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Abstract

The pretest-posttest control group design is a popular design and frequently
discussed in the literature. In this study multivariate models are investigated for
pretest posttest data and a comparison is made with univariate methods, the change
score method and the regressor variable method. Three simulation studies were con-
ducted to investigate differences. The first study provides a basic comparison, while
the second study focuses on the investigation of heterogeneous treatment effects. In
the third simulation study, the analysis of two dependent variables are investigated.
The results showed no significant differences between univariate and multivariate
methods in the studies one and two. Nevertheless, the third study showed that the
multivariate method provides higher power and a better Type-1 error rate compared
to univariate methods when investigating two dependent variables. The multivari-
ate method can provide better results in analyzing multivariate pretest posttest

data, when compared to the univariate methods.



1 Introduction

1.1 Pretest-Posttest Control Group Design

In a wide variety of scientific fields like psychology, education and bio-medical sciences,
the so-called “pretest-postest control group design” is frequently used to investigate the
effects of a treatment given to participants. In this design, participants are (randomly)
assigned to either the treatment group or the control group. The number of groups is not
necessarily limited to two, an assignment to three or more groups is also possible.

The variable of interest is measured at two points in time. The first measurement
is conducted before the treatment is given (pre) and the second afterwards (post). One
advantage of the pretest-posttest design, compared to a simple posttest only design, is
the possibility to take pretest differences into account, when analyzing the resulting data.
Specifically when the treatment group is compared to a control group, this design al-
lows the researcher to control for previous prevalent group differences, when investigating
between-subject effects. Furthermore, pretest-posttest control group designs are able to
establish causality between two investigated variables, when the subjects are randomly
assigned to either the treatment group or the control group. As mentioned by Allison
(1990), this design allows to rule out the possibility that variable Y causes variable X
given the situation that the researcher is interested in the hypothesis that variable X
causes variable Y. Furthermore, it also reduces the chance of spurious effects of con-
founding variables that may influence an effect of either the dependent variable X or the
independent variable Y. Effects that occur due to multiple testing, like maturation or test
effects, can also be assumed to be the same across groups (Campbell & Stanley, 1975).

An important condition of the prestest-posttest control group design is that subjects
are randomly assigned to either the treatment group or the control group. However,
a random assignment is not always possible but depends on the type of research one
is conducting. Sometimes it is inevitable to make use of preexisting groups and quasi-
experimental designs. For example, in clinical research, it can be ethical and morally
mandatory to assign people to the treatment group due to their specific illness and their
need for treatment. Another example is the evaluation of educational programs. To
evaluate the effectiveness of a program, one group of students will be part of the program,
while the other group will be the control group. It is quite obvious that randomly assigning
students to one of these groups is impractical. It would be necessary to split existing
classes. In practice, existing classes are used for the sake of convenience.

The problem with the non-randomized assignment is the possibility of pre-existing
group differences. One of the classes could score initially higher on the target variable.
Thus, the comparison would be biased when not controlling for these pre-existing differ-

ences.



1.2 Univariate methods

Due to the popularity of this research design, different methods have been developed in
order to evaluate the data while accounting for non-randomization. When the variable
of interest is continuous, the most commonly used statistical approach is the change
score method for which the treatment effects are analyzed as a function of the difference
between the pretest and the posttest (Brognan & Kutner, 1980). Another commonly used
method includes the pretest measurement as a covariate in the analysis of the posttest
measurement. This approach is referred to as the regressor variable method. Henceforth,
the terms change score method and regressor variable method will be used to refer to the
respective approaches.

The regressor variable, as well as the change score method, are both univariate methods,
which are able to investigate the effects of one or more independent variables on one
particular outcome variable. When the researcher is interested in the treatment effect
on more than one dependent variable, a univariate method is applied to every dependent
variable separatly. However, the use of multiple univariate analyses will implicitly result
in an inflated Type-1 error rate and an increased rate of false positives (Wang et al.,
2015). To account for this inflated error rate, also referred to as familywise error rate, a
Bonferroni correction can be applied. A more in-depth view of the Bonferroni inequality
and its issues will be discussed later.

Another known issue of the unviariate methods is Lord‘s Paradox. This paradox refers
to the issue that there are specific cases in which the different approaches lead to different
results (Lord, 1967). Although this paper will not cover this issue in particular, it is
important to mention it, since it fosters the need for new methods. Despite the fact that
the change score method as well as the regressor variable method are widely used, there

are further issues and limitations, which have been frequently discussed in the literature.

1.2.1 Regressor variable method

As previously mentioned, the regressor variable method treats the pretest measurement

as a covariate in the analysis. It can be expressed in a regression equation as
Yija = fo+ 0Ti; + p1Yij1 + €35, 65 ~ N(0,07)

where Y5 represents the posttest score of person ¢ in group j, Y;;; the pretest score of
person i in group j, T; the treatment indicator of person ¢ in group j (0 = control group,
1 = treatment group), and ¢ the treatment effect. The ¢;; is the error that is present and
not controlled for, which is assumed to be normally distributed with mean 0 and variance
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1.2.2 Change score method

The change score method investigates the treatment effect as a comparison of changes
from the baseline between treatment and control group. The baseline refers to the pre-
measurement value of each person in each group. Thus, the relative change between
the pre-measurement and the post-measurement is the subject of interest. In terms of
regression equations the change score method can be given by
(Yij2 — Yij1) = Bo + 0T + €45, €55 ~ N(0,0%)

where Y;;; represents the pretest score of person 7 in group j and Yj;o the posttest score
of person i in group j. Hence, (Y;j2 — Y;;1) is the measurement of change from baseline
for person 7 in group j. Again, Tj; is the group assingment of person ¢ in group j and ¢;;
is the error that is present but not specifically controlled for.

As with the regressor variable approach, researchers need to deal with some issues
when using this approach. First, the change score method is known to be less reliable
than their component variables, especially when the pretest and posttest scores are highly
correlated (Kessler, 1977). Furthermore, regression towards the mean will influence the
outcome of change score analyses (Allison, 1990). Regression towards the mean refers
to the phenomenon that subjects with a relatively high score on the pretest will tend to
score lower on the posttest. Also, subjects that scored relatively low on the pretest will
therefore tend to score higher on the posttest. For the parameter in our model this means
that Yijo — Vi1 is expected to be negatively correlated with Y;;; and that any variable

related to Y;;; will indirectly influence the change score.

1.3 Multivariate method

A multivariate analysis is expected to provide advantages when compared to the univariate
methods. In terms of regression equation the multivariate model is given by
Yij1 = Po1 + €ijn
Yijo = Poz + 015 + €ijo

g 2
) ~mvn (03), 5= (70F
€ij2 p,0

The pre- and post-measurement are dependent variables with the correlated error terms
i1 and €52 that are assumed to be multivariate normally distributed with mean 0 and
variance Y.

The multivariate method is able to model a correlation of the error terms in the
equations for the pretest and the posttest scores. Furthermore, when investigating more
than one variable of interest, a multivariate approach is expected to prevent inflated Type-
1 error rates, which would be the result of using univariate analyses for each dependent

variable.



2 Research question

A multivariate approach is described to analyze the data of pretest-postest control group
designs and compared to the univariate methods in terms of the estimated treatment
effect, power to detect the treatment effect, and the Type-1 error rates. The multivariate
approach is expected to perform better given the advantages, when comparing it to uni-
variate methods. A simulation study was used to investigate specific differences between

the univariate and the multivariate methods.

3 Methods

To be able to systematically compare the univariate methods to the multivariate method,
data was simulated under three different predefined conditions. The statistical program-
ming language R and the packages “CAR” and “MASS” were used to simulate and analyze
the data. The three simulation studies differ on specific parameters regarding the sim-
ulation of the data, while other parameters maintained constant across all simulation
studies. The regressor variable method, the change score method and the multivariate
method were fitted to the data. For each model, the estimated treatment effect, its stan-
dard deviation, and the mean squared error were stored in order to compare them across
models. This process was iterated 1,000 times. For each replication, a sample size of
n = 1,000 was used.

In each of the three simulation studies, the intercept as well as the treatment effect
was set to a fixed value. Furthermore, a gender effect was simulated with males scoring
higher and they were also over-represented in the treatment group. Additionally, this
gender effect differed from pre- to posttest to include effects of regression towards the
mean.

In the first simulation study, a comparison was made without introducing additional
effects. Hence, in this simulation study, attention was focused on the respective pre-
measurement and post-measurement scores, the estimated treatment and the estimated
gender effect. In the second simulation study, the data included a heterogeneous treatment
effect to provide a more elaborate design. Therefore, the design contained three groups
instead of two groups. That is one control group and two treatment groups with different
treatment effects. In the last simulation study, there were two different outcome variables
of interest. This was different from the situation considered in simulation study two, where
for the outcome variable two different treatment effects were simulated. Note further, in
the third study the heterogeneous treatment effect from study two was not present and
a homogeneous treatment effect was simulated. For the third study, the p-values of each
test, and for each model, were stored to examine the power and Type-1 error rate. To

investigate the Type-1 error rate, the percentage of significant tests across replications



were calculated when there was no treatment effect simulated. The power was investigated
by computing the percentage of significant tests when a treatment effect was simulated.

For every simulation study, the data was analyzed by the three different methods.
At first, the regressor variable method was fitted to the data with the pre-measurement
score treated as a covariate in the model. Then, the change score method was applied to
investigate the treatment effect in terms of a change from pre- to post-test measurement.
At last, the multivariate method was applied to the data, treating both the pre-test as
well as the post-test score as dependent variables. Note, that in the multivariate approach
within-person effects were investigated, since it concerns a change in score over time and

not across persons, which is the more common situation.

4 Simulation study

The data generation was iterated 1,000 times with n = 1,000 for every condition. The
data was generated according to the specific needs of every study. In the first study, data
was simulated with a treatment effect of 6 = .2. Additionally, a time-specific gender effect
was simulated with males scoring 1.9 on the prestest and 1.1 on the posttest, while females
scored .3 on the pretest and .6 on the posttest. The covariance between the pre-test score
and the post-test score was 0.5. This gender effect was also present in the simulation of
study two and three.

To introduce a heterogenous treatment effect an outcome variable was simulated with
two different treatment effects of 4; = .2 and d9 = .4. The covariance between pre-test
and post-test remained unchanged to the first study.

In the last study, two outcome variables were simulated. Therefore, the treatment
effect was 6; = .2 for the first outcome variable and 0, = .2 for the second outcome
variable. The covariance between the two outcome variables as well as the covariance
between pre-test score and post-test score for both outcome variables was 0.5.

After the simulation process, the three different methods were applied to analyze the

data generated under each condition.

4.1 Study 1

At first, the regressor variable method with the regression equation was fitted to the data

using the model
Yijo = Bo+ T35 + 1Y + B2 Xij + €ij, €45 ~ N(O, o?)

with 7}; being the indicator of treatment of person ¢ in group j, Yi;1 the pretest score
of person ¢ in group j and X;;; the indicator of the gender effect of person 7 in group j.

Thus, the dependent variable Y5 is the posttest score of person ¢ in group j.
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Then, the change score method with the regression equation
Yijo — Yij1 = fo + 0T + p1Xij + €ij, €15 ~ N(0,07)

was fitted to the data, with the pretest score Yj;; being on the left-hand side of the
equation. Therefore, the variable of interest was, like previously mentioned, the change
from pretest measurement to posttest measurement.

As a third model, the multivariate regression model is given by

Yij1 = Bo1 + BuXiji + €ijn
Yijo = Boo + B12Xijo + 0T55 + €4jo

(%’1) ~ MV N (0,2) 0= U: :2]

€ij2
was fitted to the data with correlated error terms €;;; and g;j5 that are assumed to be

multivariate normally distributed with mean 0 and covariance 3.

4.2 Study 2

In the second simulation study, the focus was on a heterogeneous treatment effect that
was present in the simulated data.

Again, the three models were fitted to the data, starting with the regressor variable
method

Yio = Bo + 01Tij1 + 62Tij0 + B1.Xij + BaYiji + €45, €45 ~ N(0,0?)

with Tj;; indicating the assignment of subject ¢ in group j to the treatment group with
a treatment effect of ; = .2 and T};, indicating the assignment to the treatment group
with treatment effect do = .4. Each person is assigned to one of the treatment groups or
to the control group.

The change score method:
Yijo = Yijt = Bo + 01 Tij1 + 621550 + i Xyj + €4, €55 ~ N(0,07)

was fitted to the data analyzing the change score Y;;o —Yj;1 instead of treating the pretest
as a covariate.

At last, the multivariate regression model

Yij1 = Bo1 + Ba1Xyj + €
Yijo = Boz + 0121551 + 09221550 + BaaXij + €4j2
€ij1 o? P
g NMVN(O,Z),E: )
€452 p O

was applied with correlated error terms.



4.3 Study 3

Like in the previous simulation studies, the three methods were applied to the data. Due
to the two dependent variables, for the univariate methods two analyses were needed in
order to investigate both treatment effects separately.

To investigate the expected differences in power and Type-1 error rate, this simulation
study consisted of two conditions. In the first condition, the parameter indicating the
treatment effect were fixed to by = .2 and ¢; = .2. In the second condition, the parameters
were set to b; = 0 and ¢; = 0 to simulate data without treatment effect.

At first, the regressor variable method was fitted to the data, with one equation for

each dependent variable,

Yijs = Bos + 01Ty + Br3Yij1 + BosXij + €5, €45 ~ N(0,07)
Yiia = Boa + 02155 + BraYijo + BoaXij + €, €45 ~ N(O, 03)

where Y;;3 represented the posttest score of of outcome 1 and Y;;; the pretest score of
outcome 1, whereas Y;4 and Yj, represented the pretest and posttest score of outcome 2.
Thereafter, the change score method was fitted to the data, to analyze each dependent

variable,

(Yijs — Yij1) = Bos + 01135 + P13 Xij + €45, €45 ~ N(0,07)
(Yija — Yijo) = Boa + 02155 + BruXij + €45, €55 ~ N(0,03)

Thus, Y;;3 —Y;;1 represents the change score for the dependent variable 1, while Y4 — Yijo
represents the change score for the second dependent variable.

Finally, the multivariate method was applied to the data.

Yij1 = Bo1 + BuXij + i
Yijo = Boz + B12Xij + €ijo
Yijs = Bog + 03155 + P13 Xij + €ij3
Yija = Boa + 04155 + B1aXij + €iju

€ij1
Eij2
~MVN (0,5)
€ij3
Eija
Again, the error terms are assumed to be multivarite normally distributed with mean 0
2

ot p p P
2
and covariance > = po p2 p
pp o p
p p p o



5 Results
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Figure 1: Estimation of treatment effect - Simulation study 1

In the first simulation study with a treatment effect of § = .2, the multivariate approach
provided an average estimation of the treatment effect across all 1000 replications of
0 = .199 (SD = .068). The univariate approaches provided comparable results. With
the regressor variable method a treatment effect of 6 = .198 (SD = .059) was estimated.
The change score provided an average coefficient of 6 = .199 (SD = .067). Represented
in Figure 1, there are no significant differences in the estimation of the treatment effects
between the three methods.

In the second simulation study, the focus was on the heterogeneous treatment effect
with §; = .2 and 05 = .4. In the multivariate method, the treatment effects were accurately
estimated with an average treatment effect of 6; = .199 (SD = .082) and &, = .399
(SD = .080). Again, the univariate approaches provided similarly precise estimates of
the treatment effects. The regressor variable method estimated the treatment effects on
average with §; = .198 (SD = .071) and &, = .398 (SD = .071), while the change score
approach provided estimates of 6; = .196 (SD = .081) and J, = .398 (SD = .081).

The third simulation study focused on the estimation of the treatment effect on two
outcomes. The treatment effect was the same across both variables §; = d2 = .2 in the
first condition and §; = d, = 0 in the second condition.

In the first condition, for the multivariate method average treatment effects of 6; =
202 (SD = .067) and 0y = .2 (SD = .066) were estimated, while the regressor variable
method provided treatment effects of 6; = .202 (SD = .059) and §, = .201 (SD = .056).
Furthermore, for the change score method a treatment effect of §; = .201 (SD = .069)
and d = .201 SD = .066) was estimated. In the second condition, for each method it
was concluded that there was no treatment effect present in the generated data.

When looking at the power and Type-1 error rate, the univariate methods were applied
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to each outcome with an applied Bonferroni correction. Therefore, a significance level of
a = 0.05 was used for the multivariate method and a significance level of o = 0.025
was used for the univariate methods. The regressor variable approach yielded a power
of 1 — 5, = .88 for the first treatment effect and 1 — By = .88 for the second treatment
effect, while the change score method provided a power of 1 — 3; = .78 and 1 — 35 = .76
for the treatment effects. The multivariate approach provided a power of 1 — 5 = .99 in
the analysis of both treatment effects.

Regarding the Type-1 error rate, the univariate approaches provided error rates of
a1 = .024 and ay = .027 for the regressor variable method, and o7 = .026 and ay = .025
for the change score method. The multivariate approach led to an Type-1 error rate of
a = .046. This result showed accurate Type-1 error rates for all methods. However,
with a lower sample size of n = 400, differences were obtained. In this condition, the
regressor variable method yielded Bonferroni corrected Type-1 error rates of a; = .026
and as = .036, while the change score method provided Type-1 error rates of a; = .021
and as = .029. However, the multivariate approach provided an error rate of a = .049,
which shows that the multivariate approach provided a better Type-1 error rate, especially

for smaller sample sizes.

6 Discussion

The results of the simulation showed that there are no significant differences between the
multivariate method and the univariate methods for the conditions of the first simulation
study. All methods were able to give a correct estimation of the treatment effect. When
it comes to the investigation of heterogeneous treatment effects, the multivariate method
provided no additional value compared to the univariate methods. For both treatment ef-
fects the univariate as well as the multivariate approaches gave accurate estimates. When
the research design asks for the investigation of multiple outcome variables, the multivari-
ate method provided the initially expected advantages in comparison with the univariate
methods. The power to detect significant differences between control group and treat-
ment group was higher in the multivariate approach. Furthermore, also the Type-1 error
rate was better in the multivariate analysis. Especially, when the sample size decreased,
the advantages of the multivariate method significantly increased. As mentioned before,
the univariate methods depend on procedures such as Bonferroni corrections in order to
correct for an inflated Type-1 error rate. Bonferroni corrections are known to be quite
conservative and tend to underestimate the signifcance of group differences. Although the
Bonferroni correction is the most widely used and known method to correct for familywise
error rates, there are several developments aimed to provide more appropriate results, for

instance Holm’s sequential rejective multiple test procedure (Holm, 1979) or the improved

11



Bonferroni procedure (Simes, 1986). Nevertheless, also these procedures were criticized.
For example, the improved Bonferroni procedure by Simes creates a new overall hypoth-
esis that consists of several individual hypotheses, so that it is not clear how inferences
about individual hypotheses can be done (Hommel, 1988). Furthermore, as Cohen (1994)
concluded, any correction for multiple testing will result in a lower power to detect sig-
nificant differences between treatment and control group. Therefore, it is intuitively the
superior option to avert multiple testing and to avoid the occurrence of these issues.
Furthermore, it is important to note that in this study, only simulation studies were
conducted in which the variable of interest differed in one dimension only. All changes
that were introduced to the variable only affected the mean value of the variable. For
future research, it would be interesting to investigate differences between univariate and
multivariate methods under conditions with more elaborate designs, such as changes to
the variance of the dependent variable or inclusion of unknown random error that is not
specifically modeled in the regression model. Another case of interest would be the inves-
tigation of multilevel data structures. The advantages of this approach are the possibility

to account for nested data and to model error terms on multiple levels of the data.
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A Appendix

A.1 R code of the first simulation study

## construct design matriz
tijd <— ordered(rep(1:2,1))
idata2 <— data.frame(tijd)
idata2 # defines the within—subject factors

# Define sample size n
n <— 1000

# Set number of iterations
reps <— 1000

# Fixz randomization to assure reproducibility of results
set.seed (10)

# Set intercept parameters with bl representing the intercept
# for the treatment effect

b0 <— 0

bl <— .2

# Generate matriz for treatment indicator X
# (0 = control group, 1 = treatment)

X <— matrix (0,ncol=1,nrow=n)

X[1:(n/2)] <=0

X[((n/2)+1):n] <~ 1

# Random binominal distribution with higher propability
# for males to appear in treatment group

Tr0 = n/2

Trl = n/2

G <— c¢(rbinom(Tr0,1,0.3) ,rbinom(Trl,1,0.7))

# Set gender effect for the pretest measurement
Z1 <— Gx1.9
71 <— ifelse (Z1==0,0.3,7Z1)

# Set gender effect for the posttest measurement
72 <— Gx1.1
72 <— ifelse (Z22==0,0.6,722)

# Generate mean structure to be wused in data simulation
mean <— matrix (0,ncol=2,nrow=n)

mean|,1] <— b0 + Z1

mean|,2] <— b0 + blsX + Z2

# Generate covariance matriz to be used in data simulation

Sigma <— matrix(diag(2)+.5,ncol=2,nrow=2) — diag(2)*.5

# Prepare data file to store generated data of each replication
data <— matrix (0,ncol=2,nrow=n)
data <— data.frame(data,X)

# Prepare outcome storage

outcome = matrix (0,ncol=9,nrow=reps)
datalist <— list (reps)

14



# Loop to iterate data generation, data analaysis

# and storage of results
for(i in 1:reps){

# Simulate data
for(ii in 1:n){

data[ii ,1:2] <— mvrnorm (1 ,mu=mean|ii ,], Sigma=Sigma)

data <— data.frame(data)

# FEstimate models
# Regressor wariable method
mod.rv <— lm (X2 X+X1+G, data=data)

# Change score method
mod. cs <— Im(X2-X1714+X+G, data=data)

# Multivariate method
mod. f <— Im(cbind (X1,X2) 1+X+G, data=data)

# Store data
datalist [[1]] <— data
outcome [i,1] <— mod. f$coefficients [5]

outcome [i,2] <— summary(mod. f)8$” Response_X2"$coefficients[2,2]

outcome [i,3] <— mean(mod. f$residuals "2)
outcome [i,4] <— mod.rv8coefficients [2]
outcome[i,5] <— summary(mod.rv)$8coefficients[3,2]

(
[
[
[
outcome [i,6] <— mean(mod.rv$residuals " 2)
[
[
(

outcome [i,7] <— mod.cs$coefficients [2]
outcome[i,8] <— summary(mod.cs)$coefficients[2,2]
outcome [i,9] <— mean(mod.cs$residuals"2)

# Set column mnames of the outcome matrix

colnames (outcome) <— c(”MV.COEF” ,”MV.SD” ,”"MV.MSE” ,
"RV.COEF” ,”RV.SD” ,”RV.MSE” ,
”»CS.COEF” , ”CS.SD”, "CS.MSE”)

# Compute means, wvariance and standard deviation
parametermean <— apply (outcome, 2, mean)
parametervar <— apply(outcome, 2, var)

paramtersd <— sqrt(parametervar)

# Print outcome
outcome
parametermean
parametervar

paramtersd

15



A.2 R code of second simulation study

# Construct design matriz

tijd <— ordered(rep(1:2,1))

idata2 <— data.frame(tijd)

idata2 # defines the within—subject factors

# Define sample size n
n <— 1000

# Set number of iterations
reps <— 1000

# Fixz randomization to assure reproducibility of results
set.seed (10)

# Set intercept parameters with bl representing the treatment
# effect 1 and b2 the treatment effect 2

b0 <~ 0
bl < .2
b2 <— .4

# Generate matriz for treatment indicator X

# (0 = control group, 1 = treatment 1, 2 = treatment 2)
X <— matrix (0,ncol=1,nrow=n)

X[1:(n/2)] <=0

X[((n/2)+1):((n/4)%3)] < 1

X[(((n/4)*3)+1):n] < 2

# Dummy variable for treatment assignment
# (X00 = treatment 1, X01 = treatment 2)
X00 <— as.numeric(X = 1)
X01 <— as.numeric(X = 2)

# Random binominal distribution with higher propability for males
# in treatment group

G <— c¢(rbinom(Tr0,1,0.3) ,rbinom(Trl,1,0.7))

Tr0 = n/2

Trl = n/2

# Set gender effect for the pretest measurement
Z1 <— Gx1.9
71 <— ifelse (Z1==0,0.3,Z1)

# Set gender effect for the posttest measurement
72 <— Gx1.1
72 <— ifelse (Z22==0,0.6,72)

# Generate mean structure to be used in data simulation
mean <— matrix (0,ncol=2,nrow=n)

mean|,1] <— b0 + Z1

mean|,2] <— b0 + b1%X00 4+ b2%X01 +72

# Generate covariance matrixz to be used in data simulation

Sigma <— matrix(diag(2)+.5,ncol=2,nrow=2) — diag(2)*.5
# Prepare data file to store gemnerated data of each replication

data <— matrix (0,ncol=2,nrow=n)
data <— data.frame(data,X)
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# Prepare outcome storage
outcome = matrix (0,ncol=15,nrow=reps)
datalist <— list (reps)

# Loop to iterate data generation, data analaysis

# and storage of results
for(i in 1:reps){

# Simulate data
for(ii in 1:m){

data[ii ,1:2] <— mvrnorm (1 ,mu=mean|ii ,], Sigma=Sigma)

data <— data.frame(data)

# Estimate models
# Regressor wariable method
mod.rv <— Im(X27X00+X014G+X1, data=data)

# Change score method
mod. cs <— Im(X2-X171+X004+X014+G, data=data)

# Multivariate method
mod. f <— Im(cbind (X1,X2) 14+X00+X014+G, data=data)

# Store data
datalist [[1]] <— data

# Results of multivariate method
outcome [i,1] <— mod.f$coefficients [6] #X00

outcome [i,2] <— summary(mod.f)$” Response_X2"8$coefficients[2,2]

i,3] <— mod.f$coefficients [7] #X01

[
[
outcome [i ,4] <— summary(mod. f)8$” Response_X2"$coefficients [3,2]
[i,5] <— mean(mod. f$residuals[,2]"2)

outcome
outcome

# Results of regressor wvariable method
outcome [i,6] <— mod.rv$coefficients [2] #X00

outcome [i,7] <— summary(mod.rv)$coefficients[2,2]

i,8] <— mod.rv8coefficients [3] #X01

(
outcome [

outcome [i,9] <— summary(mod.rv)$coefficients[3,2]
(

outcome [i,10] <— mean(mod.rv8residuals"2)
# Results ofchange score method
outcome [i,11] <— mod.cs$coefficients [2] #X00

outcome [i,12] <— summary(mod.cs)$coefficients[2,2]

outcome [i,13] <— mod.cs$coefficients [3] #X01

outcome [i,14] <— summary(mod. cs)$coefficients [3,2]
[

outcome [i,15] <— mean(mod.cs$residuals"2)

# Set column mames of the outcome matrix
colnames (outcome) <— c(”MV.COEFX00” ,”MV.SDX00” ,”MV.COEFX01” ,”MV.SDX01” ,
"MV.MSE” ;”RV.COEFX00” ,”RV.SDX00” ,”RV.COEFX01” ,
?RV.SDX01” , "RV.MSE” ,”CS.COEFX00” , ”CS.SDX00” ,
”?CS.COEFX01” , ”CS.SDX01” , ”CS.MSE”)
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# Compute means, wvariance and standard deviations
parametermean <— apply (outcome, 2, mean)
parametervar <— apply(outcome, 2, var)

paramtersd <— sqrt(parametervar)

# Print outcome
outcome
parametermean
parametervar

paramtersd
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A.3 R code of the third simulation study

# Import functions for test statistics for multivariate analysis
Pillai <— car::: Pillai

Wilks <— car ::: Wilks

HL <— car:::HL

Roy <— car :::Roy

car :::summary. Anova.mlm/()

# Create function to be able to retrieve

# p—values for multivariate method

Anovamlm <— function (object, test.statistic,
univariate = TRUE, multivariate = TRUE,...)
{
GG <— function(SSPE, P) {
p <— nrow(SSPE)
if (p < 2)
return (NA)
lambda <— eigen (SSPE %+% solve (t(P) %+% P))$values
lambda <— lambda[lambda > 0]
((sum(lambda)/p)~2)/(sum(lambda”2)/p)
}
HF <~ function(gg, error.df, p) {
((error.df + 1) = p * gg — 2)/(p * (error.df — p * gg))
}
mauchly <— function(SSD, P, df) {
if (nrow(SSD) < 2)
return (c(NA, NA))
Tr <— function (X) sum(diag (X))
p <— nrow(P)
I <- diag(p)
Psi <— t(P) %% I %% P
B <— SSD
pp <— nrow(SSD)
U <— solve(Psi, B)
n <— df
logW <— log(det(U)) — pp * log(Tr(U/pp))
rho <~ 1 — (2 * pp"2 + pp + 2)/(6 * pp * n)
w2 <= (pp + 2) * (pp — 1) * (pp — 2) * (2 * pp"3 + 6 =
pp°2 + 3 % p + 2)/(288 * (n * pp * rho)"2)
z <— —n * rho *x logW
t<—pp * (pp + 1)/2 — 1
Prl <— pchisq(z, f, lower.tail = FALSE)
Pr2 <— pchisq(z, f + 4, lower. tail = FALSE)
pval <— Prl + w2 = (Pr2 — Prl)
c(statistic = ¢(W = exp(logW)), p.value = pval)

}
if (missing(test.statistic))
test.statistic <— c(” Pillai”, "Wilks”, ”Hotelling—Lawley” ,
”R,Oy”)
test.statistic <— match.arg(test.statistic ,
c(”Pillai”, ”"Wilks” , ”Hotelling—Lawley”, "Roy” ), several.ok = TRUE)

nterms <— length(object$terms)

summary. object <— list (type = object$type, repeated = object$repeated,
multivariate.tests = NULL, univariate.tests = NULL,
pval.adjustments = NULL, sphericity.tests = NULL)
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if (multivariate) {
summary . object$multivariate. tests <— vector(nterms, mode = ”list”)
names (summary . object$multivariate. tests) <— object$terms
summary. object $SSPE <— object$SSPE
for (term in 1l:nterms) {
hyp <— list (SSPH = object$SSP [[term]], SSPE = if (object8$repeated)
object$SSPE [[term]] else object$SSPE,
P = if (object$repeated) object$P[[term]] else NULL,
test = test.statistic, df = object$df[term],
df.residual = object$error.df, title = object$terms|term])
class (hyp) <— ”linearHypothesis.mlm”
summary . object$multivariate. tests [[term]|] <— hyp
}
}

if (object$repeated && univariate) {

singular <— object$singular

error.df <— object$error.df

table <— matrix (0, nterms, 6)

table2 <— matrix (0, nterms, 4)

table3 <— matrix (0, nterms, 2)

rownames (table3) <— rownames(table2) <— rownames(table) <—
object$terms

colnames (table) <— ¢(”SS”, "num.Df”, ”Error.SS”, "den.Df”,
"F7 7 Pr(>F)7)

colnames(table2) <— c(”GG.eps”, "Pr(>F[GG])”, "HF_eps”,
*Pr(>F [HF])")
colnames (table3) <— c(”Test_statistic”, ”"p—value”)

if (singular)
warning (” Singular_error _.SSP_matrix:\nnon—sphericity._test
HHHHHH and_corrections._not_available”)
for (term in 1:nterms) {
SSP <— object$SSP [[term]]
SSPE <— object$SSPE[[term |]
P <— object$P[[term]]
p <— ncol(P)
PtPinv <— solve(t(P) %% P)
gg <— if (!singular)
GG(SSPE, P)
else NA
table [term, ”SS”] <— sum(diag(SSP %% PtPinv))
table [term, ”Error.SS”] <— sum(diag(SSPE %+% PtPinv))
table [term, "num.Df’] <— object$df[term] =* p
table [term, "den.Df’] <— error.df * p
table [term, "F”] <— (table[term, ”SS”]/table[term,
"num.Df”]) /(table [term, ”Error.SS”]/table[term, ”den.Df”])
table [term, "Pr(>F)”] <— pf(table[term, "F”], table[term,
"num.Df”], table[term, ”"den_Df”], lower.tail = FALSE)
table2 [term, "GG.eps”] <— gg
table2 [term, "HF_eps”] <— if (!singular)
HF(gg, error.df, p)

else NA

table3 [term, | <— if (!singular)
mauchly (SSPE, P, object$error.df)

else NA

}
table3 <— na.omit(table3)

if (nrow(table3) > 0) {
table2 [, "Pr(>F[GG])”] <— pf(table[, "F”], table2][,
"GG.eps”] * table[, "num.Df”], table2[, "GG.eps”] =*
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table[, ”den.Df”], lower.tail = FALSE)
table2 [, "Pr(>F[HF])”] <— pf(table[, "F”], pmin(1,
table2 [, "HF_eps”]) * table[, "num.Df”], pmin(1,
table2 [, "HF_eps”]) * table[, ”den.Df”], lower. tail = FALSE)
table2 <— na.omit(table2)
if (any(table2[, "HF_eps”]| > 1))
warning ("HF _eps_>_1_treated_as_1")
}
class(table3) <— class(table) <— ”anova”
summary. object$univariate . tests <— table
summary. object$pval.adjustments <— table2
summary . object$sphericity .tests <— table3
}
class (summary. object ) <— ”summary.Anova.mlm”
summary. object
return (table)

## Construct design matrix

type <— factor(rep(c(”varl”, 7var2”), 2), levels=(c(”varl”, ”"var2”)))
tijd <— ordered(c(1,1,2,2))

idata2 <— data.frame(type, tijd)

idata2 # defines the within—subject factors

# define sample size n
n <— 1000

# Set number of iterations
reps <— 1000

# Fix randomization
set.seed (16)

Set intercept parameters with bl representing the treatment effect

of outcome wariable 1 and cl the treatment effect for

#

#

# outcome wvariable 2

# To invetigate the Type—1 error rate bl and cl
#

were set to .0 in the second condition

b0 <~ .0
bl <— .2
c0 <— .0
cl <— .2

# Generate matriz for treatment indicator X
# (0 = control group, 1 = treatment)

X <— matrix (0,ncol=1,nrow=n)

X[1:(n/2)] <= 0

X[((n/2)4+1):n] <- 1

# Random binominal distribution with higher propability
# for males in treatment group

Tr0 = n/2

Trl = n/2

G <— c(rbinom(Tr0,1,0.3) ,rbinom(Trl,1,0.7))

# Set gender effect for the pretest measurement
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Z1 <— Gx1.9
71 <— ifelse (Z1==0,0.3,Z1)

# Set gender effect for the posttest measurement
72 <— Gx1.1
72 <— ifelse (Z22==0,0.6,72)

# Generate mean structure to be used in data simulation .
# The first to columns represent the pretest scores,
# and the last two columns represent the posttest scores

mean <— matrix (0,ncol=4,nrow=n)

mean|,1] <— b0 + Z1
mean|,2] <— c0 + Z1
mean|,3] <— b0 + blsX + Z2
mean| ,4] <— c0 + clxX + Z2

# Generate covariance matriz to be used in data simulation
Sigma <— matrix(diag(4)+.5,ncol=4,nrow=4) — diag(4)*.5

# Prepare data file to store generated data of each replication
data <— matrix (0,ncol=4,nrow=n)

data <— data.frame(data,X)

# Prepare outcome storage

outcome.mv = matrix (0,ncol=6,nrow=reps)
outcome.rv = matrix(0,ncol=6,nrow=reps)
outcome.cs = matrix(0,ncol=6,nrow=reps)
outcome.pval = matrix(0,ncol=>5, nrow=reps)

datalist <— list (reps)

# Loop to iterate data generation, data analaysis

# and storage of results

for(i in 1:reps){

#simulate data

for (ii in 1:n){
data[ii ,1:4] <— mvrnorm (1 ,mu=mean]|ii ,], Sigma=Sigma)

data <— data.frame(data)

# Estimate models

# Regressor wvariable method
mod.rvl <— Im(X3"X4+X1+G, data=data)
mod.rv2 <— lm(X4"X4X2+G, data=data)

# Change score method
mod. cs1l <— lm(X3-X1714X+G, data=data)
mod. cs2 <— lm(X4-X2714+X+G, data=data)

# Multivariate analysis
mod. f <— Im(cbind (X1,X2,X3,X4) 14X+G, data=data)
mod. f.lht <— Anova(mod.f, type=c(”I111”),
idata=idata2 ,idesign="typextijd)

# Store data
datalist [[i]] <— data
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summary (mod. f)$” Response .X3”$coefficients [2,1]

summary (mod. f)$” Response _X3”$coefficients [2,2]

summary (mod. f ) $” Response _X4”$coefficients [2,1]

summary (mod . f ) $” Response._.X4"$coefficients [2,2]

summary (mod.rvl)$coefficients [2,1] #Mean
summary (mod.rvl)$coefficients [2,2] #5D
mean(mod.rvl$residuals "2) #MSE

summary (mod.rv2)$coefficients[2,1] #Mean
summary (mod.rv2)8coefficients [2,2] #SD
mean(mod.rv28residuals " 2) #MSE

summary (mod. csl)$coefficients [2,1] #Mean
summary (mod. cs1)8coefficients [2,2] #SD
mean(mod. cs1$residuals "2) #MSE

summary (mod. cs2)$coefficients [2,1] #Mean
summary (mod. cs2 )$coefficients [2,2] #5D

# Store results of themultivariate method
# Outcomel

# Mean

outcome . mv[i,l] <—

# SD

outcome.mv[i,2] <—

# MSE

outcome.mv[i,3] <— mean(mod. f$residuals|[,3]"2)
# Outcome?2

# Mean

outcome.mv[i, 4] <—

#SD

outcome . mv[i,5] <—

HAVSE

outcome.mv[i,6] <— mean(mod. f$residuals|,4]"2)
# Store results of the regressor wvariable method
# Outcomel

outcome.rv[i,l] <—

outcome.rv[i,2] <—

outcome.rv[i,3] <—

# Outcome?2

outcome.rv[i,4] <—

outcome.rv[i,5] <—

outcome.rv[i,6] <—

# Store results of the change score method
# Outcomel

outcome.cs[i,l] <—

outcome.cs[i,2] <—

outcome.cs[i,3] <—

# Outcome2

outcome.cs[i,4] <—

outcome.cs[i,5] <—

outcome.cs[i,6] <—

# Store p—values

mean(mod. cs28residuals "2) #MSE

of every analysis

# Regressor wvariable method

# Outcome 1

outcome.pval[i,1] <— summary(mod.rvl)$coefficients[2,4]

# Outcome 2

outcome.pval[i,2] <— summary(mod.rv2)$coefficients[2,4]

# Change score method

# Outcome 1

outcome.pval[i,3] <— summary(mod.csl)$coefficients[2,4]

Outcome 2

outcome. pval [i,4] <— summary(mod. cs2)8coefficients[2,4]
#Multivariate Method
outcome.pval[i,5] <— Anovamlm(mod. f.lht)["X:tijd” ,”Pr(>F)”]

# Set column names of the outcome matriz

colnames (outcome .mv) <— c(”V1.COEF”

,”V1.SD” , "V1.MSE" ,
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colnames (outcome .

colnames (outcome.

# Compute means,

parametermean.mv <— apply (outcome.mv,
parametervar.mv <— apply (outcome.mv,
parametermean.rv <— apply (outcome.rv,
parametervar.rv <— apply(outcome.rv,
parametermean.cs <— apply (outcome.cs,

parametervar.cs <— apply(outcome .Ccs,

”V2.COEF”
rv) <— ¢(”V1.COEF”
?V2.COEF”
cs) <— c(”V1.COEF”
”?V2.COEF”

,"V2.SD” , "V2.MSE")
,”V1.SD” ,”V1.MSE” ,
,”V2.SD” ,”V2.MSE" )
,”V1.SD” ,”V1.MSE” ,
,"V2.SD” [?V2.MSE”)

variance and standard deviations

parametersd .mv <— sqrt(parametervar.mv)

parametersd.rv <— sqrt(parametervar.rv)

parametersd.cs <— sqrt(parametervar.cs)

#compute power or alpha—error

#regressor wvariable method
(table (outcome.pval[,1]<(0.05/2)))/reps
(table (outcome.pval[,2] <(0.05/2)))/reps
#change score method
(table (outcome.pval[,3]<(0.05/2)))/reps
(table (outcome. pval[,4] <(0.05/2))) /reps
#Multivairate method
(table (outcome.pval[,5] <(0.05)))/reps

#Print outcome
parametermean .mv
parametersd .mv
parametermean.rv
parametersd.rv
parametermean . cs

parametersd.cs

2, mean)
2, var)

2, mean)
2, var)

2, mean)

2, var)

#treatment

#treatment

#treatment

#treatment
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