
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Automating System Generation
in Cλash

Erik van Raalte [s1879383]
Master thesis

March 12, 2019

Exam committee:
dr. ir. A.B.J. Kokkeler

ir. H.H. Folmer
dr. ir. E. de Groote

dr. ir. A. Hartmanns

Computer Architecture for Embedded Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii

Summary

There is an increased interest in graduation assignments that involve the usage of the Cλash-
language. To prevent that obtained knowledge in these projects is neglected, the CAES chair
started a project where multiple students will work on a framework in the Cλash-language
that can be utilized for real-time systems. This thesis is written in the early stages of the
project. The ability to enable the communication of the (to be created) functional blocks is
considered important and should be defined in an early stage of the project. The research
question was therefore defined as: How can the unique features of the Cλash language
be utilized to define a deterministic System on Chip interconnection standard? This Master
thesis proposes a methodology and presents a tool that generates hardware from data flow.

In the background, several alternatives to derive a communication structure on a chip are
discussed or excogitated. A conventional SoC communication standard is considered as a
useful asset, as it enables to quickly derive a working system in a relatively short amount
of time. It is also possible to create a deterministic system, if a simple bus architecture
with a static schedule is used. However, implementing a conventional SoC standard does
not utilize the properties that the Cλash-language offers. The quick realisation of a pro-
totype is also not set as a requirement. After this conclusion, the Cλash-language was
extensively applied a variety of different approaches. Along the way, several limitations are
found. In the end, the proposed approaches are compared in a Design Space Exploration
(DSE). From the DSE is concluded that a method that enables generation of hardware from
a data flow graph and a so called dependency graph is the most interesting option to work out.

In the realisation phase, the data flow to hardware methodology is carefully defined. There-
after, the methodology is implemented in Haskell and the Cλash-language. In the implemen-
tation phase, various limitations of the Cλash-language are found, which resulted in certain
design choices for the presented data flow to hardware tool. The supported data flow model
is HSDF, but it should not be difficult to support a subset of SDF. In the end, the tool is put to
test with two design examples.

From the results was obtained that is possible to generate the components of a hardware
architecture, given a set of functions and a schedule that they must comply to. The functional
behaviour of the tested examples matched the behaviour that was depicted by the data flow
graph. A resource-saving schedule did not result in a proportionally more efficient architecture

iii

for the tested examples, because the tool mainly concerned the scheduling of the functional
blocks and not the generation. Furthermore, the definition of a system on a higher level
likely introduced overhead. Moreover, synthesis involves compiling the source to a supported
(undecipherable) HDL with the Cλash-compiler, and synthesis from the generated HDL to the
hardware. In one of the examples, the used synthesis tool could not work with the generated
Verilog, while VHDL did not result in any problems. Therefore, bugs and compatibility of
the Cλash-compiler can be a liability for the continuation of the project. Another major
limitation was that Cλash is very strict with data types. It was opted to automate the nesting
of generated components, but no intuitive method was found. Therefore the nesting is for
now considered as a manual process in the current implementation.

iv

List of acronyms

IC Integrated Circuit

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

FPGA Field Programmable Gate Array

CAES Computer Architecture for Embedded Systems

LUT Look Up Table

RTL Register Transfer Level

P2P Peer to Peer

HDL Hardware Description Language

SoC System on Chip

CPU Central Processing Unit

GPU Graphics Processing Unit

ASIC Application Specific Integrated Circuit

IP Intellectual Property

AXI Advanced eXtensible Interface

AMBA Advanced Microcontroller Bus Architecture

AHB Advanced High-performance Bus

APB Advanced Peripheral Bus

TCP/IP Transmission Control Protocol / Internet Protocol

DSE Design Space Exploration

RTS2 Real-Time Systems 2

HSDF Homogeneous Synchronous Data Flow

(MR)SDF (Multi-Rate) Synchronous Data Flow

CSDF Cyclo-Static Data Flow

FIFO First-In First-Out

LFSR Linear Feedback Shift Register

v

vi

Contents

List of acronyms v

1 Introduction 1
1.1 Problem description . 2
1.2 Outline of this thesis . 2

I Background 5

2 Cλλλash 7
2.1 Fundamentals . 7
2.2 Higher Order Functions . 8
2.3 REPL and simulation . 11
2.4 Algebraic data types . 11

3 Comparison between existing SoC communication standards 15
3.1 Characteristics of existing communication standards 15
3.2 Network on a chip . 17
3.3 Comparison . 18

4 Existing Communication optimized with Cλλλash 19
4.1 Assignment of slaves to an address space . 19
4.2 Communication with algebraic data types . 20

5 Hardware and data flow 23
5.1 Dataflow . 23
5.2 Relation between data flow and hardware . 26

6 Design Space Exploration 31
6.1 Comparison and conclusion . 32

II Realisation 35

7 Dataflow to Hardware 37
7.1 Overview . 38

vii

7.2 Derivation of a schedule . 38

7.3 Function block specification . 39

7.4 Connecting data dependencies . 39

8 Results 41

8.1 Analysis . 41

8.1.1 Data dependency . 42

8.1.2 Crossbar minimalisation . 42

8.2 Hardware generation . 43

8.2.1 CrossBar . 43

8.2.2 Scheduler . 44

8.2.3 Actor buffering . 45

8.3 System derivation . 47

8.3.1 Example: Sorter of Random numbers 47

9 Conclusions 57

10 Discussion and Future work 59

10.1 Nesting functions . 59

10.2 Support for SDF . 59

10.3 Bugs in the Cλλλash-compiler . 62

10.4 Interfacing between schedules . 62

10.5 Other optimizations . 64

References 67

Appendices

III Appendix 69

A Existing SoC communication 71

A.1 AMBA . 71

A.2 AXI bus . 74

A.3 Avalon bus . 75

A.4 Wishbone . 76

B Wishbone implementation in Clash 79

B.1 Master . 79

B.2 Slave . 80

C Clash code for Analysis 83

C.1 DataDependency module . 83

viii

D Clash code for Hardware Generation 85
D.1 ActorBuffering module . 85
D.2 CrossBar module . 86
D.3 Scheduler module . 86
D.4 IF module . 87

E User adjustable Clash code 91
E.1 SysLift module . 91
E.2 SysConfig module . 92

F System derivation examples 95
F.1 Example: Processing pipeline . 95

F.1.1 RTL-level comparison for different schedules 99

ix

x

Chapter 1

Introduction

A System on Chip (SoC) combines several electronic building blocks to a single chip as
an (complex) electronic system. As opposed to conventional systems where components
are connected with external wires, the components in a SoC are all internally connected
as an Integrated Circuit (IC). This allows the designer to create physically smaller circuits
that use less power and achieve a higher operating speed. A Central Processing Unit (CPU)
or Graphics Processing Unit (GPU) is a SoC that is designed as an Application Specific
Integrated Circuit (ASIC). These integrated circuits are fast, energy efficient and relatively
cheap in large quantities. A system is described in an Hardware Description Language (HDL)
such as VHSIC Hardware Description Language (VHDL) or Verilog. A cell libary with the
available gates and corresponding characteristics is required to synthesize the description to
an integrated circuit. Unfortunately, prototyping a system on an ASIC is relatively expensive,
since the functionality of the chip cannot be adjusted after the manufacturing process. This is
where the Field Programmable Gate Array (FPGA) is advantageous over the ASIC.

An FPGA is technically an ASIC that consists of many reconfigurable logic blocks with
functionality that can be set by the designer after the chip has been manufactured. A block
is often called a Look Up Table (LUT). These LUTs can be set to several combinational
functions or used as memory. The logic blocks can also be inter-wired, providing design
freedom. The functionality of an FPGA is described using methods similar to ASIC design.
The main difference is that the description is translated to a bitstream using the software that
is supplied by the manufacturer, and then programmed on to the FPGA.

During the last decades, the number of LUTs in FPGA’s has grown significantly, and this
subsequently resulted in an increase in the market size. Still, even though there is more
hardware that can be described in the collection of logic cells, the languages did not follow
the same trend of growth. Compared to all high level programming languages, Verilog and
especially VHDL can feel cumbersome. Starting in 2009, the Computer Architecture for
Embedded Systems (CAES) chair within the University of Twente has developed the Cλash-
language, which uses a functional approach to describe hardware. The Cλash-language is
based on the strongly typed language Haskell. The accompanying Cλash-compiler compiles

1

Cλash-language code to VHDL or Verilog, that can by synthesized to an FPGA or ASIC.
Nowadays Cλash is developed further by the spin-off company Qbaylogic. However, the
language is still taught on the university as part of the Embedded Computer Architectures 2
course. It is also possible to do a graduation project that involves the usage of Cλash.

Unfortunately, the CAES chair noticed that a lot of the results of existing master projects were
often neglected in new projects. In March ’18 the chair started a project in which multiple
students participate and can apply their Cλash knowledge in order to design and refine a
robot platform that has a Xilinx Zybo Z7 backbone. One of the aspects in which the CAES
chair wants to distinguish itself from the Robotics and Mechatronics chair on the University, is
that it wants the robot to operate real-time and be deterministic. The Cλash-language is a
functional and therefore pure language. It’s properties could be useful in designing such a
system.

Real-time systems is one of the main research fields within the CAES chair. The con-
cept ”real-time” is used in many contexts. In the context of this thesis, a system is real-time if
the exact behaviour can be characterized for all possible inputs and states that might occur.
In other words, it should be deterministic.

1.1 Problem description

When several students work on their own sub-system or Intellectual Property (IP) blocks
within the robot platform, it is of great significance that there is a communication standard
in the early stages of the project. Especially if these components rely on information from
each other. This Master project aims to resolve this necessity. The research topic during
this project is defined as: How can the unique features of the Cλash language be utilized to
define a deterministic System on Chip interconnection standard?

1.2 Outline of this thesis

This section describes the path that was taken throughout this project. In Part I, The back-
ground of the research is presented. The background consists of four chapters. In Chapter
2, the fundamentals of the Cλash-language and compiler are discussed. The remaining
chapters discusses several approaches to realise communication on FPGAs.

The first approach is discussed in Chapter 3. In this chapter, the characteristics of existing
protocols that are used to communicate on FPGA systems are presented and compared,
it concludes with the rudimental demonstration of the Wishbone standard in Cλash. The
second approach is listed in Chapter 4. It describes attempts to optimize conventional FPGA
communication by using properties of the Cλash-language. The third approach (Chapter 5)
is entirely different, and proposes generation of a hardware architecture from data flow. The

2

chapter discusses the fundamentals of data flow models and proposes how the model can
relate to hardware designs. Then, the proposed approaches are compared to each other in
the Design Space Exploration (DSE) that is listed in Chapter 6. The approach from Chapter
5 was considered the most the most valuable.

Part II consists of four chapters. Chapter 7 elaborates of the data flow to hardware method-
ology that was chosen in the DSE. The elaborated method was also implemented during
this Master project. The implementation results of the method, along with a conclusion and
discussion are presented in Chapters 8, 9 and 10, respectively.

3

4

Part I

Background

5

Chapter 2

Cλλλash

The purpose of this chapter is to provide the reader with some of the fundamentals of The
Cλash-language and compiler. Although some parts are quite comphrehensible for those
new to functional programming, other parts are more advanced. For this reason, all examples
are accompanied by a diagram that depicts what the code actually does on a hardware level.
The Cλash website explains clearly why one could use the Cλash-language for hardware
description [1]:

The Cλash-language is a functional hardware description language that borrows both its syn-
tax and semantics from the functional programming language Haskell. It provides a familiar
structural design approach to both combinational and synchronous sequential circuits. The
Cλash-compiler transforms these high-level descriptions to low-level synthesizable VHDL,
Verilog, or SystemVerilog.

2.1 Fundamentals

The Cλash-language implements a subset of the Haskell functions, and adds additional
functionality for digital circuit design. Generating a synchronous (updated on the rising
edge of the clock) function from a pure (without internal state) combinatorial function can be
accomplished with a mealy, moore or register function. The simplified data type declaration
of a mealy machine is as following:

mealy :: (s->i->(s,o)) -> s -> Signal i -> Signal o

The first argument of the mealy function, is a function with data types that must comply to
a specific form, namely: (s->i->(s,o)). It has the current state of data type s and the
input of data type i as input, and it produces a tuple consisting of the next state of data
type s and an output of data type o. Furthermore, the internal state, which should be of
the data type s, has an initial value that is given as the second argument of the mealy function.

The mealy function converts the combinatorial function, to a block that can capture state. It
replaces the current state by the new state on the rising edge of the clock. However, Haskell

7

is a pure language without internal state. Therefore, variables in the discrete time domain are
packed in the Signal data type, which is represented as a infinitely long stream of states of
that variable. The variables are ”updated” on the rising edge of the clock that is defined in the
system. This is the reason the last argument (the input), and the return value of the mealy
machine (the output) are both of the Signal data type.

A basic example is shown in Listing 1 and depicted as hardware in Figure 2.1. The function
f (line 1-4) adds the input i and current state s , and assigns as the new state s’ (line 3).
The current state is assigned to the output (line 4). The mealy machine is constructed in
the topEntity function (line 6-7). Function f, which has the required form, is given as first
argument. The initial state (the value 0) is assigned as the initial register value in the second
argument. The topEntity is the function that the Cλash-compiler compiles to an HDL.
Dependencies of the topEntity function are compiled as well. The data type declaration of
the top entity must be monomorphic (exist in only one form), in order to be compiled to an
HDL. In this example a Signed 6 data type is used.

1 f s i = (s',o)
2 where
3 s' = s + i
4 o = s
5

6 topEntity :: Signal (Signed 6) -> Signal (Signed 6)
7 topEntity = mealy f 0

Listing 1: Mealy machine example

reg

i of

s’s

Figure 2.1: The mealy machine

2.2 Higher Order Functions

The aforementioned example shows how combinatorial logic like an adder can be used in
a synchronous manner within the mealy machine. Another aspect that makes Haskell and
the Cλash-language powerful are the Higher Order Functions (HOFs). HOFs are functions
within functions. For example the foldl function:

foldl :: (b -> a -> b) -> b -> Vec n a -> b

8

The foldl first takes a function (e.g. an arithmetic operation) that takes two data types (b
and a) and produces a result of b. The next argument is the initial value of data type b and
the last argument is a vector of data type a. The result is a value of data type b. The structure
of a foldl is depicted in Figure 2.2 and Listing 2. The initial value a is applied with the first
entry of the vector xs to the function f. The result of this operation is passed as argument for
the second instance of f, along with the second record of the vector xs. This continues until
the end of the vector is reached and the answer is computed. Note that this HoF is still purely
combinatorial.

f

xs!!0

f

xs!!1

f

xs!!2

a b

Figure 2.2: Visualization of the foldl function

1 b :: (b -> a -> b) -> b -> Vec n a -> b
2 b f a xs = foldl f a xs

Listing 2: foldl declaration

If the vector xs is fairly large, then the function f is replicated more often. Despite that the
functional description is still correct, it might result in trouble when the algorithm is mapped
on an FPGA, due to the larger area and longer critical path. The functional correct expression
can be rewritten to be advantagous in terms of speed or area. Figure 2.3 and Listing 3 depict
a version of the foldl with registers between the instantiations of the function f. As a result,
this circuit has a shorter critical path. The function is no longer purely combinatorial, and
requires a description that involves the mealy machine that was discussed in Section 2.1.
First a function called bT is described. It has a form such that it can be used as an argument
of the mealy function.

Line 1-7 lists the constraints that the function bT must comply to. It has the structure
where inputs are shifted through a set of registers, where the function f is applied to the
intermediate results. The fields rs and rs’ hold the current and next state of the registers
(line 8). Line 11 is the most interesting for this example. First, the input a is shifted into the
vector of registers that hold the current state (a +>> rs). The next state of the vector (rs’), is
described as function f executed over both (a +>> rs) and xs. This is accomplished by the
zipWith function. Line 14-18 describes the data type definitions of the mealy machine and
line 19 describes the initialization of the mealy machine. The first argument is the function
(bT (1:>2:>3:>Nil) (+)), which complies with input requirement of the mealy machine,
see Section 2.1. The second argument is the initial state of the registers, which are all set to
0.

9

f

xs!!0

f

xs!!1

f

xs!!2

a b
regreg

Figure 2.3: Visualization of a pipelined instance of the foldl function

1 bT
2 :: KnownNat n
3 => Vec (n+1) a
4 -> (a->a->a)
5 -> Vec (n+1) a
6 -> a
7 -> (Vec (n+1) a,a)
8 bT xs f rs a = (rs',o)
9 where

10 o = last rs'
11 rs' = zipWith f (a +>> rs) xs
12

13 -- Initialisation:
14 b
15 :: HiddenClockReset domain gated synchronous
16 => Num a
17 => Signal domain a
18 -> Signal domain a
19 b = mealy (bT (1:>2:>3:>Nil) (+)) (repeat 0)

Listing 3: Foldl optimized for throughput by means of pipelining

Figure 2.4 and Listing 4 show an instance of the foldl that is optimized for size. As opposed
to the pipelined version, where the functions are chained after each other, this version used
a self loop. This approach can be more efficient in area usage, because it uses only two
variables to hold the current state, and only one instantiation of the function f. However, it will
not produce a valid output on every clock edge. It therefore has a lower throughput than the
pipelined instance. Again bT (line 1-12) is in a form, such that it can be supplied as argument
to the instantiation of the mealy machine (line 15-20). Instead of applying the function f

on the intermediate values that are contained in the vector of registers, there is only one
function and one register that contains the intermediate result. On line 11, the new value of
the intermediate result is assigned. It only fetches the input when a state counter has reached
the maximum value, otherwise it processes the intermediate result. An additional register that
holds the value of the counter, that is used to monitor the state of the intermediate value (line
10). The output only holds the result when the counter has reached the maximum, otherwise
it holds 0 (line 12). This implementation is flawed, because there is no distinct signalling of
the validity of the output signal. A solution is addressed in Section 2.4. In conclusion, the
Cλash-language allows the designer to first focus on the algorithm, and then on the mapping
on hardware.

10

reg

cnt

res

(1 :> 2 :> 3 :> Nil)

a bf

(res’,cnt’)(res,cnt)

Figure 2.4: Visualization of a small area instance of the foldl function

1 bT
2 :: (KnownNat n, Num a)
3 => Vec n a
4 -> (a->a->a)
5 -> (Int,a)
6 -> a
7 -> ((Int,a),a)
8 bT xs f (cnt,res) a = ((cnt',res'),o)
9 where

10 cnt' = if cnt == length xs - 1 then 1 else cnt + 1
11 res' = if cnt == length xs - 1 then f a (xs !! 0) else f res (xs !! cnt)
12 o = if cnt == length xs - 1 then res' else 0
13

14 -- Initialisation:
15 b
16 :: HiddenClockReset domain gated synchronous
17 => Num a
18 => Signal domain a
19 -> Signal domain a
20 b = mealy (bT (1:>2:>3:>Nil) (+)) (0,0)

Listing 4: Foldl optimized for area consumption, without status signals

2.3 REPL and simulation

Another useful aspect of the Cλash-language, is the ability to simulate every expression in an
interactive environment called clashi. This makes it tangible to evaluate a system consisting
of multiple expressions seperately. After the whole system is simulated in clashi, it can be
compiled to a synthesizable HDL, a testbench for Vivado or Modelsim can automatically be
generated as well. The resulting simulation should have the same behaviour as the clashi

simulation. A common practice is to first define the system in the Cλash-language and
simulate it in the clashi environment and then generate the testbench to simulate it with the
tools provided by the FPGA supplier.

2.4 Algebraic data types

The last aspect of the Cλash-language that is discussed in this chapter are the algebraic
data types. Instances of data types can be passed as arguments of functions and are also

11

results of functions. A basic data type is the Bool data type, which is monomorphic (can only
exist in one form), because it’s representation is unambiguous:

1 data Bool = False | True

An instance of Bool can be either True or False. There are also data types that take a
parameter and therefore exist in more than one form, for example the polymorphic (which
means that it can exist in multiple forms) Maybe data type:

1 data Maybe a = Nothing | Just a

Within this data type, a can be any data type (e.g. Int or String), but Nothing will always be
Nothing. It is useful in functions that do not produce a result at all times. It can for instance be
applied to improve the example that was depicted in Figure 2.4. The improved code is shown
in Listing 5. The example is more complex and only the crucial differences are discussed.
Instead of just inputs and outputs of the data type a, this example has wrapped a in the Maybe

data type. For the input holds, as long as it is Nothing, no new value is fetched. A value of
Just a fetches the value a and resets the counter. The output in this example is Nothing, as
long as it is not valid, otherwise it is Just <result>. The initialization of the mealy machine
in line 20-25 is changed, as the input and output are of the Signal domain (Maybe a) data
type.

1 bT
2 :: (KnownNat n, Num a)
3 => Vec n a
4 -> (a -> a -> a)
5 -> (Int,a)
6 -> Maybe a
7 -> ((Int,a),Maybe a)
8 bT xs f (cnt,res) a = ((cnt',res'),o)
9 where

10 (cnt',res',o) =
11 case a of
12 Just r -> (1,f r (xs !! 0), Nothing)
13 Nothing ->
14 if cnt == length xs - 1 then
15 (0,f res (xs !! cnt),Just res')
16 else
17 (cnt+1,f res (xs !! cnt),Nothing)
18

19 -- Initialisation:
20 b
21 :: HiddenClockReset domain gated synchronous
22 => Num a
23 => Signal domain (Maybe a)
24 -> Signal domain (Maybe a)
25 b = mealy (bT (1:>2:>3:>Nil) (+)) (0,0)

Listing 5: Foldl optimized for area consumption with Maybe data type

Data types can also be created by the designer. By pattern matching on the data type, an
elementary arithmetic logic unit can be created in a few lines of code, see Listing 6. The
executed function depends on the first argument, which is of the Operator data type that
is defined on line 1. The function then takes two additional arguments of data type a, that

12

belong the the Num class. It produces a result that is of data type a as well (line 4). E.g. alu
Add 1 2 executes the function on line 5, and alu CmpGt 1 2 executes the function on line 9.

1 data Operator = Add | Sub | Incr | Imm | CmpGt
2 deriving (Eq,Show)
3

4 alu :: (Num a) => Operator -> a -> a -> a
5 alu Add x y = x + y
6 alu Sub x y = x - y
7 alu Incr x _ = x + 1
8 alu Imm x _ = x
9 alu CmpGt x y =, if x > y then 1 else 0

Listing 6: Arithmetic Logic Unit in the Cλash-language

In conclusion, there are many additional options that the Cλash-language provides in contrast
to conventional languages like VHDL and Verilog. The next chapters explain the process
on how to utilize the Cλash-language and compiler on conventional SoC communication
standards, as well as new approaches to enable SoC communication. In the remainder of
this thesis, both the Cλash-language and Cλash-compiler are designated under the name
Cλash, except when a specific property is addressed.

13

14

Chapter 3

Comparison between existing SoC
communication standards

The aim of this chapter is to understand the basic concepts of commonly used communica-
tion protocols in the industry. The full study on existing SoC communication standards is
presented in Appendix A.

There exist several interfacing protocols for Systems on Chips. The provided IP blocks for
Xilinx FPGA’s are for example connected through the Advanced eXtensible Interface (AXI) [2]
from ARM. The standard Intel Altera FPGA peripherals communicate over the Avalon bus [3].
Other common protocols are the Advanced Microcontroller Bus Architecture (AMBA) [4]
from ARM and the Wishbone bus [5] from Opencores. This chapter concerns a comparison
and overview of common features and methodologies used in existing SoC protocols. More
elaboration on the individual protocols can be found in Appendix A.

The protocols that are described in Appendix A feature some common practices. The
only communication standard that is entirely different is the network on a chip methodology,
which is only briefly discussed in this chapter and not in the appendix.

3.1 Characteristics of existing communication standards

All of the standards introduce a generic interface which makes the task of adding new IP
blocks to an existing SoC design a less cumbersome task for the hardware designer. This
procedure makes hardware design more lean, as components or even whole busses can be
re-used for other designs. A choice for a bus itself becomes clear when many components
are connected together. Wires in a chip cost area, and increase the power consumption of a
chip. A bus is a more efficient method of connecting various components to each other. It
often features an arbiter that selects which components can communicate with others. This
concept is elaborated in more detail in the next paragraphs. The usage of a bus standard is
almost a neccesity in the design of a chip. However, there are different bus standards which
all offer different properties.

15

It is common that a bus consists of master and slave interfaces. An IP that is connected to a
master interface, may initiate transfers to an IP that is connected to a slave interface. A slave
interface does in general not initiate a transfer, and just responds to a master. A bus consist
of a group of masters and slaves that can communicate by means of an interconnect, see
Figure 3.1. The masters M0 and M1 may communicate with slaves S0, S1 and S2. If every
master had a connection to every slave, that would results in many wires. An interconnect is
a device which directs communication between masters and slaves, by routing them together,
and thus saving wires and energy.

M0

M1

S0

S1

S2

I0

I1

S3

S4

M3

Figure 3.1: An example bus topology

There exist several types of interconnects. One interconnect type is a shared bus, as is used
in the AMBA protocol. In a shared bus, all masters and slaves are connected together, see
Figure 3.2a. Since only one instance may communicate over the interconnect at the time, an
arbiter that directs the communication is required to make this work. Another approach is a
so called crossbar interconnect, which creates a physical connection between a master and
a slave, so that multiple masters can communicate with a different slave, at the same time,
see Figure 3.2b. The latter has the advantage that it can provide a higher throughput since
masters can simultaneously communicate with slaves. However, it has a larger hardware
utilization.

M0

M1

S0

S1

S2 S3

S4

M3

Shared bus

Arbiter A0

A1

(a) Shared bus interconnect

M0

M1

S0

S1

S2 S3

S4

M3

Cross bar

Arbiter A0

A1

(b) Crossbar interconnect

Figure 3.2: Different variations of interconnect

16

There are also types of communication that do not involve an interconnect. One of them is so
called Peer to Peer (P2P) communication where a master interface is directly connected to
a slave interface. A chain of P2P interfaces (an IP block can feature a slave and a master
interface at the same time) is sometimes also referred to as a pipeline interface. These kind
of interfaces are used when high datarates are required (for example image processing).
Commonly used communication standards differ in the support of Master to Slave connection
methods.

Another distinction is the protocol that is used to communicate. Every protocol uses a
different set of signals to send and receive commands and data. The AMBA standard
even offers two seperate interfaces that offer a different kind of communication (Advanced
High-performance Bus (AHB) and Advanced Peripheral Bus (APB)). On a high level each
communication protocol performs the same function namely, transfer data or request data, but
the different implementations lead to different characteristics on both area and performance.
Some protocols allow so called burst transfers, where a master does a single request and the
slave responds in multiple words. Most protocols do also support embedded status messages
about the transfers. This can be used to optimize the scheduling in the interconnect. For
example, a slave is given a burst request and it can only give a part of the response. Then
it can notify the master that it did not send the entire message yet. These are called split
transfers. Many protocols also support pipelining, where a master can queue several requests
at a slave, it therefore does not have to wait for a response to initiate a new request.

3.2 Network on a chip

An entirely different and fairly recent approach is a Network on a Chip. As the name
implies, it borrows some of the semantics of the Transmission Control Protocol / Internet
Protocol (TCP/IP) stack in terms of communication between components. The concept is, to
place IP blocks in a (two dimensional) grid and attach a switch to every IP, see Figure 3.3.
A switch that receives a package can either pass it through the IP block it is connected to,
or pass it to another switch that is closer to the destination IP that the package is headed
to. Some studies show that an architecture like this can reduce the power consumption
significantly when there is much traffic between components.

17

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

Ni

Core

NiNi

S

IP core

Network Interface

Switch

Physical link

S

S

SS

S

SS

S

S

Figure 3.3: A Network on a Chip architecture from [6]

3.3 Comparison

This study clarified the basic concepts of some SoC communication standards, along with a
recent approach called Network on a Chip. The communication standards that are discussed
with more comprehension in Appendix A, share some of the characteristics that were dis-
cussed in Section 3.1. However, some standards are more complex then others. The FPGA
architecture that is used is relevant in the choice of the communication standard as well. The
Avalon standard is only used by Altera IP blocks. Therefore it would not make sense to use
this standard in a Xilinx FPGA, as there are simply no IP blocks availible that comply to this
standard. The Wishbone bus comes with a variety of open source packages that work on
both Xilinx and Intel Altera FPGA’s [7]. Xilinx IP’s use the AXI4 bus, but the standard is very
comprehensive to code by hand. Xilinx offers interface generation tools, but they do lack
the support of code generation to Cλash. Finally, the Network on a Chip methodology is
considered overly complex for the application that is aimed to be build.

The Wishbone is likely the best choice if an existing standard is chosen. The protocol
is simple and yet versatile as it supports a majority of the options that more complex proto-
cols offer. A rudimentarily Wishbone master and slave are described in Appendix B of this
thesis. Although the description is relatively simple, it does not utilize the unique properties
of Cλash, like higher order functions. Therefore, the description is similar to a conventional
HDL description. The usage of a conventional communication standard is compared to other
alternatives in the DSE in Chapter 6.

18

Chapter 4

Existing Communication optimized
with Cλλλash

This chapter describes a part of the research that was done as after the implementation
of the Wishbone master and slave (see Appendix B). Although the Wishbone master and
slave worked as expected, it still required a large amount of manual labor to connect a set
of slaves and masters to an interconnect. In an environment like Quartus or Vivado this is
relatively easy to connect interfaces together, due to the availability of a block diagram editor
and extensive support for conventional hardware description languages.

The aim of this chapter is, to find a method that inherits properties of existing SoC standards,
while utilizing the properties of Cλash to connect components in a more elegant manner.
Moreover, it also investigates the possibilities to use algebraic datatypes to define a more
intuitive communication protocol, as Cλash is less readable on bit level, opposed to Verilog
or VHDL due to the strict type system.

4.1 Assignment of slaves to an address space

A master can communicate to slaves through an address space. An interconnect can either
communicate the address the master requests to all slaves, where the slaves have to do the
decoding, or use an interconnect that decodes the addresses. This is explained best through
by means of an example:

• One master with 4 bit address space

• One slave that has a 3 bit address space

• Two Slaves with 2 bit address space

The 4 bit address space can address all the slaves, as shown in the right part of Figure 4.1.
An hardware architecture that could be used to do the decoding to the corresponding slaves

19

is shown in the left part of the figure. The most significant bit functions as a control bit for the
subsequent multiplexer.

4 3

3

3

2

2

2
M

S0

S1

S2

S0

S1

S2

0x0

0xF

0x8

0xC

Addressing space

Figure 4.1: Hardware and address space allocation for the presented example

Ideally, one would specify a master with an accompanying addressing space, along with
a list of slaves and their adressing space. The aim was to use Cλash to automatically
derive a interconnect architecture that would allocate the slaves within the addressing space.
Unfortunately, after many attempts this turned out to be unfeasible mainly because it would
require multiple slaves with varying address space as argument. This is not possible due to
the semantics of the Cλash-language. The only solution that worked was to generate an
individual addressing filter for each slave. However, this creates a large amount of redundant
hardware. For example, S1 and S2 in Figure 4.1 share the first multiplexer, this would be
replicated with the aforementioned filtering method. An alternative approach, that has not
been worked out, is to outsource the address decoding to the slave itself and transfer the
whole message from the master to all the slaves.

4.2 Communication with algebraic data types

Another approach that is attempted, is a communication standard that relies entirely on the
algebraic datatypes. This method was neglected early when it turned out that it could not
possibly result in an efficient Register Transfer Level (RTL) implementation. However, it is
included to clarify the steps that have been taken within this master project.

The concept is to create slaves that utilize an unique instruction set. The master can
then run the instructions that the slave supports directly. A rudimental example that controls
the state of 4 LEDs is shown in Listing 7. The OpCode and RspCode (line 5-6) data types
show the instructions and responses that the slave supports. The State data type (line
4) represents the data that is registered in the slave. The behaviour of the slave itself is
defined in slaveT (line 8-14). Note that the type declaration is conform with a function that
can be supplied to a mealy machine. The slaveT has an internal state of type State as
first argument. The second argument (the input), is a value of the type OpCode. The output
of the function is the the response to the master (RspCode) as well as the updated state
of type State. The listed slave supports three commands: Write a pattern to the LEDs

20

(Write State), read the current pattern in the LEDs (Read) or do nothing (OpIdle). In the
example that is considered in the next paragraph, another slave that controls an RGB LED is
considered as well. The internals of this slave are similar to the earlier explained LED, and
therefore not shown.

The master can communicate with both the slaves as shown in Listing 8. The data type
Slaves (line 1) contains all possible operation codes, as it is either Led Led.OpCode or Rgb
Rgb.OpCode. The advantage of this method is that it does not require address decoding, as
the instruction set represents the addressed slave. A master could execute commands to
both slaves as shown in line 3-8.

The problem with this method is that it gets inefficient on RTL level, as the Slaves datatype
can get relatively large. Moreover, this design has a structure of a single core processor. The
master is destined to act as a director within slaves, which will likely cause bottlenecks in
larger use cases. Moreover, multiple instances of a slave require yet another operation code
in the Slaves type. In conclusion, it is not scalable.

1 module Led where
2 import Clash.Prelude
3

4 type State = BitVector 4
5 data OpCode = Write State | Read | OpIdle
6 data RspCode = RspWriteOK | RspRead State | RspIdle
7

8 slaveT :: State -> OpCode -> (RspCode,State)
9 slaveT s i = (rsp,s')

10 where
11 (rsp,s') = case i of
12 (Write x) -> (RspWriteOK,x)
13 (Read) -> (RspRead s,s)
14 (OpIdle) -> (RspIdle,s)

Listing 7: A algebraic slave that controls 4 LED’s

1 data Slaves = Led Led.OpCode | Rgb Rgb.OpCode
2

3 prog :: [Slaves]
4 prog = [
5 Led (Led.Write 0b1000),
6 Led (Rgb.Write 0b010000),
7 Led Led.Read
8]

Listing 8: Master code that can communicate with the slaves by using algebraic commands

21

22

Chapter 5

Hardware and data flow

This chapter presents a method to derive an hardware architecture from a subset of syn-
chronous data flow. The intention is to present the data flow fundamentals and explain why
data flow can be useful in real-time applications. Subsequently, one of the studies of this
thesis is presented. It describes how hardware could be derived from data flow.

5.1 Dataflow

The book that is used as part of the Real-Time Systems 2 (RTS2) course [8] on the University
of Twente explains the fundamentals of Dataflow with full comprehension. This section only
explains the part of the theory that is required to understand the material in this thesis.

Multi-core programming is often described as a difficult programming challenge. It is hard to
reason about the utilization of parallelism while designing correct functional behaviour. The
RTS2 course presents a model for multi-core systems and the tools to analyze these systems.
Multi-core does not only refer to multi-core CPU’s, as it can also point to multi-accelerator
systems, as often used in FPGA systems. The analysis model is called data flow and is
explained in the next paragraph.

Dataflow is a set of models that can be used to describe real-time behaviour. In this thesis
Homogeneous Synchronous Data Flow (HSDF)and Multi-rate Synchronous Data Flow (SDF)
are considered. HSDF consists of the elements that are shown in Figure 5.1. A snippet
from [8] gives the following definition of HSDF: A Homogeneous Synchronous Dataflow
(HSDF) is defined as a directed graph G(V,E) that consists of actors v ⊆ V and directed
edges with e ⊆ E with e = (vi, vj). The edges represent First-in-first-out queues that have
unbounded storage capacity. In the queues indivisible tokens can be stored. Homogeneous
Synchronous data flow was originally introduced in [9].

23

v0

Actor Edge Token

Figure 5.1: Elements of data flow

An actor is a node without state that can represent a task, such like a mathematical function.
A task that is represented by an actor is executed when the actor fires. An actor within a HSDF
graph must comply to a so called firing rule: one token must be present on each incoming
edge of an actor. In multi-rate graphs, this can be more than one token as well. After an
actor has fired, it produces a token (or multiple tokens in multi-rate) on all it’s outgoing edges.
The time between the consumption of tokens on the incoming edges, and the production of
tokens on the outgoing edges is called the firing duration. A token is a indivisable element,
which means it can not be party consumed or produced. Due to the abstraction of the model,
a token can present data, space or synchronization events. Tokens are distributed among
actors by means of queue that is represented by an edge. Queues can hold an unbounded
amount of tokens. Furthermore, tokens are consumed from a queue in the order that they
are produced.

A graph consisting of the elements described above is called a HSDF graph. Because
of the semantics, these graphs can by analyzed on throughput and latency. Another propery
of data flow is that it is deterministic, which makes it useful for real-time applications. The
designer must find a data flow model for the application that is designed. A correct model
allows to be examined thorougly on utilization, throughput and latency. The analysis tech-
niques themselves are not part of the scope of this thesis. Some examples of HSDF graphs
are shown in Figure 5.2. An edge from an actor to itself is called a self edge. A self-edge
forces an actor to fire non-concurrent. The graph on the left in Figure 5.2 does not feature a
self edge at actor A, and the result is that it consumes and fires tokens concurently as shown
in the schedule below the graph. The centered graph features self-edges on both edges,
which prevents the concurrent firing. The graph on the right cannot fire concurrently due to
insufficient tokens. In this thesis the self edges are implicitly added to the actors.

A B A B

A
B → t

A
B → t

A B

A
B → t

Figure 5.2: HSDF examples, all actors have an execution time of one time unit

24

Another variation of synchronous data flow is (Multi-Rate) Synchronous Data Flow ((MR)SDF)
[10] and is often called SDF. An rudimentary SDF graph is depicted in Figure 5.3. As the
name suggests, it support multiple consumptions or production of tokens in comparison with
HSDF. The cited literature gives a more comprehensive definition, this explanation serves
only as a quick overview.

A B

A
B → t

42

2 3

3

...

Figure 5.3: SDF example, every actor has an execution time of one time unit and implicit self
edges.

One other aspect that is concerned is the consistency of graphs and the repetition vector.
The full theory on repetition vectors has been elaborated in Chapter 5 of [8] and proven
in [10]. An SDF graph is called consistent if the production and consumption of tokens over
time is balanced. An inconsistent graph causes the amount of tokens to increase towards
infinity (unlimited buffers, not feasible), or decrease to zero (deadlock, no actor can fire). The
consistency can be determined with the topology matrix that is shown in (5.1). The columns
in the matrix represent in and outcoming edges the actors in a graph and the rows represent
the edges that are present in the graph.. A consumption of an edge ek is labeled by γk and a
production is labeled by πk, see Figure 5.4.

Ψ =

[
π0 −γ0
−γ1 π1

]
(5.1)

-γ1

π0 -γ0

π1

A B

Figure 5.4: Graph that is represented by (5.1)

The topology matrix of the graph in Figure 5.3 is represented in (5.2). The repetition vector is
the smallest integer vector z such that Ψ~z = ~0. If the graph is connected and consistent and
after each actor vi has fired zi times, then the repetition vector indicates the number of firings
required of each actor, that result in the initial token state on the edges. For the matrix shown

in (5.2) the repetition vector is ~z =

[
3

2

]
. This implies that A fires 3 times and B fires 2 times in

25

order to return to the initial token distribution.

Ψ =

[
2 −3

−2 3

]
(5.2)

A data flow graph can fire either self-timed (fire as soon as the firing rules are obeyed) or
according to a schedule (the firing rules are still obeyed, but the enabling time of an actor can
vary). A graph where the actors eventually fire according to a reoccuring pattern is called
periodic. Actors can also fire according to a strictly periodic schedule. A strictly periodic
schedule has as additional constraint that each of the actors in a graph fire in a periodic
schedule themselves. This can be clarified by the example that is shown in Figure 5.5. The
lower schedule is periodic. The firing pattern repeats every three time units (A→ A→ B).
Therefore, the scheduled is called periodic. A schedule is strictly periodic if every actor in the
schedule fires periodic with respect to itself or s(k) = si(0) + kpj . In the periodic schedule,
the time between firings with actor A varies between 1 and 2 time units. Therefore the actor
does not meet the requirements for a periodic actor. The time between firing for actor B is
always 2 time units, and therefore this actor is periodic.

A schedule where all individual actors fire periodic, and thus the schedule of the graph
is strictly periodic, is shown in the upper part of Figure 5.5. It can be observed that the
utilization of the actors is lower in the strictly periodic schedule.

A

B

A

B

t

A B

1

1

2

2
2

Periodic

Strictly periodic

Figure 5.5: Difference between periodic and strictly periodic, implicit self edges and an
execution time of one time unit for both actors are assumed

A method to efficiently derive the strictly periodic schedule of a given valid data flow graph is
described in [11] and implemented in Haskell in [12].

5.2 Relation between data flow and hardware

Throughout the last decades there has been an increasing demand for high performance
and low power systems. As Moore’s Law seems at its end, optimalizations through hardware
design seem like the solution to this problem. However, systems get more complicated while
the development time shortens. [13]

26

As discussed in the introduction, defining hardware in functional languages can shorten
the process from algorithm to hardware, as the definition of the algorithm and mapping the
algorithm on hardware can be separated. The mapping flexibility that Cλash features can be
utilized to optimize an architecture for throughput, latency or power consumption in a later
stage of the design process.

In Section 5.1 it was discussed that although the semantics of data flow are limited, it
is a powerful tool to analyze systems on latency and throughput, and could therefore be
suitable for real-time hardware design. One of the major limitations of data flow is that there
is no choice element. Many existent hardware designs use decision making. It therefore is
difficult to derive data flow from hardware that was designed in a conventional manner. An
approach is to use abstractions in data flow. E.g. If an actor has an execution time of either
1 or 5 time-units, the actor can be modeled with an execution time of 5. This is pessimistic,
but it assures that it can still be analyzed with data flow tools. However, this is just a trivial
example where one actor is considered. if an existing hardware architecture results in a fairly
large network of actors with variable execution time, abstraction gets more difficult and results
in a less accurate representation of the system that is analyzed. A type of data flow graphs
that covers varying execution times is called Cyclo-Static Data Flow (CSDF) [14].

The problem can also be approached the other way arround. In other words, hardware
may also be derived from data flow instead. A basic data flow graph of the HSDF type is
depicted in Figure 5.6.

A B

Figure 5.6: A basic HSDF graph with two actors, self edges are implicit and the execution
time of both A and B is one time unit

Both actors A and B have implicit self edges and a firing duration of one time unit. From
the graph, it can be deduced that A and B fire mutually exclusive, because there is only
one token that is passed between both actors. This is only an abstract interpretation that
requires a definition about what tokens and actors represent, before it can be expressed in
hardware. Actors are defined as blocks that compute an arbitrary function. A function is a
box that consumes one or multiple inputs and produces one or multiple outputs. A function
can (among other functions) be part of a function in a higher hierarchy. It is therefore a
neccesity that functions can communicate their outputs to the inputs of other functions. This
holds also for function within hardware. The characterization of tokens is less apparent than
that of actors. Assume Figure 5.6 holds for a particular system where actor B depends on
the data from actor A. How can this property be extracted from the figure? If tokens would
represent data, then it it implies that A depends on B and vice versa. Therefore tokens can

27

not represent a dependency of B on A. Another way to look at tokens is as an synchronization
mechanism on the schedule where A and B comply to. E.g. If Figure 5.6 has an additional
token on the edge from A to B, then both actors could fire simultaneously and the throughput
would be different. However, the graph still holds no information about the dependencies on
data between both actors. To resolve this problem, an additional graph as shown in Figure
5.7 can be introduced.

A B

Figure 5.7: A graph that depicts that B has a dependency on A

The graph is called a data dependency graph and it consists of the actors that are present
in an accompanying data flow graph, along with edges that only indicate data dependency
between the actors. This concludes the system in which A and B are present: Both the
scheduling and data relation are now derived.

From the information of both graphs a hardware architecture can be derived. But first
the definition of tokens should be elaborated more. Another data flow schedule for which the
data dependency in Figure 5.7 still holds, is shown in Figure 5.8. According to the graph,
actor A fires N times as often as actor B. Therefore, the amount of tokens on the edge B
to A represents a First-In First-Out (FIFO) data buffer with size N , between A and B. The
definition of data flow states that edges represent an unbounded token capacity, but this is
not feasible in a real design. From the distribution of tokens on the edges, it can be derived
what data buffer sizes are required.

A B

N

1

1

N

N

Figure 5.8: Another SDF graph. self edges are implicit and the execution time of both A and
B is one time unit

In the aforementioned graph, A fires N times, then B fires once, after which the schedule
repeats. The designer could improve the throughput of the graph by increasing the buffer
from N to N + 1. This adjustment causes that A does not have to wait for B to complete in
order to fire again, hence improves the throughput. The designer can also use SDF anal-
ysis tools to detect deadlock occurence or other undesired behaviour, if the schedule is known.

Another advantage of the data flow with data dependency methodology is that a system
that is derived from a feasable data flow graph does not require back pressure between the
actors, as long the actors are modeled correctly. Back pressure is the process where a node

28

that receives data and confirms to the producer that the data is indeed received. Since the
firing times in a graph are known, as well as the relation of firings between actors, there is no
neccesity to communicate this kind of status messages. In the Design Space Exploration
that is presented in Chapter 6 the data flow and data dependency design methodology is
compared to other alternatives.

29

30

Chapter 6

Design Space Exploration

The DSE is a systematic method to characterize alternatives to criteria. In this chapter the
alternatives that are proposed in the background and characterized to the criteria that are
proposed in the introduction. In summary, the communication standards must comply to the
following requirements:

• The development language is fixed to the Cλash-language;

• The resulting structure should be deterministic.

The next paragraphs evaluate the three approaches that could be elaborated further during
this research. The chapter concludes with a comparison of the presented approaches, and
concludes with the approach that is realized.

A conventional SoC standard
One of the major advantages of using an existing SoC standard is that the implementation is
just a matter of following the specification. Another advantage is that there are many IP’s that
use these standards. Hence one can use existing IP’s and reduce the time until there is a
functional platform. However, it is not important to create the robot platform as soon as possi-
ble, since it has no commercial use. Another aspect is that all existing protocols operate on
bit-level, simply because this is convenient in conventional languages. The Cλash-language
supports higher order functions, which may enable a fundamentally different design approach.
Another downside of conventional standards is that they are designed for systems that are
not neccesarily set up to be deterministic. Dataflow requires a static schedule in order to
be fully deterministic. A conventional communication standard can also be deterministic if a
static schedule is used, but does not offer advantages over the strict data flow methodology.

Communication using algebraic data types
Both Cλash and Haskell use a (customizable) data type mechanism. The proposed idea
discussed in Chapter 4 is to design IP’s with its own instruction set. Each IP can be con-
trolled according to their own instruction set, instead of utilizing the conventional memory
mapped approach to communicate. A downside of this approach is that it results in a non-
standardized way to communicate with IPs. It looks clear in the code as instructions could

31

look like RotateMotor 1 200 (Rotate motor one 200 degrees). However, tests with this
methodology result in inefficient structures on RTL level since there can not be a bus if every
IP can use a different datatype to transfer data or instructions. It is not scalable to larger
designs as well.

Data dependency & data flow approach
The approach presented in Chapter 5 with data dependency and data flow has the advantage
that the hardware can systematically be derived from both the data flow (scheduling) and
the data dependency (data). It also enables the hardware architect, to adjust the schedule
at compile time (e.g. pre-evaluation in Haskell) in order to improve performance in different
areas. It will therefore also use the properties of Cλash and Haskell. Moreover, it is a
fundamental different approach which is interesting for the CAES group. The downside is
that the standard is non-existing and must be carefully defined. It will therefore likely take
longer to create a functioning prototype.

6.1 Comparison and conclusion

The three proposed methods are evaluated on the constraints that were elaborated in the
introduction of this chapter, and rewarded accordingly. The rewards are ranked on an ordinal
scale: − < 0 < +. The weights on each constraint are equal. Therefore the total score is
the sum of all the constraints. The highest scoring approach is elaborated as part of this thesis.

The first constraint is the utilization of Cλash. Conventional SoC protocols are already
being utilized within conventional HDLs. During this project a Wishbone interface for a master
and slave were designed in Cλash as a test case. Besides the functional aspect of Cλash,
there is no challenge and research value in designing conventional standards. Moreover,
existing standards are not designed to be deterministic. Algebraic methods already utilize
Cλash more, since custom instructions are just different datatypes. Still, communication is
similar to conventional methods. The data dependency method also fits the profile of Cλash.
Especially the pre-evaluation in Haskell is interesting because it can generate the appropiate
hardware at compile time.

As for analysis possibilities, performance can be evaluated on conventional standards. As
stated earlier, the freedom that these standards offer on the field of configurability and flexi-
bility, can result in a non-deterministic system. The same conclusion can be applied to the
Algebraic type communication proposition. The data dependency and data flow approach
uses data flow to derive a guaranteed schedule, that is fully deterministic. It can also be
evaluated with data flow analysis tools. It offers reconfigurability as well. The throughput and
latency as well as the hardware utilization can be adjusted by changing the schedule.

32

Finally, the project value of the proposals are compared. The project value is rated according
to the estimated time that it will take to create a first prototype. A conventional SoC standard
has the advantage that is has already been used for larger designs, and therefore it is more
likely to result in a functioning platform. The algebraic type communication will likely result
in many different instruction sets, and therefore different data types. This will likely result in
many point to point connections, which will increase power consumption and decrease the
overview of the design. The data dependency and data flow approach has potential, since
the project is still in early and adaptable state. It introduces an entirely new approach to
design digital systems. However, it requires a more implementation, as no existing standard
is used and it is not assured to be feasible for larger systems.

The results are summarized in Table 6.1. From the Table it can be concluded that the
data dependency and data flow method is the most interesting to elaborate for this Master
thesis.

Table 6.1: Results of the Design Space Exploration
Utilizing

Cλash
Analysis

possbilities
Project

value
Total

score
Conventional SoC standard - 0 + 0
Algebraic type communication + 0 - 0
Data dependency and data flow + + - +

33

34

Part II

Realisation

35

Chapter 7

Dataflow to Hardware

This chapter presents a new approach to derive a hardware architecture from data flow. It
builds further on the concepts that were introduced in Chapter 5.

The definition of data flow is explained in [8] and in some detail in Chapter 5 of this thesis.
A data flow graph is defined as: a directed graph G(V,E) that consists of actors v ⊆ V and
directed edges with e ⊆ E with e = (vi, vj). The edges represent First-in-first-out queues that
have unbounded storage capacity.

First, this chapter elaborates the definition of data dependency graphs that was presented in
Chapter 5. A data dependency graph is a directed graph DG(V,E) with actors v ⊆ V and
directed edges de ⊆ DE where de = (vi, vj). An edge de = (vi, vj) implies that vj depends
on data from vi. The set of actors that is present in the data dependency graph, equals the
set of actors that is present in the data flow graph.

The remainder of this chapter describes how a hardware architecture can be derived from a
data flow graph and data dependency graph. The aim is to explain the methodology in this
chapter, and to provide overview and clarity to the reader. Chapter 8 concerns the process of
solvings problems that arise with the implementation of the chosen methodology.

The aim is to generate a hardware architecture from a given set of functions, a data de-
pendency graph and a data flow graph. The set of functions is represented as actors. The
behaviour of the generated hardware complies with the scheduling within the data flow graph.
The following intermediate goals are deduced:

• The data flow schedule graph must be evaluated to acquire information on whether
functions (actors) should be executed (fired). The tokens in a graph function as syn-
chronization mechanism;

• The syntax of a function (actor) in hardware must be specified;

• Functions that depend on data from other functions should be connected to to the
functions that provide those dependencies. There should be a generic interface to

37

connect the functions to.

The immediate goals are elaborated in Section 7.2, 7.3 and 7.4. However, first a top-level
overview of the proposed methodology is presented in Section 7.1. This Section serves to
sketch the bigger picture of the presented approach.

7.1 Overview

This section presents the generic hardware architecture that can be used to construct a
system for a set of functions, a given data flow graph and a data dependency graph. Figure
7.1 depicts an example system that uses a generic hardware architecture. The actors A,
B, C and D in the data dependency and data flow graph represent the timing behaviour
of the functions A, B, C and D in the hardware architecture on the right side of the Figure,
respectively. The distribution of tokens in the data flow graph, serves as synchronization
mechanism for the firing of the actors (and thus for the execution of the functions). Within
data flow there is no clock domain, whereas in hardware there is. Within this thesis one
time unit in data flow corresponds with one cycle of the clock, measured at the rising edge.
The firing schedule to which the actors comply is saved in the Scheduler, that is shown in
the hardware architecture. The Scheduler signals the functions A, B, C and D to fire. The
derivation of the schedule is discussed in Section 7.2. The constraints on a function must
are discussed in Section 7.3. The data dependency graph depicts the relation on data that
functions have. In this example, function D relies on the data of actor A, B and C. A generic
interface that enables the functions to pass data to each other is the CrossBar component in
the hardware architecture. The motivation for a crossbar interface is explained and further
elaborated in Section 7.4.

A

B

C

D

A

B

C

D

A
B
C
D

A

B

C

D

CrossBar

Scheduler

Data Dependency Data Flow Control

Data

Figure 7.1: Example with interconnect

7.2 Derivation of a schedule

Chapter 5 discussed some techniques to derive a schedule, given a data flow graph. A
Haskell tool to derive a strictly periodic schedule from data flow is being developed at the
University of Twente [12]. Given a consistent data flow graph, the tool returns the list of actors

38

along with their period and their relative start time. The tool will only generate schedules for
graphs that allow to be scheduled strictly periodic, which may limit the type of graphs that can
be used. This was not considered as a problem, since it does not restrict the further process
of the project and saved design time. In future work, this part of the thesis can be elaborated
to increase the support.

7.3 Function block specification

The constraints concerning the execution of a function block can be partly derived from
the scheduler, because the scheduler signals to the function to execute. Therefore, the
implementation of the function must be able to work with the enable signals that the scheduler
provides. Therefore, a function block should have at least an enable input. An actor (function
block) with an execution time of one time unit (one clock cycle) should produce a valid output
on the rising edge of the enable signal. The designer can also create a function block that
may take more clock cycles to compute it’s output after an asserted enable signal. In that
case the fire duration of the corresponding actor has to be adjusted accordingly in the data
flow graph.

7.4 Connecting data dependencies

Connecting data dependencies consists of connecting the output of all producing functions
to the input all of consuming functions. However, doing this for all actors can result in a
fairly large web of connection wires. According to Chapter 3, interconnects are often used in
existing protocols to tackle these problems, see Figure 7.2. Interconnects exist in many forms
but in essence they connect inputs to outputs as a result of the control signal it receives from
an arbiter.

M1

M0

S2M2

S1

S0

M1

M0

S2M2

S1

S0

Interconnect

Figure 7.2: Direct connection vs an interconnect

A crossbar is a versatile interconnect. In contrast to a shared bus which was discussed in
Chapter 3, all the inputs can be mapped to one or more of the outputs. It is therefore a very

39

generic interconnect that can be configured in many manners, and its function within the
derivation of an hardware architecture can be explained by means of the earlier presented
example in Figure 7.1. The center part depicts the scheduler of the actors. Note that the
scheduler also controls the setting of the crossbar. The actors are funtional blocks with a
firing duration of one time unit, or one clock cycle from hardware perspective. The schedule
is shown in the upper right part of the Figure. D depends on A, B and C. The outputs of A, B
and C are therefore connected to the input of the crossbar, whereas D is connected to the
output of the crossbar. The schedule is such that A and C fire out of phase with B. Therefore
D only requires two simultaneous inputs, while the function requires three inputs. Buffering is
abstracted out of this example. The crossbar minimizes the amount of wires based on the
schedule. It also offers a generic interface to which actors can be connected. The versatality
of the crossbar can be elaborated further by means of another example that is shown in
Figure 7.3.

A

B

C

D

A

B

C

D

A
B
C
D

A

CrossBar

Scheduler

Data Dependency Data Flow

C

D

B
Control

Data

Figure 7.3: Second example with intertwined dependency graph

In this example there are more dependencies, which is why the structure is slighty different
from the previous example. Note that a function can be a consumer and producer at the
same time. Furthermore, function D has only one input, since all it’s dependencies can
be scheduled at different times. Again, if A, B and C are rescheduled such that they fire
simultaneous, then the crossbar and the scheduler would look different.

40

Chapter 8

Results

This chapter concerns the results that followed from the elaboration of the proposed approach,
that was described in Chapter 7. The result of this thesis is a tool that generates a hardware
architecture based on the data flow and data dependency graph that are supplied by the
designer. The chapter describes the main building blocks that are used to construct the tool.
The aim is to describe the presented blocks on behavioral level, such that it is understandable
for readers who are not familiar with Cλash or Haskell. The accompanying Cλash code of
each block is attached in Appendix C and D. The blocks are represented as libraries that are
static and do not require adjustments in order to be used in a design.

• Analysis libraries (Section 8.1)

– Data dependency (Section 8.1.1, code in Appendix C.1)

– Crossbar minimalization (Section 8.1.2, code in Appendix C.1)

• Hardware generation libraries (Section 8.2)

– Crossbar (Section 8.2.1, code in Appendix D.2)

– Scheduler (Section 8.2.2, code in Appendix D.3)

– Actor buffering (Section 8.2.3, code in Appendix D.1)

The libaries that are presented are used to derive a system top entity. The configuration
of such a system requires additional work and configuration, as well. The templates of
the configurations are listed in Appendix E.1 and E.2. Two examples on the creation of a
configuration are elaborated in Appendix F and referenced in 8.3. In these examples it was
not possible to neglect the Cλash-language entirely, since it serves as a step-by-step guide
on how to connect the components together. The examples also involve an examination of
the resulting RTL.

8.1 Analysis

This section explains the parts of the library that are pre-evaluated in Haskell, and where only
the results of the expressions are compiled to hardware. The results are used to generate

41

the desired hardware structure in Section 8.2.

8.1.1 Data dependency

The data dependency graph is created by means of a custom data type within proposed
library. A graph consists of actors and dependency edges. Actors have three fields: name,
period and start time. An edge has two fields namely, the name of the producer and the
name of the consumer. A data dependency graph with scheduling information is generated
by the function genDDgraph. The function takes a valid data flow graph that is constructed in
the data flow schedule generation tool [12], and a list that consists of the data dependency
edges that are part of the data dependency graph.

8.1.2 Crossbar minimalisation

The crossbar minimalistion is added to bundle the data of actors that fire non-simultaneously,
as it saves hardware. A performance evaluation is elaborated in the example that is presented
in Section 8.3. Solving the minimization problem is attempted in two phases. First, it evaluates
how the data of multiple producers can be bundled for one consumer. The next step is, to
combine this process for all consumers within a graph.

Determining producer combinations for one consumer
For a data dependency graph with one consumer and one or more producers, it must be
examined how the crossbar can be configured efficiently (largest reduction of wires to the
consumer). The derivation depends on the schedule that is supplied in the data flow graph.

The algorithm to derive the most efficient structure is written in Haskell, but the result
is lifted (pre-evaluated at compile time) so that the Cλash-compiler reads it as a constant
when the hardware is derived. The function has the consuming actor and the corresponding
data dependency graph as argument. What it does first is finding all producing actors for the
consuming actor.

Then it simulates the timing behaviour of all the actors for a determined time frame. This
time frame needs to be large enough, such that it can be ensured that the actors will never
fire simultaneously. The current implementation of the library first takes the least common
multiple (LCM) of the actor firing periods.1 The LCM on itself is not sufficient, since actors also
have start up times, which may cause that they do not run for a larger part of the simulated
schedule. Therefore the schedule needs to be evaluated at least until there has been a period
where all actors were booted at the start, see Figure 8.1.

1It could also be the repetition factor times the period of the actor when SDF graphs are supported. The
finalization of SDF support is considered future work. Therefore, the repetition vector is not considered in the
current implementation.

42

LCM of actor periods

Max. start time

Simulation length

→ t

All actors are booted at the start of the period

Figure 8.1: Indication of the minimum simulation period

From the lists of execution times, it can be determined which actors have overlapping ex-
ecution times and which do not. From a list with n producing actors, m combinations of
actors need to be found. m will represent the number of ports on the crossbar, and should
therefore be minimized. The constraint in generating combinations, is that the actors that are
combined do not have overlapping firing times. A method to minimize m is to find the largest
combination possible by starting with a combination size p that is equal to the number of
producing actors. If this does not result in a valid result, then do it for p− 1 on all permutations
of p. When a combination is found, the resulting combination is removed from the remaining
list of actors to search in, and put in the list with results. Then the whole process is repeated
until the remainder is empty. The length of the list with results, is the number of ports required
to schedule the producers for the consumer. The algorithm described above is implemented
in Haskell code, and the results are used in generating the scheduler for the crossbar.

Determining producer combinations for all consumers
Often a data dependency graph consists of multiple consumers. Thus executing the algorithm
above for every actor that is consuming, and merging the resulting scheduling control vectors
results in one crossbar, that has ports for the inputs and outputs of the functions in the data
dependency and data flow graph.

8.2 Hardware generation

This description elaborates the design decisions that were performed on the Cλash imple-
mentation with respect to the generation of hardware.

8.2.1 CrossBar

This Section describes the generation of the crossbar on hardware level. An architecture of
an M rows by N columns crossBar is shown in Figure 8.2 for M = N = 3. The main property
is that every one of the inputs n ⊆ N can be directed to m ⊆M . This can be accomplished
by using M ∗ (N − 1) multiplexers. Thus for every m, there are N − 1 control bits required.

43

Control

N0 N1 N2 N3

M0

M1

M2

Figure 8.2: M x N crossbar

However, some trivial states can be eliminated. E.g. if N3 is directed to M0, then there is
no explicit state required for the muxes at the other inputs of N that can direct to M0. The
control vector can therefore be expressed more efficiently. The desired behaviour is shown
in Table 8.1 and can be modeled in hardware by Figure 8.3. It converts a control vector of
length dlog2ne bits to n− 1 bits, that control the state of the muxes.

Table 8.1: Truth table for control logic to set 3 multiplexers connected to one output of M
input control output actor output
00 111 N0

01 011 N1

10 001 N2

11 000 N3

#arg[1:0]
>>

result_i

RTL_RSHIFT

I2

I0[2:0]

I1[63:0]

O[2:0] result[2:0]
1:0

Figure 8.3: Multiplexer control logic that is equivalent the truth table in 8.1

8.2.2 Scheduler

The data flow graph contain all the required information about the scheduling of the actors.
The scheduling data is evaluated in haskell, to generate a vector that features enable signals
for all individual actors over time. This vector is included in a Asynchronous Read-Only

44

Memory (AsyncROM) in Cλash, along with a program pointer that is increased over time to
point to the correct control vector. Once the end of the schedule is reached, the program
pointer needs to be reset to the point in the schedule. Figure 8.4 depicts how this point is
derived. The point is set to the start of the first period in the schedule where all the actors are
started. From here, the program counter is again increased to the end of the schedule, after
it is reset again.

Period of the graph

Max. start time

Length of ROM

Reset point for program counter

Initial program counter

→ t

Figure 8.4: Illustration about the derivation of the Program counter

8.2.3 Actor buffering

In the previous examples the buffering was left out. However, when a function receives input
arguments non-simultaneously, a buffering system must be characterized. It is a possibility to
use a simplified circular FIFO buffer as shown in Figure 8.5. The FIFO is simplified because it
does not feature a full or empty signal. These indicators are not required because the buffer
can be modeled into the data flow graph. The FIFO depicted in the Figure has a read pointer
and a write pointer, and a size that is defined as N data blocks. dIn and dOut are ports
where data words of predefined widths can be written or read, respectively. At every instance
of writing or reading, the corresponding pointers are increased and wrapped in the range that
the buffer can hold.

Reg 0

Reg 1

n− 1

n

wp +m rp +p

FIFO buffer for N tokens

dIn

wEn

N

dOut

rEn

m p
p

p

m

m

Figure 8.5: A FIFO structure

The aforementioned buffer methodology holds only if a consuming actor only depends on
data from one producing actor. However, if it requires data from more actors, then besides
more buffers there is more logic required. In Figure 8.6 an example that depicts such a
problem. D depends on A,B and C, A and C fire simultaneously and B fires out of phase. The

45

crossbar is optimized to two wires, since the presented schedule allows this. However, D is
still a function that requires three arguments. The outgoing edges on the crossbar show what
data can be held during execution: one holds either A or B and the other holds C or nothing.
Actor D requires 3 buffers, for A, B and C. The data on the outgoing edges of the crossbar
can therefore be multiplexed to the appropiate buffer, by means of a demultiplexer. There is a
relation between the state of the crossbar, and the direction in which data should be directed
within the buffer, and therefore the same control signals can be used.

A

B

C

D

A

B

C

Data Dependency Data Flow

D

A

B

C

D

CrossBar

Scheduler

Buffer
A/B

C/-

BA

BB

BC

Control
Data

A
B
C
D

Figure 8.6: A FIFO structure

The edges δda, δdb and δdc that are present in the data flow graph in Figure 8.6 all hold
one token. The tokens indicate the buffer size that is utilized between D and A, B and C,
respectively. In fact, there must always exist a simple cycle (with a token indicating the
buffersize) between the actors that are involved in a data dependency edge.

The designer should also be aware that not all the data flow principles can be applied
on a data flow graph. Figure 8.7 depicts an example with two data flow graphs that have the
same sumber of tokens, but with a different initial distribution. The data flow graph on the
left side is correct, as it cleary indicates that there is a buffer with the size of two datablocks
between A and B. On the other hand, the graph on the right indicates that A and B may fire
at the same time, and both have a buffer between them with the size of one. Although it is
a valid data flow graph, it contradicts with the dependency graph. B depends on A, but it
can immediately fire, without receiving data from A. It is therefore unsupported to generate
hardware from the graph on the right.

46

A B

A B

A B

Correct Incorrect

Figure 8.7: Token distribution

The process of initiating a buffer to an actor is described in the derivation of the example
system in Section 8.3.

8.3 System derivation

Ideally, one would generate the hardware that complies to the data flow graph and data
dependency graph automatically. Automatic generation was also stated as one of the require-
ments within this project. However, it is complicated to fully generate it, due to the semantics
of the Cλash-language. The blocks that are discussed in the previous sections are functions
within Cλash. Rudimentarily speaking, functions take inputs and produce outputs. However,
the generation of a system as discussed in the methodology is a combination of intertwined
functions, and not simply a composition.

In the future, code generation might be the best solution to tackle this problem. One can
generate the design blocks, and then run a utility that connects these to each other. For now,
the only method is to connect the blocks by hand. The tool suggests the connections that
the user has to make in order to make it work. This thesis provides two step by step tutorials
on how to create a system. The first example is elaborated in Section 8.3.1 and the second
example is elaborated in Appendix F. The results are summarized in the conclusion of this
thesis.

8.3.1 Example: Sorter of Random numbers

This section describes the configuration of an example system. First the design is worked out
step by step for a specified token configuration. Then the example describes two alternations
in the amount of tokens to change the temporal behaviour of the system.

Figure 8.8 depicts an example where there are six pseudo random number generators
(A to F) that feed data through two blocks: G (sort the numbers from large to small) and H
(represent the numbers unsorted).

47

A B C D E F

H

G

A B C D E F

H

G

Figure 8.8: Sorter of random numbers, left the dataflow graph and right the data dependency
graph

First the function that the actors represent must be represented in Cλash. The random
number generator can be described by Listing 9 and the sort function can be described by
Listing 10. The sort function will be attached to a buffer in a later stage. Therefore it does not
contain the enable signal that activates the function yet. The random number generator is
based on a Linear Feedback Shift Register (LFSR) and does not require any buffers because
it is only a producer. Therefore, it already contains the enable signal.

1 lfsrT
2 :: forall n . KnownNat n
3 => BitVector (n+1) -> Unsigned (n+1)
4 -> Bool
5 -> (Unsigned (n+1), Unsigned (n+1))
6 lfsrT seed s en = (s',o)
7 where
8 mask = map (.&. (lsb s)) (bv2v seed)
9 o = s

10 s' = if en then
11 unpack . v2bv $ zipWith xor mask (0:>(init . bv2v . pack $ s))
12 else
13 s
14

15

16 lfsr = mealy (lfsrT (0b1100000 :: BitVector 7))

Listing 9: Pseudo random nummer generator with 7 bits output and a polynomial of x7 + x6 +1 that results in 127
different output states

Next, in order to derive a schedule a valid dataflow graph and list of data dependency edges
must be specified in the SysLift Module, see Listing 11. Line 2-6 represent the definitions of
the actors. An actor has a name and a firing duration. Lines 13-30 represent the data flow
edges and token definitions within the graph. Finally, line 33-35 describe the data dependency
edges.

The amount of initial tokens can be varied, and will influence the behaviour as will be
shown later. The tokens shown in Figure 8.8 are always present. In addition tokens can be

48

1 mm :: forall a . (Bounded a, Ord a) => a -> a -> (a,a)
2 mm x y | x > y = (x, y)
3 | otherwise = (y, x)
4

5 swap (x,y) = (y,x)
6

7 bubble :: forall n a . (KnownNat n, Bounded a, Ord a) => Vec n a -> a -> (Vec n a, a)
8 bubble xs a = swap $ mapAccumR mm a xs
9

10 bsort :: forall n a . (KnownNat n, Bounded a, Ord a) => Vec n a -> Vec n a
11 bsort xs = snd $ mapAccumL bubble xs (repeat mInf)
12 where
13 mInf = minBound :: a

Listing 10: Sort algorithm from ECA2 course in 2017

placed on the edges δAB, δBC , δCD, δDE , δEF and δFA. In the first demonstration, one token
is placed on all the aforementioned edges.

1 dataflowGraph = Graph (M.fromList
2 [hsdfNode 'a' 1 -- random generator
3 ,hsdfNode 'b' 1 -- random generator
4 ,hsdfNode 'c' 1 -- random generator
5 ,hsdfNode 'd' 1 -- random generator
6 ,hsdfNode 'e' 1 -- random generator
7 ,hsdfNode 'f' 1 -- random generator
8 ,hsdfNode 'g' 1 -- Sorter
9 ,hsdfNode 'h' 1 -- Id

10])
11 (
12 [
13 SDFEdge 'a' 'b' 1 1 1,SDFEdge 'b' 'c' 1 1 1,SDFEdge 'c' 'd' 1 1 1
14 ,SDFEdge 'd' 'e' 1 1 1,SDFEdge 'e' 'f' 1 1 1,SDFEdge 'f' 'a' 1 1 1
15

16 ,SDFEdge 'a' 'g' 0 1 1,SDFEdge 'g' 'a' 1 1 1,SDFEdge 'b' 'g' 0 1 1
17 ,SDFEdge 'g' 'b' 1 1 1,SDFEdge 'c' 'g' 0 1 1,SDFEdge 'g' 'c' 1 1 1
18 ,SDFEdge 'd' 'g' 0 1 1,SDFEdge 'g' 'd' 1 1 1,SDFEdge 'e' 'g' 0 1 1
19 ,SDFEdge 'g' 'e' 1 1 1,SDFEdge 'f' 'g' 0 1 1,SDFEdge 'g' 'f' 1 1 1
20

21

22 ,SDFEdge 'a' 'h' 0 1 1,SDFEdge 'h' 'a' 1 1 1,SDFEdge 'b' 'h' 0 1 1
23 ,SDFEdge 'h' 'b' 1 1 1,SDFEdge 'c' 'h' 0 1 1,SDFEdge 'h' 'c' 1 1 1
24 ,SDFEdge 'd' 'h' 0 1 1,SDFEdge 'h' 'd' 1 1 1,SDFEdge 'e' 'h' 0 1 1
25 ,SDFEdge 'h' 'e' 1 1 1,SDFEdge 'f' 'h' 0 1 1,SDFEdge 'h' 'f' 1 1 1
26

27

28 ,SDFEdge 'a' 'a' 1 1 1,SDFEdge 'b' 'b' 1 1 1,SDFEdge 'c' 'c' 1 1 1
29 ,SDFEdge 'd' 'd' 1 1 1,SDFEdge 'e' 'e' 1 1 1,SDFEdge 'f' 'f' 1 1 1
30 ,SDFEdge 'g' 'g' 1 1 1,SDFEdge 'h' 'h' 1 1 1
31])
32

33 ddEdges = [DDEdge 'a' 'g', DDEdge 'b' 'g', DDEdge 'c' 'g',DDEdge 'd' 'g',
34 DDEdge 'e' 'g', DDEdge 'f' 'g', DDEdge 'a' 'h',DDEdge 'b' 'h',
35 DDEdge 'c' 'h',DDEdge 'd' 'h', DDEdge 'e' 'h', DDEdge 'f' 'h']

Listing 11: Dataflow graph and dependency edges

A valid strictly periodic schedule can be derived from the aforementioned dataflow graph. The
schedule along with the dependency edges can be verified by running the function ddGraph.
this will return the output that is shown in Listing 12. It depicts the actors along with their
period and start time (line 3-11). Furthermore, it lists all the data dependency edges (line
12-25).
The resulting hardware architecture should be connected as depicted in Figure 8.9. This

49

1 *SysConfig> ddGraph
2 Actors:
3 [DDActor:'a', period: 2, Start time: 0;
4 ,DDActor:'b', period: 2, Start time: 0;
5 ,DDActor:'c', period: 2, Start time: 0;
6 ,DDActor:'d', period: 2, Start time: 0;
7 ,DDActor:'e', period: 2, Start time: 0;
8 ,DDActor:'f', period: 2, Start time: 0;
9 ,DDActor:'g', period: 2, Start time: 1;

10 ,DDActor:'h', period: 2, Start time: 1;
11]
12 Edges:
13 ['a'-->'g';
14 ,'b'-->'g';
15 ,'c'-->'g';
16 ,'d'-->'g';
17 ,'e'-->'g';
18 ,'f'-->'g';
19 ,'a'-->'h';
20 ,'b'-->'h';
21 ,'c'-->'h';
22 ,'d'-->'h';
23 ,'e'-->'h';
24 ,'f'-->'h';
25]

Listing 12: Output of the ddGraph function

requires manual nesting of the functions. This paragraph will guide the reader through the
progress of establishing the desired hardware architecture. The difficult part in connecting
the components is, that they have intertwined dependencies. The (automatically generated)
firing schedule of the actors and the schedule of the crossbar can be accessed by running
fireScheduleV or cBSchedule, respectively. The Signal pCnt is the program counter that
selects the desired record from the schedules.

A

B

C

D

E

F

G

H

Data

Control

Scheduler

Crossbar

Buf

Buf

Figure 8.9: Connection diagram of the functional blocks

50

1 fireScheduleV = $(listToVecTH fireSchedule)
2

3 pCnt = pCntWrap fireScheduleV
4

5 actorEn = asyncRom fireScheduleV <$> pCnt
6 crossBarCtrl = asyncRom cBSchedule <$> pCnt

The Signal actorEn represents, which actors can fire over time by means of a vector of
booleans. The Signal crossBarCtrl holds the configuration of the crossbar over time. Next,
the enable signals for the individual actors must be split from actorEn. The output of the
crossbar has 12 ports, that have to be connected to the actors G and H. The order in which
the actors are placed depend on the order in which the data dependencies were defined.
The order can be observed by running crossBarInfo, which will return an output as shown
in Listing 13. The result is a list of tuples with three fields. The function of each field in a
tuple is as follows: The first field of a tuple represents an actor that is consuming, which
is in this example actor G (line 2) or actor H (line 9). The second field lists the actors that
produce data for the actor in the first field of the tuple (line 3-8 and line 10-15 for actor G
and H, respectively). The second field is a list of lists. Every list within the list represents
the actors that share a port. In this example there are six lists of 1 actor within a list. This
indicates that there are six ports to the consuming actor, where each of the ports is only used
for one actor. The number of ports to which the actor in the first field is connected to, is listed
in the third field of the tuple (line 9 and line 16 for actors G and H, respectively). From the
output can therefore be concluded that G is connected to the first 6 outputs of the crossbar,
and H is connected to the last 6 outputs of the crossbar.

1 *SysConfig> crossBarInfo
2 [(DDActor:'g', period: 2, Start time: 1;
3 ,[[DDActor:'f', period: 2, Start time: 0;
4],[DDActor:'e', period: 2, Start time: 0;
5],[DDActor:'d', period: 2, Start time: 0;
6],[DDActor:'c', period: 2, Start time: 0;
7],[DDActor:'b', period: 2, Start time: 0;
8],[DDActor:'a', period: 2, Start time: 0;
9]],6),(DDActor:'h', period: 2, Start time: 1;

10 ,[[DDActor:'f', period: 2, Start time: 0;
11],[DDActor:'e', period: 2, Start time: 0;
12],[DDActor:'d', period: 2, Start time: 0;
13],[DDActor:'c', period: 2, Start time: 0;
14],[DDActor:'b', period: 2, Start time: 0;
15],[DDActor:'a', period: 2, Start time: 0;
16]],6)]

Listing 13: Output of the ddGraph function

Next, the vector of enable signals actorEn (the scheduler) is split to the actors. actorEn is a
vector with booleans of the Signal type:

1 enableABCDEF = traverse (\ x -> (!! x) <$> actorEn) (iterate d6 (+1) 0)
2 enableG = (!! 6) <$> actorEn
3 enableH = (!! 7) <$> actorEn

The functions that represent the actors F to A can now be initialized in the system. Since they

51

all represent the same randomize function (albeit with a different starting value), the following
transformation can be applied:

1 actorFEDCBA
2 = traverse (\ x -> lfsr (x+1) $ (!! x) <$> actorEn) (iterate d6 (\x -> x - 1) 5)

actorFEDCBA is a Signal that represents a vector with the values that are produced by the
six instances of the lfsr function. Note that the enable signals from the scheduler (actorEn)
are included as well.

The actors G and H require the instantiation of a buffer. This buffer needs to be defined in the
SysLift module. The size of the buffers that are required for the buffers of both actor G and
actor H are found with the findBufferSizes function. The functions looks at the tokens on
all outgoing edges from G or H:

1 bufG = map fromInteger $ findBufferSizes ((!! 6) . getActors $ ddGraph)
2 bufH = map fromInteger $ findBufferSizes ((!! 7) . getActors $ ddGraph)

Then the actors G and H can be instantiated in the SysConfig module:

1 actorG = actSort buf enableG
2 where
3 t x = take d6 <$> x
4 buf = bufWrap pRangeV initS $ bundle (t crossBarCtrl,t cbOut,enableABCDEF,enableG)
5 pRangeV = $(listToVecTH (pRange bufG))
6 initS = (ptrsV,ptrsV,bufV) where
7 bufV = $(listToVecTH (L.replicate (L.sum bufG) (0 :: DataType)))
8 ptrsV = $(listToVecTH (ptrs . pRange $ bufG))
9

10

11 actorH = actDev buf enableH
12 where
13 t x = drop d6 <$> x
14 buf = bufWrap pRangeV initS $ bundle (t crossBarCtrl,t cbOut,enableABCDEF,enableH)
15 pRangeV = $(listToVecTH (pRange bufH))
16 initS = (ptrsV,ptrsV,bufV) where
17 bufV = $(listToVecTH (L.replicate (L.sum bufH) (0 :: DataType)))
18 ptrsV = $(listToVecTH (ptrs . pRange $ bufH))

These functions are relatively hard to read, but they both consist of the same fields. The
buffer needs to demultiplex the data that it receives. In order to do the correct buffer allocation,
it requires information about which actors are enabled (enableFEDCBA) and about the current
state and relevant outputs of the crossBar (crossBarCtrl and cbOut), for the port that the
actor is connected to. The latter requires some filtering, as only the parts for actor G or actor
H are relevant. The function t is used to select the relevant inputs for the initiated buffer. The
other signals are more straight forward:

actor[X] is the coupling of a function to a buffer and the enable signal of that actor.

t filters the relevant information of the crossBar to pass it to the buffer. It is based on the
information from crossBarInfo.

buf represents initiation of the actual buffer

52

pRangeV contains the range in which the actors that produce data for the consuming actor can
write. (has dependency to bufX in SysLift module)

initS is the initial state of the buffer

bufV is the actual buffer (has dependency to bufX in SysLift module)

ptrsV represents the vector of pointers that is bounded to the range in pRangeV.

The output of the crossbar (cbOut) has not been defined yet. To generate a crossbar, one
needs to give the number of inputs and outputs (sysConfigConstraints) to the crossBar2d

function. Then the crossbar also has a control signal (crossBarCtrl) and it requires the
inputs of all the actors that produce data. The crossBar2d function does not natively operate
in the Signal domain, and needs to be lifted.

1 cbOut = liftA2 (crossBar2d sysConfigConstraints) actorFEDCBA crossBarCtrl

If the code in the SysLift and SysConfig module are adjusted according to the described
steps, then the hardware architecture could be simulated. The whole graph functions as a
topentity. Therefore the designer must decide which actor outputs must be available, e.g. G
and H:

1 topEntity
2 :: Clock System Source
3 -> Reset System Asynchronous
4 -> Signal System ((Vec 6 DataType),(Vec 6 DataType))
5 topEntity = exposeClockReset $ bundle (actorG,actorH)
6 {-# NOINLINE topEntity #-}
7

8

9 testBench :: Signal System ((Vec 6 DataType),(Vec 6 DataType))
10 testBench = done
11 where
12 done = topEntity clk rst -- testInput)
13 clk = tbSystemClockGen (not <$> pure True)
14 rst = systemResetGen

Evaluating the testbench will now give the outputs over time. Here the testBench is sampled
10 clock cycles. From the results can be noticed that results are computed on every other
cycle.

*SysConfig> sampleN 10 testBench
[(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<6,5,4,3,2,1>,<6,5,4,3,2,1>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<98,97,96,3,2,1>,<3,98,2,97,1,96>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<97,96,80,49,48,1>,<97,49,1,80,96,48>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<120,96,80,48,40,24>,<80,120,96,40,48,24>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<60,48,40,24,20,12>,<40,60,48,20,24,12>)]

Improving the throughput of the system
The throughput of the graph can be improved, by increasing the buffersize between the
random generators (A to F) and the consumers (G and H) in the dataflow graph. In the new
scenario, both G and H can produce data at each clock cycle, by increasing all the buffers to
a size of two:

53

*SysConfig> sampleN 10 testBench
[(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<6,5,4,3,2,1>,<6,5,4,3,2,1>)
,(<98,97,96,3,2,1>,<3,98,2,97,1,96>),(<97,96,80,49,48,1>,<97,49,1,80,96,48>)
,(<120,96,80,48,40,24>,<80,120,96,40,48,24>),(<60,48,40,24,20,12>,<40,60,48,20,24,12>)
,(<30,24,20,12,10,6>,<20,30,24,10,12,6>),(<15,12,10,6,5,3>,<10,15,12,5,6,3>)
,(<103,98,97,6,5,3>,<5,103,6,98,3,97>),(<98,97,83,80,49,3>,<98,83,3,49,97,80>)]

Another adjustment to the temperal behaviour of the graph
Another example of a different schedule is one where only one token is passed through A to
F. Besides the schedule, this also requires an adjustment to the t function within the function
declaration, because the number of crossbar outputs are adjusted to the generated schedule.
In this example, both G and H only require one simultaneous input:

1 t x = take d1 <$> x -- first port of crossbar for actor G
2 t x = drop d1 <$> x -- second port of crossbar for actor H

The increased buffers of the previous example are set to their original size. A problem here,
is that order of the actors has changed, according to the crossBarInfo function. Therefore
the outputs of the crossbar must be adjusted accordingly.

1 -- former: actorFEDCBA
2 actorABCDEF= traverse (\ x -> lfsr (x+1) $ (!! x) <$> actorEn) (iterate d6 (+1) 0)

The result of the simulation is as expected. G and H can very every 7th clock cycle:

*SysConfig> sampleN 14 testBench
[(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<6,5,4,3,2,1>,<1,2,3,4,5,6>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<0,0,0,0,0,0>,<0,0,0,0,0,0>)
,(<0,0,0,0,0,0>,<0,0,0,0,0,0>),(<98,97,96,3,2,1>,<96,1,97,2,98,3>)]

In the current state of the tool, it is not always possible to derive hardware from a valid
dataflow schedule. if the start times or period of the tokens is a fraction (which can be
observed by running ddgraph), then it is not possible to generate a schedule. This is due to
the constraint that one time unit equals one clock period, and this is an indivisible element.

RTL-level comparison for different schedules

In this section, the influences on the resulting hardware, due to a different schedule are
examined in Vivado 2017.4 for the Zybo Z7-20 platform. It was aimed to generate Verilog code
with the Cλash-Compiler 0.99.3. However, for unknown reasons, the resulting code could
not be synthesized, as Vivado started to utilize all RAM and SWAP on the host computer.
However, the design could be compiled to VHDL. The ”Run Implementation” process is ran
(which maps the hardware on the FPGA), and then the results are examined. A clock of 100
MHz was used as timing constraint. The aim was to perform a power analysis based on the
SAIF file that was obtained, by running the testbench that was generated by Cλash. However,
the design was so small that the power consumption was neglected by the Idle usage of the
FPGA. The following three schedules and results are evaluated:

54

• Buffer size of two between the consumer and the producers, all producers fire concur-
rently. (Period of schedule: 1)→ 1342 LUTs and 329 Flip-Flops.

• Buffer size of one between the consumer and the producers, all producers fire concur-
rently. (Period of schedule: 2)→ 543 LUTs and 190 Flip-Flops.

• Buffer size of one between the consumer and the producers, only one producer fire in a
time instance. (Period of schedule: 7)→ 485 LUTs and 212 Flip-Flops.

The utilization is a little higher than expected. It is difficult to base this claim on the number of
LUTs. However, an estimate of the number of Flip-Flops can be deduced from the Cλash
implementation. For the first example, with the larger buffer size, the expected amount of
Flip-Flops can be deduced as follows:

• Datatype size is 7 bits and will occupy 7 Flip-Flops

• actors G and H hold a buffer of size 2, for each of the producing actors. → 2 · 84FF

• the total buffer size of the actors G and H is 12, therefore the read and write pointers
are 4 bits wide. There are 6 write pointers and one readpointer→ 2 · 48FF

• The schedule has a period of one, this requires only one register. → 1FF

• The random number generators each have 7 registers to store the current state. → 42FF

In total this should utilize around 307 Flip-Flops, opposed to 349. An elaboration on the
pre-routing RTL-level clarifies that for both actor G and H, the whole dependency structure
is generated on RTL. However, this would imply that the design would be larger than 349.
It is therefore unclear where the extra registers exactly come from. As the thesis does not
focus on area optimization, it is also of less importance. What is more interesting, is the
hardware savings, as a result of a different schedule. Unfortunately, the hardware savings
are not proportional to the throughput reduction that the less concurrent schedule offers. This
is mainly due to the fact that all the hardware utilizing functions are still synthesized, despite
the different enable rates.

55

56

Chapter 9

Conclusions

The research question within this thesis was stated as: How can the unique features of
the Cλash language be utilized to define a deterministic System on Chip interconnection
standard?. This chapter aims to answer this question.

During this study, a methodology to generate hardware from data flow was excogitated
and implemented as a tool. The compliance with data flow ensures that the generated
hardware is deterministic. One of the constraints within the project was to use the features
that the Cλash-language offers. This has been utilized in a way that data flow graphs are pre-
evaluated and translated in Haskell, to synthesizable expressions that the Cλash-compiler
can compile to either VHDL or Verilog. The proposed methodology was tested for two HSDF
examples, where a strictly periodic schedule was feasible. The resulting architectures followed
the exact behaviour that was described in data flow.

The results showed that the tool indeed changes the behaviour of the synthesized hardware
according to the data flow schedule. However, the changes in hardware were not proportional
to the changes in the throughput, because the hardware of the functions are still generated.
The only difference is that the function is less often addressed to execute. Components as the
crossbar are smaller in hardware, due to wire optimizations. However, this is often trivial in
comparison with the rest of the design. The resulting architecture is likely to be more energy
efficient, as actors are less often activated. It has been attempted to deduce the energy
consumption, but the tested designs were too small to give an accurate energy consumption.

Although the presented method has it’s limitations, it is an entirely different view on connect-
ing functional hardware blocks to each other, which might be interesting for the research
topics within the CAES group. The shortcomings and potential subjects for future work are
elaborated further in Chapter 10.

57

58

Chapter 10

Discussion and Future work

This chapter discusses the limitations of the obtained results. It also points to areas of interest
for future work.

10.1 Nesting functions

One of the major limitations is that nesting the generated blocks is a cumbersome task. A
function often receives its input from the (selected) output of multiple other functions and
produces an output that is (partially) connected to other functions. Moreover, if the functions
operate on the Signal domain, then all connection functions need to be lifted to this domain,
which adds even more manual labour to connect the blocks to each other. A possible solution
to the aforementioned problem is to use a visual tool that can help the designer to connect
individual components to each other. It would be interesting if the tool could generate the
resulting Cλash wrapper so that the whole system can still be simulated in the interactive
environment. The University of Twente has attempted to visualize Haskell in [15]. This utility
could be a good starting point. The downside of this tool is that it still requires the designer to
connect the generated components, while the process of generating components already
implies how they should be connected. This process would involve a parser that scans the
files and the generation of code that wraps the components together.

10.2 Support for SDF

Another limitation is the lack of support for Multi-rate synchronous data flow (SDF) graphs
when generating the hardware. Most of the blocks that were introduced support a subset of
SDF, which can be added to the tool with relative ease. However, some of the properties do
not just translate to hardware. This section elaborates in which way the presented method-
ology is limited in the usage of SDF. The presented method is not restricted on the field of
synchronization, as long as a feasible strictly periodic schedule can be derived. However, the
method is restricted on the generation of buffers in the current implementation, as an actor
deduces its buffer size based on the tokens on its outgoing edges.

59

Figure 10.1 depicts an SDF graph along with its firing schedule and token distribution.
In contrast to the examples that were shown in Chapter 8, it is difficult to make unambiguous
statements about the buffer derivation. Actor B consumes three tokens (data blocks) and
frees up three buffer slots as a result. It can be modelled with the earlier discussed tools.
Actor A is on the other hand more difficult to model. It produces two data blocks in one firing,
therefore it needs two data lines to transfer it to the buffer of actor B. However, this results in
a contradiction when it produces only one data block for actor C. In conclusion, although the
data flow graph shows a feasible schedule, the current derivation method for the buffer size is
not sufficient.

A B

2

2

3

3

A

B

δAB

δBA 4 2 0

0 2 4 1 3

3 1 4 2 0

0 2 4 1 3

3 1

A B

Figure 10.1: An example with implicit self-edges that causes the buffer generation to fail

Another case where the buffer generation results in faulty behaviour for SDF is shown in
Figure 10.2. In this example, A produces 2 tokens for actor C, while producing only one token
for actor B. Again, the data flow graph can be scheduled, but the buffer generation can not be
correct because the representation of tokens is ambiguous (the result of A represents 1 and
2 tokens for B and C, respectively).

1

2

2

1

11

2

2

A B

C

A B

C

Figure 10.2: A second example with implicit self-edges that causes the buffer generation to
fail

As long as all produced tokens have an unambiguous representation, it is possible to derive
the correct buffer sizes. This is depicted by Figure 10.3. In this example, the token production
from A to each consuming actor is the same, while the actors B and C consume a different
number of tokens when they fire. From the way it is modelled, it can be observed that B and

60

C require 2 and 4 data blocks from A, respectively.

1

1

4

2

21

1

4

A B

C

A B

C

Figure 10.3: An example with implicit self-edges that can work with the current buffer gener-
ation

Another example is shown in Figure 10.4. This graph can operate correctly, because A does
fire the same amount of tokens to all its consuming tokens. However, since it fires two data
blocks, it could also be modelled as an actor that fires one larger block of data (it can be
seen as an abstraction), which then results in the graph that is shown in Figure 10.5. It does
not change the behaviour of a data flow graph, since the tokens serve as a synchronization
mechanism. The graph depicts single token production, thus it could be generated to a
hardware structure.

2

2

4

2

22

2

4

A B

C

A B

C

2

Figure 10.4: Another example with implicit self-edges that can work with the current buffer
generation

61

1

1

2

1

11

1

2

A B

C

A B

C

Figure 10.5: An abstraction of Figure 10.4

10.3 Bugs in the Cλλλash-compiler

While conducting the tests in Section 8.3 and Appendix F, one of the Cλash designs could
only be synthesized when it was compiled to VHDL. The resulting VHDL design could be
simulated in Vivado, and also simulated successfully in the interactive Cλash environment.
This behaviour is undesirable, especially when students work with different versions of Cλash
and different versions of Vivado that may cause these problems.

10.4 Interfacing between schedules

Systems that allow a feasible strictly periodic schedule have been considered in this thesis.
However, often a larger system consists of multiple sub-systems, which could result in no
feasible strictly periodic schedule. The time frame of this master project did not allow to final-
ize the principles that are discussed in this section. The presented principles are considered
future work.

In Figure 10.6 two controllers which both have their own schedule are shown. The fir-
ing of actor C requires on a unpredictable event on the outside. Therefore, once it is enabled
by the scheduler in scheduler 1, it must send an acknowledge back to notify that it has indeed
fired. scheduler 2 is meanwhile blocking on the firing of actor D, since it must first be notified
by scheduler 1 that C has fired.

↓
Unpredictable event

Scheduler 1 Scheduler 2

A

B
C D E

Control

Data

Figure 10.6: A possible configuration for multiple controllers

62

One method to realise the communication between two schedules is to use handshake
techniques that are used in Globally Asynchronous Locally Synchronous systems [16]. This
makes sure that every component obeys the firing rules by means of back presure. A
redundant handshaking protocol is the 4-phase protocol [17]. It is often used in asynchronous
systems, but can also be used for synchronous systems that operate in one or multiple clock
domains, as this might be the case. The phases of the 4 phase protocol are as following:

1. The producer pushes the data along with an asserted request signal;

2. The consumer fetches the data and asserts the acknowledge signal;

3. The producer negates the request signal;

4. The consumer negates the acknowledge signal.

The protocol at first seems superfluous as every signal returns to zero. However, it is unwise
to neglect the steps entirely, because that can result in false reads. There is however also a 2
phased protocol that acts solely on bit transitions.

Nevertheless, the latter requires additional logic to implement the transition handshaking
mechanism. For systems that require buffering the structure in Figure 10.7 could be used.
This method uses a FIFO that uses a read and write interface that communicate according
to the four phase handshkaing protocol. It has a relatively high latency since it requires two
handshakes to communicate data from one system to another, but the throughput can be
relatively high, since the actors can (to some extend) act independently due to the FIFO buffer
in between. For homogeneous Peer to Peer transfers the approach in Figure 10.8 could be
used as well. It has a lower throughput (since one schedule can be stalled by another), but it
requires only one handshake for a transfer, and thus has a lower latency.

Figure 10.7: Typical FIFO-based GALS system [16]

63

Figure 10.8: Gals system with pausable clocking [16]

The interfaces that enable four phase handshaking between schedules have been designed
in Cλash (code available in Appendix D.4) and are briefly elaborated in this section. The
designed interfaces are as following:

TIF An interface that requests (transmits) data to one data receiving interface, and waits for
an acknowledge back before it proceeds.

TVIF An interface that requests data to one or multiple data receiving interfaces, and waits
for an acknowledge back from all receivers before it proceeds.

RIF An interface that receives data from a transmitter, and subsequently asserts its acknowl-
edge to signal the transmitter that the data is received.

RVIF An interface that receives data from multiple transmitters, and subsequently asserts it
acknowledge when it has received data from all it’s transmitters.

Three possible use cases of the interfaces are depicted in Figure 10.9. The handshaking
interfaces are not yet part of the presented tool. Integration of these interfaces or another
type of interface is considered as future work.

TIF RIF TVIF RIF

RIF

TIF

TIF

RVIF

Acknowledge

Request

Figure 10.9: An example with the available interface types

10.5 Other optimizations

The presented method requires a data flow graph where all actors have a self-edge. It could
be interesting to analyse what the largest actor firing concurrency is, and generate the amount
of required actors in hardware automatically. The implementation of this behaviour extends
the subset of data flow that the tool can operate in. Furthermore, it will influence the design
on hardware utilization as well.

64

Another limitation of the generation to hardware, is that fractional execution or start times
are not supported. One time unit was set to be equal to one clock cycle and is therefore
indivisible. Therefore graphs that result in fractional schedules are not supported. This is not
necessarily a problem, since a schedule can be multiplied by the least common multiple of
the fraction denominators within the schedule.

65

66

Bibliography

[1] “From Haskell to Hardware,” 2018, visited on 18-10-2018. [Online]. Available:
http://www.clash-lang.org/

[2] ARM, “Amba axi and ace protocol specification axi3, axi 4, and axi4-lite ace and
ace-lite,” visited on 04-10-2018. [Online]. Available: http://www.gstitt.ece.ufl.edu/courses/
fall15/eel4720 5721/labs/refs/AXI4 specification.pdf

[3] Intel®, “Avalon® interface specifications,” visited on 04-10-2018. [Online]. Avail-
able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
manual/mnl avalon spec.pdf

[4] ARM, “Amba™ specification,” visited on 04-10-2018. [Online]. Available: http:
//soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf

[5] OpenCores.org, “Wishbone b4,” visited on 04-10-2018. [Online]. Available:
https://cdn.opencores.org/downloads/wbspec b4.pdf

[6] A. Topirceanu, “Network on chips,” visited on 13-01-2019. [Online]. Available:
https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips

[7] OpenCores.org, “Opencores,” visited on 21-01-2019. [Online]. Available: https:
//opencores.org/

[8] P. W. Maarten Wiggers, Joost Hausmans and M. Geilen, Dataflow Analysis for Real-Time
Multiprocessor Systems. Springer, 2017, visited on 26-11-2018.

[9] R. Reiter, “Scheduling parallel computations,” J. ACM, vol. 15, no. 4, pp. 590–599, Oct.
1968. [Online]. Available: http://doi.acm.org/10.1145/321479.321485

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[11] R. de Groote, “On the analysis of synchronous dataflow graphs: a system-theoretic
perspective,” Ph.D. dissertation, University of Twente, 2 2016, visited on 25-01-2019.

[12] R. d. G. Hendrik Folmer, “Haskell dataflow fpga,” visited on 10-01-2019. [Online].
Available: https://github.com/Hendrik-0/haskell-dataflow-fpga

67

http://www.clash-lang.org/
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf
http://soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://sites.google.com/site/alexandrutopirceanu/research/networks-on-chips
https://opencores.org/
https://opencores.org/
http://doi.acm.org/10.1145/321479.321485
https://github.com/Hendrik-0/haskell-dataflow-fpga

[13] Y. Kim, S. Jadhav, and C. S. Gloster, “Dataflow to hardware synthesis framework on fp-
gas,” in 2016 International Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW), Oct 2016, pp. 91–96.

[14] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static data flow,”
in 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 5,
May 1995, pp. 3255–3258 vol.5.

[15] A. B. et al., “Visual programming meets haskell,” visited on 30-01-2019. [Online].
Available: https://github.com/viskell/viskell

[16] M. Krstic, E. Grass, F. K. Gürkaynak, and P. Vivet, “Globally asynchronous, locally
synchronous circuits: Overview and outlook,” IEEE Design Test of Computers, vol. 24,
no. 5, pp. 430–441, Sep. 2007.

[17] JensSparso, Asynchronous Circuit Design: A Tutorial, 2006, visited on 26-11-2018.
[Online]. Available: http://www2.imm.dtu.dk/pubdb/views/edoc download.php/855/pdf/
imm855.pdf

68

https://github.com/viskell/viskell
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.pdf

Part III

Appendix

69

Appendix A

Existing SoC communication

This Appendix gives a brief overview of a variety of commonly used protocols in the industry.
A comparison is drawn in Chapter 3 of this thesis.

A.1 AMBA

The Advanced Microcontroller Bus Architecture specification defines three distinct busses [4]:

AHB or Advanced High-performance Bus is designed for high clock frequency, high per-
formance system modules. It’s aim is to provide a efficient connection of processors,
on/off-chip memories.

ASB or Advanced System Bus is the predecessor of the AHB. The core differences are the
lack of burst transfers and split transactions.

APB or Advanced Peripheral Bus is optimized for power consumption and reduced interface
complexity. It can be used in conjunction with either ASB and AHB.

Table A.1 describes the differences between the distinct busses a little more concrete:

Table A.1: The differences between the distinct AMBA busses
AMBA AHB AMBA ASB AMBA APB
High performance High Performance Low power
Pipelined operation Pipelined operation Latched address and control
Multiple bus masters Multiple bus masters Simple interface
Burst transfers Suitable for many peripherals
Split transactions

The main aim of the AMBA specification is to facilitate in right-first-time development of
embedded products with several CPUs or signal processors. Another important aspect is
that the bus encourages modular system design, by using several busses. A typical AMBA
architecture is shown in Figure A.1. It can be observed that the high-performance modules
communicate over an AHB/ASB backbone, whereas the low power peripherals are connected

71

with an APB. The AHB/ASB backbone can access the peripherals on the APB by means of a
bridge that functions as a slave.

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
External Memory

Interface

AHB or ASB APB

PIO

UART

Keypad

AHB to APB Bridge
or

ASB to APB Bridge

DMA bus
master

Figure A.1: A typical AMBA bus structure

The AHB/ASB backbone exchanges data with a different protocol as the APB. Since the
AHB is an improved version of the ASB, only the former bus is elaborated further. With the
AHB a master is routed through all the slaves, there is no partial address encoding, meaning
each slave must decode the full address. If there are multiple masters on the bus, then the
arbiter grants one master at the time to communicate with a slave. The response from the
slave is fed to the master by the decoder. A transaction on the bus consists of two cycles. (1)
An address and control cycle and (2) One or more cycles for the data. The control signals
inform the slave about the direction, width and whether it is a burst write or not. The slave
supports various response signals to inform the master about its current transfer. With AHB,
the address and control phase of any transfer occurs during the (last) data phase of the
previous transfer. This can result in a higher throughput, as shown in Figure A.2.

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

A

Control
(A)

Control
(B)

Control
(C)

Data
(A)

Data
(B)

Data
(C)

Data
(A)

Data
(B)

Data
(C)

B C

Figure A.2: Multiple transfers example

72

The APB complies to a different protocol, as it is optimized for minimal power consumption
and reduced interface complexity. In contrast to the AHB, there is only one master present
at the APB, namely the APB bridge. This bridge is then again a slave of the AHB bus. The
bridge and a slave are depicted in Figure A.3a and Figure A.3b, respectively. The bridge
decodes the address and asserts the corresponding PSELx that is inputs to a slave. All the
slaves are connected on a shared bus, and this system ensures that only one slave can
communicate at the time. The protocol over which the bridge and slave communicate is
depicted in Figure A.4. On the start of a request, a transition from IDLE to SETUP occurs. In
this stage, the address is decoded and the desired slave is selected. In the next cycle the
machine is moved to the ENABLE state, in which PENABLE is asserted. The address, write and
select signals must remain stable during this phase. From this stage the machine moves to
either IDLE or SETUP. The former state is used if another transfer must follow.

Write data

Address
and
control

PWRITE

APB
bridge

PADDR

PRESETn

PCLK

Reset

System bus
slave interface

PSEL1

PENABLE Strobe

Selects

PSEL2

PSELn

PWDATA

PRDATARead data

Clock

(a) The bridge (master)

Read data

Address
and

control
PWRITE

APB
slave

PADDR

PRESETn

PCLK

Reset

PSELx

PENABLEStrobe

Select

PRDATAPWDATAWrite data

Clock

(b) An APB Slave

Figure A.3: APB components

SETUP
PSELx = 1

PENABLE = 0

IDLE
PSELx = 0

PENABLE = 0

No transfer

Transfer

No transfer Transfer

ENABLE
PSELx = 1

PENABLE = 1

Figure A.4: Transfer protocol

73

A.2 AXI bus

The AMBA AXI protocol [2] is designed for systems with high performance and operating
speed, but also offers subsets of the protocol for relatively simple pheripherals. It is also
developed by ARM, and compaitible with AHB and APB interfaces. The AXI4 standard can
be divided in several classes:

• Full AXI4: Supports burst data transfers, therefore suitable for high-speed peripherals
like DDR3 memory.

• AXI4 Stream: Ideal for processing pipelines (e.g. FFT’s, audio- and videoprocessing)

• AXI4 Lite: Subset of the AXI4 standard, no burst available. Suitable for simple peripher-
als with area constraints.

The AXI protocol consists of five independent transaction channels: Read/Write address,
Read/Write data and write response. A channel can carry multiple words/bits that contain
information. The AXI protocol allows master and slave interfaces to exchange information. The
master is responsible for initiating either a read or write request. The channel communications
is shown in Figure A.5 and A.6, respectively. The databus width varies from 8 to 1024 bits
and the corresponding channel does also provide a response signal code.

Master
interface

Slave
interface

Address
and control

Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Figure A.5: Read transaction architecture as described in [2]

74

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

Figure A.6: Write transaction architecture as described in [2]

The structure of the interface and interconnect is shown in Figure A.7. The interconnect han-
dles partial slave addressing, as opposed to AMBA, there is no shared bus. The interconnect
can connect a master to a slave directly, which enables concurrent bus access if there are
multiple masters.

Interconnect

Slave 1 Slave 2 Slave 3 Slave 4

Master 1 Master 2 Master 3

Interface

Interface

Figure A.7: Interface and interconnect as described in [2]

A.3 Avalon bus

The Avalon bus [3] is used in system design on Intel Altera FPGA’s. The standard offers
several interfaces for streaming high-speed data, reading and writing registers and memory
and controlling off-chip devices. The specification defines the following interfaces:

• Avalon Streaming Interface (Avalon ST), for unidirectional dataflow.

• Avalon Memory Mapped Interface (Avalon-MM), address-based read/write interface.

• Avalon Conduit interface, accomodates signals that do not fit in another interface (e.g.
outputs)

• Avalon Tri-State Conduit Interface (Avalon-TC), used to interface with off-chip pheriph-
erals.

• Avalon Clock Interface, an interface that drives or receives clocks

75

• Avalon Reset Interface, an interface that provides reset connectivity

• Avalon Interrupt Interface, an interface that allows components to signal events to other
components, without using another bus.

The interfaces that are considered in this comparison are the Avalon MM and Avalon ST
interface. The Avalon MM interface specifies several different signal types, of which only a
few are required for a functional design. It also contains Intel Altera specific signals for the
NIOS II processor. The interface supports Burst transfers up to 1024 data transactions. The
standard finally provides some configurable properties that allow a modular design flow.

A typical read and write transaction is shown in Figure A.8. (1) The master asserts the
address, range (byteenable) and read signal after the rising edge. The slave then asserts
the waitrequest. (2) the wait request is sampled on the rising edge and causes the master
to hold the current signals. (3) After negation of waitrequest, the slave asserts the readdata
and response code. (4) the master samples the completed transfer. (5) The master initiates
a write transfer and the slave asserts the wait request again. (6) The slave negates the
waitrequeest signal again, and (7) captures the write data in the next clockcycle.

Figure A.8: Avalon MM read transfer

There are many more variations of the transfer that is described above, this can all be adjusted
in the property configuration of the MM slave. Also, the interconnect structure is similair to
AXI, there is partial address encoding that translates the byte address into an address space
of a specific slave.

A.4 Wishbone

The wishbone B4 standard provides a simple protocol while remaining versatile and relatively
simple to implement. The standard requires the designer to implement only a subset of the
available options to create a working design. If desired, the designer can then expand it. The

76

designer has also the freedom to choose the interconnection type e.g.: Peer to Peer (P2P), a
Shared bus (as used in AMBA) or a CrossBar (as used in AXI/Avalon), see Figure A.9.

W I S H B O N E
S L A V E

W I S H B O N E
M A S T E R

(a) P2P

I P C O R E ' A '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

I P C O R E ' B '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

I P C O R E ' C '

WI
SH

BO
NE

MA
ST

ER

WI
SH

BO
NE

SL
AV

E

D I R E C T I O N O F D A T A F L O W

(b) Dataflow

W I S H B O N E
M A S T E R
' M A '

W I S H B O N E
M A S T E R
' M B '

W I S H B O N E
S L A V E
' S A '

W I S H B O N E
S L A V E
' S B '

W I S H B O N E
S L A V E
' S C '

S H A R E D B U S

(c) Shared bus

W I S H B O N E
M A S T E R
' M A '

W I S H B O N E
M A S T E R
' M B '

W I S H B O N E
S L A V E
' S A '

W I S H B O N E
S L A V E
' S B '

W I S H B O N E
S L A V E
' S C '

C R O S S B A R S W I T C H
I N T E R C O N N E C T I O N

N O T E : D O T T E D L I N E S
I N D I C A T E O N E P O S S I B L E

C O N N E C T I O N O P T I O N

(d) Crossbar bus

Figure A.9: Wishbone interconnects

Besides the mandatory and optional data signals, the designer can add so called TAGs that
belong with either and addres, control or data word. This adds another layer of versatility,
since extra information can be encoded in the transaction. A pipelined block write transfer
is shown in Figure A.10. The tags are marked by TGA, TGD and TGC for Address, Data and
Control, respectively. A transfer is initiated by the assertion of CYC O. The master asserts
STB O as long as the data DAT O is stable. In this so called pipelined mode, the master can
theoretically send data on every clock cycle. In this example Data word D1 is delayed because
the slave asserts the STALL I signal, which notifies the master that it cannot receive more
data.

77

Figure A.10: Wishbone block write transfer

78

Appendix B

Wishbone implementation in Clash

B.1 Master

1 module WishboneMaster where
2

3 import Clash.Prelude
4 import Clash.Explicit.Testbench
5 import Types
6 import qualified Data.List as L
7

8

9

10 masterT s (i_reset,i_cmd_stb,i_cmd_word,i_wb_err,i_wb_stall,i_wb_ack,i_wb_data) = (s',o)
11 where
12 -- Command words
13

14 state = s
15

16 (i_cmd_reqtype,i_cmd_data) = split i_cmd_word :: (BitVector 2, BitVector 32)
17 (i_cmd_add,i_cmd_inc,i_cmd_addrData) =
18 (bitToBool . msb . fst $ base, bitToBool . lsb . fst $ base, snd base)
19 where
20 base = (split i_cmd_data :: (BitVector 2, BitVector 30))
21

22 i_cmd_rd = i_cmd_stb && (i_cmd_reqtype == (00 :: BitVector 2)) -- Read request
23 i_cmd_wr = i_cmd_stb && (i_cmd_reqtype == (01 :: BitVector 2)) -- write request
24 i_cmd_bus = i_cmd_rd || i_cmd_wr -- signal that there is a read or write request
25

26 i_cmd_addr = i_cmd_stb && (i_cmd_reqtype == (10 :: BitVector 2)) -- set Address
27 i_cmd_special = i_cmd_stb && (i_cmd_reqtype == (11 :: BitVector 2)) -- Bus Reset (special)
28

29

30 state' = nextState state
31

32 nextState Reset = Idle
33 nextState Idle = if ((i_reset)||((i_wb_err)&&(o_wb_cyc))) then Reset
34 else if i_cmd_bus then BusRequest
35 else Idle
36 nextState BusRequest = if ((i_reset)||((i_wb_err)&&(o_wb_cyc))) then Reset
37 else if (not i_wb_stall) && i_wb_ack then Idle
38 else if (not i_wb_stall) && (not i_wb_ack) then BusWait
39 else BusRequest
40 nextState BusWait = if ((i_reset)||((i_wb_err)&&(o_wb_cyc))) then Reset
41 else if i_wb_ack then Idle
42 else BusWait
43

44 o_wb_cyc | ((state'==Idle) || (state'==Reset)) = False
45 | otherwise = True
46

47 o_wb_stb | (state' == BusRequest) = True
48 | otherwise = False
49

50 o_cmd_busy = o_wb_cyc
51

52 o_wb_we | (state == Idle) = i_cmd_wr
53 | otherwise = o_wb_we
54

55 o_wb_addr = if (state == Idle) then
56 if (not i_cmd_add) then i_cmd_addrData
57 else o_wb_addr + i_cmd_addrData
58 else if ((o_wb_stb) && (not i_wb_stall) && i_cmd_inc) then o_wb_addr + 1
59 else o_wb_addr
60

79

61 newaddr = ((i_cmd_addr) && (not o_cmd_busy))
62

63 o_wb_data | ((not o_wb_stb) || (not i_wb_stall)) = i_cmd_data
64 | otherwise = o_wb_data
65

66

67 s' = state'
68 o = (o_cmd_busy,o_wb_cyc,o_wb_stb,o_wb_we,o_wb_data,o_wb_addr, o_rsp_stb,o_rsp_word,s,s')
69

70 -- outputs to the user interface
71 o_rsp_stb = if (i_reset || i_wb_err) then True
72 else if o_wb_cyc then i_wb_ack
73 else newaddr
74

75 o_rsp_word = if (i_reset) then RspReset
76 else if (i_wb_err) then RspError
77 else if (o_wb_cyc && (not o_wb_we)) then RspData i_wb_data
78 else if (o_wb_cyc && (o_wb_we)) then RspAck
79 else RspAddr o_wb_addr False i_cmd_inc
80

81

82

83

84

85 master = mealy masterT Reset
86

87

88 topEntity
89 :: Clock System Source
90 -> Reset System Asynchronous
91 -> Signal System (Bool,Bool,BitVector 34, Bool,Bool,Bool, BitVector 32)
92 -> Signal System (Bool,Bool,Bool,Bool, BitVector 32,BitVector 30, Bool,Response,State,State)
93 topEntity = exposeClockReset master
94 {-# NOINLINE topEntity #-}
95

96

97 inputs = L.zip i_reset i_cmd_stb
98 where
99 num_cycles = 10

100 i_reset = L.replicate num_cycles False
101 i_cmd_stb = L.replicate num_cycles False
102

103

104

105

106

107

108

109

110

111

112

B.2 Slave

1 module WishboneSlave where
2

3 import Clash.Prelude
4 import Clash.Explicit.Testbench
5

6

7 --memory
8 type WordType = (Signed 5)
9 type MemType = Vec 4 (WordType)

10

11 data State = Idle | Compute | Finish deriving(Eq)
12

13 -- Four registers
14

15 base_mem = (0:>0:>0:>0:>Nil)
16

17 slaveT s (i_wb_addr, i_wb_data, i_wb_stb, i_wb_we) = (s',o)
18 where
19 --Fetch from registers
20 (memory,state,local_var) = s
21

22 -- State machine
23 state' = changeState state
24

25 changeState Compute
26 | (local_var >= 9) = Finish
27 | otherwise = Compute
28 changeState Finish = Idle

80

29 changeState Idle
30 | (i_wb_stb && (not o_wb_stall) && i_wb_we) = Compute
31 | (i_wb_stb && (not o_wb_stall) && (not i_wb_we)) = Finish
32 | otherwise = Idle
33

34 -- Local var
35 local_var'
36 | (state == Idle) = i_wb_data
37 | (state == Compute) = local_var+1 -- Random computation
38 | otherwise = local_var
39

40 -- Busy
41 busy
42 | (state == Compute) = True
43 | otherwise = False
44

45 -- Ack
46 ack
47 | (state == Finish) = True
48 | otherwise = False
49

50

51 -- Assignment to the Signals
52 o_wb_stall = busy
53 o_wb_ack = ack
54 o_wb_data
55 | (not i_wb_we) = memory !! i_wb_addr
56 | (i_wb_we && state == Compute) = local_var
57 | (i_wb_we && state == Finish) = 0
58 | otherwise = -1
59 o = (o_wb_stall, o_wb_ack, o_wb_data)
60

61

62 -- Next values in registers
63 memory'
64 | (i_wb_stb == True && i_wb_we == True && o_wb_stall == False && state == Finish)
65 = replace i_wb_addr local_var memory
66 | otherwise
67 = memory
68

69 s' = (memory',state', local_var')
70

71 slave = mealy slaveT (base_mem,Idle,0)
72

73 topEntity
74 :: Clock System Source
75 -> Reset System Asynchronous
76 -> Signal System (WordType, WordType, Bool, Bool)
77 -> Signal System (Bool,Bool,WordType)
78 topEntity = exposeClockReset slave
79 {-# NOINLINE topEntity #-}

81

82

Appendix C

Clash code for Analysis

C.1 DataDependency module

1 {-# LANGUAGE DeriveAnyClass #-}
2 {-# LANGUAGE DeriveGeneric #-}
3

4

5 module Utils.DataDependency where
6 import Clash.Prelude
7 import GHC.Generics
8 import Control.DeepSeq
9

10

11 import qualified Data.List as L
12

13 data DDActor n m = DDActor n m m deriving (Eq,Lift,Generic,NFData,ShowX)
14 data DDEdge n = DDEdge n n
15 data DDGraph n m = DDGraph [DDActor n m] [DDEdge n]
16

17 instance (Show n,Show m) => Show (DDActor n m) where
18 show (DDActor name period startTime) =
19 "DDActor:" L.++ show name L.++
20 ", period: " L.++ show period L.++
21 ", Start time: " L.++ show startTime L.++
22 ";\n"
23

24 instance (Show n) => Show (DDEdge n) where
25 show (DDEdge ns es) = show ns L.++ "-->" L.++ show es L.++ ";\n"
26

27 instance (Show a, Show e) => Show (DDGraph a e) where
28 show (DDGraph as es) = "Actors: \n" L.++ show as L.++ "\nEdges: \n" L.++ show es
29

30

31 instance (Ord n, Ord m) => Ord (DDActor n m) where
32 (<=) a@(DDActor nA _ _) b@(DDActor nB _ _) = nA <= nB
33 (<) a@(DDActor nA _ _) b@(DDActor nB _ _) = nA < nB
34 (>=) a@(DDActor nA _ _) b@(DDActor nB _ _) = nA >= nB
35 (>) a@(DDActor nA _ _) b@(DDActor nB _ _) = nA > nB
36 max a@(DDActor nA _ _) b@(DDActor nB _ _) = if nA > nB then a else b
37 min a@(DDActor nA _ _) b@(DDActor nB _ _) = if nA < nB then a else b
38

39 seqF :: Applicative f => [f a] -> f [a]
40 seqF [x] = (:[]) <$> x
41 seqF (x:xs) = (L.++) <$> ((: []) <$> x) <*> seqF xs
42

43 (>#) :: Applicative f => f a -> f (Vec n a) -> f (Vec (n + 1) a)
44 (>#) = liftA2 (:>)
45

46

47 lcmList :: Integral a => [a] -> a
48 -- lcmList [] = error "empty list"
49 lcmList [x] = x
50 lcmList (x:y:ys) = lcmList $ lcm x y : ys
51

52

53 findInputsOutputsCrossbar g a = (i,o)
54 where
55 i = findProducers g a
56 o = if not (null i) then bus g a else []
57

58

59 buss g = bus g (L.last . getActors $ g) -- build a bus for the last actor
60

83

61 bus graph actor = findAllCombos ([],exTimes) -- Given a DDGraph and actors, find the ideal bundling to get data to an actor a <- Actors.
62 where
63 exTimes = findExTimes graph (findProducers graph actor)
64 -- Generate a list with execution times for the actors that produce data for given actor
65

66 findExTimes graph = L.map (`findActorFiringTimes` numSamples)
67 where
68 numSamples = leastCommonMultiple + maxBootTime
69 leastCommonMultiple = findLCM graph
70 maxBootTime = maximum $ L.map getBootTime (getActors graph)
71

72

73

74 findLCM (DDGraph actors _) = lcmList $ L.map getPeriod actors
75 where
76 getPeriod (DDActor _ p _) = p
77

78 getActors (DDGraph actors _) = actors
79

80 getEdges (DDGraph _ edges) = edges
81

82 getBootTime (DDActor _ _ st) = st
83

84

85

86 findActorFiringTimes a@(DDActor name p st) lcm' = (a,takeWhile (<= lcm') $ L.iterate (+ p) st)
87

88

89 findActorFiringTimesNoBoot a@(DDActor name p st) lcm' = (a,takeWhile (<= lcm') $ L.iterate (+ p) 0)
90

91

92 findProducers (DDGraph actors edges) actor = L.map findProducingActor $ filter (\x -> getEdgeConsumer x == getActorName actor) edges -- Given a DDGraph and an DDActor, find all actors it depends on.
93 where
94 getEdgeConsumer (DDEdge p c) = c
95 findProducingActor (DDEdge p c) = L.head $ filter (\x -> p == getActorName x) actors
96 -- getActorName (DDActor n _ _) = n
97

98 findConsumers (DDGraph actors edges) actor = L.map (findActor . getEdgeConsumer) $ filter (\x -> getEdgeProducer x == getActorName actor) edges
99 where

100 findActor a = L.head $ filter (\ x -> getActorName x == a) actors
101

102 getActorName (DDActor n _ _) = n
103 getEdgeProducer (DDEdge p c) = p
104 getEdgeConsumer (DDEdge p c) = c
105

106 findAllCombos (res,rem) = if null rem' then res'' else findAllCombos (res'',rem') -- Keep extracting largest combo until there is nothing left to assign
107 where
108 res'' = res':res -- append the results to eachother
109 (res',rem') = extractLargestValidCombo rem --Find largest valid combo and split the result and the remaining exTimes
110

111

112 extractLargestValidCombo exTimes = (largestValidCombo,filter (not . (`elem` largestValidCombo)) exTimes) -- valid combo from exTimes
113 where
114 largestValidCombo = L.head . findLargestValidCombos $ exTimes -- Take the first combo, for now it does not matter which valid combo is taken
115

116

117 findLargestValidCombos exTimes = findValidCombos (L.length exTimes) exTimes
118 where
119 findValidCombos 0 xs = error "Insert >0 execution times!"
120 findValidCombos n xs = if and overlap then findValidCombos (n-1) xs else show -- If all combinations have overlap, then try a smaller combination
121 where
122 uCombinations = findUComb n xs -- find unique combinations for the execution times (xs) with a width of n
123 overlap = L.map (overlapN . L.map snd) uCombinations -- show which of the unique combinations have overlap
124 show = L.map fst $ filter (\(_,x) -> (not x)) $ L.zip uCombinations overlap -- Show the non-overlapping combinations
125

126

127 -- source: https://rosettacode.org/wiki/Combinations#Haskell
128 findUComb :: Int -> [a] -> [[a]]
129 findUComb m xs = combsBySize xs L.!! m
130 where
131 combsBySize = L.foldr f ([[]] : L.repeat [])
132 f x next = L.zipWith (L.++) (L.map (L.map (x:)) ([]:next)) next
133

134

135 overlapN ::(Eq a, Integral a) => [[a]] -> Bool -- For a list of list, check if there are duplicate elements
136 overlapN [] = error "empty list"
137 overlapN [yss] = False
138 overlapN (xs:ys:yss) = any (`elem` xs) ys || overlapN ((xs L.++ ys) : yss)

84

Appendix D

Clash code for Hardware Generation

D.1 ActorBuffering module

1 module Utils.HWConfig.ActorBuffering where
2 import Clash.Prelude
3 import qualified Data.List as L
4 import SysLift
5

6

7 bufReplace
8 :: KnownNat m
9 => KnownNat n

10 => Enum i
11 => Vec m i
12 -> Vec m a
13 -> Vec n a
14 -> Vec n a
15 bufReplace addr vals old = foldl (\z (x,y) -> replace x y z) old tup
16 where
17 tup = zipWith (\x y -> (x,y)) addr vals
18

19 bufReplace'
20 :: KnownNat m
21 => KnownNat n
22 => Enum i
23 => Vec m i
24 -> Vec m a
25 -> Vec m Bool
26 -> Vec n a
27 -> Vec n a
28 bufReplace' addr vals en old = foldl (\z (x,y,en) -> if en then replace x y z else z) old tup
29 where
30 tup = zipWith3 (\x y en -> (x,y,en)) addr vals en
31

32

33 actorBufV
34 :: forall n m . (KnownNat n, KnownNat m)
35 => Vec m (Index n, Index n)
36 -> BufferState n m
37 -> ((Vec m Bool,Vec m DataType),Bool)
38 -> (BufferState n m ,Vec m DataType)
39 actorBufV pRangeV (wPtrsV,rPtrsV,buf) ((wEnV,wDataV),rEn) = ((wPtrsV',rPtrsV',buf'),rDataV)
40 where
41 wPtrsV' = zipWith (\wEn ((min,max),wp) -> incr min max wp wEn) wEnV (zip pRangeV wPtrsV)
42 rPtrsV' = zipWith (\rEn' ((min,max),rp) -> incr min max rp rEn') (repeat rEn) (zip pRangeV rPtrsV)
43

44 incr min max p True = if p == max then min else p + 1
45 incr min max p False = p
46 buf' = bufReplace' wPtrsV wDataV wEnV buf
47 rDataV = map (buf !!) rPtrsV
48

49

50 funcWrapper
51 :: KnownNat n
52 => KnownNat m
53 => KnownNat p
54 => 1 <= n
55 => 1 <= m
56 => Vec n (BitVector (CLog 2 m))
57 -> Vec n DataType
58 -> Vec m Bool
59 -> Bool
60 -> Vec m (Index p,Index p)

85

61 -> BufferState p m
62 -> (BufferState p m ,Vec m DataType)
63 funcWrapper cbControlV dataInV enableV rEn range initS = out
64 where
65 vals = mergeV $ map demux (zip dataInV cbControlV)
66 input = ((enableV, vals),rEn)
67 out = actorBufV range initS input
68

69 mergeV :: (KnownNat n, KnownNat m, Ord a, 1 <= m, 1 <= n) => Vec m (Vec n a) -> Vec n a
70 mergeV = (map maximum) . transpose
71

72

73 demux :: forall m a . (Num a, KnownNat m, 1 <= m) => (a,BitVector (CLog 2 m)) -> Vec (m) a
74 demux (val,control) = replace control val $ repeat 0 :: Vec (m) a
75

76

77 bufWrap pRangeV initS = mealy (\s (x,y,z,a) -> funcWrapper x y z a pRangeV s) initS
78

79

80

81

82

D.2 CrossBar module

1 module Utils.HWConfig.CrossBar where
2 import Clash.Prelude
3 import Clash.Sized.Internal.BitVector
4

5 mux'
6 :: a
7 -> (Bit,a)
8 -> a
9 mux' y (b,x) = if b == low then x else y

10

11

12 crossBar2d
13 :: KnownNat n
14 => KnownNat m
15 => 1 <= n
16 => 1 <= m
17 => (SNat n, SNat m)
18 -> Vec n a
19 -> Vec m (BitVector (CLog 2 n))
20 -> Vec m a
21 crossBar2d constraints inputs control = map (crossBar1d inputs) control
22 where
23 crossBar1d inputs control1d =
24 foldl mux' (head inputs) $ zipWith (\x y -> (x,y)) (bv2v (muxControl control1d)) (tail inputs)
25

26

27 muxControl
28 :: forall n . (KnownNat n)
29 => 1 <= n
30 => BitVector (CLog 2 (n)) -> BitVector (n-1)
31 muxControl x = shiftR (maxBound :: BitVector (n-1)) (fromIntegral . toInteger# $ x)

D.3 Scheduler module

1 module Utils.HWConfig.Scheduler where
2

3 import Utils.DataDependency
4 import Clash.Prelude
5 import Clash.Sized.BitVector
6 import SysLift
7

8 import qualified Data.List as L
9 import Data.Maybe

10

11 pCntWrap
12 :: forall gated synchronous domain n a
13 . HiddenClockReset domain gated synchronous
14 => KnownNat n
15 => Ord a
16 => Vec n a
17 -> Signal domain (Index n)
18 pCntWrap f = s

86

19 where
20 maxBootTime = $(lift $ maximum $ L.map getBootTime (getActors (ddGraph :: DDGraph Char Int)))
21 incWrp limit val = if val == limit then maxBootTime else val + 1
22 len = resize (((fromInteger . toInteger . length $ f) :: Index (n+1)) - 1) :: Index n
23 s = register (0 :: Index n) (incWrp len <$> s)
24

25 -- Prevent Lift-ception -- generation of Enable schedule
26 fireSchedule = L.map (\x -> map (elem x . snd) meh) $ L.take len $ L.iterate (+1) 0
27 where
28 len = maximum . L.concat $ L.map snd $ toList meh
29 meh = $(listToVecTH $ L.map (`findActorFiringTimes` ((findLCM ddGraph :: Int) + maximum (L.map getBootTime (getActors ddGraph)))) (getActors ddGraph))
30

31

32 -- Returns the cb input control vector of the actor that is given as argument.
33 actorToBin a = pack . frJ $ elemIndex a uniqueProducersV
34 where
35 frJ (Just a) = a
36 frJ Nothing = 0 -- default control value for crossbar. Can be optimized to keep latest value to save energy.
37 uniqueProducersV = $(listToVecTH (L.sort $ uniqueProducers :: [DDActor Char Int])) -- the ports that are required on cb
38

39

40 -- concat is required for compaitibility with the Clash
41 (cbBinary,cbLen,cbSchedule,filtered) = (L.concat cbSchedule,L.head cbSchedule,cbSchedule,filtered)
42 where
43 -- Converts the dependencies to a list of list with controlvectors.
44 cbSchedule = L.map (L.foldl1 (L.++)) $ L.map (L.map (L.map actorToBin)) filtered
45 -- Checks actor activation for all actors over the whole fireschedule, merges the dependencies to a list with dependencies for every output of the crossbar
46 filtered = L.map (\x -> mergeNlists $ filter (not . null)
47 $ L.map producerActivation (L.zip (toList x) (getActors ddGraph))) fireSchedule
48

49 --Merges requirement vectors of all dependent vectors ,'-' is a don't care value, and can not be chosen as name for an actor.
50 mergeNlists = L.foldl1 merge2lists
51 merge2lists listA listB = L.map (L.map (uncurry repl) . zipped) [0..(lenA-1)]
52 where
53 repl (DDActor '-' 0 0) (DDActor '-' 0 0) = DDActor '-' 0 0
54 repl (DDActor '-' 0 0) b = b
55 repl a (DDActor '-' 0 0) = a
56 lenA = L.length listA
57 zipped x = L.zip (listA L.!! x) (listB L.!! x)
58

59 --Checks if an enabled actor is required by other actors, otherwise it is a don't care
60 -- Returns a lists of lists where the actor is required exactly.
61 producerActivation (e, a) = L.map (L.map ((\x ->if x && e then a else DDActor '-' 0 0) . (a `elem`)) . snd) cbInfo
62

63

64 sysConfigConstraints =
65 (lengthS $(listToVecTH (uniqueProducers :: [DDActor Char Int]))
66 ,lengthS $(listToVecTH $ L.replicate (L.sum $ L.map (L.length . snd) cbInfo) (0 :: Int)))

D.4 IF module

1 {-# LANGUAGE DeriveAnyClass #-}
2 {-# LANGUAGE DeriveGeneric #-}
3

4 module Utils.HWConfig.IF where
5 import Clash.Prelude
6 import GHC.Generics
7 import Control.DeepSeq
8

9 import qualified Data.List as L
10

11 type Request a = Maybe a
12 type Ack = Bool
13

14 data State = Idle | Req | Ack deriving (Eq,Show,Generic,NFData,ShowX)
15

16 class NCL a where
17 allHigh :: a -> Bool
18 allLow :: a -> Bool
19

20 instance NCL Bool where
21 allHigh = id
22 allLow = not
23

24 instance NCL (Maybe a) where
25 allHigh Nothing = False
26 allHigh (Just _) = True
27

28 allLow Nothing = True
29 allLow (Just _) = False
30

31 instance (KnownNat n, NCL a) => NCL (Vec n a) where
32 allHigh = foldl (\ x y -> x && allHigh y) True

87

33 allLow = foldl (\ x y -> x && allLow y) True
34

35

36

37 -- Handshake module that sends data from one producer to n different consumers
38 handshakeTVIF :: (KnownNat n) => (State,Request a) -> (Request a,Vec n Ack) -> (State,Request a)
39 handshakeTVIF (state,req) (dataIn,ackV) = (state',req')
40 where
41 req' = case state of Idle -> Nothing
42 Req -> req
43 Ack -> Nothing
44 state' = case state of Idle -> case dataIn of
45 Nothing -> Idle
46 _ -> Req
47 Req -> if allHigh ackV then Ack else Req
48 Ack -> if allLow ackV then Idle else Ack
49

50 -- Handshake module that sends data from one producer to one consumer
51 handshakeTIF :: State-> (Request a,Ack) -> (State,Request a)
52 handshakeTIF state (dataIn,ack) = (state',req)
53 where
54 req = case state of Idle -> Nothing
55 Req -> dataIn
56 Ack -> Nothing
57 state' = case state of Idle -> case dataIn of
58 Nothing -> Idle
59 _ -> Req
60 Req -> if ack then Ack else Req
61 Ack -> if not ack then Idle else Ack
62

63

64 -- Handshake module that receives data from several producers to one consumer
65 handshakeRVIF :: (KnownNat n) => (State,Ack,Vec n (Request a)) -> Vec n (Request a) -> (State,Ack,Vec n (Request a))
66 handshakeRVIF (state,ack,dataOutV) reqV = (state',ack',dataOutV')
67 where
68 (ack',dataOutV') = case state' of Idle -> (False,dataOutV)
69 Req -> (True,reqV)
70 Ack -> (True,dataOutV)
71 state' = case state of Idle -> if allHigh reqV then Req else Idle
72 Req -> Ack
73 Ack -> if allLow reqV then Idle else Ack
74

75

76 -- Handshake module that receives data from one producer to one consumer
77 handshakeRIF :: State-> Request a -> (State, (Ack, Request a))
78 handshakeRIF state req = (state',(ack',dataOut'))
79 where
80 (ack',dataOut') = case state' of Idle -> (False,Nothing)
81 Req -> (True,req)
82 Ack -> (False,Nothing)
83 state' = case state of Idle -> case req of
84 Nothing -> Idle
85 _ -> Req
86 Req -> case req of
87 Nothing -> Ack
88 _ -> Req
89 Ack -> Idle
90

91 -- Instance of a TIF
92 hsT = mealy handshakeTIF Idle
93

94 -- Instance of a RIF
95 hsR = mealy handshakeRIF Idle
96

97 -- Instance of a TVIF
98

99

100 -- Instance of a RVIF
101 hsRV = moore handshakeRVIF id (Idle, False, replicate d2 Nothing) --(\(_,x,y)-> (x,y))
102

103 -- Test of TIF
104 hsTTest = simulate hsT [(Nothing,False),(Just 5, False),(Just 5, False),(Just 5,True),(Just 5, False)]
105

106 -- Test of RIF
107 hsRTest = simulate hsR [Nothing,Just 5,Just 5,Just 5, Just 5, Nothing, Nothing]
108

109 -- Test of TIF --> RIF
110 hsSeqTest = simulate hsSeq $ L.replicate 20 (Just 5)-- [Just 5,Just 5,Just 5, Just 5]
111 where
112 hsSeq i = o
113 where
114 (ack,o) = unbundle $ hsR t
115 t = hsT $ bundle (i,ack)
116

117 -- Test of RVIF
118 testHsRV x = L.take x $ simulate hsRV vs
119 where
120 vs = [ll, hl, hh, lh, ll]
121 ll = replicate d2 Nothing

88

122 hl = Just 5 :> Nothing :> Nil
123 lh = Nothing :> Just 5 :> Nil
124 hh = Just 5 :> Just 5 :> Nil
125

126

127 -- Test of 2 x TIF to a RVIF
128 hsVTest = L.take (L.length vs) $ simulate hsV vs
129 where
130 vs = [hl, hh, lh, lh, ll,ll,ll]
131 ll = (Nothing,Nothing)
132 hl = (Just 5,Nothing)
133 lh = (Nothing,Just 5)
134 hh = (Just 5,Just 5)
135 hsV i = bundle (co,s) -- connect A and B to C
136 where
137 (ai,bi) = unbundle i
138 ao = hsT $ bundle (ai,ack)
139 bo = hsT $ bundle (bi,ack)
140 -- ack = pure True
141 ci = liftA2 (:>) bo $ liftA2 (:>) ao (pure Nil)
142

143 (s,ack,co) = unbundle $ hsRV ci
144

145

146

147

148

149

150

89

90

Appendix E

User adjustable Clash code

E.1 SysLift module

1 module SysLift where
2 import Prelude
3

4 import qualified Clash.Prelude as CP
5

6 import qualified Data.Map as M
7 import Utils.HaskellDataflow.DataFlow
8 import Utils.HaskellDataflow.Graph
9 import Utils.HaskellDataflow.SVGWriter

10 import Data.Ratio
11 import Data.List
12 import Utils.DataDependency
13

14 hsdfNode l ex = (l,HSDFNode l ex)
15 csdfNode l ex = (l,CSDFNode l ex)
16

17

18 dataflowGraph = Graph (M.fromList
19 [hsdfNode 'a' 1 -- adder
20 ,hsdfNode 'b' 1 -- adder
21 ,hsdfNode 'c' 1 -- adder
22 ,hsdfNode 'd' 1 -- adder
23])
24 (
25 [
26 SDFEdge 'a' 'b' 1 1 1
27 ,SDFEdge 'b' 'c' 0 1 1
28 ,SDFEdge 'c' 'd' 0 1 1
29 ,SDFEdge 'd' 'a' 0 1 1
30])
31

32

33 dfSchedule = strictlyPeriodicSchedule dataflowGraph
34

35 printDFSchedule = printSchedule dfSchedule
36

37 ddEdges = [DDEdge 'a' 'b', DDEdge 'b' 'c', DDEdge 'c' 'd',DDEdge 'd' 'a']
38

39 genDDgraph edges Nothing = error "Empty Graph"
40 genDDgraph edges (Just mmap) = DDGraph actors' edges
41 where
42 actors' = if minTime < 0 then map f actors else actors
43 where
44 f (DDActor l p st) = DDActor l p (st - minTime)
45 minTime = minimum $ map getBootTime actors
46 actors = M.elems (M.mapWithKey p mmap) where
47 p l (st,period) = DDActor l period' st' where
48 st' | denominator st == 1 = fromInteger (numerator st)
49 | otherwise = 0 -- no support for fractions
50 period' | denominator period == 1 = fromInteger (numerator period)
51 | otherwise = 0 -- no support for fractions
52

53

54 ddGraph = genDDgraph ddEdges dfSchedule
55

56 actorList = getActors ddGraph
57

58

59 -- this list constains all the info we need to derive a schedule.
60 cbInfo = filter (\(_,x) -> not . null $ x) $ map res actorList where

91

61 res l = (l,f) where
62 func = findInputsOutputsCrossbar ddGraph l
63 notEmpty = not . null . fst $ func
64 f = if notEmpty then map (map fst) $ snd func else []
65 -- s = if notEmpty then map (map snd) £ snd func else []
66

67

68 uniqueProducers = nub $ foldl1 (++) $ map (foldl1 (++)) producers
69 where
70 producers = map snd cbInfo
71

72

73 -- Buffering
74 type DataType = CP.Unsigned 7
75 type BufferState n m = (CP.Vec m (CP.Index n), CP.Vec m (CP.Index n), CP.Vec n DataType)
76

77

78 findBufferSizes f = map getTokens $ filter
79 (\x -> getActorName f == getProducer x && elem (getConsumer x) producers) $ edges dataflowGraph
80 where
81 producers =
82 map getEdgeProducer $ filter (\x -> getActorName f == getEdgeConsumer x) ddEdges
83 getProducer (SDFEdge a b c d e)= a
84 getConsumer (SDFEdge a b c d e)= b
85 getTokens (SDFEdge a b c d e)= c
86

87 pRange :: [Int] -> [(Int,Int)]
88 pRange ls = snd $ mapAccumL (\max size -> (max+size,(max,max+size-1))) 0 ls
89 ptrs = map fst
90

91

92 crossBarInfo = zipWith (\(x,y) z -> (x,y,z)) cbInfo width
93 where
94 width = map (length . snd) cbInfo

E.2 SysConfig module

1 module SysConfig where
2

3 import Clash.Prelude
4 import Clash.Explicit.Testbench
5

6 import SysLift
7 import Utils.DataDependency
8 import Utils.HWConfig.CrossBar
9 import Utils.HWConfig.IF

10 import Utils.HWConfig.ActorBuffering
11 import Utils.HWConfig.Scheduler
12

13 import qualified Data.List as L
14 import Utils.HaskellDataflow.SVGWriter
15

16 import Random
17

18 topEntity
19 :: Clock System Source
20 -> Reset System Asynchronous
21 -> Signal System (DataType)
22 topEntity = exposeClockReset actorD
23 {-# NOINLINE topEntity #-}
24

25

26 testBench :: Signal System (DataType)
27 testBench = done
28 where
29 done = topEntity clk rst
30 clk = tbSystemClockGen (not <$> pure True)
31 rst = systemResetGen
32

33

34

35 -- User defined functions
36 act
37 :: HiddenClockReset domain gated synchronous
38 => DataType
39 -> Signal domain Bool
40 -> Signal domain DataType
41 act i en = s
42 where
43 s = regEn (1) en (s+1)
44

45

46 adder

92

47 :: HiddenClockReset domain gated synchronous
48 => Signal domain (Bool,DataType)
49 -> Signal domain DataType
50 adder = mealy f 0
51 where
52 f s (en,i) = (s',o)
53 where
54 s' = if en then i + 1 else s
55 o = s
56

57 actSort
58 :: HiddenClockReset domain gated synchronous
59 => KnownNat n
60 => 1 <= n
61 => Signal domain (Vec n DataType)
62 -> Signal domain Bool
63 -> Signal domain (Vec n DataType)
64 actSort i en = mux en (id <$> i) (pure (repeat 0))
65

66 actDev
67 :: HiddenClockReset domain gated synchronous
68 => KnownNat n
69 => 1 <= n
70 => Signal domain (Vec n DataType)
71 -> Signal domain Bool
72 -> Signal domain (Vec n DataType)
73 actDev i en = mux en (id <$> i) (pure (repeat 0))
74

75 -- CrossBar Schedule
76 cBSchedule = unconcat cBNewCLengthS cBNew
77 where
78 cBNew = $(listToVecTH cbBinary)
79 cBNewLengthS = lengthS $(listToVecTH cbSchedule) -- number of scheduling samples (same as enable vector)
80 cBNewCLengthS = lengthS $(listToVecTH cbLen) -- control vector length
81

82 cbOut = liftA2 (crossBar2d sysConfigConstraints) actorDABC crossBarCtrl -- inputs actors and control vector
83

84 -- Scheduler
85 fireScheduleV = $(listToVecTH fireSchedule)
86

87 pCnt = pCntWrap fireScheduleV
88

89 actorEn = asyncRom fireScheduleV <$> pCnt
90 crossBarCtrl = asyncRom cBSchedule <$> pCnt
91

92

93 actorDABC = sequenceA (actorD:>actorA:>actorB:>actorC:>Nil)
94

95 actorA = adder $ bundle ((!! 0) <$> actorEn,(!! 1) <$> cbOut)
96 actorB = adder $ bundle ((!! 1) <$> actorEn,(!! 2) <$> cbOut)
97 actorC = adder $ bundle ((!! 2) <$> actorEn,(!! 3) <$> cbOut)
98 actorD = adder $ bundle ((!! 3) <$> actorEn,(!! 0) <$> cbOut)

93

94

Appendix F

System derivation examples

F.1 Example: Processing pipeline

Figure F.1 depicts an example where four actors are chained after each other. For simplicity
the actors all represent the increment function. The function can be described by the Cλash
description in Listing 14. The function has a enable signal and a port to receive data as input.
Next, in order to derive a schedule a valid dataflow graph and list of data dependency edges
must be specified in the SysLift Module, see Listing 15. The amount of initial tokens can
be varied, and will influence the behaviour as will be shown later. For now, only one token
between δab is initialized. All other edges do not contain tokens.

A B C D A B C D

Figure F.1: Processing pipeline data flow graph (tokens not shown as they vary through this
example), left the dataflow graph and right the data dependency graph

1 adder
2 :: HiddenClockReset domain gated synchronous
3 => Signal domain (Bool,DataType)
4 -> Signal domain DataType
5 adder = mealy f 0
6 where
7 f s (en,i) = (s',o)
8 where
9 s' = if en then i + 1 else s

10 o = s

Listing 14: Increment function with internal state

95

1 dataflowGraph = Graph (M.fromList
2 [hsdfNode 'a' 1 -- adder
3 ,hsdfNode 'b' 1 -- adder
4 ,hsdfNode 'c' 1 -- adder
5 ,hsdfNode 'd' 1 -- adder
6])
7 (
8 [
9 SDFEdge 'a' 'b' 1 1 1

10 ,SDFEdge 'b' 'c' 0 1 1
11 ,SDFEdge 'c' 'd' 0 1 1
12 ,SDFEdge 'd' 'a' 0 1 1
13])
14

15 ddEdges = [DDEdge 'a' 'b', DDEdge 'b' 'c', DDEdge 'c' 'd',DDEdge 'd' 'a']

Listing 15: Dataflow graph and dependency edges

A valid strictly periodic schedule can be derived from the aforementioned dataflow graph. The
schedule along with the dependency edges can be verified by running the function ddGraph,
this will give the following output:

*SysConfig> ddGraph
Actors:
[DDActor:'a', period: 4, Start time: 3;
,DDActor:'b', period: 4, Start time: 0;
,DDActor:'c', period: 4, Start time: 1;
,DDActor:'d', period: 4, Start time: 2;
]
Edges:
['a'-->'b';
,'b'-->'c';
,'c'-->'d';
,'d'-->'a';
]

The resulting hardware architecture should look like Figure F.2. This requires manual nesting
of the functions. This paragraph will guide the reader through the progress of establishing
the desired hardware architecture. The difficult part in connecting the components is, that
they have intertwined dependencies. The firing schedule of the actors and the schedule of
the crossbar can be accessed by running fireScheduleV or cBSchedule, respectively. The
Signal pCnt is the program counter that selects the desired record from the schedules.

96

A

B

C

D

Data

Control

Scheduler

Crossbar

Figure F.2: Connection diagram of the functional blocks

1 fireScheduleV = $(listToVecTH fireSchedule)
2

3 pCnt = pCntWrap fireScheduleV
4

5 actorEn = asyncRom fireScheduleV <$> pCnt
6 crossBarCtrl = asyncRom cBSchedule <$> pCnt

The Signal actorEn now presents which actor can fire at a certain moment in time by means
of a vector of booleans. The Signal crossBarCtrl holds the configuration of the crossbar
of time. Next, the enable signals for the individual actor must be split from actorEn, and
be connected to the adder function. The other input to the adder function comes from the
output of the crossbar (cbOut). The output of the crossbar has four ports, that have to be
connected to the according actors. The order in which the actors are placed depend on the
order in which the data dependencies were defined. The order can be observed by running
crossBarInfo:
*SysConfig> crossBarInfo
[(DDActor:'a', period: 4, Start time: 3;
,[[DDActor:'d', period: 4, Start time: 2;
]],1),(DDActor:'b', period: 4, Start time: 0;
,[[DDActor:'a', period: 4, Start time: 3;
]],1),(DDActor:'c', period: 4, Start time: 1;
,[[DDActor:'b', period: 4, Start time: 0;
]],1),(DDActor:'d', period: 4, Start time: 2;
,[[DDActor:'c', period: 4, Start time: 1;
]],1)]

The output is difficult to read, but it consists of a list that contains three field tuples. Within
the tuple, the first record represents the consuming actor (D, A, B and C in this case). The
second field is a list of lists. It specifies how many ports are connected to the consumer,
and which values the ports can take over time. The last field can be derived from the
second field, and indicates the with of a the port. This is useful in connecting the crossbar to
consuming functional blocks. This is all the information that is required to fully connect the
adder functions:

97

1 actorA = adder $ bundle ((!! 0) <$> actorEn,(!! 1) <$> cbOut)
2 actorB = adder $ bundle ((!! 1) <$> actorEn,(!! 2) <$> cbOut)
3 actorC = adder $ bundle ((!! 2) <$> actorEn,(!! 3) <$> cbOut)
4 actorD = adder $ bundle ((!! 3) <$> actorEn,(!! 0) <$> cbOut)

The output of the crossbar (cbOut) has not been defined yet. To generate a crossbar, one
needs to give the number of inputs and outputs (sysConfigConstraints) to the crossBar2d

function. Then the crossbar also has a control signal (crossBarCtrl) and it requires the
inputs of all the actors that produce data. The order in which the inputs are given is the same
as for the crossBar output (D, A, B and C). Furthermore, the crossBar2d function does not
natively operate in the Signal domain, and needs to be lifted.

1 cbOut = liftA2 (crossBar2d sysConfigConstraints) actorDABC crossBarCtrl
2 actorDABC = sequenceA (actorD:>actorA:>actorB:>actorC:>Nil)

If the code in the SysLift and SysConfig module are adjusted according to the described
steps, then the hardware architecture could be simulated. The whole graph functions as a
topentity. Therefore the designer must decide which actors should be available, e.g. Actor D:

1 topEntity
2 :: Clock System Source
3 -> Reset System Asynchronous
4 -> Signal System (DataType)
5 topEntity = exposeClockReset actorD
6 {-# NOINLINE topEntity #-}
7

8

9 testBench :: Signal System (DataType)
10 testBench = done
11 where
12 done = topEntity clk rst
13 clk = tbSystemClockGen (not <$> pure True)
14 rst = systemResetGen

Evaluating the testbench will now give the outputs over time:

*SysConfig> sampleN 10 testBench
[0,0,0,3,3,3,3,7,7,7]

If the amount of initial tokens is changed, e.g. to δAB = 1, δBC = 1, δCD = 1 and δDA = 1,
then the actors will fire differently, which then again results in different simulation results:

*SysConfig> sampleN 10 testBench
[0,1,2,3,4,5,6,7,8,9]

At the current implementation, it is not always possible to derive hardware from a valid
dataflow schedule. if the start times or period of the tokens is a fraction (which can be
observed by running ddgraph), then it is not possible to generate a schedule. This is due to
the constraint that one time unit equals one clock period, and this is an indivisible element.

98

F.1.1 RTL-level comparison for different schedules

In this section, the influences on the resulting hardware, due to a different schedule are
examined in Vivado 2017.4 for the Zybo Z7-20 platform. Verilog is generated by Cλash
0.99.3. The ”Run Implementation” process is ran (which maps the hardware on the FPGA),
and then the results are examined. A clock of 100 MHz was used as timing constraint. The
aim was to perform a power analysis based on the SAIF file that was obtained, by running the
testbench that was generated by Cλash. However, the design was so small that the power
consumption was neglected by the Idle usage of the FPGA. The results of the two schedules
are as follows:

1. One initial token on the δAB: 37 Look-Up Tables, 33 Flip-flops

2. One initial token on all edges: 20 Look-Up Tables, 35 Flip-flops

From behavioural level, the presented design does not allow many differences is resource
allocation, because there are no crossbar optimizations available. However, design 1 seems
to take up almost twice the amount of LUTs, compared the design 2. It is likely that the latter
is more simple because all the actors do fire at every cycle, whereas the first design fires
according to a more difficult schedule. The exact source of the problem is not clear, since it
could be either an optimization from the Cλash-compiler or from the synthesis tool. It is also
impossible to re-allocate the individual blocks from the generated RTL-views, which makes it
more difficult to find the cause of the optimization.

99

	List of acronyms
	Introduction
	Problem description
	Outline of this thesis

	I Background
	C-.4ash
	Fundamentals
	Higher Order Functions
	REPL and simulation
	Algebraic data types

	Comparison between existing SoC communication standards
	Characteristics of existing communication standards
	Network on a chip
	Comparison

	Existing Communication optimized with C-.4ash
	Assignment of slaves to an address space
	Communication with algebraic data types

	Hardware and data flow
	Dataflow
	Relation between data flow and hardware

	Design Space Exploration
	Comparison and conclusion

	II Realisation
	Dataflow to Hardware
	Overview
	Derivation of a schedule
	Function block specification
	Connecting data dependencies

	Results
	Analysis
	Data dependency
	Crossbar minimalisation

	Hardware generation
	CrossBar
	Scheduler
	Actor buffering

	System derivation
	Example: Sorter of Random numbers

	Conclusions
	Discussion and Future work
	Nesting functions
	Support for SDF
	Bugs in the C-.4ash-compiler
	Interfacing between schedules
	Other optimizations

	References

	III Appendix
	Existing SoC communication
	AMBA
	AXI bus
	Avalon bus
	Wishbone

	Wishbone implementation in Clash
	Master
	Slave

	Clash code for Analysis
	DataDependency module

	Clash code for Hardware Generation
	ActorBuffering module
	CrossBar module
	Scheduler module
	IF module

	User adjustable Clash code
	SysLift module
	SysConfig module

	System derivation examples
	Example: Processing pipeline
	RTL-level comparison for different schedules

