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1 INTRODUCTION

1 Introduction

In view of global energy and environmental issues, the necessity to utilize our energy
resources more efficiently becomes relevant. Since most energy is still being discharged
into the environment as waste heat, significant amounts of renewable energy remains
unused. Thermoelectric power generation systems offer a feasible method to convert
available heat energy directly into electrical energy, irrespective of source size. However,
implementation of present-day semiconductor materials into practical thermoelectric ap-
plications has been hampered due to toxic and/or scarce elements and poor chemical
stability at high temperatures. The use of silicide compounds as promising thermo-
electric materials has enormous potential to overcome the above-mentioned problems,
if their thermal conductivity can be reduced. In this report we formulate a model with
which the thermal and electrical conductivity of such materials can be predicted. We
also show some first results obtained with this approach, which holds a promise toward
application in more detailed design of new materials for energy.

Figure 1 shows a schematic overview of a thermoelectric power generator. The efficiency
of a generator depends not just on the power produced, but also on how much heat is
provided at the hot junction. As a thermoelectric generator is a heat engine, its efficiency
is limited by the Carnot efficiency, the fundamental limit on the thermal efficiency due

to the second law of thermodynamics. The Carnot efficiency is given by [1]:

NCarnot = 1—— (1)

where Ty is the temperature at the hot junction and T¢ the temperature at the cold

junction.

Figure 1: A schematic overview of a thermoelectric generator. [1]

The efficiency of a thermoelectric generator is further limited by the thermoelectric
properties, Seebeck coefficient, electrical resistivity and thermal conductivity. These

material properties all appear together and form a new material property called the
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Thermoelectric figure of merit, Z. The maximum efficiency of a thermoelectric device is

given by [1]:
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(2)

Tu 1+ ZT + %
where Z the figure of merit and 7' the average temperature (given by Z2F7c).
0.8 : ' ' | | |
07F —_—7T=1 B
n M B
T -
| ——IT=5 "!{_.‘f
Carnot L

0sf —
04 f -yr-.""v _:
03F / P -
01f

0 Vi L L 1 L L 1
200 300 400 500 600 700 800 900 1000
Ty (K)

Figure 2: The maximum efficiency of a thermoelectric device as function of the tempera-
ture at the hot junction. The temperature at the cold junction is fixed at 293 K and the

efficiency is shown for several values of the figure merit as well for the Carnot efficiency.

As shown in Figure 2, the higher the figure of merit of a material, the more efficient the
material is at converting heat to electricity. A figure of merit of 3 is necessary for succesful
implementation, though nowadays research reaches a figure of merit of about 1. In this
figure T¢ is set to room temperature (293 K) and the efficiency is shown as a function
of the temperature at the hot junction for a number of values of the dimensionless figure
of merit (ZT). The figure of merit of a material and the dimensionless figure of merit
are defined as [2]:

52
z=-" (3)
Ke + Kp
2
ar =25 1 (4)
Ke + Kp

where o is the electrical conductivity, S is the Seebeck coefficient, k. is the electronic

thermal conductivity and k, is the lattice thermal conductivity.
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The goal is to come as close as possible to the Carnot efficiency and therefore to maxi-
mize the dimensionless figure of merit. In material properties this means a high electrical
conductivity, a high Seebeck coefficient and a low thermal conductivity. Realistic ex-
pressions for the individual quantities defining ZT can help us finding ways to improve

this material properties.
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Figure 3: The dependence of the Seebeck coefficient, electrical conductivity, thermal

conductivity and figure of merit on the free carrier concentration. [3]

As a first step materials can be divided into insulators, semiconductors and metals, de-
pending on the free carrier concentration of the material. All three parameters defining
the figure of merit depend on this free carrier concentration, Figure 3 shows this de-
pendence for the Seebeck coefficient, electrical conductivity and thermal conductivity as
well for the figure of merit. From this figure one can see that the figure of merit reaches
a maximum in the region of heavily doped semiconductors. Consequently, this will be
the type of material of interest to adapt in order to further increase the figure of merit.
In this report we model an isotropic material consisting of multiple crystallites. The
area where crystallites meet are known as grain boundaries.

The report is organized as follows. The theory is presented in section 2. In section 3 the
model is discussed followed by the implementation of the model in section 4. In section
5 the results of the model are presented in comparison to experimental values for PbTe.

The conclusions and recommendations are given in section 6.
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2 Theory

The physical phenomenon behind thermoelectric materials is called the thermoelectric
effect. The thermoelectric effect is the direct conversion of a temperature difference to
an electric voltage and vice versa. The term thermoelectric effect is a collective noun
for the Seebeck effect, Peltier effect and Thomson effect. As we are interested in energy

generation the Seebeck effect is of interest in this report.

2.1 Seebeck effect

The Seebeck effect is the conversion of temperature differences directly into electricity.
It is caused by the diffusion of charge carriers in metals or semiconductors. Charge
carriers on the hot side of the material have higher fluctuations than charge carriers on
the cold side of the material. This results in diffusion of carriers to the cold side. The
increased carrier concentration on the cold side causes an electric field which counteracts
the diffusion force. The strength of the effect can be decribed by the Seebeck coefficient:

AV

S=-X7 (5)

where AV is the potential difference generated by the temperature difference AT. The
sign of S depends on whether electrons (n-type) or holes (p-type) are the majority charge

carriers.

2.2 Doped semiconductors

A doped or extrinsic semiconductor is an intrinsic (pure) semiconductor with added im-
purities. Impurity atoms are atoms of a different element than the atoms of the intrinsic
semiconductor and can act as either donor or acceptor.

Donor impurity atoms have more valence electrons than the atom they replace, provid-
ing excess electrons to the intrinsic semiconductor. This increases the electron carrier
concentration of the semiconductor, making it n-type.

Acceptor impurity atoms have fewer valence electrons than the atom they replace, pro-
viding excess holes to the intrinsic semiconductor. This increases the hole carrier con-

centration of the semiconductor, making it p-type.

2.3 Band structure

The electronic band structure of a solid describes the ranges of energy that an electron

within the solid may have (bands) and the ranges of energy it may not have (band
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gaps). There are infinitely many of these bands and band gaps, but a material has
a limited amount of electrons to fill the bands. The band with the highest energy in
which electrons are normally present at absolute zero temperature is called the valence
band (see Figure 4a). The band right above the valence band is called the conduction
band. In semiconductors there is a small band gap between the valence band and the
conduction band. This means that at temperatures close to absolute zero there is no
electrical conduction possible. When energy is applied to semiconductors (in the form of
heat) individual electrons can move from the valence band to the conduction band. This
electron can move freely within the conduction band. As a result of the jump of this
electron a hole is formed in the conduction band, which can move freely within this band
as well. The electron and hole together are called a charge carrier pair and contribute

to the electrical conductivity.
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(a) The band structure of a semicon- @ Positively Charged Donor Atom

ductor without impurities. ]
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(b) The changes in band structure when adding donor

or acceptor impurities.

Figure 4: The band structure of a semiconductor and the changes due to adding donor

or acceptor impurities to the semiconductor. [4]

Doping causes a change in this structure, as shown in Figure 4b. By using donor impuri-

ties an energy level is created in the band gap close to the conduction band. An electron
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from the donor level can be elevated to the conduction band very easily. Similarly, by
using acceptor impurities an energy level is created close to the valence band. An elec-
tron from the valence band can move into the acceptor energy level again very easily. In

this way, the electrical properties are influenced by the concentration of dopants.
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3 Model

The model presented in this paper is on approaching the solution of the Boltzmann
equation on the basis of a relaxation time approximation. The essence of this approach
is the assumption that scattering processes can be described by a relaxation time 7 that
specifies how the distribution function f approaches its equilibrium fy. The Boltzmann
equation is given by: [5]

of

of
54—@ Vel - ka <at>00ll ©)

where f(r, k,t) is the distribution function, r is a point in the crystal, k is the Bloch
wave vector of an electron [5] and the collision term on the right-hand side contains
all the information about the nature of the scattering. Another assumption is that we
consider an isotropic thermoelectric material, which means that the electrical conductiv-
ity, Seebeck coefficient and other values are direction independent. [2] [5] Furthermore
we suppose the motion of carriers is in quasi-equilibrium and that the charge carriers
are scattered in such a way that their relaxation time, 7, may be expressed in terms of
energy by the relation 7 = 19 F", where 79 and r are constants.

Then by solving the Boltzmann equation one finds the resulting formulas for the electri-
cal conductivity, o, the Seebeck coefficient, S and the electronic thermal conductivity,

ke [0]: (The upper sign (4) of S refers to n-type semiconductors and the lower sign (-)

to p-type)

_ 2 [ 0fo(E)
0=—5— | gE)y(E)E= A (7)
B f E23f0( )dE
S=Er foo Eafo< ) dE (8)
o | (S ate Eﬁfo( )dE> " o fo(E)
Ke = — EVr(B)E* 24 9
T fooog(E)T(E) FLCyr | s )

where e is the electron charge, m* is the effective mass, p is the Fermi level, g(FE) is the
density of states, 7(F) is the relaxation time for the charge carriers and fo(F) is the
energy distribution function.

g(E), 7(E) and fo(F) are energy E dependent functions and also depend on several other
material specific physical parameters. These functions will be introduced and motivated

individually below.
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3.1 Density of states

The model assumes that the electronic structure inside the grain formations is the same
as the electronic structure of the bulk material, thus the grain boundary (interface
between the bulk thermoelectric material and the nanostructure inclusions) does not
affect significantly the energy-band structure and it serves only as a scattering interface.

It has been shown that the Kane model is a good description for the energy dispersion

of small band-gap semiconductors: [2] [6]

n2k2  R2k?

= FE + aF? 10
2m;  2mjy o (10)

where h is Planck’s constant, k;; is the carrier momentum and mj;, the effective mass
along the longitudinal and transverse direction. o = Eig is a nonparabolicity factor,

where E, is the band-gap. As a result the total density of states, g(£), can be written

g(E)z\g(’g)g E<1+£]> <1+25g) (11)

where the effective mass is defined as m* = §2/3 (m;‘mfz)l/g. The band-gap, Ej, is

as:

temperature dependant: F, = Eg + ~T" where Eg is the band-gap at T' =0 K and = is

a material specific parameter.

3.2 Enmergy distribution function

The free electron theory of electron conduction in solids considers each electron as moving
in a periodic potential produced by the ions and other electrons without disturbance.
Then it regards the deviation from periodicity due to vibrations of the lattice as a
perturbation. The distribution function that measures the number of electrons at energy

E is called f(E). In equilibrium this is given by the Fermi-Dirac distribution: [5]
1

fo(E) = W

(12)

where p is the Fermi level and kj is the Boltzmann constant.

3.3 Scattering mechanisms

For the relaxation time, 7(F), there are contributions from different scattering mecha-

nisms. We assume that these individual scattering mechanisms can be associated with

10
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a resistivity, hence we can apply Mathiessen’s rule to obtain the total relaxation time:

1 1
B~ 2 () 13

where 7; is the contribution from each separate mechanism.
Below several mechanisms will be described with an explanation whether to include this

mechanisms in our model or not.

3.3.1 Ionized impurity scattering

We are looking at semiconductors which are heavily doped. This doped semiconductor
can be a p-type, containing an excess of holes, or n-type, containing an excess of electrons.
Both ways these donors and/or acceptors are typically ionized and thus charged. This
causes an electron or hole approaching the ionized impurity to deflect due to Coulom-

bic forces. This is known as ionized impurity scattering. The amount of deflection is
Z2e*N;

modelled by: [2]
26 \?
Timp(E) = | ———In |1+ | —
o(E) <167r\/2m*62 (Em>

where Z is the number of charges per impurity, e is the electron charge, N; is the

-1
) B2 (14)

concentration of ionized impurities, m™* is the effective mass, € is the dielectric constant

of the medium and F,, = 45:: is the potential energy at a distance r,, from an ionized

impurity. r,, is approximately half the mean distance between two adjacent impurities.
This form of scattering is only relevant when there is a significant concentration of ionized

impurities.

3.3.2 Phonon scattering

Considering a temperature above absolute zero, vibrating atoms create pressure waves, or
phonons. Phonons can be considered to be particles and they can interact with electrons
and holes and scatter them. At higher temperatures there will be more phonons, thus
increasing the phonon scattering.

Acoustic phonons are coherent movements of atoms of the lattice out of their equilibrium

positions and the amount of deflection by this type of phonons is modelled by: [2]

LA
83 kT (2m*)%D2

D=

Tafph<E) = E- (15)

11
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Optical phonons are out-of-phase movement of the atoms of the lattice and the amount
of deflection by this type of phonons is modelled by: [2]
h2

To_ph(E) = E
o-ph(F) V2m*e2k, T (egol —651)

N|=

(16)

3.3.3 Piezoelectric scattering

A piezoelectric effect can occur in compound semiconductors, semiconductors which
consist of element from two of more different groups of the periodic table. This may
lead to local electric fields that deflect the carriers. The effect of piezoelectric scattering
is small in most semiconductors and in only important at low temperatures, when other
scattering mechanisms are weaker. As we not yet that interested in temperatures close

to the absolute zero, this mechanism is left out of this model for now.

3.3.4 Grain interfaces

The grain regions in the material are assumed to have the same average characteristics.
Then the grain interfaces can be modelled as rectangular potential barriers with average
height E}, width w, and distance between them L.

When carriers with energy E encounter such a barrier, the transmission probability for
the charge carriers through a single barrier is T'(E). The path length of a carrier that
has passed the first barrier and is scattered by the second is given by T'(E)(1 —T(E))L.

The mean-free path after scattering from the Nth barrier becomes: [2]

T(E)L

T 1-T(E) (17)

A= i T(E)" (1 - T(E))nL
n=1

Assuming that there are an infinite number of barriers, the summation can be expressed

as shown in Eq. (17). Then the relaxation time due to this type of scattering is given by

A
n(E) = — (18)
v
where v = iﬁ, the average velocity of the carriers. The expression for the transmis-

sion probability through a single barrier can be obtained following quantum-mechanical

considerations. [7] For the separate regions when the carrier energy is smaller or larger

12
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than the barrier height, one finds:

- 4-E (1- E
L/ |1+ Eb( Eb> if £ < E,

) 2m*Ebw2 E
sinh |: 2 I—E—b

it £ > E,

L % 1+ 4E£b(E£b71>

.92 2m*Ebw2 E )
sin |: 2 o 1

3.4 Fermi level

The Fermi-Dirac distribution given in (12) contains an important parameter, the Fermi
level. This parameter is specific for each material and is related to the charge-carrier

concentration p via:

4 (2 RTN\Y? o B2 E
p—ﬁ(m ) | (m) folB)p 7 (20)

where p is hidden in fy(E) as shown earlier:
1

fo(E) = W

One can determine the Fermi level u for a specific concentration p by solving the above

equation. This can be done by a root finding algorithm.

13
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3.5 Summary of the model

To summarize this chapter a list of all relevant formulas for the model is given:

2
L (21)
Ke + Kp
2e2 [ 8fo( )
=— E O IE 22
o 3m*og( )T(E)E oE (22)
T el 8f( )
el jo BB dE
ofo <E>
5 (fo E)E220(2) dE) o J0fo(E)
e = 5 8f (E) — g(E)T(E)E°————dFE
SmrT | e gETEanTdE 0 OF
(24)
V2 (m*\? E E
9(E) = 3 (h2 > E <1 + Eg) (1 + 2Eg> (25)
1
fo(B) = ——F—~— (26)
exp (i;ﬁ) +1
1 1
— 2
B~ 2B &)
—1
Z264N; 2F\ 2 3
Timp(E) = (m In |1+ <Em> ) E2 (28)
h* va 1 1
_ = - F2 2
Tt ) = S T ey ip2 29
() i o (30)
To— =
ph V2m*e2k, T (6(;01 — 60_1)
) _
- 4E£ (1 £
L2 |1+ £(-4) if E < E,
sinh? |: 2m* Byw? (17£>
K2 £y
m(E) = - (31)
* £ (5
Ly/2 1+ Lot if E> B,
2 2m*Eyw? (|
I sin [ ) (Ebl)]
4 (2em*kyT\Y? [/ B \Y? E
= =/ — E)d—- 2
P ﬁ( 2 > /0 (ka> BT (32)

14
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4 Implementation

The model decribed in section 3 was written in Matlab. The code is contained in

Appendix A. In this section the complications in implementing the model are discussed.

4.1 Indefinite integrals

As shown in the model section, the integrals needed to evaluate the electrical conduc-
tivity, Seebeck coefficient and thermal conductivity are indefinite, extending to infinite
energy. However, at high energies the term nggz) rapidly goes to zero. As shown in
Figures 5a, 5b and 5c, this will dominate the integrand. Thus the high energy levels
hardly contribute to the final value of the integral. Now the question remains what
cutoff energy is appropriate. The answer is that the relevant energies highly depend on
the temperature and the Fermi level of the material, so a fixed boundary will not work.
As shown in Figures 5a and 5d, a higher temperature will cause a lower and broader
peak, so the cutoff energy should be higher at higher temperatures. To implement this,
two different options were evaluated; a multiple of the energy at which the integrand
is maximal and a multiple of the Fermi level. What these figures also show is that the
energy at which the integrand is maximum increases with increasing temperature, thus
a boundary which is a multiple of this F,,4; is a good choice. The boundary has been
varied from FE,,4, up to 100 times E,,q,. The results were indistinguishable from 6 times
the point of maximal integrand. To be safe the boundary has been set on 10 times F,,q0
as shown in Appendix A. F,,, is found by computing the integrand at an array of

energies and using Matlab’s max command.

4.2 Tolerance

In the report of Lars Corbijn van Willenswaard [8] he stated that a fixed absolute
integration precision, as used by Matlab’s quad, will result in bad accuracy. However,
when manually entering an integration precision and tolerance the result did not change.
One could conclude that Matlab’s absolute integration precision is small enough not to
cause any problems for our model. It was also stated that a solution to the bad accuracy
in integrating is to integrate over the dimensionless energy, kz%’ instead of E. In papers
this is quite common, but not motivated. When implementing this dimensionless energy
the difference in the integral value was abolished by the change in the pre-factor, making

this an unnecessary adaptation.

15
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Figure 5: Plots of the different integrand necessary to evaluate the electrical conductivity,

Seeback coefficient and thermal conductivity. The parameters used are those of PbTe.

4.3 Units

To get some sort of control, the model presented in the previous chapter is a copy of the
model presented by Popescu et al. [2] A good first check is a unit test. This test was
performed with a peculiar result. In the expression of the charge-carrier concentration,
p, which is used to determine the Fermi level, the units don’t match if one assumes the
energy, F, has Joule as unit which is consistent with the rest of the paper. To clarify,

the formula mentioned by Popescu is:

* 3/2 roco
== () [ s (33)

16



4 IMPLEMENTATION

When the energy, F, is taken to be unitless, the problem is solved. To avoid misinter-

pretations the equation is modified to (20):

_ 4 (2T 3/2/"0 £ 1/Qf(E)di
=7\ n2 o \&T =T

Thereby it is taken into account that fy(E) already is a unitless expression. Besides,
there are some small differences between the formulas presented in section 3.5 and the
Matlab code from Appendix A. At some points, a factor e?, with a a rational number, is
added to the Matlab code. This is to compensate for the fact that all energies in Matlab
are implemented in electron volts instead of Joules. This is done because the amount of

energy involved is small making it more clear to present these amounts in electron volts.

17
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5 Results and Discussion

5.1 Verification and validation

Before experimenting with inclusions and changing parameters the model needs to be
verified. The model from section 3 comes from the paper of A. Popescu et al. [2] and a
good first step in verification is to compare the found results with the results published
in the paper.

When parameters as mentioned in the article are used, the result is shown in Figure 6.

w10
147

12

10

o (g my?

Figure 6: The electrical conductivity versus the absolute temperature. The blue open
circles represent the experimentally obtained data point given in the paper, the blue line
represents the theoretical model by A. Popescu et al. and the red line represents the

model described in this paper.

The parameters used are: Ep = 60 meV, w = 50 nm, L = 300 nm, m* = 0.16 - my,
where mg is the mass of an electron, p = 8160 kg/m?, vy, = 1730 m/s, e} — ;' =

0.0072- E4, D =10 €V and E,; = 0.19 + 0.0004 - T'.

18



5 RESULTS AND DISCUSSION

As shown there is a big difference between the results found by Popescu and my results,
where the experimental data point support Popescua, especially at low temperatures
where the two models diverge. With the same parameters the plot in Figure 7 of Seeback
coefficient versus temperature is made. Here the results have the same trend, though at
a temperature of 300 K this model is 100% off compared to the experimental data.

w10

S (VK

| | | | |
0 &0 100 150 200 260 300
Tk

Figure 7: The Seeback coefficient versus the absolute temperature. The blue open
circles represent the experimentally obtained data point given in the paper, the blue line
represents the theoretical model by A. Popescu et al. and the red line represents the

model described in this paper.

5.2 Tolerance

From Figure 6 it is clear that a whole other trend is found for the electrical conductivity
at low temperatures. This might have to do with the absolute tolerance of the integral
that needs to be computed for o at low temperatures, see (22). To check this, the

electrical conductivity is calculated for different tolerances at a temperature of 50 K.

19



5 RESULTS AND DISCUSSION

slom’

tolerance

Figure 8: The electrical conductivity versus the absolute tolerance at T'= 50 K

The result is shown in Figure 8 and is a horizontal line, so the absolute tolerance does

not influence the value of the electrical conductivity.

5.3 Tuning

As the models in section 3 and Appendix A match and the results do not, something is
incorrect. As the formulas the models consist off are also seen in other reports about
transport properties of thermoelectric semiconductors with different purposes, it is not
likely these are wrong. The parameters are harder to verify, because they are very ma-
terial specific. In an attempt to match the results one could tune some of the variables.
Obviously there is a difference in dependence of the electrical conductivity on temper-
ature, especially for low temperatures. Therefore parameters like v, D, etcetera, which

directly influence the temperature dependence seem to be a good first guess.

5.3.1 Deformation potential

In the paper of Popescu et al. it is mentioned that the value of D is varied in the range
of 5 - 15 eV. In the results shown above this deformation potential is taken to be 10 eV.
In Figures 9a and 9b the results for a deformation potential of respectively 5 and 15 eV.

A higher deformation potential is lowering the value of the electrical conductivity,
bringing it closer to the experimental results presented by Popescu et al. but is not
changing the trend. This is shown clearly by entering a deformation potential of 100 eV,
which is shown in Figure 10.

20
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(a) The electrical conductivity versus the abso- (b) The electrical conductivity versus the abso-
lute temperature. The red line represents the lute temperature. The red line represents the
model described in this paper with a deforma- model described in this paper with a deforma-
tion potential of 5 eV. tion potential of 15 eV.

Figure 9: The electrical conductivity versus temperature for two different deformation

potentials.

w10t

o
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Figure 10: The electrical conductivity versus the absolute temperature. The red line

represents the model described in this paper with a deformation potential of 100 eV.
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5 RESULTS AND DISCUSSION

5.3.2 Band gap

Other parameters as the effective mass, longitudinal velocity of sound, mass density
and dielectric constants are preceding temperature in the same way as the deformation
potential, so altering them would not change the trend either. The only other option
in changing parameters is v, the temperature dependence of the band gap. Where
this parameter is stated to be positive, a negative relation between band gap and tem-
perature could explain the trend difference in the plot of electrical conductivity versus
temperature. In Figure 11 the electrical conductivity is plotted versus temperature with
v = —0.0004 eV /K. The deformation potential is left at 100 eV to make the change
more clear to see. A small change is visible for temperatures from 200 to 300 K, but the

trend remains the same.
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Figure 11: The electrical conductivity versus the absolute temperature. The red line
represents the model described in this paper with v = —0.0004 eV /K and D = 100 eV.

Subsequently, the question remains whether these mathematical adaptations make
sense physically. In work done by L.G. Ferreira [9], quite some time ago, the deformation
potential of Lead Telluride is analized extensively. The conclusion of his work states that
the exact value of the deformation potential cannot be determined and the range of values

of 5 to 15 eV mentioned in the work of Popescu et al. is confirmed. A negative gradient
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in a band gap versus temperature plot is usual in most semiconductors, however not
with tellurides. So the mathematical adaptations have minimal to no influence and they

are not supported by the physics.

5.4 Impurities

When presenting their results, Popescu et al. mention that since the synthesized and
measured samples did not contain a significant concentration of ionized impurities, the
ionized impurity scattering mechanism in not taken into account. Consequently, in the
results shown in Figures 6 to 11 this scattering mechanism was neglected. To make
sure this was an accurate assumption this scattering mechanism should be included
and results should not differ. In Figure 12 the result is shown when ionized impurity
scattering is included. The parameters used are: Z = 2 (Ag?T as impurities), N; = 0.15p
as Popescu et al. use later in their report, ¢ = 1000 and r,, = 1 nm. The result is as

expected inseparable from Figure 6.
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Figure 12: The electrical conductivity versus the absolute temperature with the ionized

impurity scattering mechanism taken into account.

Also tuning N; and r,, to respectively 0.5p and 0.1 nm does not affect the result

notably.
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5.5 Metallic behaviour

In the previous subsection different changes have been presented to try to change the be-
haviour of the electrical conductivity at low temperatures, without succes. Remarkably
the behaviour shown is metallic, a higher electrical conductivity at lower temperatures.
This could indicate that some parameters used represent a metal instead of the semicon-
ductor we try to model. Research into which parameters represent metals and ought to
be change to resemble a semiconductor should lead to verification of the results presented

by Popescu et al.
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6 Conclusions and Recommendations

In this report a model has been presented to calculate the electrical conductivity, See-
beck coefficient and electronic thermal conductivity of a semiconductor material with
or without impurities. This could be of great use to predict the thermoelectric figure
of merit of a material. Subsequently, one might be able to find the optimal material
parameters for the best possible thermoelectric material, by means of tuning parameters
as the concentration of impurities.

When trying to reach these optimistic goals, one of the first steps caused a huge bump
in the road to success. To be more concrete, an attempt to reproduce results published
by Popescu et al. failed. One could come up with several reason for this failure, one of
which is the inability of the writer of this report to properly implement the model pre-
sented. There is no waterproof test, but as much as possible has been done to eliminate
this possibility as has been presented. Another option is an error of Popescu et al. in
writing down their findings. As the formulas presented are confirmed by other models
of electronic transport properties of semiconductors this is unlikely. The possibility of
misrepresentation of parameters was investigated by tuning parameters in order to find
a better match. Of course one has to keep in mind the physical meaning of these param-
eters while tuning them. As the behaviour shown is metallic, further research should
be done to verify, and where necessary adapt, all parameters. A third possibility is the
incompleteness of the model presented. Of course there is no way in checking this, but
to ask the writers. In comparison to other models, the model of Popescu et al. seemed
the least complicated, while it seemed to gather all important aspects. Hence this model
was chosen to be replicated.

For further research I would suggest to take a slightly different model from literature and
try to replicate it. Once that succeeds, one can fill in the parameters of lead telluride
used in the model presented here and see with which data from Figure 6 it matches.
When the step of verification has been completed, all possible materials fulfilling the

criteria of the model can be tested to find a good thermoelectric material.
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Appendices

A Matlab code

In this appendix all Matlab code is given. It consist of several functions, which cover

the model described in this paper.

A.1 Model.m

Start = 50;
Step = 10;
End = 300;

a = Start:Step:End;

sigma = zeros(1,length(a));
S = zeros(1,length(a));
kappa = zeros(1,length(a));

for temp = Start:Step:End;
[sigma ((temp+Step—Start)/Step) ,S((temp+Step—Start)/Step),
kappa ((temp+Step—Start)/Step)] = PbTe(temp, 6.1%x10"24,
0.16, 8160, 1730, 10, 0.0072, 0.19, 0.0004, 60%10" —3,
300%10° —9, 50%10°—9, 10" —4);

end

tpop = 20:20:300;

exppopsigma = [800, 600, 400, 400, 700, 1000, 1700, 2800, 4500,
6500, 9000, 12300, 16400, 17900, 19700];

theorypopsigma = [1100, 1000, 1000, 1000, 1300, 1800, 2500,
3600, 5000, 6800, 9000, 11200, 13800, 16300, 18700];

exppopS = 10°—6 x [15.5, 25.9, 32.8, 44.8, 62, 82.8, 100,
113.8, 129.3, 141.4, 155.2, 168.9, 182.7, 196.6, 210.3];

theorypopS = 10°—6 « [10.3, 25.9, 37.9, 50, 63.8, 81, 100,
113.8, 131, 144.8, 155.2, 163.8, 170.7, 177.6, 181];
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hold on %plot sigma vs T

scatter (tpop ,exppopsigma)

plot (tpop , theorypopsigma)

plot (a,sigma, ’'r’)

ylabel( ’\sigma (\Omega m) " {—1}")
xlabel ('T (K)’)

hold off

hold on % plot S wvs T
scatter (tpop ,exppopS)
plot (tpop ,theorypopS)
plot(a,S,’r’)

ylabel ('S (V/K) )
xlabel ('T (K)’)

hold off

A.2 PbTem

function [sigma,S,kappa] = PbTe(T,p, meffr ,rho,vL,D,epsr Eg0,

gamma, Eb L ,w, tol)
format long

[Emax1,Emax2,Emax3,mu] = Emaxalt(T,p, meffr ,rho,vL,D,epsr , Eg0,
gamma, Eb L, w) ;

kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
m0 = 9.10938291x10" —31; %Mass electron (kg)
meff = meffrxm0; %Effective mass (kg)
e=1.60217657%«10" —19; %FElementary charge (C)
Eg = EgO+gamma.«T; %Bandgap (eV)
h=4.135667516%x10" —15; %Planck (eVxs)

hbar = h/(2xpi);

intl = integral (Q(E) —E.xscatteringl (E,T,rho,vL,D, meffr ,epsr,
Eg0,gamma, Eb,L ,w,p) .xdofs (E, T, meffr ,Eg0 ,gamma) .x difffermi (E,
mu,T) ,0,Eb) + integral (Q(E) —E.xscattering2 (E,T,rho,vL,D,
meffr ,epsr ,Eg0,gamma Eb,L,w,p) .+ dofs (E,T, meffr , Eg0,gamma) . x
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difffermi (E,mu,T) ,Eb,10xEmaxl, ’AbsTol’ ,tol);

int2 = integral (Q(E) —E."2.xscatteringl (E,T,rho,vL,D, meffr , epsr
,Eg0 ,gamma, Eb,L,w,p) .xdofs (E, T, meffr ,Eg0 ,gamma) .x difffermi (E
,mu,T) ,0,Eb) + integral (Q(E) —E."2.xscattering2 (E,T,rho,vL,D
,meffr ,epsr ,Eg0,gamma Eb L, w,p).xdofs (E,T, meffr , Eg0,gamma) . x
difffermi (E,mu,T) ,Eb,10xEmax2, ’AbsTol’ ,tol);

int3 = integral (Q(E) —E."3.xscatteringl (E,T,rho,vL,D, meffr ,epsr
,Eg0 ,gamma, Eb,L,w,p) .xdofs (E, T, meffr ,Eg0 ,gamma) .* difffermi (E
,mu,T) ,0,Eb) 4+ integral (Q(E) —E."3.xscattering2 (E,T,rho,vL,D
,meffr ,epsr ,Eg0,gamma Eb,L,w,p).xdofs (E,T, meffr ,Eg0,gamma) . x
difffermi (E,mu,T) ,Eb,10%Emax3, *"AbsTol’ ,tol);

sigma = 2xe"2/(3xmeff)xintl; %Electrical conductivity (1/ohm m)

S=1/T % (int2/intl — mu); %Seeback (V/K)

kappa = 2xe”2/(3xmeff«T) * (int3 — int2°2/intl); %Thermal
conductivity (W/mK)

end

A.3 Emaxalt.m

function [Emaxl,Emax2,Emax3,mu] = Emaxalt (T,p, meffr ,rho,vL,D,

epsr ,Eg0,gamma, Eb, L, w)

format long

Estep=0.001;

Energy = 0:Estep:5;

kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
m0 = 9.10938291%10" —31; %Mass electron (kg)
meff = meffr«m0; %Effective mass (kg)

h=4.135667516%x10" —15; %Planck (eVxs)
e=1.60217657«x10"—19; %Elementary charge (C)

mu0 = 0:0.00001:0.1;

n = zeros(1,length(mu0));

for k = 1:length (mu0)
mul = mu0(k);
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n(k) = 4/sqrt(pi)* (2xpixmeffxkb.xT./(exh"2))"(3/2) .x
integral (@Q(xi) sqrt(xi).*fermidirac(xi.xkb.*T,mul,T) ,0,

Inf, AbsTol’,10" —11);
end
zoek = find (n>p,1, first’);
plot (mu0,n)

mu = mu0(zoek) ;

df0 = difffermi(Energy ,mu,T);

g = dofs(Energy ,T, meffr ,Eg0,gamma) ;

tau = scattering2 (Energy,T,rho,vL,D, meffr ,epsr ,Eg0,gamma,Eb,L,w

P

integrandl = double(—tau.xg.x Energy.xdf0);
integrand2 = double(—tau.xg.*Energy. 2.xdf0);

integrand3 = double(—tau.xg.*Energy. 3.xdf0);
[al,a2] = max(integrandl);
[bl,b2] = max(integrand?2);

[cl,c2] = max(integrand3);

Emaxl = a2« Estep;

Emax2 = b2xEstep;
FEmax3 = c2xEstep;
end

A.4 Fermidirac.m

function f0 = fermidirac( E,mu,T )

kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
f0 = 1./(exp((E—mu)./(kb.xT))+1);

end

A.5 Difffermi.m

function df0 = difffermi( E,mu,T )
kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
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df0 = —exp ((E—mu)./(kb.xT))./(kb.*T.x(exp((E-mu)./(kb*T))+1)
2) 5
end

A.6 Scatteringl.m

function [taul] = scatteringl (E,T,rho,vL,D, meffr ,epsr , Eg0,gamma
7Eb’L7W7p)

kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
m0 = 9.10938291x10" —31; %Mass electron (kg)
meff = meffrxm0; %Effective mass (kg)
h=4.135667516%10"—15; %Planck (eVxs)

hbar = h/(2xpi);

Eg = EgOt+gamma.*T; %Bandgap (eV)

%epsinf = High frequency dielectric constant
%eps0 = Static dielectric constant

epsilon = epsr«Eg; %1/epsinf — 1/eps0 (kgm3A—2s—4)
eps = 1000; %Dielectric constant
e=1.60217657%«10" —19; %Elementary charge (C)

7 = 2;
Ni = 0.5%p;
m = 10" —9;

Cl =e"(1/2)*h"4/(8+pi~"3) x rhoxvL"2./(kb.xT) .x 1/((2%meff)
“(3/2)xD"2);
tau_a = Cl .« E."(—-1/2);

C2 = h"2/(sqrt(2xmeff)xe”(1/2)xkb.*T.xepsilon);
tau.o = C2 .x E."(1/2);

24 Em = Zxe"2 / (4xpixeps*rm) ;

25

26
27

C3 = (Z"2xe"4xNi/(16xpixsqrt (2xmeff)xeps”2).xlog(1+(2.4E./Em)
"2)) (1)
tau_i = C3 .x E."(3/2);
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tau_bl = Lxsqrt(exmeff./(2.%E)).%x(1+ (4.xE./Eb .x (1-E./Eb))./(
sinh (sqrt ( (2*xexmeff*xEbxw”2)/(hbar"2).x(1-E./Eb) ))."2)); %
When E < Eb

taul = 1./(1./tau_a+1./tau_o+1./tau_bl+1./tau_i);

end

A.7 Scattering2.m

function [tau2] = scattering2 (E,T,rho,vL,D, meffr ,epsr ,Eg0,gamma
7Eb7L7W7p)

kb = 8.617343%10" —5; %Bolzmann constant (eV/K)
m0 = 9.10938291%10" —31; %Mass electron (kg)
meff = meffr«m0; %Effective mass (kg)
h=4.135667516%x10" —15; %Planck (eVxs)

hbar = h/(2xpi);

Eg = EgOtgamma.«T; %Bandgap (eV)

%epsinf = High frequency dielectric constant
%eps0 = Static dielectric constant

epsilon = epsrxEg; %1/epsinf — 1/eps0 (kgm3A—2s—/)
eps = 1000; %Dielectric constant
e=1.60217657«x10"—19; %FElementary charge (C)

7 = 2;
Ni = 0.5%p;
m = 10" —-9;

Cl =¢e"(1/2)%h"4/(8xpi~“3) x rhoxvL"2./(kb.xT) . 1/((2%meff)
“(3/2)xD"2);
tau.a = Cl .x E."(—-1/2);

C2 = h"2/(sqrt(2xmeff)xe”(1/2)xkb.*T.xepsilon);
tau_o = C2 .x E."(1/2);

24 Em = Zxe"2 |/ (4xpixepsxrm):;

25

26

C3 = (Z"2xe " 4xNi/(16xpixsqrt (2xmeff)*xeps”2).xlog(1+(2.«E./Em)
2)) (=)
tau_i = C3 .x E."(3/2);

32



27
28

29
30

© 0 N S Ot s W N

—_ =
N = O

A MATLAB CODE

tau_b2 = Lxsqrt(exmeff./(2.xE)).x(1+ (4.«xE./Eb .x (E./Eb—1))./(
sin(sqrt( (2xesxmeffxEbxw"2) /(hbar"2).x(E./Eb—1) ))."2)); %
When E > Eb

tau2 = 1./(1./tau_a+1./tau_o+1./tau_b2+1./tau_i);

end

A.8 Dofs.m
function g = dofs(E, T, meffr ,Eg0,gamma)

m0 = 9.10938291x10" —31; %Mass electron (kg)

meff = meffrxm0; %Effective mass (kg)
h=4.135667516%10" —15; %Planck (eVxs)

hbar = h/(2xpi);

Eg = EgOtgamma.+T; %Bandgap (eV)
e=1.60217657+10" —19; %Elementary charge (C)

Cl = e"(—3/2)xsqrt(2)/(pi”"2)*(meff/(hbar"2))"(3/2);

g = Cl % sqrt(E.x(1+E./Eg)).x(1+2.%E./Eg);

end
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