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Abstract

The electricity grid did not change much over the last century. A few power plants are used to
supply the electricity demand, whereby the power plants have to ensure that demand and supply
of electra are always balanced. The transport of the electricity is realized via a layered network,
and the flow of electricity is always from the highest layer, where also the power plants are con-
nected, to the lower layers, where the customers are connected. Three important trends change
the electricity network. Because of the increasing demand and supply of electricity and the decen-
tralization of the electricity production, it becomes more difficult to balance electricity demand
and supply. In the new situation electricity demand should follow the supply where possible. It
is commonly believed that the current electricity network will no longer suffice and an intelligent
electricity grid is needed to deal with the changes.

One of the technologies to support the intelligent grid is the PowerMatcher, which is introduced
by a group of international partners. It is designed to match current demand and current supply
and uses a lot of renewable energy in doing so. The current version of the PowerMatcher has some
weaknesses and can therefore be improved. One way to do this is to not only use the current
demand and current supply but also predictions about future demand and future supply. An
attempt to integrate these predictions has led to the two-time-scale PowerMatcher, an extension
of the PowerMatcher.

However, the change from the PowerMatcher to the two-time-scale PowerMatcher does not (yet)
lead to the desired improvement. This report presents a different strategy of using predictions in
the two-time-scale PowerMatcher. Using dynamic programming, the new strategy tries to opti-
mally use the available supply of renewable energy. This new method turns out to improve the
two-time-scale PowerMatcher significantly under certain conditions. Computational results show
that the predictions used in the new strategy need to be of good quality, since bad predictions
lead to bad decisions and a bad performance of the two-time-scale PowerMatcher. Predictions of
good quality lead to an improvement with little room left for further improvements.
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1 Introduction

Energy plays an increasingly important role in many aspects of our life. Electricity is used for
lighting and cooling while fuel is used for transportation and heating. Our production and use of
energy contributes for a large part to the climate change. Because of the thinning ozone layer,
global warming and sea-level rise, environmentally friendly forms of power generation are asked
for. The last years a lot of effort and research is put into different environmentally friendly power
generation types. Wind and solar power are two examples of these power generation types, which
are used more and more in the last years. The number of households that have a solar panel on
their rooftop and the number of wind parks offshore increases. In the Netherlands, the aim is to
provide at least 1 million households with energy from these wind farms, [17].

Because of these new types of power generation and the ability of households to produce small
amounts of energy, the power grids are changing. Instead of power flowing from a few large power
plants to a lot of small consumers, power will now flow both ways. Also, energy from renewable
resources fluctuate in availability. Keeping the power supply and demand balanced is becoming a
challenge through this change. Because of the flexibility on the supply side, also more flexibility
on the demand side is needed. The current power grids are not able to manage these new kinds
of energy generation and its flexibility. An intelligent system is needed to deal with the new kinds
of energy generation and to prevent the grid from overloading, a smart power grid is needed.

An important component of this smart grid is demand-side management. Demand-side man-
agement is used to reduce the peak electricity demand. This is where the PowerMatcher comes
in. The PowerMatcher is a smart grid technology, developed by TNO together with industry and
research partners, that matches energy supply and demand and uses a lot of renewable energy in
doing so, without overloading the power grid. The idea behind the PowerMatcher is that every
producing and/or consuming device sends a bidding curve which shows the willingness to pay for
different electricity prices. These bidding curves are made using a certain bidding strategy and
show the electricity demand at each price. This demand is negative when electricity is generated
and positive when electricity is consumed. The electricity supply and demand can be balanced by
putting all these bidding curves together.

The PowerMatcher uses current demand and current supply, where the generated amount of elec-
tricity from renewable energy resources is dependent on the availability of wind/solar radiation.
It would be great to know the wind/solar radiation availability in advance, planning could then be
used to improve the PowerMatcher. The availability of wind/solar radiation is however not known
in advance, forecasts about wind/solar radiation availability are accessible. Planning, based on the
forecasts, could still improve the PowerMatcher. Whether this improvement is possible depends
for a large part on the quality of the forecasts. Bad forecasts give a wrong idea about the future,
which leads to bad decisions. Good forecasts can have an added value to the PowerMatcher and
its bidding strategies, depending on how the information is used. The question arises whether an
inclusion of the forecasts indeed improves the PowerMatcher and how wind/solar radiation fore-
casts have to be included into the PowerMatcher. These questions will be studied in this report.

This report starts with some background information and literature about the electricity grid,
the need for a smart power grid, the importance of demand-side management and the Power-
Matcher, see Chapter 2. Chapter 3 describes the PowerMatcher and introduces an extension of
the PowerMatcher, called the two-time-scale PowerMatcher. This two-time-scale PowerMatcher
makes it possible to include wind/solar radiation forecasts into the PowerMatcher. With the Pow-
erMatcher described, the main research question of this report is given, see Section 3.4. Chapter
4 explains the algorithm and the used bidding strategy of the two-time-scale PowerMatcher. The
two-time-scale PowerMatcher can be improved by using different bidding strategies. Chapter 5
will give a different bidding strategy, one that uses dynamic programming. The different bidding
strategies are compared to each other in Chapter 6. The conclusions are given in Chapter 7.
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2 Background and literature

Electricity is one of the most widely used forms of energy. It is a secondary energy source and
is generated from other sources of primary energy, like coal, natural gas and oil, at a few large
power plants. Because electricity is generated from primary energy sources, electricity demand
can be seen as energy demand. The terms ‘electricity demand’ and ‘energy demand’ will therefore
be used interchangeably in this report and have the same meaning.

An electricity grid is an interconnected network where electricity is delivered from producers
to consumers. The electricity network did not change much over the last century and depends
on large power plants. These few power plants generate electricity which is transported to many
consumers all over the country via the electricity grid. The electricity grid is divided into different
voltage levels. The electricity generated at the power plants flows into the network at the high
voltage level. The voltage level is lowered when the electricity is closer to the customer, this is
done using transformers. Finally, the electricity is delivered to the customer via the low voltage
distribution grid. Electricity can also flow into the network at lower voltage levels, this electricity
is mostly generated from renewable energy sources. This type of inflow has increased in the last
years, together with the generation of electricity from renewable sources.

The electricity grid differs from a lot of other networks (e.g. road networks) by the fact that
the production and consumption needs to be balanced at all times. Since the network itself has no
storage capacity and the consumers do not want to wait for the needed electricity, the generation of
electricity is demand driven. As a consequence of the liberalization of the electricity markets, the
production, transportation and distribution of electricity is carried out by different independent
companies. The production companies own the power plants and generate the electricity, there
are multiple production companies that have to compete with each other. The transportation
companies own and maintain part of the electricity grid without any competitors. The distribu-
tion companies sell the electricity to the customers, these companies have to predict the amount
of electricity their customers will use and have to buy this amount from production companies.
The distribution companies try to predict the consumption of electricity as accurately as possible
to prevent penalties due to imbalance.

There are currently three important trends in the electricity system [1]. These are listed below.

e Demand of electricity increases every year and is expected to keep increasing in the coming
years. The electrification of everything leads to this rise in demand. This rise in electricity
demand will drive the distribution networks to their capacity limits. Overloading the grid
will shorten the life span of the networks, which are already close to their life end.

e Supply of electricity increases and becomes more uncontrollable and unpredictable. More
electricity is generated from renewable energy resources, the availability of energy from
renewable resources is dependent on the availability of wind/solar radiation. The increased
and more unpredictable amount of energy supply makes it harder to balance the supply and
demand of electricity.

e The electricity production is becoming more and more decentralised. The number of wind
turbines and solar panels has increased and is expected to keep increasing in the coming
years. This increase changes the electricity system, the electricity system is now based on a
few large power plants and will in the near future be based on many small producers.

These three trends will change the electricity network. In the new network, consumers will become
prosumers: sometimes producer and sometimes consumer. This makes the system more complex,
instead of coordinating a few large power plants, a huge number of small producers needs to be
coordinated. The interactions between users are becoming more important because of this de-
centralisation. An intelligent electricity grid, generally referred to as ‘smart grid’ is needed. The
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smart grid is defined in [4] as an electric system that uses information, two-way, cyber-secure com-
munication technologies, and computational intelligence in an integrated fashion across electricity
generation, transmission, substations, distribution and consumption to achieve a system that is
clean, safe, secure, reliable, resilient, efficient and sustainable.

Demand-side management will be an essential part in the smart grid. Traditionally, power plants
adjust the power generation to meet the rising demand, demand-side management (DSM) will look
at the other side, the demand of electricity. DSM encourages consumers to use less energy during
peak hours or to move the time of energy use to off-peak hours, see [13]. This encouragement
is needed because the peak loads are increasing. The evening peak, for example, will increase
because of the increasing amount of plug-in hybrid vehicles that are charged after working hours.
The impact and opportunities for the electricity grid with this increasing amount of plug-in hy-
brid vehicles is studied in the European project: Grid-for-Vehicles (G4V), see [20]. This G4V
project has, among others, studied the peak load in the grid using different scenarios, see [14].
Several solutions for DSM of plug-in hybrid vehicles are given in [18]. These solutions do all take
advantage of the two-way communications. Another DSM system that takes advantage of the
two-way communication infrastructure is given in [12]. In [12] game theory is used and an energy
consumption scheduling game is formulated. The players in this game are the electricity users
and their strategies are the daily schedules of their household appliances and loads. Game theory
is a study of mathematical models of complex interactions between intelligent rational decision
makers. In [15] an overview of the potential of applying game theory within smart grid systems
is given. Besides [18] and [12], other demand-side management systems are looked at in the last
years. A few of these systems are given in [16]. A smart management system is however not
enough to create a smart grid, a smart infrastructure and protection system is also needed. A few
infrastructure and protection systems are given in [3].

There are many ongoing projects to create a smart grid, see [5]. One of the technologies to
support the smart grid is called the PowerMatcher. The PowerMatcher, [10], is a smart grid
technology created by TNO in cooperation with industry and research partners. In the Power-
Matcher, users determine their bidding curve, which is a curve showing the electricity demand of
the user at different electricity prices. These bidding curves are determined using a certain strat-
egy, knowledge about the average price is used to determine this bidding strategy. The bidding
curves are used in the PowerMatcher to balance the total supply and total demand. By balancing
the total supply and total demand, the PowerMatcher automatically determines the amount of
produced /consumed electricity of each user.

The “capability” of the PowerMatcher to support the mass integration of electricity produced
by wind energy has been studied in [11]. More precisely, the goal in this research was to adapt
flexible household demand and supply to the availability of wind power. The need for fossil fuel
based electricity will, in this way, be reduced.

As the real world is different from the testing evnironment, TNO, in cooperation with strate-
gic partners, developed the PowerMatching City, [2]. The PowerMatching City is a demonstration
project where a community of homes is connected to a smart grid. The households are connected
to each other and each household not only consumes but also generates electricity. The Power-
Matcher matches the supply and demand in this smart grid. In May 2013 PowerMatching City II
started, in this project the number of households is around 60. The focus of this project is less on
the technological side but more on energy services and energy markets. Another project where the
PowerMatcher is used in the EcoGrid project, [6]. This EU funded project started in 2011 and co-
ordinates the energy demand of 2.000 households in the island of Bornholm (Denmark) with local
production by wind turbines. There are more projects where the PowerMatcher is used/tested,
most of them are located in the Netherlands. Results of field deployments and simulation studies
are given in [9].
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The PowerMatcher can be improved and extended. In the current version of the PowerMatcher
the average price is used by the user to determine the bidding strategy. When besides the average
price also forecasts about future prices are known, planning can be included in the PowerMatcher.
One extension of the standard PowerMatcher is therefore a combination of two instances of the
PowerMatcher, the two-time-scale PowerMatcher, see [7]. These two instances operate on different
time scales. With these two instances it is intended to make decisions about short term demand
using information about the long term, which may lead to more cost-efficient schedules. Whether
the two-time-scale PowerMatcher improves the PowerMatcher depends to a large extent on the
quality of the long term information.

Why demand-side management is needed and where the two-time-scale PowerMatcher comes in
can be shown using a small example network. This network, see Figure 2.1, consists of one wind-
mill, one household with an electric car and flexible energy resources. Energy generated by the
windmill is cheaper than the energy produced by flexible energy resources, but wind energy is not
always available while energy from flexible energy resources is.

| =6E < o )

b

LAN

Power Line

Figure 2.1: Network with one windmill and one household with an electric car

The energy demand of the electric car is shiftable over a long time period. The question arises
when the electric car has to be charged to minimize the costs of charging the car. Without
any communication and information about future demand, the car is charged as soon as pos-
sible. This may lead to high costs and a high amount of energy generated by flexible energy
resources. To lower the costs demand-side management is needed, demand-side management is
used to match the wind energy and the car’s demand. Using communication and information
about future demand, the two-time-scale PowerMatcher tries to create a situation where a lot of
available renewable energy and a minimal amount of energy from flexible energy resources is used.
This report tries to improve the two-time-scale PowerMatcher in order to reduce the total amount
of energy used from flexible energy resources and the total costs of satisfying the shiftable demand.

This report explains the PowerMatcher and the two-time-scale PowerMatcher and tries to im-
prove the performance of the two-time-scale PowerMatcher by changing its bidding strategy. A
new bidding strategy is introduced in this report, one that uses the available demand forecasts
and is supposed to improve the two-time-scale PowerMatcher.
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3 The PowerMatcher

This report will look at the bidding strategies used in the PowerMatcher. Before looking at
the bidding strategies, first the PowerMatcher has to be explained. The standard PowerMatcher
is described in Section 3.1. This PowerMatcher can however be improved. Omne possible way
to do this is to extend the PowerMatcher to the two-time-scale PowerMatcher, this two-time-
scale PowerMatcher is introduced in Section 3.2. In both versions of the PowerMatcher bidding
strategies are used. Section 3.3 explains how, where and which bidding strategies are used in
both versions of the PowerMatcher. With information about the standard PowerMatcher, two-
time-scale PowerMatcher and bidding strategies, the research question can be given, the research
question is given in Section 3.4.

3.1 The standard PowerMatcher

The electricity network is changing. The electricity demand and supply are increasing and more
renewable energy becomes available. Sufficient management is needed to prevent the grid from
overloading. The PowerMatcher, [10], is one of the technologies to match energy demand and
supply, using available renewable energy and preventing the grid from overloading.

Systems design of the PowerMatcher

Within a PowerMatcher cluster agents are organized into a tree. The agents are the producers and
consumers of electricity and are represented by the leafs of the tree, these agents are also called
local device agents. One of the leafs could be an objective agent. There is also an auctioneer agent,
at the root of the tree. The auctioneer agent is a unique agent that handles the price forming.
In order to obtain scalability, concentrator agents can be added to the structure as tree nodes.
Figure 3.1 shows an example PowerMatcher agent cluster.
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Figure 3.1: Example PowerMatcher agent cluster
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The different agent types are described in [10] and are repeated below:

e Local device agent: This agent is the representative of a DER device. The local device agent
coordinates its actions with all other agents in the cluster by buying or selling electricity.
The agent communicates its latest bidding curve to the auctioneer agent and receives price
updates from the auctioneer agent. The latest bidding curve and the current price determine
the amount of electricity the local device agent is obligated to produce or consume.

e Auctioneer agent: This agent determines the price. The auctioneer agent receives the bidding
curves of all agents and searches for the equilibrium price. The agent communicates the
equilibrium price back to all agents.

e Concentrator agent: The concentrator agent represents a sub-cluster of local device agents.
The agent concentrates the market bidding curves of the agents in the sub-cluster and
aggregates this into one bidding curve. The agent then communicates this curve to the
auctioneer agent. The agent also communicates the price, received from the auctioneer
agent, to all local device agents in the sub-cluster. The concentrator agents look like the
auctioneer agent from the perspective of the local device agents in the sub-cluster.

e Objective agent: The objective agent gives the cluster its purpose. When the objective agent
is absent, the goal of the cluster is to balance itself. Depending on the specific application,
the goal of the cluster might be different. If the cluster has to operate as a virtual power
plant, for example, it needs to follow a certain externally provided setpoint schedule. The
externally imposed objective can be realized by implementing an objective agent.

All agents, except the auctioneer agent, send a bidding curve to the higher agent. This bidding
curve shows the electricity demand at each price. The bidding curve is explained in more de-
tail in Section 3.3. The auctioneer agent receives all these bidding curves and determines the
corresponding price. This price is send back to all agents.

Structure of the PowerMatcher

The structure of the PowerMatcher is given in Figure 3.2. A certain time scale is used in the
PowerMatcher, in this figure the hour scale is used. So agents send a bidding curve every hour.
This time scale can however be chosen differently, agents could for example sent a bidding curve
every 15 minutes.

root,
hour scale

A

dtotal

{restof tree) | p*

dk

h 4

agentk,

hour scale

Figure 3.2: Structure of the PowerMatcher
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In this figure, agent k represents one of the many agents in the tree. The steps in the PowerMatcher
algorithm are given below:

e The PowerMatcher algorithm starts at the bottom, where the agent determines the bidding
strategy over the next hour. The bidding curve corresponding to this strategy shows the
demand, di, the agent is willing to buy or sell at each price, p.

e All agents (leafs in the tree) make such a bidding curve and send this curve to the next
higher agent.

e The next-higher agent aggregates the received bidding curves and passes them on. Finally
the combined curve, d;qiq1, reaches the root.

e The root determines the price, p*, over the next hour such that dta equals zero (then the
supply and demand of electricity are the same).

e This p* is sent back to all agents and each agent knows the demand it must buy or sell, d7.
e An hour later, ¢ becomes ¢t 4+ 1 and the whole process is repeated.

Sending a bidding curve with a higher /lower electricity demand at each price leads to higher/lower
prices which could be advantageous for producers/consumers. It is therefore assumed that agents
do not lie about their bidding curve.

3.2 Planning modules for the PowerMatcher

The PowerMatcher algorithm developed in [10] balances the short-term supply and demand in the
smart grid. This is done while taking the network capacity constraints into account. The bidding
curve corresponding to the agent’s bidding strategy is made every fixed time unit, without any
forecasts about future prices. Historical data may be available but this is not a good indication
of future prices if wind energy is involved. To make more efficient choices, it would for some
devices be better to know the long-term price expectations and use this information into their
bidding strategy. For devices which are shiftable over a longer time window than the chosen one,
it is beneficial to know the lowest prices within that longer time window. One way to predict
the long-term price is to use weather forecasts. Including the long-term price predictions into the
PowerMatcher may lead to a more cost-efficient schedule for shiftable devices.

To show the potential of including planning modules, a small example is used. Suppose that
there are a few electric cars that have to be charged between 18.00 and 08.00 the next day and
that an electric car can be charged in five hours if it is charged at full power. Without any plan-
ning, all cars start charging at full power at 18.00 . This situation is shown in Figure 3.3. All cars
are fully charged at 23.00.
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Figure 3.3: Uncontrolled charging Figure 3.4: Controlled charging
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Figure 3.4 shows another way to handle the increasing amount of needed electricity. With con-
trolled charging possible network overloading is avoided. This is also what the standard Power-
Matcher does, the standard PowerMatcher tries to control the charging of electric cars to avoid
the network from overloading.

There is still room for improvement. The electric cars need to be fully charged at 08.00. As
can be seen from Figure 3.4 the electric cars are already fully charged at 04.00. This means that
the cars could be charged slower. By taking planning into account the load can be divided more
evenly over the night and the peak load of electricity in the network decreases. The network will
in that case be far from overloading. This situation is shown in Figure 3.5. The gap between 04.00

im
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Figure 3.5: Controlled charging using time till 08.00

and 08.00 is filled, it is expected that this leads to lower overall costs. This last case can only be
achieved when information about future demands is known. Matching future demands leads to
future price expectations.

There are different options for including planning in the PowerMatcher, one of them is the two-
time-scale PowerMatcher, [8]. The two-time-scale PowerMatcher charges the electric cars with
information about future demands/prices and remaining time. This is done using different time
scales. The longer time scale is needed to get information about future demands/prices and the
shorter time scale is needed to match demand and supply over the shorter time scale.

In the example above the two time scales used by the two-time-scale PowerMatcher would be
the day-ahead scale and the hour scale.

e Day-ahead scale: Agents send their bidding curve over the whole day and an average price
is constructed from these curves. This average price can be used to determine the bidding
curve for the shorter time scale.

e Hour scale: With the information about the expected average price, agents construct their
bidding curve for the next hour. The price for the next hour is determined using the short
term bidding curves of all agents.

A moving-horizon approach is used in the two-time-scale PowerMatcher to implement the day-
ahead scale, the average price is thus determined every hour instead of once a day. In this way,
changes during the day can be taken into account. Different time scales can be used. The day-
ahead scale and the hour scale are used here because cars have one night to charge. It can in
another example be better to use information about a whole week, then the week-ahead scale can
be used in the same way as the day-ahead scale is used here.

11
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Systems design of the two-time-scale PowerMatcher

The systems design of the two-time-scale PowerMatcher is the same as the systems design of the
PowerMatcher using one time scale. Within a cluster, agents are organized into a tree. The layout
of this cluster is given in Figure 3.1 in Section 3.1, where the different types of agents are also
described.

Structure of the two-time-scale PowerMatcher

The structure of the two-time-scale PowerMatcher is given in Figure 3.6. In this figure the day-
ahead scale and the hour scale are used.

root, p* root,
day-aheadscale | ~— =~~~ 7 7 7 T 7 > hour scale
A A
Dtotal drotal
(rest of tree) |p= (rest of tree) | p*

Dk dk

h 4 h 4

agentk, Dk*, B* agent k,
day-aheadscale [ — 7 T 7 T 7 L hour scale
An hour later, T and t change

Figure 3.6: Structure two-time-scale PowerMatcher

The right side of Figure 3.6 is equal to Figure 3.2, the two-time-scale PowerMatcher does however
start at the bottom left node. Agents determine the day-ahead bidding curve and send this curve
to the next-higher agent. By aggregating the different bidding curves, the total bidding curve
Diotar reaches the highest agent/root. This root determines the the day-ahead average price, P*,
and sends this price back to all agents. With P* known, agents can determine the bidding curve
for the shorter time scale. This happens at the right side of Figure 3.6. This right side works
exactly the same as explained in Section 3.1, but with P* as extra information. A more detailed
description of the structure of the two-time-scale PowerMatcher is given in Section 4.2.

3.3 Bidding strategies and bidding curves

Above, the PowerMatcher is explained. In the PowerMatcher there are different agents. These
agents have to determine their bidding strategy and make the corresponding bidding curve. In
the standard PowerMatcher one bidding curve has to be sent at each time epoch, the bidding
curve over the next time interval. In the two-time-scale PowerMatcher each agent has to sent two
bidding curves, one bidding curve over the longer time scale and one over the shorter time scale.

The agent’s bidding strategy is the method by which the bidding curves are made. There are

12
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a lot of different bidding strategies possible. Agents can use aggressive and passive bidding strate-
gies. Aggressive bidding strategies have a high demand at very low prices and a very low demand
when prices are higher. Passive bidding strategies use more demand at higher prices, compared
to the aggressive bidding strategies. Aggressive bidding strategies lead to steeper bidding curves.

There are different kinds of demand, some fixed and some shiftable. Fixed demand has to be
satisfied at each price, this is not the case with shiftable demand. The amount of shiftable de-
mand at a certain time depends on the price. At a low price the shiftable demand will be high, the
demand can be satisfied at a relatively low price. With the same reasoning, the shiftable demand
will be low at a high price. The bidding curve that is send to the higher agent is the summation
of the bidding curves per demand type. An example of this is given in Figure 3.7. Suppose that
an agent has a fixed and a shiftable demand. The total bidding curve is the summation of the
bidding curves of these two different demand types.

Demand
Demand
Demand

Prices Prices Prices

(a) shiftable bidding curve (b) fixed bidding curve (c) total bidding curve

Figure 3.7: Agent’s fixed and shiftable demand bidding curve is summated to one bidding curve

The fixed demand is the same for each price. The bidding curve for the fixed demand is therefore
a straight line. The shiftable demand can be different at each price, the amount of demand at
each price depends on the bidding strategy.

Each agent sends a bidding curve at each time epoch. These bidding curves are different for
each agent and each time epoch. Each agent wants to fulfill the demand as cheaply as possible,
but each bidding strategy leads to different total costs. A few different bidding strategies are
looked at in the remainder of this report, these bidding strategies will be compared to each other
by looking at the total costs for satisfying a certain amount of demand.

3.4 Research Question

This section summarizes the background and states the research question.

Due to the growing energy needs and larger shares of decentralized and renewable energy, smart
control algorithms play an increasing role in the energy field. For the coordinated matching of
supply and demand in the electricity network, TNO (together with ECN) developed the Power-
Matcher. The PowerMatcher is a coordination mechanism that balances short term demand and
short term supply in large clusters of distributed energy resources.

The PowerMatcher uses short time scales. Some types of device agents have a demand which
is shiftable over a longer time window. For making locally optimal choices, these shiftable devices
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need information about the long-term price expectations. These price expectations can be ob-
tained by producing demand forecasts, based on the individual demand predictions of the device
agents. This extension of the PowerMatcher is called the two-time-scale PowerMatcher.

The question arises whether this extension to a two-time-scale PowerMatcher provides an added
value to the PowerMatcher and how the price expectations have to be included in the bidding
strategies of the two-time-scale PowerMatcher. The research question reads therefore:

e Does the performance of the PowerMatcher improve when next to the current demand and
current supply also predictions about future demand and future supply are included in the
planning and to which extent does the performance improve?

e How should predictions about future demand and future supply be included in the bidding
strategies of the two-time-scale PowerMatcher?

3.5 Outline

This report will answer the research question given in Section 3.4. To do this, first the two-
time-scale PowerMatcher, introduced in Secton 3.2, needs to be explained in a little more detail.
The two-time-scale PowerMatcher uses predictions about future demand and future supply in the
planning. How these predictions are included is explained in Chapter 4, where the two-time-
scale PowerMatcher algorithm and used bidding strategy are presented. The bidding strategy
currently used in the two-time-scale PowerMatcher can be improved. A new bidding strategy
that is designed to lead to lower total costs is presented in Chapter 5. This new bidding strategy
uses predictions about future prices and dynamic programming to determine which bidding curve
to use at a certain time. This bidding strategy works for different levels of information about
future prices, how the different levels can be used in the bidding strategy is explained in Chapter
5. The different levels of information about future prices and the different bidding strategies
that can be used by the two-time-scale PowerMatcher are compared to each other in Chapter 6.
Multiple instances are used to see the difference in the performance of the PowerMatcher using
these different bidding strategies. The conclusions of this research are given in Chapter 7, together
with options for further research.

14



4. TWO-TIME-SCALE POWERMATCHER UNIVERSITY OF TWENTE.

4 Two-time-scale PowerMatcher

As stated before, the main goal of this report is to improve the PowerMatcher by not only using
current demand and current supply but also predictions about future demand and future supply.
Extending the standard PowerMatcher to the two-time-scale PowerMatcher is one of the methods
to include planning into the PowerMatcher. This two-time-scale PowerMatcher is already shortly
introduced in Chapter 3 and will be explained in more detail in this chapter.

First, in Section 4.1 the assumptions are given under which the two-time-scale PowerMatcher
is worked with in the report. Also the most frequently used variables are given in this section.
The two-time-scale PowerMatcher algorithm, as developed in [8], will be given in Section 4.2. In
this algorithm bidding curves have to be sent by the agents, the agents’ bidding strategies and
curves in the two-time-scale PowerMatcher are explained in Section 4.3. The bidding strategy
used in Section 4.2 is compared to two other demand satisfying strategies in Section 4.4. These
two strategies do not have information about future demand and supply.

A new bidding strategy will be introduced in the next chapter. This new bidding strategy will be
compared to the bidding strategy explained in Section 4.3, this to see if the current version of the
two-time-scale PowerMatcher can be improved.

4.1 Assumptions and frequently used variables
A few assumptions are made throughout this report. These assumptions are listed below.

e It is assumed that agents send a bidding strategy once in every fixed amount of time. This
is not what happens in real life. To keep the communication between the agents to a
minimum, new bidding strategies are only sent when the local device state changes. Sending
new bidding strategies is thus event-based in practice.

e It is possible for agents to lie about their needed demand at a certain price. Producers want
to raise the price of energy to earn more, consumers like a low price. By changing the real
bidding curve, agents can influence the price to their own benefit. It is assumed in this
report that agents play fair.

e [t is assumed in this report that there are no storage units. Producers can not store produced
energy, to sell it later at a higher price, and consumers can not store bought energy, to use
it at another time.

e The information about future prices is in this report based on weather forecasts. Information
from the past is not used.

e The prices of two consecutive time periods are independent, the price can thus fluctuate
heavily.

e It is assumed that all demand is shiftable, unless stated otherwise.
Some frequently used variables in this section are listed in Table 4.1. A list of all used variables
in this report is given in Table 9.1.
4.2 Two-time-scale PowerMatcher algorithm

This section gives the algorithm of the two-time-scale PowerMatcher. The algorithm shows among
others when the bidding curves are made and what information is used by the agent to make a
bidding curve. The algorithm also shows how the prices are determined.

The outline of the algorithm corresponding to the structure of the two-time-scale PowerMatcher
given in Figure 3.6 is given in [8] and will here also be given. This algorithm consists of a few
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Variable | Description

time (measured in intervals of hours), short time scale
number of time points

time horizon, long time scale

number of agents

demand at shorter time scale

demand at longer time scale

unit price of energy at shorter time scale

unit price of energy at longer time scale

T OR XSS T

Table 4.1: Frequently used variables

steps which will all be looked at. The two time scales worked with here will be the hour scale and
the day-ahead scale. These two time scales are also mentioned in Figure 3.6.

1.

10.

The starting node is the node “agent k, day ahead scale” at the beginning of time ¢. The
day-ahead horizon is denoted by T, T = [t,. .., t + ny.

. Agent k, k € K, determines the bidding strategy over T and creates the bidding curve

Dy (P;T) over T, where P is the price. The demand may depend on the average price,
P* over T but this is only possible when the demand is shiftable over a longer time period
than T. When no shiftable demand is available or if the shiftable demand is only shiftable
within T, the agent’s demand will be constant and therefore independent of P*. The bidding
strategy of the agent is explained in Section 4.3.

Agent k sends Dy (P;T) to the next-higher agent in the tree.

Each agent in the tree aggregates the received information (bidding curves) and passes it on
to the next-higher agent in the tree. Finally, Dyorq1(P;T) reaches the root.

K
Diotar(P;T) = > Dp(P;T).
k=1

The root finds the average price, P*, such that the total bidding curve at P* equals zero.
Diotar(P*;T) = 0.

Arguments for the existence and uniqueness of the solution P* can be found in [10].

P* is the new day-ahead average price. This value is sent to all agents in the tree.

By plugging in P* into D (P;T), agent k now knows it’s target demand over the day-ahead
horizon.

D; = Dy(P*;T).

Agent k can use P* and D} as inputs for the bidding curve over the next hour, di(p; t| D}, P*).
This dg(p;t,d| Dy, P*) corresponds to the agent’s bidding strategy over the next hour. The
bidding curve dy(p;t, d| Dy, P*) consists of different kinds of demand, see Section 3.3.

Agent k sends the bidding curve dy(p; t| D5, P*) to the next-higher agent in the tree.

Each agent in the tree aggregates the received information (curves) and passes it on to
the next-higher agent in the tree. Finally the combined curve dioar(p; t|{Dj tr=1,...,x, P*)
reaches the root. The diotai(p; t|{ D} }k=1,... .k, P*) equals the sum of all agents’ hourly de-
mand.

,,,,,

K
diorar(p;t|Dji, P*) = ) di(p;t| Dy, P*).
k=1
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11. The root finds the price, p*, such that the total demand at p* equals zero.
dtotal(p*;t‘Dlz,P*) = 0

12. The current price is equal to p*, this price is sent to all agents in the tree.
13. Agent k can put p*, into di(p; t|Dj, P*). The resulting demand, dj is binding.
k= de(p™; t| Dy, P7).

14. An hour later, t becomes ¢ + 1, the time horizon T' gets shifted by one period and the whole
algorithm is repeated.

The di(p; t| D}, P*) are made with the knowledge of Dj and P*, this does not mean that the
total demand and real average price equal these values determined at the beginning. It turns out
that these values differ most of the time. One way by which D} and P* differ from the total
demand and real average price is when producers can’t deliver the amount of electricity given in
the bidding curve. When the total demand of all agents is positive, electricity has to be bought
from expensive but flexible energy resources. When the total demand is negative, energy is thrown
away.

4.3 Bidding strategies and curves in the two-time-scale PowerMatcher

Bidding strategies have to be made for the shorter and longer time scale in the two-time-scale
PowerMatcher, as explained in Section 4.2. This section explains the bidding strategies for the
shorter time scale. The idea behind the bidding strategies for the longer time scale is the same,
but without the information about D} and P*.

The bidding strategy gives the method used to determine the bidding curve and the bidding
curve shows the demand at each price. The bidding curve of agent k, di(p;t,d), is dependent on
price p and can be different for each time epoch ¢ and remaining demand d. The bidding curve
currently made in the two-time-scale PowerMatcher is however independent of d. The bidding
curve of agent k£ will in this section therefore be denoted by di(p;t). Later on in this report the
bidding curve will be dependent of d.

The bidding curve dg(p;t) would ideally show the demand at each p. The price p is however
continuous and it is therefore very hard to determine the demand for each value of p. To deal
with this dg(p;t) will be a piecewise linear function, n possible values of p, r1,...,r, are selected
between pinin and pma. and the corresponding action/demand a(r1;t), .., ag(ry; t) is determined
such that agent k satisfies the total demand as cheaply as possible. The values of r; and r,
are fixed, r1 = pmin and 7, = Pmaz. The combinations r; and ag(r;t) for ¢ = 1,...,n are the
breakpoints of the piecewise linear function. The breakpoints of the function are given in a nx2
matrix.

ri o ag(r;t)

Tn o ar(rp;t).

An agent can have different kinds of demand, fixed and shiftable demand and also demand from
wind and flexible energy resources are possible. Each kind of demand has its own bidding strategy.
The first two demand types are positive while the last two are negative. The four different demand
types and bidding strategies are explained next.

The fixed demand, di, fizea(t), is an amount which has to be satisfied at time ¢, so p, D} and P*

do not have any influence on this value, i.e. dj figea(t) is a fixed amount, diiﬁﬁed(t).

di pizea(t) = d'750,(t) Vp.
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The shiftable demand, dlc,shift(p§ t\DZ, P*), does depend on p and P*. It would be beneficial to
satisfy a lot of shiftable demand when p is low and to use no shiftable demand when p is very
high. If p = P* for all ¢, the total shiftable demand at time ¢, di shift total(t), would be satisfied
equally over t.
dk,shift total (t)
T—-t+1
Most of the times p # P*, a possible bidding strategy for shiftable demand is given below.
dk,shift total(t) : <1 + m : (1 - T%Hl)) ifp <P
d,shift(p; t| Dy, P*) = 7(1;@.3;;&1?:(0 ifp =P~
if p > P*

dk,shift(P*;t‘Dz,P*) =

When p = P*, di shift totar(t) is divided over the remaining times equally and the part assigned
to time ¢ is satisfied. When p > P*, no shiftable demand will be satisfied. When p < P*, the
amount of satisfied shiftable demand depends on the value of p. The function di, spift(p;tlp < P*)
is a linear function where di snift(Pmin; t| D5, P*) = di shift total(t) and di spip(P*; 8| D5, P*) is as
given above, one t’th part of the di spift torar(t). The given bidding strategy for shiftable demand
is currently used in the two-time-scale PowerMatcher. There are however more bidding strategies
possible, agents can choose dj snift(p; t| Dy, P*) however they want.

The demand of a wind turbine, dj wind(p;t) does not depend on p, it only depends on the available
amount of wind. The wind demand is therefore fixed.

A wina(t) = —dI™ ().

k,wind

An agent with storage options can choose to store part of the di’fji 4(t). This part could then
become available at another time. It is assumed in the beginning of this chapter that this is not

possible in this report.

Another type of demand is the demand from a flexible energy resource, like a diesel genera-
tor. The bidding curve of a diesel generator, di giesei(P; t), is independent of P*, the bidding curve
depends entirely on the price of power generation. dj gieser(p;t) is given below. Here, the unit
cost of generation is denoted by m4. So, for p>m, the agent with the diesel generator can make
profit and will therefore produce as much as possible, di'dieser- When p<mg, the diesel generator
will not produce anything.

0 if p(t) < m,

di dieser (D 1) = {dm;esel if p(t) > 7y

When agent k represents a household where the total demand consists of fixed and shiftable de-
mand, the bidding curves of the fixed and shiftable demand, di, izeqa(t) and dg, spipe(p; t| D5, P*),
are added, as explained in Section 3.3.

di(p;t| Dy, P*) = di tized(t) + di,shife (03 t| Dy, P*).

Agent k wants to get the total demand as cheaply as possible and therefore wants to choose dy(p; t)
such that the costs are minimized. The di, fizeq is fixed and there is therefore not much to choose,
di shife is not fixed and therefore can be chosen by the agent. The goal is now to choose the best
one, the one that minimizes the total costs.

The di shift(p;t) currently used in the two-time-scale PowerMatcher is given below.

Pmin dk,shift total (t)

% di,shift total(t)

P -
P* +¢ 0
pmaﬁlf O
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This d,sni ft(p; t) shows the breakpoints of the bidding curve. The total bidding curve can be
derived from these breakpoints. The di, fized(t), dk wind(t) and di gieser(t) currently used in the
two-time-scale PowerMatcher have the same form. These different demands are all fixed. The
demand is therefore the same at each price. As an example, the di fizeq(t) is given by:

f ] d
Pmin dkl;fmed(t)

ized
Pmaz d.}:;med (t)

The idea behind di yind(t) and dg, gieser(t) is the same, these will therefore not be shown here.
Because there is only one bidding strategy possible for di, fized(t), dkwind(t) and di, giese(t), the
focus of the remainder of this report will be on d spip:(p;t).

The idea behind the larger time scale PowerMatcher is the same as described above for the shorter
time scale. When demand is shiftable inside the larger time scale, the demand will be shiftable
for the shorter time scale and fixed for the larger time scale. When the demand is shiftable over
a longer time period, the demand is shiftable for the shorter and longer time scale.

4.4 Advantage two-time-scale PowerMatcher over ‘simple’ strategies

Section 4.2 showed the algorithm of the two-time-scale PowerMatcher. Agents send bidding curves
to higher agents/the root. The bidding strategies and corresponding bidding curves are made with
information about future demand. This section shows the effect of this information. The bidding
strategy of the two-time-scale PowerMatcher is compared to two other demand satisfying strate-
gies. These other two strategies do not have information about future demand. In these strategies
the demand is satisfied as fast and as cheaply as possible. The comparison shows whether the
information about future demand leads to lower costs of satisfying the demand.

The different strategies are compared using a small network with one windmill and one household
which has an electric car. The situation is shown in Figure 4.1.

Power Line

Figure 4.1: Network with one windmill and one electric car

The dashed line is the local area communication network. All communications between the utility
and the customers are done through the LAN. The solid line is the power line. The demand of
the car is shiftable, the remaining energy demand of the household is fixed. The network will be
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looked at for 24 hours, where at each hour the household has to decide what amount of energy to
use. The windmill in this network can either produce zero, one or two units of wind energy per
hour and the household’s fixed demand will be between zero and two at each time. The energy
produced by the windmill is relatively cheap energy. When not enough wind energy is available,
energy from flexible energy resources has to be bought, this is relatively expensive energy. Energy
from flexible energy resources is more expensive than wind energy because fuel has to be bought
to produce the energy. Wind is freely available and therefore cheap. The total shiftable demand
is set to three units and this shiftable demand has to be satisfied between time 10 and 24. The
household’s capacity is set equal to two units of energy per hour. The decision about the amount
of energy demand to use at each hour is made for different strategies. These strategies are listed
below.

Strategy 1

In this strategy the household will charge the car as soon and fast as possible. When the fixed
demand is met and the household’s capacity is not yet reached, the electric car can be charged
till the household’s capacity is reached. The amount of produced wind energy is not taken into
account.

Strategy 2

In this strategy the amount of available wind energy is taken into account. At each time it is
checked whether there is wind energy available. When this is still the case after the fixed demand
is satisfied, the electric car will be charged. In absence of wind energy, energy from flexible energy
resources will be used for the fixed demand, the electric car will not be charged at that specific
time. When the car is not fully charged at the end of the day, flexible energy resources are used
to charge the car.

Strategy 3

In the third situation not only the current availability of wind energy but the fixed demand and
the wind energy for the next 24 hours are taken into account. With this information the average
price is determined, which is used to determine the demand at a specific time and price. This is
a variant of the two-time-scale PowerMatcher, which is explained in Section 3.2 and Section 4.2.

The strategies will be compared to each other in two different situations. In the first situation it is
assumed that the household’s fixed demand and the amount of produced wind energy are known
for each of the next 24 hours. In the second situation the amount of future wind energy is not
known exactly, this information can change over time.

Wind production known

In this situation the household’s fixed demand (FD) and the produced wind energy (WD) over
the next 24 hours are known. There are 100 instances used to compare the different strategies.
The FD and WD of one instance are given in Figure 4.2. This instance is used to see the dif-
ference of the strategies more closely. The values of FD and WD are given as a vector of length
24. Each element of the vector represents respectively the fixed demand and wind demand for
the corresponding time. As can be seen from the vectors, the values in the fixed demand vector
are positive while the vector for wind energy contains negative values. Wind energy is produced,
because supply can be seen as negative demand, the second vector contains negative values.

The wind energy is relatively cheap, when two wind energy units are available, the unit costs
will be equal to one, ¢y, = 1, when only one unit of wind energy is available the costs for that
unit will be equal to three, ¢,,; = 3. When not enough wind energy is available, energy has to be
bought from flexible energy resources . This is relatively expensive energy, the unit costs of this
kind of energy is set to 10, ¢y = 10. The household wants to satisfy the total demand as cheaply
as possible.
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1,4187 : ~17 T -
1,5004 ' 1] |
1,5025 1

0,5521 0
0,5102 -1

1,3594 ~1
1,0119 -1

1,3102 0
1,3982 0

0,3252 —2
0 2380| |1,7818 1o
FD = |5 1,9186 - WD = -2

0,9967 -1
1,0044 0

1,9195 0
0,2772 -2

0, 6808 ~1
0,2986 1

1,1705 ~1
0,4476| [V 5150 1| |72
’ 1,6814 ~1
0, 5086 -2

Figure 4.2: Fixed demand and wind demand vectors used in the network with known wind pro-
duction

With A, (t) the amount of wind energy used at time ¢ and Af(t) the amount of energy used from
flexible energy resources at time t, the total costs T'C' of the household becomes:

TC = (Auw(t) - cw+ Af(t) - cp).

The costs of satisfying all demand in this example network are calculated for each of the strategies,
the results are given in Section 6.1.

Wind forecasts

Availability of wind energy in the future can not be known exactly. Wind forecasts are known
but change over time. In this part the different strategies are compared to each other when the
available information about wind energy changes over time. This comparison is made using 100
instances in the example network given above. The fixed demand vector and wind demand vector
of one of these instances are given in Figure 4.3. The fixed demand vector is the same as the fixed
demand vector given in Figure 4.2.

1, 41877 , "1,9602] ,
15004 | L0ss3| |
0,5521 —0,7313
0,5102 —1,7621
1,3504| |% —1,3855 )
1,3102| [10119 —1,6341| | 13225
’ 1,3982 ’ ~1,1182
0,3252| |1 —0,9686 :
0,2380| |L7818 _1,8725| | 00068
FD = |5 1,9186] » WD = | =5 —1,4268
0,997| |1 —1,1081 )
1,0944 —1,9537
1,9195 —1,8799
0,2772 —1,2481
0,6808| |V —1,8684 )
0, 2986 —0,8068
1,1705 —0,9176
o asre| 05150 Coaaal| L7736
o 1,6814 g —1,6504
i | [o,5086 i | [-0,9810]

Figure 4.3: Fixed demand and wind demand vectors used in the network with wind forecasts

In this situation, the costs per unit wind energy will be equal to one, ¢,, = 1. Energy from flexible

21



4. TWO-TIME-SCALE POWERMATCHER TNO i

energy resources is relatively expensive, the costs of this kind of energy is set to 10, ¢; = 10. The
wind demand vector will change a little bit at each time ¢, but stays between zero and minus
two. Produced energy can never be positive and can’t exceed the capacity. With n € N and

N ~N(0,1):
WDpew(s) = max(min( WDgyq4(s)+ (0,05-n),0),—-2) Vs>t

At time ¢ the vector changes for entries t + 1,...,T, entries 1,...,t — 1 do not change because the
amount of wind in the past is known for certain. The final wind demand vector (FWD), the wind
demand vector at time ¢ = 24 of this instance is given in Figure 4.4.

"—1,9602] ,
~1,1058 —1,6365
0, 6552
—1,9942
—1,5516 )
—0,8771
—1,6983
—11712| | 709787
_1.6523| | 01510
FWD = | =5 —1,3234
—1,2550 )
—1,7402| | %0000
) —1,1069
—1,7562
—0,5251
—0,8834
o set0] | 15955
" ~1,5263
i | [-1.0626]

Figure 4.4: Final wind demand vector

The three different strategies will be compared to each other to see how the strategies handle
changes in the wind forecasts. The third strategy, where the average price P* is assumed to be
known, will be divided into two versions. These two versions of the third strategy are now given.

Strategy 3(1)

In this version of strategy 3, the average price P* will only be determined at the first time epoch.
The real average price will change in time because of the changed wind demand. The value of P*
will not be updated in this strategy.

Strategy 3(24)
In this version of strategy 3, the average price P* will be updated at every time epoch. This

strategy thus includes the changes in wind demand.

There are now four different strategies. The costs of satisfying all demand in the example network
are calculated for each of the four strategies, the results are given in Section 6.1.
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5 Bidding strategies using Dynamic Programming

The previous chapter, Chapter 4, explained the two-time-scale PowerMatcher and the currently
used bidding strategy in the two-time-scale PowerMatcher. Based on this information, new bid-
ding strategies can be introduced. The bidding strategy introduced in this chapter is intended to
be used for the shorter time scale and is designed to lead to lower total costs. However, this new
bidding strategy could also be used for the larger time scale, in the same way as is explained in
this chapter for the shorter time scale.

It is assumed that information about the average price P* and the target demand Dj is al-
ready known when the bidding curve for the shorter time scale needs to be calculated, the P* and
D} are used in the bidding strategy. Some of the other variables that are used in this chapter are
listed below.

e p: The variable p represents the unit price of electricity. The value of p can have any value
between p,nin and Pree, the minimum and maximum price.

e 7;: The variables r; with ¢ = 1,...,n give the n possible values of p that are worked with
in the new bidding strategy. Price p is continuous, the bidding strategy introduced in this
chapter can only be used when the price is discrete, the variable p therefore needs to be
discretized. The values of r; are dependent on the price distribution used.

e g;: The value of ¢; shows the probability that the price equals ;. The probabilities are used
in the dynamic programming part of the new bidding strategy and the values of ¢; depend
on the price distribution.

e ay(r;;t,d): The value of a shows the amount of electricity that can best be buyed/sold in
the situation with price r;, time ¢t and remaining demand d.

Using the new bidding strategy, the value of ag(r;;t,d) becomes dependent on the remaining
demand, d. The form of the bidding curve will therefore be given by:

1 Clk;('rl; t7 d)

o ap(rpit,d)
Two steps are needed to determine the bidding curve.

1. The possible values of the price, r1, ..., 7,, and the corresponding probabilities q1, ..., ¢n,
are determined.

2. With step 1 completed, the ag(r;;t,d) are calculated.

When r;, ¢; and ay(r;;t,d) are determined for all ¢, the bidding curve is known.

Section 5.1 shows how the possible values of the price, r1, ..., ,,, and the corresponding probabil-
ities, q1, ..., ¢, are determined for the case with known prices and for the case where prices are
stochastic. Different levels of information about the prices are used in this second case. With the
r; and ¢; values known, the values of ay(r;;t,d) can be determined. Section 5.2 shows how the
values of a can be determined when the prices are known. This is done by rewriting the problem
as a Knapsack problem and solving this Knapsack problem using dynamic programming. Section
5.3 shows how the values of a can be determined when the prices are stochastic. Sections 5.2 and
5.3 are explained for the situation where an electric car has to be charged before the end of time
T. The methods explained in these sections slightly change when other home appliances need
electricity. Section 5.4 shows how the method can be applied for different appliances. By putting
sections 5.2 and 5.3 together, the current bidding curve is known. A new bidding curve is needed
for the next time epoch, in this new time epoch the time horizon can be different. Depending on
the appliance, the time horizon is either fixed or moving. Section 5.5 shows what changes when
prices are updated.
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5.1 Determine price distribution

The first step in determining the bidding curve is to determine the possible values of the price
P, T1,...,Tn, and the corresponding probabilities, qi, ..., g, for a given value of n. This value of
n determines the number of breakpoints in the bidding curve, where a high value of n means
that the demand ay(r;;¢t,d) is known for more possible values of the price. This leads to more
detailed information about the bidding strategy, see Figure 5.1. Different values of n will be used
throughout the report.

Demand
Demand

I
pmin pmax p?nin pmax
Prices Prices

(a)n=5 (b)n =25

Figure 5.1: Two examples of a bidding curve

The values of r1, ..., r, and corresponding probabilities ¢1, ..., g, are in this section determined for
different levels of information about p;. Section 5.1.1 determines r; when the prices p are known
in advance. In sections 5.1.2 till 5.1.4 p; is assumed to be a random variable that can take any
of n values, where the value of n is handpicked and assumed to be odd. The n possible values
of the price, 71, ..., ™, can be determined using different distributions. The discrete uniform
distribution is used in Section 5.1.2, where the average price P* is assumed to be known. The
normal distribution is used in Section 5.1.3, where besides P* also the standard deviation of p, o,
is assumed to be known. The normal distribution is also used in Section 5.1.4, where the average
price and standard deviation at each ¢, p; and o, are known.

The values of r1, ..., r, and the corresponding probabilities ¢y, ..., ¢, determined in this section are
used in Section 5.3, where ay(r;; ¢, d) is determined for all r;, t and d using dynamic programming.

5.1.1 Known p;

In this section the prices p;, ..., pr are assumed to be known. With known prices, the number
of possible values for the price is equal to one, n = 1. The values of r; and ¢; thus need to be
determined. The value of r; at time ¢ shows the only possible value of p;, so 71 = p;. The price
pt is known, therefore ¢; = 1. With known prices, the bidding curves have the following form:

[pe ar(pet.d)]

Section 5.2 shows how the value of ay(p;t, d) is determined.

5.1.2 Known P*

It is in this section assumed that the price p is a random variable that can take any of n given
values, where n is handpicked and assumed to be an odd number. These n possible values of the
price, 71, ..., T, need to be determined, together with the corresponding probabilities, q1, ..., .
With the average price P* known, the discrete uniform distribution is used to determine r; and
q; for all . The values of r; are equidistantly distributed around P*, the probability of r;, ¢;, is
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the same for each i, ¢; = % for i = 1,...,n. The following equation thus holds.

n
> g = P
i=1

With stepsize s = Pmes—Pmin the resulting bidding curve is specified by:

Pmin ag (pmwu t7 d)
Pmin + s ag (pmin + S; tv d)

P ap(P*;t,d)

Pmax — S ak(pmam — S, tv d)
L Pmazx ag (pmaz; ta d)

The values of ; and ¢; are used as inputs for Section 5.3, where ay(r;;¢,d) is determined for all
ri, t and d using dynamic programming.

5.1.3 Known P* and o,

In Section 5.1.2 the values for r; and ¢; are determined using the discrete uniform distribution,
using the average price P*. In this section it is assumed that the prices are normally distributed
with a given average price P* and standard deviation o,, X ~ N (P*,0,). This is discretized to
a random variable p; that can take on any of n given values, where n is again assumed to be an
odd number. Now, the values of r; and ¢;, for i = 1, ...,n have to be determined such that these
values correspond to the given normal distribution.

As the interval [P* — 30, P* + 30, covers 99,7 % and thus “almost all” of the range of «,
the values r; for i = 1,...,n are all chosen in the interval [P* — 30, P* + 30,], more precisely they
are determined as follows: First, the interval [P* — 30, P* + 30,] is decomposed into n equally
sized intervals. Figure 5.2 shows these intervals for n=>5.

T L T ]

|
P*-30, P*20, P*- 0p P* P*+0p P*+20,  P*+30;

Figure 5.2: Intervals when n=>5

With z; = P* — (3— £ .4i)0,, interval i is denoted by [z;_1,z;]. Next, the area left of P* — 30, is
added to the first interval and the area right of P* 430, is added to the n’th interval, so g = —co
and x, = oo. Then, for all 7, the value r; is calculated in such a way that r; is the average price

of interval 7. At interval ”;Ll the curve is symmetric around P*, so:

Tnt1 = P*.
2
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The values r; for all 7 # "TH are more difficult to determine, because the curve is not symmetric

in these intervals. At interval ¢ with bounds [z;_1,x;], r; is the expected value of x given that z
is in interval [z;_1, 4]

r; = Elz|z € [z;-1, )]

The value r; is such that:
1
P(xi_1<X<m) = §P(£Ei_1<X<Ii). (511)

The normal distribution probabilities can be calculated through the standard normal distribution.
; — P* i1 — P*
P(xi_1<X<xi) ~ ¢ (%) - (CCZ1> .
O'p O'p

Now that the values of r;, i = 1, ...,n are known, the values of ¢;, i = 1, ...,n have to be calculated.
The value g; corresponding to r; is the probability to be in interval 7.

=P iy — P
o~ q><x )@(I 1 ) (5.1.2)
Op Op

When the values of r; and ¢; are known for ¢ = 1, ..., n, the bidding curve:

r1 ag(ri;t,d)
P*  ag(P*;t,d)

Tn Clk(?"n; ta d)

can be determined using dynamic programming, explained in Section 5.3.

5.1.4 Known p; and o

In this section the values r; and ¢; for i = 1,...,n are again determined using the normal distri-
bution. Where in the previous section the values r; and ¢; were determined using P* and o, in
this section the values r; and ¢; are determined for each t seperately using information about the
average price and standard deviation at that specific time, denoted by p; and o, . The average
price p; is thus the average price at only time ¢, where P* at time ¢ represents the expected
average price from time ¢ until 7". The same holds for o, + and o,,. The price at time ¢ is normally
distributed, at each time ¢ let X ~ N (p;,0,,). Then for each ¢, this is discretized to a random
variable p¢, as explained in Section 5.1.3. Based on the values p; and o, , n intervals are made
and the value r; in each interval [z;_1, ;] for i = 1,...,n is determined such that Equation (5.1.1)
holds. The values of g;, for all ¢ = 1, ..., n, are determined using Equation (5.1.2). These values of
r; and ¢; are determined for each t seperately. The values of r; and ¢; can be different for each ¢.
These values are therefore denoted by r;+ and ¢; ;. The bidding curve at ¢ is now given by

rie ap(riet,d)

pr  ak(pi;t,d)

Tnt  Gg(rp;t,d)

and can be determined in the same way as in Section 5.1.2 and 5.1.3, this will be explained in
Section 5.3.
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5.2 DP using known prices

This section shows how to find ag(r;;t,d) for all r;, ¢t and d when all prices p1, ..., pr are known.
Note that n =1 when p; is known, the values of ax(p1;t,d), ..., ax(pr;t,d) need to be calculated.
The problem of calculating these values can be rewritten as a Knapsack problem, see [19], and
this Knapsack problem can be solved using dynamic programming.

The problem of finding ax(p1;t,d), ..., ax(pr;t,d) is first transformed to the Knapsack prob-
lem.

There is a number of time epochs ¢t = 1,...,T and each time has a corresponding price p;. A total
of W units of shiftable demand need to be satisfied at the end of time ¢ and only a maximum of
m; units of demand can be satisfied at time ¢. The decision variable x; is the amount of demand
satisfied at time ¢. The problem is to minimize the total costs of satisfying W units of demand.

T
minimize Zpt ay (5.2.1)

t=1

T
subject to Zat > W,

t=1

Ty € {O, 1, ...,mt}, t=1,...,T.

This Knapsack problem can be solved using dynamic programming.

How the problem is solved by dynamic programming is shown using a numerical example. In
this example T'= 24, W =8, my = 2 and p; for t = 1, ..., T is shown in the vector below.

p = [55 443445566 6 ..]
.. 544556 6 76 5 5 4].

Now a decision tree can be made. The tree corresponding to the numerical example is given in
Figure 5.3. The nodes in the tree are of the form (¢,d), where ¢ specifies the time and d the
remaining demand.

t=1 t=2 t=3 t=23 t=24 t=25

8 s 18 s 18

10

A A A AN A

10

10

[V Vg Vg

Figure 5.3: Tree with T'=24, W = 8 and m; = 2

An edge is put between nodes (¢, d) and (¢+1,d — ) if the value of a; is less then m;. The weight
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of an edge represents the costs at time ¢t when a; is satisfied at ¢.
e((t,d),t+1,d—ay)) = pi-ax Vt d, a.

Each path in the tree from node (¢,d) to (7' + 1,0) now corresponds to a feasible solution for
satisfying demand d in time epochs ¢, ..., T

For solving problem (5.2.1) the minimum costs from node (¢,d) to node (T + 1,0) is needed
for each t and d, the minimum costs from node (¢, d) to node (T + 1,0) is also called the value of
node (t, d), denoted by V;(d). Especially, the value of node (1, W) is interesting. The V3 (W) shows
the minimum costs for satisfying all demand over all times. Also, the minimum costs path from
node (1, W) to node (T'+ 1, 0) shows the best action at each t. Before V4 (W) can be determined,
the V;(d) need to be determined for all t>1, starting with Vpy;(d). The value of nodes (T + 1,d)
for all d are given in equations 5.2.2 and 5.2.3. At time T 4 1 the remaining demand d needs to
be exactly zero, Vryi(d) is therefore equal to zero when d = 0 and set to infinity when the node
is not reachable, i.e., d # 0.

Vip(d) = 0 d=o0, (5.2.2)
Vryi(d) = oo d#0.

For all other ¢, the value of node (¢,d) is given by equation 5.2.4. In V;(d), p: - a; is the costs for
using a; at t and Vi41(d — a;) is the costs for using d — a; from ¢ + 1 to T

W(d) = minat [pt cap + ‘/75+1(d - at)] t= T, ceey 1. (524)

Working backwards from T to 1, V;(d) and corresponding a; can be determined for all nodes (¢, d),
including the desired V4 (W). At time T all remaining demand d needs to be satisfied. There is
therefore only one action: satisfy all d. The values of the nodes at time ¢ = 24 in the numerical
example are given below. Because m; = 2, the nodes (24, 8), ..., (24, 3) can not reach (25,0) and
the values of these nodes are therefore set to infinity.

Vaa(8) = oo,
Vas(3) = oo,
V24(2) = pas- 2+ Va5(0)
= 8,
Vas(1) = pas- 1+ Va5(0)
= 4,
V24(0) = pos- 0+ Va5(0)
= 0.
At time ¢ < T — 1 there are more choices. The values of nodes Va3(8), ..., V23(0) in the numerical
example are given next.
Vas(8) = oo,
Vas(5) = oo,
Vaz(4) = pos-2+ V24(2)

10+ 8 =18,
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Vaz(3) = min[pas -2+ Vas(1),pas - 1 + Vo4(2)]
= min[10+4,5+8] =13
Va3(2) = min[paz -2+ V24(0),p23 - 1 + Vau(1), p23 - 0+ Va4(2)]
= min[l04+0,5+4,0+8] =8,
Vaz(1) = min[pes -1+ Va4(0), pas - 0+ Vay(1)]
= min[5+0,0+4] =4,
Va3(0) = pog -0+ wv24(0)
= 04+0=0.

The values of all other nodes are determined in the same way. The values of the nodes are given
in the upper right corner of the nodes in Figure 5.4. It is assumed that if the value of a certain
node is obtained by multiple a; the highest value of a; is chosen. The edge (value of a;) to choose
at each of the nodes is shown in the figure as a wider edge. The wider edge is coloured red when
the edge is part of the minimum costs path from node (1, W) to node (T'+ 1,0), the path that is
most interesting.

t=1 t=2 t=3 t=23 t=24 t=25
300 300 30
8 o8 .18
26]0 26
o7 7

22, 22

18

14

A A A A A

P Vg Vg

Figure 5.4: Node values and best actions with "= 24, W = 8 and m; = 2

Now, at t = 1 the value of a; is known for each t. With these values of a; known, the bid-
ding curve can already be made for each t. The bidding curve at time ¢ with remaining demand
d is given by:

[pe ar(pet,d)].

Finding the value of a; and the bidding curve at time ¢ becomes more difficult when the prices
are forecasted instead of known. Section 5.3 shows how these values are determined when price
distributions are used.

5.3 DP using price distributions

This section shows how to find ay(r;;t,d) for all r;, t and d with a given distribution of the prices.
Section 5.1 determined rq, ..., 7, and g1, ..., gn, used as input in this section. How the values
of ay(ry;t,d) for all r;, t and d are determined using dynamic programming is shown using a
numerical example. In this example T'=24, W =8, m; =2, r1 =4, r, =5, r3 =6 and ¢; = %
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for ¢ = 1,2,3. With this information a decision tree can be made. The tree corresponding to the
given example is given in Figure 5.5. This tree consists of two kinds of nodes and has therefore a
different form than the tree given in Figure 5.3. At each ¢, first p; is determined, this is done at the
chance node (shown in the figure as a circle). The p; can take on values rq, ..., r,,. With p; known,
the decision about the value of a; can be made, this is done at the decision node (rectangular
node). The rectangular nodes are of the form (¢, d) and show the current state, [d, p;]. Edges from
a chance node to a decision node show the value of r; and the probability ¢; of r;. The weight of
the edges from decision nodes to chance nodes represent the costs at time ¢, when a; is satisfied.

t=1 t=2 t=24 t=25

1/3-418, 4 1/3-418, 4
1/375 8,5 01/3—5 8,5
1/3-6(8, 6 1/3—5

Pl 1/3-417,4

1/375 7,5

2p1 1/3-6{7, 6

1/3-416, 4

1/3-506, 5
1/3-616, 6

A DT

1/3—4

p24)1/3-5
1/3—61
1/3—4
p24)1/3-5
1/3—6
1/3—4
1/375
1/3—6

Figure 5.5: Tree with T'=24, W =8 and m; = 2

Each path in the tree now corresponds to a feasible solution for satisfying demand d in times t,
vy T
)

The total costs need to be minimized, equations 5.2.2 till 5.2.4 can’t be used for this, the p;41,
..., pr are unknown at time ¢ and therefore V11 (d — a;) is also unknown. The price distribution
however is known and therefore the expected values of the nodes can be calculated. The expected
value of node (¢,d), EV;(d), shows the expected minimum costs for satisfying d at times ¢t + 1, ...,
T with a given price distribution. At time 7'+ 1 the remaining demand d needs to be exactly zero,
EVr1(d) is therefore equal to zero when d = 0 and set to infinity when the node is not reachable,
ie., d#0.

EVii(d) = 0d=0, (5.3.1)
EViii(d) = oo d#0.

For all other ¢, the expected value of node (t,d) is given by equation 5.3.3. In EV;(d), r; - a; is the
costs for using a; at t with price r;, EViy1(d — a;) gives the expected costs for using d — a; from
time t+ 1 to 1.

EVi(d) = > giming, [ri-a;+EVig(d—a)] t=T,..,1. (5.3.3)

Working backwards, the EV;(d) of all nodes can be calculated. In the numerical example the
expected value at t = 1 with d = 8 becomes:
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EVi(8) = q-min [0+ EVa(8),r1 + EVa(7),2 -1 + EVa(6)]
+ qo - min [0 4 EVa(8),r9 + EVa(7),2 - 19 + EV5(6)]
+ g3 -min [0+ EV3(8),rs + EVa(7),2-r3 + EV3(6)]

-min [0+ 32,10;4 + 28,08; 8 + 24, 02]

+ Wi

1
5 -min [0+ 32,10;5 + 28,08;10 + 24,02]

1
+ 5 omin [0+32,10;6 + 28,08;12 + 24,02]
1 1 1

= -.32,024--32,10+ - -32,10
g on et g ran ldgeds

= 32,07

With EV;(d) known for each node (t,d), the value of a; can be determined for each ¢, d and r;.
This value is determined using V;(d, r;), the minimum costs at node (¢, d) with p; equal to r; and
Dt+1, ---, pr unknown. The minimum costs at time 7'+ 1 are set equal to zero when d = 0 and set
to infinity when d # 0.

Vrii(dr) = 0d=0, (5.3.4)
Vrii(d,ri) = oo d#0.
For all other ¢, the V;(d, r;) is given by the following equation:
Vild,r) = ming, [ri-ar+ EVipi(d—ay)] t=1T,...,1. (5.3.6)
At t =1 and p; = 4 in the numerical example:

Vi(8,4) = min [0+ EVi(8),4+ EVi(7),8 + EV3(6)]
= min [32,10;32,08,32,02]
32,02.

The values of all other nodes are determined in the same way. The values of the nodes are given
in the nodes of Figure 5.6, together with a;. The edge corresponding to a; is shown in the figures
as a wider edge. It is again assumed that if the value of a certain node is obtained by multiple a;
the highest value of a; is chosen. At time ¢, the best action a; for each possible price r; is now
known and the bidding curve at time ¢ with remaining demand d can be made.

1 Clk;('rl; t7 d)

rn o ap(rn;t,d)

The bidding curve at future ¢ is not yet known. The values of r; and ¢; for all ¢ can change at
each ¢, this could lead to different values of a; and a different bidding curve.

5.4 Extension to different appliances

In the previous section an electric car has to be charged before the end of time T'. A tree is made
and the best action for a certain ¢ and d is looked for. This ag(r;;t,d) for all r; can has a value
between 0 and m; and is independent of ay(r;;t —1,d). Not all appliances work like this. For each
different kind of appliance, a different kind of tree is needed.
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t=1 t=2 t=24 t=25
1/3-4 32,03
1/375 32,13
1/3—6 32,13
28,02
28,10 sae

24,01 . .

L] L]
24,03 . .
24,03

1/3—4
p241/3-5
1/3—6
1/3—4
p2411/3-5
1/3—6
1/3-4
1/3—6

Figure 5.6: Node values with T'=24, W = 8 and m; = 2

Here, the tree for a washing machine will be given. A washing machine has to be turned on
for multiple consecutive time epochs. When at time ¢ the washing machine is turned on, it has
to be on for the next few time epochs, i.e., the length of the washing program. Also, the washing
machine is either on or off, there is no such thing as half on. So:

1
W = length washing program.

me )

The decision needs to be made when to start the washing program. The tree corresponding to this
problem is given in Figure 5.7 for the numerical example where T'=24, W =3, m; = 1, r; = 4,
ro =5, r3 =6 and ¢; = % for ¢ = 1,2,3. When the remaining demand d equals W there are two
choices: start the washing program or wait for at least one time epoch. When 0<d<W there is
only one choice: keep the washing machine on. When d = 0 the washing program is finished.

t=1

t=24 t=25
1/3—4
1/3—5
1/3—6
e 1/3-411, 4
WIB*S 1,5

1/3-6{1, 6 }p

24
1/3-4{0, 4.~
1/375 0,5 0

13-6[0, 6

Figure 5.7: Tree for a washing machine with T'=24, W =3 and m; = 1
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The tree for a battery is also slightly different from the tree for an electric vehicle. A battery can
be charged and discharged, the best action at each moment can therefore be a positive or negative
value.

5.5 Updating prices

It is assumed in this report that an electric car needs to be charged before the end of time 7.
Section 5.2 shows how the bidding curve is build when the prices p; for all ¢ are known in advance.
With p; known for ¢t = 1, ..., T, the a;(ps; t, d) is also known for all ¢ and the bidding curves can be
build for ¢ = 1,..,T in advance. The tree in Section 5.2 needs to be build only once. The situation
is different in Section 5.3, in this section the forecasted prices are updated each time. At time
t, only the bidding curve for time ¢ can be made. At time ¢ + 1, a new tree is build, using the
updated forecasts, and a;41(r;;t,d) is determined to make the bidding curve for time ¢ + 1.

Starting at time t = 1, there are T decision moments. Assuming that the prices are forecasted,
the tree changes at each of the decision moments. At time ¢, decision moments 1, ...,¢ — 1 are not
used and can be removed, the tree then only consists of decision moments t,....,T. So, when t gets
closer to T the tree shrinks, see the top part of Figure 5.8.

As said before, the assumption is made that an electric car needs to be charged before some end
time. When no end time exists or when the end time exceeds the length of the interval over which
prices are forecasted, the tree doesn’t shrink. In these cases there is a moving horizon, see the
bottom part of Figure 5.8. In this situation also a new tree has to be build when p; is known for
t=1,..,T.

t=1: 1 T

t = 2: 2 T

t = T-1: T-1—T

t=1: 1 T

t=2: 2 T+1

t = T-1: T-1 2T-2

Figure 5.8: Top: Fixed horizon. Bottom: Rolling horizon.

5.6 Conclusion

Agents have to send bidding curves to higher agents. Two steps are needed to determine the
bidding curve. In the first step the possible values of the price, r1, ..., r,, and the corresponding
probabilities q1, ..., ¢, need to be determined. These values can be determined for different levels
of information about p;, how this is done is shown in Section 5.1. In the second step the values of
ax(r;;t,d) are determined. Sections 5.2 and 5.3 show how these values are determined when 71,
.oy T and qy, ..., g, are already determined. It is in these sections important to know the kind of
appliance for which ay(r;;¢,d) is determined. Appliances all work differently, this difference leads
to slight changes in the methods of Section 5.2 and Section 5.3.

This new bidding strategy can be used in the two-time-scale PowerMatcher. Chapter 6 ana-
lyzes the performance of the two-time-scale PowerMatcher including this new bidding strategy.
The new bidding strategy will in Chapter 6 be compared to the currently used bidding strategy
in the two-time-scale PowerMatcher.
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6 Results

Chapter 3 described the standard PowerMatcher and Chapter 4 the two-time-scale PowerMatcher,
in the two-time-scale PowerMatcher planning can be included. This inclusion is supposed to lead
to lower total costs for satisfying demand. Chapter 5 introduces some new bidding strategies for
the two-time-scale PowerMatcher. These new bidding strategies are intended to further reduce
the total costs. A few scenarios are used to see how the different bidding strategies perform. The
outcomes of the different strategies are compared to each other to see how and when the new
bidding strategies perform better than the currently used bidding strategies.

Section 6.1 shows the advantage of using planning in the bidding strategies. The bidding strat-
egy used in the two-time-scale PowerMatcher is compared to two strategies where no information
about future prices is known, these strategies satisfy demand either as fast or as cheaply as pos-
sible. The currently used bidding strategy in the two-time-scale PowerMatcher can possibly be
improved. New bidding strategies are introduced in Chapter 5, Section 6.2 shows how the bidding
curves are determined using these new bidding strategies. The different bidding strategies are
compared to each other in Section 6.3. This is done for the case where the available information is
perfect and for the case where the available information are forecasts that change over time. Also
the computation time of the different strategies are compared to each other in this section.

6.1 Advantage two-time-scale PowerMatcher over ‘simple’ strategies

In this section the different strategies that are given in Section 4.4 are compared to each other.
This is done for two different situations, the situation where the wind production is known and
the situation where wind forecasts are worked with.

Wind production known

Using the example network given in Figure 4.1, the three strategies are compared to each other in
the situation where the fixed demand and wind demand over the next 24 hours are known. Strat-
egy 1 satisfies the three units of shiftable demand as fast as possible. Strategy 2 tries to satisfy the
energy demand using only wind energy, this with the knowledge of the current fixed demand and
the wind energy available. The third strategy also tries to satisfy the shiftable demand as cheaply
as possible, but in this strategy the fixed demand and wind demand over the next 24 hours are used.

The average total costs for satisfying the fixed and shiftable demand of the 100 instances are
given in Table 6.1 for each of the strategies.

Total costs with known WD

Strategy 1 167,98
Strategy 2 138,75
Strategy 3 138,06

Table 6.1: Total costs for the strategies with wind demand known

Strategy 1 leads to the highest costs. This strategy satisfies the shiftable demand as fast as pos-
sible. In this way an unnecessary large amount of energy from flexible energy resources is used.
This kind of energy has high costs because it uses finite resources, the use of these energy resources
by strategy 1 explains the high costs of this strategy. The costs of strategies 2 and 3 are much
lower and close to each other. With strategy 2, the car is charged as soon as wind energy is
available. No distinction is made between the two kinds of wind energy. With this strategy it is
possible that parts of the cheap wind energy is not used while the more expensive wind energy is
used to satisfy shiftable demand. Strategy 3 first uses the cheapest energy to satisfy the shiftable
demand. When part of the shiftable demand still needs to be satisfied, the more expensive wind
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energy is used. The real expensive energy from flexible energy resources is only used for satis-
fying demand when when there is not enough wind energy available to satisfy all shiftable demand.

The total costs are not the only output. Each strategy divides the shiftable demand over the
times in a different way. For the instance given in Figure 4.2, the used demand at each time is
shown in figures 6.1 til 6.3 for each of the strategies. The figures show three differently coloured
bars.

Blue bar: This bar given the summation of the fixed and wind demand, FD + WD. A positive
value means that energy from flexible energy resources has to be bought while a negative value
shows the amount of energy that is left. This amount can for example be used to satisfy shiftable
demand.

Green bar: The green bar shows the amount of shiftable demand used at each time. At the first
9 times, the green bar will be zero. This because the shiftable demand is only shiftable between
times 10 and 24.

Red bar: The red bar shows the summations of the above mentioned bars. Thus the summation
of the fixed demand, wind demand and shiftable demand. The excess or shortage of demand can
be seen from this bar. Positive values show a shortage of wind energy. In this case energy from
flexible energy resources has to be bought. Negative values show an excess of energy, the supply
is greater than the demand. In this case energy is thrown away. In the ideal strategy, the amount
of discarded energy is minimal.

Figure 6.1 shows the demand at each t using strategy 1. Strategy 1 satisfies the demand as
fast as possible, where the shiftable demand can be satisfied from time ¢ = 10 onward. The green
bar in the figure, which shows the shiftable demand, is zero till £ = 10. From time 10 onward,
the shiftable demand is satisfied as fast as possible. The shiftable demand is fully satisfied at the
beginning of time ¢ = 16. During the period where shiftable demand is satisfied, the shiftable
demand is higher than the available wind demand for shiftable demand, the blue bar. Energy
from flexible energy resources is needed, which leads to the high costs given in Table 6.1.
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Ml wind + fixed demand
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Figure 6.1: Demand of strategy 1 with wind production known
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Figure 6.2 shows the different demands using strategy 2. The shiftable demand is satisfied when
wind energy is available, the green bar and blue bar cancel each other out. No distinction is made
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between the cheaper and more expensive wind energy. Part of the cheap wind energy remains
unused, this method is therefore not optimal. Strategy 3 does take the cheap and expensive wind
energy into account. Figure 6.3 shows the different demands using strategy 3. The shiftable de-
mand is satisfied in a slightly different way.
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lvind + fixed demand
Il shiftable demand
1.5/ ltotal demand 7
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Figure 6.2: Demand of strategy 2 with wind production known
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Figure 6.3: Demand of strategy 3 with wind production known

The difference between strategy 2 and 3 is small and difficult to see from the figures. The differ-
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ence becomes more apparent with Table 6.2, where the satisfied shiftable demand per time unit
is given for strategies 2 and 3. The satisfied shiftable demand of strategies 2 and 3 differ at three
times, t = 14, t = 21 and t = 24. At times ¢t = 14 and ¢t = 21 one unit of wind energy is available
(at a cost of 3 per unit) while at time ¢ = 24 two units are available (at a cost of 1 per unit).
Compared to strategy 3, with strategy 2 more shiftable demand is satisfied at ¢ = 14 and ¢t = 21
and less at t = 24. This difference leads to the different total costs.

t=10 t=11 t=12 t=13 t=10 t=11 t=12 t=13
0,3192 0 0,5524 0 0,3192 0 0,5524 0
t=14 t=15 t=16 t=17 t=14 t=15 t=16 t=17
0,4898 0 0 0 0,3478 0 0 0
t=18 t=19 t=20 t=21 t=18 t=19 t=20 t=21
0,0814 0 1,7228  0,7014 0,0814 0 1,7228 0
t=22 t=23 t=24 t=22 t=23 t=24

1,4850 0 0,6480 1,4850 0 1,4914

Table 6.2: Used shiftable demand for each time (t) greater or equal to 10 for the second strategy
(left) and third strategy (right)

Wind forecasts

The strategies will now be compared to each other in the situation where only forecasts about
future wind energy are available. This is done for 100 instances in the example network, given in
Figure 4.1. The average total costs for satisfying all demand are given in Table 6.3 for each of the
strategies.

‘ Total costs with forecasted WD
Strategy 1 138,26
Strategy 2 114,26
Strategy 3(1) | 114,57
Strategy 3(24) | 115,50

Table 6.3: Total costs of the strategies with the forecasted wind energy demand

Using the first strategy leads to high costs, compared to the other strategies. An unnecessary
amount of energy from flexible energy resources is used. The costs of the other three strategies are
close to each other. Strategy 2 leads to the lowest costs, this strategy satisfies shiftable demand
as soon as wind energy is available. Strategy 3(1) and 3(24) can lead to higher costs compared to
strategy 2 when more wind energy is forecasted than actually available. More energy from flexible
energy resources is then needed.

The total costs are not the only output. The strategies divide the shiftable demand differently
over the times. Again, strategy 1 doesn’t take the future into account, at a certain time only the
fixed demand and wind demand at that time are known. Changes in the available wind demand
will therefore not look like changes. Figure 6.4 shows the fixed+wind demand and the shiftable
demand used at each time. The darker bars show the different demand in the situation where
the vector ‘WD’ changes a bit at each time ¢. The lighter bars show the different demands in the
situation where ‘WD’ does not change over time. As can be seen from Figure 6.4, the shiftable
demand is the same for both situations, this because the fixed demand is the same in both situ-
ations. Changes in the wind demand vector do not have any effect on the used shiftable demand
at each t.
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2 Ilfixed + wind demand (forecast)
[ Ifixed + wind demand (known) M
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Figure 6.4: Demands of strategy 1 with known and forecasted wind production

Strategy 2 handles changes in the wind demand vector in the same way as strategy 1. Only the
fixed and wind demand at a specific time are known and therefore changes in the demand vectors
do not seem like changes for strategy 2. The different demands at each t using strategy 2 are given
in Figure 6.5. Changes in the wind demand vector does lead to changes in the shiftable demand
distribution using this strategy. Strategy 2 satisfies part of the shiftable demand when wind energy
is available. An increase in available wind demand leads to a larger amount of satisfied shiftable
demand.

2 lfixed + wind demand (forecast)
[ Ifixed + wind demand (known) M
1.5/l shiftable demand (forecast) -
[ Ishiftable demand (known)

1, —

Ol: |H. - | L |H|H ﬂ IH 1 |
TR T

Demand (d)

Figure 6.5: Demands of strategy 2 with known and forecasted wind production
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Strategy 3(1) does take the future into account, the average price, P*, is determined at the be-
ginning of the time horizon. Because of changes in the wind demand forecasts, the actual average
price also changes. The difference between the determined average price and the actual average
price may lead to a non optimal distribution of the shiftable demand. The different demands at
each t are given in Figure 6.6. The distribution of the shiftable demand over T' does not differ
much from strategy 2, the costs of these two strategies are also almost the same, see Table 6.3.

2 Ilfixed + wind demand (forecast)
[ Ifixed + wind demand (known) M
1.5/ shiftable demand (forecast) -
[ Ishiftable demand (known)

1+ |

i | O I Al ﬂ |H d |
! T ]

Demand (d)
o

Time (t)

Figure 6.6: Demands of strategy 3(1) with known and forecasted wind production
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Figure 6.7: Demands of strategy 3(24) with known and forecasted wind production
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In strategy 3(24) the average price, P*, is determined at each time ¢. Figure 6.7 shows the different
demands at each ¢ using strategy 3(24). When the wind demand vector stays the same, strategy
3(24) satisfies the shiftable demand in the same way as strategy 3(1). When the wind demand
vector changes, strategies 3(1) and 3(24) differ from each other.

Using the given example network and instances, strategy 2 performs better than strategy 3 and
strategy 3(1) performs better than strategy 3(24). It turns out that strategy 3 does not handle
changes in the wind demand well. Taking the forecasts into account can lead to lower costs but
the forecasts must be used properly.

6.2 Bidding strategies using dynamic programming

Chapter 5 showed how bidding strategies are determined using dynamic programming. Two steps
are needed to determine the bidding curve.

1. The price distribution, r1, ..., 7, and g1, ..., gn, is determined.
2. Using dynamic programming, the values of ay(r;;t,d) are calculated.

In this section an example is used to show how the bidding curves follow from these two steps. In
the example there is only shiftable demand. Futhermore T'= 24, W = 8, m; = 2 and n = 5, so
there are 8 units of shiftable demand that have to be satisfied at the end of time 24, the maximum
satisfied amount per time period is equal to 2 and the number of different r; and ¢; is equal to 5.
The available information about future prices is different for each bidding strategy. This informa-
tion will be given at the beginning of each section.

6.2.1 Known P*

In this section it is known that P* = 5, no other information about the prices is known. With
n = 5, five values of ; have to be handpicked around P*. The stepsize by which this will be done
is set equal to one, s = 1.

First, the rq, ..., 7, and q1, ..., g, have to be determined. The values of r; are picked around

P* with s = 1. The corresponding probabilities ar equal to %, q; = %

1
rr=3 “n=rp
1
7"2:4 Q2:g7
1
7"3—5 q3:g7
1
7"4_6 q4:57
1
rs =17 QS:g-

These values of r; and ¢; for i = 1,...,n are used in step 2.

In step 2 the values of ay(r;;t,d) are calculated for each r;, t and d. The dynamic program-
ming method used to do this is explained in Section 5.3. At r; and r5 the best actions are simple,
respectively ax(r1;t,d) as high as possible and ak(rs;t,d) = 0. The actions for 7o, r3 and r4 are
more interesting and are shown in Table 9.2. The tables show the best action at each of the nodes
(t,d) for ro, r3 and r4. At 74 the actions look a lot like the ones at r5. The only difference is at
t = 20, When the price equals r4 some demand is used when d is high while no demand is used
when the price equals r5. In general, ag(r;;t,d) is higher when i decreases. At the beginning,
when t is low, ag(r;;t,d) = 0 unless ¢ = 1, the other possible values of p look too expensive. When
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t gets closer to T, other r; don’t look so expensive anymore and a(r;;t,d) # 0. The t at which
this change happens is different for each ¢ and is earlier when 17 is lower.

With the values of r; and ag(r;;t,d) known, the bidding curve can be made. At ¢t = 17 and
d = 7 the bidding curve is given by:

~N O Ot W
OO NN

Using the values of r; and ¢; for all future time periods leads to different values of ay(r;; ¢, d) and
different total costs than when future prices are set equal to P* with probability one. How this
difference leads to different costs is shown next. Also, different distributions ¢; lead to different
bidding curves. This is also shortly looked at, at the end of this section.

Difference with p = P* and ¢ =1 for future ¢

The strategy explained in Section 5.3 uses EV;(d), shown in equations (5.3.1) till (5.3.3). The
expected price, EV;(d), is used to determine V;(d). This V;(d) value and corresponding a value is
different when future prices p;41, ..., pr are set equal to P*. The difference is shown here.

In the situation where p;11 = P*, ..., pr = P*, the EV;(d) becomes:

EVi(d) = > ¢ mino<s,<m, {ri-z+ P (d—1,)} VE<T.

?

The future demand (d — a¢) is satisfied with unit cost P*.

The EVi(d) formula used in Section 5.3 is given in equation (5.3.3). In this bidding strategy,
d — a; is satisfied using EVi41(d — a¢). The value of a will be higher when p < P* than when
p > P*. The average price at which d is satisfied in Section 5.3 will therefore be lower than P*.

The different average price for which the demand is satisfied leads to different actions and different
total costs.

Different distributions

Changing the distribution of the values r; also changes the bidding strategy. With the first
distribution given above, below two different distributions are given, these distribution are still
symmetric around the mean.

Distribution 2:

1
=3 n=g
1
7’2:4 q2:67
1
7’3:5 QS:§7
1
7”4:6 q4:67
1
r5:7 q5:6
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Distribution 3:

= QI—127
1

7"2:4 Qnga
1

T3:5 q3:§a
1

Ty =16 W=
1

:7 = —,
s g5 12

The values of ag(r;;t,d) corresponding to the two distributions are given in tables 9.3 and 9.4
for ro, 3 and r4. For r1 and rs, ap(r;;t,d) is already known. From the tables can be seen that
the values of ay(rs;t,d) do not change when the distribution changes, the actions at 7o = 4 and
r4 = 6 do change. Because the chance at a very low price decreases with each distribution, ro =4
is seen more and more as a low value of p. This leads to different values of ay(r;;t,d). With the
distribution change, more demand is used at earlier stages. At r4 the reverse reasoning holds. In
the third situation, ag(r4;t,d) = ag(rs;t,d) for all ¢,d.

6.2.2 Known P* and o,

In this section it is known that P* =5 and o0, = % The standard deviation is the extra informa-
tion, compared to Section 6.2.1.

First, the ry, ..., r, and q1, ..., ¢, have to be determined. To do this, n intervals have to be

made. The total interval is [P* — 30, P* + 30,], so the length of the total interval is 65,. The n
smaller intervals have a length of S0, = S0,

interval 1: P* — 30, P* — 20 ,

5
- 9 3]
int 12: P*— Zo0,P* — =
interva, i 50’_ ,
- 5 -
interval 3: P*——o,P"+ -0,
L 5 5 B
. [, 3 . 9]
interval 4: P*+ 507 P+ ga ,

5

[ 9
interval 5: P*+ -0, P* + 30] .
To cover all possible values of p, the first and last interval are modified to:

interval 1: [oo, pPr — 20] ,

9
interval 5: [P* + =0 oo} .

This is done to cover all possible values of p. The values of r; and ¢; for ¢ = 1,...,5 can now be
determined using these intervals, how this is done is explained in Section 5.1.3. The values of r;
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and ¢; in this example are:

r = 3,9511 a1 = 0,0359,
1o = 4,4926 g2 = 0, 2383,
75 = 5,0000 g3 = 0, 4515,
4 = 5,5074 g1 = 0, 2383,
75 = 6,0489 s = 0,0359.

The value of P* can change at each t and therefore also the values of r; and ¢; can change at each .

With the known values of r; and ¢;, the corresponding values ay(r;;t,d) for all r;, t, d can be
determined using dynamic programming, see Section 5.3. With ay(r;;t,d) known, the bidding
strategy can be made. This is done in the same way as in Section 6.2.1.

6.2.3 Known P} and o,

In this section a lot of information is known about forecasted future prices. For each future ¢, the
average price P;* and the standard deviation o, ; are known. In this example the values of P;* and
Op,¢ are:

P* = [55455655 44556655 4445056 6 6,
1
0'p7t=§vt.

At time ¢, n intervals are made for each future . When these intervals are known, the values of
r;,+ and g;; can be determined for each t. At time ¢t = 1 the values of r;; and ¢; ; are

r1 = 3,9511 a1 = 0,0359,
o = 4,4926 g = 0,2383,
73 = 5,0000 g3 = 0, 4515,
4 = 5,5074 g1 = 0, 2383,
75 = 6,0489 g5 = 0,0359.

The values of r; ; and ¢; + are the same for all other times with P = 5. The values of r; ; and ¢; ¢
are different when P} # 5.

When r;; and ¢; ¢ are known, dynamic programming can be used to find the values of ay(r;;t, d).
This part is explained in Section 5.3. With the known values r;; and ay(r;;t,d), the bidding
strategy is made in the same way as in Section 6.2.1.

6.3 Compare different bidding strategies

This section compares the bidding strategies explained earlier in this report with each other. The
new bidding strategy can be used for different levels of information about p;, the new bidding
strategy is therefore divided into three different strategies. All different bidding strategies are
compared to each other. This is in Section 6.3.1 done with perfect information about p;. In
Section 6.3.2 the bidding strategies are compared to each other in the situation where information
about p; changes every time. Sections 6.3.3 and 6.3.4 compare the bidding strategies with each
other for the situation where P* respectively increases and decreases in time. The computation
times of the different bidding strategies are given at the end of this section.

6.3.1 Perfect information

In this section the different strategies are compared to each other in the situation where informa-
tion about the price is very accurate and does not change over time. In this situation: T = 24,
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W =20, my =2, s = bmez—Pmin with p.;, = 1 and ppae = 10. Furthermore P* =5 and o, = 1.
The average costs of satisfying 20 demand units, W = 20, with perfect information is shown in
Table 6.4 for each of the strategies.

n OTS PM | TTS PM | Known P* | Known P* and 0, | Known P/ and o,
3 95,14 95,08 93,01 86,67 82,60
5 95,14 95,08 88,79 84,82 82,66
7 95,14 95,08 86,39 83,90 82,60
9 95,14 95,08 85,54 83,58 82,60
11 95,14 95,08 84,95 83,36 82,58
13 95,14 95,08 85,03 83,27 82,58
15 95,14 95,08 84,88 83,19 82,55
17 95,14 95,08 84,75 83,11 82,55
101 95,14 95,08 84,18 82,86 82,41

Table 6.4: Costs of the different strategies for different n with perfect information

When no information about p; is known, the demand is satisfied equally over the times ¢t. The
total costs of satisfying 20 units of demand will then be 100,16. The cheapest way of satisfying
W has a total cost of 82, 28.

As can be seen from the table, the costs decrease when more information about p is known.
Including dynamic programming in the bidding strategy seems to lead to lower costs. Whether
and how much the total costs decrease depends on how good P* and o, are. In this section the
forecasted and real P* and o, are the same. In the next sections the forecasted P* and o, will
differ from the real P* and o,. The information about p will in the next sections not be known in
advance and can change over time. The next sections show how well the methods perform when
information about p changes.

Different trends

Table 6.4 shows the average total costs of satisfying W demand units, the total costs of each of
the instances lies around these average total costs. The trend of the prices has an influence on
the total costs. The total costs will be lower when the cheap prices are available in the earlier
stages and the high prices at the end. An example of this is shown here, where the total costs of a
certain price trend are compared with the total costs of the opposite trend. The following prices
are used. In this example: T'= 24, W = 20 and m; = 2. The prices of the next 24 times are:

p = [7,9080 6,3790 6,1275 6,0984 5,8252 5,7015 5,5080 5,3502
5,2820 5,0335 5,0220 4,7380 4,7275 4,7221 4,7143 4,7009
4,6462 4,5314 4,1764 3,9418 3,6663 3,4229 3,2498 2, 9482)7.

These prices are however not yet known by the agents in the PowerMatcher. The trend is clear,
prices decrease. The total costs and the used demand at each ¢ corresponding to this trend will
be compared to the total costs and used demand of the opposite trend. In the opposite trend the
prices are mirrored around P*, in this case P* = 4,9343. The two trends will be compared to each
other using the bidding strategy where besides P* also o), is assumed to be known, furthermore
n = 101. The total costs and used demand are given next. Using the price trend given above, the
total costs of satisfying demand W is equal to 81,2847. Satisfying the demand is cheaper when
the opposite trend is used, the total costs are then equal to 79,6086. This difference in total costs
can also be seen in the used demand table, Table 6.5. In the left part of this table, prices are high
at the beginning and decrease with time. At ¢ = 13 some demand is already used, future prices are
not known by agent k and using some demand at ¢ = 13 makes sure that less demand is needed
at possible high prices in the future, not knowing that the prices only decrease. By playing safe,
the total costs turn out to be higher than needed. This problem does not occur when the opposite
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trend is used, see right part of Table 6.5, this is why the total costs are lower using the opposite
trend.

Total costs: 81,2847 Total costs: 79,6086

Used demand: Used demand:

t=1 t=2 t=3 t=4 t = t=2 t= t=4
0 0 0 0 2 2 2 2
t=5 t=6 t=7 t=28 t= t=6 t= t=28
0 0 0 0 2 2 2 2
t=9 t=10 t=11 t=12 t=9 t=10 t=11 t=12
0 0 0 0 2 0 0 0
t=13 t=14 t=15 t=16 t=13 t=14 t=15 t=16
0,7002 2 2 0 0 0 0 2
t=17 t=18 t=19 t=20 t=17 t=18 t=19 t=20
2 2 2 2 0 0 0 0
t=21 t=22 t=23 t=24 t=21 t=22 t=23 t=24
2 2 2 1,2998 0 0 0 0

Table 6.5: Total costs and used shiftable demand for each time (t) for the price trend (left) and
opposite price trend (right)

Using different prices and different strategies lead to the same results, the total costs decrease
when low prices are available at the beginning instead of the end.

6.3.2 Average price changes every t

In the previous section the information about future prices was known exactly. In this section the
forecasted P* and o, will differ from the real P* and o,. In this section again: T = 24, W = 20,
my = 2 and s = Pmaez=Pmin = This s value leads to n equally sized intervals. The length of these
intervals does not change while the value of P* does change. The p, € X for t = 1,...,T with
X ~ N(5,1). With P* and possibly o, known, the different strategies can determine the bidding
curve at time ¢. When the bidding curve is made, the price at time ¢, p;, is determined. This p;
can be different from the forecasted price. At each ¢, the forecasted py, ..., pr changes. This change
[ is normally distributed, I ~ AN(0,c). The value of ¢ will in the remainder of this section be
equal to either 0,1 or 1. The demand corresponding to p; is known from the bidding curve and p;.
The different strategies are compared to each other in situations where P* and o, change over time.

The following tables show the total costs of satisfying W units of demand for each of the methods.
This is done for different values of o}, ¢ and n. The o, equals 0,0001, 0,5, 1 or 2 in respectively
tables 6.6, 6.7, 6.8 and 6.9. The ¢ values used are ¢ = 0,1 and ¢ = 1. Nine different values
for n are used, this to see the influence of n on the performance of the bidding strategies. The
standard/one-time-scale PowerMatcher (OTS PM) and the current two-time-scale PowerMatcher
(TTS PM) are independent of this value of n, these two strategies only use pimin, Pmaz and P*. The
tables show the costs using the standard/one-time-scale PowerMatcher (OTS PM), the current
two-time-scale PowerMatcher(TTS PM), the DP method with known P*, the DP method with
known P* and o, and the DP method with known P} and o, ;. There are 100 different instances
used, the tables show the average costs of satisfying W demand units over these instances.
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n c OTS PM | TTS PM | Known P* | Known P* and o, | Known P/ and o,
3 0,1 | 99,31 99,31 99,02 94,88 94,21
1 73,33 73,11 65,11 65,39 60,24
5 0,1 | 99,31 99,31 98,38 94,46 94,15
1 73,33 73,11 60,95 61,99 59,35
7 0,1 99,31 99,31 97,80 94,33 94,12
1 73,33 73,11 59,87 60,57 59,33
9 0,1 | 99,31 99,31 97,30 94,29 94,10
1 73,33 73,11 59,31 60,23 58,93
11 ] 0,1 | 99,31 99,31 96,92 94,25 94,09
1 73,33 73,11 59,10 59,81 58,95
13 ] 0,1 | 99,31 99,31 96,73 94,23 94,04
1 73,33 73,11 59,19 59,50 58,61
15 ] 0,1 | 99,31 99,31 96,46 94,17 94,02
1 73,33 73,11 58,89 59,20 58,70
17 ] 0,1 | 99,31 99,31 96,22 94,18 94,02
1 73,33 73,11 58,74 59,29 58,55
101 | 0,1 | 99,31 99,31 95,96 94,08 93,95
1 73,33 73,11 58,02 58,23 58,14

Table 6.6: Costs of different strategies for different n with changing P* and o, = 0,0001

When absolutely no information about p; is known, the demand is satisfied equally over the times
t. In the case where ¢ = 0, 1 the total costs will then be 99,95. When p; is known for all ¢, the total
costs of satisfying 20 units of demand will be 93,63. When ¢ = 1 the costs will be respectively
103,40 and 55, 23.

n C OTS PM | TTS PM | Known P* | Known P* and o, | Known P/ and o+
3 0,1 | 98,21 98,21 97,29 91,45 89,66
1 73,38 73,22 65,11 65,67 59,73
5 0,1 | 98,21 98,21 95,35 90,46 89,54
1 73,38 73,22 60,73 61,85 59,08
7 0,1 | 98,21 98,21 93,75 90,06 89,46
1 73,38 73,22 59,74 60,53 58,74
9 0,1 | 98,21 98,21 92,83 89,86 89,45
1 73,38 73,22 59,27 59,88 58,67
11 0,1 | 98,21 98,21 92,04 89,77 89,45
1 73,38 73,22 59,13 59,68 58,52
13 0,1 | 98,21 98,21 92,00 89,73 89,45
1 73,38 73,22 59,08 59,38 58,39
15 0,1 | 98,21 98,21 91,74 89,71 89,42
1 73,38 73,22 58,86 59,16 58,18
17 0,1 | 98,21 98,21 91,70 89,65 89,39
1 73,38 73,22 58,74 59,14 58,29
101 | 0,1 | 98,21 98,21 91,24 89,53 89,28
1 73,38 73,22 58,14 58,23 57,79

Table 6.7: Costs of different methods for different n with changing P* with o, = 0,5

With o, = 0,5 and no information about p;, the total costs of satisfying 20 demand units will be
100, 14 in the case where ¢ = 0,1 and 103,63 in the case where ¢ = 1. With perfect information
about p; these costs will be respectively 89,03 and 55, 25.
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n c OTS PM | TTS PM | Known P* | Known P* and o, | Known P/ and o,
3 0,1 | 94,53 94,56 91,62 85,50 81,71
1 72,88 72,60 64,05 65,02 59,02
5 0,1 | 94,53 94,56 87,18 83,56 81,59
1 72,88 72,60 59,75 60,96 58,33
7 0,1 | 94,53 94,56 84,85 82,68 81,56
1 72,88 72,60 59,09 59,70 58,24
9 0,1 | 94,53 94,56 84,11 82,35 81,48
1 72,88 72,60 58,66 59,28 58,08
11 | 0,1 | 94,53 94,56 83,60 82,19 81,46
1 72,88 72,60 58,48 58,71 57,68
13 | 0,1 | 94,53 94,56 83,56 82,08 81,46
1 72,88 72,60 58,45 58,74 57,79
15 | 0,1 | 94,53 94,56 83,54 81,95 81,40
1 72,88 72,60 58,23 58,38 57,75
17 | 0,1 | 94,53 94,56 83,40 81,94 81,37
1 72,88 72,60 58,12 58,39 57,46
101 | 0,1 | 94,53 94,56 82,65 81,62 81,25
1 72,88 72,60 57,47 57,47 57,01

Table 6.8: Costs of different methods for different n with changing P* with o, =1

Table 6.8 shows the total costs using the different stategies when o, = 1. When the demand is
satisfied equally over the times ¢, the costs will be 100,32 in the case where ¢ = 0,1 and 103,97
in the case where ¢ = 1. When p; is known for each ¢, the total costs will be respectively 80,96
and 54, 68.

n C OTS PM | TTS PM | Known P* | Known P* and o, | Known P/ and o+
3 0,1 | 81,88 81,56 74,45 73,25 65,58
1 70,32 70,09 61,05 64,31 56,54
5 0,1 | 81,88 81,56 68,91 69,41 65,49
1 70,32 70,09 57,29 59,22 56,12
7 0,1 | 81,88 81,56 67,36 67,81 65,52
1 70,32 70,09 56,58 57,56 55,83
9 0,1 | 81,88 81,56 67,01 67,13 65,39
1 70,32 70,09 56,45 57,00 55,68
11 0,1 | 81,88 81,56 66,76 66,83 65,29
1 70,32 70,09 56,10 56,75 55,60
13 0,1 | 81,88 81,56 66,56 66,53 65,26
1 70,32 70,09 55,88 56,48 55,70
15 0,1 | 81,88 81,56 66,47 66,39 65,27
1 70,32 70,09 55,66 56,39 55,65
17 0,1 | 81,88 81,56 66,54 66,16 65,13
1 70,32 70,09 55,76 56,28 55,43
101 | 0,1 | 81,88 81,56 65,78 65,54 64,87
1 70,32 70,09 55,11 55,55 55,23

Table 6.9: Costs of different methods for different n with changing P* with o, = 2

When o, = 2 and the demand would be satisfied equally over all times ¢, the total costs would
respectively be 100,90 and 104,90 in the cases where ¢ = 0,1 and ¢ = 1. The cheapest way to
satisfy 20 demand units are respectively 64,58 and 52, 51.
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First of all, it can be seen from tables 6.6 till 6.9 that the total costs decrease when the value of
o, increases. With P* = 5 and o, = 0,0001 the probability of a very low p; is very small. With
op = 2 this probability is much higher. A larger value of o, gives the opportunity to have low
prices, a good bidding strategy will use these low prices to satisfy the demand. The costs will
therefore be lower when the value of o, is higher.

The costs are almost the same for the standard PowerMatcher and the current two-time-scale
PowerMatcher. Compared to the total costs without any information and the total costs with
perfect information, the PowerMatcher can be improved. Especially with a low o, and c the total
costs are high, almost equal to the total costs when no information about p is known. The DP used
bidding strategies perform a lot better than the currently used bidding strategy. These DP used
bidding strategies lead to lower total costs than the currently used bidding strategy, no matter
the level of information about p worked with and the value of n. Using dynamic programming in
the bidding strategies thus seems to have a possitive effect on the total costs.

The level of information about p worked with and the value of n does have influence on the
performance of the DP used bidding strategy itself. Increasing the value of n from 3 to 7 really
improves the performance of the bidding strategy. Increasing an already high value of n does not
have as much of an effect. A higher n leads to lower costs, but the difference of the costs will at
a certain point be negligible. Increasing n also brings the performance of the different levels of
information closer to each other and closer to the total costs with perfect information. When n
is high, the bidding strategy can almost not be improved further, especially for a low c. A low
value of ¢ means that the received forecasts are accurate. The highest level of information about
p leads in this case to the lowest costs. This is however different for a larger value of c. A larger
value of ¢ means that the forecasts are not very accurate and that the forecasts can change a lot.
Working with bad forecasts can lead to higher total costs than working with less information. Bad
forecasts lead to bad decisions.

Variation in total costs

Tables 6.6, 6.7, 6.8 and 6.9 show the average costs of satisfying W over 100 instances. It is also
important to look at the variation of the total costs. Figure 6.8 shows the total costs of each of
the 100 instances for each of the bidding strategies, o, = 1 and ¢ = 1 in these instances. The OTS
PM and TTS PM strategies always lead to higher costs, compared to the other strategies. The
variation of the total costs is approximately the same for each of the strategies. The total costs
of each of the strategies lies in a range of 50.

More choices for a;

In the above mentioned situations a; € {0,1,...,m;} with m; = 2. The bidding curves will be
different when more choices for a; are possible. Table 6.8 shows the total costs for each of the
strategies when a; € {0,1,...,m;} and Table 6.10 shows the total costs for each of the strategies
when a; € {0, %, ...,y }, both with m; = 2 and o, = 1. The total costs when demand is satisfied
equally over the times ¢ and when p; is known for each ¢ are the same in both situations and are
given directly under Table 6.8.

With more choices for a;, the bidding curve can show the best action at each of the possible
prices more precise. This increase of choices lead to lower total costs, as can be seen from tables
6.8 and 6.10. The results are the same for other values of o,. These tables are omitted here.

In this section the changes in py, ..., pr are normally distributed, I ~ AMN(0,c¢). The prices
can either increase or decrease. The P* does also change, either positive or negative. How the
bidding strategies perform when P* is either only increasing in time or only decreasing in time is
shortly looked at in the next two sections.
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Figure 6.8: Scatterplot of total costs for 100 instances for each of the bidding strategies

n ¢ OTS PM | TTS PM | Known P* | Known P* and 0, | Known P} and o,
3 0,1 | 94,53 94,56 91,45 85,33 81,49
1 72,88 72,60 63,63 64,69 58,70
5 0,1 | 94,53 94,56 87,02 83,38 81,42
1 72,88 72,60 59,50 60,60 57,82
7 0,1 | 94,53 94,56 84,64 82,55 81,36
1 72,88 72,60 58,51 59,34 57,80
9 0,1 | 94,53 94,56 83,96 82,20 81,31
1 72,88 72,60 58,25 58,90 57,66
11 | 0,1 | 94,53 94,56 83,48 82,08 81,31
1 72,88 72,60 58,00 58,45 57,35
13 | 0,1 | 94,53 94,56 83,52 81,95 81,29
1 72,88 72,60 58,11 58,28 57,42
15 | 0,1 | 94,53 94,56 83,37 81,84 81,28
1 72,88 72,60 58,03 58,08 57,35
17 | 0,1 | 94,53 94,56 83,25 81,78 81,27
1 72,88 72,60 57,82 58,10 57,21
101 | 0,1 | 94,53 94,56 82,58 81,53 81,21
1 72,88 72,60 57,38 57,42 57,00

Table 6.10: Costs of different strategies for different n with changing P* with o, = 1 and more a;

values

6.3.3 Average price increases

This section will look at the performance of the bidding strategies in the situation where P* only
increases in time. In this situation 7" = 24, W = 20 and m; = 2. The stepsize s = Pmez—Lmin ‘guch
that there are n equal intervals. This value of s does not change, even though P* does change.
Again, 100 instances and the normal distribtution with P* =5 and 0, = 1 is used. The py, ..., pr
change every ¢, this change [ is normally distributed with a positive mean, I ~ N (c,0,1). Different
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values of n are used, this to see the influence of n on the performance of the bidding strategies.
The average total costs of satisfying W units of energy is shown in Table 6.11 for the different
bidding strategies and levels of information.

n C OTS PM | TTS PM | Known P* | Known P* and 0, | Known P/ and o+
3 0,1 | 121,55 118,93 118,65 112,86 107,62
1 194,21 192,45 198,26 197,48 193,32
5 0,1 | 121,55 118,93 114,11 110,55 107,51
1 194,21 192,45 197,71 196,95 195,07
7 0,1 | 121,55 118,93 111,58 109,23 107,54
1 194,21 192,45 197,21 196,55 195,03
9 0,1 | 121,55 118,93 110,75 108,48 107,59
1 194,21 192,45 196,84 196,23 195,27
11 0,1 | 121,55 118,93 110,22 107,99 107,46
1 194,21 192,45 196,57 196,00 195,11
13 0,1 | 121,55 118,93 110,27 107,70 107,47
1 194,21 192,45 196,47 195,81 195,13
15 0,1 | 121,55 118,93 110,52 107,45 107,50
1 194,21 192,45 196,63 195,66 195,05
17 0,1 | 121,55 118,93 110,41 107,36 107,50
1 194,21 192,45 196,53 195,54 195,27
101 | 0,1 | 121,55 118,93 110,61 107,68 107,61
1 194,21 192,45 197,29 195,12 195,03

Table 6.11: Costs of different methods for different n with increasing P*

With ¢ = 0,1, the total costs with respectively no information and perfect information are 125, 31
and 102,02. With ¢ = 1 these values are 191,26 and 179, 03.

When ¢ = 0,1 the total costs of all strategies are between the bounds, the total costs with
no information and perfect information. Also, the total costs decrease with more information
about p. The costs of the strategies are however a bit higher compared to the costs with perfect
information. The updated P* differs more from the original P* than in the previous section. In
the previous section the prices could increase and decrease, the P* .. around the same value. The
greater difference in this section leads to the respectively higher costs. When ¢ = 1 the prices py,
..., pr are badly forecasted and the forecasted py, ..., pr keeps increasing per update. The given
information has such a bad quality that it is better to have no information about p¢, ..., pr. The
Pmaz=10- As can be seen from Table 6.11, the average price for which W is satisfied is almost
equal to pmas-

6.3.4 Average price decreases

This section looks at the performance of the different strategies when P* only decreases in time.
Again, T' = 24, W = 20 and m; = 2. The stepsize s = Pmez—Pmin "gych that there are n equal in-
tervals. There are 100 instances used. At the beginning of each instance the p; ~ N(5,1). The py,
..., pr change every t, this change [ is normally distributed with a negative mean, [ ~ A (—c,0,1).
The average total costs of satisfying W units of energy is shown in Table 6.12 for the different
bidding strategies and levels of information.

With ¢ = 0,1, the total costs with respectively no information and perfect information are 75,53
and 52,29. With ¢ = 1 these values are respectively 25,59 and 20.

The results are comparable to the results of Section 6.3.3. When ¢ = 0,1 the total costs are
between 20 and 25, 59, the total costs with respectively perfect and no information. The change of
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n c OTS PM | TTS PM | Known P* | Known P* and o, | Known P/ and o,
3 0,1 | 73,78 70,89 65,09 60,33 58,32
1 28,07 26,88 22,78 25,23 25,77
5 0,1 | 73,78 70,89 61,17 59,03 57,98
1 28,07 26,88 24,41 26,10 26,79
7 0,1 | 73,78 70,89 59,34 59,00 57,94
1 28,07 26,88 25,47 26,62 26,95
9 0,1 | 73,78 70,89 58,90 59,12 57,88
1 28,07 26,88 25,86 27,00 26,96
11 | 0,1 | 73,78 70,89 58,55 59,22 57,82
1 28,07 26,88 25,45 27,25 27,01
13 | 0,1 | 73,78 70,89 58,40 59,36 57,76
1 28,07 26,88 25,42 27,45 27,02
15 | 0,1 | 73,78 70,89 57,86 59,24 57,63
1 28,07 26,88 24,85 27,56 26,88
17 | 0,1 | 73,78 70,89 57,83 59,15 57,59
1 28,07 26,88 25,08 27,67 26,90
101 | 0,1 | 73,78 70,89 56,57 58,25 57,32
1 28,07 26,88 25,01 27,43 26,88

Table 6.12: Costs of different methods for different n with decreasing P*

P* over time is greater than in Section 6.3.2, this lead to respectively higher costs in this section.
When ¢ = 1 the total costs are really high compared to the total costs with no information. The
P, ..., pr decrease a lot over time, all demand satisfied at the beginning, at a price higher than
DPmin, 18 paid too much for. The demand W can be satisfied at a price of pmin, Pmin = 1 in this
example.

6.3.5 Computation time bidding strategies

The different bidding strategies are compared to each other in the sections above. It turns out
that using dynamic programming in the bidding strategy reduces the costs, dynamic program-
ming however also needs more steps to determine the bidding curve. The bidding curve has to be
determined once in every time period, therefore the process of determining which bidding curve
to use can’t take forever. This section will look at the computation time of the different bidding
strategies used in this report.

The computation time is different for each bidding strategy and also depends on the number
of remaining time epochs, the value of n and the number of possible values of a(p;t,d) for the
last three bidding strategies, where dynamic programming is used. With more time epochs left,
the trees of sections 5.2 and 5.3 are greater. Greater trees lead to a higher computation time.
With the same reasoning, more possibilities of ay(p;t,d) leads to a higher computation time. In
Table 6.13 the number of possible values of ay(p;t, d) is equal to three, z = 3. Table 6.14 shows the
computation time when there are seven possible actions, z = 7. As can be seen from tables 6.13
and 6.14, the bidding curves corresponding to the OTS PM and TTS PM strategy are determined
very fast. The bidding curves of the other strategies are determined much slower, compared to the
first two strategies. The computation time is however still less than a second, which is fast enough.

As said before in Section 5.2, the problem of satisfying demand can be rewritten as a Knap-
sack problem when prices are known. The Knapsack problem is an NP-complete problem, but can
be solved in pseudo-polynomial time using dynamic programming. The time complexity of this
dynamic programming solution is O(T'W). When the price can take on multiple values, the tree
becomes more complex. The value of the node needs to be determined once more, not only for the
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case where the current price is known but also once extra for the case where the current price is
unknown. Why this extra value is needed is explained in Section 5.3. These extra computations
will lead to a higher computation time.

strategy remaining time
OTS PM 24 23 22 21 20 19 18 17
n=3 | 0,0002 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0002 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
16 15 14 13 12 11 10 9
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
8 7 6 ) 4 3 2 1
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
TTS PM 24 23 22 21 20 19 18 17
n=3 | 0,0001 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0001 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
16 15 14 13 12 11 10 9
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
8 7 6 ) 4 3 2 1
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
Known P* 24 23 22 21 20 19 18 17
n=3 | 0,0080 | 0,0074 | 0,0069 | 0,0059 | 0,0055 | 0,0044 | 0,0036 | 0,0030
n=101 | 0,0325 | 0,0292 | 0,0268 | 0,0242 | 0,0220 | 0,0198 | 0,0173 | 0,0153
16 15 14 13 12 11 10 9
n=3 | 0,0022 | 0,0013 | 0,0012 | 0,0009 | 0,0007 | 0,0006 | 0,0006 | 0,0004
n=101 | 0,0136 | 0,0119 | 0,0104 | 0,0087 | 0,0076 | 0,0064 | 0,0054 | 0,0044
8 7 6 ) 4 3 2 1
n=3 | 0,0004 | 0,0003 | 0,0003 | 0,0002 | 0,0002 | 0,0002 | 0,0001 | 0,0001
n=101 | 0,0036 | 0,0025 | 0,0020 | 0,0015 | 0,0009 | 0,0006 | 0,0003 | 0,0002
Known P* and o, 24 23 22 21 20 19 18 17
n=3 | 0,0076 | 0,0054 | 0,0052 | 0,0049 | 0,0047 | 0,0044 | 0,0040 | 0,0035
n=101 | 0,0364 | 0,0339 | 0,0321 | 0,0302 | 0,0288 | 0,0272 | 0,0253 | 0,0238
16 15 14 13 12 11 10 9
n=3 | 0,0029 | 0,0018 | 0,0018 | 0,0014 | 0,0014 | 0,0012 | 0,0010 | 0,0010
n=101 | 0,0260 | 0,0215 | 0,0206 | 0,0199 | 0,0188 | 0,0180 | 0,0176 | 0,0169
8 7 6 ) 4 3 2 1
n=3 | 0,0009 | 0,0009 | 0,0008 | 0,0007 | 0,0007 | 0,0007 | 0,0006 | 0,0006
n=101 | 0,0163 | 0,0160 | 0,0160 | 0,0153 | 0,0148 | 0,0150 | 0,0145 | 0,0143
Known P} and o, | 24 23 22 21 20 19 18 17
n=3 | 0,0148 | 0,0137 | 0,0127 | 0,0120 | 0,0109 | 0,0104 | 0,0094 | 0,0087
n=101 | 0,3431 | 0,3275 | 0,3126 | 0,2981 | 0,2827 | 0,2661 | 0,2513 | 0,2366
16 15 14 13 12 11 10 9
n=3 | 0,0085 | 0,0077 | 0,0071 | 0,0063 | 0,0059 | 0,0054 | 0,0051 | 0,0049
n=101 | 0,2238 | 0,2073 | 0,1938 | 0,1791 | 0,1661 | 0,1515 | 0,1371 | 0,1235
8 7 6 ) 4 3 2 1
n=3 | 0,0041 | 0,0036 | 0,0030 | 0,0025 | 0,0019 | 0,0016 | 0,0010 | 0,0005
n=101 | 0,1095 | 0,0962 | 0,0823 | 0,0683 | 0,0546 | 0,0410 | 0,0274 | 0,0139

Table 6.13: Computation time of bidding strategies with n = 3 and n = 101 where z = 3
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strategy remaining time
OTS PM 24 23 22 21 20 19 18 17
n=3 | 0,0002 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0002 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
16 15 14 13 12 11 10 9
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
8 7 6 ) 4 3 2 1
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
TTS PM 24 23 22 21 20 19 18 17
n=3 | 0,0001 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0001 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
16 15 14 13 12 11 10 9
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
8 7 6 ) 4 3 2 1
n=3 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
n=101 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
Known P* 24 23 22 21 20 19 18 17
n=3 | 0,0498 | 0,0420 | 0,0363 | 0,0311 | 0,0285 | 0,0211 | 0,0185 | 0,0145
n=101 | 0,1557 | 0,1443 | 0,1217 | 0,1037 | 0,0897 | 0,0788 | 0,0692 | 0,0586
16 15 14 13 12 11 10 9
n=3 | 0,0120 | 0,0099 | 0,0075 | 0,0060 | 0,0042 | 0,0027 | 0,0020 | 0,0012
n=101 | 0,0493 | 0,0420 | 0,0367 | 0,0297 | 0,0248 | 0,0208 | 0,0164 | 0,0119
8 7 6 ) 4 3 2 1
n=3 | 0,0009 | 0,0006 | 0,0004 | 0,0003 | 0,0003 | 0,0002 | 0,0001 | 0,0001
n=101 | 0,0083 | 0,0055 | 0,0037 | 0,0027 | 0,0018 | 0,0010 | 0,0004 | 0,0001
Known P* and o, 24 23 22 21 20 19 18 17
n=3 | 0,0434 | 0,0362 | 0,0279 | 0,0221 | 0,0186 | 0,0131 | 0,0100 | 0,0070
n=101 | 0,1522 | 0,1336 | 0,1111 | 0,0920 | 0,0784 | 0,0658 | 0,0551 | 0,0441
16 15 14 13 12 11 10 9
n=3 | 0,0051 | 0,0038 | 0,0029 | 0,0021 | 0,0016 | 0,0014 | 0,0011 | 0,0009
n=101 | 0,0396 | 0,0315 | 0,0283 | 0,0248 | 0,0231 | 0,0206 | 0,0193 | 0,0185
8 7 6 ) 4 3 2 1
n=3 | 0,0009 | 0,0008 | 0,0008 | 0,0008 | 0,0008 | 0,0007 | 0,0007 | 0,0007
n=101 | 0,0176 | 0,0172 | 0,0165 | 0,0162 | 0,0160 | 0,0157 | 0,0156 | 0,0155
Known P} and o, | 24 23 22 21 20 19 18 17
n=3 | 0,0518 | 0,0412 | 0,0316 | 0,0272 | 0,0210 | 0,0171 | 0,0141 | 0,0116
n=101 | 0,4849 | 0,4490 | 0,4096 | 0,3798 | 0,3521 | 0,3257 | 0,3001 | 0,2757
16 15 14 13 12 11 10 9
n=3 | 0,0101 | 0,0082 | 0,0075 | 0,0069 | 0,0062 | 0,0055 | 0,0051 | 0,0050
n=101 | 0,2527 | 0,2352 | 0,2177 | 0,1993 | 0,1817 | 0,1650 | 0,1479 | 0,1330
8 7 6 ) 4 3 2 1
n=3 | 0,0044 | 0,0033 | 0,0033 | 0,0027 | 0,0021 | 0,0015 | 0,0012 | 0,0007
n=101 | 0,1174 | 0,1030 | 0,0874 | 0,0735 | 0,0584 | 0,0445 | 0,0289 | 0,0156

Table 6.14: Computation time of bidding strategies with n = 3 and n = 101 where z =7
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7 Conclusions and Further Research

This report presents different bidding strategies that can be used by the two-time-scale Pow-
erMatcher. Section 7.1 gives the main results and conclusions about the performance of the
two-time-scale PowerMatcher, using these different strategies. In particular the strategies where
dynamic programming is used are looked at. The remarks and the options for further research are
given in Section 7.2.

7.1 Conclusions

This report introduces different bidding strategies that can be used by the agents in the Power-
Matcher. The new bidding strategies use dynamic programming and can be applied to shiftables
where the only restriction is that the demand needs to be satisfied before some end time, electric
vehicles for example. The performance of the two-time-scale PowerMatcher, using different bid-
ding strategies, is looked at. The different bidding strategies can not only be compared to each
other, but can also be compared to the standard PowerMatcher.

The difference in performance of the standard PowerMatcher and the currently used two-time-
scale PowerMatcher shows how much the PowerMatcher is already improved by adding planning.
This is not a big improvement. Over the 100 different instances used in this report, the two-
time-scale PowerMatcher does perform a little bit better than the standard PowerMatcher but
the average total costs decrease with less than 2% of what it could be. Some of the instances
even lead to higher costs using the two-time-scale PowerMatcher. Compared to the minimum
costs for satisfying demand over the 100 used instances, the costs can decrease up to 25%. A de-
crease of 2% is therefore not very satisfying, the two-time-scale PowerMatcher has to be improved.

The bidding strategy used in the two-time-scale PowerMatcher does only take the prices and
remaining demand into account, it does not include the remaining time. By taking the remaining
time into account, it should be able to improve the PowerMatcher further. This is where the new
bidding strategy, introduced in this report, comes in. This new strategy looks at the possible
prices, the remaining demand and also the remaining time. This bidding strategy uses dynamic
programming to determine the bidding curve. Depending on the variation of future prices and
the quality of the forecasted average price, the new bidding strategy can really improve the Pow-
erMatcher. The total costs of satisfying demand decreases with 4% till 20%, using the values and
instances mentioned in this report. The percentage by which the total costs decrease depends
on the quality of the forecasted information and the variation of the prices. Good quality of
the forecasted information and a high variation lead to a bigger decrease. In the extreme case
where the forecasts are really bad and the forecasted future prices are steeply increasing, the new
bidding strategy performs worse than the currently two-time-scale PowerMatcher used bidding
strategy. The percentage by which the total costs can maximally decrease also depends on these
two values. The total costs of the PowerMatcher can maximally decrease with 6% till 25%. As
mentioned above, the improvement of the PowerMatcher using the new bidding strategy is huge
when predictions of reasonable quality are available, the total costs then approach the minimum
total costs. There is however some room left for further improvement.

The new bidding strategy can perform even better when not only the forecasted average price
but also the forecasted standard deviation of future prices is known. Information about the stan-
dard deviation leads to a better incentive as to what prices are really cheap. Using this extra
information could lead to a improvement of another 2%. The used forecasts do however have
to be of good quality. Bad forecasts do lead to slightly higher total costs, compared to the new
bidding strategy where only the average price forecasts are used.

Till now, the PowerMatcher works with the forecasted average price and standard deviation over
future prices. With the new bidding strategy it is also possible to work with forecasted future
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prices and standard deviations for each time seperately. With more information about future
prices the total costs will decrease. But, again, the forecasts need to be of good quality. With
forecasts of good quality, this version of the new bidding strategy leads to slightly lower costs than
the previous mentioned versions of the new bidding strategy.

It turns out that the new bidding strategy, introduced in this report, really improves the per-
formance of the PowerMatcher. The total costs for satisfying demand decrease to almost the
minimum total costs, where the minimum total costs can only be obtained with perfect informa-
tion about future prices. The different versions of the bidding strategy leads to different total
costs. Which version can best be used depends on the available information about future prices
and the computation time the agent finds acceptable. The more information about future prices
is available, the lower the costs and the higher the computation time. Using the last mentioned
version generally leads to the lowest costs but there is a risk of high costs, these high costs occur
when the forecasts are of bad quality. The quality of the forecasts for each seperate time is not yet
known. When the bidding strategy is chosen, two other values need to be picked. These two val-
ues given the number of possible prices and the number of possible actions in each bidding curve.
High values lead to lower costs/ a more precise bidding curve but also to a higher computation time.

The new bidding strategy makes the PowerMatcher stable and also increases the overall power
efficiency. The new bidding strategy therefore leads to an improved PowerMatcher. There are
different versions of the bidding strategy, working with different levels of information about future
prices, the agents have to choose which version to use and what values to use in the bidding
strategy.

7.2 Remarks and further research

The introduced bidding strategy seems to improve the two-time-scale PowerMatcher. There are
however some remarks and further research options, these are given in this section .

Some assumptions are made in this study. For example, bidding curves are determined peri-
odically in time and prices of two consecutive time periods are independent. It is interesting to see
what happens to the performance of the bidding strategy when these assumptions are not made,
before implementing the bidding strategy into the two-time-scale PowerMatcher.

This report mainly looked at the situation where a electric car has to be charged in a certain
time interval. This problem can be solved with dynamic programming, as is explained in this
report. This problem however changes when the electric car turns into a washing machine or
battery. An electric car can be charged with interruptions, this is not possible with the washing
machine. When a washing machine is turned on, it stays on till the end of the washing program,
see Section 5.4. A battery can be charged and discharged, this also leads to a more complex
problem. For these different devices, a different version of the bidding strategy is needed. These
versions do not yet exist, further research is needed.

No simulations or field tests of the two-time-scale PowerMatcher including the new bidding strat-

egy are carried out yet. These simulations and field tests show how well the new bidding strategies
perform in real life and are therefore very useful.
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Variable | Description

ag best action of agent k

d remaining demand

dg demand of agent k at shorter time scale

dy, demand of agent k at shorter time scale with p*
diotal total demand at shorter time scale

di shift shiftable demand of agent k

di, fized | fixed demand of agent £

Ak wind wind demand of agent k

dk dieser | diesel demand of agent k

D demand at longer time scale

Dy demand of agent k at longer time scale

Dy demand of agent k at longer time scale with P*
Diotar total demand at longer time scale

EVi(d) | expected value of node (t,d)/ expected minimum costs of satisfying d
FD fixed demand

FWD final wind demand

K number of agents

my maximum amount of demand to satisfy at time ¢
n number of possible values of price p

ny number of time points

P unit price of energy at shorter time scale

p* average price at shorter time scale

jn average price at time ¢

Pmin minimum price

Pmaz maximum price

P unit price of energy at longer time scale

P* average price over T’

qi probability of r;

T i’th possible value of price p

s stepsize of prices

t time (measured in intervals of hours), short time scale
T time horizon, long time scale

TC total costs

Vi(d) value of node (t,d)/ minimum costs of satisfying demand d
W total demand to satisfy

WD wind demand

z number of possible actions at each ¢

g unit cost of power generation at diesel generator
Op standard deviation of price p

Op,t standard deviation of price p at time ¢

Table 9.1: List of all variables used in the report
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