

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	

Design of an anti-slip control system

of a Segway RMP 50 omni platform

R.J. (Robin) Lieftink

 BSc Report

C e
Dr.ir. J.F. Broenink
Dr.ir. D. Dresscher

Prof.dr.ir. D.J. Schipper

July 2017
	

024RAM2017
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

i i-Botics

Summary

In the i-Botics centre, founded by TNO and the University of Twente, a project is carried out
focused on telerobotics. With telerobotics a robot is able to perform tasks on remote loca-
tions. For some of these tasks human expertise is needed for assessing and responding to
unpredictable situations. To perform these tasks to user must be able to exactly feel what the
robot is doing. With the use of sensors and haptic feedback this can be made possible. The
robot used consists out of a KUKA Light-Weight Robot 4+ with a RightHand Robotics ReFlex
TakkTile attached to a platform. This platform can move omni directional using the Segway
RMP 50 omni, of which the velocity is controlled by a joystick.
The drawback of this system is that omnidirectional wheels can slip on smooth surfaces. This
results in a deviation from the desired motion. The goal of this thesis is to build a system that
corrects unwanted motion using sensors and feedback control.
The Segway RMP 50 omni is a platform which can move omni directional, due to the rotated
forces which act upon the rollers of the mecanum wheels. The slip which occurs in these
mecanum wheels is the consequence of a higher contact force than friction force. This slip
creates a deviation from the desired direction. A slip ratio can be calculated based on theo-
retical wheel velocity and the actual velocity of the wheel.
The open loop system which does not take the slip in consideration is changed into a closed
loop system. Different approaches of a closed loop system to cancel out the slip have been
looked at. The slip controller using velocity adjustment will be used. The slip must be de-
tected with an internal sensor as a reference point in combination with the encoders of the
Segway, the extra sensor added is the IMU. The slip controller will determine the slip ratio
by using the IMU measurement and the encoder measurement. Based on the calculated slip
ratio the velocity scaling is determined. Due to the noise, this scaling is filtered with a moving
average filter for a smooth controller. Scaling this velocity results in a lower contact force,
which reduces the slip. The controller showed that the slip was detected by reducing its ve-
locity. Due to this scaling the deviation of the platform was lower. The tests that are done were
the two extremes. One surface with a high friction surface and one with a low friction surface.
The high friction surface showed that both controllers worked properly, but still had a higher
deviation than required due to the weight distribution. The low friction surface showed that
the combination of the University floor and the wheels can not be solved, because the fric-
tion between the two is to low. Due to this low friction the minimum speed and maximum
deviation was not made and the system started oscillating. These two extreme test condi-
tions made it hard to compare the results. It is recommended to use other wheels, which can
exert more friction on the ground. Also different test conditions can be recommended, to get
a better results for the comparison between the open loop and closed loop system.

Robotics and Mechatronics Univeristy of Twente

iii i-Botics

Samenvatting

In het i-Botics innovatiecentrum, initiatief van TNO en de University of Twente, wordt een
project onderzocht gebaseerd op telerobotica. De robot kan door telerobotica taken uitvo-
eren op een afgelegen locatie. Een persoon is nodig voor sommige taken om onverwachte
situaties te beoordelen en erop te reageren. Om deze taken uit te voeren moet de gebruiker
exact voelen wat de robot doet, door het gebruik van sensoren en haptische feedback. De
robot die gebruikt wordt bestaat uit een KUKA Light-Weight Robot 4++ met een RightHand
Robotics ReFlex TakkTile vastgemaakt aan een platform. Dit platform kan omni directionaal
bewegen door de Segway RMP 50 omni, welke is aangestuurd door een joystick.
Het nadeel van het systeem is dat de omnidirectionale wielen kunnen slippen op gladde op-
pervlakte. Dit resulteert in een afwijking van de gewenste beweging. Het doel van deze scrip-
tie is het bouwen van een systeem dat ongewenste bewegingen corrigeert met het gebruik
van sensoren en feedback control.
De Segway RMP 50 omni is een platform die omni directionaal kan bewegen door de krachten
die de meanum wielen uitoefen op de grond. De slip in deze wielen is de consequentie van
een hogere contact force dan de friction force. Deze slip creÃńert een afwijking van het
gewenste pad. Een slip ratio kan berekend worden op basis van de theoretische wiel snel-
heid en de echte wheel snelheid.
Het openloop systeem dat geen rekening houdt met de slip wordt veranderd in een closed
loop systeem. Verschillen aanpakken van een closed loop system om slip te vermijden is
naar gekeken. De slip controller met gebruik van snelheid verandering zal worden gebruikt.
De slip moet gedetecteerd worden doormiddel van een interne sensor als referentiepunt in
combinatie met de encoders van de Segway, een IMU is hiervoor gekozen. De slip ratio wordt
bepaald door de metingen van de IMU en de encoders. De verandering van de snelheid is
gebaseerd op de berekende slip. De verandering van snelheid wordt gefilterd met een moving
average filter, omdat er ruis is in het systeem is. De snelheid verandering zorgt voor een lager
contact force, wat de slip verminderd. De controller laat zien dat slip gedetecteerd is door de
snelheid aan te passen. De afwijking was minder door het veranderen van de snelheid. De
testen die zijn gedaan zijn de twee uitersten. Een test met een hoge en een lage wrijvingsop-
pervlakte is gedaan. Het oppervlakte met de hoge wrijving liet zien dat beide controllers goed
werkte, maar had nog steeds een hogere afwijking dan verplicht door de gewichtsverdeling.
De oppervlakte met lage wrijving liet zien dat de combinatie van de universiteitsvloer en de
wielen niet opgelost kan worden, omdat de wrijving tussen de twee oppervlakte te laag is.
Door deze lage wrijving is de minimumsnelheid en maximum afwijking niet gehaald en het
systeem begon te oscilleren. De twee uiterste test condities maakte het lastig om de resultaten
te vergelijken. Het is aanbevolen om andere wielen te gebruiken, die meer wrijving hebben.
Ook andere test omstandigheden worden aangeraden, om een beter verschil te krijgen tussen
de openloop en closed loop systeem.

Robotics and Mechatronics Univeristy of Twente

v i-Botics

Contents

1 Introduction 1

2 Analysis 2
2.1 Mecanum wheels . 2
2.2 Slip in wheels . 5
2.3 Current system overview . 6
2.4 Anti slip techniques . 7
2.5 Requirements . 9
2.6 Sensors . 10
2.7 Conclusion . 11

3 Design and implementation 12
3.1 Controller . 12
3.2 Implemented sensors . 14
3.3 Programming implementation . 15

4 Testing 16
4.1 System test . 16
4.2 Comparison test using OptiTrack . 16

5 Results 17
5.1 System results . 17
5.2 Comparison results using OptiTrack . 20

6 Discussion 25
6.1 Friction mecanum wheels . 25
6.2 Testing conditions . 25
6.3 Oscillation . 25

7 Conclusion and Recommendations 26
7.1 Conclusion . 26
7.2 Recommendations . 26

Appendix 27
A Derivations . 27
B Setup anti slip controller . 28
C Code . 30

Robotics and Mechatronics Univeristy of Twente

1 i-Botics

1 Introduction

In the i-Botics centre, founded by TNO and the University of Twente, a project is carried out
focused on telerobotics. With telerobotics a robot is able to perform tasks on remote loca-
tions. For some of these tasks human expertise is needed for assessing and responding to
unpredictable situations. To perform these tasks to user must be able to exactly feel what the
robot is doing. With the use of sensors and haptic feedback this can be made possible. The
robot used consists out of a KUKA Light-Weight Robot 4+ with a RightHand Robotics ReFlex
TakkTile attached to a platform. This platform can move omni directional using the Segway
RMP 50 omni, of which the velocity is controlled by a joystick.

The drawback of this system is that omnidirectional wheels can slip on smooth surfaces. This
results in a deviation from the desired motion. The goal of this thesis is to build a system that
corrects unwanted motion using sensors and feedback control.

In this thesis different sensors and controllers will be investigated and the currently applied
open loop control will be extended with feedback control using these sensors, which will
counteract the slip. The robot runs on a robotic operating system(ROS) and functionality
is programmed in C++. The developed functional code will be made in a modular, ROS-
independent structure; in this way these blocks can be reused in later stages or different
robots.

This thesis starts with an analysis section, where mecanum wheels, slip in wheels, different
controllers and sensors will be analyzed. The next section is the design and implementation,
where a controller is designed based on this problem and will be implemented in ROS. Ex-
periments will will be done on this design. In the results the outcome of these experiments
will be observed and in the next section discussed. A conclusion is made on this research and
different recommendations are done.

Robotics and Mechatronics Univeristy of Twente

2 i-Botics

2 Analysis

In this Analysis section, a literature study is done on different parts. This study is done to
develop a better understanding of the problem and to come to a conceptual solution. Starting
of with the basic principles of mecanum wheels.

2.1 Mecanum wheels

Mecanum wheels are based on a normal wheel with rollers added in a certain angle. These
angled rollers translate the rotational force of the wheel into a rotated force. An example of a
mecanum wheel is visible in Figure 2.1.

Figure 2.1: mecanum wheel [Diegel et al., 2002]

The rotated force due to the rollers is directed at a 45 degrees angle in this case. Different di-
rections can be driven by using a setup with 4 mecanum wheels. Using equation 1 [Soni et al.,
2014] the different rotational velocities of each wheel can be calculated using the velocity in
the x-axis, y-axis and rotation around the z-axis.

ω1

ω2

ω3

ω4

= 1

R


1 −1 −(l1 + l2)
1 1 l1 + l2

1 −1 −(l1 + l2)
1 1 l1 + l2


vx

vy

ωz

 (1)

Where R is the radius of the wheels and l1 is the distance between the center of the wheels
and the center of the robot of the y-axis and l2 of the x-axis. The orientation of the axis and
the wheel can be seen in Figure 2.2.

Robotics and Mechatronics Univeristy of Twente

3 i-Botics

Figure 2.2: schematic of a robot chassis using mecanum wheels [Doroftei et al., 2008]

Figure 2.2 also shows the forces acting on the robot. Because of the orientation of the rollers
every wheel has its force vector 45 degrees rotated. The forces F1...F4 are the forces on roller
level, these are generated by the torque applied on the wheel. Fx and Fy are the forces applied
on the center of the platform.
These forces can be used to calculate the torque that needs to be applied on the wheels. Fig-
ure 2.3 shows the vector of one wheel. Using this figure Equation 2 can be derived, which is
done in the Appendix A.

Figure 2.3: force vector of one mecanum wheel

Robotics and Mechatronics Univeristy of Twente

4 i-Botics

Fx = Fy = 1

2R
τ (2)

Where F is the input force, F’ is the rotated force by the roller, Fx is the x component of the
rotated force and Fy the y component. The vector used in Figure 2.3 is the same as wheel two
visible in Figure 2.2. Equations 14...17 show that the torque of the wheels are rotated twice,
the first rotation is because of the rollers. The second rotation is the separation into the x and
y component. For the rotation of around the z axis there is a torque with an arm(r). For this
calculation Figure 2.4 is used.

Figure 2.4: force vector of one mecanum wheel with the center of platform

Where F ′
r is the rotational force applied. Using Figure 2.4 and Equation 3 the torque around

the z axis can be calculated(τz), which can be seen in equation 4. This equation is derived in
the Appendix A

τz = ‖r‖‖F‖ si n(θ) (3)

τz = 1

2R
(l1 + l2)τ (4)

Robotics and Mechatronics Univeristy of Twente

5 i-Botics

Equation 4 shows the relation between the rotational torque(τz) by the torque applied on the
wheel(τ). These equations are derived using wheel 2. Depending on the orientation of the
vector of the wheel, the signs change. The Fx component of wheel one and three are negative
and the τz component of wheel one and four are negative, due to the anticlockwise direction
of the vector. Using this information for all the wheels a matrix can be made which is visible
in equation 5.

Fx

Fy

τz

= 1

2R

 −1 1 −1 1
1 1 1 1

−(l1 + l2) (l1 + l2) (l1 + l2) −(l1 + l2)



τ1

τ2

τ3

τ4

 (5)

Using Equations 1 and 5 it can be seen that the platform is omni directional using different
wheel velocities, which is visible in Figure 2.5.

Figure 2.5: Different directions based on the motor control [Salih et al., 2006]

2.2 Slip in wheels

Slip can occur between the wheels and the ground due to insufficient friction. When there is
no slip the translational velocity(v) is related to the rotational speed of the wheels(ω) given
with Equation 6:

v = R ∗ω (6)

Where R is the radius of the wheel. This linear equation will not apply when the friction
between the wheel and the surface is to low, which causes the wheel to slip. This can be
expressed with equation 7

λ= Rωwheel − vactual

Rωwheel
(7)

Whereλ is the slip ratio,ωwheel is the rotation of the wheel and vDesi r ed is the desired velocity
of the platform.
As explained above, this slip can occur due to insufficient friction between the surfaces of the

Robotics and Mechatronics Univeristy of Twente

6 i-Botics

floor and the wheels. A friction coefficient is used to express the friction between two sur-
faces. Figure 2.6 shows that the friction coefficient against the slip ratio for different surfaces.

Figure 2.6: friction coefficient against the slip ratio [Junhui and Jianqiang, 2010]

In Figure 2.6 it is visible that the slip ratio depend on the friction coefficient, when a constant
normal force is applied. This friction coefficient is depended on the material of the surface
and the wheel. Equation 8 [Sharkawy, 2010] show the relation of the contact force with fric-
tion force when there is no slip.

Fcont act ≤ F f r i ct i on =µFN (8)

It shows that the friction force depends on the friction coefficient(µ) times the normal force(FN)
and that the contact force must be lower than this force to avoid slip. Equation 8 also shows
that if the friction coefficient is high, the wheels will have a high friction force. This means
that the platform can also exert a high contact force on the ground without slipping. But
when the contact fore will be higher than the friction force, the wheels will slip. This can be
counteracted by lowering the contact force.

2.3 Current system overview

Currently, an open loop control structure as seen in Figure 2.7 is implemented on the plat-
form.

Robotics and Mechatronics Univeristy of Twente

7 i-Botics

Figure 2.7: the current control scheme of the platform

The joystick is the input of the system and the convert block converts this input of the joystick
into a twist message. The safety block is a dead man switch, so the platform only drives when
this button is pressed. This twist is then split. This will convert the twist to 2 separate twist
for the front wheels and the rear wheels of the Segway.

2.4 Anti slip techniques

There are different techniques to create an anti slip control system, which will be explained
below. In this assignment only a control system will be looked at, not changing the surface of
the floor or the wheel. The control techniques researched are commonly used in determin-
ing the position of the robot using no external reference system. This choice has been made
based on the future goals of the robot, having to operate in an unknown environment.

Trajectory and heading tracking control

The first control system is trajectory and heading tracking control. A simple control scheme
is visible in Figure 2.8.

Robotics and Mechatronics Univeristy of Twente

8 i-Botics

Figure 2.8: Simple scheme of the Trajectory and heading control

The platform will follow the input of the controller. Using a sensor the actual direction of
the platform will be measured. An error will be calculated using the input of the controller
and the measured direction. With this error a twist adjustment will be calculated. When the
output direction of the platform is not as desired it will change the wheel speeds. This means
that it will make some wheel velocities higher and reduce others.
The sensor used for this approach must be a sensor which measures its velocity into the x
and y direction and rotation around the z direction. This can be done by one sensor. The
drawback of this system is that it will not work on a floor with very low friction, then the
wheels will still spin out. [Kuo et al., 2016].

Slip control using velocity adjustment

The second approach is a slip control using velocity adjustment. Like explained before, if the
contact force is higher than the friction force then slip occurs. This contact force must be
lowered. This contact force is expressed in Equation 9

Fcont act (v) = vR +ma (9)

Where R is the friction. It can be seen that lowering the velocity and limit the acceleration
will lower the contact force. The acceleration will be limited internally in the Segway. This
controller will be based on the principle that when the wheels slip, the magnitude of the
velocity is scaled down in such a way that the direction is preserved. This will reduce the slip.
To achieve this, the slip must be detected. To calculate the slip the velocity of the wheels
must be measured and the actual velocity of the platform. The velocity of the wheels can
be measured using encoders that are mounted on the wheel axis. The actual velocity can be
measured using a sensor which measures the movement of the robot in the inertial frame.
Using Equation 1, the corresponding velocities of the wheels can be calculated. The slip is
then calculated by comparing these two velocities. Then the velocity of the wheel can be

Robotics and Mechatronics Univeristy of Twente

9 i-Botics

scaled down on every wheel until no slip occurs. Using this method the velocity vector of the
platform will have the same direction but the length will be scaled.

Slip control using force adjustment

The third technique has the same principle as velocity control, lowering the contact force
when slip occurs. But now it will be done by adjusting the torques instead of the velocity.
When the systems notices that the wheels slips then the torque input of the Segway will be
scaled down to avoid this slip. The torque of the wheels can be read out of the platform. This
torque will be converted to a force per wheel using Equation 10

F = τ

R
(10)

Where F is the force that the wheel exerts on the ground and τ the torque applied with the
wheel radius R.
Now that the force that every wheel exerts is calculated, it can be converted to the forces
acting on the platform using Equation 5. This is the force that the platform is trying to
reach(Ftheor y). Now using a accelerometer, the actual force(Factual) of the platform can be
calculated using Newtons second law. Now Ftheor y and Factual can be compared to get the
force difference. Using this force difference the torque can be lowered, resulting in a smaller
contact force, which will cancel out the slip.

Combination slip controllers

The slip controllers can be combined. Two approaches can be done.in two ways. The first
one is detecting the slip using the velocity and than lower the torque according to that slip
Or it can be done the other way around, by detecting it with the torque and limit the wheel
velocity.

Targeted approach

The chosen anti slip technique is based on what will be the future of the project and what can
be implemented in the time reserved for this thesis. All systems have the advantage that only
one extra sensor is needed. The first approach has as disadvantage that on a floor with low
friction it will just spin harder losing more traction. The Segway has a velocity input, so this
is the disadvantage for the controllers with a torque scaling. The two controllers left is the
slip controller with velocity or the combined slip controller, where the slip is measured with
the torque and scaled using the velocity. Both systems will work but the slip controller using
velocity scaling has the advantage that only velocities are used, so no conversions have to be
made. This means that the slip control using velocity adjustment will be used.

2.5 Requirements

In this subsection the requirements of the system and the sensors will be looked into and
explained.

Robotics and Mechatronics Univeristy of Twente

10 i-Botics

System requirements

In this assignment an anti slip system has to be made. This will be done by changing the
open loop system into a closed loop system using velocity control. With this feedback the
slip should be canceled. Some requirements are needed to achieve this goal:

• minimum speed of 0.5 km/h: the maximum speed of the vehicle is 3 km/h. When the speed
is lower the robot will be to slow for proper use.

• deviation of max 5◦ in the x and y direction and rotation around the z-axis: when this is
bigger the platform will deviate to much from its directed orientation. This deviation can
be corrected by the user.

• Adapt to different surfaces

Sensor requirements

For this assignment a sensor is needed to make a closed loop control system. The require-
ments are as follows:

• Translation in x and y-axis and rotation around the z-axis in the inertial frame.
• Deviation of max 5% degrees in the x and y direction and rotation around the z-axis. To

reach 0% slip there can be no deviation, but it is impossible to have a 0 degree deviation.
So the max of 5 degrees is allowed. This will influence the calculation of the slip. Which will
result in a small velocity deviation of the platform.

2.6 Sensors

in this subsection different usable senors will be looked at. For this robot it is necessary that
the sensors are integrated into the platform. This means that not external resources can be
used such as cameras or beacons. Below an analysis is done with internal sensor commonly
used in robots.

Inertial measurement unit

An inertial measurement unit (IMU) exist out of a accelerometer in combination with a gyro-
scope, sometimes a magnetometer is added. This magnetometer is not needed in this thesis.
The accelerometer of the IMU can measure linear acceleration, this can be used to calculate
the translation in the x-axis and y-axis. The gyroscope is used to measure the rotation around
the z-axis. This sensor can provide all required information.
The biggest drawback of this sensor is the drift. The output of the accelerometer is an accel-
eration. To retrieve the velocity or position of the IMU this acceleration must be integrated.
The integration constant and the constant error resulting from the bias stability is neglected
during integration, these errors have a large role in the error over time which is the drift in the
IMU [Sukkarieh et al., 1999]. For this project this all will have an influence in the calculation
of the slip.

Robotics and Mechatronics Univeristy of Twente

11 i-Botics

There are advanced types of IMU’s, these have internal correction methods, like a kalman fil-
ter to reduce the drift as much as possible. The Xsense is an example, this IMU has low drift
due to these methods [Xsens et al., 2010]. This can increase the performance significantly
and reduces the bad influences on the controller

Vision sensor

Also a vision sensor can be used. Using image processing the movements of the robot are
measured. This is done by taking key points in an image and compare them in every new
image. In this way the change of position can be calculated by every image. A disadvantage
is the implementation time of the image recognition [Nagatani et al., 2000]. Another form of
a vision sensor is a mouse sensor. This can accurately measure a position and had the image
processing already implemented. The big drawback is that it will not be able to work on every
surface.

Passive wheels

Passive wheels can be added to find the position of the robot. When three passive omnidirec-
tional wheels are added to the robot the translation in the x and y direction and the rotation
around the z axis can be determined precisely. The advantage is that the velocities can be
detected with almost no error. The disadvantage is that the passive wheels only work on flat
surfaces. With rough surface or inclines the passive wheels will not work [Tehrani et al., 2003].
Adding these extra mechanical components will bring a lot of extra work which will be to time
consuming.

Sensor decision

For this project the IMU will be used because of the following reasons. The IMU is easier
to implement in this robot, because it gives an acceleration and by integrating, the velocity
is immediately known. Also this IMU is preferred because of its availability in the lab and
the easy connection on software level. The output of the vision sensor will be images, these
images needs to be processed first, which is due to time limitations not possible. The passive
wheels or mouse sensor will limit the robots ability to drive everywhere. Also these wheels
will take to much time to implement on the robot due the additional mechanical parts.

2.7 Conclusion

In this section the mecanum wheels and their forces acting on the body have been analyzed.
How slip occurs in wheels is now know and how the slip ratio is related to this. Using this
analysis different controllers are found and looked into. The slip controller with velocity scal-
ing has been chosen. Where an IMU will be used as extra internal sensor in combination with
the encoders of the Segway.

Robotics and Mechatronics Univeristy of Twente

12 i-Botics

3 Design and implementation

In this section the design and implementation of the open loop system to a closed loop sys-
tem will be explained. This is done by using the slip control with velocity adjustment and
an IMU sensor. How this velocity control is implemented, which sensor is used and how the
program works is explained below.

3.1 Controller

To make an anti slip controller for the Segway 50 RMP omni a slip control with velocity ad-
justment will be used.
in Figure 3.1 the control scheme is visible. This is a global block diagram of how the structure
will look like. The red blocks are the new blocks in the controller compared to the open loop
control.

Figure 3.1: The block diagram of the velocity controller

Joystick
As explained the Joystick block converts the hardware input to serial information and sends
this to the convert block.

Convert
This function converts the serial input into a twist by defining what every button means per
controller (joystick, xbox), so the controllers are hard coded. This twist message is defined as
follows. It gives a translational and rotational message. Both messages contain an x, y and z
direction as an int64 number.

Safety
The safety is used as dead man switch. This means that the platform only has an input when

Robotics and Mechatronics Univeristy of Twente

13 i-Botics

the dead man switch is pressed. This block will sent its twist to the new block anti slip.

Anti slip
The new block "anti slip" is added. This block will calculate the slip in each separate wheel
using the encoders and the IMU. A detailed scheme of the block "Anti slip" is shown in Figure
3.2 to explain what functions are used.

Figure 3.2: The detailed block scheme of "Anti slip"

First the sensor inputs will be discussed. The Segway has encoders which can read out the
the rotational velocity of the wheels and the torque. The velocity of the wheels will be used,
noted as ω1...ω4. This is also the input into the block calculate slip.
The used output of the IMU will be converted to the translational velocity of in the x and
y direction and the rotational velocity around the z axis. The translational velocity of the z
axis and the rotational velocity of the x and y axis will not be used because the robot is not
able to make those movements. This velocity vector will be converted to the wheel velocities
ωt1...ωt4 using equation 1.

Now both velocities of the wheels are known, using this information the slip of each separate
wheel can be calculated. This is done by Equation 11 derived from Equation 7.

λω = ω−ωt

ω
(11)

Where ω is the wheel velocity out of the encoder and ωt is the wheel velocity out of the IMU
The slip of each wheel is send to the block scaling.

In this block the slip ratio of every wheel is used to determine the scaling of the velocity. To
do this, the wheel with the most slip is used. The slip ratio of this wheel will determine the

Robotics and Mechatronics Univeristy of Twente

14 i-Botics

scaling which can be seen in Equation 12.

Scal i ng = 1−λ (12)

This scaling will used to convert the twist. The twist will be multiplied with the scaling and
then send to the block moving average.
The encoders and IMU will have noise due to the shaking of the platform. The update ratio
of the scaling of the velocity is done at a 100Hz. This will result in a different scaling 100 times
a second, which means that the velocity also changes this much, then the platform will not
drive smoothly, due to this noise.//
To solve this a simple moving average filter is used visible in equation 13.

saver ag e = 1

n

n−1∑
i=0

PM−1 (13)

Where M is the current data point. The advantage of this filter is that there will be a smooth
transitions to different velocities and that it can be computed in real time. But this filter will
add a delay in the change of the velocity. The delay will be based on the filter length of the
moving average, which is (N−1)

2 [Roelandts, 2015].

The averaged scaling of the velocity is then send to the block split. This block will convert the
desired twist to two separate twist message. These twist messages are then the input in the
Segway front and rear which convert this message to velocities of the separate wheels.

3.2 Implemented sensors

The encoders are already implemented in the Segway, which are directly connected to the
axis of the wheels. This means that the measurements of these wheels are very accurate.
However the IMU has some drift as explained above. The XSense MTi will be used in this as-
signment because of its availability in the lab. The MTi is a miniature, gyro enhanced Attitude
and Heading Reference System (AHRS) and is mainly used as measurement tool for stabiliza-
tion and control for cameras, robots, vehicles and other equipment. It provides provides drift
free 3D orientation as well as calibrated 3D acceleration, 3D rate of turn (rate gyro) and 3D
earth magnetic field data. The drift is very low due to internal filters. Some important speci-
fication needed for this thesis are lined up here:

• The actual alignment between the housing and output is smaller than 3 degrees
• Angular resolution of 0.05% degrees
• Static accuracy of 1 degree
• Dynamic accuracy 2 degrees RMS
• Update rate is 256 Hz
• Bias stability 0.02 m/s
• Noise of 0.002 m/s

Robotics and Mechatronics Univeristy of Twente

15 i-Botics

Concluding the sensors used will not have major influences on the performance of the system
due to errors. The encoder will have a low error and the IMU will have very low drift [Xsens
et al., 2010].

3.3 Programming implementation

Like explained in the analysis section, the program is made in ROS using different nodes with
their different functions. For the IMU a Xsense ROS node is used which was compatible with
the Xsense mti. This ROS node was available from github and no changes were made. This
ROS node publishes the IMU data. For the anti slip control one node is made in C++. This
node works as explained above. It retrieves all the data, does it calculations and publishes the
needed data for the split block. The main program of the ROS node anti slip runs at a 100Hz.
This is fast enough to run the robot smoothly in real time. How to run this program is shown
in the Appendix B.

Robotics and Mechatronics Univeristy of Twente

16 i-Botics

4 Testing

To test the new controller different tests must be done. In this section the different circum-
stances of these test are discussed and why they are done.

4.1 System test

To begin the full system will be tested. This can be done by driving the platform on a surface
with insufficient friction and measure the response of the system. This will show how the
system reacts on the slip of the wheels. Immediately the length of the moving average filter
can be tested.

The controller will adapt itself depending on what slip the platform has. This slip will change
due to the direction of the robot or what kind of surface it drives on. The scaled velocity
changes and a moving average filter is used to do this smoothly. The filter will introduce a
delay in the response dependent on the filter length. First this filter length will be tested.
Making the filter to short will result in a bad behavior in driving. Making the filter to large
causes a big delay, which will eventually lead to instability.

4.2 Comparison test using OptiTrack

The difference between the open loop and closed loop control must be tested. Because of the
smooth surface of the floor the wheels slip, even if the lowest output velocity is given. On this
surface no accurate test can be done to evaluate the results. A carpet will be used were the
robot has more grip. The wheel slip causes the biggest problems when the platform is moving
sideways. To have a reliable reference in the tests, the OptiTrack system at the RaM lab will be
used. The OptiTrack can precisely measure the position of the robot. Both the open loop and
the closed loop system will be tested by the OptiTrack on a surface with low and high friction.
The low friction surface is the Ucrete floor of the university and the high friction surface is a
rubber carpet

Robotics and Mechatronics Univeristy of Twente

17 i-Botics

5 Results

In this section the results of the different tests will be shown and observations will be made.

5.1 System results

First the performance of the full system is looked at. For this a normal test is done by driving
the platform over a surface with low friction forwards. For clarity of the graph only the veloc-
ity and the scaling of the left front wheel is shown, the other 3 wheels are not shown in the
following graphs. The result is shown in Figure 5.1.

24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

W
h
e
e
l
v
e
lo

c
it
y
(m

/s
)

System test with forward motion

Encoder measurement

IMU measurement

Filtered scalingfactor

Scalingfactor

Figure 5.1: Forward motion of the Segway

The general performance of the system shows a good behavior of the system. A small oscilla-
tion can be seen, this is due to the shaking of the platform, which is caused by the rollers of
the mecanum wheels. When the IMU velocity is higher or equal than the wheel velocity, the
system does nothing because no slip is detected. But the figure shows that the scalingfactor
changes while the IMU velocity is higher than the wheel velocity. The reason is that the figure
shows the highest scalingsfactor of all the wheels. This means that another wheel detected
slip which is not show in this figure.

It can be seen that the encoder does not have the same velocity as the IMU. The IMU velocity
and the encoder velocity should be equal because no slip occurred in this test. Possible rea-
sons are an IMU drift, an encoder error or a calculation error. The forward motion looking at
equation 1 shows that for a forward motion no measured lengths of l1 or l2 is needed. This

Robotics and Mechatronics Univeristy of Twente

18 i-Botics

means that it is not a calculation error. To test this a OptiTrack system is used. The velocities
of the encoder,the IMU and the OptiTrack system is compared and shown in Figure 5.2.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Time(s)

0

0.1

0.2

0.3

0.4

0.5

P
la

tf
o
rm

 v
e
lo

c
it
y
(m

/s
)

Comparison test encoders, IMU and OptiTrack

Encoder measurement

IMU measurement

OptiTrack measurement

Average peak encoders

Average peak Optitrack

Figure 5.2: Comparison between the encoders, the IMU and the OptiTrack in a forwards mo-
tion

It is visible that there is a small difference between the IMU and the OptiTrack. The first
difference is the peaks at acceleration of the OptiTrack. This instability is caused by a poor
calibration of the OptiTrack. When changing to different cameras of the OptiTrack the posi-
tion changes, resulting in the peaks. The next difference is at 5.5 seconds which show a bit
of drift in the IMU. This is caused by a network issue, this can be seen by the fact that the
encoders has at the same time a measurement error. The OptiTrack does not have a mea-
surement error, because this system is connected to an Ethernet cable instead of WIFI.
There is a constant error in the encoder measurements. The average of the encoder and
the OptiTrack have been calculated when driving at the highest velocity. These averages are
shown in the graph. Based on multiple tests the difference between the averages is a factor
of 0.78, which accounts for the difference seen in 5.1. This error happens in the velocity cal-
culation of the Segway platform internally, where the velocity is based on the diameter of the
wheel. The Segway has different wheels than standard used on this platform, this causes the
error of the internal calculation. In the next results this error must be taken into considera-
tion. This error will result in a lower slip ratio compared to the actual slip ratio of the wheels.

Not a lot of slip occurred in Figure 5.1. Figure 5.3 shows the result for sideways motion on a
low friction surface with a moving average filter length of 25 and 75.

Robotics and Mechatronics Univeristy of Twente

19 i-Botics

2 3 4 5 6 7

Time(s)

-3

-2

-1

0

1

2

W
h
e
e
l
v
e
lo

c
it
y
(m

/s
)

System test sideways with moving average length 25

Encoder measurement

IMU measurement

Filtered scalingfactor

Scalingfactor

(a) System test moving sideways with moving average length of 25

2.5 3 3.5 4 4.5 5 5.5 6

Time(s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

W
h
e
e
l
v
e
lo

c
it
y
(m

/s
)

System test sideways with moving average length 75

Encoder measurement

IMU measurement

Filtered scalingfactor

Scalingfactor

(b) System test moving sideways with moving average length of 75

Figure 5.3: System test moving sideways with different moving average lengths

Figure 5.3 shows that both systems immediately reacts to the detected slip by looking at the
scalingfactor. The scalingfactor shows the change based on the slip ratio, calculated using
the velocity difference of the encoders and the IMU. This scalingfactor is filtered with a mov-
ing average filter. it can be seen that the response of Figure 5.3b is much more smooth and
converges to one velocity, due to the longer filter length. The reaction time of this response

Robotics and Mechatronics Univeristy of Twente

20 i-Botics

is within 1 second. Figure 5.3a shows a faster reaction time within 0.5 seconds but results in
unwanted oscillation.
It is visible that the wheels have a much higher rotational velocity then is expected based on
the IMU measurements. Resulting in a big scaling of the velocity in both systems. This scaling
results in a low velocity of the platform.

5.2 Comparison results using OptiTrack

To compare the new closed loop system with the old open loop system the OptiTrack system
is used. Two different test were performed. One with a surface with insufficient friction and
one with sufficient friction. First the test with sufficient friction is done using a carpet. In
Figure 5.4 the position and velocity of the platform is show moving to the right.

Robotics and Mechatronics Univeristy of Twente

21 i-Botics

-0.5 0 0.5 1 1.5 2 2.5

x axis(m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y
 a

x
is

(m
)

Comparison old and new system

Old controller

New controller

Reference new controller

Reference old controller

(a) Position of the old and new system

9 10 11 12 13 14 15 16 17

Time(s)

0.1

0.2

0.3

0.4

v
e
lo

c
it
y
(m

/s
)

velocity old system

velocity

10 11 12 13 14 15 16 17

Time(s)

0.1

0.2

0.3

v
e
lo

c
it
y
(m

/s
)

0.5

0.6

0.7

0.8

0.9

S
c
a
lin

g
fa

c
to

r

velocity new system

velocity

Filtered scalingfactor

(b) velocity of the old and new system

Figure 5.4: comparing of the two systems on a carpet with sufficient friction

The input of the controller was a straight movement following the x axis. Due to alignment
errors there is a small inputs difference between the two controllers and the x axis. The real
trajectory of the new controller is determined by the first 0.5 seconds of its path, due to the
straight line it moves. The difference between the trajectory of the new and old controller is
known by the OptiTrack, this is used to plot the second trajectory. It can be seen in Figure 5.4a

Robotics and Mechatronics Univeristy of Twente

22 i-Botics

that both controllers drive in the beginning in a straight line and later it deviates. The new
controller follows it trajectory better but the differences are minimal. Figure 5.4b shows that
the old system applies a constant velocity. The new system has in the beginning a scaling of
the velocity due to detected slip, but still has a average velocity above the required minimum
of 0.5km/h. Due to this detection of slip the trajectory of the new controller is more straight
compared to the old controller. Figure 5.4 also shows that the robot always has a deviation
into the same direction. In this case it is into the positive y direction, which is calculated and
is more than the required five degrees. This is caused by the weight distribution of the robot.

To compare the difference between the controllers when a lot of slip occurs, a surface with
insufficient friction has to be used. This can be seen in Figure 5.5. A velocity into the negative
y axis is the input.

Robotics and Mechatronics Univeristy of Twente

23 i-Botics

0 0.5 1 1.5

x axis(m)

-1

-0.5

0

0.5

1

1.5
y
 a

x
is

(m
)

Comparison old and new system

Old controller

New controller

(a) Position of the old and new system

11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5

Time(s)

-0.3

-0.2

-0.1

v
e
lo

c
it
y
(m

/s
)

velocity old system

velocity

4 5 6 7 8 9 10 11 12 13

Time(s)

-0.3

-0.2

-0.1

v
e
lo

c
it
y
(m

/s
)

-0.5

0

0.5

S
c
a
lin

g
fa

c
to

r

velocity new system

velocity

Filtered scalingfactor

(b) velocity of the old and new system

Figure 5.5: comparing of the two systems on a surface with insufficient friction moving to the
right

Figure 5.5a shows that with both systems the platform goes forwards instead of sideways and
deviates way more than the required five degrees. The new controller has half of the deviation
compared to the old controller, while running twice as long. This indicates that the system
detects the slip and counteracts it. Looking at Figure 5.5b it can be seen that the velocity

Robotics and Mechatronics Univeristy of Twente

24 i-Botics

oscillates and does not converge to one value. Also the velocity does not remain above the
required minimum velocity
The big deviation and oscillation of the new system is due to the low friction between the
floor and the wheels. This frictions is so low that it cant counteract all the slip.

The platform shows that it adapts to different surfaces as required, This can be seen by in the
Figures 5.4b and 5.5b by looking at the different wheel velocities of the tests with high and
low friction.

Robotics and Mechatronics Univeristy of Twente

25 i-Botics

6 Discussion

In this section some observations during testing of the system are discussed.

6.1 Friction mecanum wheels

This thesis was based on removing the slip in mecanum wheels using a slip control with ve-
locity adjustment. The big drawback were the wheels in this case. The wheels are made of
a hard plastic with a very low friction coefficient. This resulted in slip, even when the lowest
input velocity was given on a floor with low friction(University floors). This means that the
new anti-slip control is not sufficient on this floor. The sideways motion seems most prone
to slip.

6.2 Testing conditions

For the comparison tests two test conditions were made. On a floor with low friction, this
was the university floor and a carpet with sufficient friction. The test were performed on both
surfaces. Like explained in the section above the university floor caused the platform to slip
using the smallest velocities. The results of the new control system showed better behavior
than the old system, but due to this constant slip they were not exact enough to compare.
The carpet was used as the second condition. On this carpet both systems had enough grip.
This resulted in minimum difference between the 2 systems.

6.3 Oscillation

in Figure 5.5b it can be seen that the new system oscillates when a lot of slip occurs. This
oscillation showed that the system is unstable. there was no solution found, due to the time
limitations. To solve this instability, the nonlinear system must be analyzed. This can be done
in the future.

Robotics and Mechatronics Univeristy of Twente

26 i-Botics

7 Conclusion and Recommendations

7.1 Conclusion

The Segway RMP 50 omni is a platform which can move omni directional, due to the forces
which act upon the mecanum wheels. Slip can occur in these mecanum wheels, which is the
consequence of a higher contact force than friction force. This slip creates a deviation in the
desired direction.
The previous control is an open loop controller which does not take this slip into account.
Different controllers have been looked into to counteract this slip, a slip controller using ve-
locity scaling is used. For this controller a sensor is needed as reference point in combination
with the encoders of the Segway to detect the slip, the extra sensor added is an IMU. The slip
controller using velocity scaling is designed and implemented in the platform.
The closed loop controller showed that the controller responded to slip adequately, because
the velocity was scaled when slip occurred. This reduced the slip significantly. The tests that
are done were the two extremes. One surface with a high friction and one with a low friction.
The high friction surface showed that both controllers worked properly, but still had a higher
deviation than required due to the weight distribution. The low friction surface showed that
the combination of the University floor and the wheels can not be solved, because the fric-
tion between the two is to low. Due to this low friction the minimum speed and maximum
deviation was not made and the system started oscillating. These two extreme test conditions
made it hard to compare the results.

7.2 Recommendations

Wheels

New wheels can be recommended, due to the low friction coefficient of the current wheels.
When tests on the carpet were done it could be noticed that the plastic wheels have enough
friction. This means that the wheels can be changed and add rubber like wheels introducing
more friction.

Other testing conditions

Two testing conditions were done. One with the university floor and one with a carpet, due to
the availability in the OptiTrack lab. This were the two extreme conditions. To test the system
it can be recommended to use a kind of carpet were the old system would slip and the new
system can, with the help of the slip feedback, maintain its grip on this carpet. This testing
condition would show a better validation of the system.

Robotics and Mechatronics Univeristy of Twente

27 i-Botics

Appendix

A Derivations

The derivations of the torques of the x-axis, y-axis and z-axis.

Derivation x-axis and y-axis

F = 1

R
τ (14)

F ′ =
p

2

2
F (15)

Fx = Fy =
p

2

2
F ′ (16)

Fx = Fy = 1

2R
τ (17)

Derivation z-axis

r =
√

l 2
1 + l 2

2 (18)

τz = ‖r‖‖F‖ si n(θ) (19)

τz =
√

l 2
1 + l 2

2 F ′
r (20)

τz =
√

l 2
1 + l 2

2 F ′si n(β) (21)

τz =
√

l 2
1 + l 2

2 F ′si n(α+45◦) (22)

τz =
√

l 2
1 + l 2

2 F ′si n(t an−1(
l2

l1
+45◦) (23)

τz = F ′ 1p
2

(
1√

l2
l1
+1

+
l2
l1√

l2
l1
+1

) (24)

τz = F ′ 1p
2

(l1 + l2) (25)

Using equation 14 and 15:

τz = 1

2R
(l1 + l2)τ (26)

Robotics and Mechatronics Univeristy of Twente

28 i-Botics

B Setup anti slip controller

The anti slip controller can be set up by using the following steps. It has been expected that
the platform package is already installed i on the PC

1. Power the platform
2. Connect the controller to your own laptop
3. Create an antislip package in the Catkin workspace as well and place the code from Ap-

pendix C in the src folder and call it segread. Also make sure the CMake file of the interface
is updated to the following:

1 cmake_minimum_required(VERSION 2.8.3)
2 project(antislip)
3

4 find_package(catkin REQUIRED COMPONENTS
5 roscpp
6 rospy
7 std_msgs
8)
9

10 catkin_package(
11

12)
13

14 include_directories(
15 ${catkin_INCLUDE_DIRS}
16)
17 include_directories(include ${catkin_INCLUDE_DIRS})
18

19 add_executable(segread src/segread.cpp)
20 target_link_libraries(segread ${catkin_LIBRARIES})

4. Create an launch file in the platform package called antislip with the following code:

1 cmake_minimum_required(VERSION 2.8.3)
2 project(antislip)
3

4 find_package(catkin REQUIRED COMPONENTS
5 roscpp
6 rospy
7 std_msgs
8)
9

10 catkin_package(
11

12)
13

14 include_directories(
15 ${catkin_INCLUDE_DIRS}
16)
17 include_directories(include ${catkin_INCLUDE_DIRS})
18

19 add_executable(segread src/segread.cpp)
20 target_link_libraries(segread ${catkin_LIBRARIES})

5. Go to the terminal of the platform PC

Robotics and Mechatronics Univeristy of Twente

29 i-Botics

ssh platform@IP_MASTER

6. start a different segway controller.

roslaunch platform robinseg.launch

7. Open another terminal of the platform pc and start the xsense driver

roslaunch xsense xsensedriver.launch

8. Every terminal now used needs to know that the platform pc is the master. This is done by
the following command:

export ROS_MASTER_URI=http://IP_MASTER:11311

9. Now launch the antislip file

roslaunch platform antislip.launch

10. launch the segread file

rosrun antislip segread

Robotics and Mechatronics Univeristy of Twente

30 i-Botics

C Code

1 #include "ros/ros.h"
2 #include "math.h"
3 // #include "std_msgs/String.h"
4 #include "segway_rmp/SegwayStatusStamped.h"
5 #include "sensor_msgs/Imu.h"
6 #include "geometry_msgs/Twist.h"
7 #include "std_msgs/Float64.h"
8 #include <tf/LinearMath/Matrix3x3.h>
9 #include <tf/LinearMath/Quaternion.h>

10 #include <algorithm>
11 #include <iostream>
12 #include <vector>
13

14 #define MOVING_AVERAGE_LENGTH 75
15 float scaling, scaling1,scaling2,scaling3,scaling4;
16 float lfs,lrs,rfs,rrs; //slip per wheel(l = left f = front s = slip)
17 float lfw,lrw,rfw,rrw;// wheel speeds of the encoder(w= wheel)
18 float lfwI,rfwI,lrwI,rrwI; // wheel speeds of the IMU(I = IMU)
19 float accX,accY;
20 float velX,velY,velZ;
21 float velOldX,velOldY;
22 float joyX,joyY,joyZ;
23 float movingAverage[MOVING_AVERAGE_LENGTH];
24 float average;
25 const float R = 0.125; // wheel radius
26 const float lx = 0.30019; // distances centre of the wheel and centre of the platform
27 const float ly = 0.13945;
28 bool still;
29 ros::Publisher vel_data;
30 ros::Publisher cmd;
31 geometry_msgs::Twist test;
32 geometry_msgs::Twist cmd_vel;
33

34 // %Tag(CALLBACK)%
35 void CallbackFront(const segway_rmp::SegwayStatusStamped::ConstPtr& msg) //writes the wheel

velocities to variables,→
36 {
37 lfw = msg->segway.left_wheel_velocity*(1/R);
38 rfw = msg->segway.right_wheel_velocity*(1/R);
39 }
40 void CallbackRear(const segway_rmp::SegwayStatusStamped::ConstPtr& msg) //writes the wheel

velocities to variables,→
41 {
42 lrw = msg->segway.left_wheel_velocity*(1/R);
43 rrw = msg->segway.right_wheel_velocity*(1/R);
44 }
45

46 void CallbackImu(const sensor_msgs::Imu::ConstPtr& msg) // writes the acceleration to a
variable while canceling out the gravity using pitch and roll,→

47 {
48

49 tf::Quaternion
bq(msg->orientation.x,msg->orientation.y,msg->orientation.z,msg->orientation.w);,→

50 double roll,pitch,yaw;
51 tf::Matrix3x3(bq).getRPY(roll,pitch,yaw);
52 accX = (msg->linear_acceleration.x + 9.81 * sin(pitch)) * cos(pitch);
53 accY = (msg->linear_acceleration.y - 9.81 * sin(roll)) * cos(roll);
54 velZ = msg->angular_velocity.z;

Robotics and Mechatronics Univeristy of Twente

31 i-Botics

55 }
56

57 void CallbackJoy(const geometry_msgs::Twist::ConstPtr& msg) // writes the twist from the
controller to the variables,→

58 {
59 joyX=msg->linear.x;
60 joyY=msg->linear.y;
61 joyZ=msg->angular.z;
62 }
63 // %EndTag(CALLBACK)%
64

65 void checkJoy() // checks if the robot is driving by looking at the wheels velocities
66 {
67 if ((lfw==0) and (rfw==0) and (lrw==0) and (rrw==0)){
68 still=true;
69 }
70 else{
71 still=false;
72 }
73

74 }
75 void getVel() // calculates the velocity when driving from the IMU data, by integrating. When

standing still everyting is set to 0.,→
76 {
77 if (still == true){
78 velX = 0;
79 velY = 0;
80 velOldX = 0;
81 velOldY = 0;
82 velZ = 0;
83 iets = 2;
84

85 }
86 else if (still == false){
87 velX = velOldX + accX*0.01;
88 velOldX = velX;
89 velY = velOldY + accY*0.01;
90 velOldY = velY;
91 iets = 1;
92 }
93 }
94

95 void getWheelVelocityImu() // calulates the wheel velocities bas on the intgerated data from
the IMU,→

96 {
97 lfwI = (1/R)*(velX - velY - (lx+ly)*velZ);
98 rfwI = (1/R)*(velX + velY + (lx+ly)*velZ);
99 lrwI = (1/R)*(velX + velY - (lx+ly)*velZ);

100 rrwI = (1/R)*(velX - velY + (lx+ly)*velZ);
101 }
102

103 void calculateSlip() //calculates the slip from the data of encoders and IMu, only when the
IMU data is smaller than the encoder data,→

104 {
105

106 if (still == false){
107 if (fabs(lfwI) <= fabs(lfw)){
108 lfs = 1 - fabs(lfwI)/fabs(lfw);
109 ROS_INFO("false");
110 }

Robotics and Mechatronics Univeristy of Twente

32 i-Botics

111 else{
112 lfs = 0;
113 }
114 if (fabs(rfwI) <= fabs(rfw)){
115 rfs = 1 - fabs(rfwI)/fabs(rfw);
116 ROS_INFO("false1");
117 }
118 else{
119 rfs = 0;
120 }
121 if (fabs(lrwI) <= fabs(lrw)){
122 lrs = 1 - fabs(lrwI)/(lrw);
123 ROS_INFO("false2");
124 }
125 else{
126 lrs = 0;
127 }
128 if (fabs(rrwI) <= fabs(rrw)){
129 rrs = 1 - fabs(rrwI)/fabs(rrw);
130 ROS_INFO("false3");
131 }
132 else{
133 rrs = 0;
134 }
135 }
136 else if (still==true){
137 lfs = 0;
138 rfs = 0;
139 lrs = 0;
140 rrs = 0;
141 }
142

143

144 }
145 void getScalingsFactor() // calculates the scaling of the velocity using the slip in the

wheels.,→
146 {
147 if (fabs(lfs) < 1){
148 scaling1 = 1 - fabs(lfs);
149 }
150 else{
151 scaling1 = 1;
152 }
153 if (fabs(rfs) < 1){
154 scaling2 = 1 - fabs(rfs);
155 }
156 else{
157 scaling2 = 1;
158 }
159 if (fabs(lrs) < 1){
160 scaling3 = 1 - fabs(lrs);
161 }
162 else{
163 scaling3 = 1;
164 }
165 if (fabs(rrs) < 1){
166 scaling4 = 1 - fabs(rrs);
167 }
168 else{
169 scaling4 = 1;

Robotics and Mechatronics Univeristy of Twente

33 i-Botics

170 }
171

172 scaling = fmin(scaling1, fmin(scaling2,fmin(scaling3,scaling4)));
173 }
174

175 void getMovingAverage() // moving average filter
176 {
177 for (int i = MOVING_AVERAGE_LENGTH; i > 1; i--) {
178 movingAverage[i-1] = movingAverage[i-2];
179 }
180 movingAverage[0] = scaling;
181 average = 0.0;
182 for (int i = 0; i < MOVING_AVERAGE_LENGTH; i++) {
183 average += movingAverage[i];
184 }
185 average /= MOVING_AVERAGE_LENGTH;
186 }
187

188

189 void scaleCmd() // scaling of the controller twist
190 {
191 if (abs(average) <= 1){
192 cmd_vel.linear.x = joyX* fabs(average);
193 cmd_vel.linear.y = joyY* fabs(average);
194 cmd_vel.angular.z = joyZ * fabs(average);
195 }
196 else{
197 cmd_vel.linear.x = 0;
198 cmd_vel.linear.y = 0;
199 cmd_vel.angular.z = 0;
200 }
201 }
202 void publish() // publishes all data for testing purposes.
203 {
204 test.linear.y = rfwI;
205 test.linear.z = average;
206 test.linear.x = rfw;
207 test.angular.y = scaling;
208 test.angular.z = scaling2;
209 test.angular.x = scaling3;
210

211 }
212

213 int main(int argc, char **argv){
214 ros::init(argc, argv, "segread");
215 ros::NodeHandle n;
216

217 ros::Subscriber sub_front = n.subscribe("/segway_rmp_node_front/segway_status", 1000,
CallbackFront); // all subscribers,→

218 ros::Subscriber sub_rear = n.subscribe("/segway_rmp_node_rear/segway_status", 1000,
CallbackRear);,→

219 ros::Subscriber sub_Imu = n.subscribe("imu/data", 1000, CallbackImu);
220 ros::Subscriber sub_Joy = n.subscribe("joy_vel", 1000, CallbackJoy);
221

222 ros::Publisher vel_data = n.advertise<geometry_msgs::Twist>("test", 1000); // all
publishers,→

223 ros::Publisher cmd = n.advertise<geometry_msgs::Twist>("cmd_vel", 1000);
224

225

226 ros::Rate r(100);

Robotics and Mechatronics Univeristy of Twente

34 i-Botics

227

228 while(ros::ok){ // main loop of functions
229 getVel();
230 checkJoy();
231 publish();
232 getWheelVelocityImu();
233 calculateSlip();
234 getScalingsFactor();
235 scaleCmd();
236 getMovingAverage();
237 ROS_INFO("vel x:: [%f]", velX); // all debugging
238 ROS_INFO("acc x:: [%f]", accX);
239 ROS_INFO("scaling :: [%f]", scaling1);
240 ROS_INFO("scaling :: [%f]", scaling2);
241 ROS_INFO("scaling :: [%f]", scaling3);
242 ROS_INFO("scaling :: [%f]", scaling4);
243 ROS_INFO("lfs :: [%f]", lfs);
244 ROS_INFO("lfs :: [%f]", lrs);
245 ROS_INFO("lfs :: [%f]", rfs);
246 ROS_INFO("lfs :: [%f]", rrs);
247 vel_data.publish(test);
248 cmd.publish(cmd_vel);
249 ros::spinOnce();
250 r.sleep();
251 }
252

253 // %Tag(SPIN)%
254 ros::spin();
255 // %EndTag(SPIN)%
256 return 0;
257 }
258 // %EndTag(FULLTEXT)%

Robotics and Mechatronics Univeristy of Twente

35 i-Botics

References

[Diegel et al., 2002] Diegel, O., Badve, A., Bright, G., Potgieter, J., and Tlale, S. (2002). Im-
proved mecanum wheel design for omni-directional robots. In Proc. 2002 Australasian
Conference on Robotics and Automation, Auckland, pages 117–121.

[Doroftei et al., 2008] Doroftei, I., Grosu, V., and Spinu, V. (2008). Design and control of an
omni-directional mobile robot. In Novel Algorithms and Techniques in Telecommunica-
tions, Automation and Industrial Electronics, pages 105–110. Springer.

[Junhui and Jianqiang, 2010] Junhui, L. and Jianqiang, W. (2010). Road surface condition de-
tection based on road surface temperature and solar radiation. In Computer, Mechatronics,
Control and Electronic Engineering (CMCE), 2010 International Conference on, volume 4,
pages 4–7. IEEE.

[Kuo et al., 2016] Kuo, C.-H. et al. (2016). Trajectory and heading tracking of a mecanum
wheeled robot using fuzzy logic control. In Instrumentation, Control and Automation
(ICA), 2016 International Conference on, pages 54–59. IEEE.

[Nagatani et al., 2000] Nagatani, K., Tachibana, S., Sofne, M., and Tanaka, Y. (2000). Improve-
ment of odometry for omnidirectional vehicle using optical flow information. In Intelligent
Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference
on, volume 1, pages 468–473. IEEE.

[Roelandts, 2015] Roelandts, T. (2015). The moving average as a filter.

[Salih et al., 2006] Salih, J. E. M., Rizon, M., Yaacob, S., Adom, A. H., and Mamat, M. R. (2006).
Designing omni-directional mobile robot with mecanum wheel. American Journal of Ap-
plied Sciences, 3(5):1831–1835.

[Sharkawy, 2010] Sharkawy, A. B. (2010). Genetic fuzzy self-tuning pid controllers for antilock
braking systems. Engineering Applications of Artificial Intelligence, 23(7):1041–1052.

[Soni et al., 2014] Soni, S., Mistry, T., and Hanath, J. (2014). Experimental analysis of
mecanum wheel and omni wheel. International Journal of Innovative Science, Engineering
& Technology, 1(3):292–295.

[Sukkarieh et al., 1999] Sukkarieh, S., Nebot, E. M., and Durrant-Whyte, H. F. (1999). A high
integrity imu/gps navigation loop for autonomous land vehicle applications. IEEE Trans-
actions on Robotics and Automation, 15(3):572–578.

[Tehrani et al., 2003] Tehrani, A. F., Doosthosseini, A. M., Moballegh, H. R., Amini, P., and
DaneshPanah, M. M. (2003). A new odometry system to reduce asymmetric errors for
omnidirectional mobile robots. In Robot Soccer World Cup, pages 600–610. Springer.

[Xsens et al., 2010] Xsens, N. et al. (2010). Mti and mtx user manual and technical documen-
tation.

Robotics and Mechatronics Univeristy of Twente

