs as it required more steps
to change variables and process the results than is necessary. Therefore, a more
complete model was built in MATLAB using its built-in ODE45 functionality.
This chapter will brie�y discuss how both the Simulink and MATLAB models
were built.

3.1 Simulink

To build this model, (3.1) was taken and each of the equations was rewritten
for θ̈n. Then, using integrators, θ̇n and θn could easily be calculated using
Simulink. For example, see Figure 3.1 for the Simulink subsystem of pendulum
1. The same procedure was followed for all other pendula and the subsystems
were connected so that the complete system was now described in Simulink.

θ̈1 + g
l1
sin(θ1) + a1(θ1 − γ) + b1(θ1 − θ2) + µθ̇1 = 0

θ̈2 + g
l2
sin(θ2) + a2(θ2 − γ) + b2(θ2 − θ1) + b3(θ2 − θ3) + µθ̇2 = 0

θ̈3 + g
l3
sin(θ3) + a3(θ3 − γ) + b4(θ3 − θ2) + b5(θ3 − θ4) + µθ̇3 = 0

θ̈4 + g
l4
sin(θ4) + a4(θ4 − γ) + b6(θ4 − θ3) + b7(θ4 − θ5) + µθ̇4 = 0

θ̈5 + g
l5
sin(θ5) + a5(θ5 − γ) + b8(θ5 − θ4) + µθ̇5 = 0


(3.1)

As an input for this Simulink model, initially a sine signal was added. This
meant that ω and γ0 could be adjusted and the system could be run for a
prede�ned amount of time. A graph was added which plotted θn as a function
of time.

20
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Figure 3.1: Simulink subsystem of pendulum 1

In the end, this model worked as expected and yielded proper results. For
example, it could be observed that when all pendula had equal lengths, the
amplitudes were all the same, no eigenmodes could be excited and at resonance
frequency their amplitude grew enormously.

3.2 MATLAB

The set of di�erential equations given by (2.12), can be numerically solved by
MATLAB using the ODE45 function that integrates over time. Even though
this function can only handle a set of �rst order di�erential equations, the set of
second order di�erential equations of can be solved by rewriting it as a system
of �rst order coupled di�erential equations, see (3.2).

An advantage of solving it numerically, is that now every type of function
for γ(t) might be imposed on the set of equations. A MATLAB �le has been
programmed that solves these di�erential equations subject to its boundary
conditions, and plots θn(t). See Appendix B for the accompanying MATLAB
�les.
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θ̇1 = ω1

θ̇2 = ω2

θ̇3 = ω3

θ̇4 = ω4

θ̇5 = ω5

ω̇1 = a1γ(t)− g
l1
sin(θ1)− a1θ1 − b1(θ1 − θ2)− µω1

ω̇2 = a2γ(t)− g
l2
sin(θ2)− a2θ2 − b2(θ2 − θ1)− b3(θ2 − θ3)− µω2

ω̇3 = a3γ(t)− g
l3
sin(θ3)− a3θ3 − b4(θ3 − θ2)− b5(θ3 − θ4)− µω3

ω̇4 = a4γ(t)− g
l4
sin(θ4)− a4θ4 − b6(θ4 − θ3)− b7(θ4 − θ5)− µω4

ω̇5 = a5γ(t)− g
l5
sin(θ5)− a5θ5 − b8(θ5 − θ4)− µω5



(3.2)

To illustrate the output of this model, an example output where the lengths,
masses and spring constants are chosen the same is shown in Figure 3.2.
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Figure 3.2: Output of the ODE45 model.

One important bene�t of this particular model is that it can be chosen to
adopt the linear approximation or the non-linear approximation, if desired.

In Chapter 4 pulses will be de�ned that will drive the system. These pulses
are computed discretely and are therefore only de�ned on certain time points,
say tn, yielding dt = tn+1 − tn. When ODE45 is solving the di�erential equa-
tions, it will calculate an optimal time step such that the spacing between suc-
cessive time points will not be equal. Problem is then that the pulse is unde�ned
at the time points generated by ODE45, because they do not match tn. To avoid
this problem, a cubic spline interpolant is being used to interpolate between two
points.



Chapter 4

Validating the simulation

model

A critical step in designing a simulation model is verifying its validity before
predictions can be made using it. In order to verify the validity of the simulation
model that was derived in the previous chapter, both the simulation model
and the experimental set-up were exposed to an iterative test to (indirectly)
measure the maximum amplitudes of the pendula as a function of varying driving
frequencies. If these responses are - at least qualitatively - similar, this will
demonstrate the validity of the simulation model.

In the end, to demonstrate that this model can now also be used to predict
the behaviour of the experimental system, the lengths of some pendula will be
altered and the simulation result will be compared to the experimental result.

4.1 The testing procedure

The goal is to drive the pendula with a continuous sinusoidal signal γ = γ0cos(ωt)
where ω is iteratively increased from small to large frequencies. The pendula
will initially all be at rest. In the simulation model and the experimental set-up
the lengths of the di�erent pendula will be chosen the same and are (for pen-
dula 1 through 5) 0.10m, 0.15m, 0.20m, 0.25m and 0.30m respectively. After a
transitional period, the motion of the pendula will become stable, meaning the
transient behaviour has died out and the maximum amplitude of each pendu-
lum can be determined. In this case it is imperative that the driving amplitude
γ0 will be small enough to ensure linear motion. Even though in the end the
amplitudes will not quantitatively match1, the frequencies at which di�erent
pendula start to resonate should match.

1See section 4.1.2
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Figure 4.1: Maximum pendulum amplitude as a function of the driving fre-
quency. The solid lines represent analytical data and the dotted lines indicate
simulation data.

4.1.1 Simulation model

The simulation model was programmed to recieve the desired continuous sinu-
soidal input as the drive signal. Linearity is assumed, so the driving amplitude
can be arbitrarily chosen - here it was chosen to be γ0 = 0.1 rad. All other
parameters in the simulation model will be chosen as they were determined in
[?]. As will be shown in section 4.1.3, the damping constant is determined to
be µ = 0.1 and will be used here for a best approximation. The simulation was
driven for a su�ciently long time for the motion to become stable - roughly 150
seconds. In that case the maximum amplitude can safely be determined.

The result of this test can be seen in Figure 4.1. To illustrate that this result
is correct, the previously determined analytical response from section 2.1 was
added to the same graph.

It can be observed that both responses are in excellent agreement with each
other. Because the drive input is a cosine, there is a nonzero amplitude at
ω = 0, and for all other frequencies the graphs match very well, meaning that
this method is perfect for testing the validity of the theoretical model by per-
forming the same measurement on the experimental set-up and comparing both
outcomes.
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Figure 4.2: Close-up of the motion sensor housing and the magnets on the ends
of the pendula

4.1.2 Experimental set-up

In the case of the experimental set-up, determining the maximum amplitude of
a pendulum is not directly possible. Instead, the set-up features magnetic �ux
sensors in the motion sensor housing and small magnets attached to the end
of each pendulum, see Figure 4.2. This way the magnetic �ux as a function
of time is measured, which can be interpreted as the velocity of the pendulum.
If a large magnetic �ux is measured, this will indicate that the pendulum was
moving at a high velocity, which means that the pendulum in turn had a large
amplitude. Therefore, if the pendula are driven for a su�ciently long time for
the motion to become stable and the peak-to-peak voltage is determined during
this stable period, it will be proportional to the maximum amplitude measured
in the simulation model - only this time in volts.

Because the simulation model assumes linearity of the system, the driving
amplitude is chosen to be as small as possible. As is visible in Figure 4.1, the pre-
dicted maximum amplitude at resonance frequencies could exceed π rad, which
would cause anything but linear behaviour in the system. If chosen su�ciently
small, the experimental set-up is expected to behave approximately linear and
the best comparison can be made between both results.
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The experimental set-up was driven by a continuous sinusoidal signal for
160 periods of that particular signal. It was determined experimentally that the
motion of the pendula was then fairly stable and the peak-to-peak voltage could
safely be determined. After each measurement, the pendula were left to slow
down, after which the frequency would be increased and another measurement
could be performed. Since the simulation model predicts that the resonance
frequencies lie between 5 and 15 rad/s, the experimental set-up was driven for
frequencies in that same range.

The result of the measurement can be seen in Figure 4.3.
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Figure 4.3: Result of experimental measurements.

The most obvious di�erence between this result and the previously deter-
mined analytical one is that the resonance frequencies for pendula which have
short lengths lie far from the predicted frequencies but that the resonance fre-
quencies for the pendula with longer lengths match fairly well. Since the lengths
of the pendula in�uence the position of the resonance frequencies greatly, ad-
ditional testing was performed to determine the lengths of the pendula more
accurately.

To do this, each pendulum was disconnected from all springs, ensuring it
could swing freely. It was then left to swing for a certain period and the amount
of full-period swings in this period was counted. From this, the period of swing T
could be determined and using the well known equation for the period of swing,
T ≈ 2π

√
l/g, one can then determine l. This resulted in l1 ≈ 0.155 m, l2 ≈ 0.183
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m, l3 ≈ 0.205 m, l4 ≈ 0.248 m and l5 ≈ 0.311 m. Using these corrected lengths
in the model results in a much better prediction of the resonance frequencies.
See Figure 4.4.
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Figure 4.4: Pendulum amplitudes versus driving frequency ω with adjusted
pendulum lengths using the simulation model

Another di�erence between the simulation and the experimental measure-
ments is that the resonance peaks are nonsymmetric in the case of the ex-
perimental set-up. Approaching from the left, the amplitude per pendulum
increases quite abruptly as the resonance frequency of that particular pendu-
lum is reached, whereas to the right of the resonance frequency the pendulum
maintains a relatively large amplitude, even for frequencies far from the reso-
nance frequency. This nonsymmetry is very typical of nonlinear behaviour. To
illustrate this further, simulations were performed where in one case linearity
was assumed and in the other it was not. See Figure 4.5 for the result.

It is clearly visible that in the case of linearity, the peaks are symmetric,
whereas in the case of non-linearity they are not and - although due to the
extreme driving amplitude are exaggerated - resemble the experimental data.
This is not unsurprising since even at small amplitudes, non-linearity is very
much present in the experimental set-up. For a non-linear pendulum it is already
well established that the following equation holds for the period of swing
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Figure 4.5: Pendula amplitudes versus driving frequency for linear and non-
linear assumptions. The solid lines represent non-linear assumptions and the
dashed lines represent linear assumption.
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Even though this equation does not hold exactly in the case of a coupled pendu-
lum, it might be expected that the dependence on θ0 will also be present in the
coupled case. This equation then implies that as the maximum amplitude of a
non-linear pendulum increases, the amplitude response appears to shift to the
left in the frequency domain2. The amount of shift is a function of higher order
terms of θ0. This means that as θ0 increases more and more, so does the shift to
the left in the frequency domain of the amplitude response. Eventually, the shift
will be so great that the resonance frequency, originally at ωr is now shifted to
the left to a particular value of ω. The pendulum will therefore resonate, but at
a frequency lower than the resonance frequency expected from the linear model!
As the pendulum still has a large θ0, but after resonating will decrease again - in
the linear amplitude response it has "gone over the top" - the shift will decrease,
meaning that the amplitude response shift becomes less. But here's the catch:
θ0 decreases so it might be expected that the response might be similar to what

2This follows from the fact that the resonance frequency of a pendulum is given by ω0 =
2π/T
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was seen approaching from the left in the frequency domain - a quick increase
at �rst, so now a quick decrease. However, since θ0 decreases, the shift to the
left of the amplitude response will also decrease, meaning that the maximum
amplitude will decrease less quickly. The shift will then slowly decrease until at
higher frequencies θ0 becomes small enough so that the shift is virtually zero
again and matches the linear approximation.

Another di�erence between both results is that in the theoretical case the
peak amplitudes increase as ω is increased, whereas in the experimental mea-
surements it can be observed that they in fact decrease as ω is increased. As
the frequency in the driving software was increased, it was observed that the
maximum amplitude of the drive axle actually decreased. Of course, the ampli-
tude should remain the same if a proper comparison is to be made between the
theoretical and experimental set-up. When the driving amplitude γ0 decreases,
so will the maximum amplitude of a pendulum. Apparently, as ω increases, γ0
decreases faster than the maximum amplitudes of the pendula would increase,
if γ0 remained constant as function of frequency. This then results in a net
decrease of the maximum amplitudes of the pendula as ω increases, as was
observed.

The fact that the maximum amplitudes of the pendula in the theoretical
case increase is due to the fact that for constant γ0, the torque exerted on the

pendula by the drive axle, τ , remains constant for all ω. From ∂2θ
∂t2 = τ

ml2 , it
then follows that shorther pendula have a larger angular acceleration, meaning
that their maximum amplitudes will be larger.

The last major di�erence between both results is that there appears to be
a stronger coupling force between pendula, especially for pendula with shorter
lengths. In testing the simulation model, it was found that altering the values of
the coupling constants of the pendulum-couplinig springs by a relatively small
amount a�ects the response of the system greatly. It could be that due to the
self-made nature of the springs that although their properties were as measured
at �rst, over time their response has changed, causing this behaviour.

4.1.3 Estimation of the damping constant

As was discussed in section 4.1.1, most of the parameters in the system have al-
ready been determined in previous reports or can easily be measured - all except
for the damping constant µ. In this section, an value for µ will be determined
for completeness, where the experimental results found in the previous section
will be used for the determination.

To begin, in section 2.2.1.2, the quality factor was already brie�y mentioned.
The Q-factor for a single resonator is given by [3]

Q ≡ mωresonance
µ

For an uncoupled pendulum, but connected with a spring to the drive axle, the
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eigenfrequency is given by

ω0 =

√
g

l
+ a

Subsituting this yields

µ =
m
√

g
l + a

Q
(4.1)

All parameters in (4.1) are known, except for Q. Since the system has been
observed to be underdamped, it is expected that the system is a high-Q system.
Therefore, the following equation for determining Q may be used

Q =
ω0

∆ω

where ∆ω is the width of the amplitude curve at half of its maximum amplitude.
Since this system is coupled, the Q-factors of all �ve pendula will be determined
and averaged to provide a rough estimate of the Q-factor of the entire system.
See Figure 4.6 for an example of how ω0 and ∆ω was determined for pendulum
5.
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Figure 4.6: ∆ω is de�ned as the width of the amplitude curve at half of its
maximum amplitude.

After averaging and taking the worst case scenario, it was found that µ ≈ 0.1.
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This is a useful estimation, as there exists no analytical formula for multiple
coupled oscillators, that relates Q to the damping constant.

4.2 Adjusting the lengths

Now that the model has been analyzed and compared to the experimental set-
up, it was found to behave as expected, so predictions can now be made using
it. In this section, three di�erent situations will be considered. For convenience,
the system will now be considered linear, as then the analytical solution for
the amplitudes of each pendulum can be used instead of using the simulation
model3.

4.2.1 Two pendula with equal lengths

For example, what happens when, instead of choosing the pendula to have the
lengths as de�ned in section 4.1, two of those pendula - say, pendula 1 and 5 -
have the same length?
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Figure 4.7: Pendula amplitude as a function of the driving frequency in the case
that pendula 1 and 5 have identical lengths.

3The analytical solution can calculate the amplitude response (not θn) much faster than if
the simulation model was used. It was already determined in section 4.1.1 that both results
are identical, so this method is valid.
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In the simulation model, this is easily altered. In this case the following
lengths were changed: l1 = l5 = 0.311 m, and the other pendula lengths are as
previously de�ned. The result of this calculation is presented in Figure 4.7.

As can clearly be observed, the model predicts that in this case pendula
1 and 5 will both have roughly the same resonance frequencies4 and they will
also have roughly the same amplitudes. Both pendula 1 and 5 will have much
larger maximum amplitudes if the driving frequency is chosen to be that of the
resonance frequency of these pendula whereas the other pendula will have a
relatively small amplitude. This situation was also tested in the experimental
set-up and the exact same behaviour was observed, meaning the model ade-
quately predicted this behaviour.

4.2.2 V-shape

Another interesting example is when the pendula lengths are chosen so that the
system is symmetric in shape. Take for example a V-shape, where l1 = l5 =
0.155m, l2 = l4 = 0.183 m and l3 = 0.205 m.
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Figure 4.8: Pendula amplitude as a function of the driving frequency in the case
of the lengths being chosen in a V shape.

In the ideal case where all parameters are equal for all pendula except for

4It is important to note that not all other parameters are equal for both these pendula, so
their responses will be slightly di�erent.
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the newly de�ned lengths, the expectation would be that there would only be
three resonance frequencies. In the case where the actual real parameters are
chosen, the result is as can be seen in Figure 4.8.

As can be seen, pendula 1 and 5 overlap very well, whereas pendula 2 and
4 overlap fairly well. This is obviously due to the non-ideal parameters of both
pendula 2 and 4, but not unimportantly also of their neighbouring pendula as
neighbouring pendula will greatly in�uence each other. This behaviour was once
again tested against the experimental set-up and the behaviour was as described
by the model.

4.2.3 All pendula with equal lengths

The �nal test will be where all pendula have the same length. As was derived
in Chapter 1, in that case there should be only one resonance frequency of
the system, and the amplitude responses as a function of the driving frequency
should overlap - provided that all parameters are equal per pendulum. In the
model, the lengths were chosen to be l1 = l2 = l3 = l4 = l5 = 0.205 m. The
response is as shown in Figure 4.9.
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Figure 4.9: Pendula amplitude as a function of the driving frequency in the case
of the lengths being chosen equal for all pendula.

This graph shows by far the most interesting result. Where a perfect overlap
would be expected in the ideal case, it is obvious that in the experimental case



CHAPTER 4. VALIDATING THE SIMULATION MODEL 34

no such thing will happen. To observe more closely what happens, a close-up is
shown in Figure 4.10.
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Figure 4.10: Close-up of the response in Figure 4.9.

Clearly the altering parameters have a profound e�ect on the behaviour of
this system. Upon testing, it was clear that setting all masses equal while keep-
ing other parameters as they were originally had no signi�cant e�ect. However,
the same could be said of the pendulum-coupling spring constants, and to a
lesser degree of the axle-coupling spring constants. It appears that if only one
of these parameters di�ers slightly from pendulum to pendulum, the system
responds strongly in the sense that it will deviate relatively much from the ideal
case.



Chapter 5

A driving pulse

In Chapter 2, a theoretical description of the set-up was made, where continuous
driving was assumed of the form γ = γ0cos(ωt) . In Chapter 4, the results of the
performed simulations were validated. It has been shown that the pendulum set-
up has �ve characteristic resonance frequencies, for �ve di�erent lengths of the
pendula. By choosing one of these characteristic eigenfrequencies and driving
the system at this speci�c frequency with a continuous sinusoidal signal, it was
possible to excite one pendulum signi�cantly more than the others.

However, the pendulum set-up was built to explain and investigate the anal-
ogy with CARS spectroscopy and coherent control. The point is that in CARS,
molecules will always be excited with a certain broadband light pulse - they
will be not be continuously excited. The reason for this is that the intensity of
the received CARS signals scales with the cube of the intensity of the incoming
signal, i.e. ICARS = χI3IN , where χ is a proportionality factor. In general,
this constant χ is very small, such that the incoming signal has to have a high
intensity to be able to measure the CARS signal. A light pulse can have a
much higher peak intensity than a continuous light beam while still outputtig
the same amount of power. Using a pulse, then, is desirable, otherwise a laser
with an output power in the order of MW would be required.

The problem is then translated back in terms of the pendulum model as
�nding a driving pulse that will excite one pendulum signi�cantly more than
other pendula. In this Chapter, an attempt will be made to �nd and de�ne such
a pulse, where Chapters 2 and 4 will be used as guidelines.

5.1 General idea of the shaped pulse

From the CARS perspective, suppose that an incident pulse with a very narrow
frequency spectrum, such that it has one speci�c frequency, strikes a molecule.
This frequency can be chosen such that it matches the resonance frequency of
one speci�c bond in a molecule, therefore exciting this speci�c bond. However,
energy will immediately leak to other bonds due to coupling between adjacent

35
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Figure 5.1: Exciting a molecule with a pulse [5].

atoms, resulting in them being indirectly excited as well. See Figure 5.1 for a
schematic drawing.

The idea is then to take an incident pulse with a broader frequency spectrum,
that contains the frequencies of all bonds in the molecule with the right ampli-
tudes and phases for destructive interference, such that one speci�c bond will
be excited signi�cantly more than others. See Figure 5.2 for another schematic
drawing of this situation.

Figure 5.2: Exciting the same molecule, but now with a shaped pulse [5].

This (broader) amplitude spectrum will be de�ned by a Gaussian centered
around a resonance frequency of a bond that should be excited (so for the pen-
dulum model at a resonance frequency of one speci�c pendulum). The width
of the Gaussian should be chosen such that it contains all of the systems reso-
nance frequencies, because speci�cally these frequencies could contribute to the
destructive interference of other bonds. Together with a properly chosen phase
spectrum, this input signal can excite the bonds in the molecule in the right
way so as to ensure that only one bond will be excited signi�cantly more than
others - if only for a brief moment in time. This raises the question of what the
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phase spectrum should look like. The next section will elaborate on this.

5.1.1 Flipping the phase of the driving signal

In Chapter 2, it was shown how Θn(ω) was derived. This formula is called the
frequency response or transfer function, because it describes how the system
responds to di�erent frequencies. When applying a driving signal γ(t), the
response of a pendulum in the frequency domain, Θ̃n(ω), is given by the product
of the transfer function and the Fourier transform of γ(t)

Θ̃n(ω) = Θn(ω)γ̂(ω)

= |Θn(ω)|eiϕn(ω)|γ̂(ω)|eiϕd(ω) (5.1)

= |Θn(ω)||γ(ω)|ei(ϕn+ϕd)

Now suppose that γ̂(ω) has a frequency spectrum that is relatively wide
compared to the transfer functions Θn(ω) and envelopes these transfer functions
at the same time, as shown in Figure 5.3. Because the fourier transform of
a Gaussian is once again a Gaussian, this shape will be chosen for γ̂(ω) for
convenience. The larger the width of the Gaussian envelope, the more it will
approach the Fourier Transform of a delta pulse, which is ={δ(t)} = 1. Thus,
if the width is chosen large enough, (5.1) simpli�es to

Θ̃n(ω) ≈ |Θn(ω)|ei(ϕn+ϕd) (5.2)

Equation (5.2) is an important result as it states that all of the frequency
components that Θ̃n(ω) contains, might be given an identical phase. Setting
the phase of the driving signal ϕd opposite to ϕn would do the job

ϕd = −ϕn

The phase of a pendulum ϕn changes as shown in Figure 5.3.
The phase of the driving signal should then be chosen equal to the light-blue

dashed line. The polar plot in Figure 5.4 illustrates this idea: if ω increases, the
blue circle will be traced in the direction of increasing numbers. Its correspond-
ing phase ϕn, then runs from 0 to π. Now suppose the driving function traces
the green circle in the opposite direction as again indicated by the increasing
numbers. Its corresponding phase ϕd then runs from 0 to −π. It is obvious
from (5.1), that their phases will add up to yield Θ̃n. The e�ect is then that
the net response lies across the positive real axis, because all vectors will add
up across these axis. Note that this would not be case when using a �at phase,
ϕd = 0, as then horizontal vector components would cancel out, resulting in a
net vertical vector, which at the same time is obviously less in magnitude than
would be the case if the phase of the drive signal is �ipped.
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Figure 5.3: The amplitude and phase response for a system of �ve uncoupled
pendula. The Gaussian envelope which is multiplied with in the frequency
domain is shown as well. The blue dashed line represents the phase of this
envelope, and has the opposite phase of pendulum 3.
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Figure 5.5: Changing the drivers phase by π at resonance frequency ω0, will
bring the driver and pendulum back in phase again.

In the remaining part of this Chapter, derivations will be made using the
ideal phase response of the system for convenience, as the phase response does
not di�er too much from the ideal case as long as µ is not too large - which
it was previously determined not to be. Beside this, the driving axle of the
pendulum model will probably not be able to follow the exact phase response
due to its own resolution limitations.

In this ideal case, the phase jumps previously shown in Figure 5.3 will now
assume the form of Figure 5.5. This phase jump is chosen to occur when the
driving frequency equals ω0, the resonance frequency of the pendulum that is
to be excited. Only this pendulum will be a�ected by this phase �ip, since all
other pendula have amplitudes that are negligible at these frequencies, and a
phase �ip there will go unnoticed. The e�ect of this phase �ip is similar to what
was previously described for the non-linear case, although in this case, without
the phase �ip in the drive signal, the amplitude components of the pendulum
would add up to a total of zero at t = 0, whereas all amplitude components will
add up constructively if the phase �ip is introduced. Therefore, this method
should theoretically produce a much better response of the pendulum that is to
be excited than before.

Coupling the pendula will introduce changes in the phase spectra of the
pendula, see Figure 5.6. The sharps peaks in the phase spectrum are due to
neighbouring pendula that are resonating. Thus driving the coupled system
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with a pulse with has the same shaped phase, cannot be expected to work as
well in the uncoupled case, but still it is expected to work better than if no
phase �ip would be used.
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Figure 5.6: Phase behaviour of pendula in the coupled system, when using
lineair approximation.

In section 5.1.2, the shape of the actual pulse will be determined when its
phase spectrum is �at, i.e. ϕ(ω) = 0, followed by a numerically inverse Fourier
transformed pulse in section 5.1.4, with the altered phase spectrum shown in
Figure 5.5. These pulses will then be implemented as driving signals in the
simulations, such that the behavior of both pulses can be investigated.

5.1.2 De�ning the (angular) frequency spectrum of the
pulse

From Fourier analysis it is known that

F
{
e−ξt

2

(t)
}

=

√
π

ξ
e−

ω2

4ξ ξ ∈ R, ξ > 0 (5.3)

In this case, only a symmetric amplitude spectrum makes sense, because the
corresponding time signal has to be real valued. Centering the Gaussian from
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(5.3) in frequency domain around +ν, setting ξ = 1
2σ

2, multiplying by an arbi-
trary constant α and adding a similar mirrored (in ω = 0) Gaussian to preserve
symmetry, the new amplitude spectrum is then de�ned as

A(ω) = α

√
2π

σ

[
e−

(ω+ν)2

2σ2 + e−
(ω−ν)2

2σ2

]
(5.4)

Note that the value of σ determines the width of the Gaussians, which has
to be chosen such that all of the system's eigenfrequencies are present in the
amplitude spectrum, as explained in the previous section. Furthermore, ν will
be chosen equal to the resonance frequency of a pendula. The corresponding
phase spectrum will only make sense when it is odd, because as was mentioned
before, the time signal has to be real valued. It is initially de�ned as

ϕd(ω) = 0

Such that the frequncy spectrum of the time signal is de�ned as

γ̂(ω) = A(ω)eiϕd(ω)

The signal in the time domain follows from the inverse Fourier transform

γ(t) =
1

2π

∞̂

−∞

γ̂(ω)eiωtdω

= αe−
1
2σ

2t2(e−iνt + eiνt)

= 2αe−
1
2σ

2t2cos(νt) (5.5)

Apparently, γ(t) is a sinusoid with a Gaussian envelope. A plot of the amplitude-
and phase spectrum of γ(t), as well as γ(t) itself with its Gaussian envelope is
shown in Figure 5.7. For convenience, the constants have been set to α = 1; σ =
1; ν = 5.

5.1.3 Using MATLAB for the inverse Fourier transform

In the previous subsection, γ(t) has been derived analytically. This becomes a
lot harder, if not impossible, when the phase spectrum will be changed. It was
therefore decided to use the Inverse Fast Fourier Transform function of MAT-
LAB, to transform the signal from frequency domain to time domain. Perform-
ing an inverse Fourier transform using MATLAB on the amplitude and phase
spectrum, shown in Figure 5.7, should yield the same result as the analytical re-
sult of (5.5). However, they will not match in general. This is due to periodicity
in the time domain assumed by the IFFT function, but the amplitude spectrum
de�ned by (5.4) transforms into γ(t), and is clearly non periodic. This problem
can be resolved quite easily: when calculating the inverse Fourier transform,
it should be calculated over a su�ciently long time interval. Comparing the
analytical with the numerical inverse Fourier transform has shown that a time
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Figure 5.7: On the left: amplitude and phase spectrum of γ(t); On the right:
γ(t) with the gaussian envelope.

interval from T̃ = [−100 100] is more than su�cient, because both signals
could hardly be distinguished anymore. E�ectively, MATLAB now sees a time
signal which is apparently long enough to treat it as 'non-periodic'. Another
consequence of MATLAB assuming periodicity is that the amplitude spectrum
will scale with the length of the time interval, thus A(ω) ∼ 1/T̃ .

When performing an inverse Fourier transform, it is imperative that the sam-
pling frequency ωs is high enough, in order to be able to follow high frequency
components. The minimum sample rate required to completely reconstruct the
time signal is the Nyquist frequency ωs = 2ωb, where ωb is the bandwidth of the
frequency spectrum. From (5.4) it follows that a sampling frequency ωs � ν+4σ
will be more than su�cient. From the sample frequency, the corresponding time
step then follows as dt = 2π

ωs
.

The aforementioned describes the main issues and most important basics of
the algoritm that carries out the inverse Fourier transform. See also Appendix
B.

5.1.4 Re-de�ning the phase spectrum

The phase spectrum of γ(t) will now be re-de�ned as explained in section 5.1,
such that the driver will be in phase with the pendulum for all of the frequencies
that the driving signal contains. This phase spectrum is show in Figure 5.8, and



CHAPTER 5. A DRIVING PULSE 43

can mathematically be represented in terms of the Heaviside function H

ϕs(ω) = π [H(ω − ω0)−H(−ω − ω0)]

Changing the phase spectrum of γ(t) will not change the energy content of the
phase altered signal γs(t), because their amplitude spectrum is the same

Ef =
1

2π

∞̂

∞

|γ̂(ω)|2 dω =
1

2π

∞̂

∞

A2(ω)dω =
1

2π

∞̂

∞

|γ̂s(ω)|2 dω

From this, one would conclude that the response of the system to the original
pulse and phase altered pulse may be compared, since both signals put the same
amount of energy into the system. However, a problem arises as γs(t) will not
converge to zero as t → ±∞ whereas γ(t) converges to zero quickly and is at
only one percent of its maximum when 1

2σ
2t2 > 4. Obviously, one would want

to drive the system with a pulse of a de�ned and �nite duration. The di�erence
between γ(t) and γs(t) can be qualitatively understood in terms of the frequency
spectrum. A �at phase spectrum, shown in Figure 5.7, results in γ(t) being built
up of cosines of di�erent frequencies, centered around t = 0. Because they have
di�erent frequencies, the cosines will go out of phase as |t| > 0, resulting in
destructive interference - hence the signal converges to zero for large |t|. If
the �at phase spectrum is now altered to the one shown in Figure 5.8, again
cosines of di�erent frequencies will add up. However, now not all of them will be
centered around t = 0, therefore destroying the symmetry that γ(t) has. This
in turn then partially destroys the (complete) destructive interference and the
signal will not converge to zero anymore.

To obtain a phase altered pulse with a �nite duration, it was decided to cut
o� γs(t), which de�nes a new signal γ′s(t). The typical cut o� time, designated
tc, has been made dependent on the typical width of the original pulse. The
typical width of the pulse has been de�ned as the time at which 1

2σ
2t2 = 8,

to be on the safe side (the amplitude of the pulse will then be negligible, as
it will be in the order of 10−4 radians), or ttypicalwidth = 4

σ . In general, this
value of t will not be a root of γs, and it would be better to avoid tc to be such
thatγs(tc) 6= 0 for practical reasons: the motor of the demo model always starts
with zero amplitude and de�ning a pulse which starts with a �nite amplitude
is therefore not feasible in practice. If one would just ignore this, the actual
applied pulse would be slightly di�erent.

An algorithm has been written that searches for the closest zero around
ttypicalwidth, see pendulum_inverse_fourier.m, added to Appendix B. This
newly found time value is then assigned tc. Note that because of symmetry,
once a root is known to be located at t = tc, another zero is automatically
located at −tc. Even though both pulses are now well de�ned on [−tc tc] ,
cutting o� γs(t) throws away a part of its energy content.
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Figure 5.8: On the left: amplitude and altered phase spectrum of γs(t); On the
right: the original pulse γ(t) and the phase altered pulse γs(t).
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Figure 5.9: γ(t) and γs(t) on a extended time domain.
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Therefore γ′s(t) has to be rescaled in order to have the same energy content
as γ(t). This scaling factor is determined numerically by the algorithm and
follows as

scalingfactor =

√
Eγ(t)

Eγ′s(t)
=

√√√√ ´ tc−tc |γ(t)|2 dt´ tc
−tc |γ

′
s(t)|

2
dt

Multiplying γ′s(t) by this scalefactor then gives both signals the same energy
content. An example of the result can be seen in Figure 5.8 and on an extended
domain in Figure 5.9.

The system's behavior to γ(t) and γ′s(t) to the uncoupled as well as the
coupled system will be tested in the next section.

5.2 Response of the system to both kind of pulses

In this section the response of the system to both kinds of pulses - the one with
and without phase �ip - will be tested. The results will be easier to analyze
when the lengths of the pendula are not closely spaced, because then the transfer
functions would overlap. Therefore, the lengths are chosen to lie 0.1 m apart,
such that l1 = 0.1; l2 = 0.2; l3 = 0.3; l4 = 0.4; l5 = 0.5. Furthermore,
the coupling spring constants and masses will all be chosen identical. First,
simulations will be performed with the uncoupled system, where di�erent values
for σ will be taken. The reason for this is that it is already known how the
system will response when σ is taken very small, because the time signal is
then approximately that of a continuous sinusoidal shape, which can be used
as a check. Secondly, the response of the coupled system to both pulses will be
simulated and this time only for a large value of σ.

5.2.1 Uncoupled system, small σ

The center frequency of the Gaussian, ν, will be set to the resonance frequency
of pendulum 1, so the phase �ip will also occur at this frequency. Initially a
small value for σ will be chosen, so that the frequency spectrum is small and the
signal in the time domain is sinusoidally shaped with a large envelope. For the
case without a phase �ip, the response of the system is shown in Figure 5.10.
With phase �ip, the system responds as shown in Figure 5.11.

As can been seen in 5.10, all pendula respond to the pulse, and pendulum 1
does indeed have a signi�cantly larger amplitude than the others. Because the
system was excited with the characteristic frequency of pendulum 1, it will keep
oscillating for a while until its damped out.

Observing the case with phase �ip, shows that the response of pendulum
1 is now stronger: a relatively high amplitude is now present in a larger time
domain. The response of the other pendula has decreased slightly, but this
is mainly caused by γs, which becomes smaller in maximum amplitude after
the phase shift. The same phase shift gives a longer (nonzero) signal in the
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time domain as explained in the previous section. Therefore, the pendula will
oscillate in a longer time domain, which can be observed as well.
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Figure 5.10: Response of the system, when no phase �ip is applied.

0 20 40
-5

0

5
n=1

0 20 40
-0.5

0

0.5
n=2

0 20 40
-0.1

0

0.1

θ 
(t

)

n=3

0 20 40
-0.1

0

0.1

t(s)

n=4

0 20 40
-0.05

0

0.05
n=5

Figure 5.11: Response of the system, when a phase �ip is applied.

5.2.2 Uncoupled system, large σ

The range of eigenfrequencies of the pendula lies between 4.6 rad/s and 12.1 rad/s.
Setting σ = 4 will then be large enough for the Gaussian envelope to contain all
of the resonance frequencies. This wide frequency spectrum will in turn yield a
very narrow pulse in the time domain. The response of the system for the case
without and with phase �ip are again plotted. See Figures 5.12 and 5.13.
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Figure 5.12: Response of the system, when no phase �ip is applied.
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Figure 5.13: Response of the system, when a phase �ip is applied.
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Because the frequency spectrum is now wider, it also contains the character-
istic frequencies needed to excite other pendula. Therefore, they will oscillate
a said period of time, until they are damped out. Note the di�erence between
Figure 5.10 and 5.12, where only pendulum 1 oscillates over a longer time than
the other pendula.

If the phase �ip is now applied, the system responds as shown in Figure 5.13.
Note that pendulum 1 now has a higher peak just after t = 0, which was not
present in the case of no phase �ip.
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Figure 5.14: Response of the coupled system to the pulse, when no phase �ip is
applied.

5.2.3 Coupled system

When the system is coupled, the responses to both pulses are as shown in Figure
5.14 and 5.15. From the �gures, it can be deduced that the maximum amplitude
of pendulum 1 has increased about 5 percent. However, at the same time the
amplitude of pendulum 2 has increased as well due coupling between these two
pendula. The other pendula also experience a neglible increase in amplitude,
probably caused by coupling as well, so pendulum 1 is e�ective stimulated the
most. Therefore, �ipping the phase seems to work, even in the coupled case,
although the idea of the phase �ip was based on the uncoupled case. But, of
course, this could be expected, as the phase spectrum of the uncoupled and
coupled case have many similarities.
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5.2.4 Experimental Setup

For a �nal comparison, a program in LabView was built, so that the system could
be driven with both pulse types. Simulations have shown that the di�erence in
reponse to both pulses is small. In combination with the fact that the driving
axle is not able to output the prede�ned amplitude, as mentioned in Chapter 4,
this unfortunately resulted in di�erences that could not be measured. Therefore
the experimental results are not included.
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Figure 5.15: Response of the coupled system to the pulse, when a phase �ip is
applied.



Chapter 6

Conclusion, discussion and

recommendations

The coherent control model has been theoretically described and various im-
portant parameters in the system have been included. It has been shown that
in the con�guration where all pendula were given the same length, none of the
systems eigenmodes can be stimulated when the system is driven.

Furthermore, a simulation model of the pendulum set-up has been built and
was experimentally veri�ed. The simulation model was found to be able to
predict the behaviour of the pendulum set-up quite well.

Simulations performed in Chapter 5 have shown that using a phase shaped
pulse results in a slightly increased amplitude response of the involved pendu-
lum. Even though the phase shaping analysis was done for an uncoupled system,
simulations have shown that it also works for the coupled system - albeit to a
lesser extent.

Discussion and recommendations

Currently, the coherent control model is being controlled by the Evolutionary

Smart Learning Algorithm. A �rst initial guess for the driving signal is being
made by taking a cosine with a Gaussian envelope. Its center frequency in the
frequency domain is taken equal to the eigenfrequency of the pendulum - the
one to be excited. However, from the analysis in Chapter 2 it can be concluded
that the coherent control model has �ve di�erent eigenfrequencies (when using
�ve di�erent lengths), at which one pendulum is excited signi�cantly more than
the others. For a coupled system, the system's eigenfrequencies are not equal to
the eigenfrequencies of the pendula. It would therefore be a better initial guess
to start with the center frequency equal to an eigenfrequency of the system.

One of the reasons why the experimentally determined amplitude response
as a function of the driving frequency did not match the analytically determined
one, is because the maximum drive axle amplitude decreased as the driving fre-
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quency was increased. For a good comparison it is imperitive that the maximum
drive axle amplitude remains constant for all drive frequencies. Furthermore,
the motion of the drive axle is overall not very smooth. The amount of noise in
the drive signal - although negligible for large driving amplitudes - is an unde-
sired factor when performing real measurements. It was also noticed that the
maximum driving amplitude at a �xed driving frequency is not constant. It is
therefore recommended that further investigation is performed to �nd out what
is causing this behaviour in the drive axle.

Both the axle coupling springs and the pendula coupling springs were self
made, causing their spring constants to di�er. The axle-coupling springs di�er
by a maximum of 30 percent, whereas the pendula-coupling springs di�er by as
much as 60 percent. When the objective is to use the model to explain CARS
to a random person, this will not make much of a di�erence. However, these
di�erences can no longer simply be neglected when performing (even simple) ex-
periments on the coherent control model, which turns out to be very disturbing.
If more detailed experiments are to be performed using the pendulum set-up, it
is therefore advised to order new factory produced springs that will result in a
less complex system.

The determination of the damping constant in the model was done by aver-
aging the Q-factors of all the di�erent pendula and determining µ from those
factors. In reality, each pendula has its own value for µ. For future simulations,
the implementation of these di�erent µ values in the simulation model could
therefore be considered and the e�ect on the system could be analyzed.



Nomenclature

ln length of the n-th pendulum m
mn mass of the n-th pendulum kg
γ driving amplitude as a function of time radians
κ axle-coupling spring constant N ·m · radians−1
κ̃ pendulum-coupling spring constant N ·m · radians−1
θn pendulum amplitude as a function of time radians
Tn kinetic energy of the n-th pendulum J
Un potential energy of the n-th pendulum J
g gravitational acceleration m · s−2
y position relative to the drive axle (negative downward) m
Ln lagrangian for the n-th pendulum J
Θn maximum amplitude of the n-th pendulum radians
ω driving frequency radians · s−1
ωs sampling frequency radians · s−1
ωb bandwidth driving signal radians · s−1
ωr resonance frequency radians · s−1
t time s
γ0 maximum driving amplitude radians
γ driving function radians
γs phase altered driving function radians
γ′s cut o� driving signal radians
tc cut o� time s
ϕn phase response of pendulum n radians
ϕd phase spectrum of the driving signal radians
ϕs altered phase spectrum driving signal radians
M transformation matrix −
Q quality factor −
ηr eigenmode −
µ damping constant Ns ·m−1
τ torque N ·m
σ width of Gaussian in frequency domain radians · s−1
ν o�set frequency Gaussian in frequency domain radians · s−1
α amplitude factor Gaussian in frequency domain −
E energy content radians2 · s
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Appendix A

MATLAB Files Chapter 3

measurements_analytical.m

1 % Calcu la te the amplitude response o f the system an a l y t i c a l l y −
t h i s method

% i s much f a s t e r than us ing the s imu la t i on model i t s e l f to
determine the

3 % amplitude re sponse as a func t i on o f the d r i v i ng f requency .
maple r e s t a r t ;

5 format long

7 % Generic cons tant s
g = 9 . 8 1 ;

9
% Masses o f the pendula

11 m1 = . 2 3 5 ;
m2 = . 2 4 0 ;

13 m3 = . 2 5 ;
m4 = . 2 5 5 ;

15 m5 = . 2 2 ;

17 % Lengths o f the pendula
l 1 =.1 ;

19 l 2 =.15;
l 3 =.2 ;

21 l 4 =.25;
l 5 =.3 ;

23
% Spring cons tant s o f the ax l e sp r i ng s

25 kappaas1 = . 1 3 ;
kappaas2 = . 1 2 ;

27 kappaas3 = . 1 0 1 ;
kappaas4 = . 1 1 2 ;

29 kappaas5 = . 1 2 1 ;

31 % Spring cons tant s o f the coup l ing sp r i ng s
kappaover1 = 0 . 0 1 2 ;

33 kappaover2 = 0 . 0 1 6 ;
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kappaover3 = 0 . 0 1 0 ;
35 kappaover4 = 0 . 0 1 1 ;

37 % Spec i a l cons tant s
a1 = kappaas1 /(m1* l 1 ^2) ;

39 a2 = kappaas2 /(m2* l 2 ^2) ;
a3 = kappaas3 /(m3* l 3 ^2) ;

41 a4 = kappaas4 /(m4* l 4 ^2) ;
a5 = kappaas5 /(m5* l 5 ^2) ;

43
b1 = kappaover1 /(m1* l 1 ^2) ;

45 b2 = kappaover1 /(m2* l 2 ^2) ;
b3 = kappaover2 /(m2* l 2 ^2) ;

47 b4 = kappaover2 /(m3* l 3 ^2) ;
b5 = kappaover3 /(m3* l 3 ^2) ;

49 b6 = kappaover3 /(m4* l 4 ^2) ;
b7 = kappaover4 /(m4* l 4 ^2) ;

51 b8 = kappaover4 /(m5* l 5 ^2) ;

53 mu = 0 . 1 ;
gamma1 = 0 . 1 ;

55
% DEFINING THE MATRIX

57 syms t
A = [− t^2+g/ l 1+a1+b1+j * t *mu, −b1 , 0 , 0 , 0 ; . . .

59 −b2 , −t^2+g/ l 2+a2+b2+b3+j * t *mu, −b3 , 0 , 0 ; . . .
0 , −b4 , −t^2+g/ l 3+a3+b4+b5+j * t *mu, −b5 , 0 ; . . .

61 0 , 0 , −b6 , −t^2+g/ l 4+a4+b6+b7+j * t *mu, −b7 ; . . .
0 , 0 , 0 , −b8 , −t^2+g/ l 5+a5+b8+j * t *mu ] ;

63
% PENDULUM 1

65 B = [ a1*gamma1 , −b1 , 0 , 0 , 0 ; . . .
a2*gamma1 , −t^2+g/ l 2+a2+b2+b3+j * t *mu, −b3 , 0 , 0 ; . . .

67 a3*gamma1 , −b4 , −t^2+g/ l 3+a3+b4+b5+j * t *mu, −b5 , 0 ; . . .
a4*gamma1 , 0 , −b6 , −t^2+g/ l 4+a4+b6+b7+j * t *mu, −b7 ; . . .

69 a5*gamma1 , 0 , 0 , −b8 , −t^2+g/ l 5+a5+b8+j * t *mu ] ;
amp1=s imp l i f y ( det (B) /det (A) ) ;

71
% PENDULUM 2

73 C = [− t^2+g/ l 1+a1+b1+j * t *mu, a1*gamma1 , 0 , 0 , 0 ; . . .
−b2 , a2*gamma1 , −b3 , 0 , 0 ; . . .

75 0 , a3*gamma1 , −t^2+g/ l 3+a3+b4+b5+j * t *mu, −b5 , 0 ; . . .
0 , a4*gamma1 , −b6 , −t^2+g/ l 4+a4+b6+b7+j * t *mu, −b7 ; . . .

77 0 , a5*gamma1 , 0 , −b8 , −t^2+g/ l 5+a5+b5+j * t *mu ] ;
amp2=s imp l i f y ( det (C) /det (A) ) ;

79
% PENDULUM 3

81 D = [− t^2+g/ l 1+a1+b1+j * t *mu, −b1 , a1*gamma1 , 0 , 0 ; . . .
−b2 , −t^2+g/ l 2+a2+b2+b3+j * t *mu, a2*gamma1 , 0 , 0 ; . . .

83 0 , −b4 , a3*gamma1 , −b5 , 0 ; . . .
0 , 0 , a4*gamma1 , −t^2+g/ l 4+a4+b6+b7+j * t *mu, −b7 ; . . .

85 0 , 0 , a5*gamma1 , −b8 , −t^2+g/ l 5+a5+b8+j * t *mu ] ;
amp3=s imp l i f y ( det (D) /det (A) ) ;

87
% PENDULUM 4

89 E = [− t^2+g/ l 1+a1+b1+j * t *mu, −b1 , 0 , a1*gamma1 , 0 ; . . .
−b2 , −t^2+g/ l 2+a2+b2+b3+j * t *mu, −b3 , a2*gamma1 , 0 ; . . .
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91 0 , −b4 , −t^2+g/ l 3+a3+b4+b5+j * t *mu, a3*gamma1 , 0 ; . . .
0 , 0 , −b6 , a4*gamma1 , −b7 ; . . .

93 0 , 0 , 0 , a5*gamma1 , −t^2+g/ l 5+a5+b8+j * t *mu ] ;
amp4=s imp l i f y ( det (E) /det (A) ) ;

95
% PENDULUM 5

97 F = [− t^2+g/ l 1+a1+b1+j * t *mu, −b1 , 0 , 0 , a1*gamma1 ; . . .
−b2 , −t^2+g/ l 2+a2+b2+b3+j * t *mu, −b3 , 0 , a2*gamma1 ; . . .

99 0 , −b4 , −t^2+g/ l 3+a3+b4+b5+j * t *mu, −b5 , a3*gamma1 ; . . .
0 , 0 , −b6 , −t^2+g/ l 4+a4+b6+b7+j * t *mu, a4*gamma1 ; . . .

101 0 , 0 , 0 , −b8 , a5*gamma1 ] ;
amp5=s imp l i f y ( det (F) /det (A) ) ;

103
f i g u r e ( 'Name ' , ' Ana ly t i c a l measurement − tmp ' , 'NumberTitle ' , ' o f f ' )

105
% Plot the ampl itudes verus the d r i v i ng f requency

107 hold on
e1=ezp l o t ( abs (amp1) , [ 5 , 15 , 0 , 4 ] ) ;

109 s e t cu rve ( ' c o l o r ' , ' red ' )
e2=ezp l o t ( abs (amp2) , [ 5 , 15 , 0 , 4 ] ) ;

111 s e t cu rve ( ' c o l o r ' , ' blue ' )
e3=ezp l o t ( abs (amp3) , [ 5 , 15 , 0 , 4 ] ) ;

113 s e t cu rve ( ' c o l o r ' , ' green ' )
e4=ezp l o t ( abs (amp4) , [ 5 , 15 , 0 , 4 ] ) ;

115 s e t cu rve ( ' c o l o r ' , 'magenta ' )
e5=ezp l o t ( abs (amp5) , [ 5 , 15 , 0 , 4 ] ) ;

117 s e t cu rve ( ' c o l o r ' , ' black ' )
hold o f f

119
% Get the data so that we can save i t

121 x1=get ( e1 , ' xdata ' ) ;
y1=get ( e1 , ' ydata ' ) ;

123 x2=get ( e2 , ' xdata ' ) ;
y2=get ( e2 , ' ydata ' ) ;

125 x3=get ( e3 , ' xdata ' ) ;
y3=get ( e3 , ' ydata ' ) ;

127 x4=get ( e4 , ' xdata ' ) ;
y4=get ( e4 , ' ydata ' ) ;

129 x5=get ( e5 , ' xdata ' ) ;
y5=get ( e5 , ' ydata ' ) ;

131
% Determine the resonance f r e qu en c i e s o f t h i s system

133 [ ymax1 i 1 ]=max( y1 ) ;
[ ymax2 i 2 ]=max( y2 ) ;

135 [ ymax3 i 3 ]=max( y3 ) ;
[ ymax4 i 4 ]=max( y4 ) ;

137 [ ymax5 i 5 ]=max( y5 ) ;

139 % And pr in t them to the conso l e
s t r = s p r i n t f ( ' Experimental : \ n\tw1 = %f \n\tw2 = %f \n\tw3 = %f \n\tw4

= %f \n\tw5 = %f ' , x1 ( i 1 ) , x1 ( i 2 ) , x1 ( i 3 ) , x1 ( i 4 ) , x1 ( i 5 ) ) ;
141 d i sp ( s t r )

143 % Now c l o s e the o ld p l o t
c l o s e ( f i ndob j ( ' type ' , ' f i g u r e ' , 'name ' , ' Ana ly t i c a l measurement − tmp '

) )
145
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% And save the data
147 save ( ' s imu la t i on_ana ly t i c a l . mat ' , ' x1 ' , ' x2 ' , ' x3 ' , ' x4 ' , ' x5 ' , ' y1

' , ' y2 ' , ' y3 ' , ' y4 ' , ' y5 ' )
c l e a r a l l

149 c l o s e a l l

measurements_simulation_and_nonlinear_vs_linear.m

1 % In t h i s s e c t i o n we run a s imu la t i on from w = 5 to w = 15 rad/ s .
We

% compare the r e s u l t from th i s s imu la t i on with the a n a l y t i c a l
r e s u l t in

3 % resu l t_ana lyt i ca l_vs_s imulat i on .m. We assume l i n e a r i t y , s i n c e the
% ana l y t i c a l r e s u l t i s l i n e a r as we l l .

5
% Fi r s t , l e t ' s do some housekeeping

7 c l e a r a l l
c l o s e a l l

9 c l c

11 % Set f requency domain and r e s o l u t i o n
omega_low = 5 ;

13 omega_high = 15 ;
N=2000;

15
% Do the ac tua l measurement ( l i n e a r i t y i s assumed )

17 [ x maxima]= so lut ion_pulse_cont inuous_dr iv ing ( [ omega_low omega_high
] , N, t rue ) ;

p rog re s sbar (1 ) % otherwi se the p rog r e s s bar w i l l open as we l l
19

% Save data
21 save s imulat ion_ana lyt i ca l_vs_s imulat ion .mat

c l e a r a l l
23 c l o s e a l l

25 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% In t h i s s e c t i o n we are going to compare the e f f e c t o f
n on l i n e a r i t y vs

27 % l i n e a r i t y .

29 % Set f requency domain and r e s o l u t i o n
omega_low = 5 ;

31 omega_high = 15 ;
N=2000;

33
% Do the ac tua l measurements

35 % Non−l i n e a r
[ xnon l inear maximanonlinear ]= so lut ion_pulse_cont inuous_dr iv ing ( [

omega_low omega_high ] , N, f a l s e ) ;
37 prog re s sbar (1 ) % otherwi se the p rog r e s s bar w i l l open as we l l

39 % Linear
[ x l i n e a r maximalinear ]= so lut ion_pulse_cont inuous_dr iv ing ( [ omega_low

omega_high ] , N, t rue ) ;
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41 prog re s sbar (1 ) % otherwi se the p rog r e s s bar w i l l open as we l l

43 save s imulat ion_nonl inear_vs_l inear . mat
c l e a r a l l

45 c l o s e a l l

solution_pulse_continuous_driving.m

1 func t i on [ x maxima]= so lut ion_pulse_cont inuous_dr iv ing (
frequency_domain , s teps , l i n e a r )

3 % Trans fe r neccesary v a r i a b l e s to pulse_cont inuous_driv ing .m by
making them g l oba l

g l oba l g
5 g l oba l a_1

g l oba l a_2
7 g l oba l a_3

g l oba l a_4
9 g l oba l a_5

g l oba l b_1
11 g l oba l b_2

g l oba l b_3
13 g l oba l b_4

g l oba l b_5
15 g l oba l b_6

g l oba l b_7
17 g l oba l b_8

g l oba l l_1
19 g l oba l l_2

g l oba l l_3
21 g l oba l l_4

g l oba l l_5
23 g l oba l dr iv ing_amplitude

g l oba l mu
25 g l oba l omega

g l oba l l i n e a r i t y
27 l i n e a r i t y = l i n e a r ;

29 % Def ine the masses o f the pendula
m1 = . 2 3 5 ;

31 m2 = . 2 4 0 ;
m3 = . 2 5 ;

33 m4 = . 2 5 5 ;
m5 = . 2 2 ;

35
% Axle−coup l ing spr ing cons tant s

37 kappa_as_1 = 0 . 1 3 ;
kappa_as_2 = 0 . 1 2 ;

39 kappa_as_3 = 0 . 1 0 1 ;
kappa_as_4 = 0 . 1 1 2 ;

41 kappa_as_5 = 0 . 1 2 1 ;

43 % Pendula−coup l ing sp r i ng s cons tant s
kappa_over_1 = 0 . 0 1 2 ;

45 kappa_over_2 = 0 . 0 1 6 ;
kappa_over_3 = 0 . 0 1 0 ;
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47 kappa_over_4 = 0 . 0 1 1 ;

49 % The pendula l eng th s
l_1 = 0 . 1 ;

51 l_2 = 0 . 1 5 ;
l_3 = 0 . 2 ;

53 l_4 = 0 . 2 5 ;
l_5 = 0 . 3 ;

55
% Def in ing other cons tant s

57 g = 9 . 8 1 ;
mu = 0 . 1 ;

59 driving_amplitude = 0 . 1 ;

61 a_1 = kappa_as_1/(m1* l_1^2) ;
a_2 = kappa_as_2/(m2* l_2^2) ;

63 a_3 = kappa_as_3/(m3* l_3^2) ;
a_4 = kappa_as_4/(m4* l_4^2) ;

65 a_5 = kappa_as_5/(m5* l_5^2) ;
b_1 = kappa_over_1/(m1* l_1^2) ;

67 b_2 = kappa_over_1/(m2* l_2^2) ;
b_3 = kappa_over_2/(m2* l_2^2) ;

69 b_4 = kappa_over_2/(m3* l_3^2) ;
b_5 = kappa_over_3/(m3* l_3^2) ;

71 b_6 = kappa_over_3/(m4* l_4^2) ;
b_7 = kappa_over_4/(m4* l_4^2) ;

73 b_8 = kappa_over_4/(m5* l_5^2) ;

75 % I n i t i a l ang l e s
theta1_0 = 0 ;

77 theta2_0 = 0 ;
theta3_0 = 0 ;

79 theta4_0 = 0 ;
theta5_0 = 0 ;

81
% I n i t i a l angular v e l o c i t i e s

83 omega1_0 = 0 ;
omega2_0 = 0 ;

85 omega3_0 = 0 ;
omega4_0 = 0 ;

87 omega5_0 = 0 ;

89 % Start− and end time o f the numerica l i n t e g r a t i o n
t_0 = 0 ;

91 t_end = 300 ;

93 % Creat ing an array , conta in ing the i n i t i a l c ond i t i on s
theta_0 = [ t_0 theta1_0 theta2_0 theta3_0 theta4_0 theta5_0

omega1_0 omega2_0 omega3_0 omega4_0 omega5_0 ] ;
95

% Pre−de f i n e ar rays to conta in the maximum amplitudes o f each
pendulum at a

97 % s p e c i f i c d r i v i ng f requency and a l s o pre−de f i n e the x array that
we return

% (which i s a c t ua l l y omega )
99 maxima1 = [ ] ;

maxima2 = [ ] ;
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101 maxima3 = [ ] ;
maxima4 = [ ] ;

103 maxima5 = [ ] ;
x = [ ] ;

105
% Keep track o f which step we ' re at

107 indx=1;
prog re s sbar ;

109 f o r i=l i n s p a c e ( frequency_domain (1 ) , frequency_domain (2 ) , s t ep s )
indx = indx+1;

111
% Set the cur rent va lue f o r omega

113 omega = i ;

115 % Append t h i s va lue to our x array
x = [ x i ] ;

117
% Numerical i n t e g r a t i o n by the ode45 func t i on

119 [T, theta ]=ode45 ( @pulse_continuous_driving , [ t_0 t_end ] , theta_0 ) ;

121 % Figure out which element o f the array corresponds to roughly
the l a s t

% 50 seconds o f data (ODE45 randomly chooses dt ' s )
123 search_ind = length ( f i nd (T<250) ) ;

125 % And f i n a l l y , determine the maximum amplitude o f the pendula
at t h i s

% s p e c i f i c f requency and append i t to yee big ol ' array !
127 maxima1=[maxima1 max( theta ( search_ind : end , 2 ) ) ] ;

maxima2=[maxima2 max( theta ( search_ind : end , 3 ) ) ] ;
129 maxima3=[maxima3 max( theta ( search_ind : end , 4 ) ) ] ;

maxima4=[maxima4 max( theta ( search_ind : end , 5 ) ) ] ;
131 maxima5=[maxima5 max( theta ( search_ind : end , 6 ) ) ] ;

133 % Update the p rog r e s s bar to i nd i c a t e that heavy machinery i s
at work

prog re s sbar ( indx / s t ep s ) ;
135 end

137 % Fina l ly , bu i ld a big ol ' matrix o ' l o o t ! Har−har−har
maxima = cat (1 ,maxima1 , maxima2 , maxima3 , maxima4 , maxima5) ;

139 end

pulse_continuous_driving.m

1 func t i on dtheta = pulse_cont inuous_driv ing ( t , theta )

3 % Return value o f cons tant s de f ined in op lo s s ing_pul se .m
g l oba l g

5 g l oba l a_1
g l oba l a_2

7 g l oba l a_3
g l oba l a_4

9 g l oba l a_5
g l oba l b_1

11 g l oba l b_2
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g l oba l b_3
13 g l oba l b_4

g l oba l b_5
15 g l oba l b_6

g l oba l b_7
17 g l oba l b_8

g l oba l l_1
19 g l oba l l_2

g l oba l l_3
21 g l oba l l_4

g l oba l l_5
23 g l oba l dr iv ing_amplitude

g l oba l mu
25 g l oba l omega

g l oba l l i n e a r i t y
27

% The ac tua l d r i v i ng s i gna l , t h i s can be a r b i t r a r i l y chosen . In
t h i s case ,

29 % a co s i n e i s chosen as the input .
f = @( t ) dr iv ing_amplitude * cos ( omega* t ) ;

31
% The system o f 5 second order d i f f e r e n t i a l equat ions has been

r ewr i t t en as
33 % a system o f 10 f i r s t order d i f f e r e n t i a l equat ions .

dtheta (1 ) = 1 ; % d/dt ( t ) = 1
35 dtheta (2 ) = theta (7 ) ;

dtheta (3 ) = theta (8 ) ;
37 dtheta (4 ) = theta (9 ) ;

dtheta (5 ) = theta (10) ;
39 dtheta (6 ) = theta (11) ;

41 % We cons id e r two po s s i b l e ca s e s : l i n e a r i t y , or non− l i n e a r i t y
i f l i n e a r i t y

43 dtheta (7 ) = −(g/l_1 ) *( theta (2 ) ) − a_1*( theta (2 )−f ( theta (1 ) ) ) −
b_1*( theta (2 )−theta (3 ) ) −mu* theta (7 ) ;

dtheta (8 ) = −(g/l_2 ) *( theta (3 ) ) − a_2*( theta (3 )−f ( theta (1 ) ) ) −
b_2*( theta (3 )−theta (2 ) ) − b_3*( theta (3 )−theta (4 ) ) − mu*
theta (8 ) ;

45 dtheta (9 ) = −(g/l_3 ) *( theta (4 ) ) − a_3*( theta (4 )−f ( theta (1 ) ) ) −
b_4*( theta (4 )−theta (3 ) ) − b_5*( theta (4 )−theta (5 ) ) − mu*
theta (9 ) ;

dtheta (10) = −(g/l_4 ) *( theta (5 ) ) − a_4*( theta (5 )−f ( theta (1 ) ) ) −
b_6*( theta (5 )−theta (4 ) ) − b_7*( theta (5 )−theta (6 ) ) − mu*
theta (10) ;

47 dtheta (11) = −(g/l_5 ) *( theta (6 ) ) − a_5*( theta (6 )−f ( theta (1 ) ) ) −
b_8*( theta (6 )−theta (5 ) ) − mu* theta (11) ;

e l s e
49 dtheta (7 ) = −(g/l_1 ) * s i n ( theta (2 ) ) − a_1*( theta (2 )−f ( theta (1 ) ) )

− b_1*( theta (2 )−theta (3 ) ) −mu* theta (7 ) ;
dtheta (8 ) = −(g/l_2 ) * s i n ( theta (3 ) ) − a_2*( theta (3 )−f ( theta (1 ) ) )

− b_2*( theta (3 )−theta (2 ) ) − b_3*( theta (3 )−theta (4 ) ) − mu*
theta (8 ) ;

51 dtheta (9 ) = −(g/l_3 ) * s i n ( theta (4 ) ) − a_3*( theta (4 )−f ( theta (1 ) ) )
− b_4*( theta (4 )−theta (3 ) ) − b_5*( theta (4 )−theta (5 ) ) − mu*
theta (9 ) ;

dtheta (10) = −(g/l_4 ) * s i n ( theta (5 ) ) − a_4*( theta (5 )−f ( theta (1 ) )
) − b_6*( theta (5 )−theta (4 ) ) − b_7*( theta (5 )−theta (6 ) ) − mu*
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theta (10) ;
53 dtheta (11) = −(g/l_5 ) * s i n ( theta (6 ) ) − a_5*( theta (6 )−f ( theta (1 ) )

) − b_8*( theta (6 )−theta (5 ) ) − mu* theta (11) ;
end

55
dtheta = dtheta ' ;
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pendulum_inverse_fourier.m

f unc t i on [ t_signal , z_s igna l ] = pendulum_inverse_fourier ( )
2
% Def ine cons tant s

4 mu = 12 . 3396 ; % Of f s e t f requency
sigma = 2 . 5 ; % Gaussian curve shaping f a c t o r

6 t_start = −100; % Sta r t i ng time in time domain
t_end = −t_start ; % End time i s minus s t a r t time

8 alpha = 1 ; % Amplitude f a c t o r o f the gauss ian
curve

10 % Sampling f requency
ws = 50*(mu + 4* sigma ) ;

12 % Corresponding time step
dt = (2* pi ) /ws ;

14
% Number o f datapo int s

16 N = ( t_start−t_end ) /dt +1;
% Making the number o f datapo int s 2^k f o r some i n t e g e r k

18 N = 2^nextpow2 (N) ;

20 % de f i n i n g the time array
t = l i n s p a c e ( t_start , t_end ,N) ;

22 % New time−s tep as N changed
dt = t (2 )−t (1 ) ;

24 % New sampling f requency
ws = 2* pi /dt ;

26
% Frequency array which spans N/2 po in t s up to f requency ws/2

28 omega = l i n s p a c e (0 ,ws/2 ,N/2) ;

30 % Function that d e s c r i b e s the amplitude in f requency domain ,
% sca l ed with T

32 amplitude = 1/(2*− t_start ) * alpha * s q r t (2* pi ) / sigma*exp(−(omega−mu)
.^2/(2* sigma^2) ) ;

64
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34 % For i nv e r s e f o u r i e r transforms , we need to f l i p t h i s
%amplitude spectrum at 0 .5*ws

36 amplitude = [ amplitude ( 1 : end ) f l i pd im ( amplitude ( 1 : end ) ,2 ) ] ;

38 % We w i l l now manually cons t ruc t a phase spectrum
f a s e = ones (1 , l ength ( amplitude ) ) ;

40 [ a , b ] = max( amplitude ) ;

42 f o r n = 1 : ( b−1)
f a s e (n) = 0 ;

44 end
f o r n = b : ( l ength ( amplitude )−b+1)

46 f a s e (n) = 0 ;
end

48 f o r n = ( length ( amplitude )−b) : l ength ( amplitude )
f a s e (n) = 0 ;

50 end

52 % Determine the ac tua l f requency spectrum of our s i g n a l
complex_amplitude = amplitude .* exp ( i * f a s e ) ;

54
% Now we de f i n e our ac tua l f requency array , which spans from

56 % 0 to ws
omega = l i n s p a c e (0 ,ws ,N) ;

58
% Plot our f requency amplitude spectrum

60 p lo t ( omega , abs ( complex_amplitude ) )
x l ab e l ( 'Angular f requency ( rad/ s ) ' )

62 y l ab e l ( 'Amplitude ( a . u . ) ' )
t i t l e ( [ 'Amplitude spectrum [N= ' num2str (N) ' , \omega_s= ' num2str (ws

) ' , \mu= ' num2str (mu) ' , \ sigma= ' num2str ( sigma ) ' ] ' ] )
64

% Time domain
66 % It ' s now time to determine the time s i g n a l that be longs

% to t h i s f requency spectrum
68 Z = i f f t ( complex_amplitude ) *N; % times N f o r s c a l i n g

z = i f f t s h i f t (Z) ;
70

% This i s a comparison r e su l t , the unchanged s i g n a l
72 y_orig = alpha *exp(−t .^2* sigma^2/2) . * ( exp ( i *mu* t )+exp(− i *mu* t ) ) ;

enve lope = 2* alpha *exp(−t .^2* sigma^2/2) ;
74

% Energy content o f both s i g n a l s
76 E1 = trapz ( t , abs ( y_orig ) .^2) ;

E2 = trapz ( t , abs ( z ) .^2) ;
78

% Plo t t i ng the r e s u l t on time domain
80 f i g u r e

p l o t ( t , abs ( z ) .* cos ( ang le ( z ) ) , t , y_orig )
82 hold on

p lo t ( t , envelope , ' r ' )
84 p l o t ( t ,− envelope , ' r ' )

hold o f f
86 x l ab e l ( ' angular f requency ( rad/ s ) ' )

y l ab e l ( ' \gamma ' )
88 t i t l e ( 'Real part o f time s i g n a l ' )

xlim ([−10 10 ] ) ;
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90 % The phase spectrum
f i g u r e

92 p l o t ( omega , f a s e )
x l ab e l ( 'Angular f requency ( rad/ s ) ' )

94 y l ab e l ( 'Phase ( rad ) ' )
t i t l e ( 'Phase as func t i on o f angular f requency ' )

96 % The imaginary part ( should be around zero )
f i g u r e

98 p l o t ( t , abs ( z ) .* s i n ( ang le ( z ) ) )
x l ab e l ( 'Time ( s ) ' )

100 y l ab e l ( ' \gamma ' )
t i t l e ( ' Imaginary part o f time s i g n a l ' )

102
% The f o l l ow i ng part i s to determine the cut o f f time

104 typica l_width = sq r t (16/ sigma^2) ;
i n t e g e r = 0 ;

106
f o r n = ( length ( t ) /2) : l ength ( t )

108 i f abs ( t (n)−typical_width )<dt
i n t e g e r = n ;

110 i f abs ( t (n)−typical_width ) > abs ( t (n+1)−typical_width )
i n t e g e r = n + 1 ;

112 end
end

114 end

116 typ ica l_f requency = mu;
s o l u t i on_ in t e r va l = (2* pi ) / typ ica l_f requency ;

118 r a t i o = round ( s o l u t i on_ in t e r va l /dt ) ;

120 % Checking i f r a t i o i s an even number
i f mod( ra t i o , 2 ) == 0

122 r a t i o = r a t i o ;
e l s e

124 r a t i o = r a t i o +1;
end

126
i n t e r s e c t = 10^−2;

128 array = ones (1 , l ength ( z ) ) ;

130 % Search ing f o r a zero o f \gamma_s ( t )
f o r n = in t e g e r : ( r a t i o /2+ in t e g e r )

132 i f abs ( r e a l ( z (n) ) ) < i n t e r s e c t
array (n) = abs ( r e a l ( z (n) ) ) ;

134 end
end

136
[ value , i n t e g e r ] = min ( array ) ;

138
% Def ine the s i g n a l s on t h e i r new time domain

140
s t ep s = round ( typica l_width /dt ) ;

142
t_s igna l = [ t ( ( end−i n t ege r −2* s t ep s ) : ( i n t e g e r+8* s t ep s ) ) ] ;

144 t = [ t ( ( end−i n t e g e r ) : i n t e g e r ) ] ;
y_orig = [ y_orig ( ( end−i n t e g e r ) : i n t e g e r ) ] ;

146 enve lope = [ enve lope ( ( end−i n t e g e r ) : i n t e g e r ) ] ;
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z_s igna l = [ z e r o s (1 , l ength ( z ( 1 : end−i n t ege r −1) ) ) z ( ( end−i n t e g e r ) :
i n t e g e r ) z e r o s (1 , l ength ( z ( i n t e g e r +1:end ) ) ) ] ;

148 z_s igna l = [ z_s igna l ( ( end−i n t ege r −2* s t ep s ) : ( i n t e g e r+8* s t ep s ) ) ] ;
z = [ z ( ( end−i n t e g e r ) : i n t e g e r ) ] ;

150
% Plo t t i ng the s i g n a l s on t h e i r new time domain

152 f i g u r e
p l o t ( t_signal , r e a l ( z_s igna l ) )

154 x l ab e l ( ' time ( s ) ' )
y l ab e l ( ' \gamma_s ' )

156 t i t l e ( 'Time s i g n a l on new time domain ' )

158 % Again determining t h e i r energy content
E1 = trapz ( t , abs ( y_orig ) .^2) ;

160 E2 = trapz ( t , abs ( r e a l ( z ) ) .^2) ;
d i sp (E1)

162 d i sp (E2)

164 % Ca l cu l a t ing the s c a l e f a c t o r
s c a l e f a c t o r = sq r t (E1/E2) ;

166 z_s igna l = z_signa l * s c a l e f a c t o r ;

168 % Plo t t i ng the r e s c a l e d time s i g n a l s
f i g u r e

170 p l o t ( t , abs ( z ) .* cos ( ang le ( z ) ) * s c a l e f a c t o r , t , y_orig ) ;
hold on

172 p l o t ( t , envelope , ' r ' ) ;
p l o t ( t ,− envelope , ' r ' ) ;

174 hold o f f
x l ab e l ( ' time ( s ) ' )

176 y l ab e l ( ' \gamma_s ' )
t i t l e ( 'Rescaled time s i g n a l ' )

178 xlim ( [ t (1 ) t ( end ) ] )

180 % Checking i f they have the same energy content
E1 = trapz ( t , abs ( y_orig ) .^2) ;

182 E2 = trapz ( t , abs ( z* s c a l e f a c t o r ) .^2) ;
d i sp (E1)

184 d i sp (E2)

186 end

pulse.m

f unc t i on dtheta = pu l s e ( t , theta )
2
% Return value o f cons tant s de f ined in op lo s s ing_pul se .m

4 g l oba l g
g l oba l a_1

6 g l oba l a_2
g l oba l a_3

8 g l oba l a_4
g l oba l a_5

10 g l oba l b_1
g l oba l b_2

12 g l oba l b_3
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g l oba l b_4
14 g l oba l b_5

g l oba l b_6
16 g l oba l b_7

g l oba l b_8
18 g l oba l l_1

g l oba l l_2
20 g l oba l l_3

g l oba l l_4
22 g l oba l l_5

g l oba l dr iv ing_amplitude
24 g l oba l mu

g l oba l t ime_signal
26 g l oba l i f f t Z

28 % The ac tua l d r i v i ng s i gna l , c a l c u l a t ed from the i nv e r s e Four i e r
transform ,

% which i s a d i s c r e t e s i g n a l . Because ode45 c a l c u l a t e s i t s own
optimal time

30 % step , the po in t s at which f ( t ) i s de f ined w i l l not match the
% corre spond ing time va lues o f ode45 . There fore an i n t e r p o l a t i o n o f

f ( t ) i s
32 % ca l cu l a t ed us ing a cubic s p l i n e i n t e r po l an t .

f = @( t ) dr iv ing_amplitude * c s ap i ( t ime_signal , r e a l ( i f f t Z ) , t ) ;
34

% The system o f 5 second order d i f f e r e n t i a l equat ions has been
r ewr i t t en as

36 % a system o f 10 f i r s t order d i f f e r e n t i a l equat ions .
dtheta (1 ) = 1 ; % d/dt ( t ) = 1

38 dtheta (2 ) = theta (7 ) ;
dtheta (3 ) = theta (8 ) ;

40 dtheta (4 ) = theta (9 ) ;
dtheta (5 ) = theta (10) ;

42 dtheta (6 ) = theta (11) ;

44 dtheta (7 ) = −(g/l_1 ) * s i n ( theta (2 ) ) − a_1*( theta (2 )−f ( theta (1 ) ) ) −
b_1*( theta (2 )−theta (3 ) ) −mu* theta (7 ) ;

dtheta (8 ) = −(g/l_2 ) * s i n ( theta (3 ) ) − a_2*( theta (3 )−f ( theta (1 ) ) ) −
b_2*( theta (3 )−theta (2 ) ) − b_3*( theta (3 )−theta (4 ) ) − mu* theta (8 )
;

46 dtheta (9 ) = −(g/l_3 ) * s i n ( theta (4 ) ) − a_3*( theta (4 )−f ( theta (1 ) ) ) −
b_4*( theta (4 )−theta (3 ) ) − b_5*( theta (4 )−theta (5 ) ) − mu* theta (9 )
;

dtheta (10) = −(g/l_4 ) * s i n ( theta (5 ) ) − a_4*( theta (5 )−f ( theta (1 ) ) ) −
b_6*( theta (5 )−theta (4 ) ) − b_7*( theta (5 )−theta (6 ) ) − mu* theta
(10) ;

48 dtheta (11) = −(g/l_5 ) * s i n ( theta (6 ) ) − a_5*( theta (6 )−f ( theta (1 ) ) ) −
b_8*( theta (6 )−theta (5 ) ) − mu* theta (11) ;

50 dtheta = dtheta ' ;

solution_pulse.m

f unc t i on so lu t i on_pu l s e ( )
2
% F i r s t c l ean up everyth ing
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4 c l e a r a l l
c l o s e a l l

6 c l c

8 % Pendula masses
m = mean ( [ 0 . 2 3 5 0 .240 0 .25 0 .255 0 . 2 2 ] ) ;

10 m_1 = m;
m_2 = m;

12 m_3 = m;
m_4 = m;

14 m_5 = m;

16 kappa1 = mean ( [ 0 . 1 3 0 .12 0 . 1 0 1 ] ) ;
kappa2 = mean ( [ 0 . 0 1 2 0 .016 0 .010 0 . 0 1 1 ] ) ;

18
% Axle−coup l ing spr ing cons tant s

20 kappa_as_1 = kappa1 ;
kappa_as_2 = kappa1 ;

22 kappa_as_3 = kappa1 ;
kappa_as_4 = kappa1 ;

24 kappa_as_5 = kappa1 ;

26 % Pendula−coup l ing sp r i ng s cons tant s
kappa_over_1 = kappa2 ;

28 kappa_over_2 = kappa2 ;
kappa_over_3 = kappa2 ;

30 kappa_over_4 = kappa2 ;

32 % Trans fe r neccesary v a r i a b l e s to pu l s e .m by making them g l oba l
g l oba l g

34 g l oba l a_1
g l oba l a_2

36 g l oba l a_3
g l oba l a_4

38 g l oba l a_5
g l oba l b_1

40 g l oba l b_2
g l oba l b_3

42 g l oba l b_4
g l oba l b_5

44 g l oba l b_6
g l oba l b_7

46 g l oba l b_8
g l oba l l_1

48 g l oba l l_2
g l oba l l_3

50 g l oba l l_4
g l oba l l_5

52 g l oba l dr iv ing_amplitude
g l oba l mu

54 g l oba l t ime_signal
g l oba l i f f t Z

56
% Def in ing the cons tant s

58 g = 9 . 8 1 ;

60 l_1 = 0 . 1 ;
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l_2 = 0 . 2 ;
62 l_3 = 0 . 3 ;

l_4 = 0 . 4 ;
64 l_5 = 0 . 5 ;

66 a_1 = kappa_as_1/(m_1* l_1^2) ;
a_2 = kappa_as_2/(m_2* l_2^2) ;

68 a_3 = kappa_as_3/(m_3* l_3^2) ;
a_4 = kappa_as_4/(m_4* l_4^2) ;

70 a_5 = kappa_as_5/(m_5* l_5^2) ;

72 b_1 = kappa_over_1/(m_1* l_1^2) ;
b_2 = kappa_over_1/(m_2* l_2^2) ;

74 b_3 = kappa_over_2/(m_2* l_2^2) ;
b_4 = kappa_over_2/(m_3* l_3^2) ;

76 b_5 = kappa_over_3/(m_3* l_3^2) ;
b_6 = kappa_over_3/(m_4* l_4^2) ;

78 b_7 = kappa_over_4/(m_4* l_4^2) ;
b_8 = kappa_over_4/(m_5* l_5^2) ;

80
mu = 0 . 1 ;

82 driving_amplitude = 1 ;

84 % I n i t i a l ang l e s
theta1_0 = 0 ;

86 theta2_0 = 0 ;
theta3_0 = 0 ;

88 theta4_0 = 0 ;
theta5_0 = 0 ;

90
% I n i t i a l angular v e l o c i t i e s

92 omega1_0 = 0 ;
omega2_0 = 0 ;

94 omega3_0 = 0 ;
omega4_0 = 0 ;

96 omega5_0 = 0 ;

98 % Ca l cu l a t ing the i nv e r s e f o u r i e r trans form o f the f requency domain
[ t ime_signal , i f f t Z ] = pendulum_inverse_fourier ;

100
% Start− and end time o f the numerica l i n t e g r a t i o n

102 t_0 = min( t ime_signal ) ;
t_end = max( t ime_signal ) ;

104
% Creat ing an array , conta in ing the i n i t i a l c ond i t i on s

106 theta_0 = [ t_0 theta1_0 theta2_0 theta3_0 theta4_0 theta5_0
omega1_0 omega2_0 omega3_0 omega4_0 omega5_0 ] ;

108 % Numerical i n t e g r a t i o n by the ode45 func t i on
[T, theta ]=ode45 (@pulse , [ t_0 t_end ] , theta_0 ) ;

110
% Plo t t i ng the numerica l s o l u t i o n s

112 p l o t (T, theta ( : , 2 ) ,T, theta ( : , 3 ) ,T, theta ( : , 4 ) ,T, theta ( : , 5 ) ,T, theta
( : , 6 ) ) ;

l egend ( ' \theta_1 ' , ' \theta_2 ' , ' \theta_3 ' , ' \theta_4 ' , ' \theta_5 ' ) ;
114 x l ab e l ( ' time ( s ) ' ) ;

y l ab e l ( ' amplitude ( rad ) ' )
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116
% Plo t t i ng the numerica l s o l u t i o n s in s epe ra t e f i g u r e s

118 f i g u r e
subplot ( 3 , 2 , 1 ) , p l o t (T, theta ( : , 2 ) ) , x l ab e l ( ' ' ) , y l ab e l ( ' ' ) , t i t l e ( '

n=1 ' ) ;
120 subplot ( 3 , 2 , 2 ) , p l o t (T, theta ( : , 3 ) , ' g ' ) , x l ab e l ( ' ' ) , y l ab e l ( ' ' ) ,

t i t l e ( 'n=2 ' ) ;
subp lot ( 3 , 2 , 3 ) , p l o t (T, theta ( : , 4 ) , ' r ' ) , x l ab e l ( ' ' ) , y l ab e l ( ' \ theta (

t ) ' ) , t i t l e ( 'n=3 ' ) ;
122 subplot ( 3 , 2 , 4 ) , p l o t (T, theta ( : , 5 ) , ' c ' ) , x l ab e l ( ' t ( s ) ' ) , y l ab e l ( ' ' ) ,

t i t l e ( 'n=4 ' ) ;
subp lot ( 3 , 2 , 5 ) , p l o t (T, theta ( : , 6 ) , 'm ' ) , x l ab e l ( ' ' ) , y l ab e l ( ' ' ) ,

t i t l e ( 'n=5 ' ) ;
124

end


