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Summary

In this report, we consider the problem that given the interior transition prob-
abilities of a two-dimensional random walk, and a specified measure m, how to
construct the transition probabilities on the horizontal axis, the vertical axis
and the origin such that m is the invariant measure of the random walk. More
precisely, the specified measure m is of the following form,

m(n1, n2) =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2),

where ρk, σk ∈ C. Define Γ = {(ρ1, σ1), . . . , (ρN , σN )}. Moreover, let Γ̄ =
{(ρ̄1, σ̄1), . . . , (ρ̄N , σ̄N )} and Γ̂ = Γ ∪ Γ̄. We say that m is induced by Γ̂.

First, we consider homogeneous transition probabilities on the boundaries. It
is shown that if m is the invariant measure of the random walk, every geometric
term should satisfy the interior balance equations individually. Moreover, Γ
should be a pairwise-coupled set. On the other hand, the results of numerical
experiments suggest that homogeneous transition probabilities can not be found.

Next, we consider inhomogeneous boundary transition probabilities. We find
that under certain conditions, it is possible to construct inhomogeneous transi-
tion probabilities and a pattern can be found for the inhomogeneous boundary
transition probabilities.

The contribution of the report is that, firstly, we consider a specified mea-
sure induced by complex numbers and their conjugates. Secondly, we consider
constructing inhomogeneous transition probabilities on the boundaries.





Chapter 1

Introduction

In this section, we will give a brief introduction to the model and the problem
considered in the report. Literature review will be given in Chapter 2. The
detailed model description and problem statement will be given in Chapter 3.

1.1 General introduction

Random walks are a class of stochastic processes that have a wide range of appli-
cations in, for instance, telecommunication and logistics. In particular, random
walks in the positive orthant have been studied widely in applied probability
since they can be used to model a lot of queueing systems. Through analysis of
the random walk, one can study the performance of the real-life queueing sys-
tem. We are interested in the stationary performance of a random walk, which
will lead to the study of the invariant measure of the random walk.

n2

n1

Figure 1.1: A two-dimensional random walk

In Figure 1.1, an illustration of a two-dimensional random walk is given.
We consider a random walk in the quarter-plane, i.e., a discrete-time Markov
process in state space S = {0, 1, . . . }2. A state is represented by its coordinates,
i.e., n = (n1, n2) for n ∈ S. The random walk can jump from state n to its
neighbors in the state space with certain probabilities and the random walk is
defined by these transition probabilities. For instance, if the current state of
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the random walk is in the interior of the state space, then in the next time slot
the random walk may jump to one of the eight neighboring states or stays at
the same state. However, if the current state is on the horizontal or the vertical
axis, there are only five neighboring states, as is shown in Figure 1.1. With these
random transitions, the process will walk stochastically through the whole state
space.

Let m : S → [0,∞) be the invariant measure of the random walk and
f : S → [0,∞) be a performance measure, we are interested in the stationary
performance described as follows,

F =
∑
n∈S

f(n)m(n). (1.1)

If the invariant measure is in closed form, F can be derived immediately. How-
ever, it is well acknowledged that finding the closed-form invariant measure of a
general random walk is difficult. Therefore, knowing the exact performance F
of a general random walk is an open problem. Instead of looking at the exact
performance, we consider bounding the exact performance of a general random
walk, i.e., finding Fl and Fu such that

Fl ≤ F ≤ Fu.

In practice, a random walk is used to model a queueing system. If bounds on
the stationary performance of the random walk is known, performance of the
practical system is bounded. Those upper and lower bounds are often sufficient
for characterizing the performance of practical systems.

To find upper and lower bounds on F , we will analyze another random walk
for which we know the invariant measure in closed form. The random walk
is obtained by perturbing transition probabilities of the original random walk
on the horizontal and vertical boundaries. More precisely, let R be a general
random walk in the quarter plane, for which the closed-form invariant measure
is unknown. Moreover, let R̃ be a random walk for which we know the invariant
measure m̃ in closed form. Transition probabilities of R and R̃ are the same in
the interior of the state space. On the other hand, transition probabilities of R
and R̃ on the horizontal axis, vertical axis and the origin are distinct. Since we
know m̃ in closed form, we can get F̃ using formula described in Equation (1.1).
If the difference between the transition probabilities of R and R̃ is not too large,
it is expected that

|F̃ − F| < ε,

where ε is sufficiently small. Upper and lower bounds on F can be found then.

1.2 Problem description

In this report, we consider the problem of finding the perturbed random walk
for which the invariant measure is specified. Suppose that for the random walk
R̃, transition probabilities in the interior of the state space are given, and the
measure m̃ : S → [0,∞) is specified in closed form, then transition probabilities
on the horizontal axis, vertical axis and the origin need to be constructed such
that m is the invariant measure of R̃. We also consider a rescaled random walk,
which means that if boundary transition probabilities for the given interior
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transition probabilities can not be found, we will rescale the interior transition
probabilities and try to find boundary transition probabilities for the rescaled
probabilities. Rescaling is allowed since it doesn’t have influence on the invariant
measure of the random walk. If we know the construction method, for a general
random walk we can change its transition probabilities on the boundaries to
those found by the construction method and get the perturbed random walk R̃,
for which the closed-form invariant measure m̃ is known. If for state (n1, n2),

m̃(n1, n2) = ρn1σn2 ,

we say that m̃ is a geometric measure induced by (ρ, σ). In this report, we
consider that m̃ is a linear combination of a finite number of geometric measures
induced by ρk, σk ∈ C, for k = 1, . . . , N . To make sure that the measure
is real for every state, we will also add the geometric terms induced by the
complex conjugates of (ρk, σk). For any ρk, σk ∈ C, denote by ρ̄k, σ̄k the complex
conjugates of ρk and σk. Define

Γ =
{

(ρ1, σ1), . . . , (ρN , σN )
}
.

Moreover, assume that for any (ρk, σk) ∈ Γ, (ρ̄k, σ̄k) /∈ Γ. Corresponding to Γ,
define

Γ̄ =
{

(ρ̄1, σ̄1), . . . , (ρ̄N , σ̄N )
}
.

The measure we consider is of the form below

m̃(n1, n2) =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2). (1.2)

Let Γ̃ = Γ ∪ Γ̄, then we say that the measure m̃ is induced by Γ̃.
Cases where ρk ∈ R and σk ∈ R were studied in previous works. In this

report, we will consider the case that ρk, σk ∈ C for k = 1, . . . , N . If we find
the method to construct the random walk R̃ for a specified measure m̃, then
through the extension to complex numbers and their conjugates, there are more
random walks for which we know the invariant measure in closed form. Thus we
have more options for the perturbed random walk R̃. The exact performance
of the perturbed random walk F̃ can provide upper and lower bounds on the
performance of the general random walk. Therefore, if we have more options
for perturbed random walk, the upper and lower bounds will be improved.

The problem statement will be formulated formally in Chapter 3. For a
measure m̃ of the form in Equation (1.2), first we consider random walks with
homogeneous transition probabilities on the horizontal and the vertical axis.
However, numerical results indicate that homogeneous transition probabilities
can not be found hence it is not promising to consider homogeneous random
walks. Therefore, we consider inhomogeneous transition probabilities on the
horizontal and the vertical axis in Chapter 5. It turns out that under some
conditions, inhomogeneous transition probabilities can be achieved.

The remainder of the report is structured as follows. Related research and
previous works are described in Chapter 2. In Chapter 3, the two-dimensional
model we consider in this report will be given. The problem will also be stated
in details in that chapter. In Chapter 4, we consider how to construct ho-
mogeneous transition probabilities on the boundaries. We first give necessary
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conditions on the structure of Γ for m̃ to be the invariant measure. Next, we try
to find transition probabilities on the horizontal and vertical axis for the speci-
fied measure m̃. Extensive numerical experiments and initial analytical results
indicate that no homogeneous transition probabilities can be found. Thus in
Chapter 5, inhomogeneous boundary transition probabilities are discussed and
we find that, under certain conditions, inhomogeneous transition probabilities
will be found. Examples of random walks with constructed boundary transi-
tion probabilities will be given in Chapter 6. In Chapter 7, we will discuss the
conclusions in this report and look into future works.
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Chapter 2

Related work

Most research on random walks is focused on the invariant measure of a random
walk. However, it is well acknowledged that obtaining the closed-form invariant
measure of a general random walk is an open problem. Theories about random
walks in the quarter plane was described in [8], where general concepts were
introduced. Boundary value problems were formulated and analytic approaches
were used to get the generating function of the invariant measure [7, 8]. However,
the problem can be solved explicitly only in a few special cases. In general, it
is difficult to find the closed-form invariant measure of a random walk.

Adan, Wessels and Zijm developed a compensation approach for random
walks in two dimensional space in [1], where they discussed the conditions under
which the invariant measure is an infinite series of products of powers. Boxma
and van Houtum applied this approach into an asymmetric 2× 2 switch system
with independent Bernoulli arrivals and found that the invariant measure is a
sum of countably many geometric terms [3].

The structure of the space of product-form models was explored in [2] for
continuous-time random walks. It was stated that for any product-form mea-
sure, transition rates of a random walk in the interior and on the boundaries can
be selected independently such that the specified measure is the invariant mea-
sure of the random walk. Therefore, if the interior transition rates of a general
random walk are given and a product-form measure m is specified, transition
rates on the horizontal and vertical boundaries can be constructed such that m
is the invariant of the random walk.

In this report, we specify that the invariant measure is a linear combination
of a finite number of geometric terms, which is described in Equation (??).
Moreover, the measure is induced by the set Γ, as defined in Chapter 1. Cases
where ρ, σ ∈ R were studied in several papers. In [5] necessary conditions on
the structure of Γ were given if the resulting measure is the invariant measure
of a random walk. It was stated that each geometric term has to individually
satisfy the balance equations in the interior of the state space. Moreover, the
geometric terms must have a pairwise-coupled structure. The definitions of
uncoupled partition and pairwise-coupled set are given below, following [5].

Definition 2.1 (Uncoupled partition). A partition {Γ1,Γ2, . . . } of Γ is hori-
zontally uncoupled if (ρ, σ) ∈ Γp and (ρ̃, σ̃) ∈ Γq for p 6= q, implies that ρ̃ 6= ρ,
vertically uncoupled if (ρ, σ) ∈ Γp and (ρ̃, σ̃) ∈ Γq for p 6= q, implies that σ̃ 6= σ,
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and uncoupled if it is both horizontally and vertically uncoupled.

Definition 2.2 (Pairwise-coupled set). A set Γ ⊂ C is pairwise-coupled if and
only if the maximal uncoupled partition of Γ contains only one set.

In other words, a set Γ =
{

(ρ1, σ1), . . . , (ρN , σN )
}

is pairwise-coupled if
and only if for any pair (ρj , σj), we can find another pair (ρk, σk) such that
either ρj = ρk or σj = σk. An example of pairwise-coupled set is illustrated in
Figure 2.1(a) while an example is shown in Figure 2.1(b) for a set which is not
pairwise-coupled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

ρ

σ

Interior

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

ρ

σ

Interior

(b)

Figure 2.1: (a) A pairwise-coupled set. (b) A set that is not pairwise-coupled.

In Figure 2.1, the horizontal and the vertical axis represent ρ ∈ R and σ ∈ R
respectively. For (ρ, σ) on the red curve, balance equations in the interior of
the state space are satisfied. If m induced by Γ is the invariant measure of
the random walk, each geometric term has to satisfy the balance equations in
the interior individually [5]. Thus we take three (ρ, σ) from the red curve and
consider the measure induced by those pairs. In Figure 2.1(a), every (ρk, σk)
has the same ρk or σk as one of the other pairs. Thus the set is pairwise-
coupled. However, in Figure 2.1(b), there is an isolated term. Therefore, the
set is not pairwise-coupled. Example of homogeneous random walks of which the
invariant measures are sums of a finite number of geometric terms and method
to construct such random walks are given in [5]. An example taken from [5] is
given in Chapter 6.

Necessary conditions for the invariant measure of a random walk to be an
infinite sum of geometric terms were explored in [6]. It was found in accordance
with the result for a finite number of geometric terms that each geometric term
should satisfy the interior balance equation and a pairwise-coupled structure
must be satisfied. Furthermore, it was shown that the random walk cannot
have transitions to the north, northeast, or east.

Suppose that we have a specified measure m that is induced by a finite
number of pairwise-coupled geometric terms. The next question is how can we
find a random walk m such that m is the invariant measure of R. Analysis
was done for one geometric term ρn1σn2 with ρ, σ ∈ R in [4], where a naive
scheme was given to find the boundary transition probabilities such that the
geometric measure is the invariant measure of the random walk. It was stated
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that a rescaled random walk can always be found for the geometric measure.
For measures that are linear combinations of geometric terms, the method was
described in [5]. The construction depends on the locations of the intersections
of the boundary and interior balance equations. It was concluded that choosing
proper boundary transition probabilities is essential for the existence of the
invariant measure.

After perturbing a general random walk, error bounds between the perturbed
and the original random walk are considered. A Markov reward approach de-
veloped by van Dijk in [11] is used to bound the error. This Markov reward
approach was applied to finite single-server tandem queues in [10] and reason-
able bounds were given there. Perturbation effects of a discrete-time Markov
reward process was studied in [12], where bounds were obtained for the absolute
errors of the reward functions. Linear programming was formulated in [9] to
provide the error bounds. In [9], the perturbed random walk has a product-form
invariant measure. Approximation of performance and error bounds were also
considered in [4], where the invariant measure of the perturbed random is a sum
of three geometric terms. It was shown that, if the invariant measure is a sum
of geometric terms, the resulting error bounds is better than the one obtained
from product-form measure.

7
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Chapter 3

Model and problem
statement

In this chapter, the model considered in the report is described and the problem
is stated. In Section 3.1, we give a general model description, where basic
concepts and notations are introduced. Moreover, we consider the restrictive
case and the relaxed case. The model and balance equations for the two cases
are also given. In 3.2, a detailed problem statement is given. We also list the
main goals of the report in the section.

3.1 Model description

In this report, we consider discrete-time random walks in the positive orthant
of two-dimensional space, i.e., the state space is

S = {0, 1, . . . }2.

A state is represented by a two-dimensional vector, i.e., n = (n1, n2).
In addition, we consider a partition of S into disjoint components. Let

S0 = {(0, 0)}, S1 = {1, 2, . . . }×{0}, S2 = {0}×{1, 2, . . . } and S3 = {1, 2, . . . }×
{1, 2, . . . }. We refer to these components as the origin, the horizontal axis, the
vertical axis and the interior of the state space, respectively. The state space
and all the components are shown in Figure 3.1.

For the random walks, we only allow short transitions between states. More
precisely, a transition from state n = (n1, n2) to n′ = (n′1, n

′
2) is possible only if

||n− n′||∞ ≤ 1.

Let c(n) be the component of state n ∈ S, i.e., n ∈ Sc(n). Denote by Dk the
neighbors of a state in Sk. More precisely, D3 = {−1, 0, 1} × {−1, 0, 1}, D1 =
{−1, 0, 1} × {0, 1}, D2 = {0, 1} × {−1, 0, 1} and D0 = {0, 1} × {0, 1}.

Let pkd(n) be the probability of the random walk jumping from state n ∈ Sk to
n+d, where d ∈ Dk. In this report, we consider random walks with homogeneous
transition probabilities in the interior of the state space, which means that

p3
d(n) = p3

d(n
′), ∀n, n′ ∈ S3, d ∈ D3.
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n2

n1

S3

S1

S2

S0

Figure 3.1: State space S and the components.

In the remainder, for simplicity of notation, we denote by pd the homogeneous
transition probabilities in the interior of the state space, i.e., for n ∈ S3, d ∈ D3,
pd = p3

d(n).
We show all the neighbors in the components of the state space and the

transition probabilities of a homogeneous random walk R in Figure 3.2, except
the one that directs to the state itself.

j

i

p−1,−1

p−1,0

p−1,1

p0,−1

p0,1

p1,−1

p1,0

p1,1

p10,1(n1, 0)p1−1,1(n1, 0) p11,1(n1, 0)

p1−1,0(n1, 0) p11,0(n1, 0)

p21,0(0, n2)

p21,−1(0, n2)

p21,1(0, n2)p20,1(0, n2)

p20,−1(0, n2)

p01,0

p00,1 p01,1

Figure 3.2: Transition diagram of random walk R

If for any n1, n
′
1 > 0,

p1
d(n1, 0) = p1

d(n
′
1, 0),

for d ∈ D1, we say that the transition probabilities on the horizontal axis are
homogeneous and denote by p1

d the transition probabilities on horizontal axis.
Similarly, if for any n2, n

′
2 > 0,

p2
d(0, n2) = p2

d(0, n2),

for d ∈ D2, we say that the transition probabilities on the vertical axis are
homogeneous and denote by p2

d those transition probabilities. It was assumed
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that p1
s,1(n1, 0) = ps,1, p2

1,t(0, n2) = p1,t for any n1, n2 > 0 in [5]. In this report,
we consider both the case where p1

s,1(n1, 0) = ps,1, p2
1,t(0, n2) = p1,t for any

n1, n2 > 0 and the other case where these equations do not hold. The models
for the two cases will be given in detail in Subsection 3.1.1 and Subsection 3.1.2.

3.1.1 The restrictive case

In this case, we assume that for any n1, n2 > 0,

p1
s,1(n1, 0) = ps,1,∀s = −1, 0, 1

and
p2

1,t(0, n2) = p1,t,∀t = −1, 0, 1.

Consider a measure m : S → [0,∞) of the random walk, then m is the
invariant measure if and only if it satisfies all the balance equations, i.e., for all
n1 > 0 and n2 > 0,

m(n1, n2) =

1∑
s=−1

1∑
t=−1

m(n1 − s, n2 − t)ps,t, (3.1)

m(n1, 0) =

1∑
s=−1

m(n1 − s, 1)ps,−1 +

1∑
s=−1

m(n1 − s, 0)p1
s,0(n1 − s, 0),(3.2)

m(0, n2) =

1∑
t=−1

m(1, n2 − t)p−1,t +

1∑
t=−1

m(0, n2 − t)p2
0,t(0, n2 − t),(3.3)

m(0, 0) = m(1, 1)p−1,−1 +m(1, 0)p1
−1,0(1, 0) +

m(0, 1)p2
0,−1(0, 1) +m(0, 0)p0

0,0. (3.4)

We will refer to Equations (3.1)-(3.4) as the balance equations in the interior,
the horizontal axis, the vertical axis and the balance equation in the origin,
respectively. The balance equation in the origin is implied by the balance equa-
tions for the other states. If the balance equations hold for the other states, then
for sure it is satisfied in the origin. Thus in the following part of the report, if
Equation (3.1) to (3.3) are all satisfied, we say the m is the invariant measure
of the random walk.

3.1.2 The relaxed case

In this case, the balance equations are different from those of the restrictive
case. m is the invariant measure of the random walk if and only if for all
n1 > 1, n2 > 1,
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m(n1, n2) =

1∑
s=−1

1∑
t=−1

m(n1 − s, n2 − t)ps,t,

m(n1, 0) =

1∑
s=−1

m(n1 − s, 1)ps,−1 +

1∑
s=−1

m(n1 − s, 0)p1
s,0(n1 − s, 0),

m(n1, 1) =

1∑
s=−1

0∑
t=−1

m(n1 − s, 1− t)ps,t +

1∑
s=−1

m(n1 − s, 0)p1
s,1(n1 − s, 0),

m(0, n2) =

1∑
t=−1

m(1, n2 − t)p−1,t +

1∑
t=−1

m(0, n2 − t)p2
0,t(0, n2 − t),

m(1, n2) =

0∑
s=−1

1∑
t=−1

m(1− s, n2 − t)ps,t +

1∑
t=−1

m(0, n2 − t)p2
1,t(0, n2 − t).

If the transition probabilities on the horizontal and vertical axis are found, then
for state (1, 0), (1, 1) and (0, 1), transition probabilities can be found using simi-
lar approaches. The balance equation at state (0, 0) is implied by balance equa-
tions of the other states. Therefore, the equations for state (1, 1), (1, 0), (0, 1)
and (0, 0) are omitted here since they are of minor importance to the analysis.

In this section, we have introduced basic concepts and notations used in the
report. Furthermore, we have given models for two cases that will be considered
in the report. In the next section, we will state the problem in detail.

3.2 Problem statement

In this report, we will consider how to find the random walk R, of which the
invariant measure m is specified. As introduced in Chapter 1, we are interested
in a measure that is a linear combination of a finite number of geometric terms
induced by ρk, σk ∈ C. Here we give the definition of the measure m.

Definition 3.1. A measure m is called induced by Γ̂ if

m(n1, n2) =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2), (3.5)

where Γ =
{

(ρ1, σ1), . . . , (ρN , σN )
}

with ρk, σk ∈ C, and Γ̄ =
{

(ρ̄1, σ̄1), . . . , (ρ̄N , σ̄N )
}

.

Moreover, we consider non-negative, finite measures in this report, thus we
have the following assumption.

Assumption 3.2. Assume that the invariant measure of the random walk is
finite, i.e., ∑

n∈S
m(n1, n2) <∞. (3.6)

Moreover, assume that for any state (n1, n2),

m(n1, n2) ≥ 0.

12



Define
U =

{
z ∈ C

∣∣∣|z| < 1
}
.

Therefore, the measure is finite if and only if

(ρk, σk) ∈ U2,

for all k = 1, . . . , N .
In the remainder of the report, when we consider ρk, σk ∈ C, we always

assume that (ρk, σk) ∈ U2. Suppose that the measure m is specified and it is
induced by Γ̂, we need to find the random walk R of which the invariant measure
is m. We assume that transition probabilities in the interior of the state space
are already given. Therefore, we only need to find the transition probabilities
on the horizontal axis, the vertical axis and the origin. The goals of the report
are described below.

1. For the given interior transition probabilities and a specified measure m,
find the conditions on the structure of m under which the random walk
can be constructed.

2. If the random walk can be constructed, explore the construction method,
i.e., find the following probabilities

p1
d(n), n ∈ S1, d ∈ D1,

p2
d(n), n ∈ S2, d ∈ D2,

p0
d, n ∈ S0, d ∈ D0,

such that m is the invariant measure of the constructed random walk.

The goals will be discussed in Chapter 4 for homogeneous random walks,
where the structure of Γ will be given. On the other hand, it is indicated by
numerical results that homogeneous transition probabilities on the boundaries
can not be found for measures induced by complex numbers and their complex
conjugates. Thus we turn to construct inhomogeneous transition probabilities,
which will be considered in Chapter 5. The first and second goals are both
discussed there. Furthermore, we show the way to find the boundary transition
probabilities in Chapter 5. In Chapter 6, several examples are given to illustrate
the construction method described in Chapter 5.

We also allow rescaling of the random walk, since rescaling does not have
influence on the invariant measure of the random walk. When we construct
the boundaries transition probabilities, we try to find probabilities which are
between 0 and 1. However, if this is not possible but we can find values that
are larger than 1, we can always rescale the interior transition probabilities and
get boundary transition probabilities of the rescaled random walk. Thus, in the
remainder of the report, when we try to find the boundary transition probabili-
ties, we do not discuss whether these transition probabilities are between 0 and
1 or not.

In the next chapter, we consider homogeneous transition probabilities on the
horizontal and the vertical axis. First we will find necessary conditions for the
specified measure m to be the invariant measure of a random walk. Therefore,
the structure of Γ will be discussed.
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Chapter 4

Homogeneous transition
probabilities on the
boundaries

In this chapter, we consider homogeneous random walks and try to find tran-
sition probabilities on the horizontal axis, vertical axis and the origin. More
precisely, assume that for any n1 > 0,

p1
d(n1, 0) = p1

d, d ∈ D1,

and for any n2 > 0,
p2
d(0, n2) = p2

d, d ∈ D2.

Suppose that the measure m is induced by the set Γ̂ = Γ ∪ Γ̄, where Γ ={
(ρ1, σ1), . . . , (ρN , σN )

}
with ρk, σk ∈ C and Γ̄ =

{
(ρ̄1, σ̄1), . . . , (ρ̄N , σ̄N )

}
. In

the next section, we will give a necessary condition on the structure of Γ for m
to be the invariant measure of a homogeneous random walk.

4.1 Structure of the set Γ

Let Γ =
{

(ρ1, σ1), . . . , (ρN , σN )
}

, we consider a measure induced by Γ̂ = Γ ∪ Γ̄,
as defined by Definition 3.1.

In [5] it was shown that if ρk, σk ∈ R and m(n1, n2) is the invariant mea-
sure of the random walk, then (ρ1, σ1), . . . , (ρN , σN ) should satisfy the interior
balance equation individually and follow a pairwise-coupled structure. Here we
show that the same conclusions apply when we consider ρk, σk ∈ C.

First, we claim that if the measure m is induced by a single pair (ρ, σ) and
its complex conjugate, then ρ ∈ R, σ ∈ R.

Theorem 4.1. Suppose that the measure m is induced by Γ̂ = Γ∪ Γ̄. If |Γ| = 1,
then ρ ∈ R, σ ∈ R.

Proof. Let Γ =
{

(ρ, σ)
}

. Assume that at least one of ρ and σ is not real.
Without loss of generality, assume that σ /∈ R. Consider states (0, n2) for all
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n2 ≥ 0, then

m(0, n2) = c(ρ0σn2 + ρ̄0σ̄n2)

= 2c · Re(σn2).

Let σ = r2e
iθ2 and assume that σ /∈ R, then 0 < r2 < 1 and θ2 ∈ (0, 2π). Since

m is a measure, then

m(0, n2) = 2rn2
2 cos(n2θ2) ≥ 0.

Therefore, we get
cos(n2θ2) ≥ 0, (4.1)

for any n2 = 1, 2, . . . . On the other hand, cos(n2θ2) is a periodic function in n2

and the value fluctuates between −1 and 1. Thus, as n2 goes to infinity, there
exists an integer n0 such that cos(n0θ2) < 0. m can not be non-negative for all
states hence it is not a measure. Thus ρ ∈ R, σ ∈ R.

From the theorem above, we see that the measure m can not be induced
by a single pair (ρ, σ) and its complex conjugate if ρ /∈ R or σ /∈ R. In the
next theorem, we show that if m is a linear combination of a finite number of
geometric terms, then each geometric term has to satisfy the balance equations
in the interior of the state space individually.

To identify the geometric terms that satisfy the balance equations in the
interior of the state space, we introduce the polynomial

P (x, y) = xy(1−
1∑

s=−1

1∑
t=−1

x−sy−tps,t). (4.2)

It is easy to verify that if P (ρ, σ) = 0, then the balance equations in the interior
of the state space hold for the geometric measure ρn1σn2 . We define

I =
{

(ρ, σ) ∈ U2
∣∣∣P (ρ, σ) = 0

}
. (4.3)

For any geometric measure induced by (ρ, σ) ∈ I, balance equations in the
interior of the state space hold. In [5], it was proved that if ρk, σk ∈ R for
k = 1, . . . , N , then there exists integers w1, w2 such that ρw1σw2 6= ρw1

1 σw2
1 for

any (ρ, σ) ∈ Γ\(ρ1, σ1). When we consider ρk, σk ∈ C, since we can rotate ρk, σk
by an angle and get a different complex number, the statement in [5] does not
always hold. Therefore, we first have the following assumption.

Assumption 4.2. For any (ρk, σk) ∈ Γ with k = 1, . . . , N , there exist integers
wk1 , w

k
2 ∈ N+ such that

ρ
wk

1

k σ
wk

2

k 6= ρw
k
1σw

k
2 ,

for any (ρ, σ) ∈ Γ ∪ Γ̄\{(ρk, σk)}.

Next, we are going to give a theorem which demonstrates that every geo-
metric measure in Equation (3.5) should satisfy the balance equations in the
interior of the state space.
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Theorem 4.3. The measure m is the invariant measure of a random walk if
and only if every geometric term satisfies the balance equations in the interior
of the state space individually, i.e., for any k = 1, . . . N ,

(ρk, σk) ∈ I, (ρ̄k, σ̄k) ∈ I. (4.4)

Proof. (⇐) It is trivial that if every geometric term satisfies balance equations
in the interior of the state space, then m also satisfies the balance equations,
since m is a sum over a finite number of geometric terms.

(⇒) Let

m(n1, n2) =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2)

be the invariant measure of a random walk, then from Equation (3.1), we get
that

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2) =

1∑
s=−1

1∑
t=−1

N∑
k=1

ck(ρn1−s
k σn2−t

k + ρ̄k
n1−sσ̄k

n2−t)ps,t

⇔
N∑
k=1

ckρ
n1

k σ
n2

k (1−
1∑

s=−1

1∑
t=−1

ρ−sk σ−tk ps,t) +

N∑
k=1

ckρ̄k
n1 σ̄k

n2(1−
1∑

s=−1

1∑
t=−1

ρ̄k
−sσ̄k

−tps,t) = 0. (4.5)

Without loss of generality, we only prove that (ρ1, σ1) ∈ I. From Assump-

tion 4.2, there exists positive integer w1
1, w

1
2 such that ρ

w1
1

1 σ
w1

2
1 6= ρw

1
1σw

1
2 for

any (ρ, σ) ∈ Γ ∪ Γ̄\{(ρ1, σ1)}. We also assume that ρ
w1

1
j σ

w1
2

j 6= ρ
w1

1

k σ
w1

2

k for any

(ρj , σj), (ρk, σk) ∈ Γ ∪ Γ̄ with j 6= k. Otherwise, we partition the set Γ in the

following way. If ρ
w1

1
j σ

w1
2

j = ρ
w1

1

k σ
w1

2

k for some j 6= 1, k 6= 1, then we put (ρj , σj)
and (ρk, σk) in the same element of the partition. Thus (ρ1, σ1) is the only pair
in its element.

Consider the balance equations for states (dw1
1, dw

1
2), with d = 1, 2, . . . , 2N ,

then we have

N∑
k=1

[ρ
w1

1

k σ
w1

2

k ]d[ck(1−
1∑

s=−1

1∑
t=−1

ρ−sk σ−tk ps,t)] +

N∑
k=1

[ρ̄k
w1

1 σ̄k
w1

2 ]d[ck(1−
1∑

s=−1

1∑
t=−1

ρ̄k
−sσ̄k

−tps,t)] = 0.

It is a system of linear equations in variables ck(1−
∑1
s=−1

∑1
t=−1 ρ

−s
k σ−tk ps,t),

and ck(1−
∑1
s=−1

∑1
t=−1 ρ̄k

−sσ̄k
−tps,t). The coefficients matrix is

A =


ρ
w1

1
1 σ

w1
2

1 . . . ρ
w1

1

N σ
w1

2

N ρ̄1
w1

1 σ̄1
w1

2 . . . ρ̄N
w1

1 σ̄N
w1

2

(ρ
w1

1
1 σ

w1
2

1 )2 . . . ρ
w1

1

N σ
w1

2

N

2

(ρ̄1
w1

1 σ̄1
w1

2 )2 . . . (ρ̄N
w1

1 σ̄N
w1

2 )2

. . . . . . . . . . . . . . . . . .

(ρ
w1

1
1 σ

w1
2

1 )2N . . . (ρ
w1

1

N σ
w1

2

N )2N (ρ̄1
w1

1 σ̄1
w1

2 )2N . . . (ρ̄N
w1

1 σ̄N
w1

2 )2N

 ,
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which has a Vandermonde structure. Since ρ
w1

1
j σ

w1
2

j 6= ρ
w1

1

k σ
w1

2

k for any j 6= k, we

have that det(A) 6= 0. Therefore, for any (ρk, σk) ∈ Γ, (ρ̄k, σ̄k) ∈ Γ̄,

1−
1∑

s=−1

1∑
t=−1

ρ−sk σ−tk ps,t = 0,

1−
1∑

s=−1

1∑
t=−1

ρ̄k
−sσ̄k

−tps,t = 0.

We conclude that (ρk, σk) ∈ I, (ρ̄k, σ̄k) ∈ I, for k = 1, . . . , N .

Elements in Γ̄ are the complex conjugates of Γ. If Γ ⊂ I, then Γ̄ ⊂ I. Thus
Γ̂ ⊂ I if and only if Γ ⊂ I. The next theorem claims that the representation of
Γ̂ is unique.

Theorem 4.4. Let m be the invariant measure of a random walk, which is
induced by Γ̂ = Γ ∪ Γ̄ ⊂ I. If m is also induced by Γ̂′, then Γ̂ = Γ̂′.

Proof. Since m is induced by both Γ̂ and Γ̂′, then for all n1 > 0, n2 > 0,∑
(ρk,σk)∈Γ

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2)−
∑

(ρk,σk)∈Γ′

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2)

=
∑

(ρk,σk)∈Γ∩Γ′

(ck − c′k)ρn1

k σ
n2

k +
∑

(ρ̄k,σ̄k)∈Γ̄∩Γ̄′

(ck − c′k)ρ̄k
n1 σ̄k

n2 +

∑
(ρk,σk)∈Γ\Γ′

ckρ
n1

k σ
n2

k +
∑

(ρk,σk)∈Γ\Γ′
ckρ̄k

n1 σ̄k
n2 −

∑
(ρk,σk)∈Γ′\Γ

c′kρ
n1

k σ
n2

k −
∑

(ρk,σk)∈Γ′\Γ

c′kρ̄k
n1 σ̄k

n2

= 0.

Similar to the proof of Theorem 4.3, we can find (w1, w2) such that ρw1

k σw2

k are

distinct. Consider states (w1, w2), . . . , (|Γ̂∪ Γ̂′|w1, |Γ̂∪ Γ̂′|w2), then we get a sys-
tem of linear equations. The coefficients matrix has a Vandermonde structure.
Therefore, we have ck − c′k = 0, if (ρk, σk) ∈ Γ ∩ Γ′, ck = 0 if (ρk, σk) ∈ Γ\Γ′,
and c′k = 0 if (ρk, σk) ∈ Γ′\Γ. As a consequence, Γ = Γ′.

Consider a measure m induced by Γ̂ = Γ∪ Γ̄ ⊂ I. Next we will prove that Γ
should follow a pairwise-coupled structure. The definition of pairwise-coupled
structure was already introduced in Chapter 2, where examples were given to
illustrate the definition of the structure. If Γ is a pairwise-coupled set, so is Γ̄.
However, the set Γ ∪ Γ̄ may not be pairwise-coupled.

Maximal horizontally uncoupled sets are obtained by putting (ρ, σ) ∈ Γ
with the same ρ in the same element of the partition. Maximal vertically un-
coupled sets are obtained by putting (ρ, σ) ∈ Γ with the same σ in the same
element. Moreover, maximal uncoupled sets are obtained by putting (ρ, σ) ∈ Γ
with the same ρ or the same σ in the same element of the partition. Let{

Γh1 ,Γ
h
2 , . . . ,Γ

h
H

}
be the maximal horizontally uncoupled partition of Γ and{

Γv1,Γ
v
2, . . . ,Γ

v
V

}
be the maximal vertically uncoupled partition of Γ. Conse-

quently,
{

Γ̄h1 , Γ̄
h
2 , . . . , Γ̄

h
H

}
is the maximal horizontally uncoupled partition of Γ̄
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and
{

Γ̄v1, Γ̄
v
2, . . . , Γ̄

v
V

}
is the maximal vertically uncoupled partition of Γ̄. El-

ements of Γhp , p = 1, . . . ,H have the same horizontal coordinate ρ(Γhp) and el-
ements of Γvq , q = 1, . . . , V have the same σ(Γvq). Moreover, for p = 1, . . . ,H,

ρ(Γhp) = ρ(Γ̄hp) if and only if ρ ∈ R. To illustrate the balance equations on the
horizontal and vertical axis. We define

Bh(Γhp) =

{ ∑
(ρk,σk)∈Γh

p
ck
[
1−

∑1
s=−1(ρ−sk σkps,−1 + ρ−sk p1

s,0)
]

, ρ(Γhp) /∈ R∑
(ρk,σk)∈Γh

p
ck
[
1−

∑1
s=−1(2ρ−sk Re(σk)ps,−1 + ρ−sk p1

s,0)
]
, ρ(Γhp) ∈ R

Bv(Γvq) =

{ ∑
(ρk,σk)∈Γv

q
ck
[
1−

∑1
t=−1(ρkσ

−t
k p−1,t + σ−tk p2

0,t)
]

, σ(Γvq) /∈ R∑
(ρk,σk)∈Γv

q
ck
[
1−

∑1
t=−1(2 Re(ρk)σ−tk p−1,t + σ−tk p2

0,t)
]
, σ(Γvq) ∈ R

Moreover, define Bh(Γ̄hp) and Bv(Γ̄vq) in the similar way and we can see that

Bh(Γ̄hp) = Bh(Γhp), Bv(Γ̄vq) = Bv(Γvq). The following lemma gives sufficient and

necessary conditions for the measure m induced by Γ̂ = Γ ∪ Γ̄ ⊂ I to be the
invariant measure of the random walk.

Lemma 4.5. Consider a measure m induced by Γ̂ = Γ ∪ Γ̄ ⊂ I, where Γ =
{(ρ1, σ1), . . . , (ρN , σN )} and Γ̄ = {(ρ̄1, σ̄1), . . . , (ρ̄N , σ̄N )} with ρk, σk ∈ C. Then
m is the invariant measure of a random walk if and only if for any p = 1, . . . ,H
and q = 1, . . . , V ,

Bh(Γhp) = 0 , Bh(Γ̄hp) = 0,

Bv(Γvq) = 0 , Bv(Γ̄vq) = 0.

Proof. (⇐) It is easy to verify that if the conditions above are satisfied, then
balance equations on the horizontal and vertical axis are satisfied. According
to Theorem 4.3, m also satisfies the balance equations in the interior since m is
induced by Γ ⊂ I and Γ̄ ⊂ I. Therefore, all balance equations are satisfied and
m is the invariant measure of the random walk.

(⇒) Suppose that m is the invariant measure of the random walk, then m
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satisfies the balance equations on the horizontal axis, i.e., for any n1 = 1, 2, . . . ,

m(n1, 0) =

1∑
s=−1

m(n1 − s, 1)ps,−1 +m(n1 − s, 0)p1
s,0,

⇔
N∑
k=1

ckρ
n1

k

[
1−

1∑
s=−1

(ρ−sk σkps,−1 + ρ−sk p1
s,0)
]

+

N∑
k=1

ckρ̄k
n1
[
1−

1∑
s=−1

(ρ̄k
−sσ̄kps,−1 + ρ̄k

−sp1
s,0)
]

= 0,

⇔
H∑
p=1

[ρ(Γhp)]n1

∑
(ρk,σk)∈Γh

p

ck
[
1−

1∑
s=−1

(ρ−sk σkps,−1 + ρ−sk p1
s,0)
]

+

H∑
p=1

[ρ(Γhp)]n1

∑
(ρk,σk)∈Γh

p

ck
[
1−

1∑
s=−1

(ρ̄k
−sσ̄kps,−1 + ρ̄k

−sp1
s,0)
]

= 0.

⇔
H∑
p=1

[
ρ(Γhp)

]n1
Bh(Γhp) +

H∑
p=1

[
ρ(Γhp)

]n1
Bh(Γ̄hp) = 0

⇔
∑

ρ(Γh
p )∈R

[
ρ(Γhp)

]n1
Bh(Γhp) +

∑
ρ(Γh

p )/∈R

[
ρ(Γhp)

]n1
Bh(Γhp) +

∑
ρ(Γh

p )/∈R

[
ρ(Γhp)

]n1
Bh(Γ̄hp) = 0. (4.6)

Notice that ρ(Γhp), p = 1, . . . ,H are all distinct due to the definition of max-

imal horizontally partition. Moreover, if ρ(Γhp) /∈ R, ρ(Γhp) 6= ρ(Γhp). Thus

Equation (4.6) is a system of linear equations in variables Bh(Γhp) and Bh(Γ̄hp),
for p = 1, . . . ,H. The coefficients follow a Vandermonde structure. Therefore,
for p = 1, . . . ,H,

Bh(Γhp) = 0, Bh(Γ̄hp) = 0.

Using the same argument, we can also get that for q = 1, . . . , V ,

Bv(Γvq) = 0, Bv(Γ̄vq) = 0.

This concludes the proof of this lemma.

With Lemma 4.5, we are ready to prove that if m induced by Γ and Γ̄ is the
invariant measure of the random walk, then Γ has to follow a pairwise-coupled
structure.

Theorem 4.6. Let m be a measure induced by Γ̂ = Γ ∪ Γ̄ ⊂ I. If m is the
invariant measure of a random walk, then Γ has a pairwise-coupled structure.

Proof. Let {Γhp}Hp=1 and {Γvq}Vq=1 be the maximal horizontally and vertically par-

tition of Γ respectively. As a consequence, {Γ̄hp}Hp=1 and {Γ̄vq}Vq=1 are the maxi-

mal horizontally and vertically partition of Γ̄. In addition, denote by {Γu}Mu=1
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and {Γ̄u}Mu=1 the maximal uncoupled partition of Γ and Γ̄ respectively. For any
u = 1, . . . ,M , we can find Iu ⊂ {1, . . . ,H} and Ju ⊂ {1, . . . , V }, such that

Γu =
⋃
p∈Iu

Γhp =
⋃
q∈Ju

Γvq ,

Γ̄u =
⋃
p∈Iu

Γ̄hp =
⋃
q∈Ju

Γ̄vq .

Consider the measure m, we have

m(n1, n2) =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2)

=

M∑
u=1

[ ∑
(ρ,σ)∈Γu

c(ρ, σ)ρn1σn2 +
∑

(ρ,σ)∈Γu

c(ρ, σ)ρ̄n1 σ̄n2
]
.

Define that
mu(n1, n2) =

∑
(ρ,σ)∈Γu

c(ρ, σ)(ρn1σn2 + ρ̄n1 σ̄n2),

then m(n1, n2) =
∑M
u=1mu(n1, n2). We will show that for any u = 1, . . . ,M ,

mu also satisfies all the balance equations. For state (n1, 0),

mu(n1, 0)− (

1∑
s=−1

mu(n1 − s, 1)ps,−1 +mu(n1 − s, 0)p1
s,0)
]

=
∑

(ρ,σ)∈Γu

c(ρ, σ)
{
ρn1 [1−

1∑
s=−1

(ρ−sσps,−1 + ρ−sp1
s,0)]

}
+

∑
(ρ,σ)∈Γu

c(ρ, σ)
{
ρ̄n1 [1−

1∑
s=−1

(ρ̄−sσ̄ps,−1 + ρ̄−sp1
s,0)]

}
=

∑
p∈Iu

ρ(Γhp)n1

∑
(ρ,σ)∈Γh

p

[

1∑
s=−1

(ρ−sσps,−1 + ρ−sp1
s,0)− 1] +

∑
p∈Iu

ρ(Γhp)
n1

∑
(ρ,σ)∈Γh

p

[

1∑
s=−1

(ρ̄−sσ̄ps,−1 + ρ̄−sp1
s,0)− 1]

=
∑

p∈Iu,ρ(Γh
p )∈R

ρ(Γhp)n1Bh(Γhp) +
∑

p∈Iu,ρ(Γh
p )/∈∈R

[
ρ(Γhp)n1Bh(Γhp) + ρ(Γhp)

n1

Bh(Γ̄hp)
]

= 0.

The last equality follows from Lemma 4.5. Using similar approaches, we
can also find that mu(n1, n2) satisfies the balance equations on the vertical axis
for u = 1, . . . ,M . Thus mu, u = 1, . . . ,M are the invariant measures of the
random walk. If M > 1, then each mu is the invariant measure of the random
walk. It contradicts with Theorem 4.4, which states that the representation of
the invariant measure is unique. Therefore, M = 1 and the set Γ is pairwise-
coupled.
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In this section, we have looked at the structure of the set Γ which can be used
to induce the invariant measure. We draw the conclusion that each geometric
term in m must satisfy the balance equations in the interior of the state space
individually. In addition, the set Γ has to follow a pairwise-coupled structure.
In the next section, given the interior transition probabilities of a random walk,
we take a measure m which is induced by Γ̂ = Γ ∪ Γ̄ ∈ I where Γ is a pairwise-
coupled set. We will explore how to find the transition probabilities on the
horizontal, the vertical axis and the origin such that m is the invariant measure
of the random walk.

4.2 The restrictive case

In this section, we consider the method to find transition probabilities on the
horizontal and vertical axis. Moreover, we consider the restrictive case, i.e.,

p1
s,1 = ps,1,∀s = −1, 0, 1

and
p2

1,t = p1,t,∀t = −1, 0, 1.

In Theorem 4.1, we have shown that ρn1σn2 + ρ̄n1 σ̄n2 can not be a measure
if ρ /∈ R or σ /∈ R, since for some states it is negative. However, we didn’t con-
sider boundary balance equations for this signed measure. In Subsection 4.2.1,
we look at the signed measure ρn1σn2 + ρ̄n1 σ̄n2 , and we get the conclusion
that we can not find both horizontal and vertical transition probabilities. In
Subsection 4.2.2, we consider the measure induced by a pairwise-coupled set
and its complex conjugate set, and try to use the structure to find transition
probabilities on the boundaries.

Suppose that the interior transition probabilities of the random walk, ps,t
are given. Let Γ = {(ρ1, σ1), . . . , (ρN , ρN )} ⊂ I be a pairwise-coupled set and
m be the measure induced by Γ̂ = Γ ∪ Γ̄.

4.2.1 Boundary transition probabilities for a signed mea-
sure

In this subsection, we consider the signed measure ρn1σn2 + ρ̄n1 σ̄n2 , and we try
to find transition probabilities on the horizontal and vertical axis. Moreover, if
ρ, σ ∈ R, the conclusions were given in [5] and we assume that at least one of
ρ, σ is not real. Hence we consider two cases. The first case is ρ ∈ R, σ /∈ R or
ρ /∈ R, σ ∈ R. The second case is ρ /∈ R and σ /∈ R.

Case 1. ρ ∈ R, σ /∈ R or ρ /∈ R, σ ∈ R
First consider that if ρ ∈ R, σ /∈ R, then

m(n1, n2) = c(ρn1σn2 + ρn1 σ̄n2).

From Lemma 4.5, if m is the invariant measure of the random walk, then
Bh(ρ) = 0, i.e.,

1 =

1∑
s=−1

2ρ−s Re(σ)ps,−1 +

1∑
s=−1

ρ−sp1
s,0. (4.7)

22



Inserting
∑1
s=−1 ps,1 +

∑1
s=−1 p

1
s,0 = 1 into Equation (4.7), we get

(1− ρ)p1
−1,0 + (1− 1/ρ)p1

1,0 =

1∑
s=−1

2ρ−s Re(σ)ps,−1 −
1∑

s=−1

ps,1. (4.8)

There are two variables, p1
−1,0, p

1
1,0, in Equation (4.8). If we use p1

−1,0 as one
coordinate on the two-dimensional plane and p1

1,0 as the other coordinate, then
all the solutions to Equation (4.8) lie on a straight line in the plane. Since
0 < ρ < 1, the slope of the straight line is positive. Thus, non-negative solutions
to Equation (4.8) can be found. Therefore, transition probabilities of a rescaled
random walks can always be constructed.

On the vertical axis, since σ /∈ R, then Bv(σ) = 0, i.e.,

1−
1∑

t=−1

ρσn2−tp−1,t −
1∑

t=−1

σn2−tp2
0,t = 0.

Plugging in
∑1
t=−1 p1,t +

∑1
t=−1 p

2
0,t = 1, we have

(1− σ)p2
0,−1 + (1− 1/σ)p2

0,1 =

1∑
t=−1

ρσ−tp−1,t −
1∑

t=−1

p1,t. (4.9)

We need to find the variables p2
0,t, t = −1, 0, 1 such that Equation (4.9) holds.

Notice that in Equation (4.9), the coefficients can be complex and the variables
p2

0,−1, p
2
0,1 are real numbers. Let xv = [p2

0,−1, p
2
0,1]T , then Equation (4.9) is

equivalent to the linear system Avxv = bv, where

Av =

[
Re(1− σ) Re(1− 1/σ)
Im(1− σ) Im(1− 1/σ)

]
,

bv =

[
Re(
∑1
t=−1 ρσ

−tp−1,t −
∑1
t=−1 p1,t)

Im(
∑1
t=−1 ρσ

−tp−1,t −
∑1
t=−1 p1,t)

]
.

If 0 ≤ xv ≤ 1, then we can find the transition probabilities on the vertical axis
for a rescaled random walk. Here the inequality works element-wise.

However, we have done a lot of numerical experiments on a wide range of
different interior transition probabilities, and the numerical results suggest that
the solutions to the system is negative.

If ρ /∈ R, σ ∈ R, similar approaches can be used for the analysis on the
vertical axis. Through numerical experiments, we also see that when we consider
balance equations on the horizontal axis, the solutions are negative. Thus we
can find transition probabilities on the vertical axis but not on the horizontal
axis.

Case 2. ρ /∈ R and σ /∈ R
If ρ /∈ R and σ /∈ R, then

m(n1, n2) = c(ρn1σn2 + ρ̄n1 σ̄n2).

From Lemma 4.5, if m is the invariant measure of the random walk, then for
any p = 1, . . . ,H and q = 1, . . . , V ,

Bh(Γhp) = 0, Bv(Γvq) = 0.
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Similar to the analysis in Case 1, we have the two linear systems for the signed
measure,

Ahxh = bh,

Avxv = bv.

We have done many numerical experiments on various interior transition prob-
abilities. The numerical results indicate that, for a signed measure ρn1σn2 +
ρ̄n1 σ̄n2 , only one of xh and xv is non-negative. If xh ≥ 0, then xv < 0. If xv ≥ 0,
then xh < 0. Thus, we have the following conjecture.

Conjecture 4.7. For a signed measure ρn1σn2 + ρ̄n1 σ̄n2 with ρ, σ ∈ C, the
balance equations on the horizontal axis and the vertical axis lead to two linear
systems, Ahxh = bh and Avxv = bv. Exactly one of the following two statements
is true.

1. xh ≥ 0.

2. xv ≥ 0.

From Conjecture 4.7, we see that we can find transition probabilities either
on the horizontal axis or on the vertical axis.

In this subsection, we see that if ρ, σ ∈ C, for a signed measure ρn1σn2 +
ρ̄n1 σ̄n2 , either horizontal transition probabilities or vertical transition probabil-
ities can be found. In the next subsection, we will use the property of pairwise-
coupled structure and try to find boundary transition probabilities for a measure
m induced by a pairwise-coupled set Γ and its complex conjugate set Γ̄.

4.2.2 Boundary transition probabilities for m induced by
Γ̂ = Γ ∪ Γ̄

Let Γ =
{

(ρ1, σ1), . . . , (ρN , σN )|ρk, σk ∈ C
}

be a pairwise-coupled set and m be

the measure induced by Γ̂ = Γ∪ Γ̄. From Subsection 4.2.1, we know for a single
signed measure ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2 , either horizontal transition probabilities or
vertical transition probabilities can be found. If we consider a pairwise-coupled
set, we can use the structure of the set.

Suppose transition probabilities on the horizontal axis are found for the
signed measure ρn1

1 σn2
1 + ρ̄1

n1 σ̄1
n2 and transition probabilities on the vertical

axis are found for the signed measure ρn1

N σ
n2

N + ρ̄N
n1 σ̄N

n2 , if we can find proper
coefficients ck such that conditions in Lemma 4.5 hold, then m is the invariant
measure of the random walk.

First we give the following conjecture, which states that for two signed mea-
sures, ρn1

1 σn2
1 +ρ̄1

n1 σ̄1
n2 and ρn1

2 σn2
2 +ρ̄2

n1 σ̄2
n2 , if (ρ1, σ1) and (ρ2, σ2) belong to

the same element of the maximal horizontally or vertically uncoupled partition
of Γ, then horizontal transition probabilities can be found for one of the signed
measure and vertical transition probabilities can be found for the other.

Conjecture 4.8. Suppose that the signed measures ρn1
1 σn2

1 + ρ̄1
n1 σ̄1

n2 and
ρn1

2 σn2
2 + ρ̄2

n1 σ̄2
n2 both satisfy the balance equations in the interior of the state

space. If ρ1 = ρ2 or σ1 = σ2, then exactly one of the following statements hold:
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1. Transition probabilities on the horizontal axis can be found for ρn1
1 σn2

1 +
ρ̄1
n1 σ̄1

n2 , and transition probabilities on the vertical axis can be found for
ρn1

2 σn2
2 + ρ̄2

n1 σ̄2
n2 .

2. Transition probabilities on the vertical axis can be found for ρn1
1 σn2

1 +
ρ̄1
n1 σ̄1

n2 , and transition probabilities on the horizontal axis can be found
for ρn1

2 σn2
2 + ρ̄2

n1 σ̄2
n2 .

Following from Conjecture 4.7 and 4.8, we have the lemma below.

Lemma 4.9. Let Γ =
{

(ρ1, σ1), . . . , (ρN , σN )|ρk, σk ∈ C
}

be a pairwise-coupled

subset of I and m be the measure induced by Γ̂. Moreover, transition probabilities
on the horizontal axis are found for the signed measure ρn1

1 σn2
1 + ρ̄1

n1 σ̄1
n2 and

transition probabilities on the vertical axis are found for ρn1

N σ
n2

N + ρ̄N
n1 σ̄N

n2 .
If Conjecture 4.7 and 4.8 hold and m is the invariant measure of the random
walk, then |Γ| is even.

Proof. Since transition probabilities are found for the signed measure ρn1
1 σn2

1 +
ρ̄1
n1 σ̄1

n2 , then from Conjecture 4.7 and 4.8, only vertical transition probabili-
ties are found for ρn1

2 σn2
2 + ρ̄2

n1 σ̄2
n2 . Keep using Conjecture 4.7, 4.8 and the

pairwise-coupled structure, we get that only vertical transition probabilities are
found for ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2 if k is even and only horizontal transition probabil-
ities are found for ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2 if k is odd. Since transition probabilities
on the vertical axis are found for ρn1

N σ
n2

N + ρ̄N
n1 σ̄N

n2 , then N is even. Thus |Γ|
is even.

Next, we give the main result of this subsection. In the next theorem, we
state that even if the pairwise-coupled structure is used, we can not find the
boundary transition probabilities such that m is the invariant measure of the
random walk.

Theorem 4.10. Let Γ =
{

(ρ1, σ1), . . . , (ρN , σN )
}

with ρk, σk ∈ C and m be the

measure induced by Γ̂. Moreover, transition probabilities on the horizontal axis
are found for the signed measure ρn1

1 σn2
1 + ρ̄1

n1 σ̄1
n2 and transition probabilities

on the vertical axis are found for ρn1

N σ
n2

N + ρ̄N
n1 σ̄N

n2 . If Conjecture 4.7 and
4.8 hold, then no boundary transition probabilities can be found such that m is
the invariant measure of the random walk.

Proof. Since Γ is a pairwise-coupled set, then either ρ1 = ρ2 or σ1 = σ2. Thus
we consider two cases in the following proof.

Case 1. ρ1 = ρ2

If ρ1 = ρ2, then (ρ1, σ1) and (ρ2, σ2) are in the same element of the maximal
horizontally uncoupled set. Without loss of generality, assume that ρ1 = ρ2 /∈ R.
Let (ρ1, σ1), (ρ2, σ2) ∈ Γh1 , then according to Lemma 4.5,

Bh(Γh1 ) = c1
[
1−

1∑
s=−1

(ρ−s1 σ1ps,−1 + ρ−s1 p1
s,0)
]

+

c2
[
1−

1∑
s=−1

(ρ−s2 σ2ps,−1 + ρ−s2 p1
s,0)
]

= 0.
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Since p1
−1,0, p

1
1,0 are found for the signed measure ρn1

1 σn2
1 + ρ̄1

n1 σ̄1
n2 , then

1−
1∑

s=−1

(ρ−s1 σ1ps,−1 + ρ−s1 p1
s,0) = 0.

Thus we have

1−
1∑

s=−1

(ρ−s2 σ2ps,−1 + ρ−s2 p1
s,0) = 0,

which means that ρn1
2 σn2

2 + ρ̄2
n1 σ̄2

n2 also satisfies the balance equations on the
horizontal axis. This contradicts with Conjecture 4.7 and 4.8, which says that
no horizontal transition probabilities can be found for ρn1

2 σn2
2 .

Case 2. σ1 = σ2

If σ1 = σ2 and transition probabilities on the horizontal axis are found for
ρn1

1 σn2
1 , then by the pairwise-coupled structure of Γ, ρ2 = ρ3, σ3 = σ4, etc.

According to Lemma 4.9, N is even. Thus σN−1 = σN , i.e., (ρN−1, σN−1) and
(ρN , σN ) are in the same element of the maximal vertically uncoupled partition.
Suppose that (ρN−1, σN−1), (ρN , σN ) ∈ ΓvV , then by Lemma 4.5, we have

Bv(ΓvV ) = cN−1

[
1−

1∑
t=−1

(ρN−1σ
−t
N−1p−1,t + σ−tN−1p

2
0,t)
]

+

cN
[
1−

1∑
t=−1

(ρNσ
−t
N p−1,t + σ−tN p2

0,t)
]

= 0.

Using the arguments in the proof of Case 1, we can get

1−
1∑

t=−1

(ρN−1σ
−t
N−1p−1,t + σ−tN−1p

2
0,t) = 0,

which contradicts with Conjecture 4.7 and 4.8. Therefore, no boundary tran-
sition probabilities can be found such that m is the invariant measure of the
random walk.

In this section, we have shown how to construct the transition probabilities
on the horizontal and vertical axis for a specified measure m to be the invariant
measure of the random walk. However, we also see that although horizontal
or vertical transition probabilities can be constructed for a single geometric
measure, but there is a contradiction with the structure of Γ. Therefore, homo-
geneous transition probabilities can not be found for a specified measure induced
by complex numbers and their complex conjugates. The restrictive is considered
here. In the next section, we are going to generalize the conclusions we get from
this section and state that even if we consider the relaxed case, homogeneous
transition probabilities still can not be found.
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4.3 The relaxed case

In this part, we consider the relaxed perturbation, which means that we do not
require

p1
s,1 = ps,1,∀s ∈ {−1, 0, 1}.

From Subsection 3.1.2, we see that besides the balance equations of the
restrictive case, there are more balance equations for states (n1, 1) and (1, n2),
i.e.,

m(n1, 1) =

t=1∑
s=−1

0∑
t=−1

m(n1 − s, 1− t)ps,t +

1∑
s=−1

m(n1 − s, 0)p1
s,1,(4.10)

m(1, n2) =

0∑
s=−1

1∑
t=−1

m(1− s, n2 − t)ps,t +

1∑
t=−1

m(0, n2 − t)p2
1,t. (4.11)

We can analyze in the same way as that in Section 4.2, and consider ρ ∈ R
or ρ, σ /∈ R. However, we find that all the lemmas, conjectures and theorems
can be generalized here, since for balance equations at states (n1, 0), the sum∑1
s=−1 ps,1 is more important to the equation than the individual transition

probability.
For the relaxed case, it still holds that for a single geometric term, we can

not find both transition probabilities on the horizontal and the vertical axis.
Moreover, either horizontal or vertical transition probabilities can be found.
Therefore, all the conclusions follow from those in Section 4.2 even if we consider
the relaxed case.

In this chapter, we try to construct a homogeneous random walk for a spec-
ified measure m induced by Γ̂. First we give necessary conditions on the struc-
ture of the Γ for m to be the invariant measure of the random walk. Next,
given a specified measure for which the conditions hold, we try to construct the
transition probabilities on the horizontal and vertical axis. However, results of
numerical experiments indicate that no boundary transition probabilities can
be found due to the contradiction between the structure of the set and the
transition probabilities constructed for one single signed measure. It seems not
promising to work on homogeneous transition probabilities. Therefore, we turn
to inhomogeneous transition probabilities on the boundaries.

In the next chapter, we are going to consider an inhomogeneous random
walk, which means that the transition probabilities on the horizontal and vertical
axis depend on the state. Assume that the random walk still has homogeneous
transition probabilities in the interior of the state space. We will to use similar
construction method to find horizontal and vertical transition probabilities of
the random walk for a specified measure to be the invariant measure.
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Chapter 5

Inhomogeneous transition
probabilities on the
boundaries

In this chapter, we consider random walks with inhomogeneous transition prob-
abilities on the horizontal and vertical axis. Moreover, we assume that transition
probabilities in the interior of the state space are still homogeneous. Therefore,
from Theorem 4.3 in Chapter 4, each geometric term has to satisfy the balance
equations in the interior individually, i.e., the measure m is induced by a set
Γ̂ ⊂ I.

Suppose that the measure m is induced by Γ̂ = Γ ∪ Γ̄, where the set Γ ={
(ρ1, σ1), . . . , (ρN , σN )

}
and (ρk, σk) ∈ C for k = 1, 2, . . . , N . In addition,

assume that Γ ⊂ I, then the balance equations in the interior of the state
space hold for m. From results in Chapter 4, it is difficult to find homogeneous
transition probabilities on the horizontal and the vertical axis. In this chapter,
we try to find inhomogeneous transition probabilities on the horizontal and the
vertical axis such that m is the invariant measure of the constructed random
walk. More precisely, the transition probabilities depend on the state. Let
ps,t(n1, 0), s ∈ {−1, 0, 1}, t ∈ {0, 1} be the transition probabilities at state (n1, 0)
on the horizontal axis and ps,t(0, n2), s ∈ {0, 1}, t ∈ {−1, 0, 1} be the transition
probabilities at state (0, n2) on the vertical axis. In the notation, we omit the
superscription since the state itself already gives the axis that it is on.

Through analysis in this chapter, it is found that inhomogeneous transition
probabilities exist if certain conditions are satisfied and we have no constraints
on the structure Γ. Hence, the measure m can be induced by any subset Γ̂
of I. The measure m may contain both real and complex geometric terms.
Besides, the inhomogeneous transition probabilities ps,t(n1, 0) and ps,t(0, n2)
are bounded.

In this chapter, we only consider the restrictive case, since conclusions in the
relaxed can be generalized from the restrictive case. First, we will show that
under certain conditions, inhomogeneous transition probabilities can be found
though a recurrence relation. Next, we will discuss the conclusions we find.
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5.1 Inhomogeneous boundary transition proba-
bilities

We consider the restrictive case, i.e.,

ps,1(n1, 0) = ps,1,

p1,t(0, n2) = p1,t,

for any n1, n2 ≥ 1 and s, t = −1, 0, 1. Let m be a measure induced by Γ̂ ⊂ I,
with ρk, σk ∈ R. As a consequence, balance equations in the interior of the state
space are satisfied. The balance equations on the horizontal and vertical axis
are given below,

m(n1, 0) =

1∑
s=−1

m(n1 − s, 1)ps,−1 +

1∑
s=−1

m(n1 − s, 0)ps,0(n1 − s, 0),(5.1)

m(0, n2) =

1∑
t=−1

m(1, n2 − t)p−1,t +

1∑
t=−1

m(0, n2 − t)p0,t(0, n2 − t). (5.2)

First, consider balance equations on the horizontal axis. By inserting

1 =

1∑
s=−1

ps,0(n1, 0) +

1∑
s=−1

ps,1,

we obtain

m(n1, 0)
( 1∑
s=−1

ps,0(n1, 0) +

1∑
s=−1

ps,1
)

=

1∑
s=−1

m(n1 − s, 1)ps,−1 +

1∑
s=−1

m(n1 − s, 0)ps,0(n1 − s, 0)

⇔ m(n1, 0)
[
p−1,0(n1, 0) + p1,0(n1, 0) +

1∑
s=−1

ps,1
]

=

1∑
s=−1

m(n1 − s, 1)ps,−1 +m(n1 + 1)p−1,0(n1 + 1, 0) +m(n1 − 1)p1,0(n1 − 1, 0).

By rearranging the items in the equation above, we get

[m(n1 + 1, 0)p−1,0(n1 + 1, 0)−m(n1, 0)p1,0(n1, 0)]

− [m(n1, 0)p−1,0(n1, 0)−m(n1 − 1, 0)p1,0(n1 − 1, 0)]

= m(n1, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(n1 − s, 1)ps,−1. (5.3)

Notice that m(n1 + 1, 0)p−1,0(n1 + 1, 0)−m(n1, 0)p1,0(n1, 0) represents the
difference between the flow going from state (n1 + 1, 0) to state (n1, 0) and the
flow coming back from state (n1, 0) to state (n1 + 1, 0). Define, for n1 ≥ 1,

d(n1, 0) = m(n1, 0)p−1,0(n1, 0)−m(n1 − 1, 0)p1,0(n1 − 1, 0), (5.4)
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then Equation (5.3) can be written as

d(n1 + 1, 0)− d(n1, 0) = m(n1, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(n1 − s, 1)ps,−1. (5.5)

In the next lemma, we give a closed-form expression for d(n1, 0) for any n1 =
1, 2, . . . , if balance equations on the horizontal axis hold for measure m.

Lemma 5.1. Let m be a measure induced by Γ̂ ⊂ I, i.e.,

m =

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2),

where ρk, σk ∈ C. If m satisfies balance equations on the horizontal axis, then
for n1 = 1, 2, . . . ,

d(n1, 0) =

N∑
k=1

1∑
s=−1

2ck
[
− Re(

ρn1

k

1− ρk
)ps,1 + Re(

ρn1−s
k σk
1− ρk

)ps,−1

]
. (5.6)

Proof. Keep using the recurrence relation in Equation (5.5), we have

d(n1 + 1, 0) = d(n1, 0) +m(n1, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(n1 − s, 1)ps,−1

= d(n1 − 1, 0) +m(n1 − 1, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(n1 − 1− s, 1)ps,−1 +

m(n1, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(n1 − s, 1)ps,−1

= d(n1 − 1, 0) +

n1∑
j=n1−1

[
m(j, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(j − s, 1)ps,−1

]
= . . .

= d(1, 0) +

n1∑
j=1

[
m(j, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(j − s, 1)ps,−1

]
.

Thus, for any k = 1, . . . , n1,

d(n1 + 1, 0) = d(k, 0) +

n1∑
j=k

[
m(j, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(j − s, 1)ps,−1

]
. (5.7)

d(n1+1, 0) goes to 0 as n1 goes to infinity, since both m(n1+1, 0),m(n1, 0) go
to 0 and 0 ≤ p−1,0(n1+1, 0), p1,0(n1, 0) ≤ 1. Thus we have, for any n1 = 1, 2, . . . ,

d(n1, 0) +

∞∑
j=n1

[
m(j, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(j − s, 1)ps,−1

]
= 0. (5.8)
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If m(n1, n2) =
∑N
k=1 ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2), then

∞∑
j=n1

[
m(j, 0)

1∑
s=−1

ps,1 −
1∑

s=−1

m(j − s, 1)ps,−1

]
=

N∑
k=1

ck(
ρn1

k

1− ρk
+

ρ̄k
n1

1− ρ̄k
)

1∑
s=−1

ps,1 −
1∑

s=−1

[ N∑
k=1

ck(
ρn1−s
k σk
1− ρk

+
ρ̄k
n1−sσ̄k

1− ρ̄k
)
]
ps,−1

=

N∑
k=1

2ck Re(
ρn1

k

1− ρk
)

1∑
s=−1

ps,1 −
1∑

s=−1

N∑
k=1

2ck Re(
ρn1−s
k σk
1− ρk

)ps,−1

Rearrange the items in the equation above and plug it into Equation (5.8), we
get for any n1 = 1, 2, . . . ,

d(n1, 0) =

N∑
k=1

1∑
s=−1

2ck
[
− Re(

ρn1

k

1− ρk
)ps,1 + Re(

ρn1−s
k σk
1− ρk

)ps,−1

]
.

From Lemma 5.1, expression for d(n1, 0) is given in closed form. From
Equation (5.4), we see that if for state (n1, 0), d(n1, 0) is known, then p−1,0(n1, 0)
and p1,0(n1 − 1, 0) are two variables in Equation (5.4). Moreover, p−1,0(n1, 0)
is uniquely determined by p1,0(n1 − 1, 0). Therefore, let n1 = 1, we can fix
p1,0(0, 0) and get p−1,0(1, 0). Next, consider state (2, 0) and fix p1,0(1, 0), we get
p−1,0(2, 0). If we do this for every state, we can find inhomogeneous transition
probabilities on the horizontal axis. Using similar approaches, inhomogeneous
transition probabilities on the vertical axis can also be found.

To find whether these inhomogeneous transition probabilities are bounded
or not, we fix p1,0(n1, 0) for every state (n1, 0), i.e., let p1,0(n1, 0) = ph, for any
n1 ≥ 1. Using Equation (5.4) for every state, we can get p−1,0(n1 + 1, 0). In
the following theorem, we show that p−1,0(n1, 0) will be converging as n1 goes
to infinity.

Theorem 5.2. Let m be the measure induced by Γ̂, where Γ = {(ρ1, σ1), . . . , (ρN , σN )},
and ρk, σk ∈ C. Moreover, let ρmax ∈ {ρ1, . . . , ρN} be the one with maximum
modulus, and assume that |ρmax| > |ρk| for any ρk 6= ρmax. Let p1,0(n1, 0) = ph,
for any n1 = 1, 2, . . . . If ρmax ∈ R, then the transition probabilities p−1,0(n1, 0)
are converging.

Proof. From Lemma 5.1, we can find closed-form expression for d(n1, 0),

d(n1, 0) =

N∑
k=1

1∑
s=−1

2ck
[
− Re(

ρn1

k

1− ρk
)ps,1 + Re(

ρn1−s
k σk
1− ρk

)ps,−1

]
.
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Consider Equation (5.4), plug in the expression of d(n1, 0) and m(n1, 0), we get

p−1,0(n1, 0) =
m(n1 − 1, 0)

m(n1, 0)
p1,0(n1 − 1, 0) +

d(n1, 0)

m(n1, 0)

=

∑N
k=1 ck(ρn1−1

k + ρ̄k
n1−1)∑N

k=1 ck(ρn1

k + ρ̄kn1)
ph −

∑N
k=1 ck(

ρ
n1
k

1−ρk + ρ̄k
n1

1−ρ̄k )∑N
k=1 ck(ρn1

k + ρ̄kn1)

1∑
s=−1

ps,1 +

1∑
s=−1

[∑N
k=1 ck(

ρ
n1−s

k σk

1−ρk + ρ̄k
n1−sσ̄k

1−ρ̄k )∑N
k=1 ck(ρn1

k + ρ̄kn1)

]
ps,−1.

Let cmax and σmax be the coefficient and σ corresponding to ρmax, then∑N
k=1 ck(ρn1−1

k + ρ̄k
n1−1)∑N

k=1 ck(ρn1

k + ρ̄kn1)

=
ρn1−1
max

[∑
ρk 6=ρmax

ck(( ρk
ρmax

)n1−1 + ( ρ̄k
ρmax

)n1−1) + 2 · cmax
]

ρn1
max

[∑
ρk 6=ρmax

ck(( ρk
ρmax

)n1 + ( ρ̄k
ρmax

)n1) + 2 · cmax
]

Since |ρmax| > |ρk| for any ρk 6= ρmax, then

lim
n1→∞

(
ρk
ρmax

)n1−1 = lim
n1→∞

(
ρk
ρmax

)n1 = 0,

lim
n1→∞

(
ρ̄k
ρmax

)n1−1 = lim
n1→∞

(
ρ̄k
ρmax

)n1 = 0.

Hence

lim
n1→∞

∑N
k=1 ck(ρn1−1

k + ρ̄k
n1−1)∑N

k=1 ck(ρn1

k + ρ̄kn1)
=

1

ρmax
.

Using similar approaches, we get

lim
n1→∞

∑N
k=1 ck(

ρ
n1−s

k σk

1−ρk + ρ̄k
n1−sσ̄k

1−ρ̄k )∑N
k=1 ck(ρn1

k + ρ̄kn1)
=
ρ−smax Re(σmax)

1− ρmax
,

for any s = −1, 0, 1. Therefore, p−1,0(n1, 0) is converging and

lim
n1→∞

p−1,0(n1, 0) =
1

ρmax
ph −

1

1− ρmax

1∑
s=−1

ps,1 +

1∑
s=−1

ρ−smax Re(σmax)

1− ρmax
ps,−1.

Similarly, we can fix p0,1(0, n2) for each n2 ≥ 1 on the vertical axis and use
similar approaches to get p0,−1(0, n2 + 1). We also have that, if, among all σ,
the one with maximal modulus is real, then p0,−1(0, n2) is converging.

In this section, we see that if ρmax is real and we fix p1,0(n1, 0) for every
state, then p−1,0(n1, 0) is converging as n1 goes to infinity. In the next section,
we will discuss the bounds on the limiting probability.
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5.2 Bounds on inhomogeneous transition prob-
abilities.

In Section 5.1, we see that p−1,0(n1, 0) is converging and the limit depends
on ph and ρmax. If the measure m is specified, then ρmax is known. More-
over, the limiting probability is increasing in ph and decreasing in

∑1
s=−1 ps,1.

First we consider the lower bounds on the limiting probability. If ph = 0 and∑1
s=−1 ps,1 = 1,

lim
n1→∞

p−1,0(n1, 0) = − 1

1− ρmax
+

1∑
s=−1

ρ−smax Re(σmax)

1− ρmax
ps,−1

=
1

1− ρmax
(−1 +

1∑
s=−1

ρ−smax Re(σmax)ps,−1).

The results of numerical results indicate that−1+
∑1
s=−1 ρ

−s
max Re(σmax)ps,−1 ≤

0, then we get that the lower bound of limiting probability is non-positive.
Therefore, we can increase ph and decrease

∑1
s=−1 ps,1 such that the limiting

probability of p−1,0(n1, 0) is non-negative. The relaxed case will not be consid-
ered here thus we will not go into detailed discussion in the relaxed case. Here
we use the relaxed case to indicate that the limiting probability can be bounded
if we choose the parameters properly.

Suppose that 0 ≤ limn1→∞ p−1,0(n1, 0) ≤ 1 for some ph. Now we are going to
discuss the value of p−1,0(n1, 0) for some finite state (n1, 0). If for some n1 ≥ 0,
p−1,0(n1, 0) ≥ 1, we can change the value of p1,0(n1 − 1, 0). More precisely, let
p1,0(n1−1, 0) < ph, and then p−1,0(n1, 0) will be decreased. Moreover, changing
the value of p1,0(n1 − 1, 0) does not have any influence on the transition prob-
abilities at other states or the limiting probability. In fact, through numerical
experiments, we can see that if ρmax is real, the probabilities p−1,0(n1, 0) are
usually monotonic in n1.

In this chapter, we see that inhomogeneous transition probabilities on the
boundaries can be constructed such that a specified measure m is the invari-
ant measure of the random walk. Moreover, if we choose proper parameters,
these probabilities can be bounded. Some examples will be given in the next
chapter to illustrate the homogeneous or inhomogeneous transition probabilities
constructed on the horizontal and vertical axis.
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Chapter 6

Examples

In this chapter, examples of random walks of which the invariant measure is
specified are given.

In the first example, the measure is induced by real geometric terms. This
example is taken from [5]. This example illustrates the pairwise-coupled struc-
ture and how geometric terms are found. Since the measure is induced by real
geometric terms, we can draw the curve which represents the set I on the plane.
Besides, we will plot the curves that are the equivalents of I for the balance
equations on the horizontal and the vertical axis.

Example 6.1 (Figure 6.1). Consider the random walk with p1,0 = 0.05, p−1,1 =
0.15, p0,−1 = 0.15, p0,0 = 0.65, p1

1,0 = 0.15, p1
0,0 = 0.55, p2

0,1 = 0.0929, p2
0,0 =

0.7071, p2
0,−1 = 0.15 and all other transition probabilities 0.

The measure is m(n1, n2) =
∑3
k=1 ckρ

n1

k σ
n2

k , where (ρ1, σ1) = (0.4618, 0.3728),
(ρ2, σ2) = (0.2691, 0.3728), (ρ3, σ3) = (0.2691, 0.7218), c1 = 0.1722, c2 = −0.2830
and c3 = 0.2251. m satisfies all the balance equations and m is the invariant
measure of the random walk.

j

i

p−1,1

p0,−1

p1,0

p−1,1

p1−1,0 p11,0

p21,0

p20,1

p20,−1
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0
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1

I

H
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(b)

Figure 6.1: Example 1. (a) Transition diagram of the random walk. (b) Balance
equations. The elements in Γ are denoted by blue squares.

In the next example, we take three real pairs that do not follow a pairwise-
coupled structure. According to Section 4.1, the necessary condition for m to
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be the invariant measure of a homogeneous random walk is that Γ is pariwise-
coupled. Thus homogeneous boundary transition probabilities do not exist for
m to be the invariant measure. We show that inhomogeneous transition prob-
abilities can be found for this measure.

Example 6.2 (Figure 6.2). Consider the measure m(n1, n2) =
∑3
k=1 ckρ

n1

k σ
n2

k ,
where (ρ1, σ1) = (0.5, 0.8838), (ρ2, σ2) = (0.3, 0.2336), (ρ3, σ3) = (0.6, 0.3248),
c1 = c2 = c3 = 0.0220.

The interior transition probabilities of the random walk are p1,0 = 0.05,
p0,1 = 0.05, p−1,1 = 0.2, p−1,0 = 0.2, p0,−1 = 0.2, p1,−1 = 0.2, p0,0 = 0.1 and
all the other transition probabilities are 0.

Let p1,0(n1, 0) = 0.05 for all (n1, 0) on the horizontal axis and p0,1(0, n2) =
0.3 for all (0, n2) on the vertical axis. The inhomogeneous transition probabil-
ities p−1,0(n1, 0) and p0,−1(0, n2) are shown in Figure 6.2. In the figures, the
horizontal coordinate is n1 or n2 and the vertical coordinate is p−1,0(n1, 0) or
p0,−1(0, n2). In the limiting case, p∞−1,0 = 0.1413 and p∞0,−1 = 0.0223. More-
over, ρmax = 0.6 and σ′max = 0.8838, we can verify that the limiting probabilities
given in Theorem 5.2 are consistent with numerical results.

m satisfies all the balance equations and m is the invariant measure of the
random walk.

From Example 6.2, we see that if the measure m is induced by Γ̂ = Γ ∪ Γ̄
where Γ is not pairwise-coupled, we can still construct inhomogeneous transition
probabilities on the horizontal and vertical axis such that m is the invariant
measure of the random walk.

In the next example, we consider a measure that is a sum of one real geo-
metric term ρn1

1 σn2
1 and one complex term ρn1

2 σn2
2 +ρn1

2 σ̄2
n2 , where ρ2 ∈ R, σ2 ∈

C\R.

Example 6.3 (Figure 6.3). Consider the measure m(n1, n2) = c1ρ
n1
1 σn2

1 +
c2(ρn1

2 σn2
2 + ρn1

2 σ̄2
n2), where (ρ1, σ1) = (0.3, 0.6603), (ρ2, σ2) = (0.2, 0.2929 +

0.1193i), c1 = 0.0987 and c2 = 0.0494.
The interior transition probabilities of the random walk are p−1,0 = 0.2,

p1,−1 = 0.1, p−1,0 = 0.2, p0,0 = 0.3, p1,0 = 0.05, p−1,1 = 0.1, p0,1 = 0.05 and
all the other transition probabilities are 0.

We omit the transition diagram and the curves representing the balance equa-
tions, since if we consider complex numbers, the geometric terms can not be
marked on the two-dimensional plane.

Let p1,0(n1, 0) = 0.05 for all (n1, 0) on the horizontal axis and p0,1(0, n2) =
0.2 for all (0, n2) on the vertical axis. The inhomogeneous transition probabil-
ities p−1,0(n1, 0) and p0,−1(0, n2) are shown in Figure 6.3. In the figures, the
horizontal coordinate is n1 or n2 and the vertical coordinate is p−1,0(n1, 0) or
p0,−1(0, n2). In the limiting case, p∞−1,0 = 0.4555 and p∞0,−1 = 0.1717.

m satisfies all the balance equations. Therefore, it is the invariant measure
of the random walk.

In the next example, we consider the measure m induced by a real geometric
term and Γ̂ where Γ is a pairwise-coupled set. The real geometric term is added
to make sure that m(n1, n2) ≥ 0 for all states (n1, n2).

Example 6.4 (Figure 6.4). Consider the measure is m(n1, n2) =
∑3
k=1 ck(ρn1

k σ
n2

k +
ρ̄k
n1 σ̄k

n2), where (ρ1, σ1) = (0.5, 0.8838), (ρ2, σ2) = (0.2+0.1i, 0.3656+0.3168i),
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Figure 6.2: Example 2. (a) Transition diagram of the random walk. (b) Bal-
ance equations. The elements in Γ is denoted by blue squares. (c) Transition
probabilities on the horizontal axis. (d) Transition probabilities on the vertical
axis.
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Figure 6.3: Boundary transition probabilities of Example 3. (a) Transition
probabilities on the horizontal axis. (b) Transition probabilities on the vertical
axis.

(ρ3, σ3) = (0.2 + 0.1i, 0.1758 + 0.0203i), c1 = 0.0291, c2 = 0.0145 and c3 =
−0.0145.
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The interior transition probabilities of the random walk are p0,−1 = 0.2,
p1,−1 = 0.2, p−1,0 = 0.2, p0,0 = 0.1, p1,0 = 0.05, p−1,1 = 0.2, p0,1 = 0.05 and
all the other transition probabilities are 0.

Let p1,0(n1, 0) = 0.05 for all (n1, 0) on the horizontal axis and p0,1(0, n2) =
0.3 for all (0, n2) on the vertical axis. The inhomogeneous transition probabil-
ities p−1,0(n1, 0) and p0,−1(0, n2) are shown in Figure 6.4. In the figures, the
horizontal coordinate is n1 or n2 and the vertical coordinate is p−1,0(n1, 0) or
p0,−1(0, n2). In the limiting case, p∞−1,0 = 0.6606 and p∞0,−1 = 0.0223.

m satisfies all the balance equations. Therefore, it is the invariant measure
of the random walk.
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Figure 6.4: Boundary transition probabilities of Example 4. (a) Transition
probabilities on the horizontal axis. (b) Transition probabilities on the vertical
axis.

In the next example, we show that if ρmax is not real, then probabilities
p−1,0(n1, 0) may not be converging.

Example 6.5 (Figure 6.5). Consider the measure m(n1, n2) =
∑3
k=1 ck(ρn1

k σ
n2

k +
ρ̄k
n1 σ̄k

n2), where (ρ1, σ1) = (0.37, 0.9901), (ρ2, σ2) = (0.0785 − 0.3791i, 0.1 −
0.1i) and (ρ3, σ3) = (0.05 − 0.05i,−0.1086 + 0.4314i). The coefficients are
c1 = 0.0031, c2 = 0.0006 and c3 = −0.0006.

The interior transition probabilities of the random walk are p0,−1 = 0.2,
p1,−1 = 0.1, p−1,0 = 0.2, p0,0 = 0.2, p1,0 = 0.05, p−1,1 = 0.2, p0,1 = 0.05 and
all the other transition probabilities are 0.

Let p1,0(n1, 0) = 0.05 for all (n1, 0) on the horizontal axis and p0,1(0, n2) =
0.2 for all (0, n2) on the vertical axis. The inhomogeneous transition proba-
bilities p−1,0(n1, 0) and p0,−1(0, n2) are shown in Figure 6.5. In the figures,
the horizontal coordinate is n1 or n2 and the vertical coordinate is p−1,0(n1, 0)
or p0,−1(0, n2). In the limiting case, p∞0,−1 = 0.0741 on the vertical axis since
σ′max = 0.9901. However, ρmax = 0.0785 − 0.3791i and on the horizontal axis,
the limiting probabilities do not exist.

From all the examples above, under certain conditions, inhomogeneous tran-
sition probabilities can be constructed on the horizontal and vertical axis. More-
over, with this method, we can break the pairwise-coupled structure that is
required in Chapter 4. Besides, we can find transition probabilities for the mea-
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Figure 6.5: Transition probabilities of Example 5. (a) Transition probabilities
on the horizontal axis. (b) Transition probabilities on the vertical axis.

sure induced by complex numbers. Therefore, we extend the class of random
walks for which we know the invariant measure in closed form.

39



40



Chapter 7

Conclusions and discussion

In the report, we consider random walks in the quarter plane and the invariant
measure of the random walks. We focus on the problem that given the interior
transition probabilities of the random walk and a specified measure m induced
by the set Γ̂ = Γ ∪ Γ̄, how to construct the transition probabilities on the
horizontal, vertical axis and the origin such that m is the invariant measure of
the random walk. More precisely, we consider that m is induced by Γ̂ = Γ ∪ Γ̄,
where Γ = {(ρ1, σ1), . . . , (ρN , σN )} with ρk, σk ∈ C, i.e.,

N∑
k=1

ck(ρn1

k σ
n2

k + ρ̄k
n1 σ̄k

n2).

We have considered homogeneous transition probabilities in Chapter 4 and
inhomogeneous transition probabilities in Chapter 5. The conclusions of this
report are listed below.

1. We find that if m is the invariant measure of the random walk, then each
geometric term in m has to satisfy the balance equations in the interior
of the state space individually.

2. Consider homogeneous transition probabilities on the boundaries, if m is
the invariant measure of the measure, then Γ has to be pairwise-coupled.

3. We consider the restrictive case and the relaxed case for boundary transi-
tion probabilities. However, numerical results suggest that homogeneous
transition probabilities can not be found such that m is the invariant
measure of the random walk.

4. Consider inhomogeneous transition probabilities on the boundaries. If we
choose p1,0(n1, 0) to be a fixed probability for every state, then under cer-
tain conditions, p−1,0(n1, 0) is converging as n1 goes to infinity. Moreover,
we can control the limiting probability by choosing a proper fixed value
for p1,0(n1, 0).

On the other hand, there are still some problems that remain open. Firstly,
when we consider homogeneous transition probabilities, our conclusions are
based on two conjectures. These conjectures are supported by extensive nu-
merical experiments. A proof of these conjectures is needed. Secondly, we
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don’t discuss the relaxed case in detail for the inhomogeneous boundary tran-
sition probabilities. Although we mention that for the relaxed case, transition
probabilities ps,1(n1, 0) for s = −1, 0, 1 can be changed a little to bound the
probabilities p−1,0(n1, 0), detailed analysis and numerical experiments should
be worked on in future.

In future, after we have bounds on the inhomogeneous boundary transition
probabilities, we will consider making perturbation on a general random walk
and finding error bounds. Next, we will try to consider the high-dimensional
random walks and apply the conclusions we have obtained in two-dimensional
space.
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