The use of rare key indexing for
distributed web search

MSc thesis by Koen Tinselboer

Abstract

In the last few years we have seen a rise in the of peer-to-peer applications in areas like file
sharing [1][2][3]. However distributed information retrieval applications have not taken off yet.
In such an application every peer (website) helps to maintain a global index of all information in
the global document collection. When a website is updated the P2P search engine index can also
be directly updated by the peer. Each peer only needs to contribute a limited amount of disk space
and network bandwidth. Groups of websites can even form their own search engine which
specializes in a their area of expertise. In this way the search process can be driven more by the
Internet community.

In the first part of this thesis the previous work done in the field of distributed information
retrieval is discussed. Most of the recently developed systems (like ALVIS [4], Minerva [5] and
pSearch [6]) use a conceptually global but physically distributed index. This index is distributed
using a distributed hash table (DHT [7]) based approach. The scalability of such systems is very
good and the reported retrieval performance also approaches that of a centralized information
retrieval system. However each project uses a different collection and a different set of queries to
test their application. Therefore we cannot compare them directly with each other.

In the second part I discuss the implementation and evaluation of a distributed information
retrieval system based on rare key indexing. Such an index stores sets of terms that appear near
each other in a limited number of documents. This approach was first presented as part of the
ALVIS project. In this thesis we tested the suitability of the approach for indexing and searching
a realistic collection of websites using a subset of the WT10g collection [8]. To measure
performance we look at the top-10 overlap between a single term index and a multi term index. In
the best case the average overlap ratio was found to be only 7.5%. In the ALVIS project the
average overlap ratio was between 83% and 97% [9]. I outline several causes that attribute to this
huge difference. Based on the outcome of the experiments I have to conclude that the rare key
indexing method scales well. However its retrieval performance on a realistic collection of
websites is very poor. Therefore the rare key indexing method cannot be considered a good
choice for a distributed web search application.

Title:
The use of rare key indexing for distributed web search

Keywords:
distributed information retrieval, web search, P2P, highly discriminative keys

Supervisors:

Djoerd Hiemstra, 1* chair
Rongmei Li, 2™ chair
Pavel Serdyukov, 3™ chair

Preface

Before you lies my master thesis, which is the result of my graduation project of the master
program Computer Science (Information Systems Engineering track) at the University of Twente.
It is the result of more than half a year of research on distributed information retrieval.

P2P networks are widely used for several applications like file sharing, distributed computing,
news groups (usenet), voice-over-ip (voip) and streaming video. From the succes of these
applications and from the inherently distributed nature of the internet it follows that distributed
web search may be an interesting possibility. How feasibile such an approach could be in reality
is the topic of this thesis.

The main problem of distributed information retrieval is the issue of scalability. Peers need to
exchange knowledge about the information they offer, but peers cannot use too much bandwidth
so they need to choose which information to send. Therefore distributed information retrieval
systems need to find a fine balance between scalability and retrieval performance. As a part of
this graduation project a proof-of-concept application was developed which researched the
concept of using highly discriminative term sets, instead of a single-term index.

With this thesis, I conclude the master Computer Science and thus my studies at this university
come to an end. Therefore I would like to thank my girlfriend Femke for her continual moral
support during my studies. Furthermore my thanks go out to my parents for their support during
my time here. And last but not least, I would like to thank the members of the graduation
committee for their help and feedback during the project.

Koen Johan Tinselboer

Wierden, the Netherlands
September 2007

Luctor et emergo

Table of Contents

I IEEOAUCTION. ...ttt ettt et esb e et e sttt e st e e e btaeeesabeeeas 9
1.1 Problem StatemMENL........cccuiiiiiiieiie et e eteeeeieeeetee et e et e et e et e e e eaeesbeeesssaaaeeeeeeensnnaeeeeeannes 9
1.2 RESCATCH QUESTIONS. ...cciuviieiiiieiiiiieeiiee et e et ettt e et e e et e e ae e e eaeeeeaeeesseesnsseesnsaeennseeensseesnseas 10
1.3 TRESIS OULIINE. ...ttt sttt ettt e st e bt et e nbeeenbeeennee 11

2 Theoretical BACKGIOUNC..........c.iiiuiiiiieie ettt ettt be e e e e eebeeessnbaaeeens 12
2.1 Fundamental hardware CONSIIAINTS.coverueriirieriieieniierieee ettt 12
2.2 Name-based retrieval versus content-based retrieval............ccoocieviiieiieniiiiiineniiie e 12
2.3 Architecture 0f @ P2P SYSteM.....ccc.uiiiiiiieiiiccie et e e e e 13
B 1] o T) A B) PRSP 14
2.5 Routing and StOTaZE LaYET........ccecuiiieiiieeiieeciie ettt et e e aae e s e e e e e e nenes 14

2.5.1 P2P NetWOrK tOPOLOZIES.uvieuiieeieeiieiieeieeciee et eeite ettt e eteestaeesbeessaesnbeessnaaesennseeeennnns 15
2.5.2 Distributed Hash Tables (DHTS)......c.ccooouiiiiiiiiieiie e 18
2.6 Indexing and QUETY LAYET........cccuiiiiiiiieiie ettt ettt ettt e et e et e e e 19
2.7 RANKING LAYET ...ttt ettt ettt ettt e et e e bt e st e e beesneeeeeneee 23
2.8 P2P file sharing appliCationsS..........ccueeecuiieeiiiieiiiiieeiieeeiee et e et e saeeevee e eeeaaeeeraeesnneeennns 23
2.8.1 First generation: SETVET-CLIENL.........c.ceeriiiiiiieeiie et evee e e e earaeee s 24
2.8.2 Second generation: decentraliZation...........c.ceeveerueerieiiiienieeieeree e esiee e eseeeeeereee e 24
2.8.3 Third generation: anonymity for all.............ccccoviiiiiiiiiiiiiiee e 26
2.8.4 Fourth generation: streams over P2P...........ccoooiiiiiiiiii e 26

B REIALEA WOTK....eeceiiieiieeeee ettt e e e et e e te e e stbeeesaeeesseeensaeeensaeeeennnnnnes 27

3.1 Routing and storage layer implementations.............ccueereeeriienieeiiienieeiiesieee e 27
Bl L CAN ettt ettt b e et a et h ettt b et h et e e ebae e 27
R 8] 4 o) '« USRS USUPRRSPR 30

303 PaSIIY ittt ettt e st e e st e e s bt e e e e e e ntbaaeeeeeaan 31

I B 0] 1 o OO PP PPOUPUPORUPPPUPPRRN 31
31,5 SUIMIMATY...eiiiiiiiie ettt ettt e e e e e e et e e e esaaeeeeesstaeeeeannseeesannsseeesessseeesnnnnnnnes 32

3.2 P2P Information Retrieval SyStemS........cccveieiiiiiiiiiiiieeiie et 32
B2 L ALVIS ettt ettt ettt st b et eeh et e e nteeenaeenn 33
R\ 111 1<) o ¢ OO OUPRRURUUSRPROPRO 33
323 PIANCTP ...ttt b et et e e 35
3204 PSEATCH. ...ttt et ettt e et e e et e e e ntbeaeenneeas 36
3.2.5 COMPATISON.....utiiiierieeeiiieesiteeesiteeeitreesstaeeeaseessaeessseeeasseeassseeasseessseesssseesseeesseeessseeeeesnes 36

4 Design of the proof-of-concept appliCatioN.cccuiiiiiiieiiiieeieecee et e e e e 38
4.1 Introducing Highly Discriminative Keys (HDKS)........cooiiiiiiiiiniiieiecceeceee 38
4.2 Preprocessing the dOCUMENLS.cccvieiuiieiieiieeieeiee ettt ettt et ebeeeaaeebeesaeeenseeenes 38
4.3 Creating the Highly Discriminative Keys IndeX..........ccccoevieviiiiiieniiiiiieeiiee e, 39
4.4 Updating the global key-to-document indeX............ceecveeiierieiiiiinieeieeie e 42
4.5 EXCCULION OF @ QUETY.cuviiiitieiieeiiteiie ettt ettt ettt e st e et e st eeabeesaeeenbeesateenbeesnbeeeeenne 43

5 Experimental @Valuation............coccuiiiiiiiiiiie ettt eee et e et eeseaeeeeaeeesaeeeasaeaeeeeeennnnns 45
5.1 TSt COLLCTION. ...ttt ettt ettt sttt et be e b e st e ebneens 45
5.2 SCALADIIIEYttt sttt e 46
5.3 Retrieval PerfOrmManCe.........c.ueeeuieeeiiieeeiie ettt ettt e et e e et e e sae e e sbee e e s sarsaaeeeeeennnnsaeeeens 51
5.3.1 The Okapi BM25 Ranking fUnCtion............ceeervieeiiieeiieeeiieesiie e e e e e eiivreee e e 51
5.3.2 EXPerimental TESUILS.......c.ceoviiiiiiiiiieiiecie ettt ettt ettt e eetae e et e e e eneaeaeennneeas 51

5.4 Comparison With the ALVIS PIOJECL......c..eeivieiiieiiieiieeiieeie ettt ettt eree e e 53

6 Discussion and fUture WOTK..........cocuiriiiiiiiiiiiiiieeeeeee ettt 57
6.1 Inherent problems with the COMPATISON.........cccuiiiiiiriiieiiiiiiee e 57

6.2 Problems during implementation............cccueeruieeiierieniieerieeieesiee et eee e seeeeaeesreeeseeneeeenee 57

6.3 Suggestions for fUture WOTK............coouiiiiiiiiiiii e 58
7 CONCIUSIONS.eeiitiieiiieeciee ettt ettt e ettt e et e et e e e te e e sabeeessreeessseeesseeessseeessaeeessssseaeeeennsssseeaeeeennssnens 60
Appendix A — List of peers used in EXPETIMENTS........ccueervierieerieeriierieenieeereenseesaeenseesssreeessssseeeans 66
Appendix B — List of queries used in eXPeriments..........c.ccceueeereueeerireerieeesreeseeeeereeessseeessseeeeennns 67

List of Figures

Figure 2.1.: The typical four layers of @ P2P System...........ccccveeviiiiiiiiiiiieeeeeee e 14
Figure 2.2.: An unstructured P2P netWork..........occuiiiiiiiiiiieeiiece et 15
Figure 2.3.: Structured P2P networks. On the left a ring network, on the right a fully connected

TIEEWOTK .ttt ettt et e bttt e bt e e et e e bt e e st e e bt e eab e e bt e eab e e e eabb e e e s aanneeeea 16
Figure 2.4.: A hybrid P2P network with a centralized indeX.cccceeviriininiinieniiiieiieeene 16
Figure 2.5.: A hybrid P2P network with a distributed index.ccoceveeieniininiiniiiicnecee 17
Figure 2.6.: A typical hash function at Work.............cccviiiiiiiiiiiiiece e 18
Figure 3.1: CAN after adding NOAE Z..........c.ooeeouiiieiiieiiie ettt ee e e ae e are e sreee e e e eene 29
Figure 3.2: Routing example from node X tonode E...........cocoiiiiiiiiiiiiiiccceee 29
Figure 3.3.: A lookup for the data with ID 38 in a Chord data structure.............cccceeceevveenieeennenn. 30
Figure 3.4: The Minerva GUIL.........cooiiiiiiiiiiiiiiieieeeee ettt sttt 35
Figure 4.1.: The relationship DEWEENcc.cooiiiiiiiiiiiiiiiciieet e 41
Figure 5.1: The average number of KeyS Per PEETcc.eoviiiiiiiiiiiieieeeee e 46
Figure 5.2: Average size 0f @ POSTING LISt....cccuviiiiiiieiiiieciiiceie et e e e e 47
Figure 5.3: Average number Of POSHINGS PET PEEOT......cccvuvieerureeeiieeeiiieeeieeeeieeesieeeereeesreeenreeeeeeanes 49
Figure 5.4: Total number of postings in the INAeX..........cccceeriiriiiniieiierie e 50

List of Tables

Table 2.1: Comparison of P2P network topologies [7]......cceueeiieriiiiiianiieieeieeese e 18
Table 2.2: Variable definitions for the comparative scalability analysis..........ccccceeveeeericiiieeeeennnns 21
Table 2.3: Results of the scalability analysis for various P2P indexing strategies...............ccec...... 23
Table 4.1: An example of the effect of filtering on the amount of multi term keys....................... 42
Table 5.1: The number of queries with more then top-k results.........c.cecevieviiiiniininieiniieieene 52
Table 5.2: The overlap and posting lists sizes for queries with more then 10 results..................... 53
Table 5.3: Differences between the Reuters news corpus and the WT10g test collection............. 54

1 Introduction

Since the late nineties the internet has grown to hundreds of billions of webpages. Large scale
search engines like Google and Yahoo only index a fraction of the internet. Google for example
has dozens of datacenters worldwide providing a home to more than 450.000 servers [10]. So it is
has become almost impossible for a new web search engine company to compete with these
giants.

There is however an interesting alternative to centralized web search, namely distributed web
search. In the most extreme case every (sub)domain could provide it's own little search engine. A
meta search engine could then be used to query a select few of these little search engines to
retrieve the best results. If this could be done efficiently, then perhaps search results could be
more relevant or more up-to-date?

1.1 Problem statement

A little over ten years ago, in January of 1996, two PhD. students named Larry Page and Sergey
Brin started a little research project in an attempt to improve web search results. By analyzing
the links between websites they were able to improve the ranking of their results. A simple and
clean interface as well as text advertisements instead of graphical advertisements caused their
product (Google) to quickly become the de facto standard for web search.

The traditional centralized web search engines like Google, Yahoo and MSN have come to
depend on an ever increasing number of server farms. The market for web search is dominated by
a handful of multi-billion dollar companies and startups are having trouble to establish a foothold.
One possibility, which is researched in this paper, would be to look at the other side of the
spectrum.

A complete decentralization of web search could have several benefits, for example:

e There would be no need for huge server farms.

e Decentralized web search could be more tolerant to accidental failures or deliberate
attacks.

e A push scenario instead of a pull scenario could be used for the updates to the index.
Google has already realized that it needs to work together with web masters to index
new or changed web pages more quickly. Webmasters can create so called Sitemap files
[11], for example in the form of a RSS feed [12], which helps Google discover new
pages. Users however cannot directly control if and when Google's search bot checks
their Sitemap file. Therefore the use of Sitemap files cannot be considered a real push
scenario; they are just used to help Google index the web more quickly by summarizing
websites.

e Webmasters would became less dependent on the ranking Google assigns to their pages.
A lot of websites depend on Google for most of their traffic. There are now companies
that specialize in Search Engine Optimization (SEO), so webmasters can pay to achieve
higher rankings.

e The decentralized network would not belong to any company or individual in particular.
The Internet itself is inherently independent and distributed, so it would make sense to
be able to search the web using a distributed, independent web search network.

The feasibility of a P2P system that operates over the Internet mainly depends on its scalability.
Communication and storage costs need to stay reasonable even if the number of peers increases
to a very large number. If a network doesn't scale well it will eventually fail because of
bottlenecks in the network.

On the other hand P2P systems need to be able to achieve a retrieval performance similar to
centralized search engines. This balance is what makes research into this area interesting. If you
communicate too little, you cannot find what you're looking for. On the other hand if you
communicate too much the network is not scalable and thus not very feasibile in reality.

1.2 Research questions

During this project the main focus is on researching the feasibility of extremely distributed web
search. This research will consist of two parts, first researching existing distributed information
retrieval systems and their approaches. The feasibilty of a distribute information retrieval depends
on its scalability and its retrieval performance. The scalability of a system depends on how the
data (index, routing tables, etc) is stored and what data needs to be stored. Further on in this
thesis distributed hash tables (DHTs) are introduced, which are an excellent way to store data.
What is stored, for example the kind of index, is a topic on which there is more debate in the
community.

During the first part the following questions will be answered with respect to existing distributed
information retrieval systems:

e Which systems for distributed information retrieval already exist?

e What are the differences among them?

e Distributed information retrieval system in order to be scalable need to find a balance
between total knowledge of the global collection (= excellent retrieval performance) and
only local knowledge (= excellent scalability in terms of the index). What is their
approach to find the balance between retrieval performance and scalability?

e What are the advantages or disadvantages of the approach they use?

The second part of this thesis describes the a proof-of-concept application. This application will
demonstrate one approach to indexing that tries to achieve the right balance between scalability
and retrieval performance. An index contains a term (or a set of terms) and a list of references to
documents/peers where those term(s) can be found in. The list of references to documents (or
peers) is also known as a postings list.

The proof-of-concept will be based on the Highly Discriminative Keys (HDK) approach to
indexing which was recently developed as part of the ALVIS project [4]. This indexing method
was chosen because it offers a novel and scalable solution that also promises excellent retrieval
performance. Since the approach is very new, more research is needed to confirm its validity.
Both the ALVIS project and the HDK approach will be discussed in depth later on in this paper.
Several experiments will be conducted using the WT10g test collection to research how feasible

10

the approach really is. During this second part the following research questions will be answered
by those experiments:
e How does the average HDK vocabulary per peer scale?
e How does the average posting list size scale?
e How does the average number of postings per peer (index size) scale?
e What is the retrieval quality of the system compared to a centralized system, when using
top-k retrieval as a measurement?

1.3 Thesis outline

This thesis basically consists of two parts, a theoretical part and a more practical part. In chapter
two the basics of P2P applications will be discussed, followed by chapter three in which we have
a look at some of the major P2P information retrieval systems that exist today.

In the second part the design of a proof-of-concept application will be described. This application
will demonstrate a novel and scalable approach to indexing in a P2P distributed information
retrieval system. The design of this proof-of-concept will be discussed in chapter four, followed
by results from several experiments in chapter five. An overall discussion and suggestions for
future work can be found in chapter six. And finally in the seventh and final chapter we present
our conclusions.

11

2 Theoretical background

When one wants to look to the future, one first has to look at the present and the past. In this
chapter the theoretical background of P2P networks will be discussed. The theoretical
background information presented in this chapter will serve as a foundation for the rest of the

paper.

2.1 Fundamental hardware constraints

In a decentralized web search scenario there are limitations to certain costs. The most obvious are
storage and communication constraints [13].

Disk usage
There is of course a limit to the amount of disk space a peer can dedicate to the network. How
much a peer can use is of course very dependent on the server(s) that the website is running on.
Therefore it is important to limit the disk usage to an amount that is acceptable to all participating
webservers. This value depends on a number of design choices and network properties, including
but not limited to the following:
e Type of index: each peer can store just a local index, a part of a distributed global index or
the entire global index.
e Type of mapping: for example single-term-to-document or term-set-to-peer.
e Length of the posting lists: are just the top-k results stored or are all possible matches
stored?
e Exclusivity of the terms or term sets. Do we store all terms or term sets or do we, for
example, store only the ones that do not occur often.
e The number of documents or peers in the network.
e Compression techniques that are used.

Cost of communication

The communication costs of the P2P network should also be limited. Most of the bandwidth
should be used by the webserver and not the P2P search network. To keep communication costs
down the P2P network should be able to handle queries very efficiently. The more infrequent
indexing process can be somewhat less efficient.

2.2 Name-based retrieval versus content-based retrieval

Most people will relate the term P2P to popular file sharing applications. Using such an
application an user can for example search for all MP3-files that contain the string “Madonna” in
the filename. The user can then select and subsequently download a file from the list of results.
This kind of information retrieval is called name-based retrieval [14]. The system searches for
matches between query terms and document names or other document identifiers. In such a
scenario the user assumes that the MP3-file with the string “Madonna” in the filename really is
what it claims to be, namely an audio file that contains a song by Madonna. The user performs a
so called “known item” search, but he has no guarantee that the result is what he expects it to be.

12

Distributed information retrieval applications however cannot rely on for example just the title or
the url of a web page. The content of the web page needs to be examined so that a list of
keywords or perhaps a summary can be produced. This kind of information retrieval is known as
content-based retrieval [14]. Unfortunately content-based retrieval is inherently more complex
than name-based retrieval, especially in a distributed setting. As explained in the previous section
the peers are bound by several constraints like communication costs and storage costs. So
distributed information systems need to find a way to represent the contents of a document using
as little storage space and network bandwidth as possible, while the user can still find what he is
looking for. An optimum balance will result in good scalability as well as good retrieval results.

2.3 Architecture of a P2P system

P2P information retrieval systems need to accomplish a number of tasks like routing messages,
updating indexes and ranking results. To cleanly separate these concepts a layered architecture is
recommended. It is hard to make a general assumption about what is the best architecture for an
information systems so here we assume a very basic separation on the basis of the tasks that such
a system should perform. A typical separation into four layers can be seen in Figure 2.1 below.

L4. Ranking layer

L3. Indexing and querying

L2. Storage and routing

L1. Transport layer

Figure 2.1.: The typical four layers of
a P2P System.

The model is made up of four layers, from the lowest to the highest layer they are:

1. Transport layer. This layer deals with the transport of data between peers over a network
like the Internet using TCP/IP.

2. Routing and storage layer. The implementation of this layer depends heavily on the type
of network that is used. Most modern systems use a distributed hash table (DHT) as the
basis of their network. DHTs will be discussed in one of the following sections.

3. Index and query layer. This layer maintains an index structure of a document collection.
The document collection can be either local or global, depending on the design of the
network. Indexes are often conceptually global, but physically distributed on the routing
level. Queries are also handled by this layer.

13

4. Ranking layer. This layer implements the distributed document ranking that is needed
when query results are combined.

2.4 Transport layer

The Transport layer is the lowest layer in a P2P system. On this layer data is physically routed
through cables, routers, firewalls et cetera until it reaches its destination. Most P2P systems are
built to operate over the Internet so the time it takes for a message to be handled by the Transport
layer is of some importance. Usually the routing and storage layer will use data from the
Transport layer like the round trip delay time or the number of hops between to peers into
account. Peers that can be reached quickly may not just be preferred, in some cases they are
assigned more important tasks than other peers. Such a hybrid approach, in which some peers
have more responsibilities than others, will be discussed in the next layer.

2.5 Routing and storage layer

This layer deals with routing messages and storing data. In the first section the different network
topologies will be discussed and compared. The second section will discuss hash tables which are
the most commonly used data storage structure in P2P networks.

2.5.1 P2P network topologies

Different P2P systems use different network topologies. Which type of network topology is most
suited for a specific system depends heavily on the type of application. There are basically four
types of network topologies [15]:

1. Unstructured pure P2P

2. Structured pure P2P

3. Hybrid P2P with centralized indexing

4. Hybrid P2P with distributed indexing
Some papers will combine the hybrid network topologies into one type, however here they are
treated separately to illustrate the differences between them.

Unstructured pure P2P

The first two types are called pure P2P network topologies because in this type of network peers
are equal in function. Therefore there is also no kind of centralized control. The difference
between the two types is their structure. In an unstructured pure P2P network the peers are
connected to each other without any specific kind of structure.

14

Figure 2.2.: An unstructured P2P network.

Structured pure P2P
Peers in a structured network however are always a part of specific structure, for example a ring
or a fully connected network.

Figure 2.3.: Structured P2P networks. On the left a ring network, on the right a fully
connected network.

Hybrid P2P with centralized indexing

Hybrid P2P networks are networks which are not pure; that is to say the peers are not equal in
functionality. Some peers have more functionality as they provide additional indexing services. In
a hybrid P2P network with centralized indexing there is just one server that maintains an index of
all the information that is shared by the connected peers. In practice the index is usually provided
by a set of servers to handle the load. However to the peers 'outside' there appears to be just one
server. Often peers can however connect to multiple centralized indexes, which each offers its
own collection of information.

15

O = peer, hode

= superpeer, supernode,
ultrapeer, hub, directory
node

Figure 2.4.: A hybrid P2P network with a centralized index.

Hybrid P2P with distributed indexing

A hybrid P2P network can also use a distributed indexing approach in which the index is
distributed among a number of so called supernodes. These supernodes often not only maintain
the central index but also handle and route search requests from other peers. One could think of
these supernodes as high-speed motorways for indexing and search purposes. The actual
exchange of the information is usually handled directly between the peers, instead of via
supernodes. Supernodes are often dynamically assigned on demand, when a suitable candidate
peer is available. Usually the index is stored using a distributed hash table (DHT). The use of a
distributed index not only provides better scalability, it can also improve fault-tolerance by
duplicating parts of the index across several peers.

O = peer, hode

= superpeer, supernode,
ultrapeer, hub, directory
node

Figure 2.5.: A hybrid P2P network with a distributed index.

Comparison of the four P2P network topologies
Each of the four P2P network topologies discussed above has its own set of properties. To
compare them here we look at four criteria:

e Robustness; does the network still function if certain peers go down?

e Scalable; does the network scale well to thousand or even millions of peers?

e Flexible; is the assignment of peers flexible?

e Manageable; can you control the network by controlling part of it?

16

In the following table we see that unstructured pure P2P networks are very robust and flexible,
but they do not scale well and they cannot be managed. Structured P2P networks improve on this
implementation by making the network scalable. However the most popular type of P2P network
by far are the hybrid networks, in which so called supernodes (or directory nodes) are used to
steer the network. Hybrid P2P networks with a central index lack robustness, scalability and
flexibility because they depend on a central indexing server. This may however not be much of a
problem if there are a lot of indexing servers to choose from. Hybrid P2P networks with a
distributed index solve these issues by distributing the load and the responsibility for the index
over a dynamic number of supernodes. therefore this kind of network is not only robust and
flexible, but it also still manageable and very scalable.

Unstructured pure | Structured pure | Hybrid p2p with Hybrid p2p with
p2p p2p centralized distributed
indexing indexing
Robustness Yes Yes No Yes
Scalable No Yes No Yes
Flexible Yes No No Yes
Manageabl No Yes Yes Yes
e

Table 2.1: Comparison of P2P network topologies [15].

2.5.2 Distributed Hash Tables (DHTs)

The most frequently used approach to storing an index is a hash table. A hash function [16] is a
reproducible method which maps some amount of data onto a relatively small number. It creates
a digital fingerprint by substituting and transposing the data which results in a hash value. For an
example of a typical hash function see Figure 2.6. The example also illustrates an characteristic
property of a hash function; a small change in the input dramatically changes the output. Hash
functions are also widely used in the field of cryptography, for example to encode passwords.
Well known and widely used hash functions are SHA-1 [17] and the somewhat older MD-5 [18].

Input Hash value
Hash functions are ,
really handy ——» Hash function ——> D3)K4WWY
Hash functionsare L 4 Hash function ~ |—— UE93ND4R
really handy sometimes

Figure 2.6.: A typical hash function at work.

17

To guarantee that a hash value can be used as a fingerprint the hash function needs to ensure that
there are very few hash collisions. A hash collision is the event that two different inputs, produce
the same output. So if the hash value would be a person's fingerprint, this would be the event that
two different people have the exact same fingerprint. That would however be very unlikely as not
even identical twins have exactly the same fingerprints. In the field of computer science a small
chance that two different inputs map to the same output may however sometimes be acceptable if
it substantially increases the rate of compression. This will be discussed further along in this
section when Bloom filters are explained.

Distributed Hash Tables (DHTS)

A hash table is basically a long list of fingerprints, which enables a fast lookup of a data record.
In a P2P network the responsibility for the parts of the hash table is often divided among a
number of participating peers. Such a table is known as a distributed hash table (DHT) [7].The
underlying network topology is designed to efficiently route messages to the owner of any given
key. P2P network topologies are further discussed in the next section.

DHTs scale very well to large numbers of peers and they can handle the arrival and failure of
peers. A lot of P2P file sharing applications use distributed hash tables, but there also used in
other systems like cooperative web caching (coral), domain name services (DNS) and instant
messengers. However file sharing applications like Napster [19], Gnutella [20] and Freenet [21]
were among the first to use them to efficiently share information (files) over the internet.

DHTs have the following properties:

- Decentralized, each peers is responsible for a part of the total table.

- Scalable, the system can scale easily as the load is divided among the peers.

— Fault tolerant, the continuously joining, leaving and failing of nodes should not have much
impact on the system.

A distributed hash table consists of an abstract key space, for example the set of 160-bit strings.

Peers are responsible for part of this key space, according to a certain key space partitioning

scheme. An overlay network connects the peers so they can find the peer corresponding to any

given key in the key space.

Each peer is a part of the overlay network and as such it maintains a set of links to other peers.
The actual implementation differs but each distributed hash table topology implements a variant
of the following concept. If a peer does not own key & then the node either knows which peer
does or it knows which peer is closer to k than itself. Using a greedy routing algorithm it is then
easy to get a message across from one peer to any other in the network. To limit the number of
hops a trade off has to be made with respect to the number of neighbors a peer can have. Most
implementations choose this number to be O(logN) which incurs a route length of O(logN).

Bloom filters

Some research papers [13] have suggested the use of Bloom filters to strongly compress the
index. A Bloom filter [22] is a very space-efficient probabilistic data structure in which false
positives (but not false negatives) are possible. It can be used to test if a certain element is
member of a set. However the members of the set themselves cannot be retrieved. An empty
Bloom filter is a bit-array of m bits, all set to 0. One also needs k& hash functions to map a key

18

value to one of the array positions. To add an element the & hash functions are used to calculate
the array positions that have to be set to 1. If one needs to test if the element is part of the set then
you can just check if the corresponding array positions are all set to 1. If so, the element may be
part of the set. The likelihood depends on the amount of false positives you allow. Because of the
nature of a Bloom filter removing an element is not possible, since multiple elements may be
mapped to the same array positions.

2.6 Indexing and query layer

In a distributed information retrieval system it is important to have an index with which a peer
can find the information it needs quickly and reliably. Due to the P2P nature of the system we are
however far more limited with respect to storage space and network bandwidth usage. This
conflict of interest is what makes the research into this area so interesting, since the results are
mostly a trade-off between high costs or good results. To make extremely distributed web search
a reality you need to get the balance just right.

There are a number of basic indexing strategies for information retrieval:

1. Centralized global index; no P2P network, but a centralized global index instead. The
index is often duplicated and/or distributed over a vast number of servers, which are
located in a relatively small number of data centers. This is the strategy behind major
searchengines like Google [23] and Yahoo [24].

2. Global single-term-to-document P2P index; the index consists of a list of single terms
which map directly to documents stored on the peers.

3. Global key-to-document P2P index; basically the same as the previous indexing
strategy, except a set of terms (a key) is used instead of a single-term. This relates better
to a realistic user query, but is also requires mapping the query to key(s). The ALVIS
project [4] uses this approach for its search engine.

4. Global key-to-peer P2P index with federated local indices; basically the same as the
previous indexing strategy, except now the peers need to be contacted to perform a local
search. The index may be smaller since a peer only appears once in a key's posting list,
but on the other hand the local searches add significantly to the network traftic.

5. Global single-term-to-peer P2P index with federated local indices; basically the same
as the previous indexing strategy, except now the index again consists of single terms
instead of term sets. This usually results in a larger index as term sets are more
discriminative, while it may not improve search results enough to be worth it.

6. Federated local P2P indices; each peer has its own collection and doesn't share any info
about it with other peers beforehand. The search queries are flooded to all other peers
since noone knows who has the information. A good example of this type of network is
Gnutella version 0.4 [25].

The global indexes in indexing strategies 2, 3, 4 and 5 can themselves be distributed over the
peers, but this partitioning is not directly related to the documents in the local collection. Often it
is however a good idea to distribute the load and responsibility over a select number of the peers,
as discussed previously in section 2.5.

Comparison

To compare the scalability of the indexing strategies presented above we analyze the traffic load
in the peer network. To simplify matters we do not consider traffic inside the network. Only the

19

load of the number of messages that are going into and are subsequently coming out of the
network is calculated.

To perform the calculations certain assumptions need to be made and variables need to be
defined. All of the variables that are used in the calculations are defined in table 2.2.

Variable | Definition

N number of peers
r the fraction » of N peers that produce a query at any given moment
D document collection

dwee | the maximum number of documents a peer contributes to D, so |D| = duaN

e uniform term size

Gme: | maximum number of terms in a query

f uniform posting size

S size of the index

V vocabulary

u size of a term's single posting (either a document or a peer reference)

Pmax | @ limited number of peers

n(q) |the number of term sets (keys) associated with a query of size g

DF,... |athreshold based on the global document frequency which divides a set of
keys into two disjoint classes, a set of rare and a set of non-rare keys

Table 2.2: Variable definitions for the comparative scalability analysis

The indexing strategies will be analyzed seperately, followed by a discussion in which they will
be compared to each other.

1. Centralized global index; since there is no P2P network over which the messages need
to travel this type of indexing strategy will not be analyzed. We only compare the network
load of the applications that use a P2P network here.

2. Global single-term-to-document P2P index; on average there are N query messages,
each of size e ¢... There will also be ¢... answer messages, because it is a single-term
index. These messages will be the size of the average posting list size S/| V] multiplied by
the size of a term's single posting u. The total traffic thus amounts to (€ guu + U gua S/|V])
rN.

The growth rate of the total amount of traffic is determined by analyzing the growth rate

of parts of the equation:

® € Guma grows with O(1). Because e (the uniform term size) and g (the maximum
number of terms in a query are independent from N, this part of the equation will grow
as O(1).

® U Guma grows with O(log(N)). The size of a term's single posting () is limited because
each peer only brings a bounded amount of documents in the system, namely dx N.
The growth rate for d,... N i1s O(N), so a lower bound for u is O(logN).

20

In other words, it takes a minimum of /ogN bits to store an unique id for each peer in a
collection of N peers. Each new peer only contributes a fixed number of documents to
the collection (d.a). therefore the asymptotic growth rate of the size of a document id
is equal to the growth rate of the size of a peer id, which is O(logN).

e S/V] grows with O(y/ N). Since the global index size S is O(|D|) = O(dpN) = O (N)
and the vocabulary grows as O(/N) because of Heaps law [26], therefore the average
posting list size S/] 7| will grow as O(VN).

e rN will grow with O(N).

The total amount of traffic will thus grow with O(N vV N log(N)).

3. Global key-to-document P2P index; instead of using a single-term index, this index uses
termsets also known as keys. The other main difference between this type of index and a
single-term-to-document index is that here the average posting list size is limited by DF,...
therefore S/|V| grows with O(1) instead of O(+y N). Basically the size of the average
posting list is limited, while at the same time we accept an increase in the vocabulary size.
However the growth rate of the vocabulary is bounded by O(|D|) = O(d...N) = O (N).
Using keys instead of single-terms means that query expansion often needs to be used to
map query terms to keys. The number of keys associated with a query of size ¢ is defined
as n(q). And thus the total amount of traffic amounts to (e n(g) + u n(g) S/|V|)rN. The
growth rate is similar to that of a global single-term index, except that here S/|V] grows
with O(1). therefore the total amount of traffic grows with O(N log(N)).

4. Global key-to-peer P2P index with federated local indices; in this two-step approach

first a list of peers that can possibly answer the query is retrieved from the P2P overlay.
However since here posting elements are peer references instead of document references
the second step involves sending queries to p..#N peers, which return at most d.
documents. While the second step is thus bounded by O(N), the first is still bounded by
O(N VN log(N)) as in the case of a global single-term-to-document index.
The change in granularity means that the average posting list size will be shorter since it
only stores references to a number of peers, instead of to the documents on those peers.
However a second step in which these peers are queried is necessary to obtain the list of
resulting documents. So the size of the index will be smaller because of the smaller
posting lists. However the search of the peers may return more results if some documents
do not appear in the key-to-document index, while they are present in the peers local
document collection. The asymptotic behaviour of the function that calculates the amount
of network traffic is however the same.

5. Global single-term-to-peer P2P index with federated local indices; the reasoning here
is the same as in the previous case. While the second step is thus bounded by O(N), the
first is still bounded by O(N N log(N)) as in the case of a global single-term-to-
document index.

6. Federated local P2P indices; each peer that sends a query, needs to send it to N-/ other
peers. therefore the number of messages is *N(N-1). The size of a query message is
limited to € g... and the size of the answer message to f d..... The total amount of traffic is thus
bounded by (€ g + [dua)yN(N-1), which grows with O(N?) and is thus not scalable.

Federated local P2P indices offer the worst scalability, since traffic grows with O(N?), of the five
P2P indexing strategies. The use of keys instead of single terms improves scalability because this

21

method limits the average posting list size by DF,... This use of a threshold variable in a search
scenario is quite realistic, since users are often just interested in the top-k results.

A key (term set) must be discriminative with respect to the document or peer it is associated with
to be of value. Users often pose multi-term queries so keys may relate better to a query than a
combination of single terms. The problem of mapping a query term set to one or more keys is
however not always easy to solve.

The results of the scalability analysis show that the global key-to-document P2P index approach
and the global key-to-peer P2P index offer the best scalability. Results of the analysis are also
summarized in table .

P2P indexing strategy Rate of growth

Global single-term-to-document P2P index O(N \/N log(N))
Global key-to-document P2P index O(N log(N))
Global key-to-peer P2P index with federated local indices O(N log(N))

Global single-term-to-peer P2P index with federated local indices | O(N \/N log(N))

Federated local P2P indices O(N?)

Table 2.3: Results of the scalability analysis for various P2P indexing strategies

2.7 Ranking layer

The ranking layer is the highest layer in a P2P architecture. Due to the distributed nature of a P2P
system it is not so trivial to rank a list of results. In a centralized setting an information retrieval
system will have all the global document collection statistics that it needs. However in the case of
a P2P system this information needs to be communicated either before or during the ranking
process. So there are basically two strategies here:

1. Using predetermined weights. The index can be used to store the quality of a posting list
so they can be retrieved along with the posting list. Usually such a weight can however
only be computed locally per peer. Another option would be to get a global ranking for
each item in the index once in a while with the help of the other peers. Such a value could
considered a 'cached' version of a ranking for a term or a set of terms in the index.
However the results of a query are often a combination of the results for each query term,
which makes the use of individual weights a problem

2. Ranking on demand. In this approach the peers that share the documents are contacted to
obtain more information so a adequate ranking of the results can be performed. A very
basic approach could be to obtain the text of the resulting documents so the collection can
be ranked locally on the peer that issued the query. The number of results for an index
term would have to be limited to minimize bandwidth consumption. One big advantage of
this approach is that the text can be reused when presenting the results to the user.

Both strategies have their pros and cons, however ranking on demand gives the most accurate
results in general.

22

2.8 P2P file sharing applications

One of the most widespread and (in)famous uses of P2P networks are file sharing systems. If we
look at the evolution of file sharing applications we can distinguish several generations.
Researchers do not always agree on how many generations there are and what their
characteristics are. In this paper the most common division into four generations of P2P file
sharing applications [27] will be discussed. To illustrate the different generations, several well
known P2P file sharing applications will be discussed.

2.8.1 First generation: server-client

The first generation of P2P file sharing applications used a centralized file list. These applications
consists of a hybrid P2P network which makes use of a centralized index, as discussed in section
2.5.3. The peers register with the server and the files it hosts are added to the index. Another peer
can then perform a search query by asking the central server if there are any files that match the
query. Files are transferred directly between the peers.

The main disadvantages of this first generation are the bad scalability and the threat of legal
prosecution. Both these problems are the result of using a central indexing server. First generation
file sharing networks do not scale well because the index server quickly becomes the bottleneck.
A company would need to keep increasing their server farm to provide indexing services fast and
reliably. Furthermore by using a central server the company behind the file sharing network could
be held liable for any copyright infringements which it basically facilitates by indexing
copyrighted files.

Hybrid P2P network with a centralized index: Napster

The earliest well known file sharing application was Napster [19]. The original Napster was
released in June of 1999 by a student who wanted an easy way to share and find music in the
form of MP3 files. A structured P2P network was used in which a centralized index server
provided the search results. The actual file sharing between peers was however done directly.
Usage of Napster peaked in February 2001 at 26.4 million users worldwide. However the use of a
centralized index server left the company vulnerable to legal prosecution and the network was
taken down later that same year.

2.8.2 Second generation: decentralization

Napster made clear that P2P file sharing networks were here to stay. Unfortunately most of the
files that are shared on these networks can not be freely distributed. This holds for most movies,
music (MP3) and applications for example. Although there are exceptions like open-source
software, freeware, etc. The second generation of P2P file sharing networks however (tries) to
completely eliminate the need for a centralized index server. The network topologies used to
achieve this goal however differ per application, so they will be discussed by example.

Unstructured pure P2P network: Gnutella 0.4

Because of the legal problems that Napster faced the Gnutella network at first used a completely
unstructured P2P network in which all peers were equal, as discussed in section 2.5.1. The
success of the original Gnutella was however also the cause of its downfall. Flooding search
requests over a unstructured P2P network like Gnutella 0.4 [25] caused bottlenecks in the
network.

23

Hybrid P2P networks with distributed indexing: Gnutella 0.6 and FastTrack

The Gnutella developers quickly realized the problem and newer versions of Gnutella [20] used a
hybrid P2P network with distributed indexing. Such a network is made up of a mix of regular
peers and superpeers. The index is distributed over the superpeers, so no single peer needs to bear
the load alone. The first widely used implementation of a hybrid P2P network with distributed
indexing was the FastTrack network. The Gnutella developers quickly adopted the same
approach.

The most famous FastTrack client is known as Kazaa [28]. The FastTrack network struck a
compromise between a hybrid P2P network with a centralized index (Napster [19]) and a
completely unstructured (Gnutella 0.4 [25]) network. By using a hybrid P2P network with a
distributed index in which some peers (directory nodes) were more important than others they
combined the best of two worlds. Kazaa however still used a central server for logging in, which
meant it was still vulnerable to legal prosecution. When lawsuits loomed the company was
quickly sold on by its original developers to an Australian based company called Sharman
Networks.

Hybrid P2P networks with centralized indexes: eDonkey and Bittorrent

Although the use of a centralized index was the cause of scalability and legal problems in the first
generation it is still popular among second generation file sharing applications. However instead
of using a single index server that is controlled by a company file sharing applications like
eDonkey [1] and Bittorrent [2] now use a vast number of indexing servers. The difference
between eDonkey and Bittorrent is mainly the way in which the index servers are accessed.

Bittorrent websites are traditional websites which provide so called .torrent files. A torrent file
contains meta data about a set of files, like the filename, size, hash value and most importantly
the url to a tracker. A tracker is the location where seeders (uploaders) and leechers
(downloaders) register to share a file. Torrents are downloaded in chunks, so leechers are quickly
also seeders for parts of the torrent they already downloaded. Peers who upload are also more
likely to achieve higher download speeds. There are basically two different types of torrent sites,
namely public and private sites. The first are accessible two everyone and offer a lot of files, but
often of a lower quality and download speed. A few public torrent sites are specialized and only
offer a few big files to download. Basically they use the Bittorrent protocol to lighten the load on
the server that big files cause. A good example of such a case would be a public tracker that offers
ISO-images of a specific Linux distribution like Ubuntu or Fedora. The second kind of torrent
sites, private torrent- sites, are often specialized in like for example music, movies, television
series or e-books. Users need to register and often new members are welcome by invitation only.
They offer higher download speeds and more high-quality files, but you need to maintain at least
a 1:1 upload/download ratio or donate money for the upkeep of the servers.

The eDonkey servers are more like Kazaa, except that the user has a list of servers to which he
can connect. He can either let the client-application choose, or he can connect to the servers he
wants manually. Clients then register the meta-data of the files they are sharing. Users can search
by querying the meta data or by directly searching for a file's network identifier. The network
identifier is a unique hash value. One way to find specific files on the network is to visit a

24

website which hosts a database of such identifiers, retrieve a specific identifier and then start
downloading it using an eDonkey client.

2.8.3 Third generation: anonymity for all

The third generation of P2P file sharing adds anonymity features. This is achieved by routing
traffic through other peers and by using strong encryption methods. Even the network
administrators cannot see what is being transferred and to whom. Unfortunately anonymity had
its downsides. Due to the rerouting and the encryption downloads are a lot slower than on second
generation networks. Furthermore the anonymity causes the network to be abused for exchanging
illegal content like child pornography, extremist literature, etc. Because of the overhead third
generation file sharing applications are only used on a small scale. Well known third generation
P2P file sharing applications include ANts P2P [29] and Freenet [21].

2.8.4 Fourth generation: streams over P2P

Most divisions of P2P file sharing applications are limited to two or three generations. Some
however also mention a fourth, namely the use of P2P networks to send streams instead of files.
For these purposes a swarming technology (similar to Bittorrent) is used instead of a treelike
network structure. A swarm is a inter-connected group of peers which all communicate with a
central registry and they also communicate directly with each other. Some well known
applications that use P2P networks to send video or radio streams are Joost [30], Babelgum [31]
and Peercast [32].

25

3 Related work

In this section we discuss previous work as well as some existing approaches to P2P information
retrieval.

3.1 Routing and storage layer implementations

In this section several P2P overlay networks that are based on distributed hash tables are
discussed. DHTs were introduced earlier in sections 2.6.2. The four overlay networks that are
discussed here are CAN [33], Chord [34], Pastry [35] and Tapestry [36]. They were created to
eliminate the main problem of the first generation of P2P (file sharing) systems, namely the
reliance on centralized servers. Some of the overlay networks discussed in this section are used as
a base for the newer P2P information retrieval systems, which are introduced further on in section
3.2.

3.1.1 CAN

The Content Addressable Network (CAN) [33] is a distributed hash-based lookup protocol that
provides fast lookups on an Internet-like scale.

Naming and structure

Machines are identified by their IP address and data records are assigned a unique key K. CANs
design is based around a virtual d-dimensional Cartesian coordinate space on a d-torus. A two-
dimensional torus can be represented as a grid or matrix in which if you go left/right in the most
left/right square you would end up on the most right/left square. The same holds for the bottom
and the top side.

This virtual space is partitioned into many small zones which each machine corresponds to one of
the zones. Machines are neighbors if they can be reached in one step in any dimension. For
example in a 2-dimensional space the zones directly on the left and the right, as well as above and
below a zone are its direct neighbors. Each machine knows its neighboring zones and the IP
addresses of the machines in those zones. A node is added by assigning it a zone of its own or by
splitting up an existing zone, as illustrated in Figure 3.1.

26

Peer X s coordinate neighbor sei = {A B C Z}
New Peer Z s coordinate neighbor sel = {A CC X}

Figure 3.1: CAN after adding node Z

Locating and routing

To start the virtual position for a key is calculated. Then the query is passed through neighbors
until it finds the machine it is looking for. An example can be seen in Figure 3.2 below. Each
machine maintains contact with 2d neighbors on average and with a max of 4d. The average
routing path length is equal to (d/4)n".The network can achieve O(logN) performance on the
routing time and the data operations if d=(logN)/2.

A
B }f C Sample
' routing
1 path from
! Peer X tc
'i Peer E
‘I
e
“ ‘--""“—-._
Lo

Figure 3.2: Routing example from node X to
node E

27

Data and topology updates management

Both data insertion and deletion can be achieved in (d/4)n" hops. CAN also supports dynamic
joining and leaving of machines. Furthermore it can detect and recover from node failures
automatically. While the average cost for machine joining is (d/4)n' the costs for machine
leaving and failure recovery is constant time.

3.1.2 Chord

Chord [34] is a distributed lookup protocol developed at the MIT Laboratory for Computer
Science. Like CAN it also scales very well and it offers fast data locating.

Naming and structure

Machines are identified by assigning an m-bit nodelD, which is based on a hash value of the
machine's IP address. Data records consist of a key K and a value V and they are also assigned a
m-bit ID by hashing the key K. The location of the data is thus identified by this ID.

Chord uses a one-dimensional circle (a 'chord') to order the machines. Each machine is mapped
onto the ring based on their nodeID. The number of machines is limited by m because the
maximum number of machines N = 2”. The Chord ring is divided into /+/ogN segments, namely
itself and logN segments with length 1, 2, 4, 8, 16....N/2. The routing table contains not only the
boundaries but also the successor (nearest node clockwise) of the virtual node. So each machine
only needs O(logN) storage space to maintain a structure. Routing a message can also be done in
logN steps, as shown in Figure 3.3.

Node responsible
for data with #38

oY

Query
for 38

Figure 3.3.: A lookup for the data with ID 38 in a Chord data
structure.

28

Locating and routing

To find a specific data record first its m-bit ID is calculated by hashing its key K. Then the routing
table can be used recursively to locate the successor of the segment that contains the target, which
is in turn selected to be the next router until the target is reached.

Data and topology updates management

Higher availability can be achieved by replicating the data. All operations on the data can be done
in O(logN) time. Machines can join or leave at any time which will cost O(log’N) with a high
probability. In the worst case however it will need O(N) time. Chord can also automatically detect
and recover from node failures.

3.1.3 Pastry

Pastry [35] is an object location and routing system for P2P systems that communicate via the
Internet. Like CAN and Chord it offers excellent performance, reliability and scalability. Pastry is
actually used in a number of applications, for example:

- Splitstream [37], an application-level multi cast in which peers share the load.

- Squirrel [38], which uses Pastry as a data object location service.

- PAST [39], a large scale P2P persistent storage application.

- Pastiche [40], a P2P backup system.

Naming and structure

The nodes in a Pastry network are each assigned a unique /28-bit nodelD at random. Like the
Chord project, Pastry also uses a one-dimensional circle to order the nodes on. NodelDs are
assigned in such a way that the nodes are uniformly distributed over the 2'*-1 spaces.

Nodes maintain this structure by storing a routing table, a neighborhood set and a leaf set. The
routing table consists of logN rows which each store 2b-/ entries. The nth row of the table
contains nodelDs and IP addresses of nodes whose nodelDs are equal in the first n-digits. A
neighborhood set only stores the nodeIDs and IP addresses of the closest nodes. And a leaf set
contains the nodes with the |L|/2 numerically closest larger nodelDs, as well as with the |L|/2
numerically closest smaller nodeIDS.

Locating and routing

If a query message needs to be routed then the node first checks to see if the key falls in the range
covered by the leaf set. If so, it is forwarded to the closest node in the leaf set. Else the routing
table is used to route the message to the node that shares most of the first digits with the target.

Data and topology updates management
Pastry can handle both data insertion and deletion, as well as machines leaving and joining, in
O(logN) time.

3.1.4 Tapestry

The fourth P2P application discussed here is Tapestry [36]. Tapestry is in some ways quite similar
to Plaxton [41]. A Plaxton mesh is a distributed data structure which is optimized to support a

29

network overlay for locating and communicating with named data objects. Tapestry however
provides improved adaptability, scalability and fault-tolerance (availability) compared to Plaxton.

Naming and structure

Each node is assigned a unique nodelD, which are uniformly distributed in a 160-bit SHA-1 [17]
identifier space. In Tapestry each node stores a neighbor map consisting of log,N levels, with
each b entries per level. In other words, for each digit i (level) in a nodelD we store entries that
point to a nodelD for which digit i+/ is one of b options.

Locating and routing

When a object needs to be found first a hash function is used to get the objectID of the target.
Routing is done by continually hopping one digit closer to the destination. NodelDs are read from
right to left, so a route one could take would for example be ***7 -> **37 > *437 > 6437,
Routing can thus be accomplished in O(logN).

Data and topology updates management

Inserting of data can be accomplished in O(logN) time. Since there can be multiple copies of an
item the deletion of data takes O(log’N). Inserting or deleting nodes can also be accomplished in
O(logN).

3.1.5 Summary

All four of the lookup algorithms described above use a distributed hash table as a foundation. In
section 2.3 hardware usage constraints for P2P networks were discussed. The two main
constraints are the cost of communication (bandwidth usage) and storage costs. The
implementation of the routing and storage layer determines which of the two is considered more
important.

For example one could design a system in which each peer knows how to directly contact any
other peer. Of course the routing table would be enormous, it would grow as O(N). So the storage
costs would be very large, while the communication costs would be very small. The other way
around, very small storage costs and very large communication costs, would also not be a very
good choice.

Instead most implementations, including the four discussed above, choose to maintain routing
tables that grow with O(logN) and the communication costs also grow with O(logN). For Chord,
Pastry and Tapestry this balance cannot be easily altered. The CAN network however has storage
costs of 2d and data retrieval costs of O(N"“). By choosing d = (logN)/2 both the storage and
communication costs grow as O(logN).

3.2 P2P Information Retrieval Systems

In the last few years P2P file sharing applications have become very popular. This success has
however not yet been repeated for other P2P information sharing applications. In this section
several research projects on the topic of P2P information retrieval systems are discussed.

30

3.2.1 ALVIS

ALVIS [9] is a large research project funded by the EU in which several institutes, universities
and companies in the private sector take part. The project's grand lasted three years, from
1/1/2004 till 31/12/2006. During this period the ALVIS consortium developed a prototype of an
open source distributed, semantic-based search engine.

Network topology (DHT)

ALVIS uses a improved version of the Content Adressable Network (CAN), which was discussed
in section 3.2.1. By using eCAN the logical routing cost is improved to O(logN). Furthermore
eCAN chooses routes that are close approximations of the underlying physical topology of the
internet.

Indexing strategy

The metadata they use is produced by fully automated analysis of the content instead of using the
more common coded or semi-automatically extracted metadata. Instead of sharing large posting
lists the ALVIS project utilizes an indexing method based on highly discriminative keys. A highly
discriminative key is a term, or set of terms, which is globally rare to the document collection. In
this way you end up with an index that is more like the index in a book, quite selective and
compact, instead of posting lists that contain enormous amounts of redundant information. Most
users would only be interested in the top-k results.

The main disadvantage of using term sets is that query terms in ALVIS need to be mapped to
keys. In ALVIS this problem is solved by using a simple query mapper and a more advanced
method based on distributional semantics. The simple query mapper just tries to find the keys that
best match part of the set of terms in a query. The more advanced method uses distributional
semantics, which basically looks for semantically related terms to extend the set of query terms.
For example if the query is “car windshield” then the query map be extended to “(car OR
automobile) AND windshield”. When a query is extended to more terms the likelihood of finding
keys that can be mapped to the query terms is increased.

Scalability and retrieval quality

By using a approach called Highly Discriminative Keys they achieve a index growth which is
linear with respect to the collection size. Retrieval quality (top-k precision) is also comparable to
a single term TF.IDF approach.

3.2.2 Minerva

Minerva [5], named after the Roman goddess of crafts and wisdom, is a P2P information retrieval
system in which the peers each maintain a local database and a local search facility.

Network topology and overlay networking

Minerva uses a Chord-style overlay network that is based on a distributed hash table (DHT). In a
Chord network each node only needs to store information about O(logN) other nodes.
Furthermore all lookups are also resolved in O(logN) time. So Chord, like most other lookup
services that are based on a distributed hash table, provides excellent scalability.

Indexing strategy

31

Peers may share parts of their local index by posting meta-data to the P2P network. This meta-
data consists of statistics and quality-of-service information. Minerva maintains this conceptually
global, but physically distributed, directory on top of a Chord-like distributed hash table (DHT).
Responsibility for a term is shared and replicated among several peers for improved resilience
and availability.

ALVIS takes a somewhat similar approach to Minerva [5]; both use a P2P overlay network which
contains metadata about the information stored at the peers. Both indices are physically
distributed but conceptually global.

Scalability and retrieval quality

When a query is executed the peers that are responsible for terms in the query are looked up and
the PeerLists are retrieved. For efficiency reasons the query initiator can also choose to just
retrieve for example the top-k peers. Using this information the most promising peers are asked
to perform the query and the results are eventually combined into a ranked list using the meta-
data.

BIMINERVA <Nat Science> N —[ol x|

= number of posts recemved: 7078

¢ 3 particl (1)
¢] Peer139.18.54.17:9002
: - ¢ [Jterm statistics
Chord Statistics [oF 4830
name value [maxTF 147
chord port 9001 -) maxrTF 3.0
cpnlcation pot 0 [sumorTF 19735
Zuzie'ﬁm T 332586 _ [} sumofocumentLengths 2897781
ring exponent 16 o= [collection statistics
ring size 65536 o~ 3 particul (1)
n 136105417 |~ o [particular (1)
Gmeny Routig Incoming Requests:
QUERY: light wave particl
CORI |" FROM 138.19.54.17; 10 LOCAL RESULTS
Result Merging
1- remote peers - 3
Remote Score | - ‘

1

Query Routing Results: | clear |
QUERY: light wave particle
1:Peer130.19.54.17:9002 (0.9680115512967118)

light wave particle |

Execute Query J

L Peer URL Title Scare
Feer139.19.54.17:0002 httpiwww.Colorado EDU/ph. |Electromagnetic Waves 1.3973436033464584 =
Feer139195417:8002 hitpfihep bu edus~superkich_. | Cherenkov Light 1.38068989832545216 =]
Peer 139.19.54.17.9002 hitpdhwsww. Colorado EDU/ph.. The Photoelectric Effect 1.2964406315872264
Peer139.19.54.17:9002 hitp:230nsc1.phy-astrgsu :Wave—PamcLe Duality :1 3852965440584708

Peer 139.19.54.17:9002 htip ifwww Colorado. EDU/ph.. | Lasers 1.3944909042804985

Feer 139.19.54.17:8002 httpdiwww Colorado EDU/ph . Vibrating Charges and Elect... |[1.3927046738721316
Feer139.19.54.17:9002 http . oulu if~spacewe... |Space Physics Group of Oulu [1.392315152337929 ~
Door190 1064470007 bt (7 30necd nbseacte nen (Atoua naties of alacteon 1301 1510756600 it

Figure 3.4: The Minerva GUI

3.2.3 PlanetP

PlanetP [42] is P2P information retrieval system designed for sharing large sets of text documents
between the peers. It was developed at Rutgers, the State University of New Jersey (USA) as a
research project into distributed information retrieval.

32

Network topology and overlay networking

PlanetP takes a somewhat different approach then ALVIS or Minerva. Instead of storing a
conceptually global index in a physically distributed manner, PlanetP replicates the global
directory and a compact summary index at every peer. So each peer stores the names and
addresses of all the other peers together with a Bloom [22] filter (see also section 2.4) per peer-
entry that summarizes the set of terms that are present in that peers local document collection.

Indexing strategy

PlanetP uses a global single-term-to-peer index with federated local indices, just like Minerva.
However instead of storing the index in a distributed manner like Minerva does, PlanetP
replicates the global index at every peer. The copies of the index are kept uptodate by gossiping
between the peers about updates in the network. The information that is being gossiped includes
the joining of a new member, a change in a Bloom filter and the rejoining of a previously offline
member.

Scalability and retrieval quality

Both recall and precision are very close to the performance of a TFXIDF approach that has access
to the full inverted index and the word count. PlanetP is also able to scale quite well up to several
thousands of peers. After that the index becomes too large to download in a reasonable amount of
time for a peer that wants to join the network but has a limited amount of bandwidth available.
Although the Bloom filters are a very efficient way to store a set of terms, their sheer number
makes the index too large in the end.

3.2.4 pSearch

Another interesting P2P information retrieval system is called pSearch [6]. The system supports
content- and semantic-based full-text searches.

Network topology and overlay networking

pSearch tries to combine the scalability of DHT systems (like CAN) and the accuracy of
advanced IR algorithms. Two of the algorithms they use are pVSM (P2P Vector Space Model)
and pLSI (P2P Latent Semantic Indexing). The system is actually built on eCAN [43], a
hierarchical version of CAN that improves on CAN's logical routing cost to O(logN). ALVIS,
which was discussed in section 3.3.1, also uses eCAN.

Indexing strategy

pSearch uses two indexing algorithms pVSM and PLSI. VSM represents both queries and
documents as term vectors. The weight of an element (term) is often calculated using the term
frequency * inverse document frequency (TF * IDF) scheme. When a query is executed the query
vector is compared to document vectors. Those vectors that are the most similar to the query are
returned.

LSI tries to correct problems like synonymy, polysemy and noise in documents. By using singular

value decomposition (SVD) semantic relationships can be discovered. For example the words car,
vehicle and automobile are semantically quite similar while the words car, toothpick and festival

33

are not. LSI can transform a high-dimensional term vector into a medium-dimensional semantic
vector by discovering the semantic relationships.

Scalability and retrieval quality

The pSearch system manages to achieve performance levels that are very close to the non-
distributed versions of the algorithms. For example, when comparing pLSI and LSI we find that
pLSI only needs to visit 0.4-1.0% of the nodes to achieve 95% of the accuracy of LSI. The
system also seems to scale well, as both storage and communication costs do not grow
exponentially.

3.2.5 Comparison

In the last few sections we discussed some of the most well-known distributed information
retrieval systems. Here we compare the four systems to each other to see what they have in
common and where they differ.

Network topology and overlay networking

Both ALVIS and pSearch use a modified version of the Content Adressable Network (CAN) as
their routing and storage layer. Minerva also uses a DHT-based overlay network, but theirs is
based on Chord. In fact of the four systems discussed above PlanetP is the only system that takes
a different approach. Instead of distributing the index over the peers using a distributed hash table
(DHT) the global directory and a compact summary of each peer is stored at each peer. A Bloom
filter is used to highly compress the data.

Indexing strategy

Again all systems except for PlanetP follow a similar strategy. ALVIS, Minerva and pSearch
distribute their index across the network. Although the granularity of the index differs the end
results are quite comparable.

Scalability and retrieval quality

All systems offer retrieval quality that comes close to a centralized version of the same algorithm.
PlanetP is the only system that has serious scalability issues because of the way in which it was
designed. In the PlanetP system each peer stores a copy of the global directory and a compact
summary of each peer. By using a Bloom filter to highly compress information the system is still
able to scale reasonably to several thousands of peers.

The other three systems all use a distributed hash table approach to store and retrieve
information. The use of a DHT seems to be almost ideal. Most DHT-based systems balance the
cost of storage and communication evenly. Both costs grow with O(logN) so peers only have to
store relatively small routing tables and they can still reach any node in the network in logh
steps. If there are peers in the network that are willing to offer more services (bandwidth and
storage space), this can even be improved upon further. By using a hybrid network in which some
peers offer larger routing tables the other peers can find each other more quickly by using the
services of those peers.

34

4 Design of the proof-of-concept application

In the previous chapters the theoretical background of P2P networks was discussed, followed by
a chapter on related work which discussed P2P file sharing networks as well as distributed
information retrieval applications. The ALVIS project was among the distributed information
retrieval applications that were discussed. One of the more interesting parts of the project is their
indexing approach, which utilizes a concept called 'highly discriminative keys' or HDKs. In this
chapter the design for a proof-of-concept application that examines HDK indexing will be
presented. Our proof-of-concept application is called the Term Set Indexer (TSI).

4.1 Introducing Highly Discriminative Keys (HDKs)

An index entry consists of a term (or a set of terms) and a list of documents or peers where these
term (sets) occur. This list of documents or peers is also known as a posting list. So there are
basically four options for an index:

1. Global single-term-to-document P2P index.

2. Global key-to-document P2P index.

3. Global key-to-peer P2P index with federated local indices.

4. Global single-term-to-peer P2P index with federated local indices.

These four options were previously explained in section 2.6. The granularity of an index was
determined not to have much influence on its scalability. However the extra messages that would
have to be send to the peers means an extra delay while the local search on those peers is
performed. Therefor a single-term-to-document or a key-to-document index would probably be a
more efficient choice.

In a single-term-to-document index there are a few major problems:

1. Since queries often consist of multiple terms we need to combine the results from several
keywords. As we do not know beforehand in which documents most of the query terms
can be found we need to retrieve the entire posting list for each term.

2. Even if some of the query terms occur in the same document we do not know if they are
used in conjunction with each other, like for example in the same sentence or paragraph.

3. There is no limit on the terms that are indexed, nor on the length of the posting lists which
are stored for them.

The TSI uses a key-to-document index which tries to solve some of these problems. Sets of terms
that occur in a window of words are created, which may answer a query more directly.
Furthermore TSI also limits the amount of term sets that are stored in the global index by only
storing entries that are a rare combination of non-rare (sets of) terms.

4.2 Preprocessing the documents

Before the sets of terms can be generated the data needs to be preprocessed. Preprocessing
consists of three steps:
1. Converting HTML to text:
The second step in preparing the document collection is the conversion from HTML to
text files. The org.java.util Java Utility Library contains a host of useful classes, including

35

an HTML to text converter. This converter performs the three following operations on the
test data:

1. Strips embedded HTML tags

2. Converts HTML entity codes to appropriate Unicode characters. For example, the

string “&” is converted to “&”.

3. Converts certain Unicode characters in a string to plain text sequences.
Removing stop words:
In every document collection there are a number of words that occur extremely frequently
but at the same time are not unique for a specific document at all. Since nearly every
document contains these words it would be better to remove them as they will certainly
not be used by the indexer. Some obvious examples of stop words in the English language
are “a”, “of”, “the”, “and”, “it”, “you” and “I”.
Applying a stemmer:
In an effort to further remove any noise from the text we use a stemmer. Stemming is the
process of reducing inflected or derived words back to their stem, base or root form. In
some cases the stem is not identical to the morphological root of the word, but this doesn't
matter as long as related words have the same stem. For example a stemming algorithm
for the English language would identify the words “stemmer”, “stemming” and
“stemmed” as having the same root “stem”.

The most well known stemmer for the English language is the stemming algorithm
developed by Martin Porter et al [44]. It was published in July 1980 and it became the de-
facto standard stemming algorithm for the English language. Over the years many
implementations were developed but a lot of them contained one or more errors. In the
year 2000 Martin Porter himself released an official implementation, which was later
ported to a number of programming languages [45].

In our application we use the Java version of the official implementation by Martin
Porter. The use of the stemmer further limits the amount of noise in the document
collection so the indexer can do its work more efficiently. This final step finishes the pre-
processing of the data, so the next step is for the indexer to process the data.

4.3 Creating the Highly Discriminative Keys Index

The first step in creating an index is for a peer to create sets of terms as they occur in the local
document collection. When a user poses a query he would probably expect the query terms to
occur near each other in the document, like in the same sentence or paragraph. So the sets of
terms that are created by the TSI always occur in a window of a certain number of words.
Furthermore the number of terms in a set of terms is limited. For example, suppose we have a
document that consists of just the following words: A B C D E. And we would like to generate all
sets of terms in a window of four words, with a maximum of three terms per set. Then in the first
window (consisting of the words A B C D) we generate the following sets:

gQw >

36

AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD

Now for each following window (like B C D E) we only have to generate the sets that are a
combination of the last word in that window (E) and some of the sets we previously created.
Those sets are limited to two terms and they should not contain the word A, as it does not exist in
the current window. So that would be the following sets:

EB
EC
ED
EBC
EBD
ECD

In total we just created (4+9+7=) 20 sets of terms. Of course not every set of terms is of equal
value, so we split the sets of terms into four different classes:

1. Kw, the set of keys that occurs in a window of size w.

2. Knon-rw, like the first class, but these keys are classified as none rare.

3. Krw, like the first class, but these keys are classified as rare.

4. Kirw, like the first class, but these keys are classified as intrinsically rare or i-rare.
The relationship between these different sets of keys is illustrated in Figure 4.1. As one can see
the hierarchy of classes limits the amount of keys to a much smaller number, as we are really
only interested in the keys that are a member of the class Kirw.

Kw = Knon-rw | Krw / Kirw @

Figure 4.1.: The relationship between
non-rare, rare and i-rare keys

37

At the start of this section we already discussed how we limit all the keys (K) to all the keys that
appear in a window of a certain size (Kw). The remaining keys are then split into two groups,
namely rare and non-rare. A key is locally rare if it appears in a no more then DFmax documents.
The value DFmax in TSI is limited to a certain percentage of the number of documents. For
example, if a peer has a 200 documents in its local document collection this value could be the
minimum of 10% of that (=20 documents). Since every peer has a different number of
documents, we tend to use a percentage instead of a fixed value. This percentage is set during
experiments between 7,5 and 20 percent.

So now the keys are divided into two classes, namely rare and non-rare. The final set of keys that
will be used to update the global index can now be determined by splitting the set of rare keys in
two parts. Rare keys are either intrinsically rare or there are not. A key is intrinsically rare if the
key itself is rare, but all of its subsets are not. For example, the key A B C is intrinsically rare, or
i-rare for short, if the subsets A, B, C, AB, AC and BC are all non-rare. We will call all sets of
keys that have a certain number of terms a level. The keys on level one consist of only one term,
so here we have a special case, as all rare keys are also i-rare. On higher levels filtering out keys
that are not i-rare however removes a lot of redundant keys.

The easiest way to generate all keys in Kw is by generating keys on a higher level by building
them by using subsets of lower levels. For example, we could build A B C by combining A B and
C. Once we have all keys in Kw we could split these keys into the classes non-rare and rare. We
can then further split the class rare into the classes i-rare and non-i-rare. Unfortunately the easiest
way is also the least efficient to build the set of i-rare keys, because less then 10% of the keys in
Kw are also in Kirw. The 10% here is just a rough, but realistic, estimate to indicate the amount of
keys that are left after filtering. This is also illustrated by a typical example further on in this
section.

Instead the prototype uses an approach in which the filter process is done level by level at the
earliest opportunity. This approach is somewhat more costly in terms of time but the memory
usage of the application improves dramatically. We will now discuss the algorithm that is used in
the proof-of-concept application. The algorithm shown here creates sets of terms up to level
three, so with a maximum of three terms per set. The application calculates the Kirw in four
steps:
1. Level one:
a) Create Kw on level one.
b) Filter level one Kw by throwing out all keys that belong in Knonrw so only the keys in
Krw remain.
c) Create Kw on level two.
2. Level two:
a) Create Kw on level two.
b) Filter level two Kw by throwing out all keys that belong in Knonrw so only the keys in
Krw remain.
3. Level three:

38

a) Create the term sets on level three, but only store the keys for which all the subsets are
non-rare. The set created here thus consists of keys that are possibly i-rare, based on
the subsets they contain.

4. Final filtering step:

a) Filter level two, by throwing away non-i-rare keys.

b) Filter level three, by throwing away keys whoose subsets are all non-rare but are
themselves not rare.

The combination of all the filtered sets on each of the levels is now equal to the set that one
would get by first creating all keys on all levels and then filtering out non-i-rare keys. The four-
step algorithm described above is however far more efficient because a lot of keys are non-i-rare.
To illustrate this we will the figures involved with processing a certain document. Certain
conditions like the number of (unique) words and the settings for the window size and DFmax are
ofcourse important. However we just use realistic rough estimates here, as this illustrates the
point well enough.

of terms | # of keys in Kw | # of keys in Kirw | % of Kw in Kirw
1 5.000 4.000 80%
2 200.000 40.000 20%
3 1.000.000 5.000 0,5%

Table 4.1: An example of the effect of filtering on the amount of
multi term keys.

So in this case the easiest (and least efficient) method would first generate 1.205.000 keys and
then filter out all non-i-rare keys, to be left with 49.000 i-rare keys. The more efficient four-step
algorithm that was discussed above however only generates a modest amount of keys on top of
the 49.000 i-rare keys. In the fourth and final step these redundant keys on levels two and three
are filtered out.

4.4 Updating the global key-to-document index

When a peer has created the set of i-rare keys it is ready to present the keys to the global index
and if needed upload the posting list for that key. The index can be stored by using (for example)
a Distributed Hash Table (DHT) as discussed in section 2.5. In the case of TSI a centrally stored
index is used, but the principle is the same.

Each entry in the index consists of three values:

1. Key; the set of terms.

2. Global document frequency; the number of documents the key appears in globally.

3. Posting list; a list of documents in which the key appears. These documents are stored on

one or more of the peers that contribute to the index.

A key stored in the index can become globally non-rare if it appears in more then DFmax
documents globally. If a key becomes globally non-rare the index will clear the posting list
associated with the key, but the key itself and the number of documents it appears in will be kept.

39

For each locally i-rare key a peer contacts the index to check if the key would (still) be globally
rare if its posting list was added to the index. The index increments the global document
frequency of that peer by the number of postings that is offered by the peer. The index then gives
on of the following replies to the peer:

1. The key is already globally non-rare, don't send your posting list.

2. The key just became globally non-rare, don't send your posting list.

3. The key will remain globally rare, even if your posting list would be added. Please send

your posting list.

Only if the peer gets the third answer it sends its posting list. In a distributed environment the
global document frequency of a key may change between the time when a part of the index sends
a positive reply and the time when the posting list arrives from the peer. If the document
frequency has become higher than DFmax such that the key is no longer globally rare, then the
posting list should not be added. So before adding the list another check should be made by the
index.

4.5 Execution of a query

Retrieval also poses a few problems. Given a query Q which consists of {tl, t2, .., tn} terms we
need to find the most relevant keys in the HDK index. Unfortunately this is not a trivial task at
all. For example, if we have the query A B C then how can we map that set of terms to a number
of keys such that the retrieval performance is maximized while the amount of network traffic
needed is minimized. If we only try to retrieve a key A B C then we may not get any results at all,
since the key may not exist. However if we retrieve all posting lists associated with keys
containing at least one of the terms (A, B or C) then we will likely get a lot of results, but the
amount of network traffic would be very high. Two possible ways to tackle this problem will be
briefly discussed here. In our experiments we only use the first method, namely simple query to
key mapping.

The first method tries to solve the problem using a simple mapping. The posting lists for keys
that are a subset of the query are retrieved and combined. For example, a query 'A B C', for which
no HDK 'A B C' exists, could probably be best answered by the HDK (if it exists) for the subsets
of this key: AB, AC, BC, A, B and C. Each of the end results will have contain all three of the
terms. This is the method that is used in our experiments.

The second method is known as distributional semantics [46] [47]. In this approach a co-
occurence matrix is computed between the terms in the query and all the terms in the documents.
Two words co-occur if they are both found in a window of a certain number of words. Terms that
occur often with other terms in the vocabulary are more likely to be closely related or even
synonyms. For N words a N*N matrix of co-occurence values would have to be calculated. In a
very large collection we can assume that certain statistics like the co-occurence of words are
about the same as for a sizable subset of that collection. Heaps law [26] basically states that the
larger the text, the less new words we will encounter. From this emperical law we can deduce that
the larger the amount of text, the less new co-occurences we will encounter.

For example the words car and automobile are synonymous, so their co-occurence value will
probably be high. Other words that are related to the word car, like windshield or tire will also co-

40

occur quite often. In some cases a pair of words (like 'car' and 'the') can have a high co-occurence
value while they are not semantically related. In such cases the other word ('the') just occurs a lot
in general, so it will also occur a lot in combination with the word 'car'. This can be fixed by
either filtering out words that have consistently high co-occurence values from the co-occurence
table, or by adding them to the list of stopwords if needed.

41

S Experimental evaluation

To illustrate the feasibility of an index based on highly discriminative keys experiments were
performed on a test collection. In this chapter the setup of these experiments and the results are
discussed. The topic of this thesis is the feasibility of distributed web search applications. In
chapter two it was determined that the feasibility of such a system mainly depends on its
scalability. Scalability alone is however not enough since one also needs to achieve a reasonable
level of retrieval quality. In our experiments we compare the scalability and retrieval performance
of the HDK indexing approach to a single term index. The test collection and the results of these
experiments are presented in the following sections.

5.1 Test collection

The test collection that is used to test the indexer is the WT10g collection [8]. This collection
closely resembles the characteristics of standard web pages. The collection consists of ten
gigabyte of HTML documents from 11.680 different servers. A server contains about 144
documents on average and a minimum of five documents. In total the collection contains about
1.7 million documents. Before the collection could be indexed several steps where needed which
will be explained in the following sections.

The documents in the WT10g test collection are distributed randomly over more than 5000 files.
To simulate real web servers the documents in the files needed to be resorted based on their IP
address. Fortunately each document contains a header with meta-data, including the IP address.
An application was written to process all the documents and to store them in separate files based
on their address. After resorting we are left with 11.513 files. The difference in the number of
servers (11.680) and the number of files (11.513) is most likely caused by servers that serve
multiple websites from the same IP address and multiple domain names that are mapped to the
same IP address.

From these files a selection was made of files that were about one megabyte in size and which
contain one average about 200 documents. All of the test files were preprocessed; HTML code
was stripped, about 300 common English stop words were removed and the Porter stemmer was
applied. A maximum of three terms per key is used, since the calculation of higher levels
becomes increasingly more expensive in terms of the computational load. In section 4.3 we
explained that the number of possible term sets increases drastically with the number of terms. In
the realistic example given in that section we showed that on level three less then one percent of
the keys are in Kirw, while a million term sets are created. This trend continues for higher levels,
therefore there would only be a few keys on level four.

The Term Set Indexer (TSI) is implemented in Java. The JVM used is version 1.5 (5.0) by Sun
Microsystems. All of the calculated term sets and index entries are kept in memory, to speed up
the process. All experiments are performed on a single laptop, running Kubuntu Linux 7.04
(Feisty Fawn). The machine is equipped with a dual core processor (with each core running at
1733Mhz) and 1536MB of main memory.

42

5.2 Scalability

The scalability of a distributed information retrieval application depends mainly on the use of
disk space and the use of network bandwidth. The use of disk space can be nicely distributed by
using a Distributed Hash Table (DHT). The amount of network traffic needed is however mostly
determined by the size of the posting lists that need to be send in response to a query. We assume
that the amount of network traffic that occurs during the indexing process is less relevant since it
occurs very infrequently. Furthermore indexing is not time critical, while an answer to a query
has to be delivered as quickly as possible.

60000

55000 S

50000 A \
45000 / \
40000 \’\

x b d
35000 |
< 30000 AN — ~ = SINGLE TERM
$# % N7 v * DFmax = 7,5%
25000 A2 ~¥Y——4 |v DFmax = 10%
20000 A DFmax = 15%
A » DFmax = 20%
15000 A A ——
10000 | e
000 .W
o o
R e e e
10 20 30 40 50 60 70 80 90 100
#Peers

Figure 5.1: The average number of keys per peer

Figure 5.1 shows the average number of keys per peer for various settings of DFmax and for the
single term index. The average number of keys per peer slowly decreases for large numbers of
peers. This is caused by the overlap in keys between peers, so a key can occur on multiple peers.
Initially the average number of keys fluctuates a bit because only a small amount of the keys are
'shared'. As the number of peers increases more keys are shared. For very large numbers of peers
the average will grow increasingly slower. This is caused by the fact that for large numbers of
peers it becomes less likely that we still discover new keys, that were not present in the
previously processed peers.

The figure also shows the effect of different values for DFmax on the average number of keys per
peer. A lower percentage will cause more keys to be intrinsically rare (or i-rare) so the average is
also higher. A higher percentage will thus cause less keys to be i-rare. A multi term index with a
higher percentage will therefore approach the results for the single term index.

43

N
o

=
18 m -
=
" 16 =
2 14 .
] o
ﬁ 12 =
3 7 . ® SINGLE TERM
‘E- 10 ¢ DFmax = 7,5%
o v DFmax = 10%
E 8 4 A DFmax = 15%
(9] 6 \\/t\ %///: » DFmax = 20%
\ & e -
< \-’/f\Lf/L/j,/L .~
2
O [

I I I I I I I |
10 20 30 40 50 60 70 80 90 100

#Peers

Figure 5.2: Average size of a posting list

Figure 5.2 shows the average size of a posting list. A posting list is a list of documents that
corresponds to an index entry. An index entry can either be a term of a set of terms. The figure
shows that the average number of postings per key for a multi term index does not fluctuate
much.

The single term index on the other hand knows no bound for the number of postings per key so it
continues to increase with the number of peers. So the multi term index displays no growth for
the average number of postings per key, while the posting list size for a single term index grows
linearly with the number of peers.

44

200000

//\
180000 + / —
160000 o
140000 P
\\\ /// v
2 120000 - 1
=
8 100000 = SINGLE TERM
o) A ¢ DFmax = 7,5%
#* 80000 S~ f—a———— |v DFmax=10%
“ A DFmax = 15%
60000 ‘M » DFmax = 20%
40000
20000 5] o o m = o o o | 5]
0 I I I I I I I I 1
10 20 30 40 50 60 70 80 90 100

#Peers

Figure 5.3: Average number of postings per peer

Figure 5.3 shows the average number of postings per peer, again for different values of DFmax
and for the single term index. The average number of postings per peer for the single term index
will display a small but linear growth for large numbers of peers. In Figure 5.3 there appears to
be (almost) no growth because the decreasing average number of keys per peer is mostly
canceled out by the growth of the average posting list size, which exhibits a linear growth in
relation to the number of peers. For larger numbers of peers the average number of postings per
peer shows a small constant growth, as is visible in Figure 5.3 for more then 50 peers. This small
constant growth is mainly caused by new postings being added to existing keys. For a large, but
still growing, document collection we will discover less and less new keys (words) because the
dictionary for the English language is limited. In linguistics this is known as Heaps law [26].

As expected the average number of postings per peer is higher for the multi term index with a
lower value of DFmax. The average number of postings per key for a multi term index doesn't
grow as the number of peers increases (see Figure 5.2), so the difference here can be totally
attributed to the average number of keys per peer.

45

Total #postings

17000000

16000000
15000000

14000000
13000000

12000000
11000000

10000000
9000000

8000000

7000000

6000000

5000000

vV b 4 ¢ O

SINGLE TERM

DFmax = 7,5%
DFmax = 10%
DFmax = 15%
DFmax = 20%

4000000

3000000 —

2000000 5
1000000 J——

O E\] ? I I I I I I I

10 20 30 40 50 60 70 80 90

#Peers

]

Figure 5.4: Total number of postings in the index

Figure 5.4 shows the total numbers of postings in the entire index. For both the single term index
and the multi term index we saw that the average number of keys per peer will level off to a
constant. This is caused by the fact that the discovery of new keys will become less likely. The
total number of postings is a product of the following values:

e Number of peers, this value will grow linearly.

e Average number of keys per peer, this value will settle around a certain average for each
index (see Figure 5.1). For very large numbers of peers this value will grow very slowly.

e Average number of postings per key, this value will increase linearly with the number of
peers for the single term index (see Figure 5.2). For the multi term indexes we observed
that this value settles around a certain number depending on DFmax. In other words, it
shows no growth.

So to summarize, we can conclude that the growth rate of the total number of postings in the
index is determined by the average number of postings per key. This means that the single term
index will grow linearly for large numbers of peers. Increasingly less new terms will be
discovered, but new peers will add postings to existing terms for their documents.

The growth rate of the multi term index will also grow like the average number of postings per

key. The average number of postings per key for a multi term index levels off so the total number
of postings will also level off eventually.

46

5.3 Retrieval performance

In distributed information retrieval systems there needs to be a balance between the scalability of
a system and its retrieval performance. A multi term indexing system may scale well, but it
should also provide good retrieval performance. In the ALVIS project the retrieval performance
of their indexing method is tested by comparing the top-20 overlap between results from a single
term index and the multi term index. They use a simple TF-IDF implementation to rank the
results. In this thesis we also compare the top-20 overlap however there are also a few things that
were done differently:

1. The results were ranked using the Okapi BM25 ranking function, instead of a simpler TF-
IDF ranking. BM25 is considered to be a more advanced ranking function. The
implementation we used will be discussed in Section 5.3.1.

2. Instead of using just one set of queries we've experimented with different kinds of queries
to discover more of the strengths and weaknesses. The results of these experiments are
discussed in Section 5.3.2.

5.3.1 The Okapi BM2S Ranking function

The ranking function used here is based on the probabilistic model. It is often referred to as
Okapi BM25 [48], because the Okapi information retrieval system was the first to implement this
ranking function. BM25 is, despite its name, not really a single function since different
implementations use different components and parameters. The implementation used here is the
following:

f(q;,D)-(k,+1)

b-|D|
f(q,.,D)+l< A1-b+—— avgd]

Score(D,Q)=,IDF(q,

The variables in the equation above are the following:
e f(gq; D) is the frequency of a query term in a document D.
e |D] is the number of words in a document D.
e k; and b are free parameters, chosen here as k; = 1.2 and b = (.75, which are common
settings.
e [DF(q;) is the inverse document frequency weight of query term q; where IDF(g;) is
defined as:

N-n(qg;)+0.5
n(q;)+0.5

IDF (g;)=log

Here the variable N is the total number of documents in the collection and n(g;) is the number of
document that contain the query term g;.

5.3.2 Experimental results

Like the ALVIS project we measure the retrieval performance by comparing the results from the
multi term index to those of a single term index, which we use as a baseline. The result of each
index, a set of documents containing the query terms, is ranked using the Okapi BM25 algorithm
as described in the previous section. We then calculate how many documents occur in the top-20

47

of both of the indexes. Different values for DFmax where used to illustrate the effect on the
retrieval quality. Furthermore the size of the posting lists that are send over the network are also
compared. All experiments are executed on an index which consists of 50 peers (listed in
appendix A) that contain on average 200 documents each.

First we tried to reproduce the results from the ALVIS project using the WT10g test collection. In
the ALVIS project the index was tested with a single set of 200 queries. These queries were
constructed by randomly choosing two or three terms from the titles of the news articles in the
test collection. We use the following approach to create our first queries:

1. Extract the titles from the HTML documents.

2. Filter out duplicate titles. A number of websites uses the same title for every web page.

After this step we are left with 2733 unique titles.

3. Remove stop words and punctuation from the titles.

4. Reduce each title to two or three terms.

5. Filter out the duplicate queries, which were created during the previous two steps.
After this process we are left with 632 possible queries (listed in appendix B) which we then
executed on both the single term index and the multi term index for different values of DFmax.
We first determined the number of queries that return at least 10 or 20 results. These results are
summarized in Table 5.1.

Single DFmax 7,5% |DFmax 10% |DFmax 15% |DFmax 20%
Top-10 |335 65 59 44 45
Top-20 | 244 39 33 30 34

Table 5.1: The number of queries with more then top-k results

The results show that a lot of queries do not return more then 10 or 20 results respectively. We
also see that the number of results for a multi term index increases for lower settings of DFmax.
Choosing an even lower setting for DFmax is however not a good option because it increases the
amount of keys that need to be stored (see Figure 5.1). Furthermore the average number of
postings per key would further decrease, which means the index would store a lot of keys with
just a few results (see Figure 5.2).

For the remaining queries we tested the top-k overlap between the single term index and the multi

term index. We also determined the total number of postings that need to be transmitted to answer
each query.

48

Overlap ratio |#Postings on avg for |#Postings on avg for
(average) multi term index single term index
DFmax 7,5% 7.5% 33 1795
DFmax 10% 6.4% 38 1824
DFmax 15% 6.8% 43 1945
DFmax 20% 4.0% 38 2033

Table 5.2: The overlap and posting lists sizes for queries with more
then 10 results

Table 5.2 shows that the average overlap ratio for the top-10 results between the single term
index and a multi term index is quite low. In general a lower setting for DFmax will limit the size
of the average posting list, but it also hurts retrieval performance. On the other hand a higher
setting limits the amount of queries with enough results (see Table 5.1). The setting for DFmax =
20% seems to be over the top. At such a high setting the maximum size of the posting lists (250
documents) becomes a severe limitation, since there are almost no multi-term rare keys.

The results from the ALVIS project show an overlap ratio of 83 to 94% for the top-20 documents
[9]. The difference between these two sets of results clearly show that this indexing method does
not perform well at all on the WT10g web collection. A number of differences between the two
test collections attribute to this extreme difference. In section 5.4 we will make an extensive
comparison between the results from the ALVIS project and this master project.

Table 5.2 also shows the number of postings that are transmitted on average during query
execution. The number of postings needed to answer a question for the single term index is quite
high compared to the same number for the multi term index. For the single term index the posting
list of each term needs to be send to the peer that executes the query. After the list are received
the intersection of those separate posting lists is calculated. This intersection is then ranked, after
which it forms the final result. The result for the single term index contains literally all the
documents in the collection that contain all the query terms.

For the multi term index the amount of postings that need to be send is far lower because those
intersections have already been determined beforehand. The query for the multi term index is
mapped to one or more keys that contain one or more subsets of the query. For example, the
query A B C, could be answered by the keys A B and AC. After the final list of documents is
determined the results are ranked.

5.4 Comparison with the ALVIS project

The proof-of-concept application in this master thesis is based on the work done as part of the
ALVIS project. The goal of the ALVIS project was to develop a open source prototype of a
distributed, semantic-based web search engine. As part of this research a new and novel idea for
indexing was introduced which uses rare sets of terms. This indexing method was researched by
building a proof-of-concept application and running some experiments on it. There are a number
of differences between the implementations and the experiments which influence the results.

49

Reuters news corpus WT10g sub collection
(ALVIS) (Master Thesis)
Average number of 170 500
words per document
Average number of 5000 (randomly 200 (forming a website)
documents per peer distributed)
Number of peers 6 for the queries 50 for the queries
used 16 for scalability analysis | 100 for scalability analysis

Table 5.3: Differences between the Reuters news corpus and the
WT10g test collection.

The main difference is the use of another test collection. The ALVIS project used the Reuters
news corpus. In this thesis a subset of the WT10g test collection was used. The differences
between these two collections are summarized in Table 5.3. In short the ALVIS project uses a
small number of peers (6 to 16) which each contain a large number (5000) of randomly
distributed documents that have an average length of 170 words. The WT10g sub collection on
the other hand consists of a larger number (50 to 100) of peers, which each contain a relatively
small number of documents (200) that together form a website. A web page from this collection
has an average length of 500 words. In total the amount of information that is used to run the
queries on is however about the same size.

There are a number of factors that contribute to the difference in retrieval performance between
the two projects. To start we will discuss the factors with the most influence on the results:

1. ALVIS uses higher quality queries. In the ALVIS project the titles of the news articles
are used as the basis for their queries. The title of a news article is written by a
professional journalist who wants it to be as descriptive as possible. After filtering out
stop words only a few highly discriminative words would remain. For example, a news
article on the French president Sarkozy visiting president Bush while he's on holiday
would likely leave us with the query “Sarkozy Bush holiday”. This means that the queries
are already highly discriminative themselves as if they were constructed by an expert user.
Queries like “Sarkozy Bush holiday”, that contain one or more proper names limit the
amount of results because the number of documents the term occurs in is relatively small.
If you then intersect one or more of those small lists the end result will be a relatively
small set of results. For a smaller result set relatively more documents appear in the top-k
results. If only queries that result in more then a certain number of results (10 or 20) are
compared then the top-k overlap will be quite large, because both lists could be almost the
same. For example the single term index could return 30 results for a very discriminative
query, while the multi term index will find 20 results for the same query. The top-20
overlap ratio now already has to be between 50 and 100 percent.

2. ALVIS uses higher quality documents. Not only the quality of the titles (and thus the
queries), but also the quality of the articles themselves is much higher then those in the
WT10g test collection. The texts are written very concise so the important words (the
subject of the document) occur close to another. Words within a certain window of words
are marked as possible keys, so this is quite important.

50

3. ALVIS uses much smaller documents. On average a document in the test collection of
the ALVIS project contains 170 words, while the test set chosen here contains on average
500 words. Even if a web page containing 500 words is written as concise as a news
article of 170 words, then the result is still influenced. For example, a web page main
contain three paragraphs on three different subjects. The single term index will record the
occurrence of these three terms separately, but the multi term index can only record the
combination of terms if it appears in a window of a certain number of words.

4. ALVIS uses randomly distributed documents. The rare key indexing method as used
here and in the ALVIS project uses only local knowledge to filter keys. If the subject of
the documents differs a lot on each peer then a lot of subjects (read: term sets) will not
occur that often. On the other hand we could have a website (peer) that is largely about
one subject. In such a case the term set would not be considered rare because the term set
occurs in a lot of documents locally. However globally the term sets may be considered
rare if there are not a lot of websites on the subject.

5. ALVIS has more documents per peer and less peers in total. In the ALVIS project the
queries are tested on a collection of 30.000 documents, distributed randomly and evenly
over six peers. In this master project 10.000 documents were used, distributed as one
website per peer with 200 web pages on average. The documents here are on average
about three times as large so the total amount of text is roughly the same. If a term set
occurs in less then 10% of the documents on a peer, then it can occur in almost 500
documents in case of the ALVIS project. But in this project it can only occur in less then
20 documents on average. Therefore a website cannot contain many pages on the same
subject.

To illustrate the influence of some of the factors above we take a look at the three best
performing queries for the multi term index with DFmax = 7.5%. In appendix B you can find the
complete list of 632 queries. The three best performing queries are:
e [172] - “genentech leadership” - 4 out of 10 overlap — 13 MTI, 26 STI - P27D261
P27D127 P27D126 P27D88 P27D97 P27D102 P27D235 P27D197 P27D57 P27D18
e [256] - “kathi keller” - 5 out of 10 overlap — 13 MTI, 16 STI - P1D95 P1D93 P1D97
P1D96 P1D98 P1D88 P1D89 P1D8S P1D8&3 P1D99
e [532] - “steve hinkl” - 10 out of 10 overlap — 10 MTI, 10 STI - P37D60 P37D104 P37D24
P37D109 P37D97 P37D116 P37D51 P37D110 P37D96 P37D9%4
Each of the lines above represents:
The number of the query.
The stemmed query itself.
The overlap ratio.
The number of results for the multi term index (MTI) and the single term index (STI).
The ranked list of results for the multi term index; P stands for the peer number, D stands
for the document number.
There are a few remarks that we can make for these queries:
1. The top two queries consist of someone's name, while the other query also contains a
proper name (“genentech”).
2. The number of results for both the STI and the MTT is closer when the overlap is higher.
3. For each query the result list contains documents from just a single peer.

51

Although we cannot draw hard conclusions from such a select number of queries we however can
summarize what they at least seem to confirm:

1.

2.

First the highest ranking queries all seem to consist or contain proper names, which seems
to confirm factor one.

Secondly these terms occur near each other in a lot of documents. For a first and a last
name this would be very logical. The occurrence of terms near each other is very
important as mentioned as factors two and three.

Thirdly there are no more then 13 results for the MTI, which is 6,5% of the average
number of documents per peer (200). Apparently these lists of results are just below the
7,5% cut-off line, so the keys are considered i-rare. Factors four (random distribution of
documents) and factor five (more documents per peer) should improve retrieval
performance. Keys will be considered i-rare more often since the number of documents
per peer containing the key is lower (factor four) and there can be more documents
containing the key per peer (factor five).

There are also a few other differences between the ALVIS project and this master thesis, but these
do not influence the results as much. They are presented here in no particular order:

1.

ALVIS uses distributional semantics to improve their results. This is an interesting
approach to query expansion which goes well with the type of indexing that is used.
However here it is not implemented so we do not compare the results here with the results
from the ALVIS project that use this method of query expansion. Distributional semantics
is discussed in more detail in section 6.2 as a suggestion for future work.

ALVIS uses a ranker based on the TF-IDF algorithm, while the algorithm used here
is BM25. BM25 is a more advanced algorithm then a standard TF-IDF implementation.
However here and in the ALVIS project only the top-20 overlap between the single term
index and the multi term index are compared. Therefore the other factors are likely of far
more influence then the ranking algorithm that was used.

ALVIS uses a network of computers, while here only a single laptop is used. This
means that network related issues like insertion time were not researched.

52

6 Discussion and future work

This master project would not be complete without a discussion and an outlook on future work.
First the inherent problems with the methods used by the ALVIS project, and therefore also in
this project, are discussed. Secondly we discuss a problem that has caused quite a few difficulties
during the implementation phase of our proof-of-concept application, namely the memory
requirements to build and test such an index. Finally a few suggestions for future work are briefly
explored.

6.1 Inherent problems with the comparison

Most of the reasons for the difference between the results from this master project and the ALVIS
project were already discussed previously in section 5.4. However there are two other factors
which make comparing the two difficult:

1. The high amount of filtering.

2. The ranking algorithm.

The rare key indexing method stores only a small subset of the possible term set combinations
that can be made in a single document. This is caused by the two filters that are employed:

1. Proximity filter, which only creates term sets in a window of a certain number of words.

2. Redundancy filter, which filters out keys that are not intrinsically rare (see section 4.3).
This means that a huge amount of possible term sets are either never created (1) or filtered out
(2). The advantage of this indexing method should be the smaller amount of postings lists it sends
during the execution of a query. Although this is exactly what is achieved we also saw that a lot
of queries cannot be answered because the multi term index does not contain enough results.
Furthermore the queries that can be answered usually have a very low overlap ratio between the
top results from the single term index and those of the multi term index.

Another problem is the ranking function that was used. In the ALVIS project a standard TF-IDF
implementation is used to rank the results while as part of this project the BM25 ranking function
was used. These kind of functions only consider factors like:

e Length of the document.

e Average length of other documents.

e The number of times a term occurs in a document.

e The number of times a term occurs in other documents.

In other words the position of the terms in the document, their proximity to each other and how
often they occur together are not considered. A document that contains a set of terms that are used
near each other may be a better answer then one that contains the same set of terms spread out
over the document. Therefore the top results from the multi term index may be a better answer to
the query then those of the single term index.

6.2 Problems during implementation

The feasibility of a distributed index depends on a fine balance between scalability and retrieval
performance. Each peer in the system needs to be able to (temporarily store) in the order of a few
hundred thousand sets of terms. Based on the memory usage of our application we estimate that a

53

single index entry needs about 500 bytes of storage space in main memory. So if one wants to
store 200.000 index entries you would need a hundred megabytes of main memory. The filtering
process (as discussed in Section 4.3) needs quick access to the other entries in the index, so
storing the index on a hard drive would severely slow down the process. The amount of keys we
need to store depends mainly on the following factors:

e The number and length of the documents.

e The size of the window in which words that form a key can appear.

e The maximum number of documents that can contain a key (=DFmax).
An average website in the WT10g test collection contains 144 documents. For such a website a
few hundred thousand keys to work with in main memory is a realistic estimate. However
websites that are a lot larger need a more efficient storage structure. In the proof-of-concept we
therefore store the index as a HashMap<String key, byte[] postings>. The IndexEntry object can
be reconstructed from the key and the postings list, but the storage space needed is only about
100-150 bytes. It may be possible to limit the amount of storage space even further, but the index
entries will still have to be quickly accessible.

6.3 Suggestions for future work

The research done as part of this master project yielded some interesting results. However more
research is needed into distributed information retrieval so it can mature. In light of the research
done here there a few interesting issues to research:

1. Distributional semantics

2. Query adaptive indexing

The first research area, distributional semantics [46] [47], could be used to improve the query
expansion process. When a query is entered it needs to be mapped to one or more keys in the
index. In a best case scenario we have a query that is equal to a key. In most cases however the
query terms will have to be mapped to different keys.

For example, if we have the query A B C then in absence of the key A B C other keys like A B, A
C, B C, A, B and C may be (if they exist) combined to form the list of resulting documents. There
may also be other keys that contain a subset of ABC, but that do not solely consist of this subset.
An example here would be the key ABX, which contains the subset AB, but also contains X.
Now suppose that the query is ABC and the index happens to contain keys like ABD, ABE, ABF
... ABZ. Retrieving the posting lists for all these keys would generate a lot of network traffic,
which is costly and also decreases the scalability of the application. Distributional semantics tries
to solve this by determining which keys we should retrieve if we want to find ABC. This is done
by calculating a co-occurrence matrix of N*N words for a representative subset of the global
document collection. In a co-occurrence matrix the amount of times a word like D occurs within
a certain window size near C is stored. So to select the best keys we look at which other words
occur the most near C. To save storage space you could throw away all references to terms that
do not co-occur more then a certain number of times, since we are only interested in co-
occurrences that occur often. Using distributional semantics thus increases the chance of success
while lowering the amount of network traffic.

In recent years the use of query adaptive indexing techniques for peer-to-peer networks have also
become an interesting topic [49] [50]. An index based on highly discriminative keys basically

54

tries to guess the query a user would enter to find that document. Words in a window of a certain
size that also don't occur very often together are combined to form a key. This approach limits the
amount of postings that need to be retrieved at the time a query is executed. However the rareness
of a key does not seem to be the best indicator of its usefulness. If we could determine the
usefulness of keys by looking at previously executed queries then the retrieval performance may
improve, while at the same time the storage and therefore the communication costs could be kept
down.

55

7 Conclusions

The contribution of this thesis is twofold; first the current state of the field of distributed
information retrieval is presented. In the second part an application was presented and evaluated
that implemented a recently introduced indexing method based on rare sets of terms (or keys) [9].

Which systems for distributed information retrieval already exist?

In the last few years a number of distributed information retrieval systems have been
implemented. In this thesis we looked at ALVIS [4], Minerva [5], pSearch [6] and PlanetP [42]
which are some of the most well known distributed information retrieval systems. We examined
the structure of the network they use, their indexing strategy as well as their scalability and
retrieval performance. ALVIS, Minerva and pSearch all use a distributed hash table (DHT) [7] as
the basis of their overlay network, which means that also their index is distributed over the peers.
These three information retrieval systems all use existing DHT approaches like CAN [33][43]
(ALVIS and Minerva) or Chord [34] (pSearch). These DHT systems can reach any peer in the
network in logN steps, while maintaining an routing table that grows as O(logN).

What are the differences among them?

There are no major differences between ALVIS, Minerva and pSearch if we look at the network
structure (DHT-based), their indexing strategy (distributed over the peers) or their scalability
(quite good, because of the DHT approach). PlanetP is the only system that takes a totally
different approach. Instead of distributing the index over the peers the PlanetP system stores a
copy of the entire index on each peer using a Bloom filter [22] to achieve a high compression
rate. However despite the high compression rate the index still becomes far too large for large
numbers of peers.

How do they achieve a balance between scalability and retrieval performance?

In order to find a good balance between excellent retrieval performance (which means a large
index) and excellent scalability (which means a small index) the more successful systems use a
distributed hash table as their basis. This means a distributed index is stored on a number of
peers. The number of peers that need to be contacted is limited. In the ALVIS project this is done
by mapping the query terms to a relatively small number of keys. Minerva uses meta data to
select the most promising peers and pSearch compares the query vector to retrieve the closest
matching document vectors. So by distributing the index and querying only a select number of
peers the systems remain scalable and achieve good retrieval performance. As said before the
approach used by the PlanetP system doesn't scale well so the balance is lost.

What are the advantages or disadvantages of the approach they use?

The main advantage of the DHT-based systems is their excellent scalability. Except for PlanetP
all of the systems can grow to very large numbers of peers. The main disadvantage of a
distributed information retrieval system in general is the cost of communication. Since the
information needs to be send over the (relatively slow) internet instead of a (relatively fast) local
network the amount of communication needs to be kept down. Without a (near) perfect
knowledge of the global document collection a distributed information retrieval system can only
approach the retrieval performance of a centralized system. Most systems claim very high

56

retrieval performance, however these systems really should be tested on a number of collections
with a number of query sets to assess their performance. For example, in the case of the ALVIS
project our experiments show that their indexing method doesn't perform well at all when it is
tested using a realistic collection of webpages (WT10g [8]).

In the second part of this thesis the feasibility of using rare key indexing for distributed web
search was researched. This indexing method is based on research which was done as as part of
the ALVIS project. Basically sets of terms are considered rare if they occur near each other in a
limited number of documents. In our experiments we researched the scalability and the retrieval
performance of the indexing method using the WT10g test collection. During these experiments
we came to the following conclusions.

How does the average HDK vocubulary per peer scale?

An important factor of scalability is the average number of entries per peer. The scalability
analysis of our implementation shows that the average number of keys per peer for both the
single and the multi term index will grow increasingly slower. For large numbers of peers the
discovery of new (sets of) terms becomes less likely.

How does the average posting list size scale?

The results also show that the average number of postings per key is a steady value for a multi
term index, while it continues to increase linearly for a single term index. For large numbers of
peers the posting lists for the single term index become extremely large in comparison to the
result set of a multi term query.

How does the average number of postings per peer scale?

For large numbers of peers the posting lists for the single term index become extremely large in
comparison to the result set of a multi term query. The maximum size of the multi term indexes
created here is about 8.5 times the size of the single term index. I can also conclude that the
growth of a multi term index will slow down eventually, while the single term index will continue
to grow linearly. Overall the scalability of a multi term index still seems to be reasonable for use
in a distributed setting.

What is the retrieval quality of the system compared to a centralized system, when using
top-k retrieval as a measurement?

After the scalability analysis we performed several experiments to measure the retrieval
performance of the multi term index compared to a single term index. The results from the
ALVIS project promises excellent retrieval performance but that has not been true in this case.
The top-10 overlap ratio between results from the single term index and a multi term index was
found to be a meager 7.5% in the best case. The huge difference in retrieval performance between
the two projects has two major causes. The first is the use of highly discriminative queries by the
ALVIS project. This causes the result sets to be quite small, while each result set needs to contain
at least twenty results. So the result sets for the single term index and the multi term index will be
of a similar size since they are bounded. Therefore the top-20 overlap ratio is quite high.

The second cause of the difference in retrieval performance is the test collection and its
properties. These statistics are summarized in Table 5.3. In the ALVIS project six peers are used

57

that each contain 5000 randomly selected Reuters news articles of on average 170 words. In this
thesis a subset of the WT10g test collection was used. We tested the queries using 50 peers and
each peer contains on average 200 web pages of on average 500 words each that together form a
website. The use of a relatively large number of peers with each a relatively low number of
related web pages seems to be a difficult combination for the rare key indexing method. The
reasoning behind this is discussed in depth in section 5.4.

Final remarks

Based on the outcome of the experiments I have to conclude that the rare key indexing method as
first introduced by the ALVIS project is unsuitable to index and search real websites. The concept
of beforehand calculating term sets to limit the size of posting lists however remains an
interesting one. Distributional semantics [46] [47] may be a good way to improve the query
expander so it includes the best keys that do not fully match (subsets of) the query. Furthermore
the use of only local knowledge to determine if a key is useful may result in storing a lot of keys
that are not so useful at all. An approach using query adaptive indexing [49] [50] could look at
previous queries from users to make a more informed choice about the value of a key.

58

Bibliography

[1] Wikipedia, eDonkey network, http://en.wikipedia.org/wiki/EDonkey network, 2007

[2] Bittorrent Inc., Bittorrent website, http://www.bittorrent.com, 2007

[3] Gnutella, Gnutella2 website, http://www.gnutella2.com, 2007

[4] ALVIS Consortium, ALVIS - Superpeer semantic search engines,
http://www.alvis.info/alvis/, 2007

[5] Max Planck Institute, Minerva website, http:/www.mpi-
inf.mpg.de/departments/d5/software/minerva/, 2007

[6] Tang, C.; Xu, Z.; Mahalingham, M., pSearch: Information retrieval in Structured
Overlays, ACM HotNets-1, 2002

[7] Wikipedia, Distributed Hash Tables (DHT),
http://en.wikipedia.org/wiki/Distributed hash table, 2007

[8] Information Retrieval department (Glasgow University, United Kingdom), TREC Web
Corpus : WT10g, http://ir.dcs.gla.ac.uk/test collections/wt10g.html, May 2003

[9] Podnar, Ivana; Rajman, Martin; Luu, Toan; Klemm, Fabius; Aberer, Karl, Deliverable
D4.1 Report on abstract model and P2P protocols, ALVIS - Superpeer Semantic Search
Engine, 2006

[10]Markoft, John; Hansell, Saul, Hiding in Plain Sight, Google Seeks More Power, The New
York Times, 14th of June 2006

[11]Google, Webmaster Help Center - What is a Sitemap file and why should I have one?,
http://www.google.com/support/webmasters/bin/answe, 2007

[12]Wikipedia, RSS, http://en.wikipedia.org/wiki/RSS (file format), 2007

[13]L1, Jinyang; Loo, Boon Thau; Hellerstein, Joseph M.; Kaashoek, M. Frans; Karger, David
R.; Morris, Robbert, On the Feasibility of Peer-to-Peer Web Indexing and Search,
International Workshop on Peer-to-Peer Systems (IPTPS) 2003, 2003

[14]Lu, J.;Callan, J., Content-based retrieval in hybrid peer-to-peer networks, Proceedings of
the 12th international conference on Information and knowledge management, 2003

[15]Pourebrahimi, B.;Bertels, K.;Vassiliadis, S., A Survey of Peer-to-Peer Networks,
ProRISC (Program for Research on Integrated Systems and Circuits) 2005 Proceedings -
NWO-STW, 2005

[16]Wikipedia, Hash functions, http://en.wikipedia.org/wiki/Hash function, 2007

59

[17]The Internet Engineering Task Force (IETF), US Secure Hash Algorithm 1 (SHA-1) -
RFC 3174, http://tools.ietf.org/html/rfc3174, 2001

[18]The Internet Engineering Task Force (IETF), The MD-5 Message Digest Algorithm -
RFC 1321, http://tools.ietf.org/html/rfc1321, 1992

[19]Wikipedia, Napster, http://en.wikipedia.org/wiki/Napster, 2007

[20]Gnutella, Gnutella2 website, http:/www.gnutella2.com, 2007

[21]The Free Network project, Freenet project, http://freenetproject.org/, 2007

[22]Bloom, Burton H., Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, July 1970

[23]Google Inc., The Google search engine, http://www.google.com, 2007

[24]Yahoo Inc., The Yahoo search engine, http://www.yahoo.com, 2007

[25]RFC-Gnutella website, Gnutella v0.4 protocol specification, http://rfc-
gnutella.sourceforge.net/developer/stable/index.html, 2007

[26]Heaps, H.S., Information Retrieval - Computational and Theoretical Aspects, Academic
Press, 1978

[27]Wikipedia, File Sharing, http://en.wikipedia.org/wiki/File_sharing, 2007
[28]Sharman Networks, Kazaa website, http://www.kazaa.com, 2007

[29]ANts P2P Project, ANts P2P Website on Sourceforge.net, http://antsp2p.sourceforge.net/,
2007

[30]Baaima NV, Joost website, http:// www.joost.com/, 2007

[31]Babel Networks Ltd., Babelgum website, http://www.babelgum.com/, 2007

[32]Peercast, Peercast website, http://www.peercast.org/, 2007

[33]Ratnasamy, S.; Francis, P.; Handley M.; Karp, R., Shenker, S., A Scalable Content-
Addressable Network , In proceedings of the Special Interest Group on Data
Communication (SIGCOMM) '01, 2001

[34]Stoica, I.;Morris, R.;Karger, D.;Kaashoek, M.F.;Blakrishnan, H., Chord: A scalable peer-
to-peer lookup service for internet applications, /n proceedings of the Special Interest
Group on Data Communication (SIGCOMM) '01, 2001

[35]Rowstron, A.; Druschel, P., Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems, /n proceedings of Middleware'01, 2001

60

[36]Zhao, B.;Duan, Y.;Huang, L.;Joseph, A., Tapestry: An infrastructure for fault-resilient
wide-area location and routing, Techical Report UCB//CDS-01-1141 U.C.Berkeley,

[37]Castro, M. ;Druschel, P.; Kermarrec A.M.; Nandi, A.; Rowstron A.; Singh A.,
Splitstream: high-bandwidth multicast in cooperative environments, Proceedings of the
nineteenth ACM symposium on Operating systems principles, 2003

[38]Iyer, S.; Rowstron, A.; Druschel, P., Squirrel: A decentralized peer-to-peer web cache,
Proceedings of the 2 1st Symposium on Principles of Distributed Computing (PODC),
Monterey, California, USA, 2002

[39]Rowstron, A.; Druschel, P., PAST: A large-scale, persistent peer-to-peer storage utility,
Proceedings of the 8th Workshop on HotTopics in Operating Systems (HotOS-VIII).
Schloss Elmau, Germany:IEEECompSoc, 2001

[40]Cox, L. P.; Murray, C. D.; Noble, B. D., Pastiche: making backup cheap and easy, Special
Interest Group on Operatings Systems - Operating Systems Review, 2002

[41]Plaxton, C.G.; Rajaraman, R.; Richa, A.W., Accessing nearby copies of replicated objects
in a distributed environment, ACM Symposium on Parallel Algorithms and Architectures,
1997

[42]Rutgers University (New Jersey, USA), PlanetP website, http://www.panic-
lab.rutgers.edu/Research/planetp/, 2007

[43]Xu, Z; Zhang, Z, Technical Report HPL-2002-41, HP Laboratories Palo Alto, 2002

[44]van Rijsbergen, C.J.; Robertson, S.E.; Porter, M.F., New models in probabilistic
information retrieval, London: British Library. (British Library Research and
Development Report, no. 5587), 1980

[45]Martin Porter, The 'official' implementations of the Porter Stemming algorithms in a
number of programming languages, http://tartarus.org/~martin/PorterStemmer/, Jan 2006

[46]Kolb, P., Distributionelle Semantik - Automatisch Lesartengenerierung durch Erkennen
unterschiedlicher Gebrauchskontexte, Master Thesis, University of Potsdam (Germany),
2003

[47]Rajman, M.; Bonnet, A., Corpora-Base linguistics: New tools for Natural Language
Processing, 1st Annual Conference of Association for Global Strategic Information, 1992

[48]Wikipedia, Okapi BM25, http://en.wikipedia.org/wiki/Okapi_BM?25, 2007

[49]Klemm, F.; Datta, A.; Aberer, K., A Query-Adaptive Partial Distributed Hash Table for
Peer-to-Peer Systems, Lecture notes in computer science, 2004

61

[50]Balke, W.; Nejdl, W.; Siberski, W.; Thaden, U., Progressive distributed top-k retrieval in
peer-to-peer networks, Proceedings of the 21st International Conference on Data
Engineering (ICDE 2005), 2005

62

Appendix A — List of peers used in experiments

The following list contains the IP addresses of all the peers used in the experiments. For the
retrieval performance experiments the first 50 peers (P1...P50) were used. And for the scalability
analysis all 100 peers (P1...P100) were used. A peer contains on average 200 documents. For
each peer its number is listed and its IP address.

P1:132.198.2.99 P26: 152.2.44.1 P51:206.161.79.25 P76: 131.95.98.200
P2:198.95.204.3 P27:205.182.53.51 P52:204.156.149.58 P77:198.107.235.4
P3:137.229.33.63 P28:192.216.245.8 P53:152.138.5.3 P78: 134.205.165.120
P4:199.1.61.158 P29:192.87.7.4 P54:207.158.226.136 P79:205.163.84.69
P5:207.33.42.248 P30: 140.190.65.12 P55:207.70.107.20 P80: 207.60.86.242
P6:203.21.84.108 P31:204.162.147.197 P56:206.161.8.114 P81:204.140.220.228
P7:206.158.146.51 P32:206.54.38.105 P57:205.162.38.113 P82:204.178.72.78
P8: 199.45.246.34 P33:207.126.101.90 P58:206.127.196.124 P83:208.194.65.10
P9:204.164.76.131 P34:206.86.52.4 P59:199.211.123.12 P84:203.111.77.64
P10: 198.115.182.11 | P35:206.65.84.166 P60: 155.198.125.46 P85:198.62.160.12
P11:206.31.73.128 P36: 130.70.46.129 P61: 194.73.169.207 P86: 203.15.58.8
P12:207.158.201.127 |P37: 136.159.130.50 P62: 198.115.182.8 P87:130.226.166.167
P13:194.217.105.1 P38:129.12.200.19 P63:205.229.48.168 P88:206.30.242.28
P14:204.107.211.167 |P39:192.217.82.137 P64:207.112.0.10 P89:204.62.160.251
P15:206.169.12.100 | P40: 24.129.0.69 P65: 155.88.25.10 P90: 206.86.48.91
P16:205.212.126.12 | P41: 136.210.100.51 P66: 132.161.33.70 P91:199.182.71.101
P17:207.25.209.36 P42:199.18.207.26 P67:206.124.192.202 P92:208.131.64.137
P18:194.219.32.70 P43:207.60.134.110 P68: 192.195.26.12 P93:207.31.82.101
P19: 128.138.165.99 | P44:204.233.138.5 P69: 193.123.133.18 P94: 137.82.170.200
P20: 192.234.213.1 P45:204.141.224.193 P70: 137.132.19.215 P95: 194.88.132.152
P21: 195.40.65.89 P46: 134.84.174.20 P71:38.247.71.7 P96: 143.216.21.6
P22:205.199.139.3 P47: 198.246.244.55 P72:128.192.22.84 P97:206.171.10.14
P23:207.86.226.162 | P48:206.96.72.123 P73:206.161.77.75 P98: 137.82.194.23
P24:205.177.145.61 | P49:207.60.110.71 P74: 128.138.108.74 P99: 192.132.206.7
P25:130.160.88.109 | P50: 206.98.169.214 P75:204.180.227.49 P100: 192.107.39.3

63

Appendix B — List of queries used in experiments

The following list consists of 632 queries. These queries were constructed by using the titles of
the web pages. For the exact method please see section 5.3.2. The table has the following format:

| 1.Nr | 2. Stemmed Query EX |4.MTI075 |5, MTL010 |6, MTI015 |7.MTI020 |

The first column contains the number of the query. The list is sorted alphabetically on the second
column, the query itself. The query is already stemmed using the Porter stemmer and it consists
of either two or three words. The third column indicates if the query produced more then ten
results when executed on the Single Term Index (STI). Columns four, five, six and seven list if
any of the Multi Term Indexes (MTIs) returned more then ten results. Since the results from a
MTI will be a subset of those of the STI, an STI entry will always be present when an MTI entry
1s. The DFmax percentage for each MTI is noted, for example MTI-075 stands for the Multi Term
Index with DFmax set to 7,5% of the local number of documents.

All of the queries were executed on an index consisting of 50 peers. Of the 632 queries 335
returned ten or more results on the STI. The MTI returned the following number of queries with
ten or more results for different settings of DFmax:

e 7,5% - 65 queries

e 10% - 59 queries

o 15% - 44 queries

e 20% - 45 queries

0 abstract syntax STI

1 academ calendar STI

2 academ visitor signal

3 acadian louisiana lesson STI

4 adapt signal process STI

5 administr train cours STI

6 advanc elect STI

7 advantag melbourn assist STI

8 advantag melbourn centr STI

9 advantag melbourn introduct

10 aerob studio

11 alabama graduat school STI

12 albania observ liber

13 alleg victim iranian

14 american colleg STI MTI-075
15 american studi STI MTI-075 MTI-10 MTI-15 MTI-20
16 anaskophsh kyproi

17 anglo turkish associ

18 anion polymer initi STI

19 anion polymer propagat

64

20 anion vinyl polymer STI
21 annot visit STI
22 annual review STI MTI-075 MTI-10 MTI-15
23 annual survei STI
24 asoci access

25 assist mission STI
26 attack breast endeavor

27 attack writer suggest

28 attribut grammar STI
29 award innov STI
30 barbara masser

31 basic econom model STI
32 belgian refuge threaten

33 biograph inform bruce

34 biologi deptart facil

35 borrow natur STI
36 breath easier pulmozym

37 bring histori endeavor STI
38 broadcast chipset slash

39 bruce biographi

40 california assembl public STI
41 camera store STI
42 cameroon urban agricultur

43 canada graduat school STI
44 carbon fiber

45 career singapor

46 carolina endeavor STI
47 casio contest winner

48 cation polymer chain STI
49 cation polymer initi STI
50 cation polymer propag STI
51 cation polymer termin STI
52 cation vinyl polymer STI
53 centr alloi solidif

54 challeng project descriptor

55 check survei thank STI
56 chesapeak incid

57 chief report STI
58 choos adventur STI
59 christma humor

60 citcom servic STI
61 citcom servic acknowledg

62 citcom servic overview

65

63

citnet acknowledg

64 class descript STI MTI-075 MTI-10
65 class inform announc STI

66 class requir STI MTI-075 MTI-10 MTI-15 MTI-20
67 class schedul STI MTI-075 MTI-10
68 comic newslett STI

69 commun garden vancouvc

70 commun internet STI MTI-075 MTI-10 MTI-15 MTI-20
71 commun multimedia market STI

72 compani profil STI

73 compil supercombin

74 configur freeppp

75 connecticut graduat school

76 consolid balanc sheet STI

77 consolid statement equiti STI

78 consolid statement incom STI

79 consortium project STI

80 consum product STI MTI-075 MTI-10 MTI-15 MTI-20
81 contact assist STI MTI-075 MTI-10 MTI-15 MTI-20
82 contact postcard promot STI

83 continent internet captain STI

84 continent internet custom STI MTI-15

85 convent techniqu STI

86 convert mobil telephoni

87 corpfinet career center

88 corpfinet interview

89 corpor financ updat STI

90 cours signal process STI

91 cover endeavor STI

92 cover sheet STI

93 cowboi biographi

94 cowboi junki

95 crawler search

96 creat applic proxi STI

97 crimin justic STI

98 crystallin polym

99 cwuaa championship result

100 | cyber adventur STI

101 | cypriot cultur

102 | cyprriot costum STI

103 | debug fault simul

104 | decemb profil STI

105 | delawar graduat school

66

106 | delphi nortech softwar STI

107 | depart contact STI MTI-075 MTI-10 MTI-15 MTI-20
108 | depart directori STI

109 | depart directori vwxyz

110 | descript program languag STI

111 | design dimens perform STI

112 | desktop publish STI

113 | develop resourc STI MTI-075 MTI-10 MTI-15 MTI-20
114 | diana reichardt

115 | differ instanti

116 | dilut solut viscometri

117 | dimitar homepga

118 | disappear javad rouhani STI

119 | discount comic check STI

120 | discuss analysi STI MTI-075 MTI-10 MTI-15 MTI-20
121 | disson record

122 | district columbia graduat

123 | dollar dungeon

124 | domin abram STI MTI-10
125 | donna jessop

126 | download logotron softwar

127 | drive endeavor STI

128 | dynam transform STI

129 | earli synthet polym

130 | electr extend speech

131 | elfman interview

132 | empir success object STI

133 | employ opportun check STI

134 | endeavor content STI MTI-20
135 | endeavor magazin april STI

136 | energi servic STI MTI-075 MTI-10
137 | enhanc elmhurst homepag

138 | environment scienc STI MTI-10
139 | epoxi resin

140 | erowid cannabi experi

141 | erowid dream STI

142 | erowid entheogen disclaim STI

143 | erowid guestbook STI

144 | erowid guestbook addit

145 | erowid hippi

146 | erowid ketamin articl STI

147 | erowid magic mushroom

148 | erowid mushroom cultiv

67

149

erowid mushroom scienc

150 | erowid salvia divinorum

151 | erowid tobacco nicotin

152 | event calendar STI

153 | explor vastli prefer

154 | factori construct STI

155 | famou student athlet

156 | financi highlight STI

157 | financi inform STI MTI-075 MTI-10 MTI-15 MTI-20
158 | financi overview STI

159 | florida graduat school STI

160 | foreign graduat school STI

161 | franki borison STI

162 | frequenc domain kalman

163 | futur scienc STI MTI-075 MTI-10 MTI-15 MTI-20
164 | garbag collect method STI

165 | garbag sound video

166 | gedistribueerd systemen

167 | geffen record STI

168 | geffen vintag STI

169 | geffen vintag audio

170 | geffen vintag video

171 | genentech annual report

172 | genentech leadership STI MTI-075

173 | genentech market todai STI

174 | gener comment STI MTI-075 MTI-10 MTI-15 MTI-20
175 | gener descript STI MTI-075 MTI-10 MTI-15
176 | gener macintosh inform STI

177 | gener tourist introduct STI

178 | georgia graduat school STI

179 | german commun garden STI

180 | gertrud endeavor

181 | gettysburg address format

182 | gettysburg address unformat

183 | gillian biographi

184 | gillian photograph

185 | gillian reviv

186 | gillian welch

187 | glass transit STI

188 | global facil urban

189 | govern polit STI MTI-075 MTI-10 MTI-15 MTI-20
190 | grabber shell script

191 | graduat field studi STI

68

192 | graduat school STI MTI-075 MTI-10 MTI-15 MTI-20
193 | graham chapman biographi

194 | grant contract applic STI

195 | granular visit function

196 | guitar record STI

197 | guitar record classifi

198 | guitar record column STI MTI-20

199 | guitar record contact STI

200 | guitar record essenti STI

201 | guitar record interview STI

202 | guitar record label STI

203 | guitar record power STI

204 | guitar record search STI

205 | guitar record tabplu

206 | guitar record undiscov STI

207 | hacker challeng break

208 | handl stress STI

209 | hawaii graduat school

210 | hayden displai

211 | health medicin STI MTI-075 MTI-10
212 | health scienc STI MTI-075 MTI-20
213 | higher order attribut STI

214 | highlight interest project STI

215 | histor conserv studi STI

216 | human interact STI MTI-075 MTI-10
217 | human resourc philosophi STI

218 |illinoi graduat school STI

219 | implement method STI MTI-075 MTI-10
220 | increment evalu perform STI

221 | index multimedia inform STI

222 | indiana graduat school

223 | industri capabl develop STI

224 | industri labor relat STI

225 | inform ethic STI

226 | inform resourc STI MTI-075 MTI-10 MTI-15 MTI-20
227 | innov support assist STI

228 | innov support framework STI

229 | innov support inform STI

230 | innov support network STI

231 | innov support technic STI

232 | instant collect section STI

233 | institut review board STI

234 | institut servic STI MTI-075 MTI-10 MTI-15 MTI-20

69

235 | integr support STI MTI-075 MTI-10 MTI-15 MTI-20
236 | interest research develop STI

237 | intern advisori panel

238 | intern affair STI

239 | internet relat STI MTI-075 MTI-10 MTI-15 MTI-20
240 | internet total account STI

241 | internet winner loser

242 | intern linkag STI

243 | intern linkag bilater

244 | intern linkag multilater

245 | introduc cypru

246 | introduct minist

247 | introduct overview STI MTI-075

248 | iranian writer kidnap

249 | israel egypt STI

250 | janic biographi

251 | jennif bookmark

252 | jewel sandov

253 | joshua muravchik

254 | kasten algorithm

255 | kathi keenan STI MTI-10 MTI-15
256 | kathi keller STI MTI-075

257 | kathi koerper

258 | kentucki graduat school

259 | kevin homepag

260 | kevin resum STI

261 | klima feedback

262 | lambda express

263 | laura wigod

264 | letter stockhold

265 | letter support faraj

266 | librari environ STI MTI-075 MTI-10
267 | light cyberspac STI

268 | listen email phone

269 | lobbi guidelin employe

270 | logic famili STI

271 | logotron catalogu STI

272 | logotron press releas

273 | lyric garbag

274 | macintosh instal STI MTI-075 MTI-10 MTI-15
275 | macintosh modem initi

276 | macintosh onlin public STI

277 | macintosh resourc internet STI

70

278 | manag success product STI
279 | manpow develop assist

280 | manufactur macintosh hardwar STI
281 | maria biographi

282 | maria carri STI
283 | maria everybodi

284 | maria human STI
285 | maria listen

286 | maria mckee

287 | maria perfect dress

288 | maria scarlov STI
289 | maria smarter

290 | mariu usher STI
291 | market chang environ STI
292 | maryland graduat school

293 | massachusett graduat school STI
294 | mehdi rouhani

295 | membership applic STI MTI-20
296 | membership inform STI MTI-075 MTI-20
297 | memori model engin STI
298 | metallocen catalysi

299 | metropoli worknet

300 | michael palin biographi

301 | michigan graduat school STI
302 | mississippi graduat school STI
303 | modem semiconductor revenu

304 | modular build white

305 | molecular weight

306 | murrai biographi

307 | nader afshar

308 | nairobi urban agricultur

309 | nation patent inform STI
310 | nation scienc award STI
311 | nation scienc technolog STI
312 | nation sport center STI
313 | nation technolog award STI
314 | nation undergradu research STI
315 | natur polym

316 | network structur STI
317 | newsmak april

318 | newswir august

319 | newswir decemb

320 | newswir novemb

71

321

newswir octob

322 | newswir septemb

323 | nonlinear polym

324 | north carolina graduat STI
325 | north eastern graduat

326 | nuclear magnet reson

327 | nylon synthesi

328 | object testabl member

329 | object veloc

330 | offic board director STI
331 | offici california legisl

332 | offic inform commun STI MTI-20
333 | offic research servic STI
334 | offic technolog develop STI MTI-075
335 | olefin metathesi polymer

336 | olymp nation sport STI
337 | opportun person product STI
338 | opposit activ STI
339 | optic group homepag

340 | oragan school check

341 | organiz chart research

342 | osteopath medicin STI
343 | overview citnet

344 | packet filter applic

345 | paint decor STI MTI-15 MTI-20
346 | parent consent letter

347 | partner index STI
348 | pennsylvania graduat school STI
349 | pertin figur

350 | peter gabriel biographi

351 | peter mayer

352 | peter stoyanov presid

353 | philip chipset STI
354 | photo album STI
355 | photo galleri STI
356 | physic infrastructur STI
357 | physic scienc STI MTI-075 MTI-10 MTI-20
358 | pinpoint servic

359 | pinpoint survei advic

360 | pinpoint train

361 | poland feedback

362 | poland journei

363 | polym composit

72

364 | positiv reductiv

365 | possibl simul STI MTI-075 MTI-10 MTI-15
366 | postcard promot STI

367 | postgradu train initi STI

368 | power endeavor STI

369 | pragati grover

370 | presidenti elect bulgaria

371 | press crucibl

372 | press insid knowledg STI

373 | press peter rabbit

374 | press releas STI MTI-075 MTI-10 MTI-15 MTI-20
375 | press releas octob STI

376 | press releas septemb STI

377 | press victorian crime

378 | produc hospic

379 | product extra STI

380 | professor derek rutter

381 | program applic STI MTI-075 MTI-10 MTI-15 MTI-20
382 | proton adipoyl chlorid

383 | prototyp gofer STI

384 | proxim market STI

385 | prune optim

386 | psycholog centr research STI

387 | psycholog centr studi STI

388 | psycholog development psycholog STI

389 | psycholog handbook STI

390 | psycholog neuropsycholog cognit

391 | psycholog public STI MTI-10 MTI-15 MTI-20
392 | public relat STI MTI-075 MTI-10 MTI-15 MTI-20
393 | public research institut STI

394 | public skate schedul

395 | quarterli report STI

396 | questionnair cover letter

397 | rachel modena barasch

398 | raleigh freeman

399 | recent activ STI MTI-075 MTI-10 MTI-15
400 | recreat leisur STI

401 | reduc primit count

402 | regist product STI MTI-075

403 | relat formal STI MTI-075 MTI-10

404 | religi arrest continu

405 | remov inherit attribut

406 | report instruct STI

73

407 | report manag STI MTI-075 MTI-10 MTI-15 MTI-20
408 | repositori white paper STI

409 | request graduat admiss

410 | research confer center STI

411 | research graduat studi STI MTI-10

412 | research innov STI MTI-075 MTI-10 MTI-15

413 | research interest STI MTI-075 MTI-10 MTI-15 MTI-20
414 | research lighter

415 | research seminar programm STI

416 | research servic STI MTI-075 MTI-10 MTI-15 MTI-20
417 | research staff section STI

418 | research subject STI MTI-075 MTI-10 MTI-15 MTI-20
419 | research support april STI

420 | research support biolog STI

421 | research support march STI

422 | research support newslett STI

423 | research support physic STI

424 | research support social STI

425 | resourc research STI MTI-075 MTI-10 MTI-15 MTI-20
426 | resultaten groupwar evaluatieproject

427 | review afronet

428 | review american heart STI

429 | review bookwir

430 | review brettnew

431 |review careerweb

432 | review cdnow

433 | review channel STI

434 | review charg STI

435 | review cnnfn

436 | review comedi central

437 | review consum world STI

438 | review crayon

439 | review cyberwalk

440 | review dejanew

441 | review directori servic STI

442 | review discoveri channel STI

443 | review disnei

444 | review electr postcard

445 | review entertain weekli STI

446 | review epicuri

447 | review espnet sportszon

448 | review exploranet

449 | review famili STI

74

450

review familiar quotat

451 |review fedex

452 | review fedworld

453 | review firefli

454 | review gigaplex

455 | review global network STI
456 | review hotwir

457 | review hypermod

458 | review industri STI MTI-075 MTI-10 MTI-15
459 | review librari congress STI
460 | review mayaquest

461 | review mercuri center

462 | review metavers

463 | review mississippi review STI
464 | review nation institut STI
465 | review netscap commun STI
466 | review networth

467 | review njonlin weather

468 | review onlin STI MTI-075 MTI-10 MTI-20
469 | review onlin health STI
470 | review place STI MTI-075 MTI-10 MTI-15
471 | review project galileo

472 | review scholast central

473 | review seniorcom

474 | review sharewar STI
475 | review sionlin

476 | review sonicnet

477 | review space STI
478 | review terraquest

479 | review thoma STI
480 | review travel channel STI
481 | review tripod

482 | review uroulett

483 | review voyag STI
484 | rhode island graduat

485 | sabina aharpour

486 | sampl deriv STI
487 | scapp english

488 | scapp french

489 | scheme local postgradu

490 | scholarli endeavor STI
491 | school adopt scheme

492 | scienc technolog STI MTI-075 MTI-10 MTI-15 MTI-20

75

493 | scienc technolog promot STI

494 | search power monei STI

495 | secular model

496 | septemb content STI MTI-20
497 | servic check STI MTI-075 MTI-10 MTI-15 MTI-20
498 | signal process digit STI

499 | simcopi shell script

500 | simul answer econom STI

501 | skill enhanc STI MTI-075
502 | skill manpow

503 | sober endeavor

504 | social scienc STI MTI-075
505 | solectron appoint david

506 | solectron complet elect

507 | solectron complet purchas

508 | solectron corpor STI

509 | solectron corpor quarter

510 | solectron corpor second

511 | solut centr STI

512 | solut smart product STI

513 | south carolina graduat STI

514 | southern cultur STI

515 | southern cultur nashvil

516 | southern cultur throw

517 | special clientel

518 | special featur STI MTI-075 MTI-10 MTI-15 MTI-20
519 | special featur sqlwindow

520 | special featur visual STI

521 | special offer STI MTI-075 MTI-10 MTI-15 MTI-20
522 | spectral estim signal

523 | speed fault simul

524 | sport leisur STI

525 | staff directori research STI

526 | staff signal process STI

527 | starch cellulos

528 | start point internet STI

529 | static detect STI

530 | static optim STI

531 | steve farnsworth

532 | steve hinkl STI MTI-075
533 | stock stockhold inform STI

534 | strang travel stori STI

535 | streamwork player

76

536

streamwork server price

537 | streamwork server public

538 | streamwork server specif

539 | streamwork server support

540 | streamwork transmitt

541 | streamwork transmitt enhanc

542 | streamwork transmitt price

543 | streamwork transmitt specif

544 | strong intern linkag STI

545 | structur thesi STI

546 | student athlet STI MTI-075 MTI-10 MTI-15 MTI-20
547 | student athlet award

548 | student evalu STI MTI-10 MTI-15 MTI-20
549 | student signal process STI

550 | stuffit expand STI

551 | submiss resum

552 | subscrib servic STI MTI-075 MTI-10 MTI-20
553 | success highlight STI

554 | sunnit cleric murder

555 | support terror STI

556 | suspend restart simul

557 | sustain develop STI MTI-075 MTI-10
558 | switchmod power suppli

559 | syntax semant STI

560 | tabriz execut STI

561 | target achiev STI

562 | techmonth diari event

563 | techmonth techmonth award STI

564 | techmonth techmonth organis STI

565 | technic report STI MTI-075 MTI-10
566 | technolog centr STI MTI-075 MTI-20
567 | technolog knowledg infrastructur STI

568 | teenag fanclub

569 | teenag fanclub photo

570 | tennesse graduat school STI

571 | termin silli

572 | terraweb gener inform

573 | terraweb guestbook

574 | theolog school

575 | theolog school admiss

576 | thermoplast elastom

577 | track field record STI

578 | train cours STI MTI-075 MTI-10 MTI-15 MTI-20

77

579 | train resourc materi STI
580 | trent affair

581 | troubleshoot freeppp

582 | univers calgari dinosaur STI
583 | univers calgari field STI
584 | univers calgari track STI
585 | univers calgari tumbl

586 | univers forest STI
587 | univers gazett octob

588 | univers research council STI
589 | upcom event STI MTI-075
590 | vantag endeavor

591 | variou poetri STI
592 | vendor macintosh product STI
593 | vermont graduat school STI
594 | veterinari medicin STI
595 | vibrant industri STI
596 | victorian societi summer STI
597 | vinyl polym

598 | violent demonstr report

599 | virginia graduat school STI
600 | virtual endeavor STI
601 | visit function STI MTI-10
602 | visit function optim STI
603 | visit subsequ STI
604 | walter herzog

605 | webpoint onlin STI
606 | weezer pinkerton

607 | weezer pinkerton album

608 | weezer pinkerton biographi

609 | weezer pinkerton sound

610 | welcom zycad

611 | wellcom multiplex

612 | whizz mexico

613 | wisconsin graduat school STI
614 | xingmpeg encod STI
615 | xingmpeg encod enhanc

616 | xingmpeg encod price

617 | xingmpeg encod specif

618 | xingmpeg player STI
619 | xingmpeg player enhanc

620 | xingmpeg player price

621 | xingmpeg player specif

78

622 | xingpartn benefit STI
623 | xingpartn program applic

624 | xingpartn requir STI
625 | zycad announc increas

626 | zycad compani newslett

627 | zycad custom support

628 | zycad document search

629 | zycad employ opportun

630 | zycad incid submiss

631 | zycad offic locat

79

	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Thesis outline

	2 Theoretical background
	2.1 Fundamental hardware constraints
	2.2 Name-based retrieval versus content-based retrieval
	2.3 Architecture of a P2P system
	2.4 Transport layer
	2.5 Routing and storage layer
	2.5.1 P2P network topologies
	2.5.2 Distributed Hash Tables (DHTs)

	2.6 Indexing and query layer
	2.7 Ranking layer
	2.8 P2P file sharing applications
	2.8.1 First generation: server-client
	2.8.2 Second generation: decentralization
	2.8.3 Third generation: anonymity for all
	2.8.4 Fourth generation: streams over P2P

	3 Related work
	3.1 Routing and storage layer implementations
	3.1.1 CAN
	3.1.2 Chord
	3.1.3 Pastry
	3.1.4 Tapestry
	3.1.5 Summary

	3.2 P2P Information Retrieval Systems
	3.2.1 ALVIS
	3.2.2 Minerva
	3.2.3 PlanetP
	3.2.4 pSearch
	3.2.5 Comparison

	4 Design of the proof-of-concept application
	4.1 Introducing Highly Discriminative Keys (HDKs)
	4.2 Preprocessing the documents
	4.3 Creating the Highly Discriminative Keys Index
	4.4 Updating the global key-to-document index
	4.5 Execution of a query

	5 Experimental evaluation
	5.1 Test collection
	5.2 Scalability
	5.3 Retrieval performance
	5.3.1 The Okapi BM25 Ranking function
	5.3.2 Experimental results

	5.4 Comparison with the ALVIS project

	6 Discussion and future work
	6.1 Inherent problems with the comparison
	6.2 Problems during implementation
	6.3 Suggestions for future work

	7 Conclusions
	Appendix A – List of peers used in experiments
	Appendix B – List of queries used in experiments

