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Abstract

The facility location problem is an NP-hard optimization problem. Therefore, approximation
algorithms are often used to solve large instances. In practical situations, these approximation
algorithms perform better than their worst-case approximation ratios suggest. In order to explain
this behavior, probabilistic analysis is a widely used tool. Most research on probabilistic analysis
of N'P-hard optimization problems involving metric spaces, such as the facility location problem,
has been focused on Euclidean instances. However, we would like to extend this knowledge to
other, more general, metrics, since these provide a better resemblance to real-world instances.

In this thesis we investigate the facility location problem using random shortest path metrics.
A random shortest path metric is constructed by drawing independent random edge weights for
each edge in a complete graph and then setting the distance between each pair of vertices to the
length of a shortest path between them (according to the drawn edge weights). We analyze some
probabilistic properties for three simple procedures which give a solution to the facility location
problem: opening all facilities, opening one arbitrary facility, and opening a certain number of
arbitrary facilities (with that certain number only depending on the facility opening cost).

We show that, for any facility opening cost, at least one of these three procedures yields a 1+ o0(1)
approximation in expectation, unless f € ©(1/n). In the latter case we show that at least one of
the three procedures yields an O(1) approximation in expectation.
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1 Introduction

Suppose that we are given the task of deciding in which cities a supermarket chain should open
their distribution centers or warehouses in order to be able to provide each supermarket with their
supplies. There are costs for each distribution center that is to be opened, and furthermore there
are transportation (or connection) costs for delivering goods to each supermarket in a city without
distribution center, which depend on the distance to the nearest city with a distribution center.
Of course, the goal is to choose a set of cities in which a distribution center is to be opened, such
that the total cost is minimized.

This problem is known as the (uncapacitated) facility location problem. Mathematically, it can
be described as follows: given a (complete) graph G = (V| E), facility opening cost f; for each
vertex v; € V and a distance d(u, v) between each pair of vertices u,v € V, find a subset U C V
of vertices such that the total cost is minimized. Here, the total cost is given by the sum of the
opening cost f; for all vertices u; € U and the sum of the ‘connection’ costs d(u,, v) for all vertices
v € V\U, where u, is a vertex in U which minimizes the distance d(u, v) over all vertices u € U.

The example above is just one of the real-world applications for this optimization problem. Other
examples include deciding the optimal locations for stores, plants or bus depots.

Unfortunately the (uncapacitated) facility location problem is A'P-hard [2], as is the case with
many such optimization problems, implying that for large-scale instances it is impossible to find an
optimal solution within reasonable time. Therefore research on the facility location problem (and
other A"P-hard problems) has been focused on different heuristics, ranging from straightforward to
rather sophisticated, and their worst-case performances. However, it is observed that many such
heuristics perform much better in practical situations than their worst-case performance suggests.

Indeed, worst-case analysis often tends to be too pessimistic. It does for example not take into
consideration that some inputs leading to the worst-case instances (almost) never occur in practical
situations. In order to overcome this gap between the worst-case performance and the actual
performance in practical situations, probabilistic analysis is a widely used tool. Probabilistic
analysis uses an assumption about a probabilistic distribution for the set with all possible instances.
By doing so, it takes into account the observation that in practical situations instances of the
problem are likely to (or sometimes even certainly) possess certain properties, for example the
triangle inequality.

So far, probabilistic analysis of heuristics for optimization problems like the facility location prob-
lem has been focused on instances either using Euclidean space or on instances with independent
(random) edge lengths (and thus not necessarily satisfying the triangle inequality in the latter
case). This seems logical since these instances are relatively easy to handle from a mathematical
point of view. For instances with independent (random) edge lengths, this independency allows
the usage of some nice formulas from the probability theory. On the other hand, instances using
Euclidean space have a nice structure which can be exploited to achieve good results.

However, we would like to apply probabilistic analysis to more general metric instances. In order
to do so, in this thesis we will use the model of so-called random shortest path metrics, which
have also used by Bringmann et al. [I], who initiated this research. The construction of random
shortest path metrics starts with drawing random edge weights independently from an exponential
distribution with parameter one, for all edges of an undirected complete graph. The distance
between each pair of vertices is then given by the shortest path between them, according to the
(random) edge weights. Due to this construction the distances between any two vertices are not
independent anymore, making it more difficult to derive results when using this model.



As far as we are aware, only a few problems have currently been studied in this model, namely
minimum-weight perfect matching, the traveling salesman problem and the k-median problem. So,
there are still an awful lot of (combinatorial optimization) problems which have not been studied
yet in this model. In order to extend the knowledge about the properties of random shortest path
metrics and to study more problems in this model, we have started with applying probabilistic
analysis to some of the most ‘simple’ heuristics for the facility location problem, namely just
opening a fixed number of arbitrary facilities.

1.1 Related work

For general metric instances of the facility location problem, it is known that there cannot exist
a polynomial-time approximation algorithm with an approximation ratio less than p* ~ 1.463
(where p* is the unique solution of p* = 1+2e~*"), unless P = AN'P. This is a result due to Guha
and Khuller [5] and Sviridenko (see [I7, Sect. 4.4]). On the other hand, currently the best known
worst-case approximation ratio for a polynomial-time algorithm is given by 1.488, due to Li [12].

Flaxman et al. studied random instances of the facility location problem using Euclidean space
[]. They expected to prove that the algorithm of Mahdian et al. [I3], which had with 1.52 the
best worst-case approximation ratio for a polynomial time algorithm at the time, would be asymp-
totically optimal under these circumstances, but instead showed that this was not the case for this
sophisticated approximation algorithm, and they did the same thing for two related approximation
algorithms of Jain et al. [9] (with worst-case approximation ratios 1.861 and 1.61, respectively).
On the other hand, Flaxman et al. described a ‘trivial heuristic’ which is asymptotically optimal.

The model of random shortest path metrics is also known as first-passage percolation, introduced
by Hammersley and Welsh as a model for fluid flow through a (random) porous medium [6,[§]. The
‘standard’ first-passage percolation models use Z¢ as a graph, i.e., a (multidimensional) grid. But
the complete graph, which we are interested in, has also been studied. Many structural properties,
such as the number of edges on the shortest path between two arbitrary vertices [7], have been
analyzed for first-passage percolation on the complete graph.

Although a lot of studies have been conducted on random shortest path metrics, or first-passage
percolation, systematic research of the behavior of (simple) heuristics for optimization problems
on random shortest path metrics has been initiated only recently, by Bringmann et al. [I]. They
provide some structural properties of random shortest path metrics, including the existence of a
good clustering. These properties are then used for a probabilistic analysis of simple algorithms
for several optimization problems, including the minimum-weight perfect matching problem and
the k-median problem.

1.2 Summary of results

The goal of this research is to extend the knowledge about the probabilistic behavior of (simple)
heuristics for optimization problems using random shortest path metrics. In this thesis, we will do
so by investigating the probabilistic properties of the three most trivial procedures which give a
solution to the facility location problem: opening all facilities, opening one arbitrary facility, and
opening a certain number of arbitrary facilities (with that certain number only depending on the
facility opening cost). Due to the simple structure of these procedures, our results will essentially
be structural results on random shortest path metrics.



We show that the most trivial procedure of opening a fixed number of arbitrary facilities (with
that fixed number only depending on the facility opening cost f) yields a 1 4 o(1) approximation

in expectation, unless f € O(1/n) (Theorems and [6.16). If f € ©(1/n) then this
procedure is shown to yield an O(1) approximation in expectation (Theorems and [6.16)).

1.3 Structure of this thesis

The remainder of this thesis is structured as follows. In Section [2] we first introduce briefly some
basic notation that will be used throughout this thesis. Then we give a detailed definition of the
random shortest path metrics that will be used in this thesis, also providing some basic known
results about these random shortest path metrics (Section . After that, we take a closer look
at the (uncapacitated) facility location problem and make a connection between its solutions and
solutions to the (related) k-median problem (Section [2.2)). Then we introduce the three trivial
heuristics for the (uncapacitated) facility location problem, whose behavior will be the main focus
of this thesis (Section [2.3)).

Sections mainly consist of mathematical lemmas and theorems and their proofs, together
providing the main results of this thesis. The long way to these results starts with some rather
technical results, which are presented in Section [3] Then we take a look at the properties of the
three trivial heuristics in Section [4 First we derive the probability distributions for the solutions
corresponding to these heuristics, and provide (bounds for) the corresponding expected values
(Section . Then we continue the journey towards the main results by deriving an asymptotic
bound for an expression involving the cumulative distribution function of one of the heuristics

(Section [4.2)).

Section dedicated to the properties of the optimal solution to the (uncapacitated) facility
location problem. In this section we derive various bounds and equalities involving either the
cumulative probability distribution of the optimal solution or the expected value of the reciprocal
of the optimal solution.

In Section [6] our main theorems are stated and proven, accompanied by some lemmas intended to
improve the readability of the proofs of the main theorems. Section deals with the heuristic
which opens all facilities and shows that this heuristic yields either a constant approximation ratio
in expectation or a 1 + o(1) approximation ratio in expectation when the facility opening cost is
relatively small (Theorem [6.5)).

Section [6.2] deals with the heuristic which opens only one arbitrary facility and shows that this
heuristic yields either a constant approximation ratio in expectation or a 1 + o(1) approximation
ratio in expectation when the facility opening cost is relatively large (Theorems and .
Section [6.3]in the end deals with the heuristic which opens some arbitrary facilities and shows that
this heuristic yields either a constant approximation ratio in expectation or a 1+ o(1) approxima-
tion ratio in expectation when the facility opening cost is neither relatively small nor relatively
large.

Finally, in Section [7] we provide an overview for the main results from this thesis. From this
overview it can be seen that for any facility opening cost at least one of the three trivial heuristics
yields at least a constant approximation ratio in expectation. Moreover, in most cases this can be
improved to a 1+ o(1) approximation ratio in expectation. We conclude this thesis with a short
discussion and some final remarks in Section



2 Model description and notation

In this section we describe the random shortest path metrics, as introduced by Bringmann et
al. [I], and we will repeat some structural properties of these random shortest path metrics which
are used in this thesis. After that, we will give a model description of the facility location problem
and introduce three different, but very simple, trivial solutions for that problem. However, before
we continue with the random shortest path metrics and the facility location problem, we introduce
some general notation.

We use X ~ P to denote that a random variable X is distributed using a probability distribution
P. Exp()) is being used to denote the exponential distribution with parameter A. In particular,
we use X ~ Z?:l Exp();) to denote that X is the sum of n independent exponentially distributed
random variables having parameters Ay, ..., \,.

We use E[X], Var(X) and Cov(X,Y’) to denote the expected value of a random variable X, the
variance of a random variable X, and the covariance of two random variables X and Y, respectively.
For n € N, we use [n] as shorthand notation for {1,...,n}, and furthermore we use H,, as shorthand
notation for the nth harmonic number, i.e. H, = Y."  1/i. Lastly, for z € R, we use |z| and
[2] to denote the floor and ceiling of x, respectively, i.e. |z] = max{n € Z | n < z} and
[2] =min{n € Z | n > z}.

2.1 Random Shortest Path Metrics

Random shortest path metrics combine properties of both FEuclidean space and arbitrary random
instances (in which the triangle inequality does not necessarily hold). Loosely speaking, random
shortest path metrics can be constructed as follows: given an undirected complete graph, draw
edge weights for each edge independently and then define the distance between any two vertices as
the total weight of the shortest path between them, measured with respect to the random weights
[1]. Following Bringmann et al. [I], we will be using the exponential distribution for drawing the
edge weights, since these are technically the easiest to handle due to their memorylessness]

To be more precise, we define the random shortest path metric as follows. Consider an undirected
complete graph G = (V, E) on n vertices. For any edge e € E, let w(e) ~ Exp(1) independently.
Now define the distances d(u,v) between each pair of vertices u,v € V as the minimum total
weight of a u,v-path in G, or, equivalently,

d(u,v) = L min Z w(e).
eeP
Using this definition, it is easy to see that d(v,v) = 0 for all v € V and that d(u,v) = d(v,u)
for all u,v € V, since any u,v-path P in G is also a v,u-path in G using exactly the same
edges e. Furthermore, from this definition it can be seen that the triangle inequality holds:
d(u,v) < d(u,s) + d(s,v) for all u,s,v € V, since any concatenation of a u, s-path P’ in G and a
s,v-path P” in G induces a u, v-path P in G (after removing any cycles that may have arisen due
to the concatenation) which uses only edges which are present in either P’ or P”.

In order to give a rough idea about the basic structure of random shortest path metrics, we mention
briefly three known results on the expected value of the distances d(u, v) as n grows large. First of
all, the expected distance between two arbitrary fixed vertices u,v € V' is approximately In(n)/n
[1, Bl 0], i.e. E[d(u,v)] ~ In(n)/n as n — co. Secondly, the expected maximum distance between

*A (continuous, non-negative) probability distribution of a random variable X is said to be memoryless if and
only if P(X >s+1t| X >t) =P(X > s) for all s,¢t > 0 [16, p.294]



a fixed vertex u € V and any arbitrary vertex v € V is approximately 21n(n)/n [I 10], i.e.
E[max,cv d(u,v)] &~ 2In(n)/n as n — oo. Lastly, the expected maximum distance between any
two arbitrary vertices u,v € V is approximately 31In(n)/n [10], i.e. E[max, yev d(u,v)] = 31n(n)/n
as n — o0o.

2.2 Facility Location Problem

In the (uncapacitated) facility location problem we are given a complete undirected graph G =
(V,E) on n vertices, distances d : V x V' — Rx( between each pair of vertices, and opening cost
f 1V = Rsq. In this thesis we consider the facility location problem on random shortest path
metrics, so the distances d(u,v) are defined as described in Section Moreover, we assume
throughout this thesis that every vertex has the same opening cost f for a facility, where f may
depend on the total number of vertices n (and is very likely to do so).

A solution to the facility location problem is given by a nonempty subset U C V', and the total
cost of such a solution is given by

cost(U) = f - [U[+ min d(v, u). (2.1)
veV\U

The goal of the facility location problem is to find a nonempty subset U C V such that cost(U) is
minimal. This problem is N'P-hard [2]. If we let OPT denote the total cost of an optimal solution
to the facility location problem, then it follows that

OPT = min cost(U).
BAUCV

The facility location problem is closely related to the k-median problem, in which we have the
additional requirement that |U| = k for some constant k. Since the number of facilities that must
be opened is fixed, the total cost of a solution U to the k-median problem is given by

costy(U) = Z umelrrjld(v,u).
veV\U
Observe that it follows from the equations above that the equality cost(U) = f - |U| 4 cost|y|(U)
holds for any nonempty subset U C V. Moreover, if we let OPTj denote the total cost of an

optimal solution to the k-median problem, then it follows that

OPTy, = g;nérglvcostk(U).

U=k

2.3 Three trivial heuristics

In this section we give a more precise description of the three solutions that will be investigated
in this thesis, which are based on the following observations.

If the opening cost f for the (uncapacitated) facility location problem is (almost) zero, then it
is easy to see that the optimal solution to the facility location problem will open a facility at
(almost) every vertex v € V. On the other hand, if this opening cost f is relatively large, the
optimal solution to the facility location problem will open a facility at only one vertex v € V.
Somewhere in between these two extremes, the optimal solution will open a facility at some vertices
veV.

Based on these observations, we define three different, but very simple, trivial solutions to the
facility location problem. The first solution simply opens a facility at every vertex, i.e. we have



U = V. Throughout the remainder of this thesis the total cost corresponding to this solution will
be referred to as ALL. Based on the observations above, this solution is likely to perform well
whenever f is relatively small. The second solution opens only a facility at exactly one arbitrary
vertex v € V, i.e. we have U = {v}. Throughout the remainder of this thesis the total cost
corresponding to this solution will be referred to as ONE. Based on the observations above, this
solution is likely to perform well whenever f is relatively large.

The third solution opens a facility at [1/f] arbitrary vertices vi,...,vr1/4 € V, ie. we have
U = {v1,...,vr1/4}. Throughout the remainder of this thesis the total cost corresponding to this
solution will be referred to as SOME. Based on the observations above, this solution is likely to
perform well whenever f is neither relatively small nor relatively large.

The choice for opening a total of [1/f7] facilities in the solution SOME is intuitively based on the
following observation. Let OPT denote the optimal solution to the facility location problem and
let OPTy denote the optimal solution to the k-median problem for k£ = 1,2,...,n. Then it follows
that

OPT = z;r%]irévcost(U) = min_(f-|U|+ cost;y(U)) = l?elbrll] (k- f+OPTy).

@AUCY

Moreover, based on the results of Bringmann et al. [I, Sect. 5] we know that Uy = {v1,...,vx}
is a good approximation for OPT}, (whenever k is not too large) and that E[k - f + costy(Uy)] =
k- f4+1In(n/k)+©(1). Observe that the function g(k) = k- f +1In(n/k) is minimal for k =1/f. If
we combine this, then we see that it is likely that opening approximately 1/f arbitrary facilities
yields a good approximation for OPT. In this thesis we will show that this is indeed the case
whenever f is neither too small nor too large.



3 Some technical results

In this section we present four technical lemmas that are being used for the proofs of our theorems
in Section [6] These lemmas do not provide new structural insights, but are nonetheless very
helpful.

First of all, several times throughout this thesis we will use the so-called Rényi’s representa-
tion [I4, [I5], which links sums of exponentially distributed random variables and order statis-

tics of exponentially distributed random variables. If Xi,...,X,, are m random variables, then
X(1)s---> X (m) are the order statistics corresponding to X, ..., X, if X(;) is the ith smallest value
among Xi,..., X, for all i € [m] [16, p.326]. Now, Rényi’s representation states the following.

Lemma 3.1. Let Xq,...,X,, be independent identically distributed random wvariables with X; ~
Exp(A), and let X1y, ..., X ) be the order statistics corresponding to Xy, ..., Xy,. Then, for any
i € [m],

I~ Z

“__»

where Z; ~ Exp(1) independently, and where “=" means equal distribution.

A special case of Rényi’s representation is given by the following corollary.

Corollary 3.2. Let Yi,...,Y,_1 be independent identically distributed random variables with
Y; ~ Exp(1), and let Yy, Yim—1) be the order statistics corresponding to Y1,...,Y,_1. Then,
for anyi € [n—1],

n—1
Yinoiy ~ Y _ Exp(k).
k=1

Proof. Let Z; ~ Exp(1) independently. Using Lemma (with A =1 and m = n — 1) it follows
that

n—1 7. n—1 7 X n—1
— J_ n—
Y(nfi)_zn_j _Z k NZEXp(k)’
j=1 k=i k=i
since Exp(1)/k ~ Exp(k). O

Secondly, we want to be able to bound the probability of two dependent events A and B occurring
simultaneously. If A and B are independent, then we know that P(AN B) = P(A)P(B). However,
when A and B are not independent, this is not the case. Therefore the following lemma gives a
bound for P(A N B) in terms of P(A) and P(B), for the case in which A and B are dependent.

Lemma 3.3. Let A and B be two arbitrary events (not necessarily independent). Then it follows
that
P(AN B) <P(A)P(B) + /P(A)P(B).

Proof. Define the indicator random variables X and Y by

1, if A occurs, 1, if B occurs,
X = . and Y = i
0, if A does not occur, 0, if B does not occur.

It follows from the definitions of X and Y that E[X] = E[X?] = P(A) and E[Y] = E[Y?] = P(B).



Furthermore, we have Var(X) = E[X?] — (E[X])? = P(4) — (P(4))? and Var(Y) = E[YV?] —
(E[Y])? = P(B) — (P(B))2. Moreover, it can easily be seen that the random variable XY is given
by
XY — 1, if both A and B occur,
] 0, ifeither A or B does not occur.

Thus, it follows that E[XY] = P(A N B). Now, the probability P(A N B) can be computed as
follows:
P(AN B) = E[XY
=E[X]E[Y] + Cov(X,Y)
P(A)P(B) + Cov(X,Y).

Now we use the well-known variance-bound for the covariance, i.e. we use the inequality Cov(X,Y") <

v/ Var(X) Var(Y'). Then we obtain

P(AN B) <P(A)P(B) + / Var(X) Var(Y)
P(A)P(B) + /(P(A) — (P(A))?) (B(B) — (P(B))?)
P

(A)P(B) 4 /P(A)P(B).

Thus, indeed P(A N B) < P(A)P(B) + /P(A)P(B) for any two arbitrary events A and B. O

IA

Next, we want to be able to bound the expected value of the ratio X/Y for two dependent
nonnegative variables X and Y conditioned on the event that Y is relatively small, i.e. Y < y for
some y. The next lemma gives such a bound.

Lemma 3.4. Let X and Y be two arbitrary nonnegative random variables (not necessarily inde-
pendent) and assume that P(Y < 8) =0 for some > 0. Then, for anyy, we have

oo

]P’(Y<y)~IEK/(‘Y<y} §512~P(Y<y)+/1/ﬁ21P’(X2\/5) d.

Proof. The expected value on the left hand side can be computed and bounded as follows:

]P’(Y<y)-IE[)Y(’Y<y}:IP(Y<y)-/OOOIP’()}SZx

Y<y> dx

1 > X
<P(Y <vy)- 7_|_/ P(Zw Y < )dx
Y <y) (62 e\ y
1 > X
= PY <y + Pl->zandY <y dx
5 1/p

1 & X
<— P < +/ ]P><>x>d:v~
72 (Y <y) e\

Observe that X/Y > z implies X > /z or Y < 1/4/z. Using this observation yields

o

]P>(Y<y)~]EK§’Y<y} §512-]P’(Y<y)+/1/52]P’<X2\/50rY§\/15) dx

o

1 > 1
gﬂz.p(y<y)+/l/ﬂzﬂv(xzﬁ) dm+/w21@(ysﬁ> dr.

Since P(Y < ) = 0, the second integral vanishes, which leaves us with the desired result. O



Lastly, we want to have an upper bound for the lower tail of the distribution of the sum of
exponentially distributed independent random variables. The following lemma gives a bound for
that distribution that will be useful.

Lemma 3.5. [11, Theorem 5.1(iii)] Let X = > | X; with X; ~ Exp(a;) independent, and define
p=E[X]=3"1/a; and a, := min; a;. Then, for any A <1 we have

]P;(X < )‘N) < e—a*u()\—l—ln()\)).



4 Properties of the trivial heuristics

In this section we will derive some properties for the heuristic solutions ALL, ONE and SOME,
as introduced in Section [2.3] First we will take a look at the probability distributions of these
solutions and derive (bounds for) their expected values. After that, we will derive a specific bound
for the probability distribution of SOME.

4.1 Probability distributions

Recall from Section that ALL represents the total cost of the solution which opens a facility at
every vertex v € V. Using equation (2.1) we can now deduce that

ALL = cost(V) = f - |V| + Z i[éi‘l/ld(v,u) =nf+ Z umei%/ld(v,u) =nf.
veEV\V VELD

In other words, ALL has in fact a degenerate probability distribution with P(ALL =nf) = 1.
The probability distribution for ONE and SOME is less trivial. In order to be able to derive them,
we use a result from Bringmann et al. [T, Sect. 5] concerning the distribution of a trivial solution

to the k-median problem which picks k arbitrary vertices. They show that for U = {vy,..., v} it
follows that

costy (U) ~ i Exp(7). (4.1)
i=k

Now, recall from Section that ONE represents the total cost of the solution which opens only
a facility at exactly one arbitrary vertex v; € V. Using equation (4.1)) we can now deduce that

n—1
ONE = cost({v1}) = f - [{v1}] + cost1 ({v1}) ~ f + > _ Exp(i).
i=1
From this probability distribution we can easily derive the expected value of ONE. It follows that

E[ONE] = E

n—1
f+> Exp(i)
i=1

n—1
—fH Y i =S H = )+ 0(1). (42)
=1

Before we derive the cumulative distribution function of ONE, we state a useful lemma which will
help us derive it:

Lemma 4.1. [I, Lemma 3.2] Let X ~ Y  Exp(ci). Then P(X < a) = (1 — e “*)" (for any
a>0).

Using this lemma, it follows that for any x > f we have

P(ONE<z)=P (f + i Exp(i) < a:) =P (i Exp(i) < — f) — (1 _ e—(ac—f))nﬂ.

Furthermore, it follows trivially that P(ONE < z) = 0 whenever < f. Summarizing these results,
we have

—(z— n—1 .
IP’(ONE<3c):{ (()1*6( ) iii; (4.3)

10



Recall from Section [2:3] that SOME represents the total cost of the solution which opens facilities

at exactly [1/f] arbitrary vertices vy,...,vp1/p7 € V. Using equation (4.1) we can now deduce
that

n—1
SOME = COSt({U1, . ,U[l/f]}) = f “/f-‘ +C05t[1/f] ({Ul, < UT1/f] }) ~ f |—1/f—| + Z EXp(i).
i=[1/f]
(4.4)
From this probability distribution we can derive a bound for the expected value of SOME. It
follows that

E[SOME] = 1/f] + Z Exp(i)
=[1/1]

=f-[1/f1+ anl —Hpiyp

[1/ﬂ+ln([1/ﬂ> +0(1)

< f+1+In(nf)+06(1)
= f+In(nf)+ O(1). (4.5)

In the next subsection we will deal with a bound for the cumulative distribution function of SOME
and derive an asymptotic bound that will be used for the proof of one of our theorems in Section

6l

4.2 A bound for the probability distribution of SOME

In this subsection we will derive an asymptotic bound for the expression f107f2 P(SOME > /x) dx

when f is neither too small nor too large (Lemma [4.4)). This expression appears in the proof of
one of our theorems in Section [ In order to be able to derive the asymptotic bound, we first
derive a bound for the cumulative distribution function of SOME.

Lemma 4.2. Let ¢ > 0. For any f > (1 +¢)/n and any t € R, we can bound the probability
P (SOME > t) as follows (whenever n is sufficiently large, implying [1/f] <n —1):

P (SOME ne 1)e<t2>“/ﬂ.
(SOME > 1) < (D/ﬂ

Proof. By equation (4.4) we know the distribution of SOME, from which we can derive that

n—1
P(SOME>t) =P ( f-[1/f]+ > Exp(i)>t
i=[1/1]
n—1
=P > Exp(i)>t—f-[1/f]
i=[1//1
n—1
<P ) Exp(i)>t-2],
i=[1//1

sincet — f-[1/f] >t—2.

11



Now let Y; ~ Exp(1) independently, i = 1,2,...,n—1, and let Y(;) denote the corresponding order
statistics. Using Rényi’s representation (see Corollary , we can now further rewrite the last
probability as follows:

P(SOME 2 ) <P (Yin-r/s7) 21— 2)

P
P(3LCh—1LIEI=[1/1] : minY; 2t2>
([Jfﬁ) P@?E Zt_z)

(R SERES
(

1
n )e—(t—2)r1/f1’

S A/~

where we used the union bound. Note that the last inequality becomes an equality whenever
t—22>0. O

Next, we provide a rather technical result that will be useful for the asymptotic bound we are
deriving.

Lemma 4.3. Let f satisfy (1 +¢)/n < f < M/n® for n sufficiently large and some constants
M >0 and € with 0 < € < 1. Then, for n sufficiently large, we have

(nf)¥ T =D/ <

1
-

Proof. Let n be sufficiently large. Then we have f < 1. Moreover, it follows that

€
1
2In(nf) + fIn(n) < 3In(n) < To4<s a4
M f
Upon dividing this inequality by f and rearranging, we obtain
2 1—4f
= In(nf) +In(n) <
f f?
2 4f -1
—-In(nf) + —— < —In(n).
f f?
Since e” is an increasing function of x, we can now deduce that
/P mn)+(f -1/ f* < e~ n(n)
or, equivalently,
_ 2 1
(nf)2/f W =0/1" < =
<
which shows our claim. O
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Finally, we have sufficiently knowledge to prove our desired asymptotic bound.

Lemma 4.4. Let f satisfy (14+¢)/n < f < M/n® for n sufficiently large and some constants
M >0 and € with 0 <e < 1. Then we have

/°° P (SOME > v/7) dsz(i).

1/f2

Proof. Let n be sufficiently large. Using Lemma (with t = v/z) we bound P (SOME > /) as
follows:

/ P (SOME > /z) dxg/ ("‘1>e—<ﬁ—z>n/ﬂ de
1/f2 1725 \[1/f]

n—1 /OO —(VE-2)[1/1]
= e d./L'
([Uﬂ) 1/f2

n—1\ on/ /°° ~N/f1VE
= e e dx.
([Uﬂ) 1/f2

Using [ e~V dx = —(2/a?)(1 + ay/z)e~*V® (for any constant a), the integral can be evaluated
and subsequently rewritten and bounded as follows:

/; (s0ME = V) o < ([ )7 (7 (111 7 ) 010

i) (e )

ANV .
2(Fr) e

<2 (ef(n . 1))(f+1)/f (f2 + 1) e(2f_1)/f2.

IN

By our restrictions on f, it follows that f < 1 (since n is sufficiently large). Using this inequality
and n — 1 < n, we obtain

/ P (SOME > \/5) dx < 4(efn)2/fe(2f—1)/f2
1/f?
= 4(nf)2/fe(4ffl)/f2.

Finally, using Lemma we obtain that for n sufficiently large

/100 P (SOME > v/7) dx§i20(1>,

/12 n

which finishes the proof of this lemma. O

13



5 Properties of the optimal solution

In this section we will derive some properties for the optimal solution OPT to the facility location
problem. First we will take a look at the different values that OPT can take. Then we will derive
two different bounds for the cumulative distribution function of OPT. The first bound is (almost)
tight for relative large values, whereas the second bound is (almost) tight for relative small values.
At the end of this section we will derive two other results involving OPT which will be used in the
proof of one of our theorems in Section [6]

5.1 The maximal value of OPT

Due to the nature of the facility location problem, we know that OPT is a bounded random
variable. For the lower bound, we observe that any solution must open a facility at at least one
vertex v € V. Therefore we know that OPT > f for any instance. For the upper bound, we
observe that OPT < ALL = nf for any instance. So we know that f < OPT < nf for all instances.
OPT is a mixed random variable with a continuous part and a discrete part. It can be seen that
P(OPT = z) > 0 if and only if 2 = nf. The following lemma shows how large this probability is.

Lemma 5.1. For any f, we have P (OPT = nf) = e ("= Df/2 gnd P (OPT < nf) = 1—e "(n=DF/2,

Proof. Note that OPT = nf if and only if every edge has weight at least f. So, we can write

P(OPT =nf)=P (meinw(e) > f)
P (Ve w(e) > f)

(3)
P (w(ej) = f)

=1
P(w(e) > f))"" 72,

— .

By our definition of the shortest path metric (see Section 2.1)), we know that w(e) is distributed
as Exp(1). So, we obtain that

P(OPT = nf) = (e=/)"" )"
— e n=1f/2,
Since f < OPT < nf for all instances, it follows that P (OPT < nf) =1 — e~ (n=1f/2, O

5.2 Two bounds for the probability distribution of OPT

Since very little is known about the precise probability distribution of OPT, it is convenient to
have some bounds for its cumulative distribution function. Lemma states such a bound, which
is (almost) tight for relative large values (i.e. values close to nf), but a lot weaker for relative
small values (i.e. values close to f). The bound in Lemma has the opposite property: it is
almost tight for relative small values, but weak for relative large values.

14



Lemma 5.2. Let 2 < k < n. Then, for any f, we can bound the probability P(OPT < kf) as
follows:

(3)
POPT<kf)<P| > W,;<f],
=(5) ik
with W; ~ Exp(j) independently.

Proof. If OPT < kf, then we know that at most k — 1 facilities can be opened in the optimal
solution OPT, or, equivalently, at least n — k + 1 facilities are closed in the optimal solution OPT.
These n — k+1 closed facilities are in the optimal solution connected to open facilities using edges
with weight at most f (otherwise we can improve the optimal solution by opening such a facility).
Therefore, we know that there need to be at least n — k + 1 edges with weight at most f. In
other words, the probability that OPT < kf is bounded by the probability that there are at least
n —k + 1 edges with weight at most f.

Now, let X;, i =1,2,..., (72’) denote the edge weights and note that X; ~ Exp(1) by definition.
Furthermore let X(;) denote the corresponding order statistics. Now we can write

P(OPT < kf) <P (X(pt1) < f)-

Using Rényi’s representation (see Lemma|3.1]), we can further rewrite this last probability in order
to obtain the desired result:

Z;
P(X(n—k+1) Sf) :P< . m <f>

where Z; ~ Exp(1) independently and W} ~ Exp(j) independently. O

Observe that the bound in this lemma is tight for k = n, since P(OPT < nf) =1 —e n~1Df/2 =
P(Exp(n(n—1)/2) < f) by Lemma 5.1} For relative small values of k the bound in this lemma is
relatively weak, but still strong enough in order to show our desired results in Section [6]

Lemma 5.3. For any f and any z € [f,nf], we can bound the probability P(OPT < z) as follows:

AN e
IP(OPT<z)§z;(i><i1)(l—e ) .

i=

Proof. Note that OPT < z if and only if exactly i facilities are opened in OPT for some i €
{1,2,...,]#/r]}. Since these cases are disjoint, we can condition as follows:

L=/5]
P(OPT < 2) = Z P (OPT < z | OPT opens exactly i facilities) P (OPT opens exactly 4 facilities)
i=1
L=/
< Z P (OPT < z | OPT opens exactly ¢ facilities) .

i=1

15



Now, we will bound the conditional probabilities P (OPT < z | OPT opens exactly i facilities).
Note that

P (OPT < z | OPT opens exactly i facilities) = P(3U C V,|U| =i : cost;(U) < z —if)

< (T;) P (cost;(U) < z —if)
— (’;) P (ZZ_jExp(k:) <z-— z’f) ,

where we used the union bound and the known result cost; (U) ~ Z;ZI Exp(k) (see equation ([4.1))).
Now let Y; ~ Exp(1) independently, i = 1,2,...,n—1, and let Y(;) denote the corresponding order
statistics. Using Rényi’s representation (see Corollary , we can now further rewrite the last
probability as follows:

P(OPT < z | OPT opens exactly ¢ facilities) <

-]P’(EI Cn=1,|Ll=n—-1 : maij<z—if>
JjeL

)
) L
)
)(i5)
)

~

(ﬁ_‘laécyj <z- z'f)
j=1

n—i
JIP0OG<z-in)
j=1

(120) (=)™

where we used again the union bound. By combining the results above, the desired result follows
now immediately. O

Observe that the bound in this lemma is (almost) tight for z € [f, 2f), since that implies |z/f] =1
and all but one inequalities in the proof above become equalities for ¢ = 1. For relative large values
of z the bound in this lemma is relatively weak, but still strong enough in order to show our desired
results in Section [6

5.3 Two other results involving OPT

In this subsection we will derive two other results involving OPT, which will be used to prove
one of our results in Section [f] First we provide a way to evaluate the conditional expectation
E[1/OPT | OPT < nf].

Lemma 5.4. For any f, we have

nfE[l OPT<nf} =1+

nf /"f P(OPT < y) p
OPT P R Y.

1_enn-Df/2 " Y2
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Proof. The expected value on the left hand side can be computed as follows:

nf - E{OPT‘OPT<nf}nf/ (OPT>$

:nf-/o (OPT<

:nf./“’IP’(OPTSIandOPT<nf)d
0

OPT < nf) dx

OPT < nf>

P (OPT < nf) v
Using Lemma it follows now that
E|-~_|oPT = nf “p(opT < L and oPT d
nf-ElopT <nf| =TT ez, =z <nf)de

nf e (1

Now note that min {1/x,nf} = nf if and only if z < 1/nf. Using this property, we can split the
integral in two parts as follows:

1 nf 1/nf . )
nfE{OPT OPT<”4 1_en(nl)f/2</0 P(OPT<nf)d:c+/1 IP’(OPT<x)dx

/nf

nf 1— e—n(n—l)f/Q /oo ( 1)
: + P(OPT < — | dzx
1 — e—n(n=1)f/2 ( nf 1nf T

nf o
1+—1_e—n(n—1)f/2 -/1/ ; (OPT< ) dx,

where we again applied the result of Lemma Now, we use the substitution z = 1/y to obtain
the result of this lemma.

nf 0 1
nf - E{OPT OPT<nf}—1—|—1_e_n(n_1)f/2./f 7 P(OPT < y) dy
nf
nf P(OPT < y)
=1 . d
T e 2 /O 72 Y
nf " P(OPT < y)
—1 : d
T e nn D2 /f e Y,
since P(OPT < f) =0. O

Next we give a bound for the integral f f P(OPT < y)/y? dy which arose in the foregoing lemma.

Lemma 5.5. For any f, we have the following bound:

/"f IP’(OPT<y <i OPT<kf)
f y? B

Proof. We start by splitting the integral on the left hand side into n — 1 parts. This yields

f -1f

17



Now, since P(OPT < y) is an increasing function of y, we know that P(OPT < y) < P(OPT < kf)
for any y € [(k — 1)f, kf]. Using this, it follows that

/"f ]P’(OPT <) w z”:/kf P(OPT < kf) a
I y? a k—1)f y?
:Z]P’(OPT<kf)/ —
h—2 (k—1)f Y
" 1
=> POPT < kf) -
~ k(k—1)f
- z": P(OPT < kf)
e k(k—1)f
which completes the proof. O
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6 Probabilistic analysis of the trivial heuristics

In this section we analyze the approximation ratios of the three trivial heuristics introduced in
Section Depending on the (asymptotic growth) of the facility opening cost f, we will show
that at least one of these three heuristics yields a constant approximation ratio in expectation or,
even better, is asymptotically optimal (i.e. yields a 1 4+ o(1) approximation ratio in expectation).

The basic idea behind the proofs of the corresponding theorems will be conditioning the expected
approximation ratio on the events OPT is larger respectively smaller than a certain threshold.
The threshold will be chosen in such a way that for the case in which OPT is larger than the
threshold, it is relatively easy to bound the conditional expected approximation ratio. On the
other hand, the threshold will also be chosen in such a way that the probability of OPT being
smaller than the threshold becomes sufficiently small. By doing so, we will be able to show that
the (relatively) large conditional expected approximation ratio in this case becomes negligible
when multiplied with that probability. For each heuristic, we will use a different technique in
order to show that the product of the probability of OPT being smaller than the threshold and
the conditional expected approximation ratio in that case becomes sufficiently small.

Section [6.1| will deal with the heuristic that opens a facility at every vertex v € V', which performs
well when the facility opening cost f is relatively small. Then, Section will deal with the
heuristic that opens a facility at exactly one arbitrary vertex v € V, which performs well when
the facility opening cost f is relatively large. Lastly, Section will deal with the heuristic that
opens a facility at exactly [1/f] arbitrary vertices vq,...,vr1/4 € V, which performs well when
the facility opening cost f is neither relatively small nor relatively large.

6.1 Opening all facilities

In this subsection we examine the approximation ratio of the trivial heuristic which opens a facility
at every vertex v € V. We show that ALL yields an O(1) approximation for f < 2/n and a 1+0(1)
approximation when f = 1/(na(n)) for some function a(n) with lim, . a(n) = oo (Theorem
. In order to be able to prove this theorem, we first need another four lemmas.

The idea behind the proof of this theorem is to bound the expected approximation ratio (which
contains a random variable with unknown distribution) with a function which contains only ran-
dom variables with known distribution (in our case this will be sums of exponentially distributed
random variables). This is done, using the foregoing Lemmas and Next, the idea
is to bound the remaining probabilities using Lemma Lemmas and ensure that the
conditions of Lemma hold. The last step is to show that the resulting explicit function (which
is a bound for the expected approximation ratio) is bounded either by O(1) or 1+ o0(1) (depending
on the asymptotic value of f). Lemmas [6.3 and [6.4] provide us with the necessary tools in order
to be able to do so.

Now, first of all, we need to show that the expression Ay := f/(H(Z) — H(;)_7L+k) is bounded

by a positive constant, (slightly) smaller than 1, for almost every k with 2 < k < n, when n is
sufficiently large. This bound will later on allow us the use of Lemma [3.5) and will afterwards
allow us to give an appropriate bound for the term Ay — 1 — In(A;) which arises when using this
lemma. The following two lemmas provide this bound (Lemma for the case where f < 2/n
and Lemma [6.2) for the case where f = 1/(na(n))).
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Lemma 6.1. Let f < (2 —¢)/n for n sufficiently large and some constant € > 0. Furthermore,
define p=¢/3 >0 and e’ =¢/(3+¢) > 0. Note that 2p + €' + pe’ = € by these definitions. Let
c=¢'/4€(0,1). Then, for sufficiently large n, it follows that

)\k: Sl—p

f
Ay = Hig)onn

for all k with 2 <k < |en|.

Proof. Let n be sufficiently large. Since f < (2 —¢)/n = (1 — p)(2 — &’)/n for such n, it follows
that f/(1 —p) < (2 —¢")/n for such n and thus

() (00 -1 +n-1_ () i Ry

n n
Using elementary calculus it follows that
(B (D -1 4n-1 o (5) (e@=2m—1) +n-1 L

lim > lim = —.
n—00 n n—oo n 2

Using the definition of the limit, we can now deduce that

(0D )1
n =g

for sufficiently large n. Since ¢ = &’/4, it follows from the last inequality that for any k with
2 <k < |en] and for sufficiently large n, we have

k< (Z) (e_f/(l_”) - 1) tn- 1

Upon rearranging and taking the logarithm on both sides, we obtain the following:

- < ()
() -n+k+1

(3)
T, (()—+k+1> |

Since In(a/(b+ 1)) < H, — Hp for any a,b € N, we finally obtain that

/
1=, SHE T HE) e

One last rearrangement finishes the proof of this lemma. O

Lemma 6.2. Let f = 1/(na(n)) for some function a(n) with lim, . a(n) = oo and let ¢, p €
(0,1) be two arbitrary constants. Then, for sufficiently large n, it follows that

for all k with 2 <k < |en].

20



Proof. Using elementary calculus it follows that

Y (e—f/(1=p) _ _
lim (2) (6 1) tn-t = lim
n—00 n n—oo n

(721) (efl/((lfp)m(n)) _ 1) +n—1 .

Using the definition of the limit, we can now deduce that

() (70 1) 4n-1

¢,
n

for sufficiently large n. From this inequality it follows that for any k& with 2 < k < |en] and for

sufficiently large n, we have
kg(?)@fﬂlm—1)+n—1

Upon rearranging and taking the logarithm on both sides, we obtain the following:

ef/=p) < (g)
“ () -n+k+1

(3)
T, (()—+k+1> |

Since In(a/(b+ 1)) < H, — Hy, for any a,b € N, we finally obtain that

/
T, S HE) T HE) e

One last rearrangement finishes the proof of this lemma. O

Next, we need a bound for the summation of 1/k(k — 1) for all those k for which the previous
lemmas do not hold. This bound is given by the following lemma.

Lemma 6.3. For any constant ¢ € (0,1) it follows that

n

1 1—c¢
. < .
neo ) kk—1) = ¢

k=|cn]+1

Proof. Using elementary calculus it follows that

n n

V=Rl Y o i)

k=|cn]+1 k=|cn]+1

Now, by telescoping, we have

n

k=|cn]+1

which finishes the proof. O
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Lastly, we need to show that the following expression, which appears in the exponent after the
usage of Lemma[3.5] is relatively large. This is done by the following lemma.

Lemma 6.4. Let f and c satisfy one of the following conditions:

(i) f <(2—¢)/n forn sufficiently large and some constant € > 0, and ¢ = /(12 + 4¢),
(i) f = 1/(na(n)) for some function a(n) with lim,,_, a(n) = oo, and ¢ € (0,1) an arbitrary

constant.

Then, for n sufficiently large, we have

/ f
) —n+2)-(Hy = Himy oot ) —1—In = Q(n).
() ACCRECR) (H(;)‘H(@—nﬂcm <H(2')‘H<z)—n+tcw>)

Proof. We show that the three factors are bounded from below by Q(n?), Q(1/n) and Q(1),
respectively. For the first factor, we can immediately see that () —n+2 = in?—2n+2 = Q(n?).
For the second factor, we have

(5) ]
Hyy = Hgomsio = 2 5
i:(g)—n-‘rl_cnj—i-l
(5) ]
2 Z (5) =n+len] +1

i=(;)—n+ len]+1
()

1
:(g)—n+Lan+1' Z 1

i=(;)—n+ [en]+1

B n—|en| B
() -n+len+1 HL/m),

since ¢ € (0,1) does not depend on n. Thus, indeed H() - H(n>_nﬂan =Q(1/n).

2 2
For the third factor, we have by either Lemma [6.1| (if f and ¢ satisfy condition (¢)) or Lemma
(if f and c satisfy condition (i%)) that

f
H =

<l-p

5 —n+|cn] B

for some constant p > 0 and n sufficiently large (if f and c satisfy condition (i), then p = ¢/3;
otherwise p € (0,1) is an arbitrary constant). Since the function g(z) = x — 1 —In(x) is decreasing
for x < 1 — p, it follows that g(x) > g(1 — p) for any x < 1 — p. Thus, it follows that

—1-In >2(1-=p)—1-In(1-p)=0(1),
Higy = Hig) o en) By = Hig)=ntien)
since p does not depend on n. O
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Now we can finally state and prove the main result from this subsection.

Theorem 6.5. Let 6 > 0. Consider the facility location problem with f < (2 —¢)/n for n
sufficiently large and some constant € > 0. Furthermore let ALL denote the total cost of the
solution in which a facility is opened at every vertex v € V and let OPT denote the total cost of
the optimal solution to the problem. Then

E L/;PLH —00).

Moreover, if f =1/(na(n)) for some function a(n) with lim,,_,~, a(n) = oo, then

ALL n

Proof. From our observations in Section we know that P (ALL = nf) = 1. Conditioning on the
events OPT = nf and OPT < nf yields

E [S\EH — P(OPT = nf)-E [é\;; ’ OPT = nf] +P(OPT < nf) - E {g; ‘ OPT < nf]
=P (OPT =nf)-E [;ﬂ +P(OPT < nf) E [oanT OPT < nf]
— P(OPT = nf) + P(OPT < nf) -nf -E {OPT OPT <nf} :
Now, by Lemma 51 and Lemma 5] we have
:an./f"fp(ozzq)dy.

Using Lemma we can bound this expression as follows:

ALL OPT<kf)
E[OPT] <1l+nf- Z

Cl4n. Z OPT<I<;f)-

Now we can bound the (unknown) distribution of OPT using Lemma which gives:

n (3)
ALL 1
< . - . <
E[OPT]—H” Zk:(k;—l) Bl > Wil
k=2 j= ( ) n+k
where W; ~ Exp(j) independently. If f = 1/(na(n)) for some function a(n) with lim,,_, . a(n) =

00, then we take ¢ = 1/(149) € (0,1). Otherwise, we take ¢ = €/(12+4¢). Note that this implies
that f and c satisfy the conditions of Lemma [6.2] (if f = 1/(na(n))) or Lemma [6.1] (otherwise).
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Now we split the summation into two parts and bound the probability in the second part by 1:

() n

ALL 1 1
| <« . - . L < . - .
E[OPT]1+n W B 2 WasSEe 3 gaTyd
k=2 j:(g)—n—ﬁ-k k=|cn|+1
len) (3) e
< . _ P <
71+nzk(k_1)]P’ Y. Wisf|+—,
= =(5) ek

where we used the result of Lemma [6.3] in the last inequality. Now note that for any term in

the remaining summation we have A\, = f/ (H(n) — H(n)inJ’»k) <1-p <1 (by Lemma
2 2

or Lemma [6.2)). Moreover, the expected values of the stochastic variables in each term of the

remaining summations are given by

i = Hiy = By

2

implying Agpr = f.

Now we use the result of Lemma [3.5] to obtain

ALL ! e
g [ALL] | . _ - p W. <\
[OPT]_ MDYy R A
k=2 =(5)—n+k
<1+ f%?l ()=t -1t 4 L€
< n < k(k—1) c ¢

Note that pj decreases and Ay increases as k increases, i.e., pr4+1 < pr and Agp1 > Ag. Further-
more, since Ay < 1 for each k with 2 < k < |en], it follows that (x := Ay — 1 — In(A\x) decreases
as k increases, i.e. (x+1 < ;. Finally, since both py > 0 and (; > 0 for 2 < k < |en], we obtain
that & := ur(y decreases as k increases, i.e., {pp1 < &k

Using the results above, it is easy to see that we have pup(Ax —1 —In(Ag)) > pren)(Aen) — 1 —
In(A|en))) for all k with 2 < k < |cn]. Using this bound, and the obvious bound (}) —n+k >

(g) —n +2 for k > 2, we obtain that

Len)
ALL 1 n 1-c
E <1 . o= ((5)=n+k)pten) (Men) —1—I(Aen)))
[OPT] o kZ:Qk(k—l) ¢ +t
IR (C) S P P
< 1 . Lo g —n+2 Hlen) ALcnjflfln()‘Lcnj) —
7+nzk(k_1)e +—
k=2
len] 1 1
=14+n- e*((z)*nJr?)HLan (Meny—1=In(A(cn))) . 4+ ¢
k(k—1) ¢
k=2
n n 1 1—c¢
<1 o= ((5)=n+2) i en) (ALen) —1=10(A[en))) |
=ttmee Z/~:(k—1)+ c
k=2
1+n£<@>mawMOMJlmam».@1)+1c
n C
1t (n—1) - e ()2 (e 1= ) 4 1€
C
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Now we use the result of Lemma to obtain that

ALL 1-c
<1 —1).e 9n)
E [ : PT] +(n—-1)-e + p

- 0(1).

Moreover, if f = 1/(na(n) for some function «(n) with lim, . a(n) = oo, then we have ¢ =
1/(1 + ). Using that, we obtain that

ALL 1 B
E[OPT] 1+—+O(ne )
:1+6+O(n6_”).

which finally completes this proof. O

6.2 Opening one facility

In this subsection we examine the approximation ratio of the trivial heuristic which opens a facility
at exactly one arbitrary vertex v € V. We first show that ONE yields a 1 + o(1) approximation
when f = a(n)In(n) for some function a(n) with lim,_, a(n) = co (Theorem [6.6]). After that,
we show that ONE yields an O(1) approximation for 1/n'=¢ < f < eln(n) and also a 1 + o(1)
approximation when 1/n° < f < M In(n) (Theorem .

Theorem 6.6. Consider the facility location problem with f = a(n)In(n) for some function a(n)
with lim,, o a(n) = co. Furthermore let ONE denote the total cost of the solution in which a
facility is opened at only one arbitrary vertex v € V and let OPT denote the total cost of the
optimal solution to the problem. Then

ONE 1
El——|=1 — .
o) =10 ()
Proof. By equation (4.2)) we know that the expected value of ONE is given by

E[ONE] = f +1In(n) + ©(1).

Furthermore, from our observations in Section [5.1] we know that OPT is bounded from below by
f. Therefore, we can now deduce that

o

OPT f
_ f+In(n)+0(1)
f
_ 1, n(m)+6ea)
=1+ 7 .

Now, since f = a(n)In(n) for some function a(n) with lim, . a(n) = oo, it follows that

. [82'5] <1+t a(g(li)m) R (a<1n>> ’

which finishes this proof. O
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Theorem is more difficult to prove. The idea behind the proof of this theorem is to bound the
product of the probability of OPT being smaller than a well-chosen threshold and the conditional
expected approximation ratio in that case (Lemma . First, we rewrite this product to an
integral containing the probability that both ONE is large and OPT is small. Since these events
are dependent, we use Lemma Next, we use Lemma and equation to bound the
result with an explicit function. The last step is to show that this explicit function (which is a
bound for the expected approximation ratio) is bounded either by O(1) or 1+ o(1) (depending on
the asymptotic value of f). Lemmas and provide us with the necessary tools in order
to be able to do so.

For the proof of Theorem [6.11| as sketched above, we thus first need another four lemmas. First,
we need to bound the summation that arises when bounding the cumulative distribution function
of OPT using Lemma [5.3]

Lemma 6.7. Set m := 2n — 1 to shorten notation. Then. for any f and any z € [f,nf], we have

L2/ f] _ ) az/f (1) 2n—2z/f
SE (M) (1) 1 ey < e, e (e T
i)\i—1 (em)* —1 e=(z=1)

i=1

Proof. Observe that it suffices to show that

I.Z/fj - ) n—i 4Z/f 1— —(z2—f) 2n—2z/f
Z Sl ' (1 - ef(rzf)) </ (em)? - tem) A= ) :
) 1 —1 (em)* —1 e—(z—f)

i=1

We start by bounding the product of the binomials using the inequalities (3*) (;:2) < (3'172) and
(}) < (en/k)*. This results in

1) 1\ e ey D
Z(i)(i—l)(l_e ) <Z<2¢-1>(1_6 )

i=1 =1

Lz/f] em \ 21 i
< _ f(zfm)
<2 <2i—1> (1 ¢

i=1
lz/1)

< Z (em)%_l (1 - e*(zfif))n_i’

i=1

where we used the inequality 2i—1 > 1 for all 7 in the summation. Next we use the Cauchy-Schwarz
inequality to obtain that

Z (Z> (Z — 1) (1 - €_(Z_if)) < Z (em)4l—2 . Z (1 _ e—(z—if))Qn_Ql

i=1 i=1 i=1
L=/ 1] L=/ o
S Z (em)4z—2 . Z (1 _ 6_(Z_f)) n— 17

i=1 i=1

since (1 —e~(*=#)) < (1 — e~ (*=/) for all 7 in the summation.
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Now we can compute both summations using the known results Y ?_; %% = 9%t (2% —1) /(2 —
1) and 3°Y_, 2b=9% = gb= . (1 — 2%) /(1 — 2%) for a,b,z > 0 and y > 1. This yields

S0 e

=1

1 _ (1 _ e_(z_f))Ql.Z/fJ
1—(1—e(-N)?

(em)‘ﬂz/fJ —1
(em)* — 1

< | (em)? - (1- e—(z—f))zn_ztz/” .

, (em)t/5 —1 =

2n—2z/f ) 1- (1 - 6_(z_f))
(em)* —1

1— (1 —e(=)*

IN

(em) . (1 — e*(sz))

bl

2z/f <1

since (1 — e~ (*=/)) < 1. By using this inequality again, it follows that 1 — (1 - e*(sz))
Using this observation, we obtain

(D) meen)

i=1

, (em)i=/f —1 (1—e-=n) >/
(em)* —1 1—(1- ef<sz))2

IA

(em)

2 (6m)42/f -1 . (1 _ ef(sz))2n72z/f
(em)t—1 e~ (=1) (2 — e—(z—f))

\
< \/(6m)2 . (6m)4z/f (1 — e—(z_f))Qn—Qz/f

(em)* —1° e—(2=1) ’

(em)

where we used the inequalities 0 < (em)4z/f —-1< (em)4z/f and 2 — e~ (*=f) > 1 in the last
step. ]

Next, we give two rather technical bounds, which will be used to bound the approximation ratio
of ONE in case OPT is small, weighted with the probability that OPT is small.

Lemma 6.8. Let f < v/n—1 for n sufficiently large. Furthermore, set m := 2n — 1 to shorten
notation. Then, for n sufficiently large, we have

! +/ Vi- (- eten)" e < 2vem,
f

Proof. Let n be sufficiently large. We start by applying the change of variables y = x — f to the
integral. This yields

f+/foo \/1— (1—e—<ﬂc—f>)”‘1dgc=f+/00o \/1— (1—ev)" tay.
Next we use Bernoulli’s inequality to obtain that
f+/foo \/17 (le(xf))nldeer/Ooo Jlf(lf(nfl)e*y)dy
i /0 S = Devdy

:er\/nflo/ e"32Y dy
0
=f+2vn—1
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Now we use the fact that f < +/n — 1 (since n is sufficiently large) and the inequality 3 < 2+/e to
obtain the final result:

f +/ \/1 —(l=—e@=N)"dr <3Vn—1
f
<3vV2n-1
< 2+/e(2n —1).
Setting m = 2n — 1 finishes the proof of this lemma. O

Lemma 6.9. Let € be a small constant such that 0 < € < 1/2 and let f and ¢ satisfy one of the
following conditions:

(i) 1/n'=¢ < f < 1/n° for n sufficiently large, and c € (0,¢),

(ii) 1/n® < f <eln(n) for n sufficiently large, and c € (e,1 —¢€),

(iii) f = @(n)In(n) for some function p(n) with ¢* := lim ¢(n) € (0,00), and c € (p*, " +1).
n—oo

Then, for n sufficiently large, we have

leln(n)/f—4in
(2en?) /T < 1 .<1—e—(cln(n)—f))2 /e
n

Proof. By looking at dominant terms, it follows for sufficiently large n that

icln(n)\ ef
f ) ne’

cln(n)

f

-In (2en?) < —2In(n) + (%n -

If f and c satisfy condition (), then the dominant term on the left hand side is bounded from
above by n!~¢1In(n)?, whereas the dominant term on the right hand side is bounded from below
by n'~¢, which becomes significantly larger as n — oo since ¢ < ¢.

If f and c satisfy condition (47), then the dominant term on the left hand side is bounded from
above by n¢1n(n)?2, whereas the dominant term on the right hand side is bounded from below by
n'~¢, which becomes significantly larger as n — oo since ¢ < 1 — «.

If f and c satisfy condition (éii), then the dominant term on the left hand side is bounded from
above by In(n), whereas the dominant term on the right hand side is bounded from below by
n!T¢"~¢ which becomes significantly larger as n — oo since ¢ < ¢* + 1.

Now, rewriting the right hand side and then applying the well-known inequality 1 — 2 < —In(z)
for x > 0 yields

clr}(n) -In (Qenz) < —21In(n) + (;n — %CID(H)> . (1 — (1 — e*(d“(”)*f)»
;Cln(n)) . —In (1 o e—(cln(n)—f))
1

scln(n) n> n (1 _ e—(cln(ﬂ)*f)) )

= —2In(n) + (2
f
Since e is an increasing function of x, we can now deduce that

< —2In(n) + (%n -

N[

e(cln(n)/f)-ln(2en2) S 672ln(n)Jr(%cln(n)/ff%n)-ln(lfe_(“n(")_f))

)
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or, equivalently,

%cln(n)/ffén

)

(2€n2)cln<n>/f < % _ (1 B e_<c1n<n>_f))

which shows our claim. O

Lastly, we need to bound the approximation ratio of ONE in case OPT is small, weighted with the
probability that OPT is small. The following lemma shows that this can be bounded by O(1/n).

Lemma 6.10. Let € be a small constant such that 0 < € < 1/2 and let f and ¢ satisfy condition
(i), (ii) or (iii) from Lemmal[6.9 Then we have

P (OPT < cln(n)) E Bﬁ OPT < cln(n)] =0 (i) .

Proof. Observe that conditions (i), (i¢) and (i) from Lemmal6.9]all imply that cIn(n) > f for n
sufficiently large. Now, since OPT > f by definition, we may bound and subsequently rewrite the
conditional expectation as follows:

ONE

P(OPT < ¢ln(n)) E [OPT

) OPT < cln(n)]

<P(OPT < cln(n))E [O'}'E ‘ OPT < cln(n)]

-P(OPT < ¢ln(n)) E[ONE | OPT < cln(n)]

ol ] =

-P(OPT < cln(n))/ P (ONE > z | OPT < ¢ln(n)) dz
0

%/ P(OPT < ¢ln(n)) P(ONE > z | OPT < cln(n)) dz
0
= ;/ P (ONE > z and OPT < ¢In(n)) dx.

0

Since the events ONE > z and OPT < cln(n) are dependent, we use Lemma to bound the
probabilities inside the integral. This results in the following;:

ONE
P(OPT < cln(n)) E [OPT OPT < cln(n)]

< Jlf/oo P(ONE > 2)P(OPT < cln(n)) + \/P(ONE > 2)P(OPT < cIn(n)) dz
0

2 oo
< ?/O V/P(ONE > z)P(OPT < cln(n)) dz

= ; -/P(OPT < cln(n)) /OO VP(ONE > z) dz,

where we used the property that y < ,/y for any y € [0,1]. Now recall that we know the
probability distribution of ONE (see equation (4.3))). So, it follows that P(ONE > z) =1 for z < f
and P(ONE > z) =1 — (1 — e~ @)=L for z > f.
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Using this, it follows that:

P(OPT < cln(n)) E [82‘5 ' OPT < cln(n)]

< 2 V/E(OPT < cln(n)) - (f + /foo V1= (1-ete=n)"! dac)
. /P(OPT < cln(n)) - 2/em,

where we used the bound in Lemma for the last inequality (and set m := 2n — 1 to shorten
notation). Now, for n sufficiently large, we can use Lemma [5.3] (with z = cIn(n)) to bound the
last remaining probability. This results in:

ONE
P(OPT < cln(n)) E [OPT OPT < cln(n)]
|_cln(n)
<4 Ef: ny(n-1 (1— e~ (emm=iN)"" . Jem.
=7\ & il

Using the bound in Lemma (again with z = cln(n) and still using m := 2n — 1 to shorten
notation), we obtain, for n sufficiently large, that

ONE
P(OPT < cln(n)) E [OPT OPT < cln(n)]
cinin _ o—(cIn(n)—f))2n—2¢n(n)/f
4 2.(em)4l()/f'(1 e ) |
< \/(em) (em)* — 1 =) Vem

B em)t — 1 e—(cn(n)=7)

_ _ n—2clIn(n)/f
5 4 (1 — el f))2 2
_ . 4cln(n)/f .
< 7 \/(em) =D ,

where we used the inequalities /(z — 1) < 2 (for x > 2) and 4 - v/2 < 5 for the last step. We can
further rewrite and bound this as follows:

f
_ é il/ il (em)4cln(n)/f (1 — e_(cm(n)_f))2n_261n(n)/f
fovA

NE
P (OPT < clu(n)) B | G- | OPT < clu(n)
1, 1.1,
< ; . (em)cln(n)/f . eileln(n)—f) (1 _ e—(cln(n)_f)) in—icln(n)/f
l"L—l(} n(n
< ; . (em)cln(n)/f . ecln(n)ff . (1 N 67(61n(n)7f)) 2 scln(n)/f
- 5 (em)°m()/f . pe.. (1 _ ef(cln(n)ff)> gn—zcln(n)/f
fel
o in—lcin(n)/f
<7 (em)e (/1 . pen(/f (1 B 6_<cln(n>_f>> bn—}
5 2\cIn(n)/f —(cIn(n)—f) sn—zcln(n)/f
< o (2en?) O (1 ) ,

where we used m = 2n — 1 < 2n for the last inequality.
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Now, by Lemma [6.9] for n sufficiently large, this can be further reduced to

ONE
P(OPT < cln(n)) E [OPT ' OPT < cln(n)]
5 1 teln(n)/f—in tn—3cln(n)/f
< 2 .. _ —(cIn(n)—f) . _ ,—(cIn(n)—f)
<o (1o ) (1- )
5 1
- .1
fef n?
1
o(3)
n
since f € Q(1/n) by our restrictions. O

Now we can finally state and prove the main result from this subsection.

Theorem 6.11. Let § > 0 be sufficiently small. Consider the facility location problem with
1/n'=¢ < f < MIn(n) for n sufficiently large and some constants M > 0 and ¢ with 0 < ¢ <
§/(24 0) and assume that 6 < min{2,1/p*} where p* :=lim, oo f/In(n). Furthermore let ONE
denote the total cost of the solution in which a facility is opened at exactly one arbitrary vertex
v €V and let OPT denote the total cost of the optimal solution to the problem. Then

£[2%] -ow

Moreover, if 1/n® < f < Mln(n) for n sufficiently large and some constants M > 0 and & with

0<e<d/(2+9), then
ONE 1

Proof. By equation (4.2)) we know that the expected value of ONE is given by
E[ONE] = f + In(n) + ©(1).

Now take a constant ¢ as follows:

g if 1/n1¢ < f < 1/n° for n sufficiently large,
1+e¢ . .
c=9 175 if 1/n® < f < eln(n) for n sufficiently large,
1 *
% if eln(n) < f < M In(n) for n sufficiently large.

In the first case we have ¢ € (0,¢) and thus do f and c¢ satisfy condition (i) from Lemma in
that case. In the second case we have ¢ € (¢,1 —¢) (since € < 6/(2+9) < 1/2 and § < 2) and
thus do f and ¢ satisfy condition (i7) from Lemma in that case. In the third case we have
c € (p*, 14 ¢*) (since 0 < e < <1/p* < (1+¢€)/p) and thus do f and c satisfy condition (i)
from Lemma [6.9]in that case.
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Now, conditioning on the events OPT > c¢ln(n) and OPT < c¢In(n) yields

ONE ONE

E [OPT] =P (OPT > ¢ln(n))E [OPT OPT > cln(n )]
ONE

+P(OPT < ¢ln(n))E {OPT

OPT < cln(n )}

ONE

ONE
OPT

G }+1@(0PT<cln( )E {

OPT < cln(n )]

ONE
OPT

f+ln(n +
cln(n)

)

)

(

_f+ In(n) +©(1) 1
cln(n) +0 (n)

_ J+I(n)

cIn(n) O<m@Q’

where we used the result of Lemma for the last equality. Since f = O(In(n)) by our restric-
tions, we can now deduce that

. [ONE] _ Om(m) (ml ) _on).

o) +P(OPT < cln(n))E [ OPT < cln(n )]

OPT cln(n) (n)

Moreover, if 1/n° < f < eln(n) for n sufficiently large, then we have ¢ = (1 +¢)/(1+§), and it
follows that

ONE eln(n) + In(n) 1 1
E < =146
[OPT] - cln(n) +0 In(n) oo In(n) )’
and if eln(n) < f < MlIn(n) for n sufficiently large, then we have ¢ = (1 4+ ¢* + €)/(1 + 9);

furthermore we know in this last case that f < (¢* + ¢)In(n) for n sufficiently large, since
lim,, o f/In(n) = ¢*; thus it follows that

= foee) = 0 () <1400 ()

which shows our claims. O

6.3 Opening some facilities

In this subsection we examine the approximation ratio of the trivial heuristic which opens a
facility at exactly [1/f] arbitrary vertices v1,...,vp1,5 € V. We show that SOME yields an O(1)
approximation for 1/n < f < 1 and a 1+ o(1) approximation when f = a(n)/n for some function
a(n) with lim, o a(n) = oo and a(n) < n (Theorem [6.16).

The idea behind the proof of this theorem is to bound the product of the probability of OPT being
smaller than a well-chosen threshold and the conditional expected approximation ratio in that
case. First, we bound this expression using Lemma and subsequently bound the remaining
probabilities using Lemmas [£.4] and in order to obtain an explicit function. The final step
is to show that this explicit function (which is a bound for the expected approximation ratio) is
bounded either by O(1) or 1+ o(1) (depending on the asymptotic value of f). Lemmas
and provide us with the necessary tools in order to be able to do so.

Now, first we need to show that the function g(z), as defined in the following lemma, is negative
in an open interval around the constant o*.
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Lemma 6.12. Let o* € (1,00) and define ¢ =1n(11/10)/In(a*) = log,,.(11/10) and

(o) o 2 m( ex ) B ifi(x).

x cln(x)

Then we have g(a*) < —1/10, and moreover there exists an €' > 0 such that g(x) < —1/10 for all
z € (a* =& a"+¢€).
Proof. Using the definition of ¢, it follows that

_ 2In(11/10) ea* a* —1n(11/10)
- e " (ln(11/10)) T ar11/10

g(a”)
1 * *
= — (2l (55) (1 = (In (55)) + In(a”)) = Fa" + 33 In (55))
Now, since we have

d -2
o (g(a™)) = (a2 ‘In(15) (11In(a*) +5—111In(In (15))) <0
for all o* € (1,00) (since 5 — 111n(In(1§)) > 0), it follows that g(a*) < g(1) ~ —0.18 for all
a* € (1,00). So, we have indeed g(a*) < —1/10.
Moreover, since g(z) is a continuous function, it follows by elementary calculus that there must
be an open interval around o* in which g(z) < —1/10. In other words, there must exist an &’ > 0
such that g(x) < —1/10 for all z € (a* — €', a* +¢’). O

Next, we need to show that the expression 2iIn(en/i) — (n — cln(nf)/f) - €/ (nf)~¢ is bounded
by a logarithmic function, which will ultimately enable us to bound the probability that OPT
is small. The following two lemmas provide this bound (Lemma for the case where o* :=
lim,, oo nf < oo and Lemma for the case where a* = 00).

Lemma 6.13. Let f satisfy (14¢)/n < f < M/n® forn sufficiently large and some constants M >
0 and € with 0 < ¢ < 1 and assume that o = lim,,_,cnf < c0. Define ¢ = In(11/10)/In(a*).
Then, for n sufficiently large and for any i with 1 <1i < cln(nf)/f, we have

2iIn (?) - (n - CIH;nf)> : é;;c < —5In(n).

Proof. Let n be sufficiently large. Since iln(en/i) is an increasing function of i whenever 0 < i < n,
it follows that

2t () - (” B Cln;nf)) ' (S?)C = 2cmf(nf) 8 <cli?7{f)> - (” - dnﬁfnf)> ' (S;;C

B 2clnf(nf) In <c1f1?r{f)> _ <1 _ clr;l(;zf)> n- (s;f)c

Moreover, since eif > 1 for all i > 1, we have

(3 I 2) L
- (25 (i) - M)
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Now, by Lemma [6.12 we know that there exists an &’ > 0 such that (2cIn(z)/z) - In(ex/cln(z)) —
(z — cln(x))/z¢t < —1/10 for ¢ = In(11/10)/In(a*) and all x € (a* — &, a* + €’). Moreover,
since lim,, oo nf = o*, we know that nf € (a* —¢’,a* +¢&’) for n sufficiently large. Therefore, we
can conclude for n sufficiently large that

2 (2) - (- R0 L

i f nf) 10
< —=5In(n),
where the last inequality holds since n is sufficiently large. O

Lemma 6.14. Let [ satisfy (1+¢)/n < f < M/n® for n sufficiently large and some constants
M >0 and € with 0 < e < 1 and assume that o* := lim, o nf = co. Let ¢ € (0,1) be arbitrary.
Then, for n sufficiently large and for any i with 1 <1i < cln(nf)/f, we have

2iIn (?) - (n — Cln;nf)> . (;?)c —51In(n).

IN

Proof. Let n be sufficiently large. Using the same technique as in the proof of Lemma [6.13] we
obtain that

2iin () - (” B Cln;nf)) | (S;f)c = <2C lz;nf) " <cli?1{f>> ) nf(mf)l?ﬁf))

_ :7 : <2cln(nf) In (cli?v{:f)) -4 _(nc;;(nf)) .

Now, define a(n) = nf and note that lim,,_,+, a(n) = oo by our assumptions, whereas lim,, o a(n)/n'~%/? =
0 by the restrictions on f. Substituting nf = a(n) results in:

2itn () = (- S0 < (semlatm) n (o) — oy D),

IA

Observe that the dominant term between the brackets on the right hand side is given by —(a/(n))!=¢
(since ¢ € (0,1)), implying that this factor becomes less than —1 whenever n is sufficiently large.
Furthermore, observe that n/a(n) > n®/? when n is sufficiently large (since lim,, oo a(n)/n'=%/2 =
0). Combining these two observations, we obtain

2iln () - ("‘ Clngfnf)) ' <§;f>c 2!

< nt/?. -1
< —5In(n),

IA

where the last inequality holds since n is sufficiently large. O

Lastly, we use the result from the previous two lemmas to show that each term of the summation
that arises when using lemma becomes sufficiently small when n gets large.

Lemma 6.15. Let f satisfy (1+¢)/n < f < M/n® for n sufficiently large and some constants
M >0 and e with 0 < € < 1. Define a* = lim,,,oonf. If a* < oo define ¢ = In(11/10)/In(a*);
otherwise let ¢ € (0,1) be arbitrary. Then, for n sufficiently large and for any i with 1 < i <

cln(nf)/f, we have
n\(n-—1 Tl 1
_—(elmp-in)" T o L
(i)(i—l) (1 ¢ ) =0
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Proof. First note that the left hand side becomes zero for ¢ = c¢Iln(nf)/f. So we may assume
without loss of generality that 1 <4 < cln(nf)/f. Now, since In(1 —z) < —z for all 0 <z < 1, it
follows that

oilu (ﬁ) N (n B cln;nf)) In (1 _ e—(cln(nf)—z’f)) <92l (@) B (n B cln;nf)> e~ (eln(nf)—if)
1 (3

—2iln (?) - (n - Cln;”f)> : (;?)C.

Using the result of Lemmas (for the case a* < 00) and (for the case a* = 00), it follows
now that

oilu (?) N (n B cln;nf)) n (1 _ e—(cln(nf)—z’f)) < —51n(n).

Since e is an increasing function of x, it follows now that

p2iIn(en/i)+(n—cln(nf)/f) In(1—e~(cm(nNH=if)y < 6751n(n)7

or, equivalently,

(%)21 . (1 _ ef(cln(nf)fif))n_cm(nf)/f S i5
7 n

On the other hand, since (}~7) < (}), (M) (2) < (Rir2) and (7)) < (en/k)*, it follows also that

(”) (” - 1) ( <c1n<nf)—z‘f>)"’i 2n — 1) ( (cln(nf)—if))”’i
1—e 1—e
i J\i—1

21 —1
2”) (1 _ e(cln(nf)—if))n_i

IN

IN

NS

27

< (@)2 . (1 _ e(cln(nf)—if)>n7i.
=G

Furthermore, since 1 — e(¢™(f) =) < 1 and since n —i > n — cln(nf)/f, it follows that

n n—1 (1 — e(cln(nf)fif))’ﬂ*i < (@)21' . (1 3 ef(cln(nf)fif))nidn(nf)/f .
v 1—1 =3

Combining the two results above yields the desired inequality. O

Now we can finally state and prove the main result from this subsection.

Theorem 6.16. Let § > 0. Consider the facility location problem with (1 +¢)/n < f < M/n®
for n sufficiently large and some constants M > 0 and & with 0 < € < 1. Furthermore let SOME
denote the total cost of the solution in which a facility is opened at exactly [1/f] arbitrary vertices
V1,501 €V and let OPT denote the total cost of the optimal solution to the problem. Then

(525 _ o)

Moreover, if f = a(n)/n for some function a(n) with lim, . a(n) = oo and a(n) < Mn!~¢,

then
B () = 1+0+0 (e )
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Proof. By equation (4.5) we know that we can bound the expected value of SOME by
E[SOME] < f +In(nf) + ©(1) = In(nf) + 6(1),

where the equality holds since f = O(1) by our restrictions. Observe that o* :=lim,, o nf > 1+¢
by our restrictions on f. We consider two cases: a* < co and a® = co. Note that the second case
occurs if and only if f = a(n)/n for some function a(n) with lim,, o, a(n) = co and a(n) < Mn'=¢
(due to the restrictions on f for n sufficiently large). Now we take a constant ¢ as follows:

In(11/10) if o* < oo,
In(a*)
CcC =
1 .
m if a* = oo.
Conditioning on the events OPT > cIn(nf) and OPT < cln(nf) yields
SOME SOME
= > . >
E [ oOPT ] P(OPT > clu(nf))-E [ oPT ‘ OPT > cln(nf)}

SOME

+P(OPT < cln(nf)) -E [OPT

‘ OPT < cln(nf)}

[Cln(nf)} +P(OPT <clhn(nf))E- {OPT OPT < cln(nf)]
In(nf) +O6(1) SOME
< i) +P(OPT < cln(nf))-E [OPT ‘ OPT < cln(nf)}
_1, _eQ SOME
=+ (i) +P(OPT < cIn(nf))-E {OPT ‘ OPT < cln(nf)] .

Now we use the result of Lemmas (with X = SOME, Y = OPT, y = cIn(nf) and 5 = f) and
[4.4] to obtain that

SOME] 1 ©(1) 1 =
|: OPT ] < c+cln(nf)+fQP(OPT<Cln(nf))+/1/f2P(SOME>\/.%) dx
1 o(1) 1 1
= + cIn(nf) + 7 -P(OPT < ¢ln(nf)) + O (n) .

Moreover, using Lemmas (with z = cIn(nf)) and [6.15, we obtain that

Lcln(fnf)J

SOME 1 o(1) 1 n\ (n—1 L (emmf)—if) n—i (1>
IE:[OPT]<c—+_chr1(nf)—’—fz Z (i)(i—l)(l ¢ ) +0 n

1 e 1 1 1
St et ZZ o (n)
O(1) cln(nf) 1 1
St emmp T O <n)
O(1 1 1
:7+cln( ) +O(TL4) 5+O<n>

1 1
¢ cln(nf) +0 (n) ’

where we used In(nf) < n and 1/f < n for n sufficiently large.
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Now we consider our two cases:

Case 1 (a* < o0): We have ¢ = In(11/10)/In(a*) = O(1) and lim,_,nf = o, implying
In(nf) = ©(1). Using these observations, it follows immediately that

[SME] 1, 006 (1) oo (L) ~on)

Case 2 (o* = 00): We have ¢ = 1/(1 4+ §) and In(nf) = In(a(n)) with lim,_ a(n) = oo and
a(n) < Mn'~¢. Using these observations, we can now deduce that

IE[SC?;\{:_E] <i+cl‘igi’f)+o(i> :1”*0(@)*0(;) :1+5+0(m<a1(n>>>'

This shows our claims. O
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7 Overview

In this section we give a brief overview of the results from the previous section. The approximation
ratios which are achieved by the trivial heuristics, denoted by ALL, SOME and ONE, are shown in
Table |1 for different ranges of facility opening cost f (as n — 00).

From this table it can be seen that for any facility opening cost f at least one these three trivial
heuristics yields either an O(1) approximation or a 1 + o(1) approximation as n — co. Moreover,
whenever f ¢ ©(1/n), at least one of these trivial heuristics is asymptotically optimal. These

results suggest that the facility location problem using random shortest path metrics is relatively
difficult for f € ©(1/n).

Note that for f ~ 1/n we have the situation that SOME denotes a solution in which [1/f] = n
facilities are opened, i.e. at (almost) every vertex v € V a facility is being opened, implying that
SOME denotes (approximately) the same solution as ALL. In Table [If it can be seen that both
heuristics yield an O(1) approximation in this case.

If f <1/n (as n — o0), then it follows that SOME denotes the same solution as ALL (as n — o)
(where we implicitly make the trivial assumption that SOME does not open more than n facilities).
So, basically the obtained results for ALL when f < 1/n (as n — oo) also hold for SOME. For
clarity reasons this is not stated in Table

Furthermore, note that for f ~ 1 we have the situation that SOME denotes a solution in which
[1/f] = 1 facility is opened, implying that SOME denotes (approximately) the same solution as
ONE. In Table[l]it can be seen that for f € ©(1/n°) (with ¢ an arbitrarily small constant) both
heuristics are asymptotically optimal. This makes sense, since we have E[SOME|/E[ONE] ~ 1 —¢
as n — oo when f € ©(1/n®) (recall equations and ([4.5)). So, when ¢ is arbitrarily small,
ONE and SOME have (asymptotically) the same expected value.

If f >1 (asn — o), then it follows that SOME denotes the same solution as ONE (as n — 00).
So, basically the obtained results for ONE when f > 1 (as n — o0) also hold for SOME. For clarity
reasons this is not stated in Table Il

Facility opening cost ALL SOME ONE
f=0 Optimal - -
0< f < ¢e/nfl 1+ o0(1) (Th. - -

e/m < f<(l+4+e)/n O(1) (Th. - -
(14e)/n<f<(@2-¢)/n| O(Q) (Th. O(1) (Th. |6.16 -
2—-¢)/n< f<M/n - O(1) (Th. [6.16 -

M/n < f < 1/n'~<[f] - 1+ 0(1) (Th. [6.16 -
1/nt= < f < 1/n° - 1+o0(1) (Th. [6.16) | O(1) (Th. [6.11)
1/nf < f < M/n¢ - 1+o0(1) (Th. 6.16) | 1+ o(1) (Th.[6.11
M/n® < f < Mln(n) - - 1+o0(1) (Th. |6.11
Mn(n) < f < ocoff] - - 1+ o(1) (Th. [6.6)
f =00 - - Optimal

Table 1: Overview of the approximation ratios achieved by the three trivial heuristics for different
ranges of the facility opening cost f (as n — o). (In this table e > 0 is an arbitrarily small
constant, whereas M is an arbitrarily large constant.)

tf = 1/(na(n)) for some function a(n) with lim,— o a(n) = co
tf = a(n)/n for some function a(n) with limy,_ e a(n) = co and a(n) < n
§f = a(n)In(n) for some function a(n) with limy,—s 0o a(n) = oo

€

38



8 Discussion and final remarks

In this thesis we have investigated the probabilistic properties of three rather trivial procedures
which give a solution to the facility location problem, when using random shortest path metrics:
opening all facilities, opening one arbitrary facility, and opening a certain number of arbitrary
facilities (with that certain number only depending on the facility opening cost). Using random
shortest path metrics, we have shown that these rather trivial procedures do produce solutions
which are surprisingly close to the optimal solutions as the number of vertices gets large.

Table [I|in Section [7] gives an overview of the approximation ratios which are achieved by the three
trivial procedures for any possible facility opening cost. As expected, the procedure which opens
every facility performs well when the facility opening cost is relatively low, whereas the procedure
which opens only one arbitrary facility performs well when the facility opening cost is relatively
high. The procedure which opens a certain number of arbitrary facilities fills the gap between the
other two procedures.

The results presented in this thesis form only a second step into the research of the behavior of
(combinatorial) optimization problems using random shortest path metrics (the first step being the
results by Bringmann et al. [I]). Even though random shortest path instances are more difficult
to analyze than Euclidean instances or instances with independent random edge lengths, we were
able to derive some good results when analyzing the facility location problem on it.

It would be interesting to see whether it is possible to prove similar results when using more
sophisticated heuristics for solving the facility location problem. Furthermore, there are many
other N"P-hard (combinatorial) optimization problems involving metric spaces for which it would
be interesting to know how they behave on random short path metrics.
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