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Abstract

Laughter is a highly variable signal, and can express a spectrum of emotions. This makes the
automatic detection of laughter a challenging but interesting task. We perform automatic
laughter detection using audio-visual data from the AMI Meeting Corpus. Audio-visual
laughter detection is performed by combining (fusing) the results of a separate audio and
video classifier on the decision level. The video-classifier uses features based on the principal
components of 20 tracked facial points, for audio we use the commonly used PLP and RASTA-
PLP features. Our results indicate that RASTA-PLP features outperform PLP features for
laughter detection in audio. We compared hidden Markov models (HMMs), Gaussian mix-
ture models (GMMs) and support vector machines (SVM) based classifiers, and found that
RASTA-PLP combined with a GMM resulted in the best performance for the audio modality.
The video features classified using a SVM resulted in the best single-modality performance.
Fusion on the decision-level resulted in laughter detection with a significantly better perfor-
mance than single-modality classification.
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Chapter 1

Introduction

Laughter is important. Someones mental state and emotions are conveyed in paralinguistic
cues, such as laughter, a trembling voice and coughs. Because laughter occurs frequently in
spontaneous speech, it is an interesting research subject. Laughter is not limited to positive
emotions; negative feelings and attitudes such as sadness and contempt can be expressed
with laughter [35]. This spectrum of expressed emotions combined with the high variability
of laughter makes the automatic detection of laughter a challenging but interesting task.

Automatic laughter detection can be used for example in meetings where laughter can
provide cues to semantically meaningful events. Another application of laughter detection is
the detection of non-speech for automatic speech recognition. Laughter can possibly be used
as a feedback mechanism in Human Computer Interaction interfaces.

Earlier work on laughter detection has mainly focused on laughter detection in audio only.
Currently the focus starts to shift for laughter detection in audio to audio-visual detection of
laughter because additional visual information can possibly improve the detection of laughter.
Research investigating audio-visual laughter detection was suggested by Truong et al. [38].
In this thesis we investigate fusion for audio-visual laughter detection. We will investigate if
fusion of the audio and video modality can improve the performance of automatic laughter
detection. Fusion will be performed on the decision level, which means that audio and video
are classified separately, and the results are fused to make a final classification. We will
evaluate different feature sets and different classification algorithms in order to find strong
audio and video classifiers, and fuse those results to create a audio-visual classifier which
hopefully outperform both the audio and the video classifiers.

The rest of this thesis is organized as follows. In the next chapter we describe earlier
work on laughter detection in audio, detection of facial expressions in video, and work on
audio-visual emotion recognition. Then we describe the methodology we use to evaluate the
performance of decision-level fusion. This includes a description of the data set, the machine-
learning techniques we use, and the performance measure we use. The results are presented
in the next chapter, followed by the conclusions in the last chapter.
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Chapter 2

Literature

2.1 Laughter

Although laughter occurs frequently in conversations, we do not seem to know a lot about
laughter. Research on the acoustic properties of laughter often contradicts other research,
and the used terminology differs from work to work. To increase the confusion even more,
smiles and laughter are often not discussed together while they seem to be related. Therefore
we will describe different terminologies to describe laughter, the relation between speech,
laughter and smiles before we describe the variability of the laughter signal.

Laughter is usually analyzed on three levels. Bachorowski [5] defines the following three
levels: bouts, calls and segments. Bouts are entire laugh episodes that occur during one
exhalation. Calls are discrete acoustic events that together form a bout. Bouts start with
long calls, followed by calls that were about half as long. A call is voiced, unvoiced, mixed,
or is made up by glottal pulses, fry registers and glottal whistles. The mouth can be open or
closed during the production of a call. Calls can be subdivided in segments. Segments are
temporally delimited spectrogram components. A similar division in three level was suggested
by Trouvain [36]: phrases, syllables and segments. Phrases are comparable to bouts. Syllables
are defined as interpulse intervals, and form phrases when combined. Segments can be vowels
or consonants. The consonantal segment in a laugh is often seen as an interval or pause.

Smiling and laughter often occurs together, and seem to be different forms of the same
event. Laughter often shows a facial expression similar to smiling combined with an invol-
untarily exhalation, sometimes followed by uncontrolled inhalations and exhalations. This
involuntarily breathing is not present during smiling. Laughter and smiles could be extremes
of a smile-laugh continuum, but there are some indications that there is a more complex rela-
tion between laughter, smiling and even speech than we would expect. Aubergé and Cathiard
demonstrated that a genuine smile includes a specific manipulation of the prosody of the
speech [4], which cannot be attributed to the facial deformation of a smile; not only laughter,
but also smiling is audible. Like smiling, laughter does occur during speech, and does so very
often according to Trovain [35]. In the KielCorpus of Spontaneous Speech, 60% of all labeled
laughs are instances that overlap speech. Simultaneous production of speech and laughter is
not simply laughter imposed on articulation, and there is no prototypical pattern for speech-
laughs. In a later work, Trouvain reports [36] that laughter is a mix of laughter interspersed
with speech-laughs and smiled speech. Smiling and laughter seem to be different categories
rather than extremes of a continuum.
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Laughter is a highly variable signal [5, 40]. Voiced laughter shows much more source-
related variability than is associated with speech, and the individual identity and sex are
conveyed in laugh acoustics. The variability between individuals greatly exceeded the vari-
ability within an individual. Laughter seems to be better conceptualized as a repertoire of
sounds, which makes it difficult to detect it automatically. Kipper and Todt [27] report that
the successive syllables of laughter, which appear similar, show dynamic changes of acoustic
parameters, and are in fact different. For example, the fundamental frequency, the amplitude
and the duration of a syllable varies during a laughter bout. Laughter seems to be a very
variable signal, both on phrase and syllable level.

The automatic recognition of of laughter seems to be a very challenging problem. The
laughter signal is highly variable on multiple levels, and can be described best as a group of
sounds. Laughter and smile seem to be different categories, and should not be regarded as
different manifestations of the same event.

2.2 Laughter detection in audio

Automatic laughter detection has been studied several times, in the context of meetings, for
audio indexing and to detect affective states. We will describe a few studies on automatic
laughter detection, and summarize some characteristics of these studies. An overview of
automatic laughter detection can be found in Table 2.1.

Campbell et al. [8] developed a system to classify a laugh in different categories. They
constructed a corpus containing four affective classes of laughter: A hearty laugh, an amused
laugh, a satirical laugh and a social laugh. A training set of 3000 hand labeled laughs was used
to train hidden Markov models (HMMs). The HMMs recognized the affective class correctly
in 75% of the test cases.

Automatic laughter detection can be used in audio indexing applications. For example,
Lockerd and Mueller [28] performed laughter detection using their affective indexing cam-
corder. Laughter was detected using HMMs. One HMM was trained on 40 laughter examples,
the other HMM was trained on speech. The classifier correctly identified in 88% of the test
segments. Misleading segments were sounds such as coughs, and sounds produced by cars
and trains.

Arias et al. [2] performed audio indexing using a Gaussian mixture models (GMMs)
and support vector machines (SVMs) on spectral features. Each frame is classified and then
smoothed using a smoothing function to merge small parts. The accuracy of their laughter
detection is very high (97.26% with GMMs and 97.12% with a SVM). However, their data set
contains 1 minute of laughter for every 180 minutes of audio. Only prediction non-laughter
would result in a baseline accuracy of 99.4%, which makes it unclear how well their laughter-
detection really performs.

Automatic laughter detection is frequently studied in the context of meetings. Kennedy
and Ellis [25] detected multiple laughing participants in the ICSI Meeting database. Using a
SVM on one second windows of Mel-Frequency Cepstrum Coefficients (MFCCs) features, a
equal error rate (EER) of 13% was obtained.

The same data set was used by Truong and Van Leeuwen [37]. Using Gaussian mixture
models (GMM) on Perceptual Linear Predictive Analysis (PLP) features, they also obtained
an EER of 13%. The data set contained examples in which both speech and laughter were
present, and some inaudible laughs. After removing these difficult instances, the performance
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Study Dataset Performance Remarks

Truong (2007) [38] ICSI-Bmr, clean set EERgmm: 6.3,
EERsvm: 2.6,
EERfused: 2.9

EERfused was tested on different
corpus than EERsvm

Arias (2005) [2] Broadcast A: 97% MFCCs with GMMs and SVM,
1 minute laughter, 180 minutes
non-laughter

Campbell (2005) [8] ESP A: 75% HMMs to classify a laugh into 4
categories

Ito [23] (2005) Audio visual laughter Audio: (95% R,
60% P)

Truong (2005) [37] ICSI-Bmr EER: 13.4%,
EERclean: 7.1%

PLP, GMM, EERclean on set
with unclear samples removed

Kennedy (2004) [25] ICSI-Bmr EER: 13% MFCCs + SVM
Lockerd (2002) [28] Single person, 40 laughs A: 88% HMMs

Table 2.1: Automatic laughter recognition in audio.

increased, resulting in a EER of 7.1%. Different audio features were tested and resulted in
PLP outperforming pitch and energy, pitch and voicing and modulation spectrum features.

In a more recent work, Truong and Van Leeuwen [38] used the cleaned ICSI meeting data
set to train GMM and SVM classifiers. For the SVM classifier the frame level features were
transformed to a fixed length using a Generalized Linear Discriminant Sequence (GLDS)
kernel. The SVM classifier performed better than the GMM classifier in most cases. The
best feature set appeared to be the PLP feature set. The scores of different classifiers based
on different features were fused using a linear combination of the scores or fused using a
SVM or a MLP trained on the scores. Fusion based on GMM- and SVM-classifiers increases
the discriminative power, as does fusion between classifiers based on spectral features and
classifiers based on prosodic information.

When we compare the results of these studies, GMMs and SVMs seem to be used most for
automatic laughter recognition. Spectral features seem to outperform prosodic features. An
EER of 12–13% seems to be usual. Removing unclear examples improves the classification
performance enormously. This suggests that the performance largely depends on the difficulty
of the chosen data set.

2.3 Facial expressions

The detection of facial expressions in video is a popular area of research. Therefore, we will
only describe a few studies that are related to fusion and the Patras-Pantic particle filtering
tracking scheme [33] which we will use to extract video features.

Valstar et al. [39] conducted a study to automatically differentiate between posed and
spontaneous brow actions. Timing is a critical factor for the interpretation of facial behavior.
The facial expressions are labeled according to the Facial Action Coding System (FACS)
[16] action units (AUs). The SVM based AU detectors detect temporal segment (neutral,
onset, apex, offset) of the atomic AUs based on a sequence of 20 tracked facial points. These
points were tracked using the Patras-Pantic particle filtering tracking scheme. Using the
detected three brow AUs (AU1, AU2, AU4), mid-level features based on intensity, duration,
trajectory, symmetry and co-occurrence with other muscle actions were created to determine
the spontaneousness of an instance. This resulted in a classification with an accuracy of
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90.7%.
Gunes and Piccardi [18] compare fusion of facial expressions and affective body gestures

at the feature and decision level. For both modalities, single expressive frames are manually
selected, which are classified into six emotions. The body-modality classifier was able to
classify frames with a 100% accuracy. Using feature-level fusion, which combines the feature
vectors of both modality into a single multi-modal feature vector, again an accuracy of 100%
was obtained. Decision level fusion was performed using different rules to combine the scores
of the classifiers for both modalities, which resulted in an accuracy of only 91%. Clearly the
used fusion rules are not well chosen for their problem.

Pantic et al. [32] used the head, face and shoulder modalities to differentiate between
spontaneous and posed smiles. The tracking of the facial expressions was performed using
the Patras-Pantic particle filtering tracking scheme [33]. For mid- and high-level fusion,
frames are classified, and filtered to create neutral-onset-apex-offset-neutral sequences. Mid-
level fusion is performed by transforming features into symbols such as temporal aspects
of AUs, and the head and shoulder actions. For these symbols, mid-level features such as
morphology, speed, symmetry, the duration of apex-overlap of modalities are calculated, and
the order of the different actions are computed. Low level fusion (recall: 93%, precision: 89%)
yields better results than mid-level (recall: 79%, precision: 79%) and high-level fusion (recall:
93%, precision: 63%). The head modality is the most important modality for the recognition
for this data set, although the difference is not significant. The fusion of these modalities
improves the performance significantly.

2.4 Audio-visual fusion

Most work on audio-visual fusion has focused on the detection of emotion in audio-visual data
[49, 47, 44, 18, 45, 48, 46, 21, 41, 17, 7]. Some other audio-visual studies are conducted on cry
detection [31], movie classification [42], tracking [6, 3], speech recognition [13] and laughter
detection [23]. These studies all try to exploit the complementary nature of audio-visual
data. Decision level fusion is usually performed using the product, or a (weighted) sum of the
predictions of single-modality classifiers, or using hand-crafted rules for classification. Other
commonly used fusion techniques include mid-level fusion using multi-stream hidden Markov
model (MHMM), and feature level fusion. We will describe some studies in more detail and
make some general observations. A overview of these studies can be found in Table 2.2.

Zeng et al. [48] used a sparse network of Winnow (SNoW) classifier to detect 11 affective
states in audio-visual data. Fusion was performed using voting on frame-level to obtain a
class for each instance. For a second, person-independent test, fusion was performed by using
a weighted summation of component HMMs. In a following study [46], Zeng et al. performed
automatic emotion recognition of positive and negative emotions in a realistic conversation
setting. The facial expressions were encoded using FACS. Video features were based on the
facial texture; prosodic features were used for audio classification. Fusion was regarded as
a multi-class classification problem, with the outputs of the different component HMMs as
features. An AdaBoost learning scheme performed best of the tested classifiers.

Another study that compared feature-level fusion and decision level fusion for automatic
emotion recognition was conducted by Busso et al. [7]. Video texture and prosodic audio
features were classified using SVMs. The confusion matrices of the audio and video modalities
show that pairs of emotions that are confused in one modality can be easily classified using
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Study Dataset Performance Remarks

Zajdel [44] (2007) Posed, 2 emotions A: ≈ 45%, V: ≈ 67%, MF: ≈ 78% Dynamic Baysian
Network

Zeng [46] (2007) AAI, 2 emotions A: 70%, V: 86% DF: 90% Adaboost on compo-
nent HMMs

Zeng [48] (2007) Posed, 11 emotional
states

A: 66%, V: 39%, DF: 72% SNoW, MHMM

Pal [31] (2006) Unknown, 5 cry types A: 74%, V: 64%, DF: 75% Rule based fusion us-
ing confusion matrices

Zeng [45] (2006) AAI, 2 emotions A: 70, V: 86% DF: 90% Adaboost on compo-
nent HMMs

Asoh [3] (2005) Speech, 2 states and
location

MF: 85% Particle filter

Hoch [21] (2005) Posed, 3 emotions A: 82%, V: 67%, DF: 87% SVM, weighted-sum
fusion

Ito [23] (2005) Spontaneous, laugh-
ter

A: (95% R, 60% P), V: (71% R,
52% P)%, DF: (71% R, 74% P)

Rule based fusion

Wang [41] (2005) Posed, 6 emotions A: 66%, V: 49%, FF1: 70%,
FF2: 82%

FF1: FLDA classfier,
FF2: Rule-based vot-
ing

Xu [42] (2005) Movies, horror vs
comedy

DF: (R=97%, P=91%) Voting, rule based fu-
sion

Busso [7] (2004) Posed, single person,
4 emotions

A: 71%, V: 85%, FF: 89%,
DF: 89%

DL: product fusion

Go [17] (2003) 6 emotions A: 93, V: 93%, DF: 97% Rule based
Dupont [13] (2000) M2VTS, 10 words,

noisy
A: 52% V: 60%, FF: 70%,
MF: 80%, DF: 82%

Fusion using MHMMs

Table 2.2: Audio-visual fusion

the other modality. Different decision-level fusion rules were tested, the best results (89%)
were obtained using the product of the prediction of both modalities. Feature-level fusion
resulted in an accuracy of 89%. In this experiment, feature-level fusion and decision-level
fusion had a similar performance.

Dupont and Luettin [13] used both acoustic and visual speech data for automatic speech
recognition. A MHMM is used to combine the audio and video modalities on the feature level,
decision level and mid-level. The fused system performs better than systems based on single
modality in the condition of noise. Both mid-level and decision-level fusion perform better
than feature-level fusion. Without the addition of noise to the features, audio-classification
alone is sufficient for almost perfect classification.

A quite different approach for fusion was taken by Asoh et al. [3]. Particle filtering
was used to track the location of human speech events. The audio modality consisted of a
microphone array, the video-modality consisted of a monocular camera. Audio-visual tracking
was performed by modeling the position and the type of the signal as a hidden state. The
noisy observations are used to estimate the hidden state using particle filtering. This approach
provides a simple method to compute the probability of a location and occurrence of a speech
event.

Ito et al. [23] focused on the detection of a smiling face and the utterance of laughter
sound in natural dialogues. A database was created with Japanese, English and Chinese
subjects. Video features consist of the lip lengths, the lip angles and the mean intensities
of the cheek areas. Frame level classification of the video features is performed using a
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perceptron, resulting in a recall of 71%, and a precision of 52%. Laughter sound detection is
performed on MFCC and delta-MFCC features, using two GMMs, one for laughter, and one
for other sounds. Using a moving-average filter the frame-by-frame sequences are smoothed.
A recall of 96% and a precision of 60% was obtained with 16 Gaussian mixtures. The audio
and video channels are combined using hand-crafted rules. The combined system obtained a
recall of 71% and a precision of 74%. Ito et al. do not report if fusion significantly increases
the performance of their detector.

Xu et al. [42] performed affective content analysis of comedy and horror movies using
audio emotional events, such as laughing and horror sounds. The audio is classified using
a left-to-right HMM with four states. After classification, the predictions are filtered using
sliding window majority-voting. Short horror sounds were too short to detect using a HMM,
they were detected by finding large amplitude changes. The audio features consist of MFCCs,
with delta and acceleration features to accentuate the temporal characteristics of the signal.
The recall and precision are over 90% for horror sounds and canned laughter.

The performance of decision-level fusion seems to be similar to the performance of feature-
level fusion. The fusion of audio and video seems to boost the classification performance in
these studies with about 4%. However, most work does not report the significance of this gain
in performance. Fusion seems to work best when the individual modalities both have a low
performance, for example due to noise in the audio-visual speech recognition of Dupont [13].
When single classifiers have a high performance, the performance gain obtained by fusion of
the modalities is low, and sometimes fusion even degrades the performance, as observed in
the work of Gunes [18].



Chapter 3

Methodology

Fusion of audio and video can be performed on different levels. We perform fusion on the
decision-level where the audio and video modality are classified separately. When the clas-
sifiers for both modalities have classified the instance, their results are fused into a final
multi-modal prediction. See Figure 3.1 for a schematic overview. An alternative approach
is fusion on feature-level, where the audio and video features are merged into a single, fused
feature set. A classifier classifies the fused features of a single instance. We have chosen
to evaluate decision-level fusion instead of feature-level fusion for two reasons. The first first
reason is that decision-level fusion allows the use of different classifiers for the different modal-
ities. The different results for the different classifiers helps us understand the nature of the
audio-visual signal, and it possibly results in a better performance. The second reason is that
we use a very small data set. The feature-level fusion approach has a higher dimensionality,
which requires a lager data set to learn a classifier [1]. We therefore use decision-level fusion.

In the next subsections, we will describe the preprocessing we applied to our data set, the
features we used and the design we used to evaluate our fusion techniques.

Audio

featA
��

V ideo

featV
��

Classifier

predA ((PPPPPPPPPPPP Classifier

predVvvnnnnnnnnnnnn

Fusion

predF

��
Prediction

Figure 3.1: Decision-level fusion.

3.1 Dataset

In order to measure the classification performance of different fusion techniques, we need a
corpus containing both laughter and non-laughter examples to use for training and testing.
We created a corpus based on the AMI Meeting Corpus [29]. In the following sections,
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we will describe the AMI Meeting Corpus, the segmentation process used to select examples
(instances), and the details regarding the construction of the corpus based on the segmentation
data.

3.1.1 AMI Meeting Corpus

The AMI Meeting Corpus consists of 100 hours of meeting recordings, stored in different
signals that are synchronized to a common time line. The meetings are recorded in English,
mostly spoken by non-native speakers.

For each meeting, there are multiple audio and video recordings. We used seven non-
scenario meetings recorded in the IDIAP-room (IB4001, IB4002, IB4003, IB4004, IB4005,
IB4010, IB4011). These meetings contain a fair amount of spontaneous laughter. In the
first five meetings, the four participants plan an office move. In the last two meeting four
people discuss the selection of films to show for a fictitious movie club. We removed two
participants, one displayed extremely asymmetrical facial expressions (IB4005.2), the other
displayed a strong nervous tick in muscles around the mouth (IB4003.3, IB4003.4). Both
participants were removed because their unusual expressions would have a huge impact on
our results due to the small size of our dataset. The remaining 10 participants are displayed
in Figure 3.3.

We used the close-up video recording (DivX AVI codec 5.2.1, 2300 Kbps, 720×576 pixels,
25 frames per second) and the headset audio recording (16 KHz WAV file) of each participant
for our corpus. In total we have used 17 hours of raw audio-visual meeting data to construct
our corpus.

3.1.2 Segmentation

The seven meetings we selected from the AMI Meeting Corpus were segmented into laughter
and smile segments. The presence of laughter was determined using the definition for audible
laughter of Vettin and Todt [40]:

Vocalizations compromising several vocal elements must consist mainly of expi-
ratory elements; inspiratory elements might occur at the end of vocalisations;
expiratory elements must be shorter than 600ms and successive elements have to
be similar in their acoustic structure; single-element vocalizations must be expira-
tory with a vowel-like acoustic structure, or, when noisy, the element must begin
with a distinct onset.

For smiles we used a definition based on visual information. We define a visible smile as
the visible contraction of the Zygomatic Major (FACS Action Unit 12). The activation of
AU12 pulls the lip corners towards the cheekbones [14]. We define the start of the smile as
the moment the corners of the mouth start to move, the end is defined as the moment the
corners of the mouth return to a neutral position.

Using these definitions, the 17 hours of audio-visual meeting recordings were segmented
into 2049 smiles and 960 laughs. Due to the spontaneous nature of these meetings, speech,
chewing and occlusions sometimes co-occur with the smile and laugh segments.
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Figure 3.2: Segmentation of the data and extraction of instances for the corpus. On top
the typical observed intensity of the smiles and laughs is shown. Based on the observations, a
segmentation is made, as shown in the middle diagram. The laughs are padded with 3 seconds on
both sides to form the positive instances. The negative instances are created from the remaining
non-smile space.

3.1.3 Corpus

The final corpus is built using this segmentation data. The laughter instances are created by
padding each laughter segment with 3 seconds on each side to capture the onset and offset
of a visual laughter event (see Figure 3.2). A preliminary experiment showed that these
onset and offset segments increased the performance of the classifier. Laughter segments
that overlapped after padding are merged into a single laughter instance. This effectively
merges separate laughter calls to a instance containing a single laughter bout. The non-
laughter instances are created from the audio-visual data that remains after removing all
the laughter and smile segments; the smile segments are not used during this research. The
length of the non-laughter instance is taken from a random Gaussian distribution with a mean
and standard deviation equal to the mean and standard deviation of the laughter segments.
Due to time constraint we have based our corpus on selected 60 randomly selected laughter
and 120 randomly selected non-laughter instances, in which the 20 facial points needed for
tracking are visible. Of these 180 instances, 59% contains speech of the visible participant.
Almost all instances contain background speech. Together these instances consist 25 minutes
of audio-visual data.

3.2 Features

This section outlines the features we have used for the audio and video modalities. For audio
we use features that are commonly used for the detection of laughter in audio. For video we
used features based on the location of 20 facial points.

3.2.1 Audio features

In order to detect laughter in audio, the audio signal has to be transformed to useful features
for classification algorithms. Spectral or cepstral audio features, such as Mel-Frequency Cep-
strum Coefficients (MFCC) [25] and Perceptual Linear Predictive (PLP) Analysis [19], have
been used successfully for automatic speech recognition and laughter detection. We decided
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Figure 3.3: Laughter examples for each individual in the corpus.
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to use PLP features, with the same settings as used by Truong and van Leeuwen [38] for
automatic laughter detection, and RASTA-PLP features with similar settings.

PLP and RASTA-PLP can be understood best as a sequence of transformations. The
first transformation is Linear Predictive Coding (LPC). LPC encodes speech based on the
assumption that speech is comparable with a buzzer at the end of tube; the formants of the
speech are removed, and encoded with the intensity and frequency of the remaining buzz. PLP
adds a transformation of the short term spectrum to LPC encoded audio, in order to mimic
human hearing. We used these PLP features for audio classification. In addition to the PLP
audio features, we derived RASTA-PLP [20] features. RASTA-PLP adds filtering capabilities
for channel distortions to PLP, and yield significantly better results for speech recognition
tasks than PLP in noisy environments [13]. A visualisation of PLP and RASTA-PLP features
can be found in Appendix B.

For PLP-features we used the same settings as were used by Truong and Van Leeuwen [38]
for laughter detection (see Table 3.1). The 13 cepstral coefficients are calculated (12 model
order, 1 gain) over a window of 32 ms with a step-size of 16 ms. Combined with the temporal
derivative (calculated by convolving with a simple linear-slope filter over 5 audio frames) this
results in a 26 dimensional feature vector per audio frame. The RASTA-PLP features are
created using the same settings. We normalize these 26-dimensional feature vectors to a mean
µ = 0 and a standard deviation σ = 1 using z-normalisation.

PLP RASTA-PLP
Sampling frequency: 16 kHz 16 kHz
Window size: 32 ms 32 ms
Window step-size: 16 ms 16 ms
Model order: 12 12
Delta window: 5 frames 5 frames
Log-RASTA filtering: false true

Table 3.1: Settings used for the PLP and RASTA-PLP features

3.2.2 Video features

The video channel was transformed into sequences of 20 two-dimensional facial points located
on key features of the human face. These point sequences are subsequently transformed into
orthogonal features using a Principal Component Analysis (PCA).

The points were tracked as follows. The points were manually assigned at the first frame
of an instance movie and tracked using a tracking scheme based on particle filtering with
factorized likelihoods [33]. We track the brows (2 points each), the eyes (4 points each), the
nose (3 points), the mouth (4 points) and chin (1 point). This tracking configuration has been
used successfully [39] for the detection of the atomic action units of the FACS. This results in
a compact representation of the facial movement in a movie using 20 (x, y) tuples per frame
(see Figure 3.4).

After tracking, we performed a PCA on the 20 points per video-frame. A PCA linearly
transforms a set of correlated variables in a set of uncorrelated variables [24]. The principal
components are ordered so that the first few retain most of the variance of the original
variables. Therefore a PCA can be used as a dimension-reduction technique for features
[1], however we chose to keep all the dimensions because we do not know in advance which
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Figure 3.4: The tracked facial points

principal components are useful for laughter detection. We have chosen to use PCA over
manually defined features because PCA can detect factors – such as differences in head shape
– that are otherwise difficult to detect and remove from the features.

For each frame in the videos we defined a 40-dimensional shape vector by concatenating all
the Cartesian (x, y) coordinates. Using a PCA we extracted 40 principal components (eigen-
vectors) for all the frames in the data set. The original shape vectors can be reconstructed
by adding a linear combination of these eigenvectors, to the mean of the shape vectors:

x = x + bP T (3.1)

Here x is the original shape vector, x is the mean of the shape vectors, b is a vector of
weights and P matrix of the eigenvectors.

An analysis of the eigenvectors revealed that the first five principal components encode the
head pose, including translation, rotation and scale. The other components encode interper-
sonal differences, facial expressions, corrections for the linear approximations of movements
and less obvious factors of the facial configuration. See Figure 3.5 for a visualisation of the
first 12 principal components, for more information please refer to Appendix A.

The matrix of eigenvectors serves as a parametric model for the tracked facial points. The
Active Shape Model developed by Cootes et al. [10] used a similar technique to create a model
for shapes. The main difference is that Cootes at al. removed global linear transformations
from the model by aligning the shapes before the PCA is applied. We did not align the shapes
because the head modality seems to contain valuable cues for laughter detection we want to
include in the model.

We use the input for this model (the weight vector b) as feature vector for the video-data.
For unseen data, this feature vector can be calculated using Equation 3.2.

b = (x− x)P (3.2)

In order to capture temporal aspects of this model, the first order derivative for each weight
is added to each frame. The derivative is calculated with ∆t = 4 frames on a moving average
of the weights with a window length of 2 frames. Facial activity (onset-apex-offset) can last
from a 0.25 seconds (for example a blink) to several minutes [16]. With a ∆t = 4 frames
even the fastest facial activity is captured in the derivative of the features. We normalize
this 80-dimensional feature vector to a mean µ = 0 and a standard deviation σ = 1 using
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Figure 3.5: A visualisation of the influence of the first 12 principal components. The arrows
point from −3σ to 3σ, where σ is the standard deviation.
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z-normalisation. This results in a normalized 80-dimensional feature vector per frame which
we use for classification (Appendix B).

3.3 Test setup

3.3.1 Classifiers

We selected Gaussian mixture models (GMMs), hidden Markov models (HMMs) and support
vector machines(SVMs) as machine learning techniques to be used for classification. GMMs
and HMMs are frequently used in speech recognition and speaker identification, and have
been used before for laughter recognition [2, 38, 23, 8, 28, 26, 42]. SVMs have been used for
laughter detection in [25, 2, 34, 38].

HMMs and GMMs are generative models. Therefore, a different model has to be trained
for each class. After training using the EM algorithm [11, 43], the log-likelihood for both
class-models is computed and compared for each instance. Using these log-likelihoods the
final output is computed as the logarithm of the ration between the probability of the positive
and the negative model (Eq. 3.3).

score(I) = log(
Ppos(I)
Pneg(I)

) = logPpos(I)− logPneg(I) (3.3)

We use HMMs that model the generated output using a mixture of Gaussian distributions.
For the HMMs classifiers we used two different topologies (Figure 3.6). The first is commonly
used in speech recognition, and contains only forward connections. The advantage of this left-
right HMM model is that less parameters have to be learned, and the left-right architecture
seems to fit sequential nature of speech. An ergodic HMM allows state transitions from
every state to every state. This topology is more flexible, but more variables have to be
learned. Kevin Murphy’s HMM Toolbox [30] was used to implement the GMM and the
HMM classification.
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Figure 3.6: left-right HMM (left) and an ergodic HMM (right)

SVMs expect a fixed-length feature vector, but our data consists of sequences with a
variable length. Therefore we use a sliding window to create features for the SVM. During
training the class of windowed sections of the instances are learned. During classification a
probability estimate for the different windows of an instance is calculated. The final score of
an instance is the mean of its window-scores, a median could be used as well. We use Radial
Basis Function (RBF) kernel SVMs, which are trained using LIBSVM [9].
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3.3.2 Fusion

Fusion is performed on the decision-level, which means that the output of an audio and a
video classifier are used as input for the final fused prediction. For each instance we classify,
we generate two numbers, representing the probability of laughter in the audio and the video
modality. Fusion SVMs are trained on these numbers using same train, validation and test
sets as used for the single modality classifiers (see Section 3.3.3). The output of these SVMs is
a multi-modal prediction based on high-level fusion. As an alternative to this learned fusion,
we test fusion using a weighted-sum (Equation 3.4) of the predictions to fuse the scores of
the single-modality classifiers.

sfused = α ∗ svideo + (1− α) ∗ saudio (3.4)

3.3.3 Cross validation scheme

In order to compare different fusion techniques, we need to be able to measure the gen-
eralisation performance of a classifier. We decided to use a preprocessed data set, so the
preprocessing is done once for the whole data set. We have chosen to exclude the preprocess-
ing from the cross-validation loop in order to measure the generalisation error of the fusion
without the additional generalisation error of the preprocessing. The preprocessing consists
of feature-extraction, and z-normalisation which transforms the data to a mean µ = 0 and
σ = 1. Using this setup we measure the generalisation error of the classification, and not the
combined generalisation error of preprocessing and classification.

Because we have a small data set we use a cross-validation scheme to create multiple train,
validation and test sets (see Figure 3.7).

Algorithm 1: The used cross-validation scheme.
for K in [1..10] do

Strain = S − SK ;
for L in [1..3] do

Svalidation = SKL
;

Stest = SK − SKL
;

C = trainer.learn(Strain, Svalidation);
Stest.performance = trainer.test(C, Stest);

end
end

The preprocessed data set is divided into K=10 subsets. During each of the K folds, 1
subset is set aside. The other 9 subsets are used for training. The remaining subset is used to
create a validation and a test set for three folds. One third is used as validation set and the
remaining two thirds as test set (see Algorithm 1). Different model-parameters are used to
train classifiers on the train set. The classifier with the best performance on the validation-
set is selected, and tested on the test set. This results in performance measurements for
10× 3 = 30 different folds of the data set.
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Figure 3.7: A train, validation and test set are used to measure the generalisation performance
of a classifier

3.3.4 Model-parameter estimation

Most machine learning techniques have model-parameters (for example, the number of states
and the number of Gaussian mixtures for a HMM, the C and γ parameters for a SVM with
a RBF kernel) that influence their performance. We find good parameters by performing
a multi-resolution grid-search [22] in the model-parameter space in which we search for the
parameters that result in the best performance on the validation set after training. For a
SVM with a RBF-kernel, we test different values for the log(C) and log(γ). The parameters
that result in the highest AUC-ROC (see section 3.3.5) form the center of a smaller grid,
whose values are again tested on the validation set. The best scoring classifier is the final
classifier.

For generative models, such as HMMs and GMMs, we perform the same grid-based pa-
rameter search. Because we need a model for both the positive and the negative instances,
the grid-search is performed for both classes individually. The performance measure during
this search is the log-likelihood of the model on the validation set. For GMMs, we estimate
the best number of Gaussian mixtures for our data set. For HMMs, we search the best values
for the number of states, the number of Gaussian mixtures and a Boolean that determines if
the HMM is fully connected or not.

3.3.5 Performance measure

In order to calculate the generalisation performance of a classifier, we need to select a suitable
measure for the performance. We have chosen to use and the Area Under Curve of the Receiver
Operating Characteristic (AUC-ROC) [15] as primary and the Equal Error Rate (EER) as
secondary performance measure.

accuracy =
TP + TN

P + N
(3.5)

recall =
TP

P
(3.6)
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precision =
TP

TP + FP
(3.7)

The most commonly used measure in previous work is the accuracy (Equation 3.5), or
the recall and precision pair (Equation 3.6 and Equation 3.7). The accuracy measure is not
suitable to measure the performance for a two-class problem, because a very high accuracy
can be obtained by predicting the most frequent class for problems with a high class skew.
The combination of recall and precision is more descriptive. Recall expresses the fraction of
detected positive instances, precision describes the fraction of the detected instances that is
a real positive. Those measures can be calculated using the values found in the confusion
matrix (Fig. 3.8).

prediction \ class positive negative
positive TP FP
negative FN TN
all P N

Figure 3.8: A confusion matrix, where the columns represent the real class, and the rows
represent the prediction of a classifier. The cells contain the true positives (TP), false positives
(FP), the false negatives (FN) and true negatives (TN).

Most classifiers can be modified to output a probability of a class instead of a binary
decision. A trade-off for the cost of different errors – FP versus FN – can be made by
thresholding this probabilistic output. This trade-off can be visualized in a receiver operating
characteristic (ROC), in which the true-positive rate is plotted against the false-positive rate
for different thresholds (see Figure 3.9). A recall-precision pair corresponds to a single point
on the ROC. One of the advantages of the ROC over other thresholded plots is its invariancy
to class-skew [15]. Because we do not know in advance which costs are associated with
the different errors, we cannot define a single point of interest on the ROC. Therefore we
measure the performance using the area under the ROC curve (AUC-ROC). The AUC-ROC
of a classifier is equivalent to the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative instance. In addition to the AUC-
ROC performance, we will report the EER for a classifier. The EER is single a point on the
ROC, defined as the point for which the false-positive rate equals the false-negative rate.

We will use a paired two-tailed t-test to compare the AUC-ROCs of the cross-validation
folds. This K-fold cross-validated paired t-test suffers from the problem that the train sets
overlap, which results in an elevated probability of detecting a difference between classifiers
when no such difference exists (type I error) [12]. As a solution for this problem the 5×2 cross-
validated paired t-test has been developed, which has an acceptable type I error. Because this
method uses only half of the data for training during a fold it is unsuitable for our data set.
Therefore we use the K-fold cross-validated paired t-test to compare the AUC-ROC values
for different classifiers, and note the possibility of a type I error.
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Figure 3.9: The ROC, the ROC-AUC and the EER for a classifier. The probabilistic output of
the classifier is thresholded to generate the ROC-curve. Points on the curve define the relation
between the true positive rate and the false positive rate. The area under the ROC (the AUC-
ROC) is our primary performance measure. The EER for a classifier is the error-rate in the
intersection of the ROC with the EER-line from (0, 1) to (1, 0).
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Results

In this chapter we will describe the results of our experiments. We will start with the results
for the single-modality classifiers. The best single-modality classifiers are used to construct a
fused classifier, which we will compare to the best performing single modality classifier.

4.1 Single-modality classifiers

We will start with the audio classifiers. We have trained different classifiers on the the two
sets of audio features. Figure 4.1 shows a ROC-plot for the audio features . The figure
shows that all the trained classifiers have similar performance for PLP features. The only
real differences are in the area with a very low threshold (high recall, low precision) and the
are with a high threshold (low recall, high precision). In those areas the generative models
(GMMs and HMMs) seem to perform better. When we look at Table 4.1 we see that the
number of Gaussian mixtures for the positive and negative model seems to be proportional
to the amount of train data. We expect that more train data would increase the number of
mixtures and possibly the performance of our GMM and HMM classifiers. This is supported
by the work of Truong et al. [38], where models with 1024 Gaussian mixtures were trained
using more than 3000 instances.

Classifier Features
Positive model Negative model

AUC-ROC EER
#states #mix. #states #mix.

GMM PLP - 21.0 (3.2) - 48.8 (3.1) 0.794 (0.169) 0.331
GMM* RASTA - 16.9 (2.8) - 35.6 (5.9) 0.825 (0.143) 0.258
GMM Video - 3.0 (0.7) - 3.3 (0.6) 0.871 (0.129) 0.208

HMM PLP 11.0 Erg. (0) 2.1 (0.5) 18.5 (1.1) Erg. 2.5 (0.9) 0.791 (0.160) 0.333
HMM RASTA 11.6 Erg. (1.9) 2.1 (0.4) 21.3 (1.9) Erg. 2.0 (0) 0.822 (0.135) 0.242
HMM Video 2.5 LR (0.5) 4.0 (0) 1.2 (0.4) Erg. 3.0 (0) 0.844 (0.129) 0.258

Classifier Features Window Step log2(C) log2(γ) AUC-ROC EER

SVM PLP 1.12 s 0.64 s -8.9 (3.7) -22 (2.6) 0.775 (0.173) 0.315
SVM RASTA 1.12 s 0.64 s -9.8 (4.1) -21.7 (3.2) 0.621 (0.157) 0.400
SVM* Video 1.20 s 0.60 s 1.3 (5) -18 (0) 0.916 (0.114) 0.133

Table 4.1: Results of the different classifiers trained on different features. For the model-
parameters and the performance measure, the mean value is diplayed with the standard deviation
displayed between parenthesis. The classifiers marked with an asterisk are the best performing
classifiers for the audio and video modality.

29
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The results for the RASTA-PLP features are remarkebly different. The ROC is not as
smooth as for PLP features, and the SVM-performance is degraded dramatically. However,
RASTA-PLP features result in a slightly better performance than the PLP features for the
generative models. The filtering that RASTA-PLP adds to PLP seems to smoothen the sig-
nal (Appendix B). This results in features that can be modeled using fewer mixtures (see
Table 4.1), which allows for the training of more states, or training with a higher accuracy.
RASTA-PLP was developed with speech recognition in mind, with explains why the genera-
tive models that are commonly used in speech recognition perform better with RASTA-PLP
features than with PLP features. While the distribution of the values of the features is simpli-
fied, the performance for SVMs degrades. SVM-classifiers trained on RASTA-PLP features
generally have a lower C-parameter, which indicates a smoother hyper-plane. Therefore we
assume that the smoother RASTA-PLP signal allows for more overfitting, which can explain
the degraded performance for SVMs on RASTA-PLP features.
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Figure 4.1: The ROC for the PLP features (left), the RASTA-PLP features (mid) and the video
features (right).

When we compare the results of the different classifiers trained using PLP and RASTA-
PLP features, we observe that the SVM-based classifiers have the worst performance. The
difference in performance for the generative models is not as clear. Using a paired samples
t-test, we find that the RASTA-PLP features have a significantly higher AUC-ROC (t(59) =
2.15, p < 0.05) than the PLP features. We conclude that the combination of a GMM or
HMM classifier with RASTA-PLP features results in best performance for laughter detection
in audio using our data set.

For the video features we evaluated the same classifiers using different model-parameters.
These ROC-plots can be found in Figure 4.1. The ROC-plot shows that classifiers trained on
the video modality have a better performance than classifiers trained on the audio modality.
When we look at the average model for the HMM-classifier trained on the video features, we
notice that the model for the positive instances is a left-right (LR) HMM, while the model for
the positive instance for audio is an ergodic HMM (see Table 4.1). The visual laugh seems
to display a sequential order, that is not modeled in the audio HMMs. Another difference is
that the video modality is modeled using fewer Gaussian mixtures. This can be the result
of the higher dimensionality of the video features. The best result for the video modality
was obtained using a SVM-classifier. This can be the result of the more sequential pattern
of visual laughter, that can be detected more reliable inside of a sliding window than the
variable audio signal. The video-SVM classifier has the best single-modality performance.
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4.2 High level fusion

For fusion we have selected the best performing single-modality classifiers. For video we
use the Video-SVM (VSVM) classifier. We use the GMM or HMM classifiers trained on
RASTA-PLP features to classify audio. The results for decision-level fusion can be found in
Table 4.2.

Fusion Features Compared to Video-SVM AUC-ROC EER

RBF-SVM Video-SVM + RASTA-GMM t(29) = 2.45, p < 0.05 0.928 (0.107) 0.142
RBF-SVM Video-SVM + RASTA-HMM t(29) = 1.93, p = 0.06 0.928 (0.104) 0.142

Linear-SVM Video-SVM + RASTA-GMM t(29) = 1.51, p = 0.14 0.925 (0.109) 0.140
Linear-SVM Video-SVM + RASTA-HMM t(29) = 1.78, p = 0.09 0.927 (0.104) 0.142

W-sum, α = 0.57 Video-SVM + RASTA-GMM t(29) = 2.69, p < 0.05 0.928 (0.107) 0.142
W-sum, α = 0.55 Video-SVM + RASTA-HMM t(29) = 2.38, p < 0.05 0.930 (0.101) 0.142

Table 4.2: Results of the decision-level fusion. The t-test is a paired samples t-test on the
AUC-ROC of the Video-SVM classifier and the specified fusion classifier. The mean value of the
ROC-AUC is displayed with the standard deviation displayed between parenthesis.

The fused classifiers have a higher mean AUC-ROC than all the single-modality classifiers.
In the case of SVM-fusion, the combination of the Video-SVM classifier and the RASTA-
GMM classifiers outperforms the Video-SVM classifier significantly. Inspection of the trained
SVM-classifiers reveals that the separating-hyperplane is nearly linear; therefore we tried to
replicate the fusion using a linear SVM. Table 4.2 shows that the performance of the linear
fusion SVM is slightly worse than fusion using a RBF-kernel.
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Figure 4.2: The mean AUC-ROC performance of weighted sum fusion, displayed as a function
of the α parameter.

In addition to implicit fusion using a SVM, we used a weighted-sum rule (Equation 3.4)
to combine the output of the audio and video classifiers. The influence of both modalities is
determined using the α parameter. See Figure 4.2 for plot of the AUC-ROC performance as
a function of α. For a low values of α, the audio-modality is dominant, the video modality
is dominant for values near 1. The highest mean AUC-ROC values are in the region with a
more dominant audio-classifier. However, for a significant improvement over the Video-SVM
classifier fusion with α = 0.57 or α = 0.55 is needed for the RASTA-GMM and the RASTA-
HMM classifier respectively (see Table 4.2). This indicates a dominant video-classifier as we
would expect from the results of the single-modality classification.

When we compare the ROCs of the fusion classifiers with the video-SVM classifiers, we can
see that the EER-point of the fused classifiers often has a lower performance than the video-
classifier (see Figure 4.3). Most of the performance-gain is obtained in the direct vicinity of
the EER point, where the error-rates are not equal. For these thresholds it is easier to exploit
the complementary nature of both modalities. For the threshold with an equal error rate, the
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Figure 4.3: The ROC for the high-level fusion using a RBF-kernel SVM (left) and using a linear
SVM (right).

hyperplane needs to separate instances for which both modalities are uncertain. This may
explain why the EER is slightly higher for the fused classifiers.
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Conclusions

Our goal was to perform automatic laughter detection by fusing audio and video signals on the
decision level. We built audio and video-classifiers, and demonstrated that the fusion of the
best classifiers significantly outperformed both single-modality classifiers. The best classifier
were the following. For audio, the GMM classifier trained on RASTA-PLP features performed
best, resulting in a AUC-ROC of 0.825. A mean of 16.9 Gaussian mixtures was used to model
laughter, non-laughter was modeled using 35.6 Gaussian mixtures. The best video-classifier
was a SVM-classifier with an AUC-ROC of 0.916, trained on windows of 1.20 seconds using a
C = 2.46 and a γ = 3.8× 10−6. The best audio-visual classifier was constructed by training
a SVM on the output of these two classifiers, resulting in a AUC-ROC performance of 0.928.

During the fusion we evaluated different feature-sets. For laughter-detection in audio,
we obtained significantly better results with RASTA-PLP features than with PLP features.
RASTA-PLP features have not been used before for laughter detection as far as we know.
For laughter detection in video we successfully used features based on the PCA of 20 tracked
facial points. The performance of the video classifiers was very close to the fused classifiers,
which is a promising result for laughter detection in video. However, during this research
we excluded instances that contain smiles. It is likely that our video-classifier also classifies
smiles as laughter.

The audio and video modalities show some striking differences. The HMM classifiers
trained on audio were all ergodic (fully connected) instead of the left-right HMMs that are
commonly used for speech recognition. This indicates that there was no strict sequential
pattern for laughter that could be exploited for recognition, which seems to support the claim
that laughter is a group of sounds [36]. In video such a sequential sequence of states was
found. It seems that visual laughter has a more sequential nature than audible laughter. The
GMM and HMM classifiers are useful for classification of audio. For laughter detection in
video a SVM trained on sliding windows outperforms the other classifiers.

For future work we recommend an investigation of fusion on feature-level. We have demon-
strated that decision-level fusion improves the performance, but it is not clear how this relates
to other fusion techniques. For low-level fusion, a dimensionreduction technique is most likely
needed. During this research we have not performed dimension reduction on the features. A
comparison between our best classifier and a low-level fusion classifier both trained on a re-
duced feature set would therefore be very interesting. Another limitation of this research is
that we only perform classification of segmented instances. The extension of these classifiers
to a laughter detection system that automatically finds laughter segments in streams forms
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an interesting challenge. For example, the predictions of the Video-SVM could be used to
segment a stream in candidate laughs, which could be further refined using the log-likelihoods
of the generative models.
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Appendix A

Principal components for the video
features
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Figure A.1: A visualisation of the influence of principal components 13 to 24. The arrows point
from −6σ to 6σ, where σ is the standard deviation.
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40 APPENDIX A. PRINCIPAL COMPONENTS FOR THE VIDEO FEATURES

PC Description
1 Translation top-left to lower-right, small rotation
2 Translation top-right to lower-left, small rotation
3 Head roll counter clockwise
4 Scale
5 Head yaw
6 Aspect ratio
7 Brow raise, mouthcorners lower, mouth gets smaller, chin raises
8 Mouth corners raise, eyes get smaller
9 Horizontal bending (2nd order rotation?)
10 Mouth size, eye distance, eye size
11 Mouth size, eye size
12 Horizontal S-bend (3rd order rotation?)
13 Waving displacement (high order rotation?)
14 Outer brow movement, horizontal chin movement
15 Nose width, brow movement
16 Mouth open/closed
17 Nose width
18 Nose widht, eye and brows distance
19 High order rotation component
20 High order rotation component
21 High order rotation component
22 Eye size, brows rotation
23 Eye rotation
24 Tracker noise
25 Mouth corner movement, outer eye movement
26 High order rotation
27 Asymmetrical brow movement
28 Left eye rotation
29 Asymmetrical eye size
30 Mouth rotation
31 Eye shape change
32 Mouth skew
33 Left brow rotation
34 Left brow movement, eye movement
35 Left eye skew
36 Eye shape change
37 Right eye shape change
38 Nose rotation
39 Asymmetrical eye open/closed
40 Asymmetrical eye shape change

Table A.1: Principal components for the video frames



Appendix B

Normalized features
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Figure B.1: A visualisation of the raw, normalised features for one instance. Time proceeds
from left to right. It can been seen that the RASTA-PLP audio features are more smooth than the
PLP audio features. For each feature-set, the high-numbered features are the temporal derivative
of the lower numbered features.
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