
University of Twente
Faculty of Electrical Engineering, Mathematics and

Computer Science

Computer Architecture for Embedded Systems

Phased Array Antenna Processing on

Recon�gurable Hardware

M.Sc. thesis by

Rik Portengen

Graduation committee:
prof. dr. ir. Gerard J.M. Smit
dr. ir. André B.J. Kokkeler
ir. Marcel D. van de Burgwal
ir. Kenneth C. Rovers

Enschede, December 2007

Preface

This thesis presents the results of my work in the research of beam forming

and the creation of a validation platform. During this project the develop-

ment with an evaluation board is experienced. The interface with external

modules delivered some challenges but eventually started to work.

The audio receiving array, the program source codes and this thesis are

part of my master project at the Computer Science department of the Uni-

versity of Twente. The assignment was part of the Beamforce project at the

chair Computer Architecture for Embedded Systems and Thales Hengelo.

I would like to thank my graduation committee for their support. For

getting me this project and to be able to cooperate to get this �nal result.

Marcel van de Burgwal was of great importance to my work for implementing

a Montium version on the evaluation board and to help me with numerous

questions about the interface. Also thanks to the people at Recore Systems

which gave fast updates of the simulator and answers about the Montium

architecture. Further I would like to thank everybody of the CAES group

and students for a really nice time.
Finally I would like to thank Linda for her unconditional support during

my master course and this graduation.

Contents

Introduction v

Introductie vii

1 Phased array antenna processing 1

1.1 Signal Model . 1
1.2 Processing . 1
1.3 Problem description . 3

2 Literature 5

2.1 Introduction to Radar Systems 5
2.2 Array and Phased Array Antenna Basics 5
2.3 Smart Antennas . 6

3 Related work 7

3.1 Radio Astronomy Receivers 7
3.2 Optical Beam Forming Networks 8
3.3 Mobile Satellite Reception . 8
3.4 Base Station Communication 9
3.5 The Montium, a coarse-grained recon�gurable processor 9

4 Methods for beam forming 11

4.1 Time delay . 11
4.2 Phase shift . 12
4.3 Butler or FFT transform . 14
4.4 Antenna multiplicity . 16
4.5 Beam width and side lobes . 16
4.6 Advanced beam steering . 16

5 Beam forming algorithms 19

5.1 Time delay . 19
5.1.1 Algorithm . 19

ii CONTENTS

5.1.2 Interpolating . 20

5.1.3 Computational complexity 22

5.1.4 Simulation . 22

5.2 Complex multiplication . 24

5.2.1 Quadrature and in-phase signals 24

5.2.2 Hilbert transformer . 24

5.2.3 Algorithm . 26

5.2.4 Computational complexity 27

5.3 Fast Fourier transform processing 28

5.3.1 Quadrature and in-phase signals 28

5.3.2 A spatial Fast Fourier Transform as beam former . . . 28

5.3.3 Computational complexity 28

5.4 Comparison of algorithms . 29

6 Testplatform design 31

6.1 Introduction . 31

6.2 Development . 31

6.3 System design . 32

6.4 Beam former data �ow . 34

7 Mapping beam forming algorithms to recon�gurable hard-

ware 35

7.1 Introduction . 35

7.2 Time Delay . 35

7.3 Hilbert �ltering . 39

7.4 Complex Multiplication . 40

7.4.1 Results . 40

7.5 Fast Fourier Transform . 41

7.6 Mapping results . 42

8 Applications 45

8.1 Montium processing throughput 45

8.2 Speech beam forming . 46

8.3 Quality audio beam forming 47

8.4 Radar beam forming . 47

9 Conclusion and Recommendations 49

9.1 Conclusion . 49

9.2 Recommendations . 50

9.2.1 Partial recon�guration 50

CONTENTS iii

9.2.2 Scalability . 50

List of Figures 53

A VHDL ADC interface design 55

B Source code of implementation 59

B.1 Time Delay . 59
B.2 Phase Shift . 63
B.3 Hilbert Filter . 68

C Montium tile processor 73

C.1 Introduction . 73
C.2 Coarse grain recon�guration 73
C.3 Architecture . 74
C.4 Application Development . 77

iv CONTENTS

Introduction

In this document the research concerning digital processing of phased array
antenna signals is described. A study on which algorithms will be suitable for
implementing, how well these perform on a recon�gurable processor and how
fast the throughput will be in di�erent scenarios. This thesis will cover the
mathematical approaches of beam forming and the design decisions taken to
perform this task on recon�gurable hardware. In the chapter 1 the general
phased array antenna concept is explained. In chapter 3 reference designs
from other papers are treated. In chapter 4 the methods for beam forming
are described. An algorithm and implementation are made in chapter 5 and
7, respectively.

Possible applications and estimated requirements for beam forming sce-
narios are given in chapter 8.

A veri�cation platform of beam forming for audio has been designed and
implemented on a development board. This design will be shown in chapter
6.

Phased array antenna processing

For reception of electro-magnetic signals an antenna is used. In case of a
simple antenna it will receive this signal equally strong from all directions1. In
many cases this is a usable approach. However, other systems like for example
a satellite communication system or a radio telescope, often a directivity
signal is required. The use of antennas which suppress interference and noise
is then preferred. Traditionally, satellite dishes were used for this but now
also phased array antennas are slowly introduced as receivers [6, 9].

Phased array antennas consist of multiple antennas spaced from each
other. The use of multiple antennas has a number of advantages. It can be
used to improve signal to noise ratio. The phased array antenna has a higher

1A monopole or dipole antenna placed vertical receives all signals equally strong in the
horizontal plane

vi Introduction

sensitivity in the perpendicular direction, this is called a beam. When per-
forming processing on the individual antenna signals, it is also possible to
steer the sensitivity of the antenna. This is called beam steering. E�ectively,
you can `look' in di�erent directions without mechanically moving the an-
tennas. This processing is done digitally in this project. Performing beam
forming digitally is commonly referred as Digital Beam Forming (DBF).

Recon�gurable hardware

Hardware can be developed to perform a �xed task. An example is a sound-
card in the computer. This hardware is developed to perform the task of
audio processing; it can perform this task possibly very fast and it could per-
form it energy e�ciently. Recon�gurable hardware is developed to perform
a variety of tasks. The goal of most producers [4] of recon�gurable hardware
is to get an comparable performance with respect to a speci�c application
domain as application speci�c hardware. The con�guration of recon�gurable
hardware can be altered such that the hardware can execute other tasks. In
this way, one can use hardware to execute di�erent tasks and take advantage
of the recon�gurability.

Introductie

In dit document wordt het onderzoek over digitale verwerkering van fase array
antenna signalen omschreven. Een studie over welke algorithmes geschikt
zijn voor implementatie, hoe goed deze presteren op een recon�gureerbare
processor en hoe snel de doorvoer capaciteit is in verschillende scenarios. Dit
verslag zal de wiskundige aanpak van beam forming uitleggen en de ontwerp
beslissingen die genomen zijn om deze taak op recon�gureerbare hardware uit
te voeren. In hoofdstuk 1 is het concept van de fase array antenna uitgelegd.
In hoofdstuk 3 zijn referentie ontwerpen van andere verslagen behandeld.
In hoofdstuk 4 worden de methodes van beam forming omschreven. Een
algorithme en implementatie worden gemaakt in de hoofdstukken 5 en 7.

Mogelijke applicaties en verwachte requirements voor verschillende beam
forming scenarios worden gegeven in hoofdstuk 8.

Een veri�catie platform voor beam forming met audio is ontworpen en
gemaakt op een ontwikkel bord. Dit ontwerp wordt in hoofdstuk 6 omschre-
ven.

Fase array antenne verwerking

Om radiogolf signalen te ontvangen worden antennes gebruikt. In het geval
van een simpele antenne zal deze het signaal even sterk ontvangen vanuit alle
richtingen2. In veel gevallen is dit een bruikbare aanpak. Echter, andere sys-
temen zoals een sateliet communicatie systeem of een radio telescoop hebben
vaak een signaal nodig dat richtings gevoeliger is. Het gebruik van antennes
welke stoorsignalen en ruis onderdrukken is dan gewenst. Traditioneel wer-
den hiervoor satellietschotels gebruikt maar tegenwoordig worden ook vaker
fase array antennes gebruikt [6, 9].

Fase array antennes bestaan uit meerdere antennes die verdeeld zijn. Het
gebruik van meerdere antennes heeft een aantal voordelen. Ze kunnen ge-

2Een monopool of dipool antenna die verticaal geplaatst is ontvangt alle signalen even
sterk in het horizontale vlak

viii Introductie

bruikt worden om ruis te onderdrukken. The fase array antenna heeft een
hogere gevoeligheid in de loodrechte richting, dit is een beam. Wanneer
de individuele antennes apart worden verwerkt is het ook mogelijk om de
gevoeligheid van de antenne te sturen. Dit wordt beam steering (sturing)
genoemd. E�ectief, kun je `kijken' in verschillende richtingen zonder het
mechanisch bewegen van de antenne array. De verwerking gaat digitaal in
dit project. Het digitaal verwerken van beam forming signalen wordt vaak
Digital Beam Forming (DBF) genoemd.

Recon�gureerbare hardware

Hardware kan ontworpen worden om een vaste taak uit te voeren. Als voor-
beeld hiervan een geluidskaart van een computer; deze hardware is ontwor-
pen voor de taak audio verwerking. Het kan deze taak mogelijk heel snel en
bijvoorbeeld heel energie e�cient uitvoeren. Recon�gureerbare hardware is
ontworpen om een verscheidenheid aan taken uit te voeren. Het doel van de
meeste producenten [4] van recon�gureerbare hardware is om een vergelijk-
bare prestaties te behalen in een speci�ek applicatie domein in vergelijking
met applicatie speci�eke hardware. De con�guratie van recon�gureerbare
hardware is te veranderen en kan dan worden gebruikt voor andere taken.
Hierdoor kan hardware meerdere taken uitvoeren en zijn voordeel doen van
de recon�gureerbaarheid.

Chapter 1

Phased array antenna processing

A phased array antenna can be designed for a number of applications. Phased
array antennas are used for example in mobile base stations, radio astronomy
receivers and radar systems. In these applications phased array antennas
can apply beam forming to change the sensitivity of the antenna in speci�c
directions and to suppress interference.

1.1 Signal Model

A schematic representation of a phased array antenna system is shown in
�gure 1.1. This systems shows a standard setup of a possible array. The array
is placed in the horizontal plane with antenna elements from west (left) to east
(right). A signal coming from the north direction is coming perpendicular to
the array. A signal from the west direction is coming parallel to the array,
the array is build of equally spaced antennas. All signals drawn in the �gure
travel along the horizontal plane.

The signal arriving at the kth antenna has a delay of

(d/p)sin(−θ0)× k (1.1)

seconds relatively to the �rst antenna. The symbols used in this equation
are shown in table 1.1, these symbols will be used throughout this document.
The angle θ0 is measured relatively to the perpendicular of the array.

1.2 Processing

The individual antennas of a phased array antenna require processing to
create a beam in a given direction. A beam represents a signal from a speci�c

2 Phased array antenna processing

k Index of antenna
d Distance between antennas
p Propagation speed of a wave
θ0 Direction of a wave, positive orientation is clockwise

Table 1.1: Symbols used

Ant1 Antk

Electromagnetic
wave from a

perpendicular
direction

(Broadside)

Wave from a 45
degree angle

Wave from a 90
degree angle

(Endfire)

d

-θ

p
(Propagation

speed)

Wav
efr

on
t

Figure 1.1: Schematic representation of a line antenna array, top view

direction. By adapting parameters in the beam forming process, the direction
can be steered. The processed signals of the antennas are added together to
form this beam. This processing can be performed in di�erent ways.

First a decision is made in which domain this processing is done. Signal
processing can be done in both the analog and the digital domain. Analog
signal processing requires devices such as phase shifters or delay lines for
beam forming. A disadvantage of these devices is that they introduce signal
loss, which results in less signal power and, after ampli�cation, a lower signal
to noise ratio. This signal loss gets worse when more devices, such as phase
shifters, are used or many beams are created. Processing in the digital do-
main gives a number of advantages. After the signal is sampled and digitized
at the analog to digital converters, no signal loss will occur. Multiple beams
can be made without power loss. Digital processing gives �exibility in the
steering direction. And the steering direction can be changed quickly when
software processors are used.

The goal of this assignment is to �nd opportunities to use recon�gurability
from processors for fast switching between di�erent methods and di�erent
beam con�gurations. Therefore the focus will be on strategies which can
be implemented digitally. For digital processing of phased array antenna

1.3 Problem description 3

signals these signals are converted by analog-to-digital-converters (ADC).
The frequency of conversion is called sampling frequency (Fs).

A schematic representation of a beam forming system with the location
of the processing algorithms is shown in �gure 1.2. Di�erent strategies for
processing are searched and are explained in the chapter 4.

Spatial Processing
Antenna ADC

Antenna ADC

Antenna ADC

Antenna ADC

Beam or multiple
beams

Temporal Processing

Receiving circuit
for;

Telecom,
Radar or

Power Metering

Figure 1.2: Total system with processing stages

1.3 Problem description

The assignment of this thesis is about the research of current techniques in
beam forming and to build a validation platform for beam forming with the
use of recon�gurable hardware. The recon�gurable hardware is the Mon-
tium. It is expected that this processor will be able to e�ciently process
phased array signals. Digital Beam Forming is very calculation intensive and
the Montium is a energy e�cient processor. A beam former system which
implements this processor rather than a general purpose processor or FPGA
will be more energy e�cient.

In the following chapter some techniques for beam forming are explained
from literature. In chapter 3 designs are discussed which have been used
digital techniques for beam forming. Furthermore, a study is presented on
which algorithms are suitable for implementing, how well these perform on
a recon�gurable processor and what the throughput will be in di�erent sce-
narios. This thesis will cover the mathematical approaches of beam forming
suitable for digital processing and the design decisions taken to perform this
task on recon�gurable hardware.

4 Phased array antenna processing

Chapter 2

Literature

2.1 Introduction to Radar Systems

The book �Introduction to Radar Systems� [1] explains the basics of radar
and radar processing. It covers radar systems and di�erent technologies
to design radar systems. The book also covers noise and clutter (weather
and environmental distortion), which can be observed in practical radars.
Chapter 9 explains possible antennas that can be used to create a radar
system. In this chapter the application of beam forming is explained and
how this can be done in an analog and a digital manner.

In this chapter also a discussion about Baseband and IF Digitizing is
made. When IF Digitizing is used with in-phase and quadrature signals,
conversion with two analog to digital converters (ADC) can be done with a
minimum sampling rate of 1.4 times the signal (half-power) bandwidth. It
was stated by [11] that with direct digitizing of the baseband signal with only
one ADC channel the minimum sampling rate becomes 5.4 times the signal
bandwidth. The sampling rate has to be higher than the theoretical Nyquist
rate of two times the signal bandwidth for avoiding distortion of the signal
spectrum caused by folding.

2.2 Array and Phased Array Antenna Basics

The book �Array and Phased Array Antenna Basics� [2] deals with the basics
of electromagnetic waves and antenna radiation. The �rst three chapters
explain how single antennas work and introduces their sensitivity. Chapter 4
covers the `standard' linear broadside array. This is a standard phased array
build up of antennas equally spaced on a straight line. The chapter studies its
performance and adjustable parameters. It is stated that the �rst side lobe is

6 Literature

around -13 dB of the main beam for a phased array. The remaining chapters
are about di�erent phased array topologies and discusses their designs and
performance. Also how antenna measurements can be performed is written.
This book focuses highly on electrical engineering of antennas.

2.3 Smart Antennas

The book �Smart Antennas� [3] introduces array antenna models for di�erent
situations. Narrowband processing, adaptive and broadband processing are
the main chapters. Chapters 2.1 and 2.2 explain conventional beam forming
with a steering vector. This book follows a mathematical approach for the
explanation of beam forming.

Chapter 3

Related work

3.1 Radio Astronomy Receivers

In radio astronomy, the universe is studied about solar systems and stars.
One of the methods for observation is to receive electromagnetic waves send
out by stars. The classical approach for this is to use large dish antennas.
However, in the search of higher reception quality now also the use of phased
array antennas is studied.

One example of such an antenna is developed by ASTRON, in [6] a phased
array antenna telescope demonstrator is described. This demonstrator con-
sists of 256 elements and is used for evaluation of the phased array antenna
concept for astronomical research. In this paper a brief description of the
thousand element array and the square kilometer array concept is given as
well as results from the demonstrator.

The concept consists of tiles with 64 antennas. These tiles �rst perform
analog RF beam forming to create two beams. From there, the result is
down converted, digitized and transported over glas�ber to a digital beam
former. This digital beam former is able to sum di�erent beams and the
result is passed through a Digital Signal Processing (DSP) board. This DSP
board performs the calculations needed for evaluations of the radio astronomy
signals.

This design represents certain aspects of the problems encountered in
Digital Beam Forming (DBF). The digitalization is done with a sample rate
of 40 MHz. ASTRON has chosen to equip the DBF with FPGA's. Currently
this is a method which is widely used for digital beam forming. [8, 9]

The conclusion is that the demonstrator delivers comparable results with
the current 25m re�ector telescope. Phased array antennas are concluded to
be a well suited technology for radio astronomy telescopes.

8 Related work

3.2 Optical Beam Forming Networks

At the research group �Telecommunication Engineering� of this faculty a
beam forming network is developed with the use of laser optics. This is
called an optical beam forming network (OBFN) [10], the system uses optical
ring resonators (ORRs) to establish a continuously tunable time delay. The
OBFN is created by using a binary tree-based hierarchy of ORRs and by
using optical combining/splitting circuitry.

In theory this system can beamform broadband signals because it uses
time delay rather than a phase shift. Such an approach can be useful in a
number of applications. An actual design of an OBFN is designed with one
input and 8 outputs, measurements are performed on a stage of 4 outputs.
The design is tuned such that three linearly increasing delays are obtained
over 1.5 GHz bandwidth. The largest delay value is approximately 0.5 ns
(corresponding to 15 cm of physical distance in air) and a delay ripple of
approximately 20 ps (6 mm).

3.3 Mobile Satellite Reception

For the reception of satellite signals often dish antennas are used. These
antennas need to be setup precisely because of the high angular reception.
When pointed directly to a satellite, a signal is received which can be used
for television or communication. The setup is �xed and can therefore not be
moved, in a mobile situation such high angular reception could be performed
with the use of a phased array antenna.

In �Digital Beam Forming Antenna System for Mobile Communications�
[8], which is written in combination with [13], the feasibility of a Digital Beam
Former (DBF) for satellite communication is evaluated. A DSP system is
built for the evaluation of reception capabilities of this system. As a reference
a Japanese test satellite is used for the reception of an unmodulated signal.
The system is built up of 16 antennas and with 128 KHz sampling ADC.
Processing is done with FPGA's. These FPGA's are used to implement a
DBF using Fast Fourier Transforms. For the creation of quadrature signals
a digital local oscillator is used in combination of a FIR �lter.

The system shows a succesfull implementation of a beam former processor
built up of FPGA units. This systems shows a possible implementation of a
DBF with the use of a FFT algorithm. This project also shows an adaptive
beam former with a Constant Modulus Algorithm.

3.4 Base Station Communication 9

3.4 Base Station Communication

In the last decade mobile communication has rapidly grown. For mobile
communication parts of the spectrum are used to transmit and receive signals.
Because this is getting used more intensively the spectrum occupation grows,
one solution can be to separate transmission signals in space.

A possible implementation of such a solution is written in [7]. It han-
dles mobile base communications for ground stations. A cyclic phased array
antenna is used with patch antennas and an analog beam former network is
used for feeding this array. The goal of the project is to increase coverage
radius and reduce transmit power of a base station, the cyclic phased array
antenna has a high gain which is steerable and can be used to accomplish
these goals.

In a satellite communication system separation in space is introduced in
[9], supported by ESA/ESTEC in Noordwijk, the Netherlands. The commu-
nication system deals with the problems at the satellite site. A phased array
antenna is mounted on a satellite and uses a system for multiple access from
the earth. The proposed system features a frequency division multiplexer
demultiplexer with a beam forming network.

This system has high speci�cations, the resources used are limited as only
one ASIC is used to handle multiple channels. The proposed solution is a
highly integrated system of �lters and Fourier transforms.

3.5 The Montium, a coarse-grained recon�g-

urable processor

The Montium is a processor developed at the University of Twente as part
of the Ph.D. thesis of P. Heysters [4]. The Montium can be used as a part
of a system on chip. In such a chip, several processors communicate and
exchange data with each other. The Montium is therefore also referred to as
tile processor. Currently the development of this chip and development tools
is handled by Recore Systems [5] which sells this Montium as an Intellectual
Property Core (IP core).

The Montium is developed for streaming applications. These applications
use streams of data as input and/or output. The architecture and processing
units are developed to support this kind of applications. The Montium is
equipped with 5 ALU's and 10 memories, these memories have a small AGU
unit which can generate memory addresses. A complete description of the
Montium tile processor can be found in Appendix C.

10 Related work

Chapter 4

Methods for beam forming

The beam forming explained in Chapter 1 is studied in detail and reference
designs to process signals from phased array antennas. The number of digital
implementations is limited. In this chapter we restrict to; time delay, phase
shift and Fast Fourier Transform.

4.1 Time delay

One method to create a beam is to compensate for the time delay experienced
by the di�erent antennas. This time delay can be compensated relatively
to the antenna which receives the signal as last one, a reference antenna.
The antenna �rst receiving the signal bu�ers this signal until the wavefront
reaches the last antenna. The time delay (τ k) in seconds experienced by the
antenna for the kth antenna is (equation 1.1):

τ k = (d/p)sin(−θ0)× k (4.1)

k Index of antenna
d Distance between antennas
p Propagation speed of a wave
θ0 Direction of a wave, positive orientation is clockwise
λ Wavelength of a signal

Table 4.1: Symbols used

To perform beam forming, individual array signals need to be equipped
with a delay line or bu�er to compensate for the delay of an incoming wave-
front. The compensation is −τ k seconds and is calculated for each antenna

12 Methods for beam forming

individually. The outputs of the individual delay lines are summed together
and form one beam. The resolution of this method is dependent on the
smallest time delay, which can be realized by the delay lines.

In the case the signal is compensated relative to an antenna which does
not receive the signal last, this −τ k will be negative and a negative delay
line should be constructed. Such a delay line should contain future signals
and is not feasible. A way to solve this is to add a constant delay equal for
all the antennas, which e�ectively compensates relative to the last receiving
antenna again.

Time delay works for wideband signals built up of arbitrary frequencies,
not only narrowband signals. This is due to the fact that it compensates for
the real experienced di�erences between antennas. This makes the approach
a good solution for processing audio signals, because these signals are typi-
cally wideband. The response of beam forming methods also depends on the
spacing (d) between antennas. In [2] a limit is calculated for the distance d.
It is required that d

λ
≤ 1 should be satis�ed otherwise grating lobes appear.

In this formula, λ is the wavelength of the signal. Grating lobes are duplicate
beams with the same sensitivity as the main beam, but from unwanted di-
rections. The spacing d is taken λ/2, this spacing generates the most number
of nulls without creating ambiguity in the main beam.

As explained in the previous paragraph, beam forming responses are de-
pendent on the locations of the antennas with respect to the wavelength of
the signal. Compensating time delay is said to work for arbitrary frequencies,
however, the virtual distance between antennas vary. This is a result from
changing frequencies and therefore changing wavelengths. The result is that
the beam width of the main beam depends on the frequency.

4.2 Phase shift

A signal which has only a small bandwidth, can be simpli�ed by a single
sinusoidal signal. This is called the �the narrowband assumption�. For a
sinusoidal signal, a momentarily value can be recreated by shifting this signal
with the right part of the periodic length. Such part of a period is called
phase. Thus, by changing the phase of a signal it can be shifted in time.

To calculate this phase shift a few values are needed, the distance that
needs to be compensated and the wavelength of the signal. The wavelength
of the signal is on its turn dependent on the frequency of its signal and
the propagation speed of the wave in its medium. The wavelength (λ) is
calculated by dividing the propagation speed by the frequency of the signal.
The frequency will be f and the propagation speed p. In formula form this

4.2 Phase shift 13

will be

λ =
p

f
(4.2)

In �gure 4.1 an example phased array is shown. The antennas are sepa-
rated d meters. A wavefront which is traveling perpendicular to the array is
received at all antennas at the same time.

φ

(d)sin(φ)

d

Figure 4.1: Schematic representation of two array elements with a wavefront

When a wavefront is coming from an angle like in the �gure, the wave-
front and the array form a triangle. At the time the wavefront reaches the
upper antenna, the distance from the wavefront to the lower antenna can be
calculated with a goniometric calculation:

∆x = d× sin(ϕ)

The signal at the lower antenna needs to be shifted forward in time. This
can be done by giving this signal a positive phase shift. This phase shift is
equal to 2π × ∆x/λ. This phase shift is calculated for a larger array in a
linearly fashion for regularly spaced antennas. The distance that needs to be
compensated grows linear for the kth antenna, the phase shift (ψk) in radials
also grows linear. For the total array it becomes:

ψk = 2π(d/λ)sin(θ0)× k (4.3)

The new symbols introduced in this chapter are summarized in table 4.2.
Equation 4.1 and 4.3 will be used in following chapter to compute parameters
of the beam forming algorithms.

14 Methods for beam forming

k Index of antenna
d Distance between antennas
p Propagation speed of a wave
θ0 Direction of a wave, positive orientation is clockwise
λ Wavelength of a wave in its medium
τ k Time delay
ψk Phase shift
Fs Sampling frequency

Table 4.2: Updated symbol list

4.3 Butler or FFT transform

The Butler Beam-Forming Array is explained in [1] and can be used to form
N beams out of an N-element antenna array. The Butler matrix uses special
electronic devices named hybrid junctions and static phase shifters. This
Butler matrix is the analog version of the Fast Fourier Transformation (FFT).
When the signals of the antennas are digitized, they can be fed into the FFT.
A great advantage of this method is that after this processing, the output
consists of multiple beams pointed in di�erent directions. Speci�cally this
transformation creates as many beams as input antennas fed into the Fourier
transformation.

The Fast Fourier Transform was originally designed for transforming a
time signal into a frequency response. The signal induced on an antenna array
is also in the form of di�erent frequencies, signals from di�erent directions
generate di�erent frequencies when observed in the spatial domain. Let an
antenna array consist of elements positioned λ/2 from each other. In case
the signal is induced from the direction perpendicular to the antenna array
it induces equal voltage over the antennas, because the signal is the same at
each antenna at every moment in time. When a signal is induced in an small
angle over the array, the signal is slightly di�erent at each antenna. This
results in an ac voltage in the spatial domain. Let the signal be induced in
the direction of the array (end-�re), the signal di�ers λ/2 between all antenna
elements, which results in the highest frequency possible. By using an FFT
these frequencies which represent de�erent angles can be separated and used
as di�erent beams.

The shape of the individual beams from such FFT is �xed and the relative
position of the beams is also �xed. These constraints need to be considered
when using a FFT as a beam former. In �gure 4.2 a response plot shows
these beam shapes and �xed positions.

4.3 Butler or FFT transform 15

−80 −60 −40 −20 0 20 40 60 80
−30

−25

−20

−15

−10

−5

0
Response of beamforming 16 antennas, d=150m λ=300m

Beamforming angle relative to normal

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

Figure 4.2: Response of phased array processing using �t processing, angle
of -90 to 90 degrees in 16 steps

−50 0 50
−60

−50

−40

−30

−20

−10

0
Response of beam forming d=0.5 λ

Angle relative to normal (degrees)

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

Figure 4.3: Response of an phase array antenna with 4 (red), 16 (blue) and
64 (green) antennas, using complex multiplication to perform beam forming

16 Methods for beam forming

4.4 Antenna multiplicity

The directional sensitivity of the beams created by beam forming are depen-
dent of the number of antennas used. By using more antennas the antennas
receive more information about the direction of the signal, which results in a
higher angular resolution. In �gure 4.3 the response of three di�erent phased
array antenna systems is drawn. One system with four antennas, which has
the lowest angular resolution. One with 16 antennas, the intermediate and
one with 64 antennas, which has the best relative angular resolution. The
-3dB bandwidth is 2 degrees.

4.5 Beam width and side lobes

The main beam width and side lobes are dependent on each other. By using
amplitude weighting on the individual antenna elements the shape of the
main beam and the side-lobes can be altered. In [2] it is stated that by using
a binomial distribution over the elements, the side lobes can be suppressed
all together. However, the resulting main lobe then gets wider. For phase
shifting with complex multiplications this can be applied to all input signals.
The shape of the main beam can be tuned. In case multiple beams are created
with individual sets of coe�cients, all these beams can be tuned individually.
What is more interesting is that there is a trade-o� between the width of the
beam and the amount of suppression of the side lobs, depending on the used
weights. The binomial distribution is one extreme of this. This is because of
the uncertainly principle.

In a FFT approach complex multiplications are re-used. The consequence
is that all beams get the same shape. Individual beam shaping in a FFT
approach is not possible.

The beam width and side lobes also depend on the distribution of the
antennas. In this document equal distance between antennas is assumed.
Other con�gurations are possible to change the sensitivity of the array and
to change beam width, however, this will not be taken into consideration in
this thesis.

4.6 Advanced beam steering

Beam steering can involve a few advanced features, which are treated in [3].
For example one of these features involves dynamic nulling. This is a method
to dynamically place the lowest sensitivity in the direction of interference.
Adaptive algorithms exist which provide optimal beam steering. A beam

4.6 Advanced beam steering 17

steering algorithm is optimal with respect to an optimization criterium. An
example criterium could be to produce the highest possible signal to noise
ratio. Many of these algorithms work with some sort of digital feedback �lter,
in which case the optimal beam steerer dynamically changes the coe�cients
of the beam former.

Such processing can be performed separately of a beam forming algo-
rithm. This document will be restricted to beam forming algorithms.

18 Methods for beam forming

Chapter 5

Beam forming algorithms

The previous chapter explained how phased array antenna signals can be
processed in theory. In this chapter, suitable digital algorithms will be intro-
duced to process these signals on a computer: Time Delay, Complex Multi-
plication and Fast Fourier Transform.

5.1 Time delay

This method uses processing on the individual signals to create one beam at
a time. Through multiple processing stages, multiple beams can be created.
The time di�erence introduced by the di�erent locations of the antennas is
compensated with a time shift. After the compensated time shift the signal
can be summed and a beam is created.

5.1.1 Algorithm

The approach is to control the delay signals from individual antenna, which
can be done with the use of a bu�er. The samples are �rst stored in a bu�er
and, when time expires, the samples can be read again. The bu�er is �lled
with a rate equal to the sampling frequency (Fs) and the bu�er is as long as
equation 4.1 prescribes. Afterwards the samples are summed.

The bu�er is �lled at a �xed rate every 1/Fs seconds and the delay length
can only be made an integer multiple of this time. To be able to construct all
di�erent τ k values as needed, one could try to increase the sampling frequency
Fs. However, in case Fs is already high, this solution is not feasible.

20 Beam forming algorithms

5.1.2 Interpolating

The resolution of the delay elements depends on the sampling frequency. For
a typical beam forming application, it should be possible to point in randomly
selected directions. This can result in delays which are not an integer multiple
of the time steps of the sampling frequency. A naive solution is to round all
delays of the antennas to the nearest integer. However this will introduce
an error and will have consequences for precision. The response of such a
solution is shown in �gure 5.4(b).

A solution could be to combine a time delay bu�er with interpolation.
In this case, interpolation is used for time delays which are not an integer
multiple of the sampling time. Interpolation is a technique to calculate values
between sample moments. Higher order interpolation can be used to make
the interpolation result better. Higher order interpolation uses more sample
moments and results in better approximation of the original signal.

Antenna ADC

Beam

Buffer
+

+
Summation

+

+

Interpolation

Antenna ADC Buffer Interpolation

Antenna ADC Buffer Interpolation

Figure 5.1: Schematic of signal �ow with time delay using bu�ers and inter-
polating

The Shannon sampling theorem prescribes the minimum sampling fre-
quency needed for signal reconstruction. This should be at least two times
the signal bandwidth. For reconstruction the Whittaker-Shannon interpola-
tion formula can be used;

x(t) =
∞∑

n=−∞

x[n]sinc

(
t− nT

T

)
This interpolation formula uses a sinc function, which is shown in red in

�gure 5.2. The problem for practical implementation of this formula is that
it uses an in�nite summation and is therefore in practice not feasible. To
create an algorithm which can be implemented an approximation of the re-
construction formula can be used. The approximation is done by summation
over a �nite interval instead of an in�nite interval. The resulting frequency

5.1 Time delay 21

response of an approximation is shown in �gure 5.3 for a �rst, a 32th and a
64th order approximation. As a reference the ideal frequency response of the
sinc function is shown in red.

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Interpolation

samples

fa
ct

or

Figure 5.2: Impuls response of linear interpolation (blue) and an ideal sinc(x)
interpolation (red)

0 0.5 1 1.5 2 2.5 3
−50

−40

−30

−20

−10

0

10
Interpolation response

normalized frequency

H
()

 [d
B

]

Figure 5.3: Frequency response of linear interpolation (blue), an ideal sinc(x)
interpolation (red), a 32th order approximation (green) and a 64th order ap-
proximation (black)

22 Beam forming algorithms

5.1.3 Computational complexity

The time delay method consist of two elements, the bu�er element and the
interpolation element. The bu�er element uses memory to store samples. The
interpolation element uses only multiplication with a constant and additions,
hence no memory is needed. The maximum memory depth required for
bu�ering occurs when the signal travels along side the phased array, the �rst
antenna encountered must store its samples until the wavefront reaches the
last antenna. When the antennas are spaced d meters apart, the propagation
speed is p and the sampling frequency Fs the maximum memory depth is

d

p
Fs (5.1)

samples. For one antenna, as the direction of the signal can be altered, each
outer most antenna will need such a bu�er depth. Reaching the middle of
the array the needed bu�er is half of that.

The number of multiplications required for interpolation is one multipli-
cation for each interpolation coe�cient. For N antennas and B beams this
formula is;

(1 ·Order + 1) ·N ·B · Fs (5.2)

multiply accumulate instructions per second.

5.1.4 Simulation

A Time Delay algorithm is simulated in MATLAB implementing an algo-
rithm which rounds sample times and an algorithm which interpolates the
samples with a �rst order interpolation. The simulation projects a beam
on the phased array antenna as if it is received from a 45 degree direction
of arrival. The parameters of this algorithm are varied with time delays τ k,
which are calculated with equation 4.1 to scan from -90 to 90 degrees. MAT-

LAB simulates sinusoidal wave signals from the antennas. These signals are
bu�ered and the simulation employs rounded time delays and interpolated
time delays. Afterwards the signals are summed and the power of this beam
is calculated. This calculated power is plot against di�erent beam steering
coe�cients. The simulated received signal on the antennas is from a constant
direction. In �gure 5.4(b) the response without interpolation and in �gure
5.4(c) the response with �rst order interpolation is shown.

It can be seen that the response without interpolation shows more noise
and smaller suppression of the signal in the band outside 45 degrees. This
emphasizes the need of additional processing when rounding errors in bu�er
delays becomes too large.

5.1 Time delay 23

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0
Response of beamforming 16 antennas, d=0.5 λ fs=20f

Angle relative to normal (degrees)

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

(a) Ideal response, Linear interpolation, Fs

= 20 Fsignal

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0
Response of beamforming 16 antennas, d=0.5 λ fs=2f

Angle relative to normal (degrees)

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

(b) No interpolation, Fs = 2 Fsignal

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0
Response of beamforming 16 antennas, d=0.5 λ fs=2f

Angle relative to normal (degrees)

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

(c) Linear interpolation, Fs = 2 Fsignal

Figure 5.4: Response of an phase array antenna with time delay, beam di-
rection of arrival 45 degrees

24 Beam forming algorithms

5.2 Complex multiplication

The complex multiplication method uses processing on the individual signals
of multiple antennas to create one beam at a time. The phase shift introduced
by the spacing of the antennas is compensated with a complex multiplication.
After this multiplication all signals from one direction are in phase with each
other and a cumulative signal can be made by adding all signals together.
This is under the assumption that narrowband signals are processed.

5.2.1 Quadrature and in-phase signals

For the algorithm to work, every sample in the time domain needs to be
manipulated in phase. The signal gathered by the ADC consists of a real
signal, but does not yet contain phase information in its samples. This can
be seen when a momentarily value is studied. When, for example, a real
value from the ADC is sampled, its value could be `2'. With this information
it is not possible to know what the phase of a sinusiodional is.

One way to represent complex signals which can include phase informa-
tion is using quadrature signals. Together with a real signal, an extra signal
is created which lags 90 degrees in phase. For example, when together with
the real `2' an 90 degrees o� `1' signal is present, they represent a phase of

tan

(
1

2

)
= 27

degrees. So to store phase information in samples a secondary signal is
needed. This signal is called a quadrature signal. In the analog domain, this
signal can be created with the use of a local oscillator (LO); at one side the
direct LO signal and at the other side a 90 degrees shifted LO signal. These
signals are multiplied with the received signal and because of this they are
called in-phase and quadrature signals.

5.2.2 Hilbert transformer

A Hilbert transformer can also be used to construct a quadrature signal with
the in-phase signal as input. This is done by shifting positive frequencies
-90 degrees and negative frequencies 90 degrees. In [12] a transformation is
made from the frequency domain to the time domain. The formula which
describes the Fourier relation is;

F

(
1

πt

)
= −j · sgn(f) (5.3)

5.2 Complex multiplication 25

where

sgn(x) =

{
1 if x ≥ 0

−1 if x < 0

The right part of equation 5.3 represent the Hilbert function in the fre-
quency domain. The positive frequencies get a -90 degrees shift through the
multiplication in the frequency domain with −j, while the negative frequen-
cies get a multiplication with j in the frequency domain.

The Fourier transform of the Hilbert function consists of imaginary values
only. In the time domain, the function 1/πt can be approximated by a set of
sine waves. By using this time domain function of the Hilbert transformer, it
is possible to implement the Hilbert function using a Finite Impuls Response
(FIR) �lter. Filter coe�cients can be calculated by MATLAB and an example
of an impulse response is shown in �gure 5.5.

0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Hilbert impuls response

x

A
m

pl
itu

de

Figure 5.5: Impulse response of a Hilbert �lter

The Hilbert �lter is approximated using a FIR �lter, which introduces
extra calculation requirements for the algorithm to �nish. The number of
calculations required by a FIR �lter depends on the number of coe�cients
used. For every coe�cient a multiply accumulate instruction needs to be
executed. In general the e�ects of using more coe�cients for FIR �lter design
are: the delay of the signal increases, the approximation improves and more
calculations are needed.

26 Beam forming algorithms

An example Hilbert FIR �lter is designed with MATLAB. It is a 16th order
�lter which has 17 coe�cients. The frequency response is shown in �gure 5.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

1

2
Hilbert frequency response

Normalized Frequency (x π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 5.6: Frequency response of a Hilbert FIR �lter

As seen in �gure 5.5, half of the coe�cients are zeros. In an optimal
implementation, multiplications where these zero-coe�cients are involved can
be skipped as they do not in�uence the result, resulting in only half the
multiply accumulate (MAC) instructions as normal. The example 16th order
�lter can with some added control be processed with 8 MAC instructions.

The signal which travels through the Hilbert �lter experiences a group
delay of half the �lter length. This delay is introduced in FIR �lter design,
the FIR �lter applies a convolution with the coe�cients. The coe�cients
represent the impulse response of a desired frequency response. Because this
impulse response is not causal, this impulse response is shifted in time over
half the �lter length.

The delay must also be given to the in-phase signal. To accomplish this,
a group delay block is introduced in the signal path of the in phase signal.

5.2.3 Algorithm

The main algorithm consist of the multiplication of the in phase and quadra-
ture signal (from now on the combination of these signals is called a complex
signal) with a phase shifting vector (ρk). This vector is given a magnitude of

5.2 Complex multiplication 27

one and a phase which is based on formula 4.3.

ρk = 1 · ej·ψk (5.4)

With the complex exponent this results in a complex vector. The signal needs
to be multiplied with this constant complex vector (ρk). A complex value
is a pair of real values. For a complex multiplication four multiplications of
real values are processed.

A schematic overview of the total Hilbert �lter + Complex Multiplication
system is given in �gure 5.7.

Beam

Q

I

Antenna ADC

Grp delay

Hilbert
Q

I

mac mac

mac mac

Figure 5.7: Schematic signal �ow with complex multiplication

5.2.4 Computational complexity

The previous description consists of two steps. First, for each antenna a
Hilbert process is started to create a complex signal, second, for each beam
the complex multiplication has to be performed. The �rst step uses the FIR
�lter order (H) divided by 2 MAC instructions for each sample moment.
This is done for all N antennas. The second step uses four MAC instructions
for all N antennas, for each B beams and for each sample moment (Fs). In
formula form this becomes

(H/2 ·N +B ·N · 4)× Fs (5.5)

multiplications per second.

28 Beam forming algorithms

5.3 Fast Fourier transform processing

With the use of a Fast Fourier Transform (FFT) phased array signals can
be processed in a single algorithm to multiple beams. The FFT therefore
re-uses intermediate calculations. It is more e�cient than the phase shift
method.

5.3.1 Quadrature and in-phase signals

The FFT processing also requires a complex signal. This is because the FFT
is an optimisation of the complex number multiplication and requires phase
information. If this is not done, a FFT can not separate the negative and
positive frequencies. These negative and positive frequencies form the left
and the right intercept angles of the phased array antenna.

5.3.2 A spatial Fast Fourier Transform as beam former

The FFT processes all the antenna signal sampled at a speci�c point in
time. This method creates N beams from an array of N antennas. The FFT
algorithm computes the discrete Fourier transform (DFT) of a signal (x[n]),
the equation of the DFT is:

X[k] =
N−1∑
n=0

W nk
N x[n] (5.6)

where

W nk
N = e−j

2π
N
·nk (5.7)

A schematic representation of the algorithm is presented in �gure 5.8.

5.3.3 Computational complexity

In the case of N antennas and a sampling frequency Fs, to create the same
number of beams as antennas the FFT algorithm needs [4]

4 · (N/2) · log2(N) · Fs (5.8)

multiplications per second.

5.4 Comparison of algorithms 29

Antenna ADC
I and Q pair

Beams

Grp delay

Hilbert
Q

I

Antenna ADC

Grp delay

Hilbert
Q

I

Spatial
Fast Fourier
Transform

I and Q pair

Figure 5.8: Schematic signal �ow with FFT processing

5.4 Comparison of algorithms

The algorithms explained in this chapter use di�erent amount of resources
from a processor. To give an impression about the relative computational
capacity needed by the three algorithms, a �gure is made. Figure 5.9 shows
such a comparison. On the vertical axis the number of multiply accumulate
instructions needed on each sampling moment is given. On the horizontal
axis the number of input antennas is given. The methods of complex multi-
plications and FFT uses a Hilbert pre-�lter of 16th order.

An example, the FFT approach with 128 antennas takes about 4 · 103 · Fs
MAC instructions. This means that 4000 MAC instructions have to be exe-
cuted each time the antenna ADCs take a new sample.

30 Beam forming algorithms

2 4 8 16 32 64 128 256 512 1024 2048 4096
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Antennas

M
ul

tip
lic

at
io

ns
 x

 F
s

Computational load

True Time delay (linear interpolating)
Complex multiplications + Hilbert filter
Fourier Transform + Hilbert filter
Complex multiplications + Hilbert filter (N−Beams)

Figure 5.9: Computational complexity of di�erent algorithms with respect
to number of antennas. For complex multiplication processing and FFT
processing a Hilbert �lter of 16th order is used.

Chapter 6

Testplatform design

6.1 Introduction

The test platform is built on a development board of Xilinx [17]. This de-
velopment board has a FPGA, a number of input, output peripherals and
is equipped with hardware to build an embedded system. The FPGA is a
Virtex II Pro, this FPGA has next to the standard FPGA slices also block
RAMs, multiplier slices and two PowerPCs. A PowerPC is a general pur-
pose processor. For a beam forming testplatform audio signals are taken
to be evaluated. Audio signal can be made with a predetermined spectrum
and with the use of microphones these signals can be received. The received
analog signal is converted with analog to digital converts (ADC) to a digital
signal. These digital signals lines are connected to the FPGA.

6.2 Development

Developing a system on the development board can be done with the use of
the Xilinx Platform Studio (XPS) software [18]. The studio delivers support
for a hardware project with multiple software projects. The project is usually
started with a �base system builder� wizards [16] which gives a foundation
for the rest of the project. The wizard needs a �User Peripheral Repository�
which gives a description of the development board. The output of the
wizard consists of a complete (compilable) project which can be downloaded
for evaluation.

This package of software delivers multiple tools for designing and debug-
ging a hardware software integrated system. The XPS software is used to
create a design for beam forming with the Montium and the ADCs. The two
most used software programs in this package are;

32 Testplatform design

Impact

Impact is a tool that can be used to program the development platform.
This tool support all methods for con�guring and handles the �le translation
between di�erent formats. The board can be con�gured in a number of ways,
for example, it can directly be programmed through the embedded platform
USB connection, it can be con�gured with the use of the onboard �ash PROM
or it can be con�gured with the use of a Compact Flash card. Downloading
software is done using Boundary Scan (IEEE 1149.1 /IEEE 1532).

Integrated Software Environment

The �Integrated Software Environment� (ISE) is the environment used by
XPS to synthesize hardware designs. The hardware designs (for example
VHDL descriptions) are managed by XPS and are compiled with this pro-
gram. The input is a hardware description language and the output are net
lists and place-and-route information.

6.3 System design

The system design is shown in �gure 6.1, main parts are the Montium, the
ADC interface and the PowerPC. The Montium TP is synthesized from its
VHDL source and con�gured into FPGA space. For interfacing with the
ADCs an interface is build in VHDL, this interface is described in appendix
A. This VHDL interface is synthesized and con�gured into the FPGA next
to the Montium.

XPS de�nes two kinds of busses: a Processor Local Bus (PLB) and an
Onboard Peripheral Bus (OPB). The PLB is the (memory) bus of the Pow-
erPC, the OPB is in turn connected to the PLB. The Montium and the ADC
interface are interconnected with the OPB.

6.3 System design 33

P
ro

ce
ss

or
 L

oc
al

 B
us

 (P
LB

)
O

nb
oa

rd
 P

er
ip

he
ra

l B
us

 (O
P

B)

PLB 2 OPB

Montium Tile
Processor

0x80.00.00.00 (256M)

OPB ADC
Interface

0x40.70.00.00 (64K)0x40.60.00.00 (64K)
RS-232
Interface

0x40.00.00.00 (1G)

PowerPC

PLB: 32 bits addressing

Instruction mem

Data memory

0xff.fe.00.00 (128K)

0x21.80.00.00 (64K)

AD
module

mic
mic

AD
module

mic
mic

AD
module

mic
mic

AD
module

mic
mic

Figure 6.1: Hardware design of the testplatform

34 Testplatform design

6.4 Beam former data �ow

The testplatform design uses audio signals as source and applies beam form-
ing on these audio signals. These input signals are made with the use of
8 microphones and are converted with 8 ADCs. The ADCs are embedded
on an ADC-module, a single module consists of two ADC from National
Semiconductors type ADCS7476 [19]. The modules digital signal lines are
connected to the development board and are connected to FPGA pins. From
here the processing is done on the FPGA chip, the data �ow of the di�erent
processing stages are shown in �gure 6.2 and 6.3 for the di�erent methods.

The data �ows are annotated with processing algorithms (above the
blocks) and mapping information (beneath the blocks). The blocks are given
a functional description.

AD
module

AD
module

OPB ADC
Interface

P
P
C

Spacial Proc.
on

Montium TP

Spatial Proc.
on

PPC

Extern
hardware

VHDL
description

Hardcore
processor

IP core
VHDL description

Hardcore
processor

Host
PC

RS-232
Serial port

Signal
sampling

Sampling
management Buffer Time Delay or Phase

Shift algorithm
Signal power
calculation

Sending
information

Displaying
information

Figure 6.2: Data �ow of a single stage (Time Delay or Phase Shift) process

AD
module

AD
module

OPB ADC
Interface

P
P
C

Spacial Proc.
on

Montium TP

Spatial Proc.
on

PPC

Extern
hardware

VHDL
description

Hardcore
processor

IP core
VHDL description

Hardcore
processor

Host
PC

RS-232
Serial port

Signal
sampling

Sampling
management Buffer FFT

algorithm
Signal power
calculation

Sending
information

Displaying
information

Spacial Proc.
on

Montium TP

IP core
VHDL description

Hilbert FIR
Filter algorithm

P
P
C

Hardcore
processor

Buffer

Figure 6.3: Data �ow of a double stage (Hilbert and FFT) process

Chapter 7

Mapping beam forming

algorithms to recon�gurable

hardware

7.1 Introduction

This chapter will show how the previously explained algorithms have been
implemented on the Montium processor. First the Time Delay algorithm
implementation is explained. Then the implementation of a Hilbert �lter
together with the Complex Multiplication. Finally it is shown how the results
of the Hilbert �lter can be used for the Fast Fourier Transform.

The algorithm implementations are made for a system with 8 input an-
tennas/channels.

7.2 Time Delay

The Time Delay algorithm consists of bu�ering, interpolation and summa-
tion. The following implementation is for a system which consists of 8 an-
tennas, also called channels in this text. A trade o� is made which combines
interpolation with a feasible amount of processor power. The implementation
made is an algorithm which uses a linear interpolation. Linear interpolation
stores two samples in the registers and gives weights corresponding linearly
to the distance of the required time and the sampling time. The resulting
frequency response of this implementation is shown in �gure 5.3.

The Montium receives samples, one sample Xk,i for each channel (k) for
each sampling time (i) and outputs a single value for each sampling time.
The output sample Yi is the calculated beam.

36 Mapping beam forming algorithms to recon�gurable hardware

In the following sections these steps are explained. The steps are for
a single channel. The Montium is a parallel machine and the steps can
be performed for 5 channels in parallel; each Processing Part handles one
channel at a time.

Bu�ering

Bu�ering is done with the use of a cyclic bu�er. This bu�er uses the memories
of the Montium. Each channel is given its own memory, because the Montium
is equipped with 10 memories it can serve 10 channels. A cyclic bu�er is
formed by incrementing the pointers with a modulo function. Two pointers
are introduced, one writepointer which stores the location where the bu�er
is �lled and one readpointer where the bu�er is read.

The pointers are stored in registers of the ALU. When a sample is calcu-
lated these pointer are incremented. In each iteration, incoming samples (X)
are stored at the position of the writepointer and a sample at the readpointer
is forwarded to a register (R).

Interpolation

The sample stored in the register is multiplied with an interpolation coe�-
cient and stored in a register, mathematical:

A = R[n] · Cinterpolation[1]

In the CDL1 code the interpolation coe�cients Cinterpolation[1] and Cinterpolation[2]
are called FIRST and SECOND, respectively. In CDL code the interpolation is:

// Multiply NEWREGm1 (c1) sample with FIRSTm1 coeff. (b2)

alu p3c1 fmul p3b2 sadd p3es -> p3ws

In the next clock cycle the previous sample X[n − 1] = R[n − 1] is used
and multiplied with the second interpolation coe�cient. In the same clock
cycle this value is added to the previously calculated value A:

I = R[n− 1] · Cinterpolation[2] + A

clock

// Multiply OLDREGm1 (b1) sample with SECONDm1 coeff. (c2)

alu p3b1 fmul p3c2 sadd p3es -> p3ws

Now an interpolated sample I is calculated for this channel. This sample
(Ik,i) is used for summation.

1Montium source code

7.2 Time Delay 37

Figure 7.1: Memory and ALU register mapping

Summation

Summation is done by adding all samples Ik,i from the di�erent processing
parts together to form the resulting output sample Yi. Summation is done
with the use of the east-west connections of the ALUs. The summation of dif-
ferent processing parts is done in parallel with interpolation. The calculated
value A becomes then a cumulative value for 4 channels and is calculated by
adding Ik,i for k = 0 to 3. In the second stage (channels 4 to 7) this value is
added with Ik,i for k = 4 to 7.

In the �rst stage;

Yi =
3∑

k=0

Yk,i

and in the second stage;

Yi =
7∑

k=4

Yk,i + Yi

The output sample Yi is a sample for the beam calculated.

38 Mapping beam forming algorithms to recon�gurable hardware

Clock cycles

The algorithm on the Montium uses 10 cycles for one output sample2. This
can only be seen in the source code, provided in appendix B. For the mul-
tiplication 4 cycles are used, 4 more for pointer updating and 2 for input,
output communications.

2The Montium processor is a complex processor which can do a lot in parallel. The
explanation of the mapping is not a one to one mapping in clock cycles. Because of
performance enhancement, re-ordering and re-scheduling of processing is performed.

7.3 Hilbert �ltering 39

7.3 Hilbert �ltering

The complex multiplication implementation is made with a preprocessor
which �lters the incoming data. This �lter is a Hilbert FIR �lter which
generates information about the phase of the signal received. This Hilbert
�lter is implemented as a FIR �lter in an optimized way. And is capable to
process multiple channels in parallel.

The Montium receives as before a sample (Xk,i) for each channel (k)
every sampling time (i). These samples are �ltered and the Hilbert stage
will output two values: the �ltered quadrature (Im) value and the in-phase
value (Re).

The number of samples which have to be calculated is preferred to be a
power of 2. This results in an e�cient mapping on the Montium AGUs. The
implemented Hilbert �lter is a 16th order �lter. The �lter coe�cients (Cj) are
calculated by MATLAB. This results in 17 coe�cients of which 9 (rounded to
the nearest 16 bits number representation) are zero, 8 coe�cients remain to
be calculated by the processor. The frequency response of a 16th order �lter
is given in �gure 5.6.

Bu�ering

First the Hilbert �lter bu�ers the incoming samples Xi in a cyclic bu�er
(which is a modi�ed version of [14]). The algorithm is made for 8 input
channels in the spatial domain which are stored in the �rst 8 memories of
the Montium. These bu�ers are split in two sections of which the odd and
even temporal index (i) of Xk,i are separated. In the current implementation,
these odd and even samples are split up in two partitions of the memory, each
8 samples long.

Filtering

The Hilbert coe�cients (Cj) are stored in an additional memory, memory 9,
of the processor. This memory is used by all processing parts to multiply the
incoming data with.

Imk,i = Xk,(i−j) · Cj + Imk,i for j = 1 till 8

Group delay

This implementation also generates a value for the in-phase signal. This
value is calculated by addressing the cyclic bu�er half the order of samples

40 Mapping beam forming algorithms to recon�gurable hardware

back.
Rek,i = Xk,(i−O/2) for O = Order of �lter

Clock cycles

The algorithm on the Montium uses 21 cycles for one sampling time. For
the multiplication 2 · 8 cycles are used, 2 for overhead of pointers and 3 for
input, output communications.

7.4 Complex Multiplication

The output of the Hilbert �lter is stored in registers. The complex multi-
plication (CM) continues processing with these values. It should multiply
the complex signal pairs (Im and Re) with complex coe�cients. It does this
only to the extend that it calculates the resulting real values (Re). The re-
sult of the imaginary value (Im) is not calculated. This is done because the
post-processing stage, power calculation, does not require a complex signal.

Clock cycles

The algorithm on the Montium uses 7 cycles for one sampling time. For the
multiplication of 8 complex signal pairs with 8 coe�cients 5 cycles are used,
1 for overhead and 1 for input, output communications.

A complex signal pair multiplication requires 4 clock cycles on one pro-
cessing part, now only 2 clock cycles are used. Because one processing part
handles two channels, the processing parts need 4 clock cycles. For the �nal
summation of all 8 signals the accumulated results of the processing parts
are added in a �nal summation clock cycle.

7.4.1 Results

The test setup is made with the development board (chapter 6) and the
Montium con�guration for CM.

The test is made with a signal generator, generating a sinus with a RMS
value of 126mV (�gure 7.3(b)). This signal is split in 8 and fed through
the inputs of the ADC and is beam formed in the Montium processor. The
PowerPC calculates the power received. This test signal should result in a
power of

20 ∗ log(126mV × 8) = 60.069dBmV

In �gure 7.3(a) the output signal in shown and a value of 59.925 in calculated
by the PowerPC. This result shows a large resemblance with what is expected.

7.5 Fast Fourier Transform 41

Figure 7.2: Memory and ALU register mapping

7.5 Fast Fourier Transform

The Fast Fourier Transform (FFT) implementation uses the results of the
Hilbert FIR �lter as input data. The stream of Rek,i and Imk,i (complex)
values of the Hilbert �lter are �rst stored in a temporal bu�er in the PowerPC
(see section 6.4). When the bu�er is �lled, these complex values are streamed
toward the FFT algorithm.

Implementation

The implementation of the Fast Fourier Transform is supplied by [5] as a
binary con�guration �le. The implementation calculates the FFT of the input
samples and does reordering of the output samples afterward. Reordering is a
technique that enables a logical output order of the samples of the FFT. The
core of a FFT routine delivers its output samples in a bit-reversed order.

The implementation uses 29 clock cycles in the Montium simulator (see
section C.4). The implementation uses;(

N

2
+ 2

)
log(N) (7.1)

42 Mapping beam forming algorithms to recon�gurable hardware

(a) Output spectrum of test setup, hy-
perterminal output

(b) Input signal for test setup, generated
with a function generator

−100 −50 0 50 100
40

45

50

55

60

65

70

75

80
Response from Beam Former 50

(c) Output spectrum of feed with signal
generator (other setup), Matlab output

−100 −50 0 50 100
20

30

40

50

60

70

80
Response from Beam Former 100

(d) Output spectrum of an audio source
at a distance of around 2 meters, Matlab
output

Figure 7.3: Response of an beam former implementation with Complex Mul-
tiplications

clock cycles for the FFT algorithm. In this case it should use 6 ∗ 3 = 18
cycles, the additional cycles are used for reordering.

7.6 Mapping results

A comparison of the di�erent implementations is given. Table 7.1 shows
the clock cycles minimum needed for calculating all multiply accumulate
instructions. These are based on the formulas in chapter 5 and are the ideal
values. The table shows the clock cycles needed in the implementations as
given in this chapter.

The number of ideal clock cycles used are calculated based on the assump-
tion that every processing part handles two channels. In the implementation

7.6 Mapping results 43

this results in the most e�cient mapping and a fair comparison of ideal and
implemented values are possible then.

Algorithm Ideal Implemented Remarks
Time Delay 4 10 1st order interpolation, 1 beam
Phase Shift 20 29 Re/in-phase output only, 1 beam
Phase Shift 24 33 Complex output, cycle usage is an estimation
Hilbert FIR 16 21
FFT 12 29 Complex output, N beams,

does also reordering in implementation

Table 7.1: Clock cycle usage of algorithms

44 Mapping beam forming algorithms to recon�gurable hardware

Chapter 8

Applications

A beam former can be designed for di�erent application purposes. For
these di�erent purposes, the design parameters di�ers considerably. First an
overview of di�erent Montium implementations with their operation speed
will be given. Then a number of possible scenarios are given in which beam
forming can be applied.

8.1 Montium processing throughput

The current Montium implementation on the BCVP1 reaches clock speeds
of around 6 MHz. For some applications mentioned in this chapter this is
not su�cient high. In the Annabelle2 chip clock speed of 25 MHz (worst
case) to 100 MHz (best case) are reached. For this chip a 100 MHz Montium
clock speed will be assumed. A future implementation of the Montium with
pipelining could reach clock speeds till 500 MHz, this is hyphotetical. The
current Montium features east-west connections which spread throughout 5
ALU's. In chip design, such long combinational paths slow down maximum
clock speeds. In an improved design of the Montium, which handles these
connections otherwise, such higher clock speed can be expected.

A Montium features 5 ALUs which can do 1 MAC/ALU. With these
implementations a throughput in Million Multiply Accumulate (MMAC) in-
structions per second is given, in platforms with multiple Montiums, the total
throughput in MMAC is given:

1BCVP is a �rst generation concept validation platform and houses three Montiums
2Annabelle is equipped with four second generation Montiums

46 Applications

Clock speed MMAC·s−1 Platform
6 MHz 90 BCVP
20 MHz 100 Xilinx Virtex II Pro implementation
100 MHz 2000 Annabelle chip
500 MHz 2500 Future expected implementations

In the following sections three scenarios are given and a estimation is
made concerning the required processing speed.

8.2 Speech beam forming

In a situation of a room with multiple speakers and possible interferer sources
a beam former system can be useful. To listen to individual speakers one
beam can be used. This system can apply beam forming to separate di�erent
sources and only give one source ampli�cation. The system can be equipped
with a second beam to scan for interference.

For speech an upper frequency of 4 kHz is used. A case is sketched to
perform beam forming with two beams. Speech occupies a large bandwidth
from around 400Hz till 4kHz. For such a signal, a system with a Time Delay
(TD) algorithm would be suitable because it can handle wideband signals.

Design parameters in such a system could be as follows:

Method TD
Maximum frequency 4 kHz
Sample rate 8 kHz
Reception 16 microphones
Interpolation 32 order
Number of beams 2 beam

The interpolation order is set to 32 to obtain a su�ciently low noise level.
The reception equipment with the number of microphones depends on the
room and the number of speakers. In this situation a processing requirement
is given with the use of equation 5.2 and results in:

(1 · 32 + 1) · 16 · 2 · 8k = 8448k MAC ≈ 9MMAC (8.1)

instructions per second.

The resulting processing requirements for this scenario should be possible
to implement on the current BCVP.

8.3 Quality audio beam forming 47

8.3 Quality audio beam forming

In a situation of a live concert for example, a beam former system which
separates audio sources from di�erent directions can be designed. Such audio
system will be given the full frequency range of the human ear of around 20
kHz. For audio storage devices often a sampling frequency of 44.1 kHz is
used. This sampling frequency will also be used for this proposed system.

Because of the use of a wideband audio signal, again the use of the Time
Delay (TD) algorithm is preferred. In a live concert, multiple audio sources
can be distinguished and processed for recording purposes. For such a situ-
ation the system will be given 32 beams and a su�cient interpolation order.

Method TD
Maximum frequency 20 kHz
Sample rate 44.1 kHz
Reception 32 microphones
Interpolation 32 order
Number of beams 32 beam

In this situation a processing requirement is given with the use of equation
5.2 and results in:

(1 · 32 + 1) · 32 · 32 · 44.1k = 1490MMAC (8.2)

instructions per second.

The resulting processing requirements for this scenario has increased
around a factor 150 with respect to the previous situation. These require-
ment should be possible to implement in the Annabelle chip. The algorithm
is suitable to be divided over more processors.

8.4 Radar beam forming

For a radar application electromagnetic waves are used to recover objects.
Radar sends out (high) power waves and objects which are present in these
power waves re�ect power back to the radar antenna. By processing the
signals received back at the antenna, information about the size, distance
and speed of the objects can be revealed.

Beam forming can be used in this situation to separate di�erent signals
from di�erent directions. Radar applications use high frequency signals, in

48 Applications

the order of GHz, for output waves. The signal received back (from the same
order of GHz) is converted down to a suitable frequency for digitalisation.
The required sampling frequency will then be in the order of MHz. For a
high spatial resolution a high number of antenna elements is used. For such a
system an algorithm like complex multiplications or Fast Fourier Transform
can be used.

Method CM
Maximum frequency 20 MHz
Sample rate 40 MHz
Reception 256 antennas
Hilbert �lter 16 order
Number of beams 1 beam

In this situation a processing requirement is given with the use of equation
5.5 and results in:

(16/2 · 256 + 1 · 256 · 4)× 20M = 61440MMAC (8.3)

instructions per second.

The resulting processing requirements for this scenario are very high. For
this 31 Annabelle chips or 25 future Montiums (500MHz clock speed) are
required. When adopting a system which supplies an Annabelle chip for
each antenna, each such a chip requires 240MMAC per antenna for beam
forming. This could be done with a single Montium (500 MMAC·s−1) from
one of the four Montiums in an Annabelle chip.

Chapter 9

Conclusion and Recommendations

9.1 Conclusion

Di�erent mathematical methods are suitable for implementation on digital
processors. The Montium processor is used in the veri�cations of these algo-
rithms and can be con�gured e�ciently. The implementation on the Xilinx
development board shows that the Montium processor can apply these al-
gorithms in real-time in an actual system. The Montium in a single setup
performs well for audio applications. Also an advantage is that the algo-
rithms do not use complex branch instructions but are mainly forward �lter
calculations.

In the Complex Multiplication method the Hilbert �lter was originally
not predicted. This extra �lter greatly increases the amount of processing
required by digital processors.

In chapter 8, the scenario of a radar beam former is described. This
scenario puts high requirements for a beam former. Because of the low
speed of the Montium, multiple processors are needed. For radar designs the
current implementation of the Montium can be used for beam forming. A
system with multiple cores or chips is suitable for processing.

The Montium's full design features a logic function array in its ALUs.
This logic function array is currently not used in the methods of Time Delay
or Complex Multiplications. The FFT method can use scaling in between
di�erent stages, this scaling is done with the use of the logic function array.
The Montium can be adapted for speci�c purposes, in applications where
no FFT processing is needed the logic function array can be left out of the
design. This could save space in a �nal design.

50 Conclusion and Recommendations

9.2 Recommendations

9.2.1 Partial recon�guration

The Montium is currently programmed with complete sets of con�guration
code. When the processing is switched to another algorithm the complete
program memory is rewritten. The Montium also has the option for partial
recon�guration [15], which could be used to switch faster between di�erent
algorithms.

The option of partial recon�guration also makes another change possible.
For the Time Delay method, beam steering delay parameters and interpo-
lation coe�cients are in registers. Updating these coe�cients takes two ad-
ditions on the ALU at this moment. The coe�cients are stored in registers
to support multiple channels on one processing part. When these delay pa-
rameters are moved to the Montium AGUs, the AGU can take care of the
additions and saves two clock cycles. In this new situation, the Montium will
need to be recon�gured, by a master, with new coe�cients.

9.2.2 Scalability

For high demanding beam forming applications and the possibility to support
further post-processing a system with a lot of computational power is needed.
Within the CRISP project a chip with 64 Montium will be developed. In the
design of such a chip, to be suitable for a radar beam forming application,
it will have to provide high speed input/output and interconnect, as well as
high speed inter-processor connections.

The speed of the processors in such a chip should be suitable for high
speed computations. A speedup of the current Montium clock is preferred
above the possibility to be able to use the current east-west connections of
the Montium ALUs. The east-west connections are not often used in the
implementation. This can be a starting place for optimization.

Bibliography

[1] Skolnik, M.I., Introduction to Radar Systems, 3rd ed. New York:
McGraw-Hill, 2001

[2] Visser, Hubregt J., Array and Phased Array antenna basics, John
Wiley & Sons, Chichester, 2005

[3] Godara, Lal Chand, Smart Antennas, Boca Raton: CRC Press,
2004

[4] Paul M. Heysters, Coarse-Grained Recon�gurable Processors, Flex-
ibility meets E�ciency, Ph.D Thesis, 2004

[5] Recore Systems, P.O. Box 77, 7500AB Enschede, The Netherlands

[6] J.G. bij de Vaate, S.J. Wijnholds and J.D. Bregman, Two
Dimensional 256 Element Phased Array System for Radio Astron-
omy, Technical report, www.astron.nl/tl/thea/publications, Astron, The
Netherlands

[7] C. Alakija and S.P. Stapleton, A Mobile Base Station Phased
Array Antenna, Simon Fraser University, Canada, IEEE Wireless Com-
munications, June 1992

[8] I. Chiba, R. Miura, T. Tanaka and Y. Karasawa, Digital Beam
Forming Antenna System for Mobile Communications, IEEE AES Sys-
tems Magazine, September 1997

[9] T. Gebauer, H.G. Göckler, Channel-individual Adaptive Beam-
forming for Mobile Satellite Communications, IEEE Journal, Vol. 13
No. 2, February 1995

[10] L. Zhuang, C.G.H. Roeloffzen, R.G. Heideman, A. Borreman,
A. Meijerink, and W.C. van Etten, Single-chip optical beam form-
ing network in LPCVD waveguide technology based on optical ring res-

52 BIBLIOGRAPHY

onators, Proceedings of International Topical Meeting on Microwave
Photonics (MWP'2006), IEEE France F1.4., Oct 2006

[11] P. Barton, Digital Beam Forming of Radar, IEE Proc. 127 No. 4,
August 1980

[12] www.complextoreal.com,

[13] Advanced Telecommunications Research Institute International (ATR),
2-2 Hikaridai, Kyoto 619-02, Japan

[14] Albert Molderink, Mapping FIR �lters on a Montium, Technical
report, University of Twente, 2006

[15] MSc. K.H.G. Walters, Cognitive Radio on a recon�gurable platform,
M.Sc. thesis, University of Twente, 2007

[16] Xilinx, EDK Base System Builder (BSB) support for XUPV2P Board,
Xilinx (2005), www.xilinx.com

[17] Xilinx, Xilinx University Program Virtex-II Pro Development System,
Hardware Reference Manual, Xilinx (2005), www.xilinx.com

[18] xilinx, Embedded System Tools Reference Manual, Embedded Devel-
opment Kit EDK 8.1i, Xilinx (2005), www.xilinx.com

[19] National Semiconductors, Datasheet
ADCS7476/ADCS7477/ADCS7478, National Semiconductors (2007),
www.national.com

[20] M.D. van de Burgwal, Hydra Protocol Speci�cation, Technical
report, University of Twente (2007).

[21] Recore, Simsation Compiler Getting Started Guide, Recore (2007)

[22] Recore, Simsation Simulator Quick Reference Guide, Recore (2007)

List of Figures

1.1 Schematic representation of a line antenna array, top view . . 2
1.2 Total system with processing stages 3

4.1 Schematic representation of two array elements with a wavefront 13
4.2 Response of phased array processing using �t processing, angle

of -90 to 90 degrees in 16 steps 15
4.3 Response of an phase array antenna with 4 (red), 16 (blue) and

64 (green) antennas, using complex multiplication to perform
beam forming . 15

5.1 Schematic of signal �ow with time delay using bu�ers and
interpolating . 20

5.2 Impuls response of linear interpolation (blue) and an ideal
sinc(x) interpolation (red) . 21

5.3 Frequency response of linear interpolation (blue), an ideal
sinc(x) interpolation (red), a 32th order approximation (green)
and a 64th order approximation (black) 21

5.4 Response of an phase array antenna with time delay, beam
direction of arrival 45 degrees 23

5.5 Impulse response of a Hilbert �lter 25
5.6 Frequency response of a Hilbert FIR �lter 26
5.7 Schematic signal �ow with complex multiplication 27
5.8 Schematic signal �ow with FFT processing 29
5.9 Computational complexity of di�erent algorithms with respect

to number of antennas. For complex multiplication processing
and FFT processing a Hilbert �lter of 16th order is used. . . . 30

6.1 Hardware design of the testplatform 33
6.2 Data �ow of a single stage (Time Delay or Phase Shift) process 34
6.3 Data �ow of a double stage (Hilbert and FFT) process 34

7.1 Memory and ALU register mapping 37

54 LIST OF FIGURES

7.2 Memory and ALU register mapping 41
7.3 Response of an beam former implementation with Complex

Multiplications . 42

A.1 ADC module . 55
A.2 Communication signals between ADC and development board 57

C.1 An instantiation of the Chameleon template 74
C.2 The Montium tile including Hydra 75
C.3 An ALU of the Montium. The functional units are all capable

of various logical operations. For a complete listing please
refer to [4] . 77

Appendix A

VHDL ADC interface design

The used analog digital converters are from Digilent Inc, modules PMOD-
AD1. These modules features two 12 bit ADC with �ltering and a 1 MSps
sampling frequency. They are equipped with the ADC chips from National
Semiconductors type ADCS7476. A picture and electrical diagram are shown
in �gure A.1.

The chips use a serial communication interface, which is not provided in
the standard Xilinx development software. Therefore an interface is made
separately as a VHDL module. This interface is connected to the OPB bus
and uses the OPB clock of 10MHz to create a bit-clock and a sample-clock
for the ADC's.

(a) Picture (b) Electrical block dia-
gram

Figure A.1: ADC module

The modules are connected with the use of a module interface board
(MIB), this interface board is connected to the low speed expansion header
0 of the development board. The interface board has 8 6-pin connections, on
each such connection an ADC module can be connected.

56 VHDL ADC interface design

ADC protocol

The interface consists of four signal lines, the ADC is driven with a sample
clock which initiates a sample/hold and conversion. The bit-clock is then
used to clock the output of the di�erent bits. 16 bits are transmitted the
�rst 4 are leading zeros, the bits following is the sampled value. The pinning
of the ADC modules is shown in table A.2. The protocol is veri�ed with the
use of a logic analyzer/digital scope (Rigol, DS 1102CD). The signal �ow
of two channels is recorded for 2 samples times, this is shown in �gure A.2,
consult table A.2 to recover the corresponding meaning of signal pins.

Memory interface

The VHDL interfaces with the OPB bus, in the hardware design the interface
is given a base address. The interaction with the OPB is memory mapped.
The mapping of di�erent registers is shown in table A.1. The interface is
free-running and is clocked from the OPB bus. Samples are in registers and
are read out with a leading 0x50.00.0 or a leading 0x51.00.0 for hardware
channel 0 or 1 respectively.

Channel O�set addr. MIB Data format
1 4 1 0x50.00.0v.vv
2 8 1 0x51.00.0v.vv
3 12 2 0x50.00.0v.vv
4 16 2 0x51.00.0v.vv
5 20 3 0x50.00.0v.vv
6 24 3 0x51.00.0v.vv
7 28 4 0x50.00.0v.vv
8 32 4 0x51.00.0v.vv
15 56 8 0x50.00.0v.vv
16 60 8 0x51.00.0v.vv
Sattus reg. 64 - 0xAB.CD.xx.yy

Table A.1: Memory mapping of the interface, v.vv represent a 12 bits sampled
value, xx and yy the status bits of channel 0 and 1.

57

Pin Male/Digital Conn. Direction Description
Sample clock 1 I Shown in �gure A.2 as �D4�
Data line 0 2 O Shown in �gure A.2 as �D3�
Data line 1 3 O Shown in �gure A.2 as �D2�
Bit clock 4 I Shown in �gure A.2 as �D1�
Ground 5 I
VCC 6 I 3.3 Power supply from dev. board
Pin Female/Analog Conn. Direction Description
Analog inp 0 1 I
Analog inp 1 3 I
Ground 2,4,5 I/O
VCC 6 O

Table A.2: Hardware pin description of the ADC module

Figure A.2: Communication signals between ADC and development board

58 VHDL ADC interface design

Appendix B

Source code of implementation

B.1 Time Delay

// Time Delay Implementation for Beam Forming

// Register mapping:

//

// A B C D

//1 OLDREGm2 OLDREGm1 NEWREGm1 NEWEREGm2

//2 FIRSTCOm2 FIRSTCOm1 SECONDCOm1 SECONDCOm2

//3 writepointer2 readpointer2 buffer

//4 writepointer1 readpointer1 buffer ONE

//

//

// Memory mapping:

// | *ALU 1* | *ALU 2* | *ALU 3* | *ALU 4* | *ALU 5*

// | X1 X5 | X2 X6 | X3 X7 | X4 X8 |

// | m1 m2 | m1 m2 | m1 m2 | m1 m2 |

// | | | | |

//

// Lane Input/Output Mapping:

// Input:

// Lane1: X1, X5

// Lane2: X2, X6

// Lane3: X3, X7

// Lane4: X4, X8

//

// Output: result to lane ext4!

/***

INITIALISATION

***/

clock

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 p5m1 p5m2 |=0

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 p5m1 p5m2 =0

60 Source code of implementation

clock

/***

PROCEDURE

***/

rep i <- 1 2 3 4

alu p.i.a4 -> p.i.o1, 0 -> p.i.o2 //Prepare readpointer1

end

nextSample:clock //1

mov ext1 -> p1m1 //Read input samples 1-4

mov ext2 -> p2m1

mov ext3 -> p3m1

mov ext4 -> p4m1

// Read sample from m1 at updated readpointer (b4) towards NEWREG (c1)

rep i <- 1 2 3 4

alu p.i.b4 add p.i.d4 -> p.i.o1

end

clock //2

mov ext1 -> p1m2 //Read input samples 5-8

mov ext2 -> p2m2

mov ext3 -> p3m2

mov ext4 -> p4m2

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.b4 //Store updated readpointer

mov p.i.o1 -> p.i.m1

agu p.i.m1 int load

end

// Move NEWREG to OLDREG, creating 1 sample delay

rep i <- 1 2 3 4

alu p.i.c1 -> p.i.o2, p.i.a4 add p.i.d4 -> p.i.o1

//writepointer++

//alu p.i.a4 add p.i.d4 -> p.i.o1

end

clock //3

rep i <- 1 2 3 4

mov p.i.o2 -> p.i.b1 //Store previous sample in OLDREG

mov p.i.o1 -> p.i.a4 //Store updated writepointer

end

rep i <- 1 2 3 4

mov p.i.m1 -> p.i.c1 //Read new sample

end

// Multiply NEWREGm1 (c1) sample with FIRSTm1 coeff. (b2), total summed result to p4d1

//Already prepare writepointer (a4) memories

alu p4c1 fmul p4b2 -> p4ws, p4a4 -> p4o2

rep i <- 2 3

alu p.i.c1 fmul p.i.b2 sadd p.i.es -> p.i.ws, p.i.a4 -> p.i.o2

end

alu p1c1 fmul p1b2 sadd p1es -> p1o1, p1a4 -> p1o2

clock //4

//Store intermediate result in buffer (d3)

B.1 Time Delay 61

mov p1o1 -> p4d3

// Multiply OLDREG (b1) sample with SECOND coeff. (c2)

alu p4b1 fmul p4c2 sadd p4d3 -> p4ws

rep i <- 2 3

alu p.i.b1 fmul p.i.c2 sadd p.i.es -> p.i.ws

end

alu p1b1 fmul p1c2 sadd p1es -> p1o2 //This is the output sample!

// Write sample at writepointer (a4) into (m1)

rep i <- 1 2 3 4

mov p.i.o2 -> p.i.m1 //This is not jet the updated pointer but the old pointer

agu p.i.m1 int load

end

clock //5

// move output from first 4 antennas to buffer p4c4

mov p1o2 -> p4c4

//update and set readpointer2

// Read sample from m1 at updated readpointer2 (c3) towards NEWREG (d1)

rep i <- 1 2 3 4

alu p.i.c3 add p.i.d4 -> p.i.o1

end

clock //6

//update writepointer2

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.c3 //Store updated readpointer2

mov p.i.o1 -> p.i.m2

agu p.i.m2 int load

end

// Move NEWREG to OLDREG, creating 1 sample delay //writepointer++

rep i <- 1 2 3 4

//alu p.i.d1 -> p.i.o2, p.i.b3 add 1 -> p.i.o1

alu p.i.b3 sub logic_true -> p.i.o1

end

clock //7

// read mem2 into newreg2 (d1)

// calculate newreg2*firstco2

rep i <- 1 2 3 4

mov p.i.o2 -> p.i.a1 //Store previous sample in OLDREG2

mov p.i.o1 -> p.i.b3 //Store updated writepointer2

end

rep i <- 1 2 3 4

mov p.i.m2 -> p.i.d1 //Read new sample

end

// Multiply NEWREG2 (d1) sample with FIRST2 coeff. (a2), total summed result to p4d1

//Already prepare writepointer2 (b3) memories

alu p4d1 fmul p4a2 sadd p4c4 -> p4ws, p4b3 -> p4o2

rep i <- 2 3

alu p.i.d1 fmul p.i.a2 sadd p.i.es -> p.i.ws, p.i.b3 -> p.i.o2

end

62 Source code of implementation

alu p1d1 fmul p1a2 sadd p1es -> p1o1, p1b3 -> p1o2

clock //8

// set writepointer2

// calculate oldreg2*secondco2

//Store intermediate result in buffer (c4)

mov p1o1 -> p4c4

// Multiply OLDREG2 (a1) sample with SECOND2 coeff. (d2)

alu p4a1 fmul p4d2 sadd p4c4 -> p4ws

rep i <- 2 3

alu p.i.a1 fmul p.i.d2 sadd p.i.es -> p.i.ws

end

alu p1a1 fmul p1d2 sadd p1es -> p1o2 //This is the output sample!

// Write sample at writepointer (b3) into (m2)

rep i <- 1 2 3 4

mov p.i.o2 -> p.i.m2 //This is not jet the updated pointer but the old pointer

agu p.i.m2 int load

end

set gpo1

clock //9

mov data p1o2 -> ext4 //Output the resulting sample!!!

clr gpo1

clock //10

frz

jmp nextSample

B.2 Phase Shift 63

B.2 Phase Shift

/**

Beamsteering with Hilbert filtering and Complex multiplication

8 antennes

=> Real output only (Re x Re + Im x Im) (2MACs)

=> For demonstration purposes on the Xilinx Virtex-II Pro Development System

**/

/* Register mapping:

A B C D

1 X[] temp_reg H[] accumulate register

2 p1d2:Endresultof8antennas

3 Qco_m1 YQ(i) (result Hilb m1) YI(i)(X(i-5)) Ico_m1 <= antennas 1-4

4 Qco_m2 YQ(i) (result Hilb m2) YI(i)(X(i-5)) Ico_m2 <= antennas 5-8

*/

// Memory mapping:

// ext1 ext2 ext3 ext4

// | *ALU 1* | *ALU 2* | *ALU 3* | *ALU 4* | *ALU 5*

// | M1 M2 | M1 M2 | M1 M2 | M1 M2 | M1 M2

// | | | | |

// | X1 X5 | X2 X6 | X3 X7 | X4 X8 | H[] Input samples

// | Odd |=0 | | | |

// | Even|=64 | | | |

// Output result to lane ext4!!!

//agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 p5m1 p5m2 =0

//agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 p5m1 p5m2 |=0

def NANTENNAS

def NTABSHILBERT

def NSAMPLES

def ODD

def EVEN

def XMASK

def DEBUG

let ODD := 0

let EVEN := 64

let NSAMPLES := 256

let NANTENNAS := 8

let NTABSHILBERT := 8

let XMASK := (NTABSHILBERT-1)

clock

64 Source code of implementation

//Set agu's of X and of H on right positions

//Initialise

proc initialise

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 = 0 //X1 till X8

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= 0 //Odd or even X'range

agu p5m1 = 0, p5m1 |= 0 //H

agu p5m2 = 0, p5m2 |= 0 //Input samples, should be streaming, now for simulation purpose

end

//Load sample

proc loadSample

mov ext1 -> p1m1

mov ext2 -> p2m1

mov ext3 -> p3m1

mov ext4 -> p4m1

clock

mov ext1 -> p1m2

mov ext2 -> p2m2

mov ext3 -> p3m2

mov ext4 -> p4m2

clock

end

proc load0

rep i <- 1 2 3 4

alu 0 -> p.i.o1

end

end

proc calcHilbertm1

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.d1 //Store accumulate register

mov p5m1 -> p.i.c1 //Load H

mov p.i.m1 -> p.i.a1 //Load X

alu (p.i.a1 fmul p.i.c1) sadd p.i.d1 -> p.i.o1

end

end

proc storeAccd3

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.b3 // This is the momentarily YQ component //Store accumulate register

agu p.i.m1 -= 4 & XMASK

end

clock

rep i <- 1 2 3 4

mov p.i.m1 -> p.i.c3 // This is the momentarily YI component

agu p.i.m1 += 4 & XMASK

end

end

proc calcHilbertm2

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.d1 //Store accumulate register

mov p5m1 -> p.i.c1 //Load H

mov p.i.m2 -> p.i.a1 //Load X

B.2 Phase Shift 65

alu (p.i.a1 fmul p.i.c1) sadd p.i.d1 -> p.i.o1

end

end

proc storeAccd4

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.b4 // This is the momentarily YQ component //Store accumulate register

agu p.i.m2 -= 4 & XMASK

end

clock

rep i <- 1 2 3 4

mov p.i.m2 -> p.i.c4 // This is the momentarily YI component

agu p.i.m2 += 4 & XMASK

end

end

proc mem2odd

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= ODD

end

proc mem2even

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= EVEN

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 ++ & XMASK

end

proc multCV

rep i <- 1 2 3 4

alu (p.i.a3 fmul p.i.b3) -> p.i.o1 //calculate YQ * -Qcoefficient = Qr

(m1)

end

clock //1

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.b1

alu (p.i.c3 fmul p.i.d3) sadd p.i.b1 -> p.i.o1 //calculate YI * Icoefficient + Qr = CMresult (m1)

end

clock //2

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.d1

alu (p.i.a4 fmul p.i.b4) sadd p.i.d1 -> p.i.o1 //calculate YQ * -Qcoefficient + CMr(m1) = Qr (m2)

end

clock //3

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.b1

alu (p.i.c4 fmul p.i.d4) sadd p.i.b1 -> p.i.o1 //calculate YI * Icoefficient + Qr = CMresult (m1)

end

clock //4

mov p1o1 -> p1d1, p2o1 -> p2d1, p3o1 -> p3d1, p4o1 -> p4d1

alu p4d1 -> p4ws

rep i <- 2 3

alu (p.i.d1 sadd p.i.es) -> p.i.ws

end

alu (p1d1 sadd p1es) -> p1o1

clock //5

mov data p1o1 -> gb02 -> ext4 // End result, total of 8(Q*Q + I*I)

end

66 Source code of implementation

clock

call initialise

nexttwosamples: clock

call mem2odd

clock //1

call loadSample //2 3

llc lc1 NTABSHILBERT - 2

call load0 //0 clocks

a: clock //4 5 6 7 8 9 10

call calcHilbertm1 // X1 X2 X3 X4 //Calculate ant1-4, odd sample //0clocks

agu p1m1 p2m1 p3m1 p4m1 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 a

clock //11

call calcHilbertm1 // X1 X2 X3 X4

agu p5m1 ++ & XMASK

call storeAccd3 // 1 clock //12

llc lc1 NTABSHILBERT - 2

call load0

b: clock //13 14 15 16 17 18 19

call calcHilbertm2 // X5 X6 X7 X8 //Calculate ant5-8, odd sample

agu p1m2 p2m2 p3m2 p4m2 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 b

clock //20

call calcHilbertm2 // X5 X6 X7 X8

agu p5m1 ++ & XMASK

call storeAccd4 //21

call load0

clock //22

call multCV // Do complex vector multiplication //5clock cycles 23 24 25 26 27

clock //28 output samples

call mem2even

clock //29

call loadSample

llc lc1 NTABSHILBERT - 2

call load0

c: clock

call calcHilbertm1 // X1 X2 X3 X4 //Calculate ant1-4, even sample

if DEBUG == 1

agu p1m1 p2m1 p3m1 ++ & XMASK

else

B.2 Phase Shift 67

agu p1m1 p2m1 p3m1 p4m1 ++ & XMASK

endif

agu p5m1 ++ & XMASK

loop lc1 c

clock

call calcHilbertm1 // X1 X2 X3 X4

agu p5m1 ++ & XMASK

call storeAccd3

llc lc1 NTABSHILBERT - 2

call load0

d: clock

call calcHilbertm2 // X5 X6 X7 X8 //Calculate ant5-8, even sample

if DEBUG == 1

agu p1m2 p2m2 p3m2 ++ & XMASK

else

agu p1m2 p2m2 p3m2 p4m2 ++ & XMASK

endif

agu p5m1 ++ & XMASK

loop lc1 d

clock

call calcHilbertm2 // X5 X6 X7 X8

agu p5m1 ++ & XMASK

call storeAccd4

call load0

clock

call multCV // Do complex vector multiplication

clock

set gpo1

clock

frz

clr gpo1

clock

frz

jmp nexttwosamples

68 Source code of implementation

B.3 Hilbert Filter

/***

Beamsteering with Hilbert filtering and Complex multiplication

8 antennes

=> Real output only (Re x Re + Im x Im) (2MACs)

=> For demonstration purposes on the Xilinx Virtex-II Pro Development System

***/

/* Register mapping:

A B C D

1 X[] temp_reg H[] accumulate register

2 p1d2:Endresultof8antennas

3 Qco_m1 YQ(i) (result Hilb m1) YI(i) (X(i-5)) Ico_m1 <= antennas 1-4

4 Qco_m2 YQ(i) (result Hilb m2) YI(i) (X(i-5)) Ico_m2 <= antennas 5-8

*/

// Memory mapping:

// ext1 ext2 ext3 ext4

// | *ALU 1* | *ALU 2* | *ALU 3* | *ALU 4* | *ALU 5*

// | M1 M2 | M1 M2 | M1 M2 | M1 M2 | M1 M2

// | | | | |

// | X1 X5 | X2 X6 | X3 X7 | X4 X8 | H[] Input samples

// | Odd |=0 | | | |

// | Even|=64 | | | |

// Output result to lane ext1-4!!!

//Input

//ext1: X_1 X_5 | | X_1 X_5 | | X_1 X_5 |

//ext2: X_2 X_6 | | X_2 X_6 | | X_2 X_6 |

//ext3: X_3 X_7 | | X_3 X_7 | | X_3 X_7 |

//ext4: X_4 X_8 | | X_4 X_8 | | X_4 X_8 |

//Output: | | | | |

//ext1: | Q_1 I_1 Q_5 I_5 | | Q_1 I_1 Q_5 I_5 | | Q_1 I_1 Q_5 I_5

//ext2: | Q_2 I_2 Q_6 I_6 | | Q_2 I_2 Q_6 I_6 | | Q_2 I_2 Q_6 I_6

//ext3: | Q_3 I_3 Q_7 I_7 | | Q_3 I_3 Q_7 I_7 | | Q_3 I_3 Q_7 I_7

//ext4: | Q_4 I_4 Q_8 I_8 | | Q_4 I_4 Q_8 I_8 | | Q_4 I_4 Q_8 I_8

def NANTENNAS

def NTABSHILBERT

def NSAMPLES

def ODD

def EVEN

def XMASK

def DEBUG

let DEBUG := 0 // This is for simulation in Matlab, use PP 1-3 in debug mode, instead of 1-4

B.3 Hilbert Filter 69

let ODD := 0

let EVEN := 64

let NSAMPLES := 256

let NANTENNAS := 8

let NTABSHILBERT := 8

let XMASK := (NTABSHILBERT-1)

//Initialise

proc initialise

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 = 0 //X1 till X8

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= 0 //Odd or even X'range

agu p5m1 = 0, p5m1 |= 0

agu p5m2 = 0, p5m2 |= 0

end

proc loadSample

mov ext1 -> p1m1 //1

mov ext2 -> p2m1 //2

mov ext3 -> p3m1 //3

mov ext4 -> p4m1 //4

clock

mov ext1 -> p1m2 //5

mov ext2 -> p2m2 //6

mov ext3 -> p3m2 //7

mov ext4 -> p4m2 //8

end

proc load0

rep i <- 1 2 3 4

alu 0 -> p.i.o1

end

end

proc calcHilbertm1

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.d1 //Store accumulate register

mov p5m1 -> p.i.c1 //Load H

mov p.i.m1 -> p.i.a1 //Load X

alu (p.i.a1 fmul p.i.c1) sadd p.i.d1 -> p.i.o1

end

end

proc outputAccd3

rep i <- 1 2 3 4

//mov p.i.o1 -> p.i.b3

// This is the momentarily YQ component //Store accumulate register

mov data p.1.o1 -> gb0.(i+1) -> ext.i

agu p.i.m1 -= 4 & XMASK

end

clock

rep i <- 1 2 3 4

//mov p.i.m1 -> p.i.c3

mov data p.i.m1 -> gb0.(i+1) -> ext.i // This is the momentarily YI component

agu p.i.m1 += 4 & XMASK

end

end

70 Source code of implementation

proc calcHilbertm2

rep i <- 1 2 3 4

mov p.i.o1 -> p.i.d1 //Store accumulate register

mov p5m1 -> p.i.c1 //Load H

mov p.i.m2 -> p.i.a1 //Load X

alu (p.i.a1 fmul p.i.c1) sadd p.i.d1 -> p.i.o1

end

end

proc outputAccd4

rep i <- 1 2 3 4

//mov p.i.o1 -> p.i.b4 // This is the momentarily YQ component //Store accumulate register

mov data p.i.o1 -> gb0.(i+1) -> ext.i

agu p.i.m2 -= 4 & XMASK

end

clock

rep i <- 1 2 3 4

//mov p.i.m2 -> p.i.c4 // This is the momentarily YI component

mov data p.i.m2 -> gb0.(i+1) -> ext.i

agu p.i.m2 += 4 & XMASK

end

end

proc mem2odd

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= ODD

end

proc mem2even

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 |= EVEN

agu p1m1 p1m2 p2m1 p2m2 p3m1 p3m2 p4m1 p4m2 ++ & XMASK

end

clock

call initialise

nexttwosamples: clock //

call mem2odd

call loadSample // 1

llc lc1 NTABSHILBERT - 2

call load0

a: clock // 2 3 4 5 6 7 8

call calcHilbertm1 // X1 X2 X3 X4 //Calculate ant1-4, odd sample

agu p1m1 p2m1 p3m1 p4m1 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 a

clock // 9

call calcHilbertm1 // X1 X2 X3 X4

agu p5m1 ++ & XMASK

call outputAccd3 //10

llc lc1 NTABSHILBERT - 2

call load0

b: clock // 11 12 13 14 15 16 17

call calcHilbertm2 // X5 X6 X7 X8 //Calculate ant5-8, odd sample

B.3 Hilbert Filter 71

agu p1m2 p2m2 p3m2 p4m2 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 b

clock // 18

call calcHilbertm2 // X5 X6 X7 X8

agu p5m1 ++ & XMASK

call outputAccd4 // 19

clock // 20

call mem2even

call loadSample // ++1

llc lc1 NTABSHILBERT - 2

call load0

c: clock // 21 22 23 24 25 26 27

call calcHilbertm1 // X1 X2 X3 X4 //Calculate ant1-4, even sample

agu p1m1 p2m1 p3m1 p4m1 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 c

clock //28

call calcHilbertm1 // X1 X2 X3 X4

agu p5m1 ++ & XMASK

call outputAccd3 //29

llc lc1 NTABSHILBERT - 2

call load0

d: clock //30 31 32 33 34 35 36

call calcHilbertm2 // X5 X6 X7 X8 //Calculate ant5-8, even sample

agu p1m2 p2m2 p3m2 p4m2 ++ & XMASK

agu p5m1 ++ & XMASK

loop lc1 d

clock //37

call calcHilbertm2 // X5 X6 X7 X8

agu p5m1 ++ & XMASK

call outputAccd4 //38

call load0

clock //39

set gpo1

clock //41 (++1)

frz

clr gpo1

clock

frz

jmp nexttwosamples

72 Source code of implementation

Appendix C

Montium tile processor

Here an explanation of the Montium tile processor is given. This chapter is
copied from the report of [15] with permission from the author.

C.1 Introduction

The Montium tile processor is an embedded processor primarily used for
streaming applications. It was developed as part of the Ph.D. thesis of Paul
Heysters [4]. It is part of a system on chip template called Chameleon in
which several tiles of di�erent types are combined in a network on chip.
Currently the Montium processor only exists as a VHDL description and is
implemented on several FPGAs. This chapter describes the assets of the
Montium that play a major role in the implementation of the sparse FFT. It
is formost a reference, it provides some background information in order to
understand the following chapters.

C.2 Coarse grain recon�guration

Coarse grain recon�gurability is a term which addresses the amount of recon-
�gurability the hardware has. This ranges from a completely rigid architec-
ture often normal ASIC like architectures to completely �exible, GPPs resign
in this area. The Montium architecture is coarse grain recon�gurable. The
Montium tile processor is a domain speci�c accelerator for the Chameleon
System-on-Chip template. The template consists out of several di�erent
tiles connected through a Network-on-Chip. An instantiation of such an
Chameleon template looks like the one in �gure C.1.

74 Montium tile processor

Figure C.1: An instantiation of the Chameleon template

C.3 Architecture

The Montium consists of 5 ALUs connected to 10 memories through an
interconnect network, see �gure C.2. Through east-west connections, the
ALUs are also connected to eachother. It is characterised by its low power
consumption and high e�ciency. For example it is capable of doing a complex
multiplication in a single clockcycle. The Montium is a 16 bit �xed pointed
architecture.

Sequencer

The Montium is controlled through the sequencer. The sequencer implements
a state machine that determines the instructions for the di�erent components
of the Montium. A program consists out of one or more states that are
repeated. The sequencer takes care of this process. The number of sequencer
of instructions are limited but their diversity is enormous. This diversity
comes from the fact that all the hardware components can be con�gured in
di�erent ways and combined in di�erent combinations and then used in the
sequencer.

AGU

The AGU of the Montium architecture acts like a pointer in C. The AGU
points towards the value in the memory from which can be read or to which
can be written. The AGU, like a C pointer, can be assigned towards a
single spot in the memory agu p1m1 = 11 or it can be altered by normal
operators. The limiting factor is the amount of di�erent AGU instructions.
Each memory has its own AGU and each AGU can have only 8 di�erent

1The AGU of memory p1m1 points to memory location 1

C.3 Architecture 75

Figure C.2: The Montium tile including Hydra

76 Montium tile processor

instructions. This can be repeated almost inde�nitely and with operators
like ++ it is easy to reach all memory addresses with only 1 instruction.
An AGU does allow for more complex instructions which. For example:

agu p1m1 +=1 & 3 <-> 2 |= 2

This means that the AGU of memory p1m1 is increased by 1, it is masked
with 3, it is bit reversed over 2 bits and its base address is 2. When this AGU
would be initialised with 0 it would mean that the new AGU value would
point to 4: the initial value is 0, add 1, leads to 1, bit reverse this over 2 bits,
leads to 2. The base address was set to 2 already which with the previous
outcome leads to 4.
Another feature of the AGU is that it can get the value from the output of
an ALU. This means that any calculation from the ALU can be used as an
input of the AGU. This is mainly used for look-up-table purposes.

Interconnect

The interconnect is the network which connects the memory to the registers
of the ALUs. It is a transport network which can be con�gured in di�erent
ways to accommodate the source and destination that is needed.

ALU

The ALU of the Montium allows for many di�erent calculations on the �ve
possible input values. The ALU consists out of two parts. The �rst part can
make di�erent combinations of four di�erent functional units. The functional
units can do binary operations as well as boolean operations. The can then
be fed into a multiplier which resides in the second part of the ALU. The
adder and subtractor are also in this area. Next to the initial inputs it can
take the input from the east input connection and provide an output to the
west output. For a more comprehensive description of the ALU please read
section 5.3 from [4].

Hydra

The Hydra provides the connection to the outside world. It is the only means
by which input- and con�guration-data can reach the Montium and output
data can leave the Montium. Therefore it is also the only way to con�gure
the Montium. To distinguish between data, addresses and con�guration-data
all the values are tagged. The tag together with the data is called a �it. For
further information on these �its and their make-up, please read [20].

C.4 Application Development 77

Figure C.3: An ALU of the Montium. The functional units are all capable
of various logical operations. For a complete listing please refer to [4]

C.4 Application Development

Application development on the Montium is done on a normal pc from which
the compiled code can be either fed into the simulator or an actual Montium.
Most of the development is done using the simulator since it is the fastest.
The compiled code can also be read by a tool called by the Montium Con-
�guration tool. This tool is a graphical front end of all the con�guration
bits in the Montium. This allows for a bit wise con�guration which is a very
time consuming job and if possible needs to be avoided. It is however the
only tool that makes run-time recon�guration of the Montium possible and
is therefore a necessity.

CDL Programming Language

The CDL programming language is the basic assembler like language in which
the Montium is programmed. There is currently no C or higher level language
available. Although assembler like, there are some major di�erences. For
example clock cycles are explicitly declared which makes it possible to de�ne
explicit parallel calculations. The CDL language comes with a comprehensive
pre-processor. It allows for basic structures like for loops which make it
easier to generate the Montium code. For example when 100 clockcycles
need to be programmed it is su�cient to program 1 in a for loop and let the
pre-processor generate the other 99. For a complete overview of the CDL
language and its capabilities please read [21].

78 Montium tile processor

Simulator

There is a simulator available for the Montium. It is capable of simulating
the Montium including or excluding the Hydra. For input and output it
uses �les. These �les contain the con�guration data as well as the input
data. All the current register values of the Montium can be read in a tree
wise fashion like in the way �les are read in a *nix prompt or old DOS
prompt. This makes it di�cult to have certain values side by side since quite
a few directory changes could be needed. The simulator can single cycle step
through the code generated but there is no way of going back or to break at
a certain point. For more information on the simulator please read [22]
As of writing this thesis a second simulator is in development that does
have these features. Although it does not show as many parameters of the
Montium it is far more friendlier to use if only functionality of the algorithm
needs to be tested. It has a graphical Java frontend and has the capability
of stepping forward and backward and allows for a single breakpoint in the
code.

Matlab

Matlab is a tool to format the input and read the output �les. Matlab
scripts either format only the input data in the correct order when there
is no simulation of the Hydra. In this mode the compiled code is directly
read by the simulator and Matlab's task is only to format the input data. It
can also pack the con�guration data together with the input data when the
Hydra is part of the simulation. When the Hydra is simulated, Matlab's task
is to tag all the con�guration and input data according to the speci�cation
[20].

	Introduction
	Introductie
	Phased array antenna processing
	Signal Model
	Processing
	Problem description

	Literature
	Introduction to Radar Systems
	Array and Phased Array Antenna Basics
	Smart Antennas

	Related work
	Radio Astronomy Receivers
	Optical Beam Forming Networks
	Mobile Satellite Reception
	Base Station Communication
	The Montium, a coarse-grained reconfigurable processor

	Methods for beam forming
	Time delay
	Phase shift
	Butler or FFT transform
	Antenna multiplicity
	Beam width and side lobes
	Advanced beam steering

	Beam forming algorithms
	Time delay
	Algorithm
	Interpolating
	Computational complexity
	Simulation

	Complex multiplication
	Quadrature and in-phase signals
	Hilbert transformer
	Algorithm
	Computational complexity

	Fast Fourier transform processing
	Quadrature and in-phase signals
	A spatial Fast Fourier Transform as beam former
	Computational complexity

	Comparison of algorithms

	Testplatform design
	Introduction
	Development
	System design
	Beam former data flow

	Mapping beam forming algorithms to reconfigurable hardware
	Introduction
	Time Delay
	Hilbert filtering
	Complex Multiplication
	Results

	Fast Fourier Transform
	Mapping results

	Applications
	Montium processing throughput
	Speech beam forming
	Quality audio beam forming
	Radar beam forming

	Conclusion and Recommendations
	Conclusion
	Recommendations
	Partial reconfiguration
	Scalability

	List of Figures
	VHDL ADC interface design
	Source code of implementation
	Time Delay
	Phase Shift
	Hilbert Filter

	Montium tile processor
	Introduction
	Coarse grain reconfiguration
	Architecture
	Application Development

