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Abstract

CλaSH is a functional hardware description language (HDL) developed at the CAES
group of the University of Twente. CλaSH borrows both the syntax and semantics from
the general-purpose functional programming language Haskell, meaning that circuit de-
signers can define their circuits with regular Haskell syntax.

CλaSH contains a compiler for compiling circuits to traditional hardware description
languages, like VHDL, Verilog, and SystemVerilog. Currently, compiling to traditional
HDLs is one-way, meaning that CλaSH has no simulation options with the traditional
HDLs.

Co-simulation could be used to simulate designs which are defined in multiple lan-
guages. With co-simulation it should be possible to use CλaSH as a verification language
(test-bench) for traditional HDLs. Furthermore, circuits defined in traditional HDLs, can
be used and simulated within CλaSH.

In this thesis, research is done on the co-simulation of CλaSH and traditional HDLs.
Traditional hardware description languages are standardized and include an interface to
communicate with foreign languages. This interface can be used to include foreign func-
tions, or to make verification and co-simulation possible.

Because CλaSH also has possibilities to communicate with foreign languages, through
Haskell foreign function interface (FFI), it is possible to set up co-simulation. The Verilog
Procedural Interface (VPI), as defined in the IEEE 1364 standard, is used to set-up the
communication and to control a Verilog simulator. An implementation is made, as will
be described in this thesis, to show the practical feasibility of co-simulation of CλaSH
and Verilog1.

The VHDL Procedural Interface (VHPI), as defined in the IEEE 1067 standard, is less
popular compared with the VPI. Furthermore, not every VHDL simulator gives support
for the VHPI. For example, ModelSim and QuestaSim use a different interface. The VHPI
is set up in the same way as the VPI. The expectation is that co-simulation through the
VPHI can be implemented in a comparable way.
GHDL, an open-source VHDL simulator, does however give support for the VPI and this
interface could be used to set-up co-simulation between CλaSH and VHDL.

1The VPI can also be used to define co-simulation with SystemVerilog.



The co-simulation supports both combinational and synchronous sequential designs.
A combinational circuit does not contain memory elements and the output can be seen
as a pure function of the present input. This is in contrast to a synchronous sequential
design, in which the output also depends on the history of the input.

Within a synchronous sequential circuit, the changes in the state of the memory el-
ements are synchronized by a clock signal. A clock is a periodic signal, in which every
period is called a clock-cycle, as shown in Figure 1. A clock-cycle consists of multiple
simulation steps. A simulation step can be associated with a certain time indication in
the Verilog code, for example 1 nanosecond.

clock-cycle

Figure 1: A clock signal

In typical Register Transfer Level (RTL) code, some events cause other events to oc-
cur in the same simulation step. For example, when a clock signal triggers, some signals
may change in the same simulation step. To ensure race-free operations, HDLs must
differentiate between such events with so-called ’delta’ delays. However, CλaSH does not
work with delta-delays and signals are defined per clock-cycle.

The defined co-simulation tries to seamlessly communicate with the traditional HDL
and thus clock-cycles have the same length in both HDLs. A clock signal will change
twice in one clock-signal. The recommendation is to define the clock-signals in the tradi-
tional HDL and only exchange the ’functional ’ values.

Support for (feedback) loops is created with lazy-evaluation. The implementation uses
the IO-monad to control and to communicate with the traditional HDL simulators. Lazy
IO often has as disadvantage that releasing acquired resources is unpredictable. Foreign
memory allocations are connected to the Haskell’s Garbage Collector (GC). With the use
of the GC, foreign functions are invoked when a resource is released, in which a particular
co-simulation is finished and the traditional HDL simulator is closed.

With Quasiquotation, Inline-Verilog is made possible. By using a Quasiquoter it is
possible to define a Domain Specific Language (DSL). With Inline-Verilog it is possible to
embed Verilog modules in CλaSH or to create a wrapper in which sub-modules (defined
in verilog files) are included.
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1 Introduction

A Field Programmable Gate Array (FPGA) is a reprogrammable silicon chip, which can
be configured with prebuilt logic blocks and programmable routing resources to imple-
ment custom hardware functionality. Unlike processors, FPGAs are truly parallel in
nature and different processing operations can function deterministically and do not have
to compete for resources [21].
A processor-based system often consists of several layers of abstraction, to perform
scheduling tasks, and share resources for multiple processes. A processor core can only
execute a few instructions at a time (instruction pipelining) and processor-based systems
have continously the risk of time-critical tasks pre-empting each other [21].

Figure 1.1: Sequential versus parallel implementation of a tap filter [21]

As visible in Figure 1.1, FPGAs can be used to speed up calculations, because of their
parallel nature. Using such accelerators often leads to discussions of using FPGAs versus
using Graphics Processing Units (GPUs). GPUs are mainly known for doing calculations
related to 3D computer graphics, but GPUs are also used to accelerate scientific, analyt-
ics, engineering, consumer, and enterprise applications [22].
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CHAPTER 1. INTRODUCTION

A paradigm shift is going on related to metric for procurements, system design, and
application development. In the past Floating-point Operations Per Second (FLOPs)
were used as measure for computer performance, which is now changing to FLOPs per
watt. Energy costs become more and more important, and performance at any cost is no
longer viable. The operational costs of supercomputer clusters become more dominant
compared with the acquisition costs [24].

Research to device-energy-efficiency, related to application performance, showed that
FPGAs are more energy efficient compared to GPUs, but FPGAs are considered hard to
program [23]. Organisations, like Microsoft’s Bing, are investing in FPGA-based codings,
because of power efficiency. Microsoft Research touted that a convolutional neural net-
works (CNNs) implementation on a FPGA can achieve a three times better performance-
to-power advantage compared to running on GPUs [24].

In the past, FPGA technology was only available for engineers with solid understand-
ing of digital hardware design. With the rise of high-level tools and Hardware Descrip-
tion Languages (HDLs), new technologies became available to convert graphical block
diagrams or even languages like C or Python into a digital hardware circuit.

CλaSH is a high-level functional HDL, which borrows both the syntax and semantics
from the functional programming language Haskell. With this language, hardware can
be described and compiled to traditional HDLs, like VHDL, Verilog, and SystemVerilog.

Co-simulation of CλaSH and traditional HDLs is not supported currently. With co-
simulation, different subsystems can be simulated in a distributed manner. The execution
of these subsystems, and the data-exchange between them, often happen in a black-box
manner. This gives the user the idea of simulating, for example, two different languages
in one system.

In this thesis, the issue of supporting co-simulation between CλaSH and traditional
HDLs is addressed. The main focus will be on co-simulation with Verilog, because the
Verilog Procedural Interface (VPI), part of the IEEE 1364 standard, is popular and widely
accepted. For example with VHDL, simulators use different standards and in some cases
licenses are needed.

Defining co-simulation between a functional and a traditional HDL is more compli-
cated than defining co-simulation between two different traditional HDLs. In a functional
HDL like CλaSH, there is no notion of delays and clocks are only used as annotations
for signals. Signals are simulated as streams of values, in which transitions happen
on the same moments. Furthermore, the co-simulation is only possible through the C-
programming language, which does not support the same data types as in CλaSH and
memory management has to be implemented manually. The two HDLs has to be syn-
chronized and the lazy evaluation of signals has to be transformed to the appropriate
simulation cycles.
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1.1 Problem statement and approach

The ability to perform co-simulation with (traditional) HDLs is desirable within CλaSH.
In other high-level HDLs, like MyHDL and Cocotb, co-simulation is possible to a certain
level.
CλaSH does not have the functionality to perform co-simulation with, for example, VHDL
or Verilog currently. This is considered as a shortcoming by some CλaSH users [25].

In this thesis, research is conducted to the Verilog Procedural Interface and the Haskell
standard, to be able to support co-simulation. The research question central to this thesis
will therefore be:

� How can co-simulation with traditional HDLs be supported within CλaSH?

This central research question gives rise to other questions and design choices, such
as: which information has to be exchanged between CλaSH and a traditional HDL? Does
the IEEE 1364 standard give possibilities for this communication and how can a simula-
tion/simulator be controlled?

Furthermore, the possibilities and limitations of a (theoretical) co-simulation with
CλaSH has to be identified. For example, traditional HDLs uses delta-delays to ensure
race-free operations. CλaSH, on the other hand, uses a functional approach and support
for (delta-)delays is very limited.

Finally, an implementation, using the VPI, will be made to show the feasibility of the
co-simulation between CλaSH and Verilog.
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1.2 Outline

In chapter 2, the background and related work with respect to co-simulation is presented.
This chapter also gives a background on CλaSH. The Foreign Function Interface (FFI)
and QuasiQuotation, both part of the Haskell language, are explained. Furthermore,
related work, like Cocotb and MyHDL, is described. In the last part of this chapter,
research is performed about the available Verilog and VHDL interfaces.

In chapter 3, the Verilog Procedural Interface (VPI) is presented. This interface is
part of the IEEE 1364 standard and gives possibilities for communication with the C
programming language. The needed information for defining co-simulation, like synchro-
nizing with the simulator and data exchange, is explained in detail.
Chapter 3 and sections from chapter 2, the related work and the Verilog/VHDL inter-
faces, are described using literature study. The book [1] and the IEEE standards are used
as the main resources for this research.

Chapter 4 shows how co-simulation between CλaSH and Icarus Verilog, an open-
source Verilog simulator, could be implemented by using the VPI standard. Design
choices are explained and additional information about Haskell’s FFI and QuasiQuation
possibilities are given.

In chapter 5, results of the implemented co-simulation are presentated and bench-
marks are shown. Furthermore, the implementation is tested with other simulators,
ModelSim and GHDL, to show the portability of the co-simulation. An implemented
GFSK demodulator is compiled to Verilog and with the co-simulation compared to the
CλaSH implementation.

In chapter 6, recommendations and ideas for future work are presented. One of the
main points will be co-simulation with other HDLs and the feasibility of the needed im-
plementations. Furthermore, ideas on how to give support for multiple clock domains are
given. Recommendations with respect to Inline Verilog are made. Inline Verilog is one
of the final goals of co-simulation, which gives support for embedding Verilog, as Domain
Specific Language, in CλaSH.

Finally, in chapter 7, conclusions are drawn and a small evaluation of this master
project is made.

4



2 Background

Hardware Description Languages (HDL) describe the structure and behavior of electronic
circuits. The description of a circuit can be synthesised into a netlist, which can be placed
& routed to produce the mask set, used to create an integrated circuit.

In this master thesis, the focus will be on a sub-set of the Hardware Description Lan-
guages, which is needed to define co-simulation between CλaSH and traditional HDLs.
Traditional HDLs, like VHDL, Verilog, and SystemVerilog, are standardized. These stan-
dards describe interfaces to communicate with foreign languages, which can be used to
define co-simulation. Standards are needed to increase the quality and also the compati-
bility to work with different simulators, like Icarus Verilog and Modelsim.

HDLs are also defined in high level languages like Python and C. Popular implementa-
tions are MyHDL and Cocotb, both written in Python. MyHDL is defined as an HDL and
a Hardware Verification Language (HVL), having co-simulation possibilities with Icarus
Verilog and Cver (both open-source Verilog-simulators). Cocotb is mainly defined as a
HVL and has support for a wide range of simulators.

In 2011 it was stated that verification consumes approximately 75% of the design
resources and time scheduling [34]. Electronic Design Automation (EDA) companies try
to increase the verification productivity with foreign interfaces, which can be used for
co-simulation.

The options for co-simulation depends heavily on the available interfaces. The Verilog
Procedural Interface (VPI) is the commonly used and recommended interface for Verilog,
mainly because it is standardized and supported by many Verilog tool vendors. The
Programming Language Interface (PLI 1.0), the precursor of VPI, is also still commonly
used because of its widely documented interface.

For VHDL there are fewer possibilities compared to Verilog. Vendors often provide
functionality that is similar to the VPI, but these are mainly vendor specific interfaces.
An example is the Foreign Language Interface (FLI) of Modelsim.
The recommended interface is the standardized VHDL Procedural Interface (VHPI), but
this interface is not as popular as the VPI and there is less support from vendors [33].
The Direct Programming Interface (DPI) is available for SystemVerilog, but the VPI is
also fully supported.
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2.1 CλaSH

CAES Language for Synchronous Hardware (CλaSH) is a functional hardware description
language defined within the Computer Architecture for Embedded Systems (CAES) group
(University of Twente). CλaSH borrows both the syntax and semantics from Haskell, a
general purpose functional programming language. Designers can define their circuits
with regular Haskell syntax and use strong typing & higher order functions.

A functional programming language treats computation as the evaluation of mathe-
matical functions. Combinational circuits can often be modelled as mathematical func-
tions. Within CλaSH, functions are used to describe hardware. As in Haskell, a set of
functions are provided in the CλaSH prelude library. With these functions, both combi-
national and synchronous sequential hardware can be designed.

An important type within CλaSH is the Signal type, an infinite stream of values used
in a synchronous sequential circuit design. For example the Mealy machine, a classic
machine model, uses the Signal types. The mealy machine is defined as the function
mealy in the CλaSH prelude library.

fi o

s′s

Figure 2.1: The mealy machine hardware representation

The input i and the output o are both signals. The signal i and the state s is fed
into the function f, from which the updated state s’ and signal o is defined:
This is also visible in the type definition of the mealy function.

mealy :: (s→ i→ (s, o))→ s→ Signal i → Signal o

The identifiers s, i, and o, used in the type definition of the mealy function, denote
the types of input and output variables. This is in contrast to Figure 2.1, where they
denote several variables. The first argument is a function, called f, which will be executed
by the mealy function. The function f has as input a state with the type s and a input
with the type i. Furthermore, f produces a tuple containing a updated state, with the
same type s, and a output with the type o.
The second argument of the mealy function is given as initial state to the function f, after
which f is mapped over the signal i to produce the signal o.
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The function f is a combinational function, in which the output directly depends on
the input without any memory elements. An example of such a function is the Multiply
Accumulate (MAC) operation. Within the MAC operation, two values will be multiplied
together and summed with the previous output value, as visualized in Figure 2.2. The
CλaSH definition of the mealy machine with the MAC operation is shown in Listing 2.1.

* +x
y o

s s′

Figure 2.2: The multiply accumulate operation

topEnt ity : : t ∼ Signed 16 ⇒ S igna l ( t , t ) → S igna l t
topEnt ity = mealy mac 0

mac s (x , y ) = ( s ’ , o )
where

s ’ = x ∗ y + s
o = s ’

Listing 2.1: The mealy function with the MAC operation in CλaSH

The types for the function topEntity are defined explicitly. In this case every sample,
inside the signals, is defined as a 16 bits wide signed value. Specifying the types with their
sizes (bounds) is needed to make compilation to synthesizable code possible. Currently
the CλaSH compiler supports the generation of VHDL, Verilog, and SystemVerilog code.

The function mealy is called a higher-order function, because it takes a function as
an argument. Other examples of higher-order functions are: map, zipWith, foldl, scanl,
and mapAccumL, as visualized in Appendix A.

a w

x1 x2 x3 x4 x...

f f f f ...

z1 z2 z3 z4 z...

Figure 2.3: The mapAccumL function

The function f, used in the mapAccumL function, has as input an initial state a and
the value xi. It produces the output value zi and an updated state a’, which is passed to
the next f function.
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Within CλaSH, the full Haskell environment can be used. This environment can be
useful for extending the simulation possibilities in CλaSH (for example reading inputs
from file), but for defining co-simulation it is actually a requirement. For example, the
execution of C code, as will be explained in subsection 2.1.1, is needed to communicate
with a (Verilog) simulator.

Haskell is a pure language, meaning that functions will always return the same out-
puts for the same inputs, without any side-effects. But it is possible to define impure
functions with the usage of the so called monads. Monads allow a programmer to define
computations using sequential building blocks. For example, the Maybe monad represent
computations which may fail and the List monad represent computations with multiple
values.

To define co-simulation, the IO monad becomes important. This monad makes (low-
level) IO operations possible. Many of the possible functions in the IO monad are not
pure, because they depend on the external world (e.g. operation system or other pro-
cesses). The do notation is often used to combine multiple (IO) statements, as show in
Listing 2.2.

main : : IO ( )
main = do

putStr ”What i s your name? ”
getL ine >>= putStrLn . (P.++) ” He l lo ”

Listing 2.2: The function main with the do notation

The function putStr will write ”What is your name? ” to the standard output, after
which the function getLine is used to read a line from the standard input. The function
getLine return an IO String, but with the pipe forward operator (>>=) the encapsulated
string is forwarded to the putStrLn function. The (.) operator denotes function compo-
sition. The string ”Hello ” will be concatenated with the input string, after which they
are written to the standard output.

λ> main
What i s your name? John
He l lo John

Listing 2.3: The execution of the main function

To define a Domain Specific Language (DSL) in Haskell, the Q (abbreviation of Quo-
tation) monad can be used. This monad is part of Template Haskell, as will be explained
in subsection 2.1.2. A DSL could be interesting to include Verilog or VHDL code in the
CλaSH code.
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2.1.1 Foreign Function Interface

To define co-simulation, CλaSH has to perform IO operations, which can be done us-
ing the IO monad. Examples of IO operations are the creation of processes (e.g. the
execution of the Verilog/VHDL simulator) and defining pipes to these processes. The
Haskell package process contains libraries for dealing with these system processes, and
gives support for IO operations [12]. This package and its dependency, the unix package,
internally use the Foreign Function Interface. For example, the function createProcess is
used to spawn an external process and the function createPipe is used to create a pipe
for interprocess communication.

The process package does not provide enough functionality to control and communi-
cate with a (traditional) HDL-simulator. As will be explained in section 2.3, the control
and communication will not be done directly with the simulator, but through an inter-
face; which is compiled to object code and loaded into the simulator at runtime.

The Foreign Function Interface (FFI) is an extension to the Haskell language and can
be used to communicate with ’foreign’ languages (often C). The FFI is introduced by the
’Haskell 2010’ revision and from then on further improvements are made [14].

The interface contains two concepts: the possibility to import and to export func-
tion(s). As example, to import a C function exp into Haskell, with as input and output
argument a double, the following code can be defined:

f o r e i g n import c c a l l ”exp” c exp : : CDouble → CDouble

Listing 2.4: The imported Haskell-function c exp

In this case the function c exp acts like a normal Haskell function, but actually it calls
the C function exp and returns the result of that function.
As a remark, in older versions of GHC (6.8.3 and earlier) it was needed to include the
header file (in this case ’math.h’).

Only C code, which is compiled to an object file, can be imported [13]. Furthermore,
the option Position Independent Code (PIC) must be given to the C compiler. Code
compiled with -fPIC is suitable for inclusion in a library, because the library must be re-
located from its preferred location in memory to another address. The created object file
must be compiled into a shared library, after which it can be loaded into the interpretor.

gcc −O2 −fPIC −c −Wall −o f f i . o f f i . c
gcc −O2 −shared −o l i b f f i . so f f i . o
c l a sh −− i n t e r a c t i v e MyDesign . hs − l f f i −L/tmp/ f f i

Listing 2.5: The commands to compile C code into a shared library
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The export functionality looks similar; instead of using the keyword import, the key-
word export will be used. Listing 2.6 shows an example of an exported Haskell function.

t r i p l e : : Num a ⇒ a → a
t r i p l e = (∗3)

f o r e i g n export c c a l l t r i p l e : : CInt → CInt

Listing 2.6: The exported Haskell function triple

Although the function triple will look like a normal C function in the C code, it is
a binding to the Haskell function. The Haskell runtime environment must be initialized
(with a call to hs init) and released (with a call to hs exit), in order to use the function
triple.

Loading the code, as shown in Listing 2.6, in the interactive interpreter without any
C code will give the error: ”Illegal foreign declaration: requires unregisterised...” . GHCi
fails to link, because object-files are missing. By default, GHCi only generates byte-code.
The flag -fobject -code can be used to have GHCi generate object-code instead of byte-
code [15].

Besides using objects, like integers, it is also possible to use pointers. Within Haskell,
a pointer will have the type Ptr a. The type a is often an instance of the class Storable,
which provides marshalling operations. The FFI library also contains marshalling func-
tions, for example to marshall Haskell lists to and from C arrays.

The Ptr a is used as pointer to a foreign object. To use pointers to functions, the
type FunPtr a can be used. This pointer is callable from the foreign code, but with a
dynamic stub the FunPtr can be converted to a corresponding Haskell function.

type Func a = Ptr a −> IO ( )
f o r e i g n import c c a l l ”& f r e e ” p f r e e : : FunPtr ( Func a )
f o r e i g n import c c a l l ”dynamic” c dynamic : : FunPtr ( Func a ) → ( Func a )

Listing 2.7: The imported FunPtr p free

Function pointers can be used to connect finalizers to object pointers. Normally for-
eign objects are not managed by the Haskell storage manager (garbage collector) and
the memory management has to be performed manually. By creating a ForeignPtr, the
finalizer will be executed after the last reference to the foreign object is dropped.

type F i n a l i z e r P t r a = FunPtr ( Ptr a → IO ( ) )
newForeignPtr : : F i n a l i z e r P t r a → Ptr a → IO ( Fore ignPtr a )

Listing 2.8: The newForeignPtr function

In the co-simulation implementation, as will be explained in subsection 4.2.3, C
functions will be imported and finalizers will be used to interact and control a Verilog-
simulator.
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2.1.2 Template Haskell & QuasiQuotation

Template Haskell (TH) is a Glasgow Haskell Compiler (GHC) extension, which can be
used in two main areas of application: compile-time meta programming and embedding
domain specific languages [56][57].

Template Haskell provides features to convert between concrete syntax (normal Haskell
code) and Abstract Syntax Trees (AST). Haskell values can be spliced into an AST and
be manipulated at compile time. The abstract syntax tree can be spliced back into the
concrete syntax [56][57].

TH programs are built inside the Quotation monad Q. Within Haskell, state monads
like Q and IO are used to perform operations which can have side effects. Within the
abstract syntax tree, a program is described using algebraic data types. The TH library
provides the following algebraic data types: Exp, Pat, Dec, and Type, which can be used
to represent expressions, patterns, declarations, and types, respectively. A possible op-
eration within the Q monad is the name-generation operation, as shown in Listing 2.9 [53].

f = $( do
nm1 ← newName ”x”
nm2 ← newName ”y”
return $ LamE [ VarP nm1, VarP nm2 ] $ UInfixE (VarE nm1)

(VarE $ mkName ”+”) (VarE nm2) )

Listing 2.9: A Template Haskell example

The function f performs an addition, which is implemented in Template Haskell. The
functions newName and mkName functions are used to generate names. The name, as
generated with the function mkName, can be captured; this in contrast to the function
newName. Capturing is needed for the ’+’ operator, to make the summation of the two
arguments possible. Finally, the abstract syntax tree is spliced back into concrete syntax
using Template Haskell's splice operator $.

LamE, VarE, and UInfixE are used as expression constructors. LamE can be used
as a lambda expression, VarE for defining a variable, and UInfixE for performing an
operation. VarP is used as pattern constructor [53].

Constructor Expression

VarE name x
UInfixE Exp Exp Exp x+ y
LamE [Pat ] Exp \p1 p2→ e
TupE [Exp] (e1, e2)

Table 2.1: Template Haskell's Exp constructors [53]
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A QuasiQuoter is essentially a function which takes a string to an Abstract Syntax Tree
(AST) [54]. QuasiQuotation is often used to write Domain Specific Languages (DSL). A
parser, defined as QuasiQuoter, will transform a string into an AST during compile time.

Template Haskell defines the QuasiQuoter data type. This data type is actually a
record with four QuasiQuators, defined for the four algebraic data types, as shown in
Listing 2.10.

data QuasiQuoter = QuasiQuoter {
−− | Quasi−quoter f o r expre s s i ons , invoked by quotes l i k e l h s = $ [ q | . . . ]
quoteExp : : S t r ing → Q Exp ,
−− | Quasi−quoter f o r patterns , invoked by quotes l i k e f $ [ q | . . . ] = rhs
quotePat : : S t r ing → Q Pat ,
−− | Quasi−quoter f o r types , invoked by quotes l i k e f : : $ [ q | . . . ]
quoteType : : S t r ing → Q Type ,
−− | Quasi−quoter f o r d e c l a r a t i o n s , invoked by top−l e v e l quotes
quoteDec : : S t r ing → Q [ Dec ]
}

Listing 2.10: The data type QuasiQuoter [54]

The most trivial example is to immediately lift a string in the Q monad, as shown
in Listing 2.11. The function ex, as shown in Listing 2.12, shows the execution of this
QuasiQuoter.

qq : : QuasiQuoter
qq = QuasiQuoter { quoteExp = str ingE }

Listing 2.11: An example QuasiQuoter [52]

{−# LANGUAGE QuasiQuotes #−}

ex : : S t r ing
ex = [ qq | Hel lo | ]

ex ’ : : S t r ing
ex ’ = $( quoteExp qq ” He l lo ”)

Listing 2.12: Execution of the example QuasiQuoter [52]

The expression quotation, as shown in the function ex, is written in the so called
Oxford brackets and automatically spliced in the concrete syntax. This function is equiv-
alent to the function ex’, in which the result of the function quoteExp is spliced back with
Template Haskell's splice operator $. The syntax used in the function ex is somewhat
more convenient and Haskell will automatically pick the right parser for the context [52].

More advanced QuasiQuoters support meta-variables. The convention is to use the
keyword $ to splice Haskell variables into a quotation. Constructors like VarE and func-
tions like mkName, as shown in Listing 2.9, can be used to parse the meta-variables.

12



2.2. RELATED WORK CHAPTER 2. BACKGROUND

2.2 Related Work

Co-simulation with the standardized Hardware Description Languages is also imple-
mented in related work, as will be shown in this chapter. In some cases, simulators are
using co-simulation to add, for example, a graphical viewer. This is the case with GHDL,
a VHDL simulator, which uses Icarus Verilog Interactive (IVI) as graphical viewer [40].
Matlab also defines co-simulation possibilities with ModelSim/QuastaSim and Incisive
(Cadence) [43].

Looking at open-source co-simulation possibilities, it becomes visible that most of the
implementations are defunct and not under development any more. Examples of these
projects are: PyHVL (Python) [44], Ruby-VPI (Ruby) [45], Jove (Java) [46], and the
implementation of Andre Pool [18]. However, MyHDL and Cocotb are still under devel-
opment as will be described in the following two sections.
Most of the projects use the Verilog Procedural Interface, which is supported by multiple
simulators, for defining co-simulation with Verilog and SystemVerilog.

The implementation of Andre Pool, with the title ’Using ModelSim Foreign Language
Interface for C ’, only uses the Foreign Language Interface (FLI) of ModelSim, as visual-
ized in Figure 2.4 [18].

Figure 2.4: Co-simulation between C and VHDL using the FLI [18]

The red parts denotes a clock and the Design Under Test (DUT), both implemented in
Verilog. However, the TestBench, consisting of a Stimuli Generator and a Data Analyzer,
is implemented in C and connected through the FLI with the Verilog code.
The VHDL can also execute C code, defined as Foreign Architectures and Separate Process
Threads, which are also connected through the FLI.
The other blocks are used to control the simulation and to do the memory management.
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2.2.1 MyHDL

MyHDL is a hardware description and verification language written in Python. This
package is free and open-source. The main goal of MyHDL is modelling and simula-
tion. To some limitations, verification (using co-simulation) and conversion to Verilog
and VHDL can be performed [47].

A key concept in MyHDL, but also in other Python-based HDLs, are generators. A
generator is an object which contains one or more yield calls, and can be called iteratively
with its next method. The MyHDLs manual gives the following example [47]:

def generato r ( ) :
for i in range (3 ) :

y i e l d i

Listing 2.13: An example generator [47]

>>> g = genera tor ( )
>>> g . next ( )
0
>>> g . next ( )
1
>>> g . next ( )
2
>>> g . next ( )
Traceback ( most r e c ent c a l l l a s t ) :

F i l e ”<s td in>” , l i n e 1 , in ?
S t o p I t e r a t i o n

Listing 2.14: Executing the example generator [47]

The yield values can be made sensitive to values or time, and are used as general
sensitivity lists. This can be extended by the use of decorators, a special keyword in
front of a function. With this keyword a function can be transformed into a generator.
Generators are used to model concurrency. The following examples shows this in more
detail.

def ClkDriver ( c l k ) :
ha l fPe r i od = delay (10)

@always ( ha l fPe r i od )
def dr iveClk ( ) :

c l k . next = not c l k

return dr iveClk

Listing 2.15: A clock driver example [47]
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def HelloWorld ( c l k ) :

@always ( c l k . posedge )
def sayHe l lo ( ) :

print ”%s He l lo World ! ” % now ( )

return sayHe l lo

Listing 2.16: A hello world example using the clock driver [47]

c l k = S igna l (0 )
sim = Simulat ion ( ClkDriver ( c l k ) , HelloWorld ( c l k ) )
sim . run (50)

Listing 2.17: Executing the hello world example [47]

The decorator @always makes the functions sensitive to certain inputs. The function
ClkDriver is made sensitive to a period of 10 time steps and the function HelloWorld is
made sensitive to the positive edge of a clock.

Co-simulation between MyHDL and Verilog is defined using the VPI. Only two Verilog
simulators are currently supported: Icarus Verilog and Cver. The regs and nets, which
will be used within the co-simulation, must be registered with the functions $from myhdl
and $to myhdl, as visualized in Listing 2.18 [48].

module dut b in2gray ;
reg [ ‘ width −1:0 ] B;
wire [ ‘ width −1:0 ] G;

i n i t i a l begin
$from myhdl (B) ;
$to myhdl (G) ;

end

. . .
endmodule

Listing 2.18: Registration of signals in Verilog [47]

A Cosimulation object must be created in the Python code. This object will compile
the verilog sources and execute the Verilog-simulator. Furthermore, the Python signals
will be connected to the Verilog signals, as visible in Listing 2.19.

def bin2gray (B, G) :
# compi le o f Ver i l og f i l e s
os . system (cmd)
# s t a r t s imu la tor and connect s i g n a l s
return Cosimulat ion ( ”vvp −m . / myhdl . vpi bin2gray ” , B=B, G=G)

Listing 2.19: Cosimulation object in Python [47]
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The co-simulation possibilities in MyHDL have some limitations [48]. First of all,
both languages have to register the signals which will be used in the co-simulation. A
more desirable approach would be to only register signals at the Python side and auto-
matically recognize the ports of the top-level module in the Verilog-simulator.

Furthermore, only passive Verilog code can be used in the co-simulation, meaning
that the Verilog code cannot contain any delay statements. One of the consequences is
that clocks must be defined at the Python side [48].

Delta-cycles are only preserved from the MyHDL simulator towards the Verilog-
simulator, but not in the opposite direction. Delta-cycles are implemented by making
the time granularity in the Verilog simulator a 1000 times smaller than in the MyHDL
simulator; meaning that for each MyHDL time step, 1000 Verilog steps are available
for MyHDL delta-cycles. The value of 1000 steps is used, because the need for only a
few delta-cycles per time step is assumed. Only after performing the 1000 steps, signal
changes are returned to the MyHDL simulator [48].
It is unclear why 1000 simulation steps are used, theoretically it seems that less simula-
tion steps would already be sufficient.

Only co-simulation with Verilog is possible and the development for co-simulation
with VHDL is on hold (currently). In the MyHDL manual three requirements are given
to be able to support co-simulation with VHDL:

1. A procedural interface to the internals of the simulator is needed.

2. The procedural interface should be a widely used industry standard.

3. The VHDL-simulator should be an open-source simulator.

Only the VHPI standard matches this requirement as a procedural interface, but this
interface is less popular (compared with the VPI). Furthermore, there is only one credible
open-source VHDL simulator (GHDL) and it is unclear whether it has VHPI capabilities
that are powerful enough to support co-simulation [48].

An ideal (theoretical) co-simulation implementation between CλaSH and Verilog should
not have the limitations which are described in this section. CλaSH should be able to
automatically iterate through the Verilog hierarchy and scan for available input and out-
put ports. These ports should be automatically mapped to CλaSH signals. Furthermore,
it should be possible to define delay statements (e.g reset and clock streams) in Verilog,
and use CλaSH as a pure functional HDL.
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2.2.2 Cocotb

COroutine based COsimulation TestBench (Cocotb) is an environment for verifying VHDL/Ver-
ilog RTL using Python. Cocotb uses the VPI for Verilog and VHPI/FLI for VHDL, and
gives support for the following simulators [49]:

• Icarus Verilog

• Aldec Riviera-PRO

• Synopsys VCS (only Linux)

• Cadence Incisive (only Linux)

• Mentor Modelsim

A cocotb testbench does not require additional VHDL/Verilog code. The so called
Design Under Test (DUT) is instantiated as the toplevel in the simulator without any
wrapper. From the python code, cocotb can drive stimulus into the inputs of the DUT
and monitor the outputs.
The test environment can be fully defined in Python and the tests are simply Python
functions (coroutines). With the yield keyword (see Listing 2.13) the control of execution
can be switched between the simulator and the Python code [49].

Figure 2.5: The Cocotb overview [49]

The GPI act as General Purpose Interface, to make interface independent commands
possible at the Python Side. The VPI is used for a Verilog or SystemVerilog design, the
VHPI is used for a VHDL design. ModelSim and QuestaSim have its own VHDL foreign
interface, the FLI, which is also supported in Cocotb.
It seems that the keywords Embed and Extend indicate the parallel and sequential pos-
sibilities, but these two words are not explained.
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Cocotb works with makefiles for specific simulators, such as Icarus Verilog or Model-
Sim, in which the verilog-sources and the name of the top-entity must be given. When
Cocotb initialises, it finds the top-level instantiation in the simulator and creates a handle
called dut. This handle can be used to access signals inside the design [49].

The usage of the handle dut is shown in the following examples. The signal reset is
accessed inside the design with dut.reset. With the yield and fork commands sequential
and parallel Cocotb routines can be executed.

@cocotb . co rou t ine
def r e s e t d u t ( r e s e t n , durat ion ) :

r e s e t n <= 0
y i e l d Timer ( durat ion )
r e s e t n <= 1
r e s e t n . l o g . debug ( ” Reset complete ” )

Listing 2.20: Reset the DUT [49]

@cocotb . t e s t ( )
def p a r a l l e l e x a m p l e ( dut ) :

r e s e t n = dut . r e s e t

# This w i l l c a l l r e s e t d u t s e q u e n t i a l l y
# Execution w i l l b l o c k u n t i l r e s e t d u t has completed
y i e l d r e s e t d u t ( r e s e t n , 500)
dut . l o g . debug ( ” After r e s e t ” )

# Cal l r e s e t d u t in p a r a l l e l wi th t h i s corou t ine
r e s e t t h r e a d = cocotb . f o rk ( r e s e t d u t ( r e s e t n , 500)

y i e l d Timer (250)
dut . l o g . debug ( ”During r e s e t ( r e s e t n = %s ) ” % r e s e t n . va lue )

# Wait f o r the o ther thread to complete
y i e l d r e s e t t h r e a d . j o i n ( )
dut . l o g . debug ( ” After r e s e t ” )

Listing 2.21: A reset test [49]

Cocotb does not put any requirements on the VHDL or Verilog sources; delays can
be put in both the HDL and Python. Furthermore, the VHDL and Verilog sources can
be loaded in Cocotb without any changes. Cocotb automatically recognizes the available
signals and creates handles to make them accessible in Python.
There is however one disadvantage: only one co-simulation can be performed at a time.

As will be shown in chapter 5, the implemented co-simulation between CλaSH and
Verilog has the advantages of both MyHDL and Cocotb. CλaSH automatically recognizes
the DUT and connects automatically CλaSH signals with Verilog ports. Multiple co-
simulations in one CλaSH simulation can be performed using lazy evaluation, which is
needed to independently define co-simulation in multiple functions. Furthermore, delay
statements are allowed in the Verilog code.

18



2.3. VERILOG & VHDL INTERFACES CHAPTER 2. BACKGROUND

2.3 Verilog & VHDL interfaces

The Institute of Electrical and Electronics Engineers (IEEE) is a leading standards de-
velopment organization and in the area of Hardware Description Languages multiple
standards are defined. VHDL is standardized in the IEEE 1076 standard, Verilog in the
IEEE 1364 standard, and SystemVerilog in the IEEE 1800 standard. SystemVerilog was
first seen as extension to the Verilog language, but since 2009 both languages are merged
in the IEEE 1800 standard. SystemC, described as System-Level Modelling Language,
can also be used as HDL and is standardized in the IEEE 1666 standard.

The history of interfaces to define communication between the (standardized) HDLs
and Foreign Languages sees its origin in the 1980s. Verilog was created by Prabhu Goel
and Phil Moorby around 1984, and at that time Verilog represented a tremendous pro-
ductivity improvement for circuit designers. The Verilog PLI was first introduced in 1985
as part of a digital simulator called Verilog-XL, developed by Gateway Design automa-
tion; which later merged into Cadence Design Systems [1].

Around the same time, VHDL was developed commissioned by the U.S. Department
of Defense (DoD), to document the behaviour of ASICs. In 1987 VHDL was standardized
in the IEEE 1076-1987. Because of the increasing success of VHDL, Cadence decided to
make Verilog available for open standardization. In 1995 it was standardized in the IEEE
1364-1995 standard [1].

Although Verilog already has foreign support from the beginning, VHDL was seen
as a stand-alone language. Recognizing the Verilog PLI success, the IEEE 1067-1993
standard includes the foreign attribute. The foreign interface, VHPI, is included in the
IEEE 1067-2008 standard, but at that time VHDL simulators had often defined their
own interfaces.

In the 1990s, the Verilog PLI became very popular and succesfull. Mixed language
simulators, primarily combining VHDL and Verilog, became common and a more gener-
alized and lucid foreign interface with less overhead was desired. This interface, called
the Direct Programming Interface (DPI), was defined in the SystemVerilog 3.1 standard,
which was introduced in 2003. [19].

In 2001, the Verilog PLI was replaced by the Verilog Procedural Interface (VPI). In
2005, this interface was also included in the SystemVerilog standard [1][4].

In the following sections, information about the foreign interfaces will be given.
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2.3.1 Verilog Procedural Interface

The Verilog Procedural Interface (VPI) gives possibilities to communicate with Verilog
simulator(s) and is primarily intended for the C programming language. How to imple-
ment the VPI is explicitly defined in the IEEE 1364 standard. This gives the advantages
that every IEEE compliant Verilog simulator will use the same methods. In 1995 the
IEEE chose to standardize the PLI 1.0 and 2.0 interfaces what resulted in VPI. PLI is an
abbreviation for the Program Language Interface and mainly PLI 1.0 is still commonly
used due to its widely documented function interface. In the IEEE 1364-2001 standard,
the terms PLI 1.0 and PLI 2.0 do not exist, but they are referred as TF (task/function)
and ACC (access) [1][4].

The TF library can only access the arguments of a system task or function. For
simulators this is an advantage, because at compile time it is possible to exactly predict
which information the PLI-application will access. For example, with a TF library it
is not possible to traverse design hierarchy, analyze design structure, modify delays or
access RTL code. In the beginning, the TF library was very small and contained a few
C functions. Without any specification, the library evolved over the years and currently
it contains more than 110 C functions. This give cause to inconsistency and redundancy.
Furthermore, the library has problems with portability to different simulators and oper-
ation systems [1][4].

The ACC library is an extension of the TF library. In this library it is possible to
access structural objects in a simulation data structure. This is done by using routines
which can search for the structural objects, but it is limited to only accessing structural
(netlist) based designs. The library cannot access all types of objects, like verilog proce-
dures, continuous assignments, and memory arrays.
Performance is a limitation, because of the possible arbitrary access to objects. The
simulator cannot predict what will be accessed and can thus not optimize the data struc-
ture. The ACC library suffers from many of the same problems as the TF library, like
inconsistency and problems with the portability to different simulators [1][4].

The VPI library replaces the more than 220 C functions (that are complex, inconsis-
tent and have portability problems) by 37 C functions in the IEEE 1364-2001 standard.
The VPI provides full access to the RTL and the behavioral code. The functions are
divided in three categories [1][4]:

• Locating objects

• Reading and modifying information about objects

• Utility routines for tasks (e.g. controlling simulation and file I/O)

These functions, as further explained in chapter 3, are used to define co-simulation
between Verilog and high-level HDLs, like MyHDL and Cocotb.
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2.3.2 VHDL Procedural Interface

The VHDL Procedural Interface (VHPI), as defined the IEEE 1076 standard, gives sup-
port for foreign communication with VHDL and is based on the Verilog Procedural In-
terface. Compared to VPI, VHPI has less support from vendors and some of them stick
to their own interface, like ModelSim & QuestaSim with its Foreign Language Interface
(FLI).

VHDL is a Hardware Description Language (HDL) and largely based on the program-
ming language Ada. Originally, the associated mindset was that the language will mainly
be used stand-alone, and would be self-contained. In the VHDL 93 revision the need for
including non-VHDL code was recognized and resulted in the Foreign attribute.

package P i s
function F return INTEGER;
attribute FOREIGN of F: function i s ” implementation−dependent i n f o ” ;

end package P;

Listing 2.22: The declaration of a foreign function subprogram [9]

The Foreign attribute was very limited in practice. This attribute gave possibilities
for including non-VHDL sub-programs, but there was no support for traversing a VHDL
hierarchy or synchronizing to simulation events. Looking at the capabilities of the Verilog
PLI, vendors often provide mechanisms to communicate with foreign code. Most of these
foreign functionalities are vendor specific and the capabilities vary across products. One of
these interfaces is the Foreign Language Interface, as will be described in the next section.

In 2007, as an amendment to the VHDL 2002 standard, the VHDL Procedural In-
terface was introduced. The VHPI is an application-programming interface to VHDL
simulators, which provides access to a VHDL model during its analysis, elaboration, and
execution [10].

The VHPI consist of two aspects. The first aspect is an information model that
represent the topology and the state of a VHDL model. This model is expressed in an
object-orientated manner as a set of classes with relationships between them. A class is
a data type that have data properties and sub-program operations.
The second aspect is a number of functions that can operate on the information model
to access or affect the state of the VHDL model, and to control the VHDL simulator [10].

An information model is also referred as Static VHDL Design Data, which contains
the behavioural and structural parts of the elaborated model. A VHPI application can
traverse the hierarchy of this model, fetch the properties of VHDL objects, and navigate
between these objects [10][11].
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A VHPI application can access values of Dynamic VHDL Objects, such as signals and
variables. These values can be fetched and modified using different formats as described
in the IEEE standard [10][11].

Callbacks are used to create interaction with the simulation. A callback can be de-
fined object related (e.g. executed when a value changes) or time related (connected to
a simulation phase or executed after a number of simulation steps) [11].

The VHPI also provides foreign mechanisms to execute C code in a VHDL design. A
VHPI application must be registered during simulation startup in order to work properly
[11]. The following examples are copied from [11], to show a small VHPI example.

PLI VOID star tup ( ) {
vhpiForeignDataT fore ignData = {vhpiProcF , ” t e s t . d l l ” , ” t e s t i n i t ” ,

NULL, r e g i s t e r c b } ;
v h p i r e g i s t e r f o r e i g n f (&fore ignData ) ;

}

PLI VOID (∗ v h p i s t a r t u p r o u t i n e s [ ] ) ( ) = { startup , 0L } ;

Listing 2.23: VHPI callback registration [11]

The function-pointer array vphi startup routines is the starting point of a VHPI ap-
plication. The functions in this array will be executed during simulation startup and can
be used to register callbacks or foreign functions.
The function startup registers a foreign procedure, which is connected to the function
register cb and can be executed in the VHDL code, as shown in Listing 2.23.

PLI VOID r e g i s t e r c b ( const struct vhpiCbDataS∗ cb p ) {
vhpiCbDataT cbDataAction ;
vhpiValueT ∗Value ;
vhpiTimeT ∗Time ;

vhpiHandleT hnd = vhpi handle by name ( ” top . memory var” , NULL) ;
vhpiHandleT hndi t r = v h p i i t e r a t o r ( vhpiIndexedNames , hnd ) ;

Value = ( vhpiValueT ∗) mal loc ( s izeof ( vhpiValueT ) ) ;
. . .
Value−>format = vhpiStrVal ;
cbDataAction . va lue = Value ;
cbDataAction . cb r tn = ValueChangeEvent ;
cbDataAction . reason = vhpiCbValueChange ;

while ( vhpiHandleT hndByIdx = vhpi scan ( hnd i t r ) ) {
cbDataAction . obj = hndByIdx ;
v h p i r e g i s t e r c b (&cbDataAction , vhpiReturnCb ) ;

}
}

Listing 2.24: The register cb function [11]
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The function register cb, as shown in Listing 2.24, iterates through the VHDL hierar-
chy (with the function vhpi handle by name) to get a handle to the array memory var.
The vhpiCbValueChange callback is registered to every element of this array, with the
format defined as vphiStrVal. When an element of memory var changes, the function
ValueChangeEvent will be executed, with as argument the changed value (defined as
string).

The VHDL code, as shown in Listing 2.25, defines the C function register cb as a
foreign procedure with the name callback event. This foreign procedure is executed at
the beginning of the process proc1. Within the function register cb, vhpiCbValueChange
callbacks are connected to the array memory var.
The other VHDL statements (in the process proc1 ) modify elements of the memory var
array after certain delays. Each time that an element is modified, the C function Val-
ueChangeEvent will be executed.

l ibrary i e e e ;

entity top i s
end ;

architecture top of top i s
procedure c a l l b a c k e v e n t ;

attribute f o r e i g n of c a l l b a c k e v e n t : procedure i s ”VHPI t e s t ;
t e s t i n i t ” ;

type MEM i s array ( NATURAL range <> ) of BIT VECTOR( 7 downto 0 ) ;
signal memory var : MEM( 3 downto 0 ) ;

begin
proc1 : process
begin

c a l l b a c k e v e n t ;

wait for 1 ps ; memory var (0 ) <= ” 00111000 ” ;
wait for 1 ps ; memory var (2 ) <= ” 10010010 ” ;
wait for 1 ps ; memory var (3 ) <= ” 01101000 ” ;

wait ;
end process ;

end ;

Listing 2.25: The VHDL code which is connected to the VPHI application [11]
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2.3.3 Other Foreign Interfaces

The Foreign Language Interface (FLI) is an interface to provide procedural access to
information within ModelSim and QuestaSim. The FLI consist of C functions, which can
traverse the hierarchy of an HDL design, read and drive VHDL signals, and control (to
some extent) the simulation [17][18].

The FLI has a comparable structure to the VPI and VHPI. When the simulator starts,
it will load the libraries and initialize the functions which are connected through the FLI.
The initialization needs an entry point in the foreign C model. This entry point can allo-
cate memory, register callbacks to the simulator or signal events, and define C procedures
which can be executed within the VHDL code [17].

Although the other mentioned interfaces are standardized, the FLI is not standard-
ized and can only be used with ModelSim (with an SE license) or QuestaSim. Having a
mixed-language simulation license, it is possible to use the FLI for Verilog, but then the
code must be instantiated inside a VHDL top level design [17].

The Direct Programming Interface (DPI) is available for SystemVerilog. The DPI is
standardized in the IEEE-1800 standard and provides mainly functionality for integrating
SystemVerilog code with C code. Values, with a compatible type, can be passed directly
between the two languages. Furthermore, C functions can call SystemVerilog functions
& tasks and SystemVerilog can make concurrent calls to C functions.

With some simulators, such as the Synopsys VCS simulator, the C sources are com-
piled together with the SystemVerilog source-files. The SystemVerilog code is unaware
that it is calling C code, and the C functions are unaware that they are called from
SystemVerilog [19][20].

import ”DPI” function real s i n ( real in ) ;

always @(posedge c l o ck ) begin
s l ope <= s i n ( ang le ) ;

end

Listing 2.26: The imported C function sin in SystemVerilog

The possibilities of the DPI are too limited to define co-simulation. With the DPI
it is not possible to access the simulation data structure or to synchronize to simulation
activity.

To give support for co-simulation it is desirable to traverse the design hierarchy and
to automatically connect the two HDLs. Furthermore, callbacks are needed for synchro-
nization and data exchange. The VPI and VHPI would be appropriate choices, because
they both support these features and are standardized.
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3 VPI

In section 2.3, an introduction is given to the foreign interfaces of the traditional Hard-
ware Description Languages. The Verilog Procedural Interface will be further explained
in this chapter. The VPI is one of the most popular foreign interfaces and, in contrast to
the VHPI and FLI, literature is widely available. The VHPI is implemented in a compa-
rable way, as will be seen in section 6.2, and the assumption is made that this research
can be re-used to define co-simulation with VHDL.
Besides the IEEE standards, the books [1] and [2] will be used as main references for this
chapter.

The IEEE Verilog standard encapsulates the Verilog foreign interfaces. In the IEEE
1364-2001 standard two older versions of the Verilog PLI standard were included, namely
PLI 1.0 (TF/ACC ) and PLI 2.0. In the IEEE 1364-2005 standard, the two older versions
are officially deprecated in favor of the newer VPI, as stated in the following quote:

”IEEE Std 1364-2005 deprecates the Verilog PLI TF and ACC routines that were
contained in previous versions of this standard. These routines were described in Clause
21 through Clause 25, Annex E, and Annex F. The text of these clauses and annexes have
been removed from this version of the standard. The text of these deprecated clauses and
annexes can be found in IEEE Std 1364-2001 ” [4][5].

Some simulators, like ModelSim, follow the latest standards and using deprecated
functions will result in, for example, null-pointers, as shown in the following quote:

”# ** Warning: (vsim-8668) tf nodeinfo has been deprecated by IEEE. Although still
partially supported, memoryval p will always be set to a a null pointer” [16].

In the IEEE 1800-2005 standard, the VPI is extended to be supported with Sys-
temVerilog; but the IEEE 1800-2005 standard referred to, and relied on, the IEEE 1364-
2005 standard. In the IEEE 1800-2009 standard, both the IEEE 1364-2005 and the IEEE
1800-2005 standards were merged. Integration with Verilog-AMS was supported to ensure
interoperability with other languages, such as VHDL and SystemC. The latest standard
is the IEEE 1800-2012 standard, which mainly corrects errors and clarifies aspects of the
language definition in IEEE 1800-2009 [6][7][8].
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CHAPTER 3. VPI

A ’VPI application’ is a user-defined application which can be executed by a Verilog
simulator1. The Verilog language must be used as the top-level design at the simulator
side. Mixed language design provides possibilities for using VHDL with the same inter-
face, but this lays outside the scope of this research.

The Verilog simulator will load and execute the VPI application. The simulator gets
the pre-compiled VPI application as a start-up argument, in which it is possible to regis-
ter functions and callbacks. The VPI application can interact with the simulation using
these functions and callbacks.

The starting point for the VPI application is a special array, called vlog startup routines,
which contains the names of the register functions. These register functions will be ex-
ecuted by the simulator before simulation time 0. Within a register function, callbacks
and system tasks/functions can be registered.

A callback is often used to synchronize with simulation or value events. For example,
when the simulation starts, the simulator will generate a simulation event. With the
cbStartOfSimulation callback this event can be used in a VPI application. In section 3.2
these types of routines will be explained.

A system task/function is a C function which can be used within the Verilog code. To
register this C function a Calltf and a Compiletf routine must be provided. In section 3.1
the registration and usage of C functions within Verilog code will be explained.

With the routine vpi control, certain aspect of a Verilog-simulation can be controlled.
Four operation constants are defined in the IEEE 1364 standard, as shown in Table 3.1,
which can be provided to the routine vpi control. Vendors can add additional flags spe-
cific for their simulator.

Flag Description

vpiStop execute the Verilog system task $stop
vpiFinish execute the Verilog system task $finish
vpiReset execute the Verilog system task $reset
vpiSetInteractiveScope change a simulator’s interactive debug scope

Table 3.1: VPI flags to control a simulation

1The focus will be on the Verilog-language, but the VPI can also be used with the SystemVerilog
language
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3.1 Compiletf & Calltf

The IEEE 1364 Verilog standard defines a number of system tasks and system functions
that are built into all Verilog simulators. Examples of system tasks are $display, $stop,
and $finish. The task $display is often used as print statement. The tasks $stop and
$finish are used to control the simulation. The $stop command suspends the simulation
and puts the simulator in interactive mode. The $finish command exits the simulation.
Examples of standard system functions are $time and $random, to get the current time
and to generate random numbers.
Simulation vendors can add proprietary system tasks and functions, which are specific to
a simulator product. Besides the standard and vendor tasks/functions, the VPI provides
ways to specify additional user-defined system tasks or functions, which are connected to
corresponding, user-defined, C functions.

The names of the user-defined tasks/functions must begin with a dollar sign ($) and
only the following characters are legal in the Verilog names: a− z A− Z 1− 9 $

The IEEE standard does allow overriding built-in system tasks and functions. For
example, if a special random number generator is needed, it could be assigned to $random
to override this system function.

System tasks can only be used as procedural programming statements and are thus
only allowed in a Verilog initial procedure, an always procedure, a Verilog task, or a Ver-
ilog HDL function. System functions are used as expressions and can be called anywhere
a logic value may be used. Furthermore, both the system task and function may have
any number of arguments, including none.

A user-defined system task/function must be registered with the vpi register systf
routine. The struct s vpi systf data must be used to specify the system task/function, as
shown in Table 3.2.

Name Description

type defines if the application is a system task or function
sysfunctype defines the return type of a system function
tfname specifies the name of the system task/function
calltf specifies a pointer to the calltf routine
compiletf specifies a pointer to the compiletf routine
sizetf specifies a pointer to the sizetf routine
user data specifies a pointer to application-allocated information

Table 3.2: The components of the struct s vpi systf data
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Instead of defining one corresponding C function, the user can define up to three C
functions used for a system task/function. These three C functions are named: calltf,
compiletf, and sizetf. The calltf is the actual C function which is connected to the system
task/function and will be executed at simulation run-time.

The compiletf and sizetf are optional functions, which are only executed once before
the simulation starts. The main purpose of these two functions is to verify that a system
task/function is being used correctly. The intent of the compiletf routine is to verify the
correctness of the arguments of all the instances of a specific system task/function.
The sizetf routine is only used with system functions of which their return values are of
the type vpiSizedFunc or vpiSizedSignedFunc. These types indicates that the function re-
turns scalar or vector values2. These scalar or vector values have a user-specified number
of bits and the simulator may need to know how many bits the function will return to
correctly compile the Verilog statement.

always @(posedge c l o ck )
begin

r e s u l t <= $pow(x , y ) ;

Listing 3.1: The user-defined pow-function

In Listing 3.1 the user-defined $pow function is used in a Verilog always procedure.
In Appendix B the VPI routines, needed for this function, are shown.

start start

return return

exactly
2 args?

is arg1
numeric?

is arg2
numeric?

report error
and abort

read
arguments

call C math
pow() function

write result
into simulation

compiletf routine calltf routine

Yes Yes

No
No

No

Yes

Figure 3.1: The schematic overview of the $pow -function [1]

2Functions can also return integer or real number values
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3.2 Simulation Events & Callbacks

Besides using user-defined system tasks/functions, callbacks can be used to synchronize
with the simulation or to indicate value changes. Furthermore, it is possible to use call-
backs when the simulator encounters a user-defined system task/function.

A callback must be registered with the vpi register cb routine. The struct s cb data
must be used to specify the callback, as shown in Table 3.3.

Name Description

reason indicates the callback reason
cb rtn specifies the name of the callback routine
obj specifies the handle to the triggered object, if needed
time indicates when the callback should occur, if needed
value a pointer to an s vpi value structure, if needed
index specifies the index of the changed memory word, if needed
user data specifies a pointer to application-allocated information

Table 3.3: The components of the struct s cb data

The vpi register cb routine returns a handle to the registered callback. The callbacks,
which have not yet been transpired, are called scheduled callbacks. Using the handle,
a scheduled callback can be removed at any time with the vpi remove cb routine. The
handle will no longer be valid after the callback is removed. The removal request will
be ignored when a transpired callback is tried to be removed. Even when a callback has
expired, the handle must be freed with the vpi free object routine to avoid memory leaks.

Within the IEEE standard, a distinction is made between one-time (simulation action)
callbacks and repeating (simulation action) callbacks. Examples of one-time callbacks are
cbEndOfCompile, cbStartOfSimulation, and cbEndOfSimulation. These callbacks are di-
rectly related to the simulation, like the start of the simulation, and will only be executed
once.
Repeating callbacks are for example cbError, cbPLIError, cbTchkViolation, and cbSig-
nal. The first two callbacks are used to indicates a run-time error in the Verilog HDL
or during the executing of a VPI application. The cbTchkViolation callback is used to
indicate if a Verilog HDL timing check violation occurred. The cbSignal callback is used
to respond when an operating system signal occurred.
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Besides simulation action callbacks, simulation time-related callbacks can be used,
which are all one-time and will not be repeated. The following callbacks are available, as
shown in Table 3.4.

Name Description

cbReadWriteSynch callback after execution of all known events
cbReadOnlySynch callback after execution of all events
cbNextSimTime callback in the next simulation time step
cbStartOfSimTime callback at a specific simulation time
cbAfterDelay callback after a specified amount of time

Table 3.4: The VPI simulation time-related callbacks

The last three callbacks, cbNextSimTime, cbStartOfSimTime, and cbAfterDelay, are
called before execution of any simulation events of the specified time step. The moment
when the first two callbacks, cbReadWriteSynch and cbReadOnlySynch, are called (within
a certain time step) is not known in advance and is simulator dependent.

The IEEE 1364 Verilog standard contains a generalized description of an event sched-
uler algorithm for Verilog simulators [4][5]. Within this description, four distinct regions
of events, called slots, are defined within a simulation step. Within each slot, certain
types of event are scheduled to be executed. A simplified overview of the slots is shown
below [1].

Current Simulation Time:

• Slot 1: Active Events

– Evaluate nonblocking assignments.

– Evaluate and assign blocking assignments.

– Evaluate and assign continuous assignments.

– Evaluate the changes on primitive inputs & schedule changes to outputs.

– Print outputs from scheduled $display and $write tasks.

– Execute VPI calltf routines.

• Slot 2: Nonblocking Assignment Update Events

– Assign nonblocking assignments.

• Slot 3: Read-write Synchronization

– Call registered cbReadWriteSynch callbacks.

• Slot 4: Read-only Synchronization

– Call registered cbReadOnlySynch callbacks.
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The IEEE standard gives freedom on how to implement the internal event scheduling
algorithm. This freedom is, for example, needed to create competitive algorithms, but
sometimes it is also required for the behaviour of different types of hardware [1].

The events in Slot 1 may be interleaved in any order. Furthermore, Slot 2 and Slot 3
can be reversed. For simulation results the affects of the event ordering should not mat-
ter, but this ambiguity may effect the results of a calltf routine, as shown in Listing 3.2.

always @( a or b)
begin

c = a + b ; /∗ b l o c k i n g assignment ∗/
d <= a − b ; /∗ non−b l o c k i n g assignment ∗/
$my func ( c , d , e ) ; /∗ c a l l t f r ou t ine ∗/

end

assign e = ∼c ; /∗ cont inuous assignment ∗/

Listing 3.2: A possible uncertain event interleaving

The order in which the concurrent continuous assignment and the calltf routine are
executed is simulator depended, and thus the argument ’e’ is ambiguous. A solution, for
this ordering problem, can be to schedule a cbReadWriteSynch callback in the calltf rou-
tine $my func. The cbReadWriteSynch callback will be scheduled after all active events
have been processed (Slot 3 ). But by using a cbReadWriteSynch callback, the value of
’d ’ will become ambiguous, because a simulator can reverse Slot 2 and Slot 3.

The simulator will first execute all scheduled active events in Slot 1, after which it will
proceed to Slot 2. The events in Slot 2 will be moved to the active event lists and then
these new events will be processed. While processing the events, additional active events
can be scheduled. When all active events of Slot 1 and Slot 2 have been processed,
the simulator will move to Slot 3. The new active events will be processed again and
additional event can be scheduled. The loop through the three slots will continue until
all these slots are completely empty, after which the simulation will proceed to Slot 4.
It is important to notice that is possible that Slot 4 will never be reached, i.e. by defining
zero-delay infinite loops in the Verilog code.

The definition of Slot 4, that it will be executed after all active events are processed,
does affect the scheduling possibilities of the cbReadOnlySynch callback. In this callback
only event for future simulation steps, and thus not for the current simulation step, can
be scheduled. In the other callbacks, events for the current simulation step and for future
simulation steps can be scheduled.
Slot 4 can thus be seen as the true end of a simulation step.
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In the past there have been discussions about the interleaving and reordering ambi-
guity. A proposal was to add two additional callbacks: cbBeforeNBA and cbAfterNBA.
The callback cbBeforeNBA should be executed after all scheduled active events have
been processed, but before the updates of any scheduled nonblocking assignments. The
callback cbAfterNBA would occur after all scheduled nonblocking assignments have been
processed. Simulators can implement these two additional callbacks, because the Verilog
standard allows to add simulator-specific callback-reasons.

The last major category of callback reasons are the simulation events, such as (logic)
value changes and the execution of procedural statements. Simulation event-related call-
backs can occur more than once and are automatically defined as repeated callbacks.
Table 3.5 lists the available VPI simulation event-related callbacks.

Name Description

cbValueChange callback after a logic or strength value changes
cbStmt callback before execution of a procedural statement
cbAssign callback after execution of a procedural assign
cbDeassign callback after execution of a procedural de-assign
cbForce callback after a force has occurred
cbRelease callback after a release has occurred
cbDisable callback after execution of a procedural disable

Table 3.5: The VPI simulation event-related callbacks

In some simulators, the cbValueChange callback is used to generate Value Change
Dump (VCD) files. VCD is an ASCII-based format for dumpfiles used in various (Ver-
ilog) simulators. The VCD format is described in the IEEE 1364-1995 standard and an
extended VCD format is defined in the IEEE 1364-2001 standard. The original format
gives support for logging the 4 logic values3. The extended format also gave support for
the logging of strength values and the directionality of signals.

3The 4 logic values are described in section 3.4.
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3.3 Traversing hierarchy

The Verilog hierarchy is defined with object diagrams and relationships between several
diagrams. A Verilog design can be traversed starting from the top-modules to anywhere
in the design. Table 3.6 shows the specifications as defined in the module-object-diagram.

Name Description

vpiType returns vpiModule
vpiTopModule bool if the module is a top-level module
vpiCellInstance bool if the module is tagged as a cell
vpiArray bool if the module is part of an instance array
vpiProtected bool if the module source is protected
vpiTimeUnit the module time unit
vpiTimePrecision the module time precision
vpiDefNetType the default net type
vpiUnconnDrive the unconnected port drive
vpiDefDelayMode the delay mode of the module
vpiName the instance name of the module
vpiFullName the full hierarchical path name of the module
vpiDefName the definition name of the module
vpiFile the file name containing the module instance
vpiLineNo the file line number containing the module instance
vpiDefFile the file name containing the module definition
vpiDefLineNo the file line number containing the module definition
vpiConfig the library/cell names of the corresponding config statement
vpiLibrary the name of the corresponding configuration library
vpiCell the name of the corresponding configuration cell

Table 3.6: The VPI module-object properties

The module time unit and precision can be retrieved with the vpiTimeUnit and
vpiTimePrecision. The simulation time unit and precision can be accessed by using
a null-pointer as module-handle, . These time scale factors are represented as the mag-
nitude of 1 second, which is the exponent of 1 second times 10n (values from -15 untill
2 are allowed). The value ’-15’ will indicate 1 femtosecond and the value ’2’ will denote
100 seconds.

Besides the module specific constants, as shown in Table 3.6, other constants like
vpiModule, vpiPort, vpiNet, vpiReg, vpiVariables, vpiParameter, vpiPrimitive, and vpi-
ModPath can be used to access the internals of a module.
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void print module names ( vpiHandle handle )
{

vpiHandle mod itr , mod handle ;

mod itr = v p i i t e r a t e ( vpiModule , handle ) ;
i f ( mod itr != NULL)
{

while ( ( mod handle = vp i s can ( mod itr ) ) != NULL)
{

v p i p r i n t f ( ”%s \n” , v p i g e t s t r ( vpiFullName , mod handle ) ) ;

pr int module names ( mod handle ) ;
}

}
}

Listing 3.3: Iterating through the VPI modules

As shown in Listing 3.3, the routines vpi iterate and vpi scan can be used to traverse
through a Verilog hierarchy. An iterator for the top-modules in the Verilog design will
be given when a null-pointer is used as handle.

Instead of using the vpiModule constant, the vpiModPath can be used to iterate
through all the available module paths. Within a module path it is possible to iterate
through all the available path terms to obtain handles for the path input terminals, out-
put terminals, and data terminals.

Handlers to the ports of a module can be obtained with the constant vpiPort. To au-
tomatically recognize the modules in a design with the available ports, the combination
of vpiModule and vpiPort is very powerful. Within a port, specifications like name, direc-
tion, and bit-size can be retrieved and used to automatically map certain signals within
a co-simulation design. Furthermore, using the vpiNet, vpiReg, and vpiVariable objects,
the current values within a module can be retrieved, as will be explained in section 3.4.

void p r i n t p o r t s p e c s ( vpiHandle mod handle )
{

vpiHandle p o r t i t r , por t hand le ;

p o r t i t r = v p i i t e r a t e ( vpiPort , mod handle ) ;
i f ( p o r t i t r != NULL)
{

while ( ( por t hand le = vp i s can ( p o r t i t r ) ) != NULL)
{

v p i p r i n t f ( ”%s − %d − %d\n” , v p i g e t s t r ( vpiName , por t hand le ) ,
v p i g e t ( vp iD i rec t i on , por t hand le ) , v p i g e t ( vp iS i ze , por t hand le ) ) ;

}
}

}

Listing 3.4: Iterating through the VPI ports
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Within a module-port, besides using properties like vpiName, vpiDirection, and vpi-
Size, the properties vpiLowConn and vpiHighConn can be used to iterate through the
connections of a port. The lowconn is the signal inside the module that is connected to
the port. The highconn is the signal outside the module that is connected to the port.
Both the lowconn and highconn are defined as an expression, because different types can
be connected to a port. Within a module, the allowed types are nets, regs, and variables.
An expression can be scalar or a vector. Furthermore, the lowconn can have different
port-directions, referred as a mixed IO port.

vpiModule vpiFullName

vpiPort

vpiType

vpiDirection

vpiHighConn

vpiLowConn

Figure 3.2: A part of the VPI object diagram
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3.4 Reading & Modifying Values

The values of objects, with a value property in the VPI object diagrams, can be read or
modified with VPI routines. Examples of these objects are: net, reg, integer, and time
variable data types. Constants, like parameter, specparam, and literals are defined as
read only.
To access the value of an object, a handle for the object must be obtained. The routines
as shown in section 3.3 can be used to the obtain a handle.

The Verilog standard supports 4 logic values: ’0’, ’1’, ’Z’, and ’X’. Furthermore, there
are ambiguous logic and strength values, like ’L’ and ’H’, which are only supported to a
certain extent. The VPI routines provides several ways to automatically translate values
between Verilog and C. The following C types are supported:

• A 32-bit C integer → a single integer is used to represent the Verilog value. The
logic values ’Z’ and ’X’ are ignored.

• A C double → the real data type in Verilog is defined as double-precision floating
point, which can directly be converted to C doubles. This type can also be used for
scalar and vector values.

• A C string→ Verilog scalar and vector logic values can be converted to a C character
string. The value will be converted to the characters ’0’, ’1’, ’Z’, and ’X’.

• A C constant → Verilog scalar values can be converted to a C integer constant.
The following constants are supported: vpi0, vpi1, vpiZ, vpiX, vpiZ, vpiH, and vpiL.

• A C aval/bval structure → Verilog scalar and vector logic values can be converted
to a C structure, which encodes each bit of a Verilog 4-state value to a pair of bits
in C. An array of aval/bval pairs can be used to encode Verilog vectors of any size.

• A C strength structure → Verilog scalar and vector logic values can be converted
to a C structure, in which the logic values are represented as the C constants. The
strength levels are represented as a pair of 32-bit C integers.

The format used to translate values between Verilog and C can have an impact on the
run-time performance of a VPI application. For Verilog scalars and vectors, using the
aval/bval pair will result in the fastest run-time performance. The least efficient method
is using the C string.
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The aval value denotes a ’0’ or a ’1’ when the bval is a ’0’. If the bval is a ’1’, the aval
denotes a ’Z’ (0) or a ’X’ (1). An array of aval/bval pairs is denoted as the vpiVectorVal
format.

The Verilog language does support any numbering convention. Any natural number
can be used to indicate the starting and ending bit of a Verilog vector.

reg [ 3 9 : 0 ] data1 ; /∗ LSB i s b i t 0 ∗/
reg [ 0 : 3 9 ] data2 ; /∗ LSB i s b i t 39 ∗/
reg [ 4 0 : 1 ] data3 ; /∗ LSB i s b i t 1 ∗/

Listing 3.5: Valid vector declarations [1]

However, the Verilog numbering convention does not effect the vpiVectorVal format.
The Least Significant Bit (LSB) of the Verilog vector will always be the first bit in the
aval/bval array and the Most Significant Bit (MSB) will always be the last bit in the
array, as shown in Figure 3.3.

1 2 39 40

1 8 9 39 40

msb lsb msb lsb

msb lsb msb lsb

msb of data lsb of data

data[1:40]

Verilog Vector

Verilog bits

Bit Mapping

aval bits

bval bits

32-bit
C integers

unused

aval/bval pair [1] aval/bval pair [0]

array of aval/bval pairs

. . .

. . . . . .

. . . . . . . . .

. . . . . . . . .

Figure 3.3: The conversion from a Verilog vector to a vpiVectorVal [1]
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The value of an object can be retrieved with the vpi get value routine. This function
has two arguments; the first one is the handle to the object and the second one is a pointer
to the struct s vpi value, in which the format has to be set. The format vpiVectorVal is
denoted as an array of the struct s vpi vecval, which contains two integers: aval and bval.
The array of s vpi vecval structures is allocated by the simulator and is only guaranteed
to be valid untill the next call to vpi get value.
The size of the vpiVectorVal can be determined with the VPI routine vpi get and the
vpiSize constant.

v e c t o r s i z e = v p i g e t ( vp iS i ze , vec to r h ) ;

v e c t o r v a l . format = vpiVectorVal ;
v p i g e t v a l u e ( vector h , &v e c t o r v a l ) ;

Listing 3.6: The VPI routines vpi get & vpi get value

A value can be written into a Verilog simulation with the VPI vpi put value routine.
In this case, the VPI application must allocate and maintain all needed storage elements.
The vpi put value routine has four arguments, from which the first two are the same as
the vpi get value routine. The third argument is a pointer to the struct s vpi time, in
which a propagation delay value can be set. With a delay value of zero, the value will
be written in the current simulation step. With a value larger than zero, the value will
be written in future simulation steps. The fourth argument is a flag denoting the prop-
agation delay. Examples of this flag are vpiNoDelay (using no delay), vpiInertialDelay
(using the simulator’s event scheduling), and vpiPureTransportDelay (using a transport
delay).

v p i t i m e s . type = vpiSimTime ; /∗ r e l a t i v e to s imu la t i on time ∗/
v p i t i m e s . high = 0 ; /∗ high & low are used t o g e t h e r . . . ∗/
v p i t i m e s . low = 0 ; /∗ . . . as a 64 b i t i n t e g e r ∗/

v e c t o r v a l . format = vpiVectorVal ;
vec to r . va lue . vec to r = . . .
vp i pu t va lue ( vector h , &vec to r va l , &v p i t i m e s , v p i I n e r t i a l D e l a y ) ;

Listing 3.7: The VPI routine vpi put value

The vpi put value routine returns a scheduled event handle. With the flag vpiSched-
uled the simulator will indicate if the event is still scheduled or has already transpired.
A scheduled event can be cancelled using the flag vpiCancelFlag.

event h = vp i put va lue ( . . .

/∗ check i f event s t i l l s chedu l ed ∗/
i f ( v p i g e t ( vpiScheduled , event h ) )

vp i pu t va lue ( event h , NULL, NULL, vpiCancelFlag ) ; /∗ cance l event ∗/

Listing 3.8: The scheduled event
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4 Implementation

In this chapter, the implementation of the co-simulation between CλaSH and ’Icarus
Verilog ’ will be discussed. Icarus Verilog is an open-source verilog simulator, which sup-
ports a large part of the VPI-standard. The implementation can be checked with other
simulators in a later stage. As will be shown in chapter 5, the implementation of some
VPI routines differ by using other simulators.

4.1 Overview

The Verilog module(s) with the appropriate input and output types have to be defined
at user-level. The module(s) can be defined directly as Verilog code and/or as existing
Verilog files. This information will be, without any parsing, forwarded to the Verilog
simulator. Besides the definition of the module(s), the user has to define the name of the
top-entity and to specify which Verilog simulator will be used for co-simulation.

As explained in section 3.4, the vpiVectorVal is the most efficient type for data ex-
change. For a synchronous sequential circuit, data exchange will occur every clock-cycle;
making it an array of vpiVectorVal. Within CλaSH, the logic values ’X’ and ’Z’ will be
ignored and the appropriate type will be the so called ’SignalStream’.

type SignalStream = [[Int32]]

The same type can also be used for a combinational circuit, and then the outer list
will have a length of 1. Before and after the co-simulation, every input and output value
have to be converted from and to the user defined types, as will be explained in section 4.2.

The co-simulation uses the Foreign Function Interface (FFI). By using the FFI, C
functions can be called in CλaSH. The C code will execute the operating system de-
pended tasks, like starting the Verilog simulator and making the communication between
the two processes possible. In subsection 4.2.3 this implementation will be explained in
more detail.

The VPI implementation, which will be executed by the Verilog simulator, modifies
the signals in the Verilog simulator and requests the simulator to schedule events (call-
backs), as will be explained in section 4.3.
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The implementation can be visualized, as shown in Figure 4.1.

Conversion

Start Sim.

Sim. Step

Conversion End Sim.

Start Sim.

After Delay

Value Exch.

End Sim.

SimulatorGC
values

sources/settings

values

lazy eval.

control sim

execute

Figure 4.1: The schematic overview of the co-simulation implementation

The lightgray dashed line, which crosses the label ’execute’, can be seen as a boundary
between the CλaSH and VPI implementation. At the CλaSH side, the values will first
be converted to SignalStreams, after which the co-simulation is started.
The Start Sim function starts the Verilog simulator with the given Verilog modules. The
Verilog simulator will compile the Verilog code and schedule the VPI Start Sim function.
The VPI implementation will iterate through the top-module to search for available input
and output ports. This information will be shared with the CλaSH implementation to
check the correctness of the input and output types.

The higher-order Haskell function mapAccumL is used to perform the simulation steps.
With the mapAccumL, the Sim Step function will be executed using lazy evaluation. Lazy
evaluation is ideal for feedback loops, but has a disadvantage for lazy IO. With lazy IO,
the moment to release the acquired resources is unknown. This problem of lazy IO is
solved by using a finalizer, which is connected to the Haskell’s Garbage Collector (GC).
The finalizer will execute the End Sim function, which will finish the Verilog simulator
and deallocate the allocated memory.

The VPI function After Delay requests the simulator to schedule new callbacks after a
certain delay. The Value Exch function, defined with these callbacks, will modify signals
inside the simulator. Furthermore, the End Sim function will free allocated memory.

Finally, the output values will be converted back to the user-defined types.
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The example, as visible in Listing 4.1, shows how the co-simulation between CλaSH
and Verilog is defined at user-level. The definition of the Verilog module mult is defined
as a QuasiQuoter. A QuasiQuoter makes it possible to define custom and domain-specific
syntax, in this case the Verilog syntax.

v e r i l o g m u l t : : t ∼ Signed 100 ⇒ S igna l t → S igna l t → S igna l t
v e r i l o g m u l t = coSim source I ca ru s ”mult”

where
source = [ v e r i l o g | module mult (Out , Left , Right ) ;

parameter data width = 100 ;

input s igned [ 0 : data width −1] Le f t ;
input s igned [ 0 : data width −1] Right ;
output s igned [ 0 : data width −1] Out ;

a s s i g n Out = Le f t ∗ Right ;

endmodule | ]

Listing 4.1: A co-simulation example between CλaSH and Verilog

The function coSim act as a polyvariadic function, meaning that the number and the
types of the arguments are not fixed. However, the first three arguments are fixed.
The first argument is the source, in this case one Verilog module. As second argument, a
Verilog simulator is defined, which will compile and simulate the Verilog code. The name
of the top-module must be given as third argument, because no Verilog parser is defined
in CλaSH.

Type definitions are needed to make the conversion to and from a SignalStream. The
two inputs and one output are defined with the type Signal t, with ’t ’ defined as Signed
100. The types has to match the input and output ports in the Verilog module. The
verilog ports are iterated from left to right, giving Left as first input port and Right as
second input port. The output port Out is connected to the output value.

λ> l e t a = fromList [ 1 . . ]
λ> sampleN 13 $ v e r i l o g m u l t a a
[ 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100 , 121 , 144 , 169 ]

Listing 4.2: Execution of the verilog mult function

The function verilog mult is executed by using the same input values. As expected
the function will calculate the square, as shown in Listing 4.2
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4.2 CλaSH

The CλaSH implementation is written in two languages, namely Haskell and C. The con-
version to and from the SignalStreams is fully made in Haskell and the co-simulation is
implemented using the FFI, as will be explained in subsection 4.2.3.

Listing 4.1, as shown in the previous section, shows that the co-simulation implemen-
tation is accessible with the function coSim. This function has the following type:

(CoSim r) ⇒ CoSimSettings → CoSimulator → String → r

The first argument is a ’tuple’ containing 6 values, as shown in Table 4.1 and List-
ing 4.3. The second argument indicates which Verilog simulator will be used and the
third argument denotes the name of the top-entity.

Description

1 An Int, which denotes the HDL; for example 1 = Verilog
2 An Int, which denotes the length of a clock period
3 A Bool, which denotes if a reset phase is used
4 A String containing the module which will be used as top-entity
5 A List of Strings containing file-sources, which can be used as sub-modules
6 A Bool used to enable/disable the standard output

Table 4.1: The components of the tuple CoSimSettings

type CoSimSettings = ( Int , Int , Bool , Str ing , [ S t r ing ] , Bool )

Listing 4.3: The type CoSimSettings

The CoSimSettings is on purpose used as first argument, because it will be generated
by a QuasiQuoter. In section 4.4 the usage of QuasiQuotation and the generation of the
CoSimSettings will be further explained.
The second and third value in the CoSimSettings are used for a synchronous sequential
circuit, as will be explained in section 4.5.

The other argument(s) and the output(s) are defined with the type ’r ’. A constraint
is added such that the type ’r ’ must be an instance of the class CoSim. In the following
two sections this type will be explained, which will be used to make the conversion to
and from SignalStream possible.
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4.2.1 Type Conversion

The ANSI C standard only guarantees the minimum width of C data types. For example
the C ’int’ can be 16 bits, 32 bits or 64 bits wide, depending on the operating system.
The VPI provides special data-types, such as PLI INT32, with a guaranteed number of
bits [1][4].

The user-defined types in CλaSH can exceed the 32-bits and thus the type vpiVec-
torVal, as explained in section 3.4, will be used. Within the vpiVectorVal, every value is
defined as a vector containing the Verilog 4-state logic values: ’0’, ’1’, ’Z’, and ’X’. CλaSH
only works with the logic values ’0’ and ’1’ and thus the ’Z’ and ’X’ values will be ignored.

The first step is to convert a CλaSH type to a list of 32-bit integers. The function
bitSizeMaybe, from the Data.Bits module, will be used to retrieve the number of bits in
a given type. This function returns Nothing for types that do not have a fixed bit size.
For example, the Haskell type Integer is an arbitrary precision type and can hold any
number up to the limit of the machine’s memory.

The number of bits has to be divided by 32 and rounded up to the nearest whole
number, to define the length of the output list. This division can be defined using a right
shift. Using a mapAccumR, the function wordPack’ will slide over the user defined value
to group the bits into 32-bits values, as shown in Listing 4.4.

wordPack : : ( I n t e g r a l a , B i t s a ) ⇒ a → [ Int32 ]
wordPack x

| i s J u s t s i z e = snd $ L .mapAccumR wordPack ’ x [ 1 . . wordSize ]
| otherwi se = e r r o r ”Value does not have a f i x e d b i t s i z e ”
where

s i z e = bitSizeMaybe x
wordSize = 1 + sh i f tR ( fromJust s i z e − 1) 5

wordPack ’ : : ( I n t e g r a l a , B i t s a ) ⇒ a → b → ( a , Int32 )
wordPack ’ x = ( sh i f tR x 32 , f r omInteg ra l x )

Listing 4.4: Conversion to a list of 32-bit integers with the function wordPack

Within every iteration, the function fromIntegral will convert the given type to an
Int32. If the given type consist of less than 32 bits, sign extension will be applied. If the
given type is larger than 32 bits, bits will be cut off. In both cases this is fine, because
the Verilog simulator will only take the needed bits.

The input type for the function wordPack has as constraint Integral a and Bits a.
The class Integral can be seen as a whole-number class, but the CλaSH types SFixed and
UFixed are fixed point types. To apply the wordPack function on fixed point types, the
CλaSH types will first be converted to a vector of bits: BitVector n.
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BitVector n is defined as an unsigned type, with the bits indices in descending order.
Furthermore, product types, like tuples and vectors, can also be converted to this bit
vector. The CλaSH function pack makes the conversion possible, as shown in Listing 4.5.

λ> pack (8 : : Unsigned 6)
00 1000
λ> wordPack i t
[ 8 ]

λ> pack ( 3 . 7 5 : : SFixed 3 3)
01 1110
λ> wordPack i t
[ 3 0 ]

λ> pack (34350000000 : : Signed 40)
0000 0111 1111 1111 0110 1011 0110 0111 1000 0000
λ> wordPack i t
[7 ,−9738368]

λ> pack (5 : : Signed 8 , 5 : : Unsigned 8)
0000 0101 0000 0101
λ> wordPack i t
[ 1 2 8 5 ]

λ> pack (((0:>1:>Ni l ) :> (2:>3:>Ni l ) :> Ni l ) : : Vec 2 ( Vec 2 ( Signed 4) ) )
0000 0001 0010 0011
λ> wordPack i t
[ 2 9 1 ]

Listing 4.5: Conversion to BitVector n and [Int32 ]

To make the conversion from [Int32] to a CλaSH type, the combination of the CλaSH
function unpack and the function wordUnpack can be used. The wordUnpack function
converts the list of 32 bits integers to the BitVector n, after which the pack function
makes the conversion to the CλaSH type possible.

The function wordUnpack iterates over the list with the higher order function foldl
and applies a bitwise OR to set the bits in the CλaSH type. The function fromIntegral
converts a Int32 to the bit vector. In case of negative numbers and a bit size larger than
32 bits, sign extension can influence the end result, as shown in Listing 4.6

λ> pack (233 − 1 : : Signed 36)
0001 1111 1111 1111 1111 1111 1111 1111 1111

λ> wordPack i t
[1 ,−1]

λ> pack ( f r omInteg ra l $ ( i t P . ! ! 1) : : Signed 36)
1111 1111 1111 1111 1111 1111 1111 1111 1111

Listing 4.6: Influence of sign extension
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Using a bitwise AND with the value 232 − 1 (4294967295) will avoid the possible
consequences of sign-extension. Listing 4.7 shows the implementation of the wordUnpack
function.

wordUnpack : : ( I n t e g r a l a , B i t s a ) ⇒ [ Int32 ] → a
wordUnpack = P. f o l d l wordUnpack ’ 0

wordUnpack ’ : : ( I n t e g r a l a , B i t s a ) ⇒ a → Int32 → a
wordUnpack ’ x y = ( s h i f t L x 32) . | . (4294967295 .&. ( f r omInteg ra l y ) )

Listing 4.7: Conversion from a list of 32-bit integers with the function wordUnpack

As demonstrated in Listing 4.8, the functions unpack and wordUnpack can be used
to to make the conversion from a list of 32 bit integers to a CλaSH type.

λ> wordPack $ pack (8589934591 : : Signed 36) −− 233 − 1
[1 ,−1]
λ> unpack $ wordUnpack i t : : Signed 36
8589934591

λ> pack (((0:>1:>Ni l ) :> (2:>3:>Ni l ) :> Ni l ) : : Vec 2 ( Vec 2 ( Signed 4) ) )
0000 0001 0010 0011
λ> wordPack i t
[ 2 9 1 ]
λ> unpack $ wordUnpack i t : : Vec 2 ( Vec 2 ( Signed 4) )
<<0,1>,<2,3>>

Listing 4.8: Conversion from [Int32 ]
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4.2.2 Type Classes

The functions, as explained in subsection 4.2.1, can be used to convert a CλaSH type to
and from a list of 32 bit Integers. However, only a single CλaSH value can be converted
to [Int32]. For a sequential synchronous circuit, a stream of CλaSH values has to be
converted to a 2D list of 32 bit Integers.
Haskell is a strongly typed language and it is not possible to create a function which
supports both a single CλaSH type and a stream of CλaSH types. However, within a
type-class, instances can be defined to give support for different types.

Instead of using the type [Int32], the type [[Int32]] will be used for both combinational
and sequential synchronous circuits. In case of a combinational circuit the outer list will
have a length of 1. The type [[Int32]] will be called SignalStream from now on.

Inside the class CoSimType two functions will be created: toSignalStream and from-
SignalStream, as shown Listing 4.9.

c l a s s CoSimType t where

toSignalStream : : t → SignalStream
fromSignalStream : : SignalStream → t

Listing 4.9: The class CoSimType t

The first supported type is the required type for the composition of the wordPack and
pack functions. This required type will be called CLaSHType.

type CLaSHType a = (KnownNat ( B i tS i z e a ) , KnownNat ( B i tS i z e a + 1) ,
KnownNat ( B i tS i z e a + 2) , BitPack a )

Listing 4.10: The required type for a CλaSH value

In the first instance, the functions as defined in the subsection 4.2.1 will be used to
convert to and from a list of 32 bit Integers. Furtermore, an empty list will be appended
to convert to a 2D list. The function head from Haskell’s Prelude, will be used to convert
a 2D to a 1D list, as shown in Listing 4.11.

i n s t anc e {−# OVERLAPPABLE #−} CLaSHType a ⇒ CoSimType a where

toSignalStream = ( : [ ] ) . wordPack . pack
fromSignalStream = unpack . wordUnpack . Prelude . head

Listing 4.11: The instance for a single CλaSH value
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The CλaSH type Signal is used, as a stream of values, for a sequential synchronous
circuit. With the functions fromList and sample, a Signal can be converted to and from
a list. In the instance as shown in Listing 4.12, the ’conversion’ functions will be mapped
over the stream of values.

i n s t anc e {−# OVERLAPPING #−} CLaSHType a ⇒ CoSimType ( Signa l ’ c l k a ) where

toSignalStream = Prelude .map ( wordPack . pack ) . sample
fromSignalStream = fromList . Prelude .map ( unpack . wordUnpack )

Listing 4.12: The instance for a CλaSH Signal

Other instances can be added easily. For example, Listing 4.13 shows the support for
a list with Integral values.

i n s t anc e {−# OVERLAPPING #−} ( I n t e g r a l a , B i t s a ) ⇒ CoSimType [ a ] where

toSignalStream = Prelude .map wordPack
fromSignalStream = Prelude . map wordUnpack

Listing 4.13: The instance for list with Integer values

Using the class CoSimType, a CλaSH type can be converted to a SignalStream. Multi-
ple CλaSH types should be converted to a list of SignalStreams. The function parseInput,
as shown in Listing 4.14, will convert a CλaSH type and add the resulting SignalStream
to the given list of SignalStreams.

parseInput : : CoSimType t ⇒ [ S ignalStream ] → t → [ S ignalStream ]
parseInput xs x = toSignalStream x : xs

Listing 4.14: The parseInput function

The function parseOutput will extract one SignalStream from a list of SignalStream
and convert it to a CλaSH type, as shown in Listing 4.15. In this case a function ’f ’ will
be given as argument, to convert the input SignalStreams to output SignalStreams. This
conversion from input to output arguments will only be done as a given boolean has the
value False. As will be explained in subsection 4.2.3, the function ’f ’ denotes the starting
point of the co-simulation.

parseOutput : : CoSimType t ⇒ ( [ S ignalStream ] → [ S ignalStream ] ) → Bool
→ [ S ignalStream ] → ( [ S ignalStream ] , t )

parseOutput f u xs
| qs == [ ] = e r r o r ” Simulator expect s l e s s output por t s ”
| otherwi se = ( ys , fromSignalStream y )
where

( y : ys ) = qs
qs | u = xs

| otherwi s e = f $ Prelude . r e v e r s e xs

Listing 4.15: The parseOutput function

47



4.2. CλASH CHAPTER 4. IMPLEMENTATION

For co-simulation it should be possible to have multiple input and output arguments.
In the ideal case, the function parseInput should be mapped over all the input arguments.
But defining a function with a variable number of arguments, consisting of different types
is normally not allowed. A variable number of inputs can be defined in a list, but a list
is homogeneous and thus every value must have the same type. Heterogeneous collec-
tions are available, for example tuples, but their length is fixed and always finite. For
co-simulation, heterogeneous collections with a variable length are desirable to specify
the input and output ports.

In the literature different solutions are suggested to define the input and output argu-
ments as heterogeneous collections with a variable length. Examples are the use of HList
[36], algebraic or universal (dynamic) types. These approaches have disadvantages, like
often type-switching or limited support for adding new types.

A more desirable approach is the use of another type class to define a poly-variadic
function. A variadic function is a function of indefinite arity, meaning that the number of
arguments is variable. Poly indicates that arguments with different types can be applied.

The class CoSim is defined to create the poly-variadic function coSim’ which makes
the conversion of the multiple arguments to and from a SignalStream possible.

c l a s s CoSim r where

coSim ’ : : CoSimSettings ’ → Bool → [ S ignalStream ] → r

Listing 4.16: The class CoSim r

The type CoSimSettings’ denotes the settings needed for starting the co-simulation,
as will be explained in the subsection 4.2.3. The Bool indicates when the co-simulation
should be started. At the beginning, the value will be False. After all input arguments
are collected, the co-simulation will start and the value will change to True.
The list of SignalStreams will be used to collect all the input arguments. After the co-
simulation is started, this list will be used to save all the output SignalStreams.
The type ’r ’ denotes the types of the input and output values. Like the CoSimType class,
instances will be created to give support for multiple input and output types.

A poly-variadic function can be created because of the definition of a Haskell func-
tion. All Haskell functions are considered curried: ”all functions in Haskell take just one
argument” [37]. Arrow notation associates to the right, as shown in the following example:

f :: a → b → c → d is the same as f :: a → (b → (c → d))

However, function application associates to the left :

f a b c d is the same as (((f a) b) c) d
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Partial application can be used to define the CoSim instance for collecting all the
input arguments. This instance will recursively convert all the input arguments to a
SignalStream, as shown in Listing 4.17.

i n s t anc e {−# OVERLAPPING #−} (CoSimType t , CoSim r ) ⇒ CoSim ( t → r ) where

coSim ’ s u xs = coSim ’ s u . parseInput xs

Listing 4.17: The CoSim instance for collecting all the input arguments

Multiple output arguments are defined as a tuple, in which the right side is defined
as a recursive tuple. Within this instance, the output SignalStreams are recursively con-
verted to the user-defined CλaSH types.

i n s t anc e {−# OVERLAPPING #−} (CoSimType t , CoSim r ) ⇒ CoSim ( t , r ) where

coSim ’ s u xs = (y ’ , y ’ ’ )
where

( ys , y ’ ) = parseOutput ( coSimStart s ) u xs
y ’ ’ = coSim ’ s True ys

Listing 4.18: The CoSim instance for converting multiple outputs values

As visible in Listing 4.18, the function coSimStart, partial applied with the CoSim-
Settings’, is given as argument to the function parseOutput. The function coSimStart is
the starting point of the co-simulation, as will be explained in subsection 4.2.3.

The last instance will convert one output value, as shown in Listing 4.19. This in-
stance can be seen as the stopping point of the recursive conversions of the input and
output values. It is important to notice that this instance will be executed exactly once.
The co-simulation can thus only be performed with at least one output value.

i n s t anc e {−# OVERLAPPABLE #−} CoSimType t ⇒ CoSim t where

coSim ’ s u xs
| ys == [ ] = y ’
| otherwi s e = e r r o r ” Simulator expect s more output por t s ”
where

( ys , y ’ ) = parseOutput ( coSimStart s ) u xs

Listing 4.19: The CoSim instance for converting one output value
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The type conversion process can be shown graphically, as visible in Figure 4.2.
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Figure 4.2: The schematic overview of the input and output conversions
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4.2.3 Foreign Function Interface

The Foreign Function Interface (FFI), as explained in subsection 2.1.1, will be used
to execute C-functions in CλaSH. The FFI is an extension to the Haskell standard to
communicate with foreign languages. Foreign imports will be made and the imported
functions can be executed. It is also possible to inline the FFI using Template Haskell
(TH) and then it is not needed to implicitly define the foreign imports. For example
inline-c, a package to embed C-code in Haskell, uses this principal.
This implementation will not uses packages like inline-c and stick with the FFI. One of
the main reasons is that inline-c will create files for every C-function and these files will
be compiled/linked on the fly. This will create overhead, because the C-functions, used
in the co-simulation, will not be edited on user-level and can be statically compiled and
linked before running any simulation.

As a recap, the user will call the coSim function, in which the CoSimSettings, the
CoSimulator, and the name of the top-entity will be put together in a tuple, called CoSim-
Settings’. This tuple, together with a boolean flag, and an empty list will be given to the
coSim’ function. As explained in subsection 4.2.2, the function coSim’ will recursively
collect all the input arguments, after which the function coSimStart will be executed.

coSim : : (CoSim r ) ⇒ CoSimSettings → CoSimulator → St r ing → r
coSim s e t t i n g s sim top = coSim ’ ( s e t t i n g s , sim , top ) Fa l se [ ]

Listing 4.20: The coSim function

The function coSimStart, as shown in Listing 4.22 and Figure 4.3, will start the Ver-
ilog simulator and map the input values to the appropriate simulation steps. A part of
this function is implemented in C. The C code will execute the operating system depen-
dent code, like starting the Verilog simulator and setting up the communication between
CλaSH and the Verilog simulator. On a Linux system, executing a process can be ac-
complished with a fork. Shared memory, fifos, or sockets are often used to communicate
between processes.

To call the C code, foreign imports have to be made. It is a common idiom to expose
the imported C functions with the prefix ”c ”, to distinguish these function from the
higher level functions in Haskell, as shown in Listing 4.21. It is important to notice that
with the function ’simEnd ’ only a pointer to this function is imported. A pointer to a
function is in Haskell defined as FunPtr (Function Pointer). This pointer will be used to
connect to Haskell’s Garbage Collector (GC).

f o r e i g n import c c a l l ” s imStart ” c s imSta r t : : Ptr CInt → CString →
Ptr CString → IO ( Ptr a )

f o r e i g n import c c a l l ”&simEnd” c simEnd : : FunPtr ( Ptr a → IO ( ) )

Listing 4.21: The foreign import of the c simStart and c simEnd functions
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The co-simulation will be executed using lazy evaluation. Using lazy evaluation has
as drawback that it is unknown when the co-simulation will end. This moment has to be
known to finish the Verilog simulator and close the communication. A solution is to exe-
cute the simulation strictly and define in advance (user-level) the number of clock-cycles.
Strict evaluation makes the use of feedback loops impossible.

A better solution is to use Haskell’s Garbage Collector. Normally, memory manage-
ment between the Haskell code and the foreign code is separated explicitly. The Haskell
storage manager takes care of the Haskell side, and the foreign side must be handled
manually. The exception to this rule is when the foreign pointer is associated with a
finalizer. In this case, the Haskell storage manager will detect (within the Haskell heap
and stack) that there are no more references (at the Haskell side) pointing to this foreign
pointer. When there are no more references, the finializer will be executed.

The exact moment when the finalizer is executed is unknown. In the documentation
it is stated that this will be done after the last reference to the foreign object is dropped,
but there is no guarantee of promptness. However the finalizer will be executed before
the program exits [66]. To have more control on when the finalizer is exectued, garbage
collection will be performed before starting the co-simulation within the function coSim-
CleanUp, as shown in Listing 4.22. Manually performing garbage collection will reduce
memory usage of previous simulations and can close previous started Verilog simulators.

coSimStart : : CoSimSettings ’ → [ S ignalStream ] → [ S ignalStream ]
coSimStart s e t t i n g s xs = unsafePerformIO $ do

−− garbage c o l l e c t i o n
coSimCleanUp

−− marsha l l c−types
( r s t , c sPtr , c topE , c f P t r s ) ← coSimMarshall s e t t i n g s xs

−− s t a r t s imu la t i on
c coSimState ’ ← c s imSta r t c sPt r c topE c f P t r s
when ( c coSimState ’ == nu l lPt r ) $ e r r o r ” Star t co−s imu la t i on f a i l e d ”

−− add f i n i l i z e r
c coSimState ← newForeignPtr c simEnd c coSimState ’

−− perform s imu la t i on s t ep s
c oLength ← withFore ignPtr c coSimState c outputLength
( , ys ) ← mapAccumLM coSimStep c coSimState $ f r s t xs

−− t ranspose and return
return $ t r a n s p o s e L i s t c oLength ys
where

f r | r = ( [ ] : ) . L . t ranspose
| otherwi se = L . t ranspose

Listing 4.22: The function coSimStart
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The finalizer will invoke routines in the foreign languages to free the appropriate re-
sources. As shown in Listing 4.22, the C function c simEnd is used as finalizer. This
finalizer is connected, with the function newForeignPtr, to the output of the c simStart
function: the struct c coSimState. When there are no references to this struct, the func-
tion c simEnd will be executed. This function will deallocate the used C memory and
finish the Verilog simulator.

Before starting the c simStart function, the needed arguments must be marshalled to
the appropriate C types. The types are part of the FFI and the names starts with a ’C ’
(like CString and CInt), to explicitly show their origin. The marshalling is implemented
in the function coSimMarshall, as shown in Appendix C.

One of the easiest marshalling is between Int and CInt. Both types derive the Integral
and Num class and thus converting in both directions can be done with the fromIntegral
function. This function converts from any Integral type into any Numeric type.

f r omInteg ra l : : (Num b , I n t e g r a l a ) ⇒ a → b

Listing 4.23: The fromIntegral function

The FFI makes an explicit distinction between a foreign array and a CString. The
comparable type in Haskell is in both cases a List1. The CString type is an array with
C-characters terminated by NULL. Furthermore, the marshalling consist of converting
each Haskell character to C-encoding (normally Unicode, but also 8-bit characters, and
Unicode variants like UTF-16 and UTF-32 are possible). Converting to a foreign CString
can be done with the newCString function and reading a foreign CString can be done
with the peekCString function.

type CString = Ptr CChar
newCString : : S t r ing → IO CString
peekCString : : CString → IO St r ing

Listing 4.24: String conversion

An foreign array is defined as a ’Ptr a’2. The FFI contains functions for allocating
and marshalling a foreign array. For example, the mallocArray function allocates storage
for the given number of elements. The peekArray and pokeArray are functions to convert
a list to and from a foreign array. The function newArray is a combination of the malloc
and the poke functions.

mallocArray : : S to rab l e a ⇒ Int → IO ( Ptr a )
peekArray : : S to rab l e a ⇒ Int → Ptr a → IO [ a ]
pokeArray : : S to rab l e a ⇒ Ptr a → [ a ] → IO ( )
newArray : : S to rab l e a ⇒ [ a ] → IO ( Ptr a )

Listing 4.25: Array conversion

1A ’String’ is defined as [Char]
2Other pointers, for example structs, are also defined as a Ptr a.
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After marshalling, the function c simStart can be called with the appropriate vari-
ables. The embedded Verilog module will be written to a file and additional Verilog files
can be given as argument. Instead of using single files, it also possible to specify direc-
tories, as will be explained in section 4.4. The c simStart function will iterate through
these directories to get all the available Verilog modules.

Based on the given Verilog simulator, the instructions to compile the Verilog module(s)
and to start the Verilog simulator will be defined. These instructions will be executed
with a fork and the execvp command. The execvp command replaces the current pro-
cess image with a new process image. Replacing the current process image is ideal for
starting the Verilog simulator, because file descriptors remain open. Fifos will be used
as communication medium between CλaSH and the Verilog simulator. The needed file
descriptors for the VPI application, will be shared through environment variables.

When the sources are compiled, the Verilog simulator will be started with the VPI
application, as will be described in section 4.3. The VPI application will automatically
iterate through the top-module to get the available input and output ports.

When the ports of the top-entity are known, CλaSH and the VPI application will
exchange the specifications needed for the co-simulation. These specifications include the
number of input and output variables (ports), the bit-sizes of every port and optionally
the length of a clock-cycle. If this information matches at both sides, the co-simulation
can be performed.

The specifications needed for every simulation step will be saved in a struct, called
coSimState. Within this struct the needed memory for every simulation step will be al-
located. Listing 4.26 shows the content of this coSimState.

struct coSimState {
struct CoSimComm ∗comm; // communication wi th the Ver i l og s imu la tor
char strR [MAX BUF+1] ; // used wi th in the communication
int r e s e t ; // no o f r e s e t c y c l e s
int noInput ; // no o f input−por t s
int noOutput ; // no o f output−por t s
int ∗ i n p u t S i z e s ; // s i z e o f every input−por t
int ∗ outputS i ze s ; // s i z e o f every output−por t
int ∗∗ input ; // a l l o c a t e d memory f o r the input−por t s
int ∗∗ output ; // a l l o c a t e d memory f o r the output−por t s
int noF i l e s ; // no o f f i l e s , which has to be d e l e t e d
char ∗∗ f i l eNames ; // f i l e −paths , t h e s e f i l e s w i l l be d e l e t e d

} ;

Listing 4.26: The struct coSimState

When the struct coSimState is created and connected to Haskell’s Garbage Collector,
the input values can be mapped onto every simulation step. However, the input values
are still defined as a list of SignalStreams. This list has to be transposed, after which a
value of every SignalStream can be written into the simulator in every simulation step,
as shown in Figure 4.3.
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The mapping to every simulation step is implemented with the function coSimStep
and the higher order function mapAccumLM, a Monadic version of mapAccumL. The
mapAccumLM is a lazy version of the mapAccumLM as defined in GHC’s MonadUtils.
The implementation, and the consequences, of the lazy mapAccumLM will be described
in chapter 6. Furthermore, the coSimStart function uses the function unsafePerformIO
to break out the IO-monad. The consequences of this function will also be described in
chapter 6.

After performing the simulation steps, the output-values have to be transposed (again)
to create the appropriate SignalStreams. Finally, the output SignalStreams will be con-
verted to the user defined types, as described in subsection 4.2.2.
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Figure 4.3: The schematic overview of the function coSimStart
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The function coSimStep writes the input-values into the struct coSimState, performs
a simulation step, and reads the output-values from the struct coSimState. The function
has as input the foreign pointer to the coSimState and a list with Int32 values. As out-
put, a list with Int32 and the same foreign pointer will be returned.
Although the memory address will be the same, the content of the coSimState will be dif-
ferent. Furthermore, it is important that the simulation steps are performed sequentially,
because every step depends on the previous step. Using a function like mapM will gives
the indication that the simulation-steps are independent. As workaround, the function
mapAccumLM is used to make the simulation steps dependent.

The functions coSimInput and coSimOutput will respectively write and read the input
and output values, as shown in Listing 4.27. The implementation of these two functions
is shown in Appendix C.

f o r e i g n import c c a l l ” simStep ” c s imStep : : Ptr a → IO CInt

coSimStep : : Fore ignPtr a → [ [ Int32 ] ] → IO ( Fore ignPtr a , [ [ Int32 ] ] )
coSimStep s t a t e xs = do

−− wr i t e input
coSimInput s t a t e xs

−− perform s imu la t i on step
rv ← withFore ignPtr s t a t e c s imStep
when ( rv /= 0) $ e r r o r ” Error in co−s imu la t i on step ”

−− read output
ys ← coSimOutput s t a t e

−− touch state , to keep s t a t e a l i v e
touchFore ignPtr s t a t e

−− re turn output
re turn ( s tate , ys )

Listing 4.27: The function coSimStep

A part of the simulation step is implemented in the C function simStep. In this C
function the input values will be sent to the Verilog Simulator and the output values will
be retrieved from the Verilog simulator. However, as visible in the type definitions of the
c simStep and coSimStep functions, the type of the coSimState is different. The function
coSimStep uses a ForeignPtr which is connected to the Garbage Collector, but the func-
tion c simStep uses a normal pointer. A solution is to use the function withForeignPtr,
which will apply the encapsulated pointer to the c simStep function and also ensures that
the foreign pointer is kept alive at least during the whole execution of this function.

According to the C standard, a return value of 0 denotes successful termination. If
the return value of the c simStep is not equal to zero, the simulation will be aborted.
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withFore ignPtr : : Fore ignPtr a → ( Ptr a → IO b) → IO b
touchFore ignPtr : : Fore ignPtr a → IO ( )

Listing 4.28: Foreign pointer functions

The function touchForeignPtr is used to keep a foreign pointer alive. After calling
the c simStep function, pointers from the coSimState are used to read the output data.
Using normal pointers, instead of the foreign pointers, can send a fake signal to the
garbage collector and execute the finalizer. The touchForeignPtr is used to indicate that
the coSimState is still in use.

The C function c simStep will only forward the input values and retrieve the output
values, as shown in Listing 4.29 and Listing 4.30. Notice that the order of the Int32
values in the inputs and outputs is reversed. In CλaSH, the Least Significant Bit (LSB)
is defined in the last Int32 value, but in Verilog the LSB is defined in the first Int32
value. However, the bits in an Int32 value are defined in the same order.
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127 96 95 64 63 32 31 1
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Figure 4.4: The ordering of the Int32 values

for ( i = 0 ; i<s t a t e→noInput ; i++)
{

for ( j = s t a t e→ i n p u t S i z e s [ i ]−1; j≥0 ; j−−)
{

// send ’ ava l ’ to s imu la tor
s p r i n t f ( s ta te−>strR , ”%d” , s t a t e→ input [ i ] [ j ] ) ;
i f ( writeMessage ( s t a t e→strR , s t a t e→comm, 1) < 0) return −1;

}
}

Listing 4.29: Sending the input values to the Verilog simulator

for ( i = 0 ; i<s t a t e→noOutput ; i++)
{

for ( j = s t a t e→outputS i ze s [ i ]−1; j≥0 ; j−−)
{

// ge t ’ ava l ’ from s imu la tor
i f ( readMessage ( s t a t e→strR , s t a t e→comm, 1) < 0) return −1;
s ta te−>output [ i ] [ j ] = a t o i ( s t a t e→strR ) ;

}
}

Listing 4.30: Retrieving the output values from the Verilog simulator
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4.3 VPI

A VPI application, as explained in chapter 3, will be loaded in the Verilog simulator.
The VPI implementation denotes the right side of Figure 4.1, which was given at the
beginning of this chapter. As is explained in subsection 4.3.1 two simulation callbacks
and three callbacks for every simulation cycle will be used to exchange data with CλaSH
and thus to define co-simulation.

Inside the callback cbStartOfSim the Verilog-module(s) inside the simulator will be
analysed and the specifications of the top-entity will be exchanged with CλaSH, as will
be explained subsection 4.3.2. At the end of the cbStartOfSim callback, events for the
first simulation cycle will be registered to make value-exchange possible. Reading and
writing of values will be done once a clock-cycle, to support delay values in the Verilog
code. The implementation of the value exchange will be explained in subsection 4.3.3.

(4)

(2)

(3)

(1)

Simulator cbAfterDelay

cbReadOnlySynch

cbAfterDelay

cbReadWriteSynch

cbStartOfSim

cbEndOfSim

Figure 4.5: Overview of the VPI application

The VPI application will register the cbStartOfSimulation callback at the beginning
of the execution (1). This callback will register the cbEndOfSimulation callback and
directly execute the cbAfterDelay routine. The cbAfterDelay will wait untill CλaSH
requests to perform the next clock-cycle (2), after which the cbReadWriteSynch will
be registered. CλaSH will send values (3), which will be written into the simulation.
The cbReadOnlySynch callback will be registered at the end of the clock cycle, in which
values from the simulation will be read and sent to CλaSH (4). The cbReadOnlySynch
will register the cbAfterDelay and the process repeats.
The cbEndOfSimulation routine will be executed when the simulation finished, in which
the allocated memory will be deallocated.
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4.3.1 Simulation Callbacks

The main starting point of the VPI implementation is the vlog startup routines. This is
an array with function-pointers, which will be executed by the Verilog-simulator. By us-
ing the VPI, this function pointer array will always be the beginning of a VPI application.

/∗ array wi th funct ion−po in t e r s which w i l l be loaded by the s imu la tor ∗/
void (∗ v l o g s t a r t u p r o u t i n e s [ ] ) (void ) = {

r e g i s t e r C a l l b a c k s ,
0

} ;

Listing 4.31: The vlog startup routines

In this case, only the function registerCallbacks is registered. Furthermore, the last
item in the array is a ’0’ as required by the standard. The Verilog-Simulator does not
know how many functions will be registered and will iterate through the array until it
finds a null-pointer. The function registerCallbacks, as shown in Listing 4.32, registers
the cbStartOfSimulation callback. This callback is a simulation action event, which will
be raised when the simulation starts.

void r e g i s t e r C a l l b a c k s (void )
{

reg i s te rCB (NULL, startOfSim , cbStartOfSimulat ion , −1) ;
}

Listing 4.32: Registration of the cbStartOfSimulation callback

The higher order function registerCB will register a callback in the Verilog simulator,
as shown in Listing 4.33. This function has four input arguments: the struct vpiState, a
callback function, the callback reason, and a delay.
The struct vpiState is used within every registered simulation step and will be created
when the design is analysed, as will be explained in subsection 4.3.2.
The callback function is a function pointer, which will be executed by the Verilog simu-
lator for the given callback reason.
The delay is used as the relative time measured from the current simulation time. A
negative delay indicates no time registration.

The struct s cb data is needed to register a callback (cb), as explained in section 3.2.
The field time is used as relative or absolute delay, depending on the callback. Icarus
Verilog does allow registering callbacks with a negative time, after which the timing will
be ignored. In this case, the time will be set to a NULL-pointer when a negative delay
is given. Simulation-action callbacks, like cbStartOfSimulation and cbEndOfSimulation
require a NULL-pointer. On the other hand, simulation-time-related callbacks require
a time. Currently, the timing can only be set as a 32-bit value. If more than 4 billion
simulation steps are needed, an extra argument can be added to set the high field.
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typedef PLI INT32 (∗ f c b ) ( p cb data cb data ) ;

void reg i s te rCB ( struct vp iSta te ∗ s ta te , f c b f , PLI INT32 reason , PLI INT32
time )

{
// v a r i a b l e s
s cb data cb data s ;
s v p i t i m e t ime s ;

// time
i f ( time < 0)
{

cb data s . time = NULL;
}
else
{

cb data s . time = &t ime s ;
t ime s . type = vpiSimTime ;
t ime s . high = 0 ;
t ime s . low = time ;

}

// s e t t i n g s
cb data s . reason = reason ;
cb data s . cb r tn = f ;
cb data s . u s e r data = (PLI BYTE8 ∗) s t a t e ;

// r e g i s t e r
v p i f r e e o b j e c t ( v p i r e g i s t e r c b (& cb data s ) ) ;

}

Listing 4.33: The registerCB function

The reason and the callback routine (cb rtn) are both user defined. The callback
routine has a required type definition, as defined with the typedef f cb.
The last used field of the s cb data is the user data. The book [1] strongly discourage
sharing data using global variables and instead recommend using the user data. The
struct vpiState is used as the user data and will be explained in the next section.

Using the function vpi register cb the callback is registered and a handler is returned.
The handler can be used to change or remove the callback. In this case the handler will
not be used and is explicitly freed with the function vpi free object.
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4.3.2 Analysing Design

In the start-of-simulation callback the Verilog top-module will be analysed. The VPI ap-
plication is executed as a child-process. Before the fork, fifos are created between CλaSH
and the VPI application, as explained in subsection 4.2.3. Although open file-handles
can still be used in a child-process, variables are not forwarded and thus the file-handles
are unknown in the beginning. The function getSharedComm uses environment variables
to retrieve the communication specific information.

PLI INT32 startOfSim ( p cb data a t t r i b u t e ( ( unused ) ) cb data )
{

p cb data cb data p ;
struct vp iSta te ∗ s t a t e ;

// i n i t
cb data p = malloc ( s izeof ( struct t cb data ) ) ;
s t a t e = c r e a t e S t a t e ( ) ;

i f ( getSharedComm(& s t a t e→comm) < 0) return abortSim ( ) ;

// read seq s e t t i n g s
i f ( exchangeSeq ( s t a t e ) < 0) return abortSimM ( s t a t e ) ;

// ge t por t s p e c i f i c a t i o n s
i f ( getModuleSpecs (NULL, s t a t e ) < 0) return abortSimM ( s t a t e ) ;

// exchange por t s i n f o
i f ( exchangePortSpecs ( s ta te , 1) < 0) return abortSimM ( s t a t e ) ;
i f ( exchangePortSpecs ( s ta te , 0) < 0) return abortSimM ( s t a t e ) ;

// r e g i s t e r end−of−sim
reg i s te rCB ( state , endOfSim , cbEndOfSimulation , −1) ;

// r e g i s t e r event f o r f i r s t s imu la t i on s t ep
cb data p→use r data = (PLI BYTE8 ∗) s t a t e ;
synchStep ( cb data p ) ;

// f r e e cb−data
f r e e ( cb data p ) ;

return 0 ;
}

Listing 4.34: The cbStartOfSimulation callback function

The function exchangeSeq is only used to exchange information needed for sequential
synchronous circuits. CλaSH will send the length of a clock-cycle, specified as a number
of simulation steps. This number will be used to register read and write callbacks for
the data exchange. Furthermore, CλaSH will indicate if in the first clock-cycle the write
phase has to be skipped, which is sometimes necessary for having a reset phase.
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The top-entity will be analysed in the function getModuleSpecs. Icarus Verilog does
not support iterating through the modules with, for example, the vpiModPath. The prop-
erties vpiModule and vpiPort will be used to automatically recognize the available input
and output ports.

int getModuleSpecs ( vpiHandle handle , struct vp iSta te ∗ s t a t e )
{

. . .

/∗ i t e r a t e through a l l modules in curren t scope ∗/
mod itr = v p i i t e r a t e ( vpiModule , handle ) ;
i f ( mod itr != NULL)
{

/∗ scan the modules and ge t a handle to each ∗/
while ( ( mod handle = vp i s can ( mod itr ) ) != NULL)
{

/∗ ge t module name ∗/
tmp = v p i g e t s t r ( vpiName , mod handle ) ;
mod name = (char∗) mal loc ( ( s t r l e n (tmp) +1) ∗ s izeof (char ) ) ;
s t r cpy (mod name , tmp) ;

/∗ ge t the por t s in t h i s module ∗/
getPortSpecs ( mod handle , s ta te , mod name) ;

f r e e ( tmpModuleName) ;
}

}

. . .
return 0 ;

}

Listing 4.35: Traversing Verilog design

The VPI routines vpi iterate and vpi scan are also used to iterate over all available
ports in a module, as shown in Listing 4.36. Furthermore, the routines vpi get and
vpi get str are used to retrieve port-specific information, like the name (vpiName), direc-
tion (vpiDirection), and bit-size (vpiSize).

int getPortSpecs ( vpiHandle handle , struct vp iSta te ∗ s ta te , char ∗modName)
{

. . .

// i t e r a t e through the por t s
i t r = v p i i t e r a t e ( vpiPort , handle ) ;
i f ( i t r != NULL)
{

while ( ( por t hand le = vp i s can ( i t r ) ) != NULL )
{

. . .

Listing 4.36: Iterating through the module ports
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After knowing all available ports in the VPI application, information about the input
and output ports can be exchanged with CλaSH. The number of ports and the size of
every port has to match with the information at the CλaSH side. If the information
matches between the two processes, the VPI application will save a handle to every ob-
ject connected to the ports. Examples of objects are wires (vpiNet) or registers (vpiReg).
By saving a handle to every object, values can directly be read or written to an object,
without the need of traversing the design again.

A handle to every object is obtained with the VPI routine vpi handle by name, in
which the full-name must be given. For example, a handle to the input-wire left, as
shown in Listing 4.37 is retrieved with the full-name mult.left.

module mult ( l e f t , r i ght , out ) ;

input [ 6 3 : 0 ] l e f t ;

. . .

endmodule

Listing 4.37: The Verilog module mult

The routine vpi handle by name is actually a work-around and not recommended.
The simulator has to traverse the hierarchy again to get the handle of an object. The
most efficient way is to use the vpiLowConn and vpiHighConn properties to directly re-
trieve the port’s connected object. Icarus Verilog does not support the vpiLowConn and
vpiHighConn properties and thus the routine vpi handle by name is used.

The handles to the port will be saved in the struct vpiState. This struct will also con-
tain the communication information (file handles), the length of a clock-cycle (period),
and the check if a reset-phase is used.

struct vp iSta te
{

struct CoSimComm ∗comm; // communication wi th CλaSH
char strR [MAX BUF+1] ; // f o r r e c e i v i n g messages from CλaSH
int per iod ; // l en g t h o f a c lock−c y c l e
int r e s e t ; // re se t−phase
int noInput ; // no o f input−por t s
int noOutput ; // no o f output−por t s
struct port ∗ inputPorts ; // por t s p e c i f i c information , l i k e hand les
struct port ∗ outputPorts ; // por t s p e c i f i c information , l i k e hand les
s v p i t i m e time ; // time needed f o r the wr i t e c a l l b a c k s
s v p i v a l u e vec to r ; // vec t o r needed f o r the wr i t e c a l l b a c k s

} ;

Listing 4.38: The struct vpiState
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The callback cbEndOfSimulation is used to deallocate the struct vpiState, as shown
in Listing 4.39. The function endOfSim will be executed when the Verilog simulation
finishes.

PLI INT32 endOfSim ( p cb data cb data )
{

struct vp iSta te ∗ s t a t e ;

// d i spo se s t a t e
s t a t e = ( struct vp iSta te ∗) cb data→use r data ;
d i sp o s eS ta t e (& s t a t e ) ;

return 0 ;
}

Listing 4.39: The cbEndOfSimulation callback function

Finally, the startOfSim function will register the first read or write callback (depend-
ing on the reset phase) using the function synchStep. As will shown in the next section,
subsection 4.3.3, the function synchStep is also used for the cbAfterDelay callback. This
callback can be used to execute a function after a certain (relative) delay.

PLI INT32 synchStep ( p cb data cb data )
{

struct vp iSta te ∗ s t a t e ;

// i n i t
s t a t e = ( struct vp iSta te ∗) cb data→use r data ;

// i f CLaSH send ’ f i n i s h ’ , f i n i s h s imula t ion , e l s e r e g i s t e r new cbs
i f ( readMessage ( s t a t e→strR , s t a t e→comm, 1) < 0) return abortSim ( ) ;
i f ( strcmp ( ” f i n i s h ” , s t a t e→strR ) == 0) v p i c o n t r o l ( vp iF in i sh , 0) ;
else
{

// r e g i s t e r next event
i f ( s t a t e→ r e s e t−− > 0)

reg i s terCB ( state , registerRD , cbAfterDelay , s t a t e→per iod −1) ;
else

reg i s te rCB ( state , readWriteSynch , cbReadWriteSynch , 0) ;
}

return 0 ;
}

Listing 4.40: The synchStep function

In case of a reset phase, the function registerRD with the callback cbAfterDelay will
be registered. This function will be executed at the end of the clock-period, in which
the callback cbReadOnlySynch is registered. The callback cbReadOnlySynch is used for
reading values and the callback cbReadWriteSynch is used for writing values, as will be
explained in the next section.
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4.3.3 Reading & Writing Values

After analysing the desing, simulation-cycle related callbacks can be registered to be able
to exchange values between CλaSH and the Verilog simulator. Three callbacks are used:
cbAfterDelay, cbReadWriteSynch, and cbReadOnlySynch. As explained in section 3.2,
these three callbacks occur at certain moments in a simulation time step.

The cbAfterDelay callback occurs once after a given delay and before execution of
any simulation events in the specific time-step. Using a delay of ’1’, the callback will
occur in the next time-step. CλaSH will indicate, using lazy-evaluation, when and if next
time-steps are needed. The VPI application will wait in function synchStep until CλaSH
indicates that a new time-step has to be performed or if the simulation has to finish.
If a new time-step is desired, a read or write callback will be registered, as shown in
Listing 4.40. If CλaSH indicates that the simulation has to stop, the VPI application
will use the routine vpi control, with the vpiFinish flag, to finish the simulation.

In case of a write event, the cbReadWriteSynch callback will be registered with a de-
lay of ’0’. The function readWriteSynch is used as callback routine, in which values will
be written in the Verilog simulator. All the values are written in the simulation at the
same moment (zero delay), using the vpiInertialDelay flag to use the simulator’s event
scheduling. The cbReadWriteSynch callback can occur in Slot 2 or in Slot 3, as explained
in section 3.2, and thus the order of the non-blocking assignments and co-simulation as-
signments is unknown.

The vpiVectorVal format is used to exchange the values. With this format a value
will be defined as a 4-state logic value with an encoded pair of 32-bit C integers. Within
CλaSH , only the logic values ’0’ and ’1’ are used and thus the bval is set to ’0’.

for ( i = 0 ; i<port→width ; i++)
{

// read a va lue from CLaSH
i f ( readMessage ( s t a t e→strR , s t a t e→comm, 1) < 0) return abortSim ( ) ;

// s e t va lue in the vec to r
port→vec to r [ i ] . ava l = a t o i ( s t a t e→strR ) ;
port→vec to r [ i ] . bval = 0 ;

}

// wr i t e v ec t o r in t o s imu la tor
s ta te−>vec to r . va lue . vec to r = port→vec to r ;
vp i pu t va lue ( port→handle , &s t a t e→vector , &s t a t e→time , v p i I n e r t i a l D e l a y ) ;

Listing 4.41: Writing a value into the simulator
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A read event is postponed to the end of a clock-cycle with the registerRD function. In
this function the cbReadOnlySynch callback will be registered, as shown in Listing 4.42.
The cbReadOnlySynch occurs once in Slot 4, after execution of all events in a specific
time-step. For a combinatorial circuit there is no need to postpone the read event, but
in this way the implementation can be used for both combinational and synchronous
sequential circuits. The only difference between both circuits, is that in case of a combi-
national circuit, the whole simulation will happen in one simulation period.

PLI INT32 reg isterRD ( p cb data cb data )
{

struct vp iSta te ∗ s t a t e ;

// r e g i s t e r cb
s t a t e = ( struct vp iSta te ∗) cb data→use r data ;
reg i s te rCB ( state , readOnlySynch , cbReadOnlySynch , 0) ;
return 0 ;

}

Listing 4.42: The registerRD function

Instead of using the vpi put value routine, the vpi get value routine will be used to
retrieve values from the simulator. The logic values ’X’ and ’Z’ are ignored and only the
’0’ and ’1’ values, grouped in 32-bits, are send to CλaSH.

v p i g e t v a l u e ( port→handle , &s t a t e→vec to r ) ;

for ( i = 0 ; i<port→width ; i++)
{

// conver t v e c t o r [ i ] to ’0 ’ or ’1 ’
va l = s t a t e→vec to r . va lue . vec to r [ i ] . ava l ;
va l &= ∼ s t a t e→vec to r . va lue . vec to r [ i ] . bval ;

// send va lue to CLaSH
s p r i n t f ( s t a t e→strR , ”%d” , va l ) ;
i f ( writeMessage ( s t a t e→strR , s t a t e→comm, 1) < 0) return abortSim ( ) ;

}

Listing 4.43: Reading a value from the simulator

Instead of setting the ’X’ and ’Z’ values to ’0’, the bval values could be ignored. The
’Z’ will then be represented with a ’0’ and ’X’ with a ’1’.

66



4.4. INLINE VERILOG CHAPTER 4. IMPLEMENTATION

4.4 Inline Verilog

As explained in subsection 2.1.2, Template Haskell and QuasiQuotation can be used to
define a Domain Specific Language (DSL). A QuasiQuoter is defined to embed Verilog
code in CλaSH code. Only the algebraic data type Exp is used, because the embedded
Verilog module will only be used as expression.

The function createQuasiQuoter, as shown in Listing 4.44, creates a QuasiQuoter. As
argument, a function with the type String → Q Exp must be given, which is used as the
quote expression.

createQuas iQuoter : : ( S t r ing → Q Exp) → QuasiQuoter
createQuas iQuoter f = QuasiQuoter

{quoteExp = f
, quotePat = undef ined
, quoteType = undef ined
, quoteDec = undef ined }

Listing 4.44: The function createQuasiQuoter

Currently, only one QuasiQuoter, called verilog, is created to embedded a Verilog mod-
ule in CλaSH. As shown in Listing 4.45, the function createQuasiQuoter is called with
as argument the partial applied inlineCoSim function. The given argument (the value
’1’) denotes the Verilog language. The HDL is specified to make (future) QuasiQuoter
implementations for VHDL and SystemVerilog possible.

v e r i l o g : : QuasiQuoter
v e r i l o g = createQuas iQuoter $ inl ineCoSim 1

Listing 4.45: The Verilog QuasiQuoter

The function inlineCoSim creates the CoSimSettings. These settings are used to start
the co-simulation. Only the HDL and the top-entity are given as argument. In case of
Verilog, the HDL will be set to ’1’ and the top-entity is the embedded Verilog module
(defined as String). The other settings are set to default values. The period will be set
to ’20’ and the reset phase will be disabled. These two settings will be further explained
in section 4.5.
Furthermore, extra sub-modules, given as files, can be added. Sub-modules can be added
using the path to the files, or by defining the directory which contains the source files.
Initial, no sub-modules are defined and the list is thus empty.
The last setting can be used to enable or disable the standard output of the (Verilog)
simulator. The default setting enables the standard output.
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i n l i n l i n eCoS im : : Int → St r ing → Q Exp
inl ineCoSim hdl s = l i f t M TupE $ sequence [ q hdl , q per iod , q r e s e t ,

q data , q l i s t , q stdOut ]
where

q hdl = l i f t hdl
q pe r i od = l i f t (20 : : Int )
q r e s e t = l i f t Fa l se
q data = l i f t s
q l i s t = l i f t ( [ ] : : [ S t r ing ] )
q stdOut = l i f t True

Listing 4.46: The generation of the CoSimSettings

With the function lift, the separate values of the CoSimSettings are lifted into the Q
monad. The function sequence is used to transform the [Q Exp] to Q [Exp].
The function liftM gives the [Exp] as argument to the expression constructor TupE. The
constructor transforms the list to a tuple, after which the tuple is returned as expression.

The example in Listing 4.1, at the beginning of this chapter, already shows the usage
of the QuasiQuoter. The Verilog module must be defined inside Oxford brackets with the
verilog keyword.

[verilog| module ... endmodule |]

Currently, the embedded Verilog module is only forwarded to the Verilog simulator
and the QuasiQuoter does not parse the Verilog code. The simulator will compile the
Verilog code and indicate if the code is correctly defined. However, the recommendation
is given to define a Verilog parser in CλaSH, as will be described in section 6.4. Defining
a Verilog parser gives as main advantage that the correctness of the Verilog code will be
checked at compile time.

Functions are defined to update the generated CoSimSettings, as shown in Listing 4.47.
The functions coSimEnableStdOut and coSimDisableStdOut are used to enable or disable
the standard output of the Verilog simulator.
A list of with source-paths can be given to the function coSimWithFiles to add sub-
modules.
The function coSimSeq can be used, besides adding additional sub-modules, to update
the clock period and reset phase, as will be described in the next section.

coSimEnableStdOut : : CoSimSettings → CoSimSettings
coSimDisableStdOut : : CoSimSettings → CoSimSettings
coSimWithFiles : : CoSimSettings → [ S t r ing ] → CoSimSettings
coSimSeq : : CoSimSettings → ( Int , Bool ) → [ S t r ing ] →

CoSimSettings

Listing 4.47: The function definitions for updating the CoSimSettings
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4.5 Clock Cycles

A Synchronous Sequential Circuit design is based on streams of values, called Signals. In
the CλaSH tutorial the following statement about Signals is given: ”A Signal is an (infi-
nite) list of samples, where the samples correspond to the values of the Signal at discrete,
consecutive, ticks of the clock” [3].

The co-simulation implementation works with streams of Int32 values and actually
there is no distinction between clocks, resets and ordinary signals. For a Synchronous
Sequential Circuit this can actually be problematic, because a clock-stream and a signal-
stream are not the same. A clock consist normally of low and high periods. The lengths
of these periods define the speed of the clock. From functional point of view, a clock
stream has at least twice as much samples compared with the samples in a CλaSH signal
(a ’0’ and a ’1’ in one clock-cycle).

In the CλaSH documentation the following statement is given: ”The periods of the
clocks are however dimension-less, they do not refer to any explicit time-scale (e.g. nano-
seconds). The reason for the lack of an explicit time-scale is that the CaSH compiler would
not be able guarantee that the circuit can run at the specified frequency. The clock periods
are just there to indicate relative frequency differences between two different clocks” [3].

Within the co-simulation, every CλaSH signal is transformed to and from a list of
Int32 values, without any notation of the clock annotations. This has as consequence,
that only the usage of one clock domain is supported. Ideas exist to improve the clock
(and reset) modelling in future versions of CλaSH [35]. Examples of these ideas are the
use of gated clocks, specifying the reset behaviour, and specifying the clock and reset pin
names.
Because of the possible updates within CλaSH, different clock-domains will not be sup-
ported at this moment. The signals can be synchronized on user-level, with the function
unsafeSynchronizer, and the support for different clock-domains can be added in a future
stage.

λ> l e t x = fromList [ 0 . . ]
λ> l e t f = unsa feSynchron ize r systemClock c lk500
λ> l e t y = r e g i s t e r ’ c lk500 0 $ f x
λ> sampleN 20 x
[ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ]
λ> sampleN 20 y
[ 0 , 0 , 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 , 9 , 9 ]

Listing 4.48: Conversion of clock-domains with the function unsafeSynchronizer
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As described in section 4.3, the co-simulation will modify the values in the Verilog
simulator once every clock-cycle. The exact moments of the write and read synchroniza-
tion moments, inside a clock-cycle, depends on the specifications of the clock signal.

Clk 1

Clk 2

period

w0 w1 w2 w3 w4 w5

r0 r1 r2 r3 r4

w0 w1 w2 w3 w4 w5

r0 r1 r2 r3 r4

Figure 4.6: Clock signal definitions

An often followed approach within Verilog/VHDL is to use the rising or falling edge
of a clock to trigger the design. CλaSH generates Verilog code, which uses the rising
edge of a clock. A co-simulation approach could be to write the input data after the
falling edge in the Verilog simulator. The data will then be stable before the rising edge,
after which it can be used in the Verilog circuit. The output data could be read before
the next falling edge of the clock. This approach would use a clock stream like Clk 1, as
shown in Figure 4.6.

The FIR filter example, as will be demonstrated in subsection 5.2.2, shows that CλaSH
needs a clock signal like Clk 2, as shown in Figure 4.6. A circuit often consists of combi-
national and synchronous sequential parts. The combinational part denotes the compu-
tation for one sample inside a CλaSH signal and the rising edge of the clock is used to
make the transition to the next sample. The co-simulation will thus write the input data
after the rising edge and reads the output data before the next rising edge.

The number of simulation steps needed between two write moments, called period,
can be modified in the CoSimSettings with the function coSimSeq. The same number of
simulation steps is used between two read moments. The length of the period must be
equal to the length of a clock-cycle to make the co-simulation stable. The CoSimSettings
uses 20 simulation steps as default period value. This number is actually chosen randomly;
if the clock-cycle also consist of 20 simulation steps, this default period can be used.
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Furthermore, a reset phase can be used, which will ignore the first write moment (w0).
By using a reset phase, which can be set with the function coSimSeq, the co-simulation
will start with a read moment. Starting with a read moment can be useful for circuit
with feedback loops.
The FIR filter example, demonstrated in subsection 5.2.2, defines the clock and reset
signal in the Verilog code. Furthermore, the function coSimSeq is used to disable the
reset phase and to define the correct period.

The recommended and most efficient approach is to define the clock and reset signal
in Verilog. Listing 4.49 shows how both signals can be defined in the Verilog code. Initial,
both signals are set to ’1’. The reset goes to ’0’, for one simulation step, to reset the
design at the beginning of the simulation. The clock is negated every five simulation
steps to generate the clock cycles.

reg c l k = 1 ;
reg r s t = 1 ;

i n i t i a l begin
#1 r s t = 0 ;
#2 r s t = 1 ;

end

always begin
#5 c lk = ∼ c l k ;

end

Listing 4.49: A clock and reset signal defined in Verilog

The clock and reset signal can also be defined in CλaSH. To correctly write a clock
signal into a Verilog simulator, three times as much write moments has to be scheduled.
Furthermore, the input signals has to be tripled to match the speed of the clock.
A reset is often performed to reset the design at the beginning of a simulation. Listing 4.49
shows 3 reset transitions at the beginning of the first clock-cycle. To use an equivalent
reset signal in CλaSH, 2 extra write moments has to be scheduled in one clock-cycle.
After the first clock-cycle, the reset signal will stay the same and the additional read and
write moments will cause much overhead.

This master thesis does not show any example in which the clock and reset signals
are defined in CλaSH. The first reason is the overhead, as described in the previous
paragraph. Furthermore, CλaSH is defined as a functional Hardware Description Lan-
guage without any notion of delays and clock edges. The co-simulation should follow this
CλaSH perspective, meaning that clock and reset signals should be defined in the Verilog
code.
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5 Results

Using the Verilog Procedural Interface as described in chapter 3 and the implementation
as elaborated in chapter 4, co-simulation between CλaSH and Verilog is made possible.
Icarus Verilog is used as Verilog-simulator and in this chapter co-simulation examples will
be shown. Furthermore, the implementation will be tested with two other simulators:
ModelSim and GHDL.

5.1 Simulators

The Verilog Procedural Interface is standardized in the IEEE 1364 and IEEE 1800 stan-
dards. The co-simulation is defined with VPI routines which are defined in both the
IEEE 1364-2001 and IEEE 1364-2005 standards. Theoretically, the implemented VPI
application should have the same behaviour by using other Verilog simulators. The im-
plementation is created with Icarus Verilog and in this chapter ModelSim is used as
reference simulator to see if the behaviour is indeed the same.

GHDL, an open-source VHDL simulator, does support the VPI. The VPI was sup-
ported to use Icarus Verilog Interactive (IVI) as graphical developer aid. Currently, the
VPI support is extended to make co-simulation with Cocotb possible. Using the Verilog
Procedural Interface with a VHDL simulator would be ideal, because the same interface
can be reused to support co-simulation with VHDL.

It is also possible to test the implemented co-simulation with other Verilog simulators,
like the Cadence Incisive Enterprise Simulator and Synopsys VCS. However, the goal of
this master thesis is not to support as many Verilog simulators as possible.
Furthermore, many simulators are closed-source and require a license, this is seen as
drawback to use these simulators personally.
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5.1.1 Icarus Verilog

The implementation, as described in chapter 4, is created to define co-simulation between
CλaSH and Icarus Verilog. Icarus Verilog supports all the needed VPI-parts to define
co-simulation. Certain properties, like vpiLowConn would be desired to more efficiently
iterate through the modules and to get the handles to the input and output ports.

Icarus Verilog version 11 (or higher) is needed to support co-simulation, which must
be build from source (currently). The current available binaries for Icarus Verilog do
not support enough VPI functionality. For example, the callback cbReadOnlySynch is
not supported. Although there are workarounds, like reading in the cbReadWriteSynch
callback, these are not desirable. The cbReadOnlySynch is defined as the true end of a
simulation step; but after a cbReadWriteSynch, new simulation events can be scheduled.

Icarus Verilog supports flushing the Standard Output, in contrast to ModelSim, what
makes debug-statements useful. Furthermore, the -N flag can be given to exit the simu-
lator when the simulation is finished. Normally, the simulator will go in interactive mode,
what is not desirable for co-simulation.

Icarus Verilog supports simulation with multiple top-modules. For co-simulation this
is not desirable. For example, using pre-defined Altera modules (as sub-modules) has as
consequence that many input and output ports will be recognized.
Other simulators, like ModelSim, only give support for one top-module and the name
of the top-entity has to be given in advance. To use the same implementation for mul-
tiple simulators, the design choice is made to only support one Verilog top-entity in a
co-simulation.

As described in section 3.2, simulation events and callbacks can occur in different
slots. The IEEE 1364 defines the cbReadWriteSynch callback in slot 3 and the cbRead-
OnlySynch callback in slot 4. The standard gives freedom on how to implement the
internal event scheduling algorithm. By using sufficient simulation steps in one clock-
cycle, the consequences of possible differences in scheduling algorithms will be avoided.

Although freedom is given for the scheduling algorithm, the definition of the callbacks
should be the same. In this master thesis, the assumption is made that by registering the
cbReadWriteSynch and cbReadOnlySynch callbacks, a relative time is used. For example,
a delay of zero would indicate the current simulation step. In ModelSim this is the case
(as expected), but Icarus Verilog uses an absolute time, as discussed on GitHub [69].
A delay of zero would then indicate the start of the simulation. However, this concept
contradicts by specifying a time smaller than the current simulation time. Icarus Verilog
decides to execute callbacks, registered with a time smaller than the current simulation
time, in the current simulation step. Registration with a delay of 0 is used as workaround
to define the same behaviour in Icarus Verilog and ModelSim.
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5.1.2 ModelSim

ModelSim and QuastaSim are both hardware simulation tools from Mentor Graphics.
ModelSim is primarily targeted at smaller ASIC and FPGA designs. QuastaSim has
additional debug capabilities and is targeted at complex FPGA and SoC designs.
To test the co-simulation with CλaSH, the ModelSim-Altera Starter Edition software is
used. This version has as limitation that 32 bit library files are required to run ModelSim
[50]. This has mainly consequences for compiling and loading the VPI implementation.
The VPI sources are compiled to 32-bits object files currently.

ModelSim supports all the needed VPI routines/properties and the same implemen-
tation, as used with Icarus Verilog, can be loaded to perform the co-simulation. However,
ModelSim outputs much information to the console and this can be a disadvantage when
running many (sequential) co-simulations. Command line flags can be used to execute
ModelSim quietly, but is not possible to hide all the messages.
As described in section 4.4, the functions coSimEnableStdOut and coSimDisableStdOut
can be used to enable or disable the standard output. The standard output is enabled as
default setting, what can be useful to show warnings/errors when having syntax errors in
the Verilog code. The standard output can be disabled to avoid having any output from
the simulator.

5.1.3 GHDL

G Hardware Design Language1 (GHDL) is an open-source VHDL simulator. Support
for the Verilog Procedural Interface was created to support Icarus Verilog Interactive
(IVI), an interactive and graphical front-end for simulating and debugging designs [40].
In GHDL version 0.34, the VPI functionality was extended to make co-simulation with
Cocotb possible.

The VPI support is not sufficient currently. Needed VPI properties are missing, mainly
for traversing the hierarchy. For example, a vpiPort iterator is needed to iterate over all
the input and output signals. For every vpiPort, the property vpiDirection is needed to
distinguish between input and output signals. But the vpiPort and vpiDirection are both
unknown properties in GHDL.
Furthermore, it is desirable to use the property vpiVectorVal to exchange signals between
CλaSH and GHDL. This property is needed to support values containing more than 32
bits, as described in section 3.4.

The owner of GHDL, tgingold, has confirmed that VPI properties are missing and he
has added the enhancement label [42]. The co-simulation between CλaSH and GHDL
can be tested when the missing VPI properties are implemented.

1The G has currently no meaning.
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5.2 Examples and Benchmarks

In this section three co-simulation examples, a multiplier, a FIR filter, and a GFSK de-
modulator, are demonstrated. The implementations are first executed in CλaSH, after
which the FIR filter and GFSK demodulator will be compiled to Verilog. The Verilog
code needed for the multiplier will be defined manually to show that both options can
be used. The co-simulation with the (generated) Verilog code will be defined and both
simulations will be compared.

Besides comparing the outputs, the execution times will be measured. GHCi gives
possibilities to measure the execution time in seconds. The multiplier and the FIR filter
are small designs, and a smaller time scale is thus desired. The Criterion package [65] is
used to measure the performance. This package uses a least square regression model to
estimate the time needed for single a execution.

The needed execution time depends on external factors, like which operating systems
is used and what are the hardware specifications. The measurements are performed on
an Ubuntu 16.04 system, installed on a virtual machine. The performance indications
are only used to compare a CλaSH simulation with the implemented co-simulation, and
no conclusions are drawn about the absolute execution times.

5.2.1 Multiplier

The multiplier only consists of the elementary mathematical multiplication operation.
Two signals will be multiplied together, resulting in one output signal. The multiplica-
tion is defined combinational and does not contain any memory elements. However, the
output signal is used to register one of the input signals, for which a memory element is
needed, as shown in Figure 5.1.

∗
s s’

. . . , 5, 4, 3, 2, 1
. . . , 1

. . . , 120, 24, 6, 2, 1

Figure 5.1: The multiplier example
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The signals consist of 1000-bits signed values. In the CλaSH implementation, the
multiplication operator is mapped over these values, as shown in Listing 5.1.

mult : : t ∼ Signed 1000 ⇒ S igna l t → S igna l t → S igna l t
mult x y = fmap ( uncurry (∗ ) ) $ bundle (x , y )

Listing 5.1: The multiplier example defined in CλaSH

The two input signals are first combined with the function bundle, which creates a
Signal (t, t). The operator (*) normally has two separate values as input. The function
uncurry is used to convert this operator to a function on pairs, after which the uncur-
ried operator is mapped over the bundled signal. Listing 5.2 shows the execution of this
CλaSH implementation.

λ> l e t y = mult ( f romList [ 1 . . ] ) $ r e g i s t e r 1 y
λ> sampleN 13 y
[1 ,2 ,6 ,24 ,120 ,720 ,5040 ,40320 ,362880 ,3628800 ,39916800 ,479001600 ,6227020800 ]

Listing 5.2: The execution of the multiplier example in CλaSH

The Verilog implementation is already used in section 4.1 to show an example of
the implemented co-simulation. The continues assignment statement multiplies the two
signed input values to define the output value. The Verilog module is embedded with a
QuasiQuoter, as shown in Listing 5.3.

v e r i l o g m u l t : : t ∼ Signed 1000 ⇒ S igna l t → S igna l t → S igna l t
v e r i l o g m u l t = coSim source I ca ru s ”mult”

where source = [ v e r i l o g | module mult (Out , Left , Right ) ;

parameter data width = 1000 ;
input s igned [ 0 : data width −1] Le f t ;
input s igned [ 0 : data width −1] Right ;
output s igned [ 0 : data width −1] Out ;

a s s i g n Out = Le f t ∗ Right ;

endmodule | ]

Listing 5.3: The multiplier example defined with co-simulation

The co-simulation is first performed with Icarus Verilog, as shown in Listing 5.4. The
same implementation is also executed with ModelSim, as shown in Listing 5.5. Both co-
simulations execute correctly and show the same output as the CλaSH implementation.
However, using ModelSim has as disadvantage that much information is shown in the
console.
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λ> l e t y = mult ( f romList [ 1 . . ] ) $ r e g i s t e r 1 y
λ> sampleN 13 y
[1 ,2 ,6 ,24 ,120 ,720 ,5040 ,40320 ,362880 ,3628800 ,39916800 ,479001600 ,6227020800 ]

Listing 5.4: The execution of the multiplier example using Icarus Verilog

∗∗ Warning : ( v l ib −34) Library a l r eady e x i s t s at ”work ” .
Sta r t time : 23 : 26 : 56 on Aug 9 ,2016
v log . / clashCoSim−3bqyeZ
Model Technology ModelSim ALTERA vlog 10 .4 d Compiler 2015 .12 Dec 30 2015
−− Compiling module mult

Top l e v e l modules : mult
End time : 2 3 : 26 : 56 on Aug 16 ,2016 , Elapsed time : 0 : 0 0 : 0 0
Errors : 0 , Warnings : 0
: Reading p r e f . t c l

# 10 .4 d
# vsim −c −qu i e t −do ” o n f i n i s h e x i t ; run −a l l ” mult −p l i ”CoSimVPI . s l ”
# Star t time : 2 3 : 2 6 : 57 on Aug 16 ,2016
# o n f i n i s h e x i t
# run −a l l

[ 1 ,2 ,6 ,24 ,120 ,720 ,5040 ,40320 ,362880 ,3628800 ,39916800 ,479001600 ,6227020800 ]
# End time : 23 : 26 : 5 7 on Aug 9 ,2016 , Elapsed time : 0 : 0 0 : 0 0
# Errors : 0 , Warnings : 0

Listing 5.5: The execution of the multiplier example using ModelSim

Table 5.1 shows the needed execution times for the Multiplier design. The co-
simulation needs approximately the same time as the CλaSH implementation. Further-
more, it is visible that both simulators, Icarus Verilog and ModelSim, executes the design
in a comparable amount of time.

No of multiplications CλaSH Icarus ModelSim

1 293.1 ns 307.3 ns 350.2 ns
10 646.8 ns 745.8 ns 717.1 ns

100 3.923 µs 4.195 µs 4.131 µs
1000 38.38 µs 38.03 µs 47.38 µs

10000 360.8 µs 420.5 µs 425.3 µs
100000 3.443 ms 3.543 ms 5.405 ms

Table 5.1: The execution times for simulating the Multiplier

77



5.2. EXAMPLES AND BENCHMARKS CHAPTER 5. RESULTS

5.2.2 FIR filter

The next example is the FIR filter as shown on the CλaSH website [3]. The CλaSH
implementation is copied in Listing 5.6. The filter works with 16-bit signed values and
uses 4 coefficients: ’2’, ’3’, ’-2’, and ’8’. A window, with the same size as the coefficients,
slides over the input values. The four values inside this window and the 4 coefficients will
be multiplied together, after which the outputs are summed.

dotp : : SaturatingNum a ⇒ Vec (n + 1) a → Vec (n + 1) a → a
dotp as bs = f o l d boundedPlus ( zipWith boundedMult as bs )

f i r : : ( De fau l t a , KnownNat n , SaturatingNum a ) ⇒
Vec (n + 1) ( S i gna l a ) → S igna l a → S igna l a

f i r c o e f f s x t = y t
where y t = dotp c o e f f s $ window x t

topEntity : : S i gna l ( Signed 16) → S igna l ( Signed 16)
topEnt ity = f i r (2:>3:>(−2) :>8:>Ni l )

Listing 5.6: The FIR filter example defined in CλaSH [3]

The output of the FIR filter is directly connected to the input, as visualized in Fig-
ure 5.2. The registers are only used as window to remember the last 3 inputs values.

+

+ +

∗ ∗ ∗ ∗

2 3 −2 8

x t

y t

Figure 5.2: The FIR filter example
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An infinite list, with incrementing values, is used as input signal. Executing the FIR
filter example with this input signal, gives the output as shown in Listing 5.7.

λ> sampleN 13 $ topEntity $ f romList [ 1 . . ]
[ 2 , 7 , 10 , 21 , 32 , 43 , 54 , 65 , 76 , 87 , 98 , 109 , 120 ]

Listing 5.7: The execution of the FIR filter example in CλaSH

The CλaSH implementation can be compiled to Verilog with the :Verilog command.
The compiler puts the generated Verilog files in the director ./verilog/Main. This direc-
tory is included with the coSimSeq function, as shown in Listing 5.8.
The Verilog implementation uses the rising edge of the clock to remember the last three
values. As explained in section 4.5, the co-simulation will write the input values after
the rising edge and read the output values before the next rising edge. Furthermore, a
reset is needed to set all the registers to zero at the beginning of the co-simulation.

clock

reset

1000 sim. steps

Figure 5.3: The clock and reset used in the FIR filter example (co-simulation)

v e r i l o g f i r : : t ∼ Signed 16 ⇒ S igna l t → S igna l t
v e r i l o g f i r = coSim source I ca ru s ” f i r ”

where source = coSimSeq [ v e r i l o g | module f i r ( i , o ) ;

reg c l k = 1 , r s t n = 1 ;
parameter data width = 16 ;
input s igned [ data width −1:0 ] i ;
output s igned [ data width −1:0 ] o ;

i n i t i a l begin
#1 r s t n = 0 ;
#2 r s t n = 1 ;

end
always begin

#500 c l k = ∼ c l k ;
end

Main topEntity 0 dm( i , c lk , r s t n , o ) ;

endmodule | ] (1000 , Fa l se ) [ ” . / v e r i l o g /Main ” ]

Listing 5.8: The FIR filter example defined with co-simulation
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The FIR filter, as implemented in Listing 5.8, gives the same output as the CλaSH
implementation, as demonstrated in Listing 5.9.

λ> sampleN 13 $ v e r i l o g f i r $ f romList [ 1 . . ]
[ 2 , 7 , 10 , 21 , 32 , 43 , 54 , 65 , 76 , 87 , 98 , 109 , 120 ]

Listing 5.9: The execution of the FIR filter example using co-simulation

The execution times are comparable with the previous example, the Multiplier, as
shown in Table 5.2. This is probably because the simulation itself and the memory man-
agement contribute mostly to the needed simulation time. Furthermore, it is visible that
the needed simulation time increases almost linear. Around 40 nano-seconds is needed
for one clock-cycle, when using a larger number (≥100) of clock-cycles.

No of clock-cycles CλaSH Icarus ModelSim

1 293.5 ns 350.7 ns 310.9 ns
10 615.8 ns 693.1 ns 632.0 ns

100 3.780 µs 4.082 µs 3.972 µs
1000 59.62 µs 38.44 µs 40.46 µs

10000 387.0 µs 391.3 µs 375.1 µs
100000 3.578 ms 4.008 ms 4.086 ms

Table 5.2: The execution times for simulating the FIR filter
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5.2.3 GFSK demodulator

In the last example, co-simulation will be performed with a GFSK demodulator. Gaus-
sian frequency shift keying (GFSK) is a modulation method for digital communication.
GFSK can be found in many standards like Bluetooth and DECT. Some Background on
GFSK Modulation can be found in [70].

Within the course Implementation of Digital Signal Processing (191210950), a GFSK
demodulator was implemented in Haskell and CλaSH, as a Design Under Test (DUT).
The demodulator is divided in four parts: a Mixer, a Low-Pass Filter, a Delay and Mul-
tiply operator, and a Slicer, as visualized in Figure 5.5.
As part of the Test Vector Controller (TVC), a GFSK modulator and a channel were
implemented in Haskell. Both the DUT and TVC are shown in Figure 5.4.
The most important criteria of the implementation was the Bit Error Rates (BERs) for
different Signal-To-Noise ratios (SNRs) [71][72].

Figure 5.4: The schematic overview of the GFSK design testbench [71]

Figure 5.5: The schematic overview of the GFSK demodulator [71]
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The first part of the demodulator, the Mixer, is used to eliminate the radio frequency.
The input signal is multiplied with an unmodulated sine and cosine, to calculate the
in-phase and quadrature components. The sine and cosine are calculated with a cordic,
in which 8 iterations are performed to increase the accuracy.

+1∗ ∗

LUTCordic

c’ c

Figure 5.6: The Mixer

The second part is an FIR filter, used as a low-pass filter. Two filters are used to filter
out any higher frequencies in both the in-phase and quadrature components. Although,
more coefficients are used, a simular implementation as the previous example could be
defined, as decribed in subsection 5.2.2. However, the FIR filter is defined as a multipli-
erless design [70][74], to create a more optimized design.

The third part, the Delay and Multiply operation, is a classical technique for FM
demodulation [70]. Figure 5.7 shows the implementation of this operation.

∗ ∗

−

Figure 5.7: The Delay and Multiply operation
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The Slicer is the last part of the GFSK demodulator. Four samples of a symbol are
added to make this part more robust in presence of noise. The sign of the sum is returned
as a single bit, as shown in Figure 5.8.

+1+

+ +

≥ 0

c’ c
sum

Figure 5.8: The Slicer

The goal was not to explain the inner workings of the GSFK implementation, but to
show that this example is far more complex compared with the previous two examples.
This is also visible in the needed simulation time, as shown in Table 5.3. The down-
sampler is not included in the demodulator, because the simulation works with only one
clock-domain. This has as consequence that 16 clock-cycles are needed for every output-
bit.

No clock-cycles CλaSH Icarus ModelSim

16 28.46 ms 1.404 s 3.891 s
160 127.2 ms 1.844 s 4.651 s

1600 1.475 s 9.194 s 15.99 s
16000 10.48 s 59.11 s x

Table 5.3: The execution times for simulating the GFSK demodulator
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In the two previous examples, it was visible that the needed simulation time for the
co-simulation was approximately the same compared with the CλaSH implementation.
In this example it becomes visible that CλaSH needs far less simulation time.
An explanation could be the lazy evaluation. Although lazy evaluation is used, no clock-
cycles will be skipped in the co-simulation. However, the output of the demodulator is
down-sampled, what allows the CλaSH implementation to skip certain ’clock-cycles ’.
Another reason is the output type. The demodulator returns a single bit, but the co-
simulation works with 32-bit integers.

It was not possible to perform all the simulation with ModelSim. In last test-case
an assertion failed, as shown in Listing 5.10, and the Verilog simulator crashes. This is
probably due to the fact that Criterion does not perform one co-simulation, but a few
dozens to estimate the execution time. When a simulation is finished, ModelSim goes to
debug mode. This has as consequence that multiple ModelSim processes can run in the
background, while performing the benchmarks.

l i b c m a l l o c : Asse r t i on ‘ ! v i c t im | | chunk is mmapped (mem2chunk ( v ic t im ) )
| | a r p t r == arena fo r chunk (mem2chunk ( v ic t im ) ) ’ f a i l e d .

Listing 5.10: The failed assertion in the malloc source

The co-simulation implementation is comparable with the previous co-simulation ex-
ample. The clock and reset patterns are defined in the Verilog code. In this example, a
clock-cycle consist of 64 simulation steps, as shown in Listing 5.11.

v e r i l o g g f s k : : t ∼ ( SFixed 5 3) ⇒ Signal ’ Clk64 t → Signal ’ Clk64 Bit
v e r i l o g g f s k = coSim ( coSimDisableStdOut source ) I ca ru s ” g f sk ”

where source = coSimSeq [ v e r i l o g | module g f sk ( i , o ) ;

reg c l k = 1 , r s t n = 1 ;
input s igned [ 7 : 0 ] i ;
output o ;

i n i t i a l begin
#1 r s t n = 0 ;
#2 r s t n = 1 ;

end
always begin

#32 c l k = ∼ c l k ;
end

Main topEntity 0 dm( i , c lk , r s t n , o ) ;

endmodule | ] (64 , Fa l se ) [ ” . / v e r i l o g /Main ” ]

Listing 5.11: The GFSK demodulator example defined with co-simulation
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The GFSK test-bench is shown in Listing 5.12. The input source (xs) is modulated
(xs’ ), after which Additive White Gaussian Noise (AWGN) is added, using an SNR value
of 13 (ys). Besides adding noise, Analog to Digital Conversion (ADC) is simulated inside
the channel. The resulting signal is used as input for the demodulator. The output of the
demodulator is zipped with the wanted output xs, after which a Bit Error Rate (BER)
test could be applied.
As shown in Listing 5.13, the GFSK demodulator is in both implementations be able to
recover the original input source.

id sp : : ( [ Double ] → [ Bit ] ) → Int →s [ ( Int , Bit ) ]
id sp f n = Prelude . take n $ Prelude . z ip xs $ Prelude . drop 5 ys

where
ys = f $ channel xs ’ awgn 13
xs = sourceWanted
xs ’ = s i gna l modu la t i on 1 10 xs
awgn = crea t eNo i s e sourceNo i se

g s f k t b = idsp $ fromCLaSH . demodulator . toCLaSH
v e r i l o g g f s k t b = idsp $ fromCLaSH . v e r i l o g g f s k . toCLaSH

Listing 5.12: The GFSK test-bench

λ> Prelude . map f s t $ g s f k t b 50
[ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1
, 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ]

λ> Prelude . map snd $ g s f k t b 50
[ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1
, 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ]

λ> Prelude . map f s t $ v e r i l o g g f s k t b 50
[ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1
, 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ]

λ> Prelude . map snd $ v e r i l o g g f s k t b 50
[ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1
, 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ]

Listing 5.13: The execution of the GFSK test-benches
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6 Recommendations

In chapter 3, the possibilities with VPI are explained. With this interface, co-simulation
can be made possible between CλaSH and Verilog, as demonstrated in chapter 5. In
this chapter, the implemented co-simulation is discussed and recommendations for future
work are made.

6.1 IO monad

In section 2.1 it was stated that although Haskell is a pure language, impure functions
can be defined. In the defined co-simulation, the IO-monad is heavily used to control and
communicate with the Verilog simulator. Examples of side effects are the creation of files
and the execution of processes. On the other hand, by using the same Verilog modules
with the same input and specifications, the co-simulation should always return the same
output.

Normally pure and impure can not be combined, but System.IO.Unsafe provides a
’back door ’ into the IO monad, allowing to perform IO computation at any time [39]. The
function unsafePerformIO with the type ’IO a → a’ is used to embed the impure in pure
functions. But this function has to be used carefully, because unsafePerformIO is not
type-safe and when used inlined, the IO operations can be performed more than once [39].

ByteString, a dependency for CλaSH, also gives warnings for the use of such unsafe
back doors: ”If you think you know what you are doing, use ’unsafePerformIO’. If you are
sure you know what you are doing, use ’unsafeDupablePerformIO’. If you enjoy sharing
an address space with a malevolent agent of chaos, try ’accursedUnutterablePerformIO’”
[38].

Within the function unsafePerformIO there is a check that the IO may only be per-
formed by a single thread, which is omitted for the function unsafeDupablePerformIO. By
omitting this check, there is a possibility that the IO action may be performed multiple
times (for example on a multiprocessor) or that one of the duplicated IO actions only
runs partially [39].
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The examples, as shown in section 5.2, are performed single-threaded. The recom-
mendation is to check the consequences of using the co-simulation in a multi-threaded
fashion. Furthermore, the consequences of compiling the Haskell modules to object files,
by using the optimize options, are unknown. The assumption is made that GHC will not
inline the content used in the unsafePerformIO functions, but no research is conducted
to validate this statement.

As explained in section 4.2, the function coSimStart uses a mapAccumLM to perform
the simulation steps. This higher order function could be implemented as shown in List-
ing 6.1. However, this function is not lazy and it builds all the chain in memory until it
returns the result.

mapAccumLM f s ( x : xs ) = do
( s1 , x ’ ) → f s x
( s2 , xs ’ ) → mapAccumLM f s1 xs
re turn ( s2 , x ’ : xs ’ )

Listing 6.1: A possible implementation of the mapAccumLM

Currently the function mapAccumLM is implemented with the unsafePerformIO
function, as shown in Listing 6.2. Performing IO operations lazy results in unpredictable
resource management. Although this is solved by using Haskell’s Garbage Collector, the
recommendation is to use streams or other data-types to avoid the usage of the unsafePer-
formIO function.

mapAccumLM : : ( acc → x → IO ( acc , y ) ) → acc → [ x ] → IO ( acc , [ y ] )
mapAccumLM f s xs = return $ Data . L i s t . mapAccumL f ’ s xs

where f ’ = \a bs → unsafePerformIO $ f a bs

Listing 6.2: The implemented mapAccumLM function

87



6.2. CO-SIMULATION WITH VHDL CHAPTER 6. RECOMMENDATIONS

6.2 Co-Simulation with VHDL

The main focus, within this thesis, is about using the VPI to define co-simulation between
CλaSH and Verilog. The co-simulation can also be used with SystemVerilog, but nor-
mally the VPI does not support co-simulation with VHDL. An obvious recommendation
is to support co-simulation with VHDL.
In chapter 5 the implemented co-simulation is tested with GDHL, an open-source VHDL
simulator. GHDL uses as foreign interface the VPI, mainly to use the Icarus Verilog In-
teractive (IVI), a graphical developer aid. In the current development version (0.34dev),
GHDL has extended the VPI implementation to support co-simulation with Cocotb. Un-
fortunately, not all the needed VPI properties are implemented and thus co-simulation
with GHDL is currently not possible.

The implementation at the CλaSH side does not have any connection with VPI proper-
ties, and only default C types are passed between CλaSH and the Verilog simulator. Only
supporting default C types, gives possibilities for supporting other interfaces, like VHPI.
The VHDL Procedural Interface is the recommended interface to support co-simulation
with VHDL. ModelSim and QuastaSim do not give support for VHPI, but use its own
interface: the Foreign Language Interface (FLI). Looking at related work, Cocotb gives
support for both the VHPI and FLI to enable co-simulation with VHDL for a wide range
of simulators.

The VHPI has a similar structure as the VPI. In many cases, the VPI routines given
in chapter 3, have an equivalent VHPI implementation with comparable names, as shown
in Table 6.1.

VPI routines VHPI routines

vlog startup routines vhpi startup routines
vpi control vhpi control
vpi printf vhpi printf
vpi register cb vhpi register cb
vpi remove cb vhpi remove cb
vpi handle vhpi handle
vpi iterate vhpi iterate
vpi scan vhpi scan
vpi free object vhpi free object
vpi get vhpi get
vpi get value vhpi get value
vpi put value vhpi put value

Table 6.1: Comparable VPI and VHPI routines
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Besides equivalent routines, the VHPI also has equivalent callbacks, as shown in Ta-
ble 6.2, and properties as shown in Table 6.3.

VPI callbacks VHPI callbacks

cbStartOfSimulation vhpiCbStartOfSimulation
cbEndOfSimulation vhpiCbEndOfSimulation
cbNextSimStep vhpiCbNextSimStep
cbAfterDelay vhpiCbAfterDelay
cbReadWriteSynch vhpiCbEndOfProcesses
cbReadOnlySynch vhpiCbLastKnownDeltaCycle
cbValueChange vhpiCbValueChange

Table 6.2: Comparable VPI and VHPI callbacks

Although the properties vpiBinStrVal and vphiBinStrVal have comparable names and
are used for the same purpose, they are not exactly the same. Verilog uses 4-state logic
values, but VHDL uses 9-state logic values. Besides the ’0’, ’1’, ’Z’, and ’X’ values, VHPI
also uses ’U’ (uninitialized), ’W’ (weak unknown), ’L’ (weak 0), ’H’ (weak 1), and the
don’t care value.
For exchanging values with Verilog, the vpiVectorVal was used as type format, which
contains an array of aval/bval pairs. Within VHDL this is not possible and another way
must be found to exchange the data efficiently.

VPI properties VHPI properties

vpiFinish vhpiFinish
vpiReset vphiReset
vpiStop vhpiStop
vpiBinStrVal vphiBinStrVal
vpiTimeVal vphiTimeVal

Table 6.3: Comparable VPI and VHPI properties

Besides differences in value exchange, traversing the hierarchy will be different. Al-
though routines as vhpi iterate and vhpi scan are available, a property such as vpiModule
is not available. Instead of having modules, VHDL uses entities and architectures. Re-
search has to be done to these parts of the VHPI. The main questions will be: how
can traversing through a VHDL hierarchy be implemented? And how to automatically
recognize the available signals for co-simulation?
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6.3 Multiple clock-domains

the support for clock signals, needed for sequential synchronous circuits, is discussed in
section 4.5. In the implemented co-simulation only two settings can be given: the length
of a clock-cycle and a check if a reset phase is used. The length of a clock cycle is used
to read and write values in the correct simulation steps. Normally, the write phase will
be performed at the beginning of the period, and the read phase happens at the end of
the given period. If a reset phase is used, the first write phase will be skipped and a read
phase is the first moment of data exchange.

The recommendation is to define the clock and the reset in the Verilog code. Both
signals can be seen as streams, but they have not the same pattern as the other input
and output signals.
CλaSH annotates signals with a clock. These clocks are defined with a certain period and
can be used to support multiple clock-domains. Currently, it is only possible to define one
period in the co-simulation, and thus only one clock-domain can be used. An extension
would be to define the period for every SignalStream to support multiple clock domains.
The periods should automatically be derived from the clock annotations. The greatest
common divisor (GCD) of the periods can then be used as the co-simulation speed.

w0 w1 w2 w3 w4 w5

r0 r1 r2 r3 r4

w0 w1 w2 w3 w4 w5 w6 w7

r0 r1 r2 r3 r4 r5 r6

Figure 6.1: Two different clock signals

The clock signals, as shown in Figure 6.1, have not the same period and data ex-
change will happen in different simulation steps. Depending on the number of steps for
both clock signals, the GCD can be calculated to define in which simulation steps data
exchange must occur to support both clock-domains.
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6.4 Inline Verilog

In subsection 2.1.2 the usage of Template Haskell and QuasiQuotation is explained.
QuasiQuoters are used to define a Domain Specific Language (DSL). In chapter 4 and
chapter 5 QuasiQuoters are used to embed Verilog in CλaSH. Currently this Verilog code
is not analysed and only forwarded to the Verilog simulator. This has as advantage that
CλaSH will not give limitations to the Verilog syntax.

Not analysing the Verilog code also has disadvantages. For example, the Verilog
syntax will only be checked when starting the co-simulation and not at compile-time.
Furthermore, AntiQuotation is not possible. Antiquotation can be used to splice Haskell
entities (e.g. variables) in the embbeded Verilog code [51][52][53][55][56].

λ> l e t parseE = returnQ . VarE . mkName
λ> : t parseE
parseE : : S t r ing → Q Exp

λ> l e t x = 3

λ> $( parseE ”x ”)
3

Listing 6.3: An AntiQuotation example

In the package Inline-C, QuasiQuotation and Antiquotation is used to call C libraries
and embed inline C code in Haskell modules [58].

−− | ’ readAndSum n ’ reads ’n ’ numbers from standard input and re tu rn s
−− t h e i r sum .
readAndSum : : CInt → IO CInt
readAndSum n = [C. block | i n t {

// Read and sum n i n t e g e r s
i n t i , sum = 0 , tmp ;
f o r ( i = 0 ; i < $( i n t n) ; i++) {

s can f (”%d” , &tmp) ;
sum += tmp ;

}
re turn sum ;

} | ]

Listing 6.4: An Inline-C example

The code between the Oxford-brackets is normal C code, except for the $(int n) in the
for-loop. The Haskell argument n for the readAndSum function denotes the number of
StdIn-reads and is spliced in the C code. The type of n is also given in this AntiQuotation.
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HaskellR is a project bringing together a number of packages for statistical analysis
and machine learning using R’s comprehensive library support [59]. One of the parts in
this project is the package Inline-R, used to embed inline R code in Haskell modules.

H> l e t x = 2 : : Double
H> l e t y = 4 : : Double
H> p [ r | x hs + y hs | ]
[ 1 ] 6

Listing 6.5: An Inline-R example

Instead of using the $ symbol, the suffix hs is used to splice Haskell values in R
[60]. In Listing 6.5, the variables x and y are spliced in R, after which they are added.
The Haskell functions can be lifted in the R Monad and executed in a QuasiQuotation.
Listing 6.6 shows the function f, which is used in R.

H> l e t f x = return ( x + 1) : : R s Double
H> p [ r | f h s (1 ) | ]
[ 1 ] 2

Listing 6.6: A spliced Haskell function in R

In order to use AntiQuotation for Inline-Verilog a parser must be created. A parser
for Verilog exists [61], which can probably be reused. Furthermore, a unique keyword has
to be defined to splice Haskell values into the DSL. In most literature the $ keyword is
used to denote an AntiQuotation, but in the Verilog syntax this keyword denotes a foreign
function call. A possible solution is use this keyword in combination with parenthesis.
Listing 4.1 from chapter 4 can then be rewritten to:

v e r i l o g m u l t : : ( t ∼ Signed 100) ⇒ S igna l t → S igna l t → S igna l t
v e r i l o g m u l t x y = coSim Ica ru s [ v e r i l o g | a s s i g n Out = $( x ) ∗ $( y ) ; | ]

Listing 6.7: A co-simulation example with AntiQuotation
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7 Conclusion

High-level Hardware Description Languages (HDLs) are becoming popular to increase the
abstraction level and design productivity. These high-level HDLs often contain compilers
to go to standardized HDLs, like VHDL, Verilog, and SystemVerilog. A desirable part of
the high-level HDLs is co-simulation with the standardized HDL(s). Co-simulation gives
possibilities for verification and simulating different HDLs within one system.

In chapter 2, background information related to co-simulation is provided. Standards
are available to communicate with foreign code. For Verilog, the VPI standard is avail-
able, which gives support for data-exchange and to control the simulator. The VHDL
standard for co-simulation, VHPI, is very comparable with the VPI and gives almost the
same functionality. Drawbacks are the popularity of the VPHI standard, which is not as
popular nor supported as the VPI standard. For example, ModelSim uses its own VHDL
interface.

Within CλaSH, the FFI can be used to communicate with C. Furthermore, infor-
mation is provided on how to define a Domain Specific Language (DSL) using Template
Haskell and QuasiQuotation, which could be used to embed Verilog code in CλaSH.

Related work is mainly implemented in different programming languages, in which
often an imperative design is chosen. Popular implementations are MyHDL and Cocotb,
both written in Python. Within Python it is possible to use generators, and using yield
the simulation control can be switched. MyHDL supports co-simulation with Verilog,
using the VPI standard. Cocotb provides co-simulation with VHDL, Verilog, and Sys-
temVerilog, using the VPI, VPHI, FLI, and DPI standards.

In chapter 3, the Verilog Procedural Interface (VPI), part of the IEEE 1364 Verilog
standard, is investigated. Simulation callbacks can be used to synchronize CλaSH to the
simulator. These events can be related to the simulator, like start and end of simulation,
but also cycle based, like the next simulation step. Values can be exchanged in different
type formats, like integer, string and vectors. One of the main differences between a
functional HDL, like CλaSH, and a traditional HDL is the support for delay operations
and scheduling. With CλaSH , signals can be seen as streams of values, which are sim-
ulated using lazy evaluation. In a traditional HDL, the simulation is event-driving using
delta-delays to ensure race-free operations.
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CHAPTER 7. CONCLUSION

In chapter 4, co-simulation between CλaSH and Verilog is defined using the VPI stan-
dard. The Verilog simulator (Icarus Verilog) is started using the FFI, after which the
Verilog code is analyzed. The co-simulation automatically recognizes the Verilog modules
and maps CλaSH values to the Verilog ports.

Lazy evaluation is used to perform simulation steps and the problems of lazy IO are
avoided by using callbacks into Haskells Garbage Collector. Every simulation step, call-
backs are registered in the Verilog simulator in which data exchange occur. Support for
both combinational and sequential circuits is provided.

In chapter 5, the implementation as defined in chapter 4, is tested with ModelSim
and GHDL. The same implementation, as defined for Icarus Verilog, can be used with
ModelSim. However, the implementation does not work with GHDL, because certain
VPI properties are not implemented. On GitHub an issue is created about the missing
VPI properites, which is confirmed by the owner of GHDL. When these properties are
implemented, co-simulation between CλaSH and VHDL should be possible (theoretical).

Three examples, a multiplier, a FIR filter, and a GFSK demodulator, are tested with
co-simulation. These three examples have the same behaviour and output as the CλaSH
implementation, when the reset and clock signals were set correctly. The multiplier and
the FIR filter needs comparable simulation time compared with the CλaSH implementa-
tion, but the GFSK demodulator, a much larger design, was significantly slower.

Finally, in chapter 6, recommendations and ideas for future work are given. The
defined co-simulation only uses the VPI standard to support co-simulation with Verilog.
To be able to support co-simulation with other HDLs, like VHDL, other standards, like
VHPI, have to be supported.

The support for Inline Verilog is currently very limited. Only valid Verilog modules
are allowed and there is no support for AntiQuoters, which can splice Haskell values
into the DSL. Furthermore, by using one Verilog module, the name of the top-module
can be extracted and forwarded to the Verilog simulator, instead of giving it as parameter.

Currently, there is no support for multiple clock domains. Every signal is used as a
stream of values and every value is exchanged in the same simulation step, without any
connection to a specific clock. By supporting multiple clock-domains, the speed of the
streams will become different, which will have an influence on the synchronization and
data exchange between CλaSH and the Verilog simulator.

94



CHAPTER 7. CONCLUSION

As formulated in section 1.1, the research addressed in this thesis is:

� How can co-simulation with traditional HDLs be supported within CλaSH?

This research question is answered by investigating the Verilog Procedural Interface
(VPI), part of the IEEE 1364 Verilog standard, and the Foreign Function Interface (FFI).
With the FFI, CλaSH is be able to execute C-functions and manipulate foreign memory.
Through the FFI, the VPI can be used to communicate and control Verilog simulators.
Data exchange is possible using scheduled callbacks in the Verilog simulator. At the
CλaSH side, lazy evaluation is used as scheduling technique and the Garbage Collector
is used to finish a certain co-simulation.

Personally, I expect that co-simulation will become very useful to simulate CλaSH
with existing (Verilog) designs. Looking backwards, I see one other reason: verifying the
consequences of the clock-cycles and the reset-phase in a synchronous sequential design.
Within CλaSH, the design will be implemented from a functional point of view, without
any notion of reset phases and clock edges. The co-simulation can be used to have more
insight in reset phases and clock-cycles.

The source-code and the install instruction of the implemented co-simulation are up-
loaded to GitHub [67]. As prerequisites, CλaSH and Icarus Verilog have to be installed,
after which the uploaded Makefile can be used to automatically build and load the im-
plemented co-simulation.
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A Higher Order Functions

The image, as shown in Figure A.1, shows the structural representations of the higher
order functions map, zipWith, fold, scanl, and mapAccumL. The image is copied from the
course Embedded Computer Architectures 2 (192130250).

Figure A.1: Structural representation of higher-order functions in Haskell
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B VPI system function pow

The following examples are copied from [1].

void p o w r e g i s t e r ( )
{

s v p i s y s t f d a t a t f d a t a ;
t f d a t a . type = vpiSysFunc ;
t f d a t a . sys functype = vpiSysFuncReal ;
t f d a t a . tfname = ”$pow” ;
t f d a t a . c a l l t f = p o w c a l l t f ;
t f d a t a . c omp i l e t f = pow compi let f ;
t f d a t a . s i z e t f = NULL; /∗ s i z e t f i s not used f o r r e a l f unc t i on s ∗/
t f d a t a . u se r data = NULL;
v p i r e g i s t e r s y s t f (& t f d a t a ) ;

}

Listing B.1: The registration of the pow-function

PLI INT32 p o w c a l l t f (PLI BYTE8 ∗ use r data )
{

s v p i v a l u e v a l u e s ;
vpiHandle sy s t f h an d l e , a r g i t r , a rg hand le ;
double base , exp , r e s u l t ;

v a l u e s . format = vpiRealVal ;

/∗ ob ta in handle to system ta s k arguments ;
c omp i l e t f has a l r eady v e r i f i e d on ly 2 args wi th co r r e c t t ype s ∗/

s y s t f h a n d l e = vp i hand le ( vpiSysTfCal l , NULL) ;
a r g i t r = v p i i t e r a t e ( vpiArgument , s y s t f h a n d l e ) ;

/∗ read base va lue o f system func t i on arg 1 & arg 2∗/
arg handle = vp i s can ( a r g i t r ) ;
v p i g e t v a l u e ( arg handle , &v a l u e s ) ;
base = v a l u e s . va lue . r e a l ;
a rg hand le = vp i s can ( a r g i t r ) ;
v p i g e t v a l u e ( arg handle , &v a l u e s ) ;
exp = v a l u e s . va lue . r e a l ;
v p i f r e e o b j e c t ( a r g i t r ) ; /∗ f r e e i t e r a t o r−−did not scan t i l l n u l l ∗/

/∗ c a l c u l a t e r e s u l t o f base to power o f exponent ∗/
r e s u l t = pow( base , exp ) ;

Listing B.2: The calltf routine needed for the pow-function (part A)
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APPENDIX B. VPI SYSTEM FUNCTION POW

/∗ wr i t e r e s u l t to s imu la t i on as re turn va lue $pow func ∗/
v a l u e s . va lue . r e a l = r e s u l t ;
vp i pu t va lue ( s y s t f h an d l e , &va lue s , NULL, vpiNoDelay ) ;
return (0 ) ;

Listing B.3: The calltf routine needed for the pow-function (part B)

PLI INT32 pow compi let f (PLI BYTE8 ∗ use r data )
{

vpiHandle sy s t f h an d l e , a r g i t r , a rg hand le ;
int t f a r g t y p e ;

s y s t f h a n d l e = vp i hand le ( vpiSysTfCal l , NULL) ;
a r g i t r = v p i i t e r a t e ( vpiArgument , s y s t f h a n d l e ) ;
i f ( a r g i t r == NULL) {

v p i p r i n t f ( ”ERROR: $pow r e q u i r e s 2 arguments\n” ) ;
v p i c o n t r o l ( vp iF in i sh , 1) ; /∗ abor t s imu la t i on ∗/
return (0 ) ;

}
arg handle = vp i s can ( a r g i t r ) ;
t f a r g t y p e = v p i g e t ( vpiType , arg handle ) ;
i f ( ( t f a r g t y p e != vpiReg ) &&

( t f a r g t y p e != vpi IntegerVar ) &&
( t f a r g t y p e != vpiRealVar ) &&
( t f a r g t y p e != vpiConstant ) ) {

v p i p r i n t f ( ”ERR: $pow arg1 must be number , v a r i a b l e or net \n” ) ;
v p i c o n t r o l ( vp iF in i sh , 1) ; /∗ abor t s imu la t i on ∗/
return (0 ) ;

}
arg handle = vp i s can ( a r g i t r ) ;
i f ( arg handle == NULL) {

v p i p r i n t f ( ”ERROR: $pow r e q u i r e s 2nd argument\n” ) ;
v p i c o n t r o l ( vp iF in i sh , 1) ; /∗ abor t s imu la t i on ∗/
return (0 ) ;

}
t f a r g t y p e = v p i g e t ( vpiType , arg handle ) ;
i f ( ( t f a r g t y p e != vpiReg ) &&

( t f a r g t y p e != vpi IntegerVar ) &&
( t f a r g t y p e != vpiRealVar ) &&
( t f a r g t y p e != vpiConstant ) ) {

v p i p r i n t f ( ”ERR: $pow arg2 must be number , v a r i a b l e or net \n” ) ;
v p i c o n t r o l ( vp iF in i sh , 1) ; /∗ abor t s imu la t i on ∗/
return (0 ) ;

}
i f ( vp i s can ( a r g i t r ) != NULL) {

v p i p r i n t f ( ”ERROR: $pow r e q u i r e s only 2 arguments\n” ) ;
v p i f r e e o b j e c t ( a r g i t r ) ;
v p i c o n t r o l ( vp iF in i sh , 1) ; /∗ abor t s imu la t i on ∗/
return (0 ) ;

}
return (0 ) ; /∗ no syntax e r ro r s d e t e c t e d ∗/

}

Listing B.4: The compiletf routine needed for the pow-function
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C Marshalling functions

f o r e i g n import c c a l l ” wr i t eToFi l e ” c wr i t eToF i l e : : CString → IO CString

coSimMarshall : : CoSimSettings ’ → [ S ignalStream ] →
IO ( Bool , Ptr CInt , CString , Ptr CString )

coSimMarshall s e t t i n g s xs = do

−− f i l e s
c f ← ( newCString m) >>= c wr i t eToF i l e
c f s ← mapM newCString d
l e t c f i l e s = c f : c f s
c f i l e P t r s ← newArray c f i l e s

−− topEnt ity & s e t t i n g s
c topEnt i ty ← newCString top
c s e t t i n g s P t r ← newArray $ Prelude . map f romInteg ra l $ c s f c f i l e s

−− re turn
return ( c , c s e t t i n g s P t r , c topEnt i ty , c f i l e P t r s )

where
( set , sim , top ) = s e t t i n g s
( a , b , c , m, d , e ) = s e t −−(hdl , per iod , r s t , data , f i l e s , stdOut )
c s f f s = [ sim2Num sim , a , b , r s t , stdOut , l e n f f s , l e n f xs ]
l e n f = Prelude . l ength
r s t = bool2Num c
stdOut = bool2Num e

Listing C.1: The function coSimMarshall

pokeArray ’ : : S to rab l e a ⇒ Ptr a → [ a ] → IO ( )
pokeArray ’ ptr [ ] = return ( )
pokeArray ’ ptr xs
| ptr == nu l lPt r = e r r o r ” nu l l−po in t e r ”
| otherwi se = pokeArray ptr xs

Listing C.2: The function pokeArray’

peekArray ’ : : ( S to rab l e a , I n t e g r a l b) ⇒ b → Ptr a → IO [ a ]
peekArray ’ (−1) = e r r o r ” nu l l−po in t e r ”
peekArray ’ s i z e ptr
| ptr == nu l lPt r = e r r o r ” nu l l−po in t e r ”
| otherwi se = peekArray ( f r omInteg ra l s i z e ) ptr

Listing C.3: The function peekArray’
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f o r e i g n import c c a l l ” getInputLength ” c inputLength : : Ptr a → IO CInt
f o r e i g n import c c a l l ”getOutputLength” c outputLength : : Ptr a → IO CInt
f o r e i g n import c c a l l ” g e t InputS i z e s ” c i n p u t S i z e s : : Ptr a →

IO ( Ptr CInt )
f o r e i g n import c c a l l ” getOutputSizes ” c ou t pu tS i z e s : : Ptr a →

IO ( Ptr CInt )
f o r e i g n import c c a l l ” getInputPtr ” c inputPtr : : Ptr a →

IO ( Ptr ( Ptr CInt ) )
f o r e i g n import c c a l l ” getOutputPtr ” c outputPtr : : Ptr a →

IO ( Ptr ( Ptr CInt ) )

Listing C.4: Foreign imports

coSimInput : : Fore ignPtr a → [ [ Int32 ] ] → IO ( )
coSimInput s t a t e xs = do

−− check s i z e s
c iLength ← withFore ignPtr s t a t e c inputLength
c i S i z e s ← withFore ignPtr s t a t e c i n p u t S i z e s

>>= peekArray ’ c iLength
when ( f c i S i z e s ) $ e r r o r $ e r r S t r c i S i z e s

−− wr i t e input
c inputPt r s ← withFore ignPtr s t a t e c inputPtr

>>= peekArray ’ c iLength
zipWithM pokeArray ’ c inputPt r s xs ’

where
xs ’ = Prelude . map ( Prelude . map f romInteg ra l ) xs
f = not . and . Prelude . zipWith compF i S i z e s
compF x y = ( x == 0 ) | | ( x == y )
iLength = f romInteg ra l $ Prelude . l ength xs
i S i z e s = Prelude . map ( f r omInteg ra l . Prelude . l ength ) xs
e r r S t r l s = Prelude . concat [ ” Simulator expect s ” , show l s ,

” input words , but ” , show i S i z e s , ” g iven ” ]

Listing C.5: The function coSimInput

coSimOutput : : Fore ignPtr a → IO [ [ Int32 ] ]
coSimOutput s t a t e = do

−− read output
c oLength ← withFore ignPtr s t a t e c outputLength
c o S i z e s ← withFore ignPtr s t a t e c ou tp u tS i z e s

>>= peekArray ’ c oLength
c outputPtrs ← withFore ignPtr s t a t e c outputPtr

>>= peekArray ’ c oLength
ys ← zipWithM peekArray ’ c o S i z e s c outputPtrs

−− convert and return
return $ Prelude . map ( Prelude . map f romInteg ra l ) ys

Listing C.6: The function coSimOutput
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D Installation Simulators

In this thesis three simulators are used: Icarus Verilog, GHDL, and ModelSim. Ubuntu
16.04, executed as a virtual system on a Mac OS X (El Capitan) system, is used as
operation system.

D.1 Icarus Verilog

Icarus Verilog version 11 (or higher) is needed to have support for co-simulation. Bina-
ries are only available for version 9 & 10 (currently), and thus the latest version is pulled
from GitHub. Furthermore, the following dependencies must be installed: bison, flex,
gperf, autoconf, g++, and build-essential. Icarus Verilog can then be installed with the
configure and make commands.

#!/ bin / bash
sudo apt−get i n s t a l l b i son
sudo apt−get i n s t a l l f l e x
sudo apt−get i n s t a l l gpe r f
sudo apt−get i n s t a l l autoconf
sudo apt−get i n s t a l l g++
sudo apt−get i n s t a l l bui ld−e s s e n t i a l

# Icarus Ver i l og
g i t c l one https : // github . com/ s t e v e i c a r u s / i v e r i l o g
cd i v e r i l o g
autorecon f − i
. / c o n f i g u r e
make
sudo make i n s t a l l

Listing D.1: Installing Icarus Verilog
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D.2 GHDL

In GHDL version 0.34, the VPI implementation is extended to support co-simulation
with Cocotb. But for CλaSH this is not yet sufficient. The install instruction for version
0.34 (dev) are given and hopefully co-simulation is possible soon.

GHDL is available with different back-ends (code-generators): GCC, mcode, and llvm.
The mcode back-end cannot be used to support co-simulation, because no object file will
be generated. In this case, llvm will be used, because it is easier to build then with GCC.
The following dependencies must be installed: GNAT (GNU Ada compiler), zlib, and
llvm 3.5. GHDL can be installed in the same way as Icarus Verilog (git clone and the
make commands).

#!/ bin / bash
sudo apt−get i n s t a l l z l i b1g−dev
sudo apt−get i n s t a l l llvm−3.5
sudo apt−get i n s t a l l c lang
sudo apt−get i n s t a l l l i b e d i t−dev

# GNAT GPL 2016
wget http :// mir ro r s . cdn . adacore . com/ ar t /5739 cefdc7a447658e0b016b
tar x f 5739 cefdc7a447658e0b016b
cd gnat−gpl−2016−x86 64−l inux−bin /
sudo . / d o i n s t a l l
PATH=”/ usr / gnat / bin : $ PATH” ; export PATH

# GHDL
g i t c l one https : // github . com/ tg ingo ld / ghdl
cd ghdl
. / c o n f i g u r e −−with−llvm−c o n f i g=/usr / bin / llvm−con f i g −3.5
make
sudo ”PATH=$PATH” make i n s t a l l

Listing D.2: Installing GHDL
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D.3 ModelSim

ModelSim is available in different versions, like ModelSim PE, ModelSim SE, and Mod-
elSim XE. In this case the ModelSim-Altera Starter Edition is used [62]. This version
only includes the base features of ModelSim PE, including behavioral simulation, HDL
testbenches, and Tcl scripting. Optional features, like VHDL plus Verilog Dual language
and SystemC 2.2 are not supported. Furthermore, the simulation performance is slower
and only 10.000 executable lines can be used.

The ModelSim-Altera Starter Edition is only available as 32-bit version. On a 64 bit
Linux version, the 32 bit dependencies must be installed, in order to install this Mod-
elSim version [63]. The setup procedure of ModelSim can be used to install this simulator.

sudo dpkg −−add−a r c h i t e c t u r e i386
sudo apt−get update
sudo apt−get i n s t a l l bui ld−e s s e n t i a l
sudo apt−get i n s t a l l gcc−m u l t i l i b g++−m u l t i l i b \
l i b 3 2 z 1 l i b 3 2 s t d c++6 l i b 3 2 g c c 1 \
expat : i 386 f o n t c o n f i g : i 386 l i b f r e e t y p e 6 : i 386 l i b expa t1 : i386 l i b c 6 : i 386

l i bg tk −3−0: i386 \
l i b c an b e r r a 0 : i 386 l ibpng12 −0: i386 l i b i c e 6 : i 386 l ibsm6 : i386 l i b n c u r s e s 5 : i 386

z l i b 1 g : i386 \
l ibx11 −6: i386 l ibxau6 : i386 libxdmcp6 : i386 l i b x e x t 6 : i 386 l i b x f t 2 : i 386

l i b x r e n d e r 1 : i 386 \
l i b x t 6 : i 386 l i b x t s t 6 : i 386

wget http :// download . a l t e r a . com/akdlm/ so f tware / a c d s i n s t /16.0/211/
i b i n s t a l l e r s /ModelSimSetup−16.0.0.211− l i nux . run

chmod +x ModelSimSetup−16.0.0.211− l i nux . run
sudo . / ModelSimSetup−16.0.0.211− l i nux . run

Listing D.3: Installing ModelSim

If Linux version 3.x.x.x is used, vsim will search in a non-existing directory for the
needed libraries. Furthermore, the MTI VCO MODE environment variable is used to
force selection of 32-bit or 64-bit platform directories for executables. Both settings can
be fixed in the vsim file [64].

vim $HOME/ a l t e r a /16 .0/ models im ase / bin /vsim

mode=${MTI VCO MODE:−””} # l i n e 13
mode=${MTI VCO MODE:−”32”} # has to be changed to

3 . [ 0 −9 ]∗ ) vco=” l i nux rh60 ” ; ; # l i n e 209
3 . [ 0 −9 ]∗ ) vco=” l inux ” ; ; # has to be change to

Listing D.4: Vsim settings
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