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Abstract

V ibration-based Structural Health Monitoring (SHM) techniques are effective for detecting fatigue
damage in structures by assessing changes in the dynamic behavior. When it comes to structures

that exhibit significant nonlinear dynamic behavior, general SHM methods are not able to adequately
describe the occurring dynamical phenomena. Furthermore, previous studies have shown that for
flexible structures, changes in nonlinear system parameters were more sensitive to damage precursors
than changes in linear system parameters. These facts suggest that a proper understanding of nonlinear
dynamic properties is of high importance within SHM.

This work identifies changes in the nonlinear dynamic behavior of cantilever beams over various
stages of fatigue cycles by employing an experimental and analytical approach. The main aim was
to investigate to what extent the monitoring of nonlinear dynamic system parameters can result in
improved detection of damage precursors. A multidisciplinary literature review was conducted to gain
broad insights into the latest advancements in SHM. Experiments were carried out to characterize
linear and nonlinear system parameters of Al7075-T6 cantilever beams. The dynamic characterizations
included sine-sweep excitation (forced) and free vibration (transient). For each characterization, tests
for the nonlinear and linear region were conducted. A signal processing approach was applied to
convert the experimental data into useful results, such as backbone curves and damping skeletons.
By employing fatigue testing, the results were correlated to different levels of component health. An
analytical approach was carried out to develop the equation of motion (EoM) and to model the dynamic
response. Techniques applied to derive the EoM include Nonlinear Euler-Bernouilli and the Assumed
Modes method. The dynamic response was modeled using the Harmonic Balance method, the Method
of Averaging and numerical methods (Runge-Kutta). The research uncovers interesting changes in
various nonlinear properties due to the increasing presence of damage, and shows that the inclusion of
nonlinear analysis can lead to improved techniques in the field of SHM.
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1
Introduction

T he opening chapter begins by discussing the motivation behind the research performed for this

Master’s thesis in section 1.1. This is followed by a literature review in section 1.2, which provides

context and background for the current work, and current scientific gaps. Thereafter, in section 1.3,

the research goals, objectives, and research questions are stated. Finally, in section 1.4 the research

methodology is detailed.

1.1 Motivation

In aerospace applications, effective Structural Health Monitoring (SHM) systems are essential for

ensuring the reliability and safety of aircraft. The main goal of SHM is to detect structural anomalies

before reaching a critical damage level [1]. SHM is important for identifying the severity of damage due

to various failure mechanisms, such as shock, vibration fatigue, or thermal stresses [2] [3]. Because

SHM has significant potential for life-safety and economic benefits, there has been a rapid increase in

multidisciplinary research efforts, and technological improvements for advancements concerning the

reliability and sensitivity of SHM [4]. One of the earlier techniques applied in SHM is modal analysis,

which is established as a fundamental strategy in identifying fatigue damage within SHM. However,

modal analysis is a linear theory, and cannot be applied to significantly nonlinear systems [5–7]. In

reality, numerous engineering structures do not comply with the assumption of linear behavior and these

structures exhibit various nonlinear behaviors [7–9]. Engineers are often confronted with nonlinearities

in: the aerospace industry [8, 10], the military [11], robotics [12, 13] and MEMS devices [12, 14, 15].

The effect of nonlinearities on modal analysis is quite detrimental, because all the invariant system

parameters, which are generally taken for granted for a linear system, including resonant frequencies,

damping ratios, frequency response functions (FRFs) and modeshapes, now become dependent on the

magnitude of applied excitation [16]. When nonlinear effects in structures are no longer negligible,

then linear modal analysis cannot accurately describe the occurring dynamical phenomena [17, 18].

The study of nonlinearities in the monitoring of structures is highly essential for the development of

SHM techniques, since these effects can be incorrectly viewed as structural changes [19]. According

to Worden et al. [20] damage detection can be notably improved by incorporating nonlinear effects

during the extraction of damage features. Various techniques have been proposed to deal with nonlinear

systems, but a generally accepted technique remains undefined [19, 21].

Flexible beam structures are important elements, with widespread usage in airplane wings, helicopter
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CHAPTER 1. INTRODUCTION

blades, robot arms, MEMS devices and flexible satellites [13]. Usually beam elements are used as

simplified models for more complex structures or as precision mechanisms. If the amplitude of vibration

increases, beam structures are also subjected to significant nonlinear vibrations [13, 22]. The nonlinear

mechanics of these structures are a popular research interest [22–24].

A promising concept within fatigue damage identification is the detection of Damage Precursor

(DP)s, which are defined as observable early degradation in the material properties of a structure, that

precede the initiation of fatigue cracks [25]. To this end, researchers [11, 25, 26] have conducted

various microstructural experiments to investigate fatigue DPs in metal cantilever beams, including:

nanoindentation, Electron Backscatter Diffraction (EBSD), X-Ray Diffraction (XRD) and Atomic Force

Microscopy (AFM). The researchers were thereby able to observe changes in the material properties due

to increases in fatigue cycles, such as elastic modulus, residual stresses, crystal orientation, and grain

size. All these changes were detectable before large scale damage were present and can be considered

as evidence of potential DPs. These microstructural changes, as expected, lead to changes in the

macro-structural properties. Studies have shown that nonlinear system parameters for steel cantilever

beams exposed to transverse [26] and [27] vibration fatigue, specifically the nonlinear stiffness terms

in the equation of motion (EoM), was found to be more sensitive to fatigue damage precursors than

linear stiffness terms. Haynes et al. [11] reported similar nonlinear structural dynamic results for

aluminum cantilever beams exposed to random base excitation. In this study forward and backward

sine-sweeps were applied frequently to monitor the FRF response, which appeared to increase with

damage accumulation. The performed research related to DPs, suggests that proper understanding

of nonlinear dynamic properties is of high importance within SHM. There is significant room for

improvement in our understanding of how these parameters change over various stages of component

health for different materials.

This research work aims to investigate changes in the nonlinear dynamic response of flexible beams

over various stages of fatigue cycles. The fundamental goal is provide experimental and theoretical

tools to improve detection of DPs based on changes in nonlinear parameters in the equation of motion.

The tools are vibration-based detection, which include sine-sweep, step-sine, and free-vibration. Trends

can be extracted from each technique to detect and assess the severity of DPs. The experimental tools

were applied for flexible aluminum cantilever beams fatigued in a similar manor to [11, 26]. In this

study, nonlinear free-vibration appears to be the most time efficient with reasonable accuracy compared

to traditional methods. To this end, a multidisciplinary literature review was necessary to gain broad

insights into the latest advancements within SHM. It is important to point out that due to the substantial

breadth of SHM, it is difficult to survey all major advancements generated in the last ten years. Thus,

the majority of the survey includes studies focused on nonlinear phenomena.

1.2 Literature Review

Due to the substantial breadth of SHM, the primarily objective of literature review is to identify relevant

research related to the analysis of nonlinear dynamical systems, nonlinear structural dynamics, damage

detection methods, and damage precursors. Hereby the focus is primarily on, but not restricted to,

flexible structures. Several other topics deemed potentially useful for the research are also included.

2



1.2. LITERATURE REVIEW

The literature review is divided into the following categories:

1. System Identification and Data-Driven Methods (subsection 1.2.1)

2. Physics-Based Methods (subsection 1.2.2)

3. Hybrid Methods (subsection 1.2.3)

4. Damage Precursors (subsection 1.2.4)

5. Scientific Gaps and Paths for Improvement (subsection 1.2.5)

The review is not intended as a comprehensive review of all existingmethods related to thementioned

fields, but rather to provide numerous illustrations of approaches common in current literature. Figure 1.1

depicts a visual representation of the review structure, which also emphasizes the connections among

the sections of the review and and aims to enhance the reader’s understanding. This figure is further

explained in subsection 1.2.5. The review is also helpful in the selection of the most appropriate

techniques in order to accomplish the research goal.

Figure 1.1: Visual representation of methods used in the literature and areas for impovement.

1.2.1 System Identification and Data-Driven Methods

The field of System Identification (SI) focuses on creating models of dynamic systems from measured

input and output data [28]. The field is very broad with various techniques applicable to different

type of systems, e.g., linear, nonlinear, hybrid, nonparametric, etc. [28]. Within SI three types of
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CHAPTER 1. INTRODUCTION

model classifications are defined: white-box, black-box, and grey-box models [29]. White-box models

(bottom-up approach) are purely theoretical and based on first principles. Such models are synonymous

with the physics-based approach within SHM and Predictive Maintenance (PdM). In many cases,

white-box models are complicated to obtain due to the inherently complex nature of many systems.

Therefore, the model types that are dominant in the domain of SI are black-box and grey-box models.

In black-box modeling (top-down approach) no model form is assumed and it can be considered

purely data-driven and statistical. It can be viewed only in terms of the input and output data without

actual knowledge of the internal workings of the system. The third type is grey-box modeling, which

combines a model structure with data-driven techniques to complete the model. The model structure is

thereby assumed beforehand, and subsequently, the model parameters are estimated [30]. Data-driven

techniques can often be combined with machine learning to increase the accuracy and effectiveness of

anomaly detection. Models broadly used within nonlinear system identification include: Volterra series

[19, 31, 32], NARMAX [31–33] and artificial neural networks [19, 33].

Cheng et al. [33], who reviewed Volterra-Series-based nonlinear systemmodeling and its engineering

applications, stated that although many researchers have made progress in the past decades, the method

still presents many challenges. Brewick and Masri [21] explored a variety of data-driven identification

techniques for complex nonlinear dynamic systems. The Volterra/Wiener neural network (VWNN) was

hereby compared against several existing methods, including polynomial-based nonlinear estimators

and artificial neural network systems. The authors found that VWNN provided superior accuracy in

its estimates. The application of SI techniques for damage detection has also been explored by several

researchers. Shiki and Silva [19] proposed damage indicators based on Volterra series by considering

nonlinear contributions of the response of an aluminum beam test rig. The identified metric was sensitive

to structural changes even under the nonlinear range of motion. A Volterra model was also proposed by

Chatterjee [34] for a cantilever beam with a breathing crack. The model was based on the harmonic

probing method and the authors managed to correlate variations in the system response to the opening

of the crack. A new SHM framework was presented by Rabiei et al. [35] based on the evolution of DPs

using dynamic Bayesian networks. The method was suitable when a conventional damage indicator,

such as a crack, is difficult to measure. The method was successfully applied to estimate damage and

predict crack initiation in 7075-T6 aluminum samples subject to fatigue.

A data-driven technique with potential in damage identification is Symbolic Dynamic Filtering (SDF).

Several researchers have studied the theory of SDF and its various applications for anomaly detection

and pattern recognition. According to Gupta and Ray [36], the core concept of SDF is based on the

phase-space partitioning of a dynamical system to yield a symbolic alphabet and to obtain symbol

sequences from time series data. The time series data of sensors are processed and converted from

real numbers into discrete symbols. This process results in a so-called symbolic dynamical system that

can aid to understand the dynamical behavior of the original system. The key idea of SDF is then to

quantify deviations of the current pattern from the baseline pattern, which can indicate the occurrence

of anomalies. Rao et al. [37] presented a review of SDF and evaluated its performance for anomaly

detection compared to other types of pattern recognition techniques, such as Bayesian Filters and

Artificial Neural Networks. They concluded that SDF is well suited for health monitoring applications.

Patankar et al. [38] developed a data-driven signal processing method using SDF to identify anomalies

4



1.2. LITERATURE REVIEW

and monitor failure precursors. They stated the technique to be superior to conventional techniques

such as neural networks and principal component analysis.

The covered topics are only a fraction of all the existing SI methods. If the reader is interested in

more, a literature review of SI articles related to SHM was conducted by Sirca and Adeli [39], which

also includes approaches such as chaos theory and biologically-inspired approaches. The authors [39]

also stated that SI of real-life structures with nonlinear behavior subjected to unknown dynamic loading

is challenging and they believe a multi-paradigm approach might be the best strategy for this issue.

Based on the research related to data-driven SI and damage identification techniques, it can be

stated that these methods are promising for damage detection in nonlinear dynamical systems, however,

data-driven approaches go paired with a lack of thorough understanding of the system physics.

1.2.2 Physics-Based Methods

Physics-based methods are essentially bottom-up approaches. These methods require a proper un-

derstanding of the system physics and aim to provide accurate representations of reality. The main

advantage of these methods is that they can be linked to the physical properties of a system such as

changes in material properties. Of interest in this section are the fields of nonlinear dynamics, and

nonlinear solid mechanics. According to Lacarbonara [40], there is a need for a multidisciplinary ap-

proach to the analysis of structural systems. Nonlinear dynamics has overlaps with the fields of analytical

dynamics, and applied mathematics and physics. The current section outlines various techniques related

to nonlinear dynamic systems, nonlinear structural mechanics, and also treats general physics-based

damage identification methods.

The Method of Multiple Scales (MMS), which is a perturbation method, is widely used to provide

approximate solutions for systems with weakly nonlinear functions [41]. Several researchers have used

MMS to perform nonlinear system analyses on flexible beam structures. Usually, to perform the analysis,

the governing EoM is first derived using the Euler-Bernouilli beam theory and the extended Hamilton’s

principle. Hereafter the Galerkin approach is applied to discretize the equation and MMS is then used

for solving the nonlinear equation to obtain the response. This procedure was applied by Yan et al. [42],

and Singh et al. [15], who investigated the influence of nonuniform cantilever beams on the nonlinear

response. MMS was also used by Chakrapani and Barnard [43], who determined nonlinear system

parameters of aluminum and Pyrex beams.

Another technique applicable for identifying nonlinearities is Nonlinear Normal Modes (NNM). The

method is useful for interpreting a wide range of nonlinear dynamical phenomena, yet it also has a clear

relation to the common linear normal mode, which structural engineers are familiar with [44] [45].

Based on NNM, Peters et al. [46] proposed a methodology that was demonstrated using a cantilever

beam with a spring at its free end. By employing NNM, Lacarbonara et al. [47] proposed a damage

identification strategy, where they applied numerical methods to simulate damage on a flexible beam. A

schematic of their method is shown in Figure 1.2. They found that the nonlinear coefficients describing

the behavior of the beam were more sensitive to damage than the linear frequencies. This supports

the notion that the experimental identification of the nonlinear coefficients can be a viable strategy for

damage detection. NNM, however, is argued to be inaccurate when significant damping is present [48].

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Proposed damage identification strategy by Lacarbonara et al. [47].

A related approach is to search for a simplifying transformation of the nonlinear EoM using Normal

Form Theory (NFT) [49]. The theory has been used to treat various dynamics problems. In 2011, Neild

and Wagg [49] demonstrated that Normal Form analysis can be carried out on nonlinear vibration

problems. Four years later, the use of NFT was proposed by Neild et al. [48] as a superior method

compared to NNM. The authors showed how the method was able to predict nonlinear mode shapes,

and bifurcations accurately. Cammarano et al. [50] presented a method that exploited NFT to identify

the nonlinear system coefficients. NFT was also successfully applied by Shaw et al. [51], combined

with experiments on cantilever beams. They also showed how a local nonlinearity can introduce rich

dynamics into a structure that would otherwise be a typical case of linear modal dynamics.

Other methods were applied in recent research to model nonlinear behavior of flexible beam

structures. Belinchon et al. [52] obtained an approximate solution of the strongly nonlinear differential

equation describing the free vibrations of a cantilever beam by using a method based on the Laplace

transform and the convolution theorem. Wang et al. [53] proposed a strategy which was successful

for characterizing beam structures with a localised nonlinearity using a Finite Element Method (FEM)

model and experimental response data. Jamal-Omidi et al. [54] examined the nonlinear behavior of a

cantilever beam under free vibration analytically and experimentally. The PDE EoM was first derived

using Crespo da Silva and Glynn beam theory. The EoM was then discretized using Gallerkin method.

Subsequently, an exact solution was developed, which showed good agreement with the experiments.

Many researchers have studied the modeling and identification of fatigue damage by considering

changes in the dynamic response of structures. Ostachowicz and Krawczuk [55] investigated the effect of

cracks on the natural frequencies in a cantilever beam by employing fracture mechanics and a numerical

method. Mia et al. [56] extracted the natural frequencies, and mode shapes of the transverse vibration

for a cracked cantilever beam using FEM modeling to perform the analyses. Changes in the natural

frequency were correlated to crack location, depth and size. Tinga and Loendersloot [57] conducted a

comparison study of structural health monitoring (SHM), condition based maintenance (CBM), and

prognostics and health management (PHM), and proposed a methodology for integrating them. Various
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damage identification techniques were thereby discussed, including the effective Modal Strain Energy –

Damage Identifier (MSE-DI) algorithm [58], which is based on the comparison between the curvatures

of the mode shapes of pristine and damaged structures. To investigate fatigue damage, Kos et al. [59]

performed sweep-sine and random excitation experiments, and the Palmgren-Miner rule was applied to

calculate the fatigue life. Mrsnik et al. [60] used modal decomposition to link the fatigue damage with

various dynamic parameters.

Figure 1.3: Clarification of nonlinear FRFs, jump phenomena and backbone curves [61] [46].

1.2.3 Hybrid Methods

The hybrid methods draw on physics-based approaches, but combine system identification and signal

processing as a means for efficient analysis of nonlinear dynamic systems. Although not completely

belonging to bottom-up approaches, the techniques have a solid foundation based on the system’s

physics. A common ground within these methods is to conduct experiments and to apply processing

techniques to obtain useful metrics of nonlinear systems.

The Harmonic Balance Method (HBM) is a frequency domain method used to calculate the steady-

state response of nonlinear systems. This method can only be applied once the system EoM is known,

and this is usually assumed beforehand. According to Hosen and Chowdhury [62], who applied HBM to

approximate periods of a strongly nonlinear Duffing oscillator, the procedure is simple and takes little

computational effort, while also showing a good agreement compared with exact methods. A strategy

based on HBM was employed by Liao [63] to study the nonlinear oscillations of an airfoil. HBM was also

used by Motallebi and Sazesh [24] to investigate jump (Figure 1.3a) and bifurcation phenomena for a

geometrical nonlinear cantilever beam. Considering HBM, Lu et al. [64] introduced jump amplitudes

as a supplement condition in the estimation of various nonlinearities. Their method appeared to be

effective for systems exhibiting strong nonlinearities. Doughty et al. [65] applied HBM and MMS to

identify nonlinear modal behavior of cantilever beams. The research showed that the performance of

each method actually improved as the nonlinearities increased in magnitude. A comparison of NFT,

HBM, and MMS was performed by Hill et al. [41], where all methods gave good accuracy at low

response amplitudes, but NFT and HBM also give good accuracy as the response amplitude increases.
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Elliot et al. [66] investigated the accuracy of HBM, MMS and NFT for a MDOF oscillators. All three

methods produced accurate results, with errors less than 0.2% for NFT and HBM, and 1% for MMS.

A related technique for approximating nonlinear system behavior is the Incremental Harmonic

Balance (IHB) method, which is a combination of the Incremental method (Newton-Raphson procedure)

and the HBM method. IHB was applied by Dou and Jensen [67], where it showed good agreement with

a FEM method for modeling geometrically nonlinear beam structures. By applying IHB, Liu et al. [68]

investigated the aeroelastic response of an airfoil with a hysteresis nonlinearity. Various bifurcations

were detected as the flow speed was varied.

The Energy Balance Method (EBM) is a technique for solving strong nonlinear oscillators, which has

been stated to provide a more accurate result than HBM [69]. Using EBM, Akbarzade et al. [13] studied

the frequency-amplitude relationship for transversely vibrating beams, whereby it led to excellent

results. Hosen et al. [70] proposed an analytical technique based on EBM to obtain approximate

periodic solutions for three types of highly nonlinear oscillators.

First introduced several centuries ago in celestial mechanics, the Method of Averaging (MoA) has had

a profound influence in physics and engineering [71]. The technique can predict solutions of strongly

nonlinear oscillators. Through employing MoA, Zaghari et al. [18] researched the nonlinear dynamic

response of a cantilever beam under base excitation. Hereby the response amplitude was explained

analytically for various system parameters and it was in agreement with numerical results. Kumar

et al. [72] investigated the nonlinear behavior of a base-excited, flexible cantilever beam. Response

parameters were analyzed through the use of MoA and experiments were performed to validate the

analytically predicted behaviors. MoA was also used by Zhu [73] to study the dynamics of a 2DOF

vibration system with nonlinear damping and nonlinear stiffness.

Several researchers have investigated nonlinear phenomena occurring during aircraft flights. Ac-

cording to Dowell [74], who reviewed recent advances in the field of nonlinear aeroelasticity, many

physical mechanisms can lead to nonlinear aeroelastic response during flights. Fuellekrug and Goege

[75] described an experimental strategy for nonlinear modal identification of nonlinear effects within

complex aerospace structures. A method called Modal force appropriation was thereby used to identify

the nonlinear restoring forces. Piraccini et al. [76] presented a novel approach for testing structural

components to nonlinear vibrations. Instead of using common electromagnetic shakers they employed

an air-jet excitation method, which drives the test specimens with a contactless pulsed air-jet force. The

authors measured the nonlinear vibration response in aerospace composite blades. Through a signal

processing approach, nonlinear FRFs, nonlinear damping ratios and backbone curves, were obtained.

The Backbone Curve is an invaluable tool capable of offering a better understanding of the nonlinear

system behavior (as shown by the dashed line in Figure 1.3b). In backbone curves, the natural frequency

is plotted as a function of the system response amplitude [10]. Backbone curves can be obtained by

performing a series of sine-sweeps at different amplitudes or by processing the free decay signal. Several

techniques exist for the extraction of backbone curves from free decay data, including the Hilbert

transform, Wigner–Ville distribution and the Wavelet transform [77]. However, these methods can be

sensitive to noise, which is detrimental to their estimation capabilities. Londono et al. [10] presented a

technique for the extraction of backbone curves of damped nonlinear systems from resonance decay

responses. This experimental approach, which is based on the Resonance Decay Method (RDM), was
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proved well suited of structures exhibiting nonlinear behavior. Two years later, Londono et al. [78]

presented a similar identification method for structures containing nonlinear stiffness, again using

backbone curves. The results between the decay response and stepped sine seemed to agree well with

each other. Another way of experimentally obtaining backbone curves, is Control-Based Continuation

(CBC). This technique entails testing nonlinear dynamic systems in a controlled manner and thereby

assessing the dynamic features. According to Renson et al. [77], who compared the use of CBC and

RDM, the repeatability and results of both methods were excellent. Pickard [79] used backbone curves

to assess changes in nonlinear response of composite plates over different stages of high-cycle fatigue.

The backbones were obtained through sine-sweep experiments with various excitation amplitudes. The

results showed not just the reductions in frequency, but also indicated variations in the gradient of the

softening and stiffening regions of the response. His obtained results are shown in Figure 1.4. The

author concluded that there is a clear potential of using changes in nonlinear behaviour as an indicator

of damage development.

Figure 1.4: Backbone curves obtained by Pickard [79] for bending mode 2-4.

1.2.4 Damage Precursors (DPs)

As introduced in section 1.1, damage precursors are an interesting research area. Examples of measurable

DPs to fatigue crack development include changes in the microstructure, electrical signal, acoustic

response or mechanical response of a structure [27]. In addition to the findings stated in section 1.1,

several DP-related studies are discussed in the following.

Vantadori et al. [80] proposed a methodology to assess the development of embryonic cracks

in structures under high-cycle multiaxial random vibrations. Hereby the frequency-domain critical

plane criterion was outlined and evaluated using experimental results of steel cantilever beams under

nonlinear base vibration. Cole et al. [25] provided insight into fatigue DPs and provided a framework

for connecting the materials evolution (micro-scale) to nonlinear structural dynamics (macro-scale) by

considering microstructural transformations of steel cantilevers prior to conventional damage formation.

By performing nanoindentation, they showed that the indentation modulus of the materials decreased by

up to 50% in high-stress areas. Through employing Electron Backscatter Diffraction (EBSD) (Figure 1.5),

X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM), the researchers were able to observe

additional microstructural changes related to residual stresses, crystal orientation, and grain size. A
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damage precursor indicator was proposed by Haynes et al. [11] based on the nonlinear dynamic

behavior of aluminum cantilever beams. Macro- and micro-testing was performed. The observed

changes in the material microstructure and dynamic response were detectable before the onset of large

scale damage and can be considered as evidence of DPs. Habtour et al. [5] proposed an integrated

materials-structures-dynamics approach to improve the overall structural state awareness. The main

idea was to track changes in the energetics of the materials-structures-dynamics states and connect

these traditionally detached fields to enable improved damage precursor detection within SHM. Various

methods were discussed, including the restoring force surface method for the global states, and EBSD

characterizations for the local material state, as shown in Figure 1.5.

Figure 1.5: EBSD results for 1095 steel cantilevers exposed to nonlinear harmonic oscillation. The results show
clear changes in grain size and grain orientation prior to crack initiation (Obtained from Habtour et al. [5]).

The findings related to damage precursors suggest that harnessing and exploiting damage precursor

detection holds promise in improving the reliability and resilience of assets by assessing oncoming

damage in a very early stage. There is much that still needs to be learned about fatigue DPs. Research

into the microstructural evolution and resulting changes in the nonlinear dynamic responses of fatigue

structures are expected to be highly advantageous for future SHM applications.

1.2.5 Scientific Gaps and Paths for Improvement

Referring back to Figure 1.1, possible paths for improvement are visualized by the red dashed lines. The

interpreted gaps and improvement opportunities are detailed in the following.

Currently, there is still a lack in understanding of how DP-related microstructural properties change

over usage cycles. It is unknown how these microstructural changes affect the global dynamic behavior

compared to fatigue cracks. There is much room for improvement within this domain.

Additionally, most techniques in experimental nonlinear dynamics and signal processing assume

an ODE EoM a priori. For flexible structures subject to fatigue loading, this assumption can be highly

inaccurate and incorporation of nonlinear structural mechanics (solid mechanics) becomes necessary.

This incorporation would also enable to establish the link to microstructural DP-related changes.

Much research has been performed for experimental techniques in identifying nonlinear dynamic

behavior, but these techniques are not incorporated into current SHM methods. There has been minimal

overlap between nonlinear dynamics and SHM. Most SHM methods appear to use linear methods to

analyze structures, which are inaccurate for numerous systems that show nonlinear behaviour. There is

still a lack of knowledge regarding how nonlinear parameters change over fatigue cycles compared to

general (linear) parameters for different types of structures. It is possible that nonlinear dynamics can

be exploited to improve current SHM techniques.
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1.3 Research Goal, Objectives and Research Questions

The goal of this work is to investigate changes in nonlinear system properties of cantilever beams over

various stages of component health. The focus is on changes in the global dynamic behavior, but with

further research into the microstructural phenomena in mind, which could bridge the two areas in

the future. Hence, nonlinear structural mechanics and nonlinear dynamics are the scope of this work

(Figure 1.6). The research is geared towards finding improved precursors to damage (Figure 1.7a).

Figure 1.6: Scope of this work

To realize the aim of this work, the following objectives are defined:

• Develop an analytical method to model nonlinear dynamic behavior based on the system physics

• Develop an experimental and signal processing approach to characterize nonlinear system param-

eters over different stages of fatigue cycles

• Analyze and compare the results of the analytical model and experiments

• Elaborate on the value and potential applications of monitoring nonlinear dynamic parameters

Drawing on the previous sections, the following main research question is postulated:

� Can nonlinear dynamic analysis lead to improved damage precursor detection and why?

(a) The way forward for damage detection (b) Potential increased sensitivity of nonlinear parameters

Figure 1.7: Main research ideas

The main question is broken down into several sub-questions, which are:

1. Which nonlinear effects (e.g. stiffness, damping, inertial) significantly contribute to the system

dynamics and are therefore important to include in the analysis?

2. Can the applied analytical model accurately describe the experimental results?
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3. How sensitive are the changes in nonlinear parameters over fatigue cycles compared to changes

in the standard linear parameters? (visualized in Figure 1.7b)

4. What is the potential value of including nonlinear analysis in SHM applications?

1.4 Methodology

To accomplish the stated research goal and objectives, a strategic research method has been developed,

which is visualized in Figure 1.8. An analytical approach and an experimental approach are followed.

Based on the review, suitable analytical and experimental methods are chosen. As these methods are

thoroughly detailed in further chapters, they are discussed briefly here.

The analytical approach was followed to develop the Equation of Motion (EoM) for the system and

to model its response, which were detailed in Chapter 2. Techniques applied to derive the EoM include

the Nonlinear 2D Euler-Bernouilli beam theory and the Assumed Modes method. To model the system

response, HBM, MoA and numerical methods (Runge-Kutta) were employed. Experiments were set up

and carried out to characterize linear and nonlinear system parameters over different levels of fatigue.

A cantilever beam made of aluminum (Al 7075-T6) was used as the system of focus. The dynamic

characterizations included sine-sweep excitation (forced), and free vibration (transient). For each

characterization, tests for the nonlinear and linear region were conducted. A signal processing approach

was subsequently applied to convert the collected experimental data into useful results. By employing

fatigue testing, the results were correlated to different levels of component health. The experimental

method and the data processing approach were detailed in Chapter 3. The experimental and analytical

results were compared and discussed in Chapter 4. Finally, Chapter 5 contains the conclusions and

recommendations for future work.

Figure 1.8: Research Methodology

12



C
h
a
p
t
e
r

2
Analytical Approach

T his chapter details the analytical methods applied for modeling the dynamic response of cantilever

beams. Firstly, in section 2.1, the kinematics are derived for the dynamic system, and the equation of

motion is developed. Hereafter various analytical methods are explored to model the nonlinear vibration

response of the cantilever beam system. These methods include Harmonic Balance (section 2.2), the

Method of Averaging (section 2.3), and Runge-Kutta (section 2.4).

2.1 Equation of Motion Development

A cantilever beam is considered having a uniform cross-section with a length L, width b, and thickness

h. The beam has a uniform volumetric density %, and cross-sectional area A. The distributive mass

is denoted by ms , and the rotary inertia is denoted by Ir . The beam is clamped rigidly to a support

base boundary, which is able to move vertically described by the base displacement Y , as shown in

Figure 2.1. The support boundary is excited harmonically in the transverse direction. The selected

reference configuration of the beam is a straight stress-free state.

Figure 2.1: The nonlinear 2D Euler-Bernoulli beam theory with the undeformed coordinate system x y and the
deformed coordinate system ξη.

If the length to thickness ratios of structures are ≥ 10, they can be represented using an Euler-

Bernoulli beam model [23]. Since the beam length to width ratio is kept short (<30), the assumption

can be made that the beam undergoes purely planar flexural vibrations, as long as the cross-section
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CHAPTER 2. ANALYTICAL APPROACH

geometry remains symmetric with respect to the beam’s centerline [25]. The beam is assumed to be

inextensible, which means that the stretching of the beam’s neutral axis can be neglected. The effects

of torsion and shear deformation are also ignored in the analysis [25]. To account for the various

nonlinearities, the Nonlinear 2D Euler-Bernoulli beam theory is followed as described in [81].

Two coordinate systems are hereby used to describe the undeformed and deformed geometries of an

initially straight beam. The x y system is a Cartesian system describing the undeformed geometry and

the ξη system is a local, orthogonal curvilinear coordinate system describing the deformed geometry, as

shown in Figure 2.1. Each differential beam element has infinitesimal thickness ds and a fixed finite area.

The base motion causes each point on the undeformed cross-section of the beam to experience an elastic

displacement. The deformation with respect to the x, and y axes along the beam’s undeformed arclength

from the fixed-end to a reference point, s, and time, t , are expressed in terms of two displacements and

one rotation: axial displacement, u(s, t ), transverse displacement, v(s, t ) and rotational angle, θ(s, t ).

These displacements are visualized in Figure 2.2. Throughout the analysis the overdots (˙) denote

the temporal partial derivatives with respect to time, t , and the primes ( ′ ) indicate the spatial partial
derivatives with respect to position, s.

Figure 2.2: The displacements u and v and rotation angle θ [81].

The displacement vector can be expressed as follows:

R = (s +u)ix + viy +ηiη (2.1)

By substituting iη =−sinθix +cosθiy, this reduces to:

R = (s +u −ηsinθ)ix + (v +ηcosθ)iy (2.2)

The time derivative of the displacement vector, with Ẏ included to account for the base fixture

velocity in the transverse direction, becomes:

Ṙ = (u̇ −ηθ̇cosθ)ix + (Ẏ + v̇ −ηθ̇ sinθ)iy (2.3)

The kinetic energy of the cantilever beam system can be expressed as [27]:

T = 1

2

∫ L

0

∫
A
%Ṙ · ṘdA ds (2.4)
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Substituting Equation 2.3 in Equation 2.4 then results in:

T = %

2

∫ L

0

∫
A

[
(u̇ −ηθ̇cosθ)ix + (Ẏ + v̇ −ηθ̇ sinθ)iy

]2
dA ds (2.5)

T = %

2

∫ L

0

∫
A

[
(u̇2 + v̇2 + Ẏ 2 +2v̇ Ẏ +η2θ̇2 −2ηu̇θ̇cosθ−2ηv̇ θ̇ sinθ−2ηẎ θ̇ sinθ

]
dA ds (2.6)

The following parameters are set:

ms =
∫

A
%dA Ir =

∫
A
%η2 dA (2.7)

Ir = %

3

∫ + b
2

− b
2

h3

4
dζ= %hb

(
h2

12

)
= msh2

12
(2.8)

The product of inertia is set to zero because the reference axis coincides with the mass centroid and

the associated terms can thus be omitted from analysis.

Upon substitution and elimination of irrelevant terms in Equation 2.6, the following is obtained:

T = 1

2

∫ L

0

[
ms

[
u̇2 +

(
v̇ + Ẏ

)2]+ Ir θ̇
2
]

ds (2.9)

The strain energy is considered to be a function of the bending strain only, because of the inex-

tensionality assumption, which renders the axial strain to be zero. The potential energy due to the

gravitational force is considered negligible as the beam is considered straight in equilibrium position.

Therefore the expression for the total potential energy of the system becomes:

Π= 1

2

∫ L

0
E Iρ2 ds (2.10)

where: E is the material elastic constant (Young’s modulus),

I is the second moment of inertia,

ρ is the normalized bending curvature (associated with pure bending).

It follows from Figure 2.2 that the axial strain is given by:

e =
√

(1+u′)2 + v ′2 −1 (2.11)

By applying the inextensionality constraint (e = 0) this reduces to:

(1+u′)2 + v ′2 = 1 (2.12)

To express the nonlinear displacement and its partial derivatives in convenient forms, Taylor Series

expansions are performed and terms up to the cubic order are kept. It is assumed that u and v are small
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but finite and the influence of higher order terms is insignificant. The simplification process begins by

obtaining up to the order three Taylor series expansions of u′ and θ as follows [81]:

u′+1 =
√

1− v ′2 = 1− 1
2 v ′2 − 1

8 v ′4 − 1
16 v ′6 − 5

128 v ′8 + ..., u′ ≈−1
2 v ′2 (2.13a)

sinθ = v ′, θ = arcsin v ′ = v ′+ 1
6 v ′3 + 3

40 v ′5 + 5
112 v ′7 + ..., θ ≈ v ′+ 1

6
v ′3 (2.13b)

The time derivative of (θ) and the squared thereof are approximated by:

θ̇ ≈ v̇ ′+ 1
2 v̇ ′v ′2, θ̇2 ≈ v̇ ′2 + v̇ ′2v ′2 (2.14)

The normalized bending curvature and the squared curvature become:

ρ = θ′ = v ′′+ 1

2
v ′′v ′2 (2.15a)

ρ2 = v ′′2 + v ′′2v ′2 + 1

4
v ′′2v ′4 ≈ v ′′2 + v ′′2v ′2 (2.15b)

To express the time derivates of u in terms of v , the following is obtained:

u =−1

2

∫ ξ

0
v ′2 ds, u̇ =−1

2

∂

∂t

∫ ξ

0
v ′2 ds, u̇2 = 1

4

( ∂
∂t

∫ ξ

0
v ′2 ds

)2
(2.16)

Subsequently, the kinetic and potential energies are expressed as follows:

T = 1

2

∫ L

0
ms

[
1

4

( ∂
∂t

∫ ξ

0
v ′2 ds

)2 +
(
v̇ + Ẏ

)2
]

ds + 1

2

∫ L

0
Ir

(
v̇ ′2 + v̇ ′2v ′2

)
ds (2.17a)

Π= 1

2

∫ L

0
E I

(
v ′′2 + v ′′2v ′2

)
ds (2.17b)

In a real dynamic beam system, damping is always present. Hereby a part of the mechanical motion

is converted to heat, sound or other forms of energy. The damping force present during the oscillations

of the beam is also included in the analysis by introducing a term for the dissipative energy, which

is classified as non-conservative energy. A convenient way of treating damping forces is by the use of

Rayleigh ’s dissipation function where the dissipated energy can be expressed in terms of the linear

viscous damping as follows [82]:

D = 1

2

∫ L

0
cv̇2d s (2.18)

where c is the viscous damping coefficient.

Unlike discrete systems where the governing equations are Ordinary Differential Equations (ODEs),

continuous or distributed mass systems are governed by spatial-temporal Partial Differential Equations

(PDEs). Therefore, these systems require converting the PDEs (as the one expressed by Equation 2.17)

to more manageable temporal forms. This can be achieved by the use of various discretization methods.

Common methods used for the discretization of such problems include the Rayleigh-Ritz method and
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the Gallerkin method [83]. In this work, the Assumed-Modes method is applied to obtain the discretized

EoM for the cantilever beam system. This method is closely related to the Rayleigh-Ritz method and

it is best suitable to model the forced response. The method removes the position dependence from

the PDEs such that the displacement at a single point on the structure can be expressed as a function

of time only [84]. The Assumed-Modes method begins with the discretization of the boundary-value

problem. The method requires assumed approximate functions for the mode shapes of the continuous

system. These mode shapes are then substituted into the PDEs. The Assumed Modes expansion and

Euler-Lagrangian approach together can be utilized to ensure stability and periodicity analysis [85].

Assumed solutions are the response contribution of n-th modes [84], given by:

v(t , s) =
N∑

n=1
Ψn(s)qn(t ) (2.19)

where Ψn denotes the eigenfunctions of the continuous structure, which is given by a sufficiently

differentiable orthogonal set of trial functions to satisfy the kinematic boundary conditions of the system

and qn denotes the generalized coordinates, which are a function of time, that represent the time

modulation of the nth mode and Ψn .

Considering the single mode assumed solution (first mode only; N = 1), v can now be expressed in

terms of Ψ and q:

v(t , s) =Ψ(s)q(t ) (2.20)

Subsequently, by substituting the assumed solution, the kinetic, potential and dissipative energies

are now expressed as follows:

T = 1

2

[
ms

∫ L

0
Ψ2 ds + Ir

∫ L

0
Ψ′2 ds

]
q̇2 + 1

2

[
ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2
ds + Ir

∫ L

0
Ψ′4 ds

]
q2q̇2

+
[

ms

∫ L

0
Ψds

]
Ẏ q̇ + 1

2

[
ms

∫ L

0
ds

]
Ẏ 2

(2.21a)

Π= 1

2

[∫ L

0
E IΨ′′2 ds

]
q2 + 1

2

[∫ L

0
E IΨ′′2Ψ′2 ds

]
q4 (2.21b)

D = 1

2

[
c
∫ L

0
Ψ2 ds

]
q̇2 (2.21c)

For distributed-parameter oscillatory systems (continuous systems) Lagrangian mechanics are the

method of choice for deriving equations of motion [84]. The Euler-Lagrangian equation is applied. With

a term included to account for dissipative energy, this equation is expressed as [82]:

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
+ ∂D

∂q̇
= 0 (2.22)

where L denotes the Lagrangian for a system, which is defined by: L = T −Π. Noting that the potential
energy is not a function of the generalized velocities, Equation 2.22 is now written as:

∂

∂t

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂Π

∂q
+ ∂D

∂
.

q
= 0 (2.23)
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The individual terms of Equation 2.23 are worked out as follows:

∂T

∂q
=

[
ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

]
qq̇2 (2.24a)

∂Π

∂q
=

[∫ L

0
E IΨ′′2 ds

]
q +2

[∫ L

0
E IΨ′′2Ψ′2 ds

]
q3 (2.24b)

∂D

∂q̇
=

[
c
∫ L

0
Ψ2 ds

]
q̇ (2.24c)

∂T

∂q̇
=

[
ms

∫ L

0
Ψ2 ds + Ir

∫ L

0
Ψ′2 ds

]
q̇ +

[
ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

]
q2q̇

+
[

ms

∫ L

0
Ψds

]
Ẏ

(2.24d)

∂

∂t

(
∂T

∂
.

q

)
=

[
ms

∫ L

0
Ψ2 ds + Ir

∫ L

0
Ψ′2 ds

]
q̈ +

[
ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

]
q2q̈

+2

[
ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

(∫ L

0
Ψ′4 ds

) ]
qq̇2 +

[
ms

(∫ L

0
Ψds

)]
Ÿ

(2.24e)

Upon obtaining and rearranging the result of the Euler-Lagrangian, the following is produced:

[
ms

∫ L

0
Ψ2 ds + Ir

∫ L

0
Ψ′2 ds

]
q̈

+
[

ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

]
q2q̈

+
[

ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

]
qq̇2

+
[

c
∫ L

0
Ψ2 ds

]
q̇

+
[∫ L

0
E IΨ′′2 ds

]
q

+
[

2
∫ L

0
E IΨ′′2Ψ′2 ds

]
q3

=−
[

ms

∫ L

0
Ψds

]
Ÿ

(2.25)

By introducing new coefficients to simplify Equation 2.25, the resulting equation of motion can now

be formulated as:

m1q̈ +m3

(
q2q̈ +qq̇2

)
+ c1q̇ +k1q +k3q3 = mb Ÿ (2.26)

18



2.1. EQUATION OF MOTION DEVELOPMENT

where:

Linear inertial coefficient: m1 = ms

∫ L

0
Ψ2 ds +

∫ L

0
IrΨ

′2 ds

Nonlinear inertial coefficient: m3 = ms

∫ L

0

(∫ ξ

0
Ψ′2 ds

)2

ds + Ir

∫ L

0
Ψ′4 ds

Viscous damping coefficient: c1 = c
∫ L

0
Ψ2 ds

Linear stiffness coefficient: k1 =
∫ L

0
E IΨ′′2 ds

Cubic stiffness coefficient: k3 = 2
∫ L

0
E IΨ′′2Ψ′2 ds

Driving inertial coefficient: mb =−ms

∫ L

0
Ψds

(2.27)

Similar expressions for a cantilever beam EoM were obtained and applied by researchers [23, 26].

To determine the coefficients, the derived equations are coded in Matlab, by using the code created by

[26] and making modifications to fit the current use case.

The mode shapes are obtained using the widely known differential eigenvalue problem, as applied

in [84]. In the case of free vibration of a cantilever beam, this takes the form of the following differential

equation:
d4Ψ(x)

dx4 −β4Ψ(x) = 0, 0 < x < L; with: β4 = ω2ms

E I
(2.28)

The general mode shape can thereby be expressed as [84]:

Ψ(x) =α1 cosβx +α2 sinβx +α3 coshβx +α4 sinhβx (2.29)

In order to produce the modal equations, the boundary conditions for a cantilever beam are applied

on Equation 2.29, which are:

Ψ(x) = 0, Ψ′(x) = 0, at x = 0

Ψ′′(x) = 0, Ψ′′′(x) = 0, at x = L
(2.30)

Applying the boundary conditions leads to the characteristic equation:

cos(βL)cosh(βL) =−1 (2.31)

The transcendental equation is solved numerically to produce the eigenvalues, of which the first

three solutions of βL are: β1L = 1.875104, β2L = 4.694091, β3L = 7.854757. The first three mode

shapes are visualized in Figure 2.3.

After applying the boundary conditions, the corresponding mode shape for each vibrational mode

(n) can then be expressed as [26]:

Ψn(x) = An

(
cos(βn x)−cosh(βn x)+ sin(βnL)− sinh(βnL)

cos(βnL)+cosh(βnL)

(
sin(βn x)− sinh(βn x)

))
(2.32)
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Figure 2.3: First three analytically derived mode shapes

The eigenfunction and its spatial derivatives necessary for calculating the coefficients are thus:

Ψn(x) = An

(
cos(βn x)−cosh(βn x)+Cn

(
sin(βn x)− sinh(βn x)

))
(2.33a)

Ψ′
n(x) = Anβn

(
− sin(βn x)− sinh(βn x)+Cn

(
cos(βn x)−cosh(βn x)

))
(2.33b)

Ψ′′
n(x) = Anβ

2
n

(
−cos(βn x)−cosh(βn x)+Cn

(− sin(βn x)− sinh(βn x)
))

(2.33c)

where:

Cn = sin(βnL)− sinh(βnL)

cos(βnL)+cosh(βnL)
(2.34)

From this, the natural frequencies for the nth mode can be obtained:

ωn = (βnL)2

√
E I

msL4 (2.35)

The eigenvectors are normalized by the total mass of the system to obtain the modal amplitude

constant An , such that:

∫ L

0
msΨiΨ j ds +

∫ L

0
IrΨ

′
iΨ

′
j ds = δi j (2.36)

where δi j is the Kronecker delta (δi j = 1 for i = j ).

Thus An is calculated using:

An =
√√√√ 1

ms
∫ L

0

(
Ψ
An

)2 ds + Ir
∫ L

0

(
Ψ′
An

)2 ds
(2.37)

The final equation of motion for the cantilever beam system then becomes (substitute F̂ = mb Ÿ ):

q̈ +m3

(
q2q̈ +qq̇2

)
+ c1q̇ +k1q +k3q3 = F̂ (2.38)
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2.2 Harmonic Balance

Within SHM, the most widely-used method of visualizing the input–output properties of a dynamic

system is by means of the FRF. The Harmonic Balance Method (HBM) is an applied mathematical

method which allows the FRF approximation of nonlinear systems [16]. Thus, the steady-state response

of nonlinear differential equations can be calculated in the frequency domain. In this work, HBM is

applied to simulate the response of the slow sine-sweep excitation, which is essentially equivalent to

the steady state amplitude of the beam due to stepped sine excitation. HBM is also applicable for

differential equations where the nonlinear terms are not small [86]. One of the major advantages of

HBM is that the different nonlinearities are additively separable within the technique [16]. This means

that an additional nonlinearity can easily be incorporated into the existing model. Additionally, unlike

numerical techniques for solving ODEs, HBM calculates equivalent linear and nonlinear expressions for a

dynamical systems algebraically more efficiently. The expressions state for example the magnitude of the

effective stiffness or the effective damping as a function of the response amplitude. Those expressions

can be employed to identify experimental coefficients through curve fitting techniques on experimental

results, such as backbone curves and damping skeletons (which are discussed in chapter 3).

2.2.1 Nonlinear Stiffness

This section details the harmonic balance method for solving the equation of motion for a damped

dynamic system with a cubic stiffness, which is known as the damped Duffing oscillator [16]. The

equation of motion of this system takes the following form:

q̈ + c1q̇ +k1q +k3q3 = F̂ sin(ωt −φ) (2.39)

where ω is the excitation frequency and φ is the phase.

Upon using HBM, it is assumed that the response due to a sinusoidal excitation is a sinusoid, and

has the same frequency. Hereby, a harmonic trial solution is substituted into the EoM (2.39). Using the

first-order trial solution, q =αsin(ωt ), where α is the amplitude, yields:

−ω2αsin(ωt )+ c1ωαcos(ωt )+k1αsin(ωt )+k3α
3 sin3(ωt ) = F̂ sin(ωt −φ) (2.40)

After applying the trigonometric relationships (sin3θ = 3sinθ−4sin3θ), and (sin(A−B) = sin A cosB −
cos A sinB), the following is obtained:

−ω2αsin(ωt )+ c1ωαcos(ωt )+k1αsin(ωt )+k3α
3
(

3
4 sin(ωt )− 1

4 sin(3ωt )
)

= F̂ sin(ωt )cosφ− F̂ cos(ωt )sinφ
(2.41)

Equating the coefficients of sin(ωt ) and cos(ωt ) yields the following equations:

−ω2α+k1α+ 3
4 k3α

3 = F̂ cosφ (2.42)

c1ωα=−F̂ sinφ (2.43)

Squaring and adding Equation 2.42 and Equation 2.43 results in:
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F̂ 2 =α2
[(−ω2 +k1 + 3

4 k3α
2)2 + c2

1ω
2
]

(2.44)

F̂ 2

α2 =ω4 + (
c2

1 −2k1 − 6
4 k3α

2)ω2 + 9
16 k2

3α
4 + 6

4 k1k3α
2 +k2

1 (2.45)

Upon applying the quadratic formula, the roots are obtained, which yields the following expression

for ω, based on a given input force and response amplitude:

ω1,2 =

√√√√(
k1 + 3

4 k3α2 − 1
2 c2

1

)
±

√
−c2

1

(
k1 + 3

4 k3α2 − 1
4 c2

1

)
+ F̂ 2

α2 (2.46)

The system backbone curve is [87]:

ωbb =
√

keq − 1
2 c2

1 (2.47)

where, keq is the equivalent stiffness of the dynamic system, which is:

keq = k1 + 3
4 k3α

2 (2.48)

2.2.2 Nonlinear Damping

In addition to viscous damping forces encountered by a vibrating system, nonlinear damping can also

be present at high response amplitudes. Anderson et al. [88] and Malatkar [83] showed that including

quadratic damping in an analytical model may significantly improve the agreement between experimen-

tal and theoretical results for vibrating flexible beams. Quadratic damping is usually attributed to drag

forces acting on cantilever beams [83, 89]. In the current work, the contribution of nonlinear damping

is included in the analysis. Typically, the magnitude of nonlinear damping coefficients are determined

experimentally [88, 89].

In the study of nonlinear oscillations, the influence of quadratic damping can be expressed as c2|q̇|q̇
[90]. Hereby c2 is the quadratic damping coefficient and the absolute velocity term (|q̇|) is included
to ensure that the force is always opposing the velocity. For compatibility, c2, similar to the other

coefficients, is also normalized by the mass.

The following damping equation is now considered, which includes linear and quadratic damping:

fd (q̇) = c1q̇ + c2|q̇|q̇ (2.49)

HBM is now applied to obtain the equivalent damping equation, but in a different manner than in

subsection 2.2.1. The analysis performed to obtain the equivalent stiffness, although effective, is not

very systematic and for other nonlinearities that manner of implementation could fail to produce a valid

result [16]. Fortunately, there is a simple procedural way of implementing the HBM method that works

for all types of nonlinearities, which is described in [16].
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Hereby the relevant function (e.g., stiffness function, damping function or inertial function) first

has to be expanded as a Fourier Series [16]. The fundamental terms are thereby considered the only

important parts of this expansion. These terms are denoted by a0, a1 and b1.

After applying the Fourier expansion of the fundamental terms on Equation 2.49 (with trial solution:

q =αsin(ωt )), whereby a0 = 0 and b1 = 0, the following expression is used:

fd (q̇) ≈ a1 cos(ωt ) ≈ ceq q̇ ≈ ceqωαcos(ωt ) (2.50)

Thus the equivalent damping becomes (for convenience ωt is substituted with θ):

ceq = a1

ωα
= 1

πωα

∫ 2π

0
fd (ωαcosθ)cosθdθ (2.51)

ceq = c1

πωα

∫ 2π

0
ωαcos2θdθ+ c2

πωα

∫ 2π

0
ω2α2 cos2θ|cosθ|dθ (2.52)

Finally, the equivalent damping can be expressed as:

ceq = c1 + 8c2ωnα

3π
(2.53)

Similar expressions for the equivalent stiffness and the equivalent damping have been employed by

[10] and [7], where they used the equations combined with curve fitting techniques to experimentally

estimate the nonlinear stiffness and damping coefficients.

2.2.3 Nonlinear Inertia

The nonlinear inertial term can be simplified using HBM. Similar to the derivations in section 2.1, the

linear and nonlinear inertial terms are expressed as:

fm(q̈) = q̈ +m3(qq̇2 +q2q̈) (2.54)

By substituting the trial solution, q =αsin(ωt ), into Equation 2.54, the following is obtained:

fm(q̈) =−ω2αsin(ωt )+m3ω
2α3 sin(ωt )cos2(ωt )−m3ω

2α3 sin3(ωt ) (2.55)

The Fourier Series expansion is employed on Equation 2.55, (whereby a0 = 0 and a1 = 0) to yield:

b1 =−ω2α
(
1+ 1

2 m3α
2) (2.56)

Subsequently, the equivalent mass can be determined by the following relation:

fm(q̈) ≈ b1 sin(ωt ) ≈ meq q̈ ≈−meqω
2αsin(ωt ) (2.57)

Thus:

meq = 1+ 1
2 m3α

2 (2.58)
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2.2.4 General Expression for the Nonlinear FRF

After obtaining the equivalent expressions for the system’s mass, stiffness and damping, it is necessary

to derive a general expression to obtain the FRF and backbone. The relationship between F̂ and α can

be expressed as [16]:

F̂ 2 =α2
[(

keq −meqω
2
)2 + c2

eqω
2
]

(2.59)

F̂ 2

α2 = m2
eqω

4 + (
c2

eq −2meq keq
)
ω2 +k2

eq (2.60)

Upon application of the quadratic formula, the equation can be rewritten to calculate the response

frequencies corresponding to a given response amplitude and given input force. Via Harmonic Balance,

the general formula to obtain frequency values (ω1,2) based on a given amplitude (α) and input force

(F̂ ) is derived and expressed as follows:

ω1,2 =

√√√√√√√meq keq − 1
2 c2

eq ±
√

c2
eq

(
1
4 c2

eq −meq keq

)
+ m2

eq F̂ 2

α2

m2
eq

(2.61)

This equation can be employed to simulate the FRF of a slow sine-sweep excitation (with fixed input

force). Conveniently, using the first part of Equation 2.61, the backbone curve can be expressed as:

ωbb =
√√√√ keq

meq
−

c2
eq

2m2
eq

(2.62)

In figure 2.4 examples are shown of FRFs and backbones plotted using Equation 2.61 and Equa-

tion 2.62. The example also clearly shows the effect of each included nonlinear effect.

Figure 2.4: Examples of FRFs and backbone curves obtained through HBM, which show the effect of cubic stiffness,
nonlinear inertia, and quadratic damping on the shape of the FRF.

24



2.3. METHOD OF AVERAGING

2.3 Method of Averaging

This section details the analyses concerned with the free decay of the nonlinear dynamical systems.

The decay envelope of a linear (viscous) system response is purely exponential, and the decay speed

depends on the linear damping magnitude. For nonlinear systems, the decay envelope has to be modified

according to the type of nonlinearity present. In order to determine the envelopes of nonlinear systems

an effective technique known as the Method of Averaging (MoA) is utilized [90]. MoA is applied for

approximating the response of slow transient response. Thus, the method is adequate for dynamic

systems with low damping ratios, as the amplitude and phase do not significantly change over one

period. The response is assumed of the form:

q(t ) =α(t )sin(ωn t +φ(t )) (2.63)

where, the envelope amplitude (α) and the phase (φ) vary with time, but slowly compared to the

natural period of the system.

The following system is considered, which describes the free decay of an oscillator with nonlinear

damping, described by the function fd (q̇):

q̈ + fd (q̇)+ω2
n q = 0 (2.64)

The velocity can be represented as:

q̇(t ) =α(t )ωn cos(ωn t +φ(t )) (2.65)

This equation is incomplete, therefore 2.63 is differentiated to uphold consistency, which results in:

q̇(t ) = α̇(t )sin(ωn t +φ(t ))+α(t )ωn cos(ωn t +φ(t ))+α(t )φ̇(t )cos(ωn t +φ(t )) (2.66)

Upon comparison with 2.65 this results in:

α̇(t )sin(ωn t +φ(t ))+α(t )φ̇(t )cos(ωn t +φ(t )) = 0 (2.67)

Equation 2.65 can be differentiated to yield the acceleration:

q̈(t ) = α̇(t )ωn cos(ωn t +φ(t ))−α(t )ω2
n sin(ωn t +φ(t ))−α(t )φ̇(t )ωn sin(ωn t +φ(t )) (2.68)

Substituting the previous equations into the equation of motion (Equation 2.64) results in:

α̇(t )ωn cos(ωn t +φ(t ))−α(t )φ̇(t )ωn sin(ωn t +φ(t )) =− fd (α(t )ωn cos(ωn t +φ(t ))) (2.69)

Multiplying Equation 2.67 by ωn sin(ωn t +φ(t )) and 2.69 by cos(ωn t +φ(t )) and adding yields:

α̇(t ) =− 1

ωn
fd (ωnα(t )cos(ωn t +φ(t )))cos(ωn t +φ(t )) (2.70)

Multiplying 2.67 by ωn cos(ωn t +φ(t )) and 2.69 by sin(ωn t +φ(t )) and differencing yields:

φ̇(t ) =− 1

ωnα
fd (ωnα(t )cos(ωn t +φ(t )))sin(ωn t +φ(t )) (2.71)
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These equations together are two first-order differential equations equivalent to the second-order

equation (Equation 2.64), which is the original equation of motion. If one makes use of the fact that

α(t ) and φ(t ) are essentially constant over one vibration period, the right-hand sides of the equations

can be replaced by an average over one cycle, as follows (with θ =ωn t) [16]:

α̇(t ) =− 1

2πωn

∫ 2π

0
fd (ωnαcos(θ+φ))cos(θ+φ)dθ (2.72)

φ̇(t ) =− 1

2πωnα

∫ 2π

0
fd (ωnαcos(θ+φ))sin(θ+φ)dθ (2.73)

These two equations can be used to determine the values of the amplitude and the phase over time.

In the current work, only Equation 2.72 is applied, because the interest is in the amplitude decay.

At this point it is important to note that the (cubic) nonlinear stiffness term does not have a influence

on the shape of the decay envelope. If one were to apply MoA on an undamped Duffing equation, the am-

plitude rate of change (α̇(t )) would equal zero, and the effect of cubic stiffness would manifest as a phase

modulation (φ̇(t )) [90, 91]. The same case is assumed for the nonlinear inertial term. Hence, the equa-

tion describing the nonlinear damping (Equation 2.74) suffices in the derivation of the damping envelope.

As described in subsection 2.2.2, the suitable equation describing the damping is recalled in slightly

different form than Equation 2.49 (by substituting c1 = 2ζ1ωn):

fd (q̇) = (2ζ1ωn + c2|q̇ |)q̇ (2.74)

Upon substitution of this equation into Equation 2.72, this produces:

α̇(t ) =− 1

2πωn

∫ 2π

0
(2ζ1ωn + c2|ωnαcos(θ+φ)|) ωnαcos2(θ+φ) dθ (2.75)

α̇(t ) =−ωnα

2π

∫ 2π

0
(2ζ1 + c2|αcos(θ+φ|) cos2(θ+φ) dθ (2.76)

α̇(t ) =−ζ1ωnα

π

∫ 2π

0
cos2(θ+φ)dθ− c2ωnα

2

2π

∫ 2π

0
|cos3(θ+φ)|dθ (2.77)

α̇(t ) =−ζ1ωnα(t )− 4c2ωn

3π
α(t )2 (2.78)

The first-order nonlinear differential equation (Equation 2.78) can be solved numerically or ana-

lytically to obtain the decay envelope. From this equation the linear and nonlinear part can also be

considered separately. Solving the differential equation with an ansatz of Ce−ζ1ωn t and applying the

initial condition for the linear part only (by taking c2 = 0) results in the following expression for an

exponential decay [84]:

α(t ) =α0e−ζ1ωn t (2.79)

where, α0 denotes the initial displacement amplitude at t = 0. For vibrations in the small amplitude

range this damping model holds up fairly accurate. When the velocity amplitude becomes significantly
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large, it becomes necessary to apply nonlinear damping models. Considering the nonlinear part of

Equation 2.78 only (by taking ζ1 = 0), the quadratic decay envelope is [90]:

α(t ) = α0

1+ 4c2ωnα0
3π t

(2.80)

In this case, the amplitude decays algebraically rather than exponentially. If the amplitude of the

initial displacement is large, one expects the initial decay to be slower for linear damping than for

quadratic damping. If the initial amplitude is small, the opposite is true [90]. For small amplitude

vibrations quadratic damping solely cannot properly simulate the decay. A proper expression would have

to incorporate both damping contributions (linear viscous and quadratic). By solving Equation 2.78,

the analytical expression for both damping models combined is obtained. This is achieved through

employing the Wolfram|Alpha engine. This leads to the final expression of the decay envelope based on

Equation 2.74:

α(t ) = ζ1ωnα0
4c2ωnα0

3π (eζ1ωn t −1)+ζ1ωneζ1ωn t
(2.81)

Examples of decay envelopes plotted using Equations 2.79, 2.80, and 2.81 are shown in Figure 2.5.

Figure 2.5: Examples of decay envelopes obtained through MoA equations.
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2.4 Numerical Method (Runge-Kutta)

The nonlinear EoM is also solved using Runge-Kutta, which is a numerical method that considers a

discrete-time solution directly. The technique can be applied to systems for which the nonlinearity is

not necessarily small [84]. The numerical integration for the equation of motion is carried out in terms

of two first-order ODE equations.

By adding quadratic damping (Equation 2.49) to Equation 2.38, the complete system EoM becomes:

q̈ +m3

(
q2q̈ +qq̇2

)
+ c1q̇ + c2|q̇|q̇ +k1q +k3q3 = F̂ (2.82)

Equation 2.82 is recast into a set of first-order ODEs in the following manner:[
y1

y2

]
=

[
q

q̇

]
⇒

[
ẏ1

ẏ2

]
=

[
q̇

q̈

]
=

 y2
−m3 y1 y2

1−c1 y2−c2 y2|y2|−k1 y1−k3 y3
1+F̂

1+m3 y2
1

 (2.83)

Matlab software includes a function (ode45) which is used to conveniently solve the first order

equations above. This numerical solver combines an explicit fourth order and a fifth order method

(called the Dormand-Prince pair), which is a variation of the common Runge-Kutta method. The solver

ode45 is suitable for a broad range of initial value problems [92]. The numerical method has been used

by several authors [7, 10, 93]. An example of a FRF obtained using ode45 based on Equation 2.82 is

depicted in Figure 2.6.

Figure 2.6: Example of a FRF obtained through ode45 (current result for m3 = 2 ·104, ζ1=0.002, ζ2=0.002
k1 = 1.25 ·105, k3 = 2 ·1010 and F̂ = 2).

28



C
h
a
p
t
e
r

3
Experimental Design and Method

I n this chapter the experimental approach, which entails testing and characterizing the linear and

nonlinear dynamic response of cantilever beams at different fatigue damage levels, is detailed. Firstly,

in section 3.1 information about the test samples and testing equipment is provided. The test plan is

detailed in section 3.2. Several FEM analyses that aided in obtaining necessary testing parameters are

provided in section 3.3. The specific testing procedure and test parameters are detailed in section 3.4.

Hereafter, in section 3.5, a static deflection experiment performed to investigate the static stiffness of

the structure, is discussed. Finally, the data processing methods are detailed in section 3.6.

3.1 Sample Information and Testing Equipment

For the experiments a cantilever beam setup is used with blade-like aluminum beams. The beam samples

used for testing are made from aluminum alloy type Al7075-T6, provided by the manufacturer Kaiser

Aluminum. Table 3.1 lists the material properties [94] and the complete manufacturers specification is

provided in Figure D.3. Figure 3.1 shows a compilation of fatigue data and S-N curves of the material

AL7075-T6 obtained from various sources [95] [96] [97] [98]. The beams are dimensioned at a length

of 150mm (of which a part is clamped), a width of 50 mm and thickness of 1mm. It is also verified that

the grain direction is parallel to the beam length. A picture of a clamped sample is shown in Figure 3.2c.

Property Value
Density 2810 kg/m3

Ultimate Tensile Strength 557 MPa
Tensile Yield Strength 485 MPa
Hardness 150 HB
Ultimate Shearing Strength 330 MPa
Fatigue Endurance Limit (a) 158 Mpa
Elastic Modulus 71 Gpa

(a) R.R. Moore type endurance limit based on 5×108

cycles of completely reversed stress [99].

Table 3.1: Material properties of Al7075-T6
Figure 3.1: Stress versus life (S-N) curves obtained from
various sources
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The equipment used to perform the experiments include the following:

• Bruel & Kjaer Electrodynamic Vibration Exciter Body Type 4802 with head attachment Type 4817

(Figure 3.2b); used to excite the structure

• Bruel & Kjaer Power Amplifier Type 2708; to amplify the generator signal going to the exciter

• Polytec PSV-500 Scanning Laser Vibrometer and Workstation (Figure 3.2a); used to measure the

response velocity at the beam tip, for data acquisition and for excitation signal generation

• Steel fixture (self-manufactured); used to clamp the beam samples and to fasten to the shaker

head (Figure 3.2c)

• PCB Piezotronics single-axis accelerometer (Model number: 352A21); used to measure the base

acceleration (input)

The software used for generating the excitation signals, monitoring real time testing parameters and

collecting all the measurement data is the Polytec Scanning Vibrometer Software Suite.

(a) PSV-500 vibrometer (b) Main test setup (c) Fixture with clamped sample

Figure 3.2: Hardware used for the experiments

3.2 Test Plan

A testing strategy is designed to characterize the linear and nonlinear behavior of cantilever beams over

various stages of fatigue life.

1. Linear characterizations conducted at low response amplitudes, consisting of:

a) Free vibration through initial displacements in the linear region

b) Sine-sweep excitations over a wide range of frequencies for modal analysis.

2. Nonlinear response characterizations conducted at high response amplitudes, consisting of:

a) Free vibration through imposed initial displacements at high amplitudes.

b) Sine-sweep excitations (forward and backward) with a slow frequency rate of change.

3. Fatigue testing to induce different levels of damage to the specimens. After each fatigue test the

whole process is repeated again starting at step 1, until the beam has failed.

After having completed all the tests, it is recommended that the samples are further analyzed

micro-structurally by utilizing techniques such as DMA and EBSD. This provides the possibility for
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analyzing the link between the changes in global dynamic behavior and evolution of microstructural

properties. However, this aspect is not considered within the scope of the current work.

Figure 3.3 depicts a schematic overview of the test plan. To describe the plan in more detail, the

testing methods are detailed in the following subsections.

Figure 3.3: Schematic depiction of the testing strategy with relevant inputs and outputs.

3.2.1 Linear Characterization

Linear characterizations are performed to obtain the linear coefficients (natural frequency and viscous

damping) of the underlying linear system. As explained in section 1.1, linear characterizations are the

general method for SHM techniques. This will also enable the comparison between results obtained

from linear analysis and nonlinear analysis. Within the current work, the linear region is defined for

tip displacement amplitudes of less than 1% of the beam length (decided after examination of the results).

Free Vibration

Free vibration testing is performed by imposing an initial displacement upon the beam, quickly releasing

and waiting until it comes to a rest. This is repeated at least five times per beam per fatigue level. The

nonlinear and linear responses are obtained from the same tests. This testing method is important for

the quantification of the linear damping coefficients (c1).
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Sine-sweep Excitation

This test phase consists of sine-sweep excitations, which are performed at low response amplitudes

(≈ 1mm). Forward and backward sine-sweep testing is conducted in the linear region and the time data

is collected. The sweeps are performed at relatively fast speeds (compared to the nonlinear sweeps)

and the frequency range is chosen to cover the first three vibrational modes.

3.2.2 Nonlinear Characterization

After performing the linear characterizations, nonlinear experimental characterizations are conducted.

In order to generate a nonlinear beam response, high amplitude excitations are required. This entails

tip responses greater than 1% of the beam length.

Free Vibration

This is performed the same way as for the linear characterization, but the initial displacement is of

a higher magnitude. From these measurements backbone curves and damping skeletons can also be

obtained by employing signal processing techniques. This will be further explained in section 3.6.

Slow Sine-sweep Excitation

These experiments include forward and backward sweeps. The excitation frequency is varied with a

constant rate between two frequency values around the nonlinear resonant frequency. The sweep speed

is kept very low (0.025 Hz/s). With a sweep speed this low the response is highly similar to a stepped

sine exctitation, which is steady-state for each increment. This way HBM can be applied to model this

experimental response, as it approximates steady state responses. The slow sweep speed also enables

the proper capturing of jump phenomena. Similar experimental methods were performed by Haynes et

al. [11], Lu et al. [64] and Dossogne et al. [8], in which they showed this excitation method effective

for characterizing nonlinear dynamic behaviour of metal beams.

3.2.3 Fatigue Testing

After having performed the free vibration and sine-sweep tests, fatigue testing is performed. This entails

applying an excitation of a fixed force and fixed frequency for specific periods of time in order to impose

certain levels of fatigue damage to the specimens. The excitation frequency used is near the natural

frequency ωn (≈ 0.5 Hz lower) of the system. To obtain multiple increments of fatigue infliction, each

fatigue period is first chosen to be 10 minutes. Based on the S-N curve of Aluminum 7075-T6 an

excitation force is chosen that results in a stress associated with the desired degradation rate. After each

fatigue test the beams go trough the complete testing process again until complete fatigue is reached.

This is defined to be when the crack has grown to approximately half of the beam width.

3.3 FEM Analyses

Prior to performing tests, several estimations are performed to obtain certain necessary testing pa-

rameters. For this reason, analyses are performed using Finite Element Method (FEM) in Abaqus
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software. This includes a static stress analysis and a modal analysis. Hereby sensitivity analyses were

also performed to ensure enough elements were used.

3.3.1 Static Stress Analysis

A stress analysis is performed to correlate certain tip displacement magnitudes with local stresses. In

combination with the S-N curves (Figure 3.1) the fatigue life can be roughly estimated. The estimation

will provide an indication of the necessary parameters to be used with the sine-sweep, free vibration

and fatigue testing. Deflection amplitudes are chosen, in such a way that the stresses do not exceed

the yield strength. A test sample is modeled in Abaqus using quadratic quadrilateral elements. At the

fixture the sample is fixed and at the beam tip various initial deflections are imposed. Figure 3.4 depicts

the model in its deflected state. The stresses in the x-direction (parallel to the beam length) are shown

as well. Bending of the beam causes the largest stresses in this direction. The region with the highest

stress is near the beam root (clamped end).

Figure 3.4: Maximum stresses occurring during a tip deflection of 28 mm for a beam length of 120mm.

3.3.2 Modal Analysis

Modal analysis is performed to obtain the natural frequencies and mode shapes of the system. This

enables the assurance that the natural frequencies are sufficiently spaced out from each other and gives

insight into the necessary excitation frequency ranges for the sine-sweep tests. Figure 3.5 shows the

first three mode shapes of the test subjects. The corresponding frequencies for the first five modes are

provided in Table 3.2.

(a) Mode 1: Bending (b) Mode 2: Twisting (c) Mode 3: Bending

Figure 3.5: First three mode shapes of test subject
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Type Bend Twist Bend Twist Bend
Natural Frequency (Hz) 58.3 289 363 926 1023
Natural Frequency (ωi /ω1) 1 4.96 6.23 15.88 17.5
Relative error with analytical (%) 2.62% - 2.37% - 2.44%

Table 3.2: Natural frequencies of test samples with the relative error

3.4 Testing Procedure and Parameters

Testing Parameters

An overview off all testing parameters is provided in Table 3.3. Hereby fR1 and fR3 denote the experi-

mentally obtained (nonlinear) resonant frequencies for mode 1 and mode 3 respectively.

Test type
Start freq.
(Hz)

End freq.
(Hz)

Sweep speed
(Hz/s)

Sampling
freq. (Hz)

Time per
test (s)

Linear sweep 10 450 10 3125 44
NL Forward (Mode 1) fR1 −2 fR1 +2 0.025 3125 160
NL Backward (Mode 1) fR1 +2 fR1 −2 0.025 3125 160
NL Forward (Mode 3) fR3 −2 fR3 +2 0.025 3125 160
NL Backward (Mode 3) fR3 +2 fR3 −2 0.025 3125 160
Free Vibration N/A N/A N/A 3125 64
Fatigue fR1 −0.5 fR1 −0.5 N/A 1000 600

Table 3.3: Testing parameters.

Testing Procedure

Test samples are securely clamped in a steel fixture which is attached to the shaker. To ensure the

bolts have equal pressure distribution and the fixture is securely fastened, a calibrated torque wrench is

used for the fastening. Each time the test is paused, the bolt tightness is checked again with the torque

wrench to ensure proper boundary conditions. The clamping length is measured and it is ensured that

the sensors and additional measurement devices are properly fastened and connected. The generation

of excitation signals and data acquisition is performed using the Polytec workstation and software suite.

The measurements from the laser vibrometer, the accelerometer and reference voltage are collected.

The time data with values for each sensor measurement is saved along with the time value at each

sampling interval. Thereafter the data is exported in ASCII format, which is accessed within Matlab for

further processing.

3.5 Static Deflection Experiment

To gain greater insight into the static stiffness over different measures of beam tip deflection, a static

deflection experiment is performed. The underlying theory is first explained.
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3.5.1 Static Bending Theory

Nonlinear springs show a force-deflection relation according to Equation 3.1 [100]. Hereby k1s denotes

the linear stiffness and k3s the cubic stiffness.

Fs = k1s v +k3s v3 (3.1)

The effective static stiffness can thus be expressed as:

kES = Fs

v
= k1s +k3s v2 (3.2)

It should be noted, however, that the static stiffness is not of the same value as the dynamic stiffness of

the first mode. This is mainly due to the fact that part of the energy goes to higher modes of vibration.

Considering the linear regime, the dynamic stiffness and static stiffness are closely related. In fact the

static stiffness is near identical to the first mode dynamic stiffness [101]. In the linear regime the static

stiffness can be represented by the equation as derived from standard Euler-bernouilli beam theory.

This is achieved by first obtaining the deflection formula for a end-loaded cantilever beam, given by:

v(x) = F x2

6E I
(3L−x) (3.3)

From Equation 3.3, the linear static stiffness at the beam tip (x = L) can be expressed as:

k1s = 3E I

L3 (3.4)

The effective mass (modal mass) can be expressed by m1 from Equation 2.27, withΨ now normalized

to equal 1 at x = L, denoted by Ψ̂ [101]. The expression and subsequent computation become:

m1m = ms

∫ L

0
Ψ̂(x)2 dx = msL

4
(3.5)

By using Equation 2.35, 3.4 and 3.5, the ratio of the linear modal stiffness of the fundamental mode

(k1m) to the linear static stiffness (k1s) can be determined:

k1m

k1s
=ω2

1m ·m1m · 1

k1s
= (β1L)4 E I

msL4 · msL

4
· L3

3E I
= (β1L)4

12
≈ 1.03 (3.6)

This result agrees with the statement that the modal stiffness of the fundamental mode is very close

to the static stiffness for the studied case.

Figure 3.6: Setup of the static deflection test.
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3.5.2 The Experiment

During the experiment a beam sample is tightly clamped at the base and gradually loaded with weights.

The test set-up is visualized in Figure 3.6. Deflection is measured using a vernier height caliper after the

addition of each weight. The test is performed three times with beams of slightly different lengths.

Figure 3.7: Resulting normalized effective stiffness from the deflection test using E=65GPa

Figure 3.7 depicts the results obtained from the experiment. The effective stiffness is normalized

by k1s , to clearly show the deviation of linear behavior. The results show that the stiffness is well

approximated as a cubic nonlinearity, which is justified by good agreement using a curve fit in form of

Equation 3.2. It is also relevant to know that at a vertical deflection of 0.75L, the effective stiffness is

approximately twice as large in value compared to the original (linear) static bending stiffness, k1S . The

effect of the nonlinear geometric nonlinearity as defined in the analytical approach is also included in

Figure 3.7. Hereby k3 is calculated in Equation 2.27 using the deflection formula in Equation 3.3. The

results show that at large ampltudes, this underpredicts the effective stiffness. Figure 3.8 gives a visual

explanation of this underestimation of the nonlinear static stiffness. As the deflection increases, part of

the force gets compensated by the axial rigidity and pure bending is no longer an accurate assumption.

The exact relationship between the nonlinear static and nonlinear dynamic stiffness given the relevant

loading conditions is unknown.

Figure 3.8: Bending stiffness transitions into axial stiffness at high displacements
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3.6 Data Processing

The data processing (signal processing) strategy used for converting the experimentally obtained data

into proficient results is detailed within the current section. The section is divided into the processing

of the free vibration tests (subsection 3.6.1) and the sine-sweep tests (subsection 3.6.2). All collected

experimental data is processed using Matlab software.

3.6.1 Free Vibration Processing

The free vibration data files contain measurements of tip responses as an effect of imposing an initial

displacement. Per measurement at least five free vibrations are imposed, with each one starting in the

nonlinear region of displacement. The linear parameters are obtained from the same measurements by

using the data starting at low amplitudes (< 1% of the beam length). The Matlab code created for pro-

cessing free vibration data is provided in Appendix B. The processing steps are explained in the following.

Subtract Base Velocity

The beam tip response measured by the laser vibrometer is recorded in terms of the absolute velocity. As

the response velocity relative to the base velocity is desired, the base velocity is subtracted from the tip

response data. The base acceleration is measured by the accelerometer attached to the base fixture. The

acceleration data is converted to velocity data by applying numerical cumulative trapezoidal integration

(Matlab cumtrapz function). A bandpass filter (Butterworth) was hereby applied to prevent data

drifting and a moving average filter was applied to improve the accelerometer signal, which was not

clean compared to the laser vibrometer signal.

Obtain Partitioned Displacement Data

The relative beam tip response is now obtained in terms of velocity. From this data, the tip displacement

is obtained by integrating the signal, again via trapezoidal integration. For each fatigue level, each free

vibration decay is first separated by using a peak identification function (Matlab findpeaks function).

An example of a tip displacement time signal with identified peaks is depicted in Figure 3.9a. Based

on the minimum distance between peaks, a general time window is determined and the time data is

partitioned to have 1 single free vibration in one window. The data is also sorted from high to low

initial amplitude vibrations. The nonlinear and linear region are separated by applying a threshold

for the tip displacement amplitude at 0.01L (1% of beam length) and the signals are split at that

point. Peak envelopes are then created for the linear signal part in order to identify the linear damping

magnitude. An example of partitioned and split up signals with fitted envelopes is depicted in Figure 3.9b.

Linear Damping Ratio (ζ1) Estimation

The damping ratio (ζ1) is generally obtained using methods such as the Logarithmic Decrement or the

Half Power Method [102] [103]. In this work a method based on the logarithmic decrement is followed

to estimate ζ1. The displacement time signal of a free vibration can be expressed as:

v(t ) =α0e−ζ1ωn t sin(ωd t +φ); t > 0 (3.7)
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(a) Time signal of the tip displacement (b) Partitioned and split data with peak envelopes

Figure 3.9: Experimental data processing methods (Free Vibration)

where α0 is the initial maximum displacement amplitude and ωd is the damped natural frequency

(ωd ≈ωn for small damping ratios). ζ1 is related to the linear damping coefficient c1 by:

c1 = 2m1ζ1ωn
(
for mass normalized EoM: c1 = 2ζ1ωn

)
(3.8)

Considering only the peaks, the decay envelope for linear free vibration can be represented using

the first part of Equation 3.7 (α(t ) =α0e−ζ1ωn t ). By taking the natural logarithm of this expression, the

following relationship is obtained:

ln(α(t )) = ln(α0)−ωnζ1t ; t > 0 (3.9)

Hence, the slope of the logarithmic decay envelope is equal to −ωnζ1. To experimentally estimate the

linear damping, a straight line is fitted over the logarithmic envelope, which should behave this way

according to Equation 3.9. The value of the slope of this line allows the estimation of the linear damping

ratio ζ1. Hereby only results with a relatively low standard deviation over the different measurements

are kept, due to high amounts of noise present in some of the cases (filtering techniques would not

solve this issue). This process is visualized in Figure 3.10a. In the figure it also clearly evident that the

logarithmic decay envelope of the nonlinear signal part is not linear.

Backbone Curves

Generally backbone curves are obtained by performing a series of sweep tests over different excitation

levels and capturing each resonant frequency. In the current work free decay data is used for the

estimation. By applying processing methods on the decay data, backbone curves can be obtained with

better efficiency and accuracy. The backbone curves can be used to estimate the nonlinear parameters by

fitting the experimental data to the equations derived from the Harmonic Balance analysis. Processing

methods to estimate the backbone curves, as conducted by Londono et al. [10], are applied in the

current work. This first requires the assessment of the instantaneous frequency and the decay envelope,

which is explained in the following.
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(a) Logarithmic envelopes (b) Zero-crossing method

Figure 3.10: Experimental processing methods

Instantaneous Frequency Assessment

The zero-crossing method is used to estimate the instantaneous frequency. For every time the input

signal crosses the x-axis in a downward manner, the two data points that capture this crossing are

identified (xk > 0∧xk+1 < 0), as visualized in Figure 3.10b. By means of interpolation based on each

pair of point amplitude values, the exact time at which the crossing of the horizontal axis occurs, is

approximated. The periods between crossing points are then directly related to the frequency within

that specific time period. The instantaneous frequency is thus expressed as [10]:

f̂ (t 0
i ) = (t 0

i+1 − t 0
i−1)−1 (3.10)

An additional process is necessary to smooth out imperfect predictions of Equation 3.10. A moving

average (MA) filter is hereby proposed, which in spite of its simplicity, offers optimal reduction of

random noise [10]. The final result delivers only the dominant frequency variation in the decaying

signal. . This procedure assumes that the instantaneous frequency is not rapidly altered for sequential

vibration periods. The filter order needs to be selected based on the magnitude of noise present in the

signal. In this work the instantaneous frequencies are smoothed over 5 points, gave sufficient results

while not negatively influencing the overall result values. An example of an instantaneous frequency

estimation is depicted in Figure 3.11a.

Amplitude Envelope

The experimental decay envelope can be obtained by employing a peak envelope function in Matlab.

The envelopes are determined using spline interpolation over local maxima separated by at least a

specified number of samples. This sample number is chosen such that slight immediate fluctuations in

the decay envelope are not captured.

After having obtained the instantaneous frequencies and amplitude envelopes, the backbone curves

and damping skeletons can be produced. The backbone curves are simply created by plotting each
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instantaneous frequency data point, along with the corresponding magnitude of the amplitude envelope

at that point. The processing and theory related to the damping skeletons are explained next.

(a) Instantaneous frequency (b) Amplitude envelope depicting the method for obtaining
the effective damping ratio, ζe f f (visualized for k = 1).

Figure 3.11: Experimental processing methods

Damping Skeletons

A damping skeleton plots the effective damping ratio of the system versus the amplitude of vibration

[10]. In this work the damping skeletons are used to analyze the nonlinear damping contribution.

The method is based on the logarithmic decrement method, but in this case, applied for sequential

increments within a single decay. An approach similar to Londono [10] is used to estimate the damping

skeletons. However, in this work the effective damping ratio is estimated in a slightly different manner,

by assuming the logarithmic decay envelope as a piece-wise linear function.

For the nonlinear signal, the same equation describing the decay of a viscous damper is used to

express the amplitude envelope, but now ζ and ωn are taken as variables instead of constants:

α(t ) =αt−k e−ζ(t )ω0(t )∆t (3.11)

For each increment, the effective (linear) damping ratio is determined. Hence, based on Equa-

tion 3.11, the effective damping ratio at each zero-crossing can be determined using the following

expression (similar to Equation 3.9):

ζe f f (t 0
i ) = 1

ω0(t 0
i )∆t

(
ln(α(t 0

i−k ))− ln(α(t 0
i+k ))

)
(3.12)

For clarity this is visualized in Figure 3.11b. The relationship between the effective damping ratio

(ζe f f ) and effective damping coefficient (ce f f ) is hereby defined as [10]:

ce f f = 2mζe f f (t 0
i )ω0(t 0

i ) (3.13)

Equation 3.13 and Equation 2.53 (HBM) allow the following expression for the effective damping

ratio in the following manner (substitute c2 = 2ζ2ωn):

ζe f f = ζ1 + 8ζ2ωnα

3π
(3.14)
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The estimation of the quadratic damping (c2 or ζ2) is performed using the damping skeletons. To

obtain ζ2, Equation 3.14 is matched to the experimental effective damping ratio by performing curve

fitting (Matlab Curve Fitting Toolbox) with ζ1 fixed at the previously determined values. At this point

in the analysis the linear (viscous) and nonlinear (quadratic) damping coefficients are both known.

Repeatability

Figure 3.12 provides an example of obtained backbone curves and damping skeletons. In this figure

different colors represent different vibration decays for the pristine case. Evidently, the repeatability is

fairly good. The plots also clearly show that the shape of the curve is not influenced by varying initial tip

displacement amplitudes. Throughout all cases a similar level of repeatability was observed, although

certain cases had a higher influence of noise.

Figure 3.12: Example of experimental backbone curve and damping skeleton

3.6.2 Sine-sweep Processing

The collected data from the sine-sweep excitations include forward and backward sweeps performed in

the linear and nonlinear region. The processing of this data is explained in the following.

Linear Sweeps

For the linear sweeps the data is processed by means of a Fast Fourier Transform (FFT) analysis. The

linear natural frequencies are determined to serve as a baseline for the nonlinear results. The simple

FFT procedure is depicted in Figure 3.13a, which shows that the response is in fact linear and the

repeatability between the forward and backward sweeps is evident. The figure also shows that the

frequency consistently decreases for increasing fatigue cycles.
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(a) FFTs performed for the linear sine-sweeps zoomed in on
the first mode for various damage cases

(b) A nonlinear response of a cubic spring system which shows
jump phenomena

Figure 3.13: FFT of linear sweeps and definition of ∆F j ump

Nonlinear Sweeps

The nonlinear sweeps are processed differently in order to capture the instabilities (jumps) and to

represent the actual maximum amplitudes on the vertical axis of the plots. Firstly, integration is per-

formed to obtain the tip and base signals in terms of displacement. This is achieved using the same

computational methods as described in subsection 3.6.1. Subsequently, peak identification is performed

on the absolute of the signal to capture all the data points where the amplitude is at a maximum. Hereby

the minimum distance between peaks is chosen to be as small as possible, while not capturing signal

peaks below the actual amplitude envelope. The time data is converted to the frequency domain by

means of the zero-crossing method to assess the instantaneous frequency. This method is the same as

the one described in the previous section (Equation 3.10), but this time performed on the input signal.

Hereby the start frequency, the end frequency and the frequency rate of change (sweep speed) are

determined and potential syncing errors (which were observed in the current case) due to hardware

and software delay issues are compensated. A frequency vector is then created by fitting a linear line

to the instantaneous frequency data and thus the time data is accurately converted to the frequency

domain. Finally, the response displacement is divided by the base displacement to obtain the FRFs.

Important parameters within this test type include ω j d and ω j u , which denote the jump down and

jump up frequency respectively. The difference between the jump frequencies is hereby also of interest,

which is denoted by ∆F j ump . Jump phenomena and ∆F j ump are visualized in Figure 3.13b.

Supplementary information regarding the experimental approach is provided in Appendix D.
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4
Results and Discussion

I n this chapter the obtained results are provided and critically discussed. Firstly, the experimental re-

sults are provided in section 4.1. Subsequently, the results obtained through the analytical approach

are detailed in section 4.2. Finally, the results are compared and discussed in section 4.3.

Procedure for nonlinear system identification

At this phase of the research, a procedure is followed by combining the experimental and analytical

aspects in order to successfully achieve the identification of nonlinear system coefficients. This procedure

is depicted in Figure 4.1 and serves as a guide for this chapter. The visualization shows the method

for obtaining the various coefficients and graphs. It also shows the necessary conditions to successfully

achieve and verify physics-based identification of the nonlinear system. Although tests were also

performed for higher modes, only results for the first mode are considered in this work.

Figure 4.1: Procedure employed for nonlinear system identification
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4.1 Experimental Results

The results obtained for three beams are provided in this work, which are named ’Beam A’, ’Beam B’

and ’Beam C’. Table 4.1 lists the details of the beams and the fatigue testing specifications.

Beam
Fatigue
Periods

Fatigue Cycles
per Period (≈)

Free Length
(mm)

Prist. Exp.
Fnat (Hz)

Avg. Fatigue
Stress (MPa)

A 7 35000 115.5 56.4 174.8
B 5 35000 114 57.8 183.4
C 3 35000 115 56.8 195.9

Table 4.1: Fatigue testing parameters.

4.1.1 Free Vibration Results

Backbone Curves

The backbone curves obtained for all beams are depicted in Figure 4.2. For further insight into the

repeatability of all backbone curves, refer to Appendix C. Additionally, the same backbone curves

zoomed into the linear amplitude region are depicted in Figure 4.3a. In all these figures, the colored

dashed vertical lines represent the (linear) natural frequencies obtained from the linear sine-sweeps.

For the backbone curves zoomed into the linear region, a (heavy) Gaussian filter is applied to make

the results more presentable. This additional filter was necessary to remove noise originating from the

amplifier, which was left on during some of the tests. Hence Figure 4.3a serves more as an indicative

result. The effect of the noise is mostly present at low amplitudes, but at high amplitudes it becomes

negligible. In the linear region, it is evident that the frequency stays nearly constant and is approximately

equal to the natural frequency from the linear sine-sweeps (dashed lines). Considering the backbone

curves of the whole amplitude range (Figure 4.2), significant nonlinear behavior is observed. At high

amplitudes, significant deviation from the natural frequency is present.

Three interesting occurrences are witnessed in the backbone curves (Figure 4.2):

• For each curve there is a noticeable amplitude point at which the hardening starts to occur. The

amplitude of this point seems to drop for increasing fatigue cycles.

• The shape of the curves become more complex for increasing fatigue cycles. Two additional

inflection points appear. In pristine cases and early fatigue cycles, the shape is almost coincident

with a bilinear line, but in later stages of fatigue life the dynamics become more rich.

• At amplitudes around 0.015L, slight softening is present at later fatigue stages. This is attributed

to changes in the material stiffness, as it was ensured that the boundary conditions were kept

consistent by continually checking the torque of the bolts.

These three witnessed phenomena are speculated to be attributed to crack occurrence and other DP-

related material changes. With the current experimental approach it is not possible to say to what extent

damage precursors or crack occurrences have contributed to these effects.
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Figure 4.2: Backbone curves obtained for all three beams over different fatigue cycles
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(a) Filtered backbone curves (linear region). (b) Damping skeletons.

Figure 4.3: (a) Backbone curves filtered and zoomed into the linear region and (b) Damping skeletons.

Damping Skeletons

The obtained damping skeletons are depicted in Figure 4.3b. These curves show the effective damping

ratio as a function of the amplitude of vibration by assuming piecewise logarithmic decay. In these

figures the dashed lines indicate the viscous damping ratio, ζ1 (of the linear signal). Due to excessive

noise (damping estimation was extremely sensitive to noise) in some of the measurements, the damping

skeletons were not constructed for all cases. From the obtained damping skeletons it appears that the

effective damping ratio is approximately equal to the viscous damping ratio at low amplitudes. However,

the effective damping ratio appears to increase in a nearly linear fashion as the amplitude increases.

Various coefficients and metrics obtained from the backbone curves and damping skeletons are detailed

in the following.
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Nonlinear Coefficients and Other Metrics

Using Equation 3.14, ζ2 is obtained from the damping skeletons by performing curve fitting with ζ1

fixed at the obtained value. The obtained values for ζ1 and ζ2 are plotted in Figure 4.4 and provided in

Table A.1. Upon examination of Figure 4.4a, it was observed that the linear damping (ζ1) consistently

increased for accumulating fatigue cycles. This could be caused by increased dissipation due to the

occurrence of cracks and other micro-structural changes. In the literature viscous damping ratio’s (ζ1)

for aluminum cantilever beams have been reported at 0.35% [104]. The quadratic damping, depicted in

Figure 4.4b, does not appear to change substantially over fatigue cycles. No clear pattern of change was

observed, which is in line with expectations. The quadratic damping is mainly attributed to the air drag

force, which is a function of beam geometry, beam orientation and velocity. Because these parameters

stay the same, it is logical that the quadratic damping stays (nearly) constant over different fatigue cycles.

(a) Linear damping (b) Quadratic damping

Figure 4.4: Linear and quadratic damping ratios

Figure 4.5: Values for cubic stiffness obtained from curve fitting

From this point in the analysis, a distinction is made between k3 from the structural (analytical)
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model, now called k3th (theoretical cubic stiffness), and k3 obtained through curve fitting Equation 2.62

with the experimental backbones, simply denoted by k3. The nonlinear stiffness (k3) is obtained through

curve fitting Equation 2.62 to the experimental data. Obtained k3 values are shown in Figure 4.5 and

the specific values are provided in Table A.1. No clear pattern of change was observed for this parameter.

The accuracy of this coefficient estimation is not ideal, because the curve fits had insufficient goodness

of fit measures (avg. R2=0.90). Experimental values for k3 are used instead of the values calculated

from the analytical model (k3th), because of a severe underestimation of this coefficient through the

model, which is further explained in section 4.3. The theoretical values for m3 are hereby assumed to

be correct. Table 4.2 gives an overview of theoretical and experimental coefficients.

Beam k1(×105) k1th(×105) m3(×104) k3(×1010) k3th(×1010)
A 1.26 1.26 2.13 1.87 0.191
B 1.32 1.33 2.22 1.32 0.21
C 1.27 1.28 2.16 1.51 0.197

Table 4.2: Theoretical and experimental coefficient values for the pristine cases (using E=61GPa).

Aside from the k3 coefficient, other ways of quantifying the changes in shape of the backbone curves,

are explored. An interpretative dissection of the backbone curves is depicted in Figure 4.6. Within

this figure: (i) inflection points are identified, (ii) based on these points four regions are identified,

(iii) slopes of different sections are considered. This analysis is mainly qualitative, but two features

are hereby quantified. The quantified parameters are the amplitude of the first bending point, called

bending point amplitude (BPA), and the instantaneous slope upward of this bending point, called the

bending point slope (BPS). These metrics are correlated to fatigue life and depicted in Figure 4.7. Both

metrics show a consistent and considerable drop of magnitude. The other inflection points (IP1 and

IP2) and the slope between them also show consistent changes, however these are not quantified.

Figure 4.6: Dissection of the backbone curves showing identified regions and points of interest.
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(a) Amplitude of bending point (b) Slope upward of bending point

Figure 4.7: Secondary damage features from the backbone curves (semi-quantitative)

4.1.2 Sine-sweep Results

The evolution of the natural frequencies obtained from the linear sine-sweeps (FFT) is shown in

Figure 4.8a. The results from the forward and backward slow sine-sweeps, after applying the processing

techniques, are depicted in Figure 4.9. The y-axis represents the displacement amplitude of the tip

(response) divided by the displacement amplitude of the base (input). The average acceleration at the

base is also provided in the plots (grey labels), because this was not exactly constant for all measurements,

as was aimed for. The metrics obtained using these results are provided in Table A.1 (Appendix A).

These include the nonlinear resonant frequency (FRS) and the difference between the jump-down and

jump-up frequencies (∆F j ump). The maximum amplitudes are hereby not considered as viable metric,

because of the aforementioned undesired variability in excitation amplitude. It is evident that the

nonlinear resonant frequency decreases as the fatigue cycles increase, which is expected because it is

based on the linear natural frequency, which also decreases. Of interest, is the observed increase in the

difference between the jump-up and jump-down frequencies (∆F j ump). The evolution of ∆F j ump is

visualized in Figure 4.8b. It is unknown at which point in time significant cracks occurred.

(a) Natural frequencies (Linear) (b) Difference in jump up and jump down frequencies

Figure 4.8: Natural frequencies and difference in jump frequencies
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Figure 4.9: Results of the forward and backward sweeps of all beams over different fatigue cycles
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Figure 4.10: Nonlinear decay envelopes of two cases

Figure 4.11: Linear decay envelopes of two cases
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4.2 Analytical Results

Decay Envelopes (Method of Averaging)

The derived analytical equation to plot the decay of combined linear and quadratic damped system

(Equation 2.81), is now applied. The experimentally obtained linear (ζ1) and nonlinear (ζ2) damping

ratios, which were specified in Table A.1, are used as input parameters to plot the decay. Two arbitrary

cases are chosen to display the results: Beam A in pristine condition and Beam B fatigued at 105000

cycles. The resulting envelopes for decays in the nonlinear and linear range are depicted in Figures

4.10 and 4.11. Considering the decay starting at high amplitude values (Figure 4.10), it is remarkable

that the analytical envelope with combined linear and quadratic damping is almost indistinguishable

from the experimental signal envelope. In these same cases it is evident that a solely linear decay

model (standard logarithmic decrement) does not even remotely model the path of the actual decay.

Now, upon examination of the decays originating from an amplitude in the linear range equal to 0.01L

(Figure 4.10), it can be stated that both damping models are fairly accurate in estimating the decay. In

this amplitude range the decay is in fact well approximated by a pure exponential decay (viscous linear

damper). These results indicate that the obtained values for ζ1 and ζ2 are accurate.

Harmonic Balance and ODE45

In Figure 4.12 nonlinear FRFs are plotted using HBM and RK (ODE45). The results of the two methods

agree very well with each other. The fact that these results match also gives greater confidence in the

correctness of the derived equivalent equations from HBM used for curve fitting. One aspect where

the models differ is the additional range HBM extends to, which could give greater insight into jump

phenomena (instabilities).

Figure 4.12: Results of the Harmonic Balance Method compared with Runge-Kutta (ODE45)
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4.3 Comparison of Results

In the current section results obtained through the various methods are compared and similarities or

discrepancies are discussed. Figure 4.13 plots different results in a single graph. These include the

FRFs obtained through HBM and RK, the experimental backbones and the experimental sine-sweeps.

These results are plotted using k3 values from curve fitting the backbones, m3 values from the analytical

model and c2 values from curve fitting the damping skeletons. The results show that the analytical

result underestimates the response amplitude. The reason for this is unknown.

Figure 4.13: Experimental results compared with analytical results; FRF and backbone.

Discrepancy between analytic and experimental cubic stiffness

A discrepancy between experimental and analytical cubic stiffness coefficients was witnessed (Table 4.2).

The analytically obtained values for the cubic stiffness (k3th) are significantly lower than the experimental

values (k3). More specifically stated, the hardening was underestimated in the model. This means

that either the experimental results or the analytical results are inaccurate. Upon comparison of the

experimental results, it is evident that the FRFs, backbones and FFTs all agree with each other and

therefore no significant errors are expected. Hence, the analytical model might have shortcomings

for the current use case. According to the fundamental relationship expressed in Equation 4.1, the

discrepancy is attributed to either an underestimation of the nonlinear stiffness or an overestimation of

the nonlinear inertia. The nonlinear inertia is assumed to be accurate in the current case.

ω(α) ≈
√

keq (α)

meq (α)
(4.1)

Reasons for the discrepancy and potential model improvement suggestions are now speculated:

• The assumption in the analytical model that the bending strain energy is the only contribution

to the potential energy might be incorrect. At low amplitudes this assumption does hold true,

however, at large amplitudes, geometrical effects could cause this assumption to no longer be

valid. At high amplitudes, a part of the inertial forces causes axial stresses. This hypothesised

effect is visualized in Figure 4.14. The occurring axial stress does not contribute to the bending

strain. This would explain the additional hardening at high amplitudes. Pure bending is therefore
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no longer the case and the mechanics become more complicated. This effect can be seen as an

additional nonlinearity. The contribution of the axial strain energy would have to be included to

account for these effects. A stiffening effect due to axial stresses for vibrating cantilever beams

subjected to base rotation was also reported by researchers [22] [105]. Using the same nonlinear

structural theory as this work (nonlinear Euler-Bernouilli theory), Villanueva et al. [23] also

witnessed a significant mismatch between their analytical and experimental results for the first

bending mode of cantilever beams. They also found the discrepancy to increase for lower length

to width ratios. According to the researchers [23], theories beyond Euler-Bernoulli would have to

applied, which account for more complex stress distributions.

• To account for nonlinearities with large deformations, Euler-Bernouilli can be extended using von

Karman strains. The full von Karman nonlinearity accounts for the coupling between extensional

and bending responses in beams with moderately large rotations but small strains. According to

Khodabakhshi and Reddy [106], the von Karman nonlinearity has a stiffening effect in beams.

They also stated that the influence is more prominent in thin beams than in thick beams [106].

• The exclusion of higher order terms in the Taylor series expansions and related approximations

(Equation 2.13, 2.14 and 2.15) might have led to significant inaccuracies. Only terms up to the

third order were kept within the approximation, but at high amplitudes of vibration the influence

of these terms could be increasingly significant. As evident from the experimental backbone

curves, the inclusion of higher order terms would result in better agreement between results.

• It might give improved results by calculating the nonlinear mechanics using nonlinear classical

plate theory instead of beam theory. According to Rao [107], if the thickness to width ratio is

less than 0.05 (which is true in the current case), plate theory should be employed to model the

system. Nonlinear plate theories as described in [81] would be applicable for the system of focus.

In accordance with these statements, the limitations and assumptions of the applied model should

be kept in mind upon application. It should be pointed out that the model in the current form is less

suitable for highly nonlinear systems of this kind. Therefore it should be avoided for nonlinearities of

this degree or improvements would have to be made to facilitate the mentioned shortcomings. All the

suggested improvements would inevitably give rise to more complexity in the model.

Figure 4.14: Possible explanation for the discrepancy in k3 values.
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5
Conclusions and Recommendations

This research has investigated the nonlinear dynamic behavior of AL7075-T6 cantilever beams. Free

vibration and sine-sweep experiments were performed showing significant nonlinear behavior. Several

metrics were obtained and correlated to various stages of fatigue life. An analytical method based

on Nonlinear Euler-Bernouilli theory and the Assumed Modes method, was employed to obtain the

equation of motion. Analytical approximations, including Harmonic Balance, the Method of Averaging

and Runge-Kutta, were applied to model the system response. The following section (5.1) details the

conclusions drawn from this work, provides answers to the research questions, and states possible

technical challenges. Finally, in section 5.2, recommendations for future work are given.

5.1 Conclusions

5.1.1 Answers to the Research Questions

Firstly, the research sub-questions stated in section 1.3 are answered:

1. Which nonlinear effects (e.g. stiffness, damping, inertial) significantly contribute to the system

dynamics and are therefore important to include in the analysis?

Nonlinear stiffness (k3), which is the main cause of the hardening (stiffening), can be stated to

have been the most influential nonlinearity. Nonlinear stiffness had the biggest influence on the

shape of the FRFs and backbone curves. It is hereby important to note that the local changes in

material elasticity (E) are linked to this parameter.

It was evident that nonlinear damping (c2 or ζ2) was significant. Through estimation of this

coefficient via the damping skeletons and subsequent verification using the MoA decay envelope

model, the influence of this nonlinearity was clearly present. It was shown that at high amplitudes

(≈0.1L) the effective damping ratio increased to approximately 500% of ζ1 for all beams.

Nonlinear inertia (m3), is also determined to have a significant influence based on the analytical

model. In the current case, the inclusion of the nonlinear inertial effects had a significant impact

on the shape of the FRF (shifts to the left). Noninclusion of this coefficient would unfairly neglect

the effect of all horizontal inertial forces.

2. Can the applied analytical approach accurately describe the experimental results?

In terms of the free decay analysis, the decay envelopes obtained through MoA had excellent

accuracy. The analytically determined envelopes were essentially indistinguishable from the
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experimental envelopes. These results indicate the proper estimation of the damping coefficients

c1 (ζ1) and c2 (ζ2).

Considering the FRFs and backbones, a difference in results was witnessed. The k3th values

from the theoretical analysis significantly underestimated the stiffening. Because of this, k3

values obtained through curve-fitting the experimental backbones were used to plot the FRFs,

which resulted in a better (but still imperfect) agreement. This indicates that the considered

nonlinear effects in the analytical model are not the only factors for the nonlinear behavior. The

discrepancy is expected to be caused by shortcomings of the model for the current use case. The

potential reasons for this and model improvement suggestions were broadly detailed in section 4.3.

3. How sensitive are the changes in nonlinear parameters over fatigue cycles compared to changes in the

standard linear parameters?

The experimental results revealed significant changes in the shape of the backbone curves. For

the obtained k3 values no consistent pattern of change was noticeable. This is speculated to be

caused by the insufficient fit of the model and the experimental data. Attributing the changes in

the backbones to only the single coefficient k3 would be unfair, because evidently higher order

coefficients would be necessary to correctly quantify the witnessed phenomena.

By quantifying the changes in the backbone curves in a different manner, such as the proposed

bending point amplitude (BPA) and bending point slope (BPS), a damage precursor index could

also be developed. The witnessed changes in BPA and BPS were fairly consistent and for all

beams approximately 5 times more sensitive than the changes in linear frequencies. Based on the

sensitivity alone, this would be a highly effective damage indicator.

The metric ∆F j ump was also shown to be sensitive to damage. For all three beams this metric

increased over fatigue levels, with a sensitivity more than ten times higher than changes in linear

frequencies. However, because the magnitude of excitation was not precisely constant for all tests,

this correlation can only be stated with a certain level of uncertainty.

In the case of nonlinear damping (c2) there was no definitive pattern of change, which is in line

with the expectations, because no potential changes could have occurred with the parameters

linked to the physics behind this nonlinearity (air drag).

4. What is the potential value of including nonlinear analysis in SHM applications?

Depending on the degree of nonlinearity that the system exhibits, the value of monitoring the

identified nonlinear parameters can be essential. Aside from the mentioned increased sensitivity

to damage, these identification methods and additional parameters provide more system informa-

tion than one would obtain by traditional (linear) methods. Incorrect estimations of the natural

frequency due to nonlinearities would also be avoided. By incorporating nonlinear effects in

failure models and control techniques, increased reliability and resilience is soundly expected.

These nonlinear techniques should not be considered a replacement for current techniques, but

rather an extension that enables more sophisticated failure models.
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Having answered the sub-questions, the main research question is answered next:

� Can nonlinear dynamic analysis lead to improved damage precursor detection and why?

Based on the obtained results, it can be stated that the monitoring of nonlinear parameters can lead to

improved detection. The increased sensitivity observed for parameters linked to the backbone curves

(BPA and BPS), could be exploited for improved damage detection. Other techniques, such as data-driven

methods, could also be applied to assess the clear changes witnessed in the backbone curves. The metric

∆ f j ump was also found to be sensitive, but may not be practical to monitor in real-world applications,

because of the necessity of highly specific and controlled excitation frequency and amplitude. The

additional system information associated with the inclusion of nonlinear effects is also expected to result

in improved decision-making and control techniques. It is hereby important to note that a thorough

understanding of nonlinear dynamics, nonlinear structural mechanics and the potential failure mecha-

nisms, is considered a necessity for effective implementation. The discussed dynamic effects also depend

on the type of system in question and it is unknown how these parameters evolve for other systems

(e.g.: other shapes, materials and dimensions). In summary, if it is possible to extract the necessary

parameters for nonlinear systems in real-world applications with reasonable accuracy, then the answer

to the research question is: yes.

5.1.2 General Conclusions

Further relevant conclusions drawn from the current research are stated in the following:

• The experimental and signal processing techniques applied in this work are a simple and effective

means for the production of useful graphs, such as backbone curves and damping skeletons. It

was shown that the nonlinear coefficients can be obtained experimentally using these graphs and

the equivalent equations (keq and ceq) derived from the Harmonic Balance Method.

• Backbone curves have proven to be a very valuable tool for tracking material degradation. It was

evident that the shapes of the obtained backbone curves change for increasing fatigue cycles. This

is caused by local changes in the elasticity and the occurrence of cracks in the damage-prone

region. In terms of data-driven or hybrid analysis, higher order terms (stiffness and inertial)

would be necessary to accurately replicate this behavior. The inclusion of higher order stiffness

terms was also recommended and applied by [78].

• Nonlinearities of the magnitudes in the experiments of this work are unlikely to be encountered

in practical applications, therefore the structural mechanical theory used within this work, which

works better in regions of weakly nonlinear behavior, could still be fairly accurate to apply.

It can be stated that for systems exhibiting nonlinear behavior, the monitoring of changes in nonlinear

system parameters can potentially lead to higher sensitivity in tracking damage precursors and the

inclusion of these parameters should result in more sophisticated failure models. This does depend

on the system and use case. Further investigation is necessary to establish a proper failure model or

damage precursor index. Technical challenges that may arise upon implementation are discussed in the

following.
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5.1.3 Technical Challenges

Although the methods treated in this work show to be very promising for application in damage (precur-

sor) detection, it is important to note that certain technical challenges may arise upon implementation,

which should be considered to successfully incorporate into practical applications. The first challenge

entails the necessity of high accuracy sensors capable of identifying structural response with minimal

error and noise. Whats more, most of the analysis techniques require a considerable amount of com-

puting power, which might not be practical for real time application. On a positive note, sensor and

computing technologies continue to improve, allowing for the implementation of increasingly complex

identification methods in the future. Experimental techniques for nonlinear dynamical analysis usually

depend on controlled excitations, but in practical applications the loads are less predictable and more

random in nature. The practical constraints should be kept in mind, such as the time-varying nature

of the response and the absence of precise excitation measurement. The presence of noise, which

was witnessed to be highly detrimental to the results, is also an important aspect to consider, because

practical applications are generally not noise proof. The additional burden associated with nonlinear

analysis can be substantial. Therefore the additional efforts should be weighed against the impact of

nonlinearities. And of course, if the system does not exhibit nonlinear behavior, there is no need to

apply such methods.

5.2 Recommendations

Based on the findings and shortcomings of this study, the following recommendations are given for

potential future work:

Analytical Approach:

• Investigate potential improvements upon the nonlinear structural model based on the stated

suggestions in section 4.3 to resolve the observed discrepancy for the nonlinear stiffness.

• Perform FEM analyses (dynamic nonlinear) to model the behavior. The complexity associated with

(strongly) nonlinear behavior makes accurate analytical methods difficult to realize. Cracks and

local changes in elasticity could be modelled to investigate the effects on the system dynamics.

• Investigate the evolution of parameters related to the phase (e.g. phase portraits and Bode plots).

• Develop an expression for drops in material elasticity as a function of beam horizontal position,

E(x). For this additional micro/meso-experiments would have to be performed to assess the

changes in elasticity along the length of the beam. This could then be used to analytically simulate

the damaged responses.

Experimental approach

• Investigate sequential amplitude values of resonance (both linear and nonlinear regime). This

would give an additional metric, which can be correlated to fatigue life. Due to unfavorable

variances in the sine-sweep excitation amplitudes this was not possible in the current work. The

magnitude of stiffening is also sensitive to small changes in excitation amplitude.
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• Perform automatically controlled (with feedback loop) fatigue testing instead of manually con-

trolled tests. This would achieve more sophisticated and consistent infliction of fatigue damage.

• Vary the fatigue testing parameters including the stress (amplitude) and duration of each period.

A lower fatigue infliction per period would better detail the ’damage precursor’ zone.

• Retrieve more data sets through extensive experiments to have stronger statistical verification of

the results. Due to technical difficulties not all the planned tests were executed in this work.

• Additionally test nonlinear sine sweeps at lower excitation amplitudes. Based on the obtained

backbone curves, softening is expected at response amplitudes around 0.015L, for increasing

fatigue cycles. It would be interesting to experimentally verify this notion. Furthermore, it would

be worthwhile to also obtain the backbones using sine sweep excitations of varying amplitudes

and to assess whether they match the backbones curves obtained from free decay data.

• Include more measuring points across the beam length to assess the changes in the mode shapes.

In the current work only the response at the beam tip was measured.

• It is important to have zero/minimal noise during free vibration testing, because it can have a

detrimental effect on the backbone curves and damping skeletons. It would also be interesting to

investigate whether nonlinear parameters can be extracted from data with noise levels similar to

practical cases.

• Develop a method for analyzing nonlinear response due to excitations similar to loads in occurring

practice, which are less predictable or consistent. The processing would not be as straightforward

as controlled testing, but some of the techniques in this work could be applied.

• Employ a method to visually verify cracks upon occurrence to distinguish between dynamics

brought on by cracks or by other microstructural changes associated with damage precursors.
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A
Tables of Experimental Results

Beam A
Fatigue Level ζ1 (%) ζ2(%) k3(×1010) Fnat (Hz) FRS (Hz) ∆F j ump (Hz)
Pristine 0.201 0.243 1.87 56.4 58.33 0.29
1 n/a 0.224 1.67 56.21 57.9 0.15
2 0.233 0.229 1.3 56.11 57.74 0.24
3 n/a 0.239 1.31 55.65 57.41 0.39
4 n/a 0.228 1.41 55.07 57.12 0.57
5 0.29 0.245 1.38 54.53 n/a n/a
6 n/a 0.239 1.5 53.81 55.96 0.79
7 n/a 0.239 1.88 52.9 55.35 0.85

Beam B
Fatigue Level ζ1 (%) ζ2(%) k3(×1010) Fnat (Hz) FRS (Hz) ∆F j ump (Hz)
Pristine n/a 0.21 1.32 57.77 59.27 0.22
1 0.222 0.207 2.07 57.04 59.15 0.31
2 0.228 0.207 1.62 56.82 58.67 0.35
3 0.274 0.217 1.22 55.84 57.5 0.52
4 0.293 0.226 1.62 53.9 56.4 1.23
5 n/a 0.21 3.53 49.97 53.82 1.68

Beam C
Fatigue Level ζ1 (%) ζ2(%) k3(×1010) Fnat (Hz) FRS (Hz) ∆F j ump (Hz)
Pristine n/a 0.214 1.51 56.82 58.41 0.19
1 0.231 0.211 1.62 55.74 n/a n/a
2 0.258 0.218 1.29 55.09 56.75 0.37
3 n/a 0.229 2.94 51.7 54.56 0.63

Table A.1: Experimentally obtained nonlinear coefficients (k3,ζ1 and ζ2) and parameters from the sine sweeps
(Fnat ,FRS and ∆F j ump).

ζ1: Viscous damping ratio (Experimental)

ζ2: Quadratic damping ratio (Experimental)

k3: Cubic stiffness coefficient (Experimental)

Fnat : Natural frequency from linear sine-sweeps

FRS : Resonant frequency from nonlinear (slow) sine-sweeps

F j ump : Difference between jump up and jump down frequencies

(Each fatigue level is 35000 cycles.)
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Matlab Code for Processing Free Vibration

Data

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % DESCRIPTION:

3 % Experimental Data Processing - Free Vibration

4 % Code for analyzing time data of the free vibration of a cantilever beam.

5 % ***********************************************************************

6 % Code Created: july 2018

7 % Code Author: T. Dragman

8 % University of Twente, Enschede, The Netherlands

9 % ***********************************************************************

10 %REFERENCES:

11 %Londono, J. M., Neild, S. A., & Cooper, J. E. (2015). Identification of

12 %backbone curves of nonlinear systems from resonance decay responses.

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 clear all; close all; clc;

15 set(0,’defaultAxesFontSize’,22);set(0,’DefaultTextFontSize’,22);

16 set(0,’DefaultLineLineWidth’,1); set(0,’DefaultLineMarkerSize’,5);

17 set(0,’DefaultAxesFontName’,’Sitka Subheading’)

18

19 %% Load data from experiments

20 delimiterIn = ’ ’; %Data seperator character

21 headerlinesIn = 7; %Number of lines in the text file before the main data starts

22

23 %Tip response velocity data (laser vibrometer):

24 filename0 = ’Data\b06_fl0_free_vib_1.txt’;

25 A0 = importdata(filename0 ,delimiterIn ,headerlinesIn);

26 filename1 = ’Data\b06_fl1_free_vib_1.txt’;

27 A1 = importdata(filename1 ,delimiterIn ,headerlinesIn);

28 filename2 = ’Data\b06_fl2_free_vib_1.txt’;

29 A2 = importdata(filename2 ,delimiterIn ,headerlinesIn);

30 filename3 = ’Data\b06_fl3_free_vib_1.txt’;

31 A3 = importdata(filename3 ,delimiterIn ,headerlinesIn);

32 filename4 = ’Data\b06_fl4_free_vib_1.txt’;

33 A4 = importdata(filename4 ,delimiterIn ,headerlinesIn);

34 filename5 = ’Data\b06_fl5_free_vib_1.txt’;

35 A5 = importdata(filename5 ,delimiterIn ,headerlinesIn);

36 %Base acceleration data (accelerometer):
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37 filename0 = ’Data\b06_fl0_free_r2a_1.txt’;

38 C0 = importdata(filename0 ,delimiterIn ,headerlinesIn);

39 filename1 = ’Data\b06_fl1_free_r2a_1.txt’;

40 C1 = importdata(filename1 ,delimiterIn ,headerlinesIn);

41 filename2 = ’Data\b06_fl2_free_r2a_1.txt’;

42 C2 = importdata(filename2 ,delimiterIn ,headerlinesIn);

43 filename3 = ’Data\b06_fl3_free_r2a_1.txt’;

44 C3 = importdata(filename3 ,delimiterIn ,headerlinesIn);

45 filename4 = ’Data\b06_fl4_free_r2a_1.txt’;

46 C4 = importdata(filename4 ,delimiterIn ,headerlinesIn);

47 filename5 = ’Data\b06_fl5_free_r2a_1.txt’;

48 C5 = importdata(filename5 ,delimiterIn ,headerlinesIn);

49

50 %% Specify sample and test details

51 %The natural frequency is obtained by running two or three linear sine sweep

52 %experiments at the start of an experimental session and averaging those values.

53 Fnat=57.75; %ENTER the average natural frequency (Fnat) of beam B in Hz (Pristine

case)

54 CL=114; %ENTER clamping length (CL) in mm

55 N=6; %ENTER the number of measurements (# Damage cases + 1)

56 SL = length(A1.data(:,2)); %Sample length (#samples)

57 T = A1.data(:,1); %Time vector (Same for all files)

58 Ts = T(2)-T(1); %Sampling rate (secs)

59 Fs = 1/Ts; %Sampling Freq (Hz)

60 NoNoise=[2 3 5]; %Cases without noise (Prist=1,Fat1=2,Fat2=3,...)

61 % ENTER Experimental natural frequencies obtained from linear sine sweeps:

62 Fvect=[57.75 57.04 56.82 55.84 53.9 49.89];

63 Nvect=[1 2 3 4 5 6];

64 %Color specification vector used to add colors to the plots at the various

65 %fatigue levels ([r g b], black=[0 0 0], white=[1 1 1])

66 C = {’k’,’m’,’b’,[0 .7 0],[.7 .7 0],’r’,[.8 .5 0],[0 .7 .7]};

67

68 %% Creation of data matrices

69 %Creation of matrices consisting of a seperate column for each fatigue level

measurement.

70 %The sampling length and frequency should be the same for each column. E.g. column

1 is

71 %data for pristine case, column 2 is data for fatigue level 1,...etc

72

73 Umat=zeros(SL,N); Amat=zeros(SL,N); %(rows=SL , columns=N)

74 %Tip Velocity

75 Umat(:,1) = A0.data(:,2)-mean(A0.data(:,2));

76 Umat(:,2) = A1.data(:,2)-mean(A1.data(:,2));

77 Umat(:,3) = A2.data(:,2)-mean(A2.data(:,2));

78 Umat(:,4) = A3.data(:,2)-mean(A3.data(:,2));

79 Umat(:,5) = A4.data(:,2)-mean(A4.data(:,2));

80 Umat(:,6) = A5.data(:,2)-mean(A5.data(:,2));

81 %Base Acceleration

82 Amat(:,1) = C0.data(:,2)-mean(C0.data(:,2));

83 Amat(:,2) = C1.data(:,2)-mean(C1.data(:,2));

74



84 Amat(:,3) = C2.data(:,2)-mean(C2.data(:,2));

85 Amat(:,4) = C3.data(:,2)-mean(C3.data(:,2));

86 Amat(:,5) = C4.data(:,2)-mean(C4.data(:,2));

87 Amat(:,6) = C5.data(:,2)-mean(C5.data(:,2));

88

89 %% Subtract base acceleration to get relative response and obtain improved results

90 %Intergrate base acceleration signal to obtain base velocity

91 Afilt=zeros(SL,N); BaseVel=zeros(SL,N);

92 %Bandpass filter to prevent drift in base velocity (Butterworth filter)

93 %(order,[F1/Nyquist F2/Nyquist],’bandpass ’)

94 [b, a] = butter(2,[0.003 0.5],’bandpass’); %LP & HP: 0.003[4.7Hz] & 0.5[782Hz]

95 for i=1:N

96 Afilt(:,i)=filtfilt(b,a,Amat(:,i));

97 BaseVel(:,i)=cumtrapz(T(:,1),Afilt(:,i)); %Perform the trapezoidal integration

and normalize (x/L)

98 BaseVel(:,i)=-1*smooth(BaseVel(:,i),20); %Apply smoothing to base signal (very

noisy compared to laser data)

99 BaseVel(:,i)=BaseVel(:,i)-mean(BaseVel(:,i)); %Subtract mean again

100 Umat(:,i)=Umat(:,i)-BaseVel(:,i); %Subtract the base velocity from

response velocity

101 end

102

103 %% Identifying peaks to determine time periods of interest

104 pksU=zeros(10,N); %Assuming no more than 10 free vibrations per measurement

105 locsU=zeros(10,N);

106 for i=1:N

107 [pks,locs] = findpeaks(Umat(:,i),’MinPeakDistance’,10000,’MinPeakHeight’,0.5);

108 Nlocu=length(locs);

109 pksU(1:Nlocu,i)=pks;

110 locsU(1:Nlocu,i)=locs;

111 NlocsU(1,i)=Nlocu;

112 end

113

114 %Plot figure displaying velocity time signals along with the identified peaks

115 figure(1),

116 title(’Forward Sweeps with peaks’)

117 for i = 1:N

118 subplot(3,2,i), hold on

119 caption = sprintf(’Beam 3 - Tip Velocity - Free Vibration Case #%d’, i);

120 title(caption, ’FontSize’, 10);

121 plot(T(locsU(1:NlocsU(i),i),1),pksU(1:NlocsU(i),i),’color’,C{i},’marker’,’o’,’

linestyle’,’none’);

122 hold on

123 plot(T(:,1),Umat(:,i),’color’,C{9-i},’linestyle’,’-’);

124 xlim([0 60])

125 ylim([-10 10])

126 end

127

128 %Make values of range ZeroLen right before peaks zero. This eliminates

129 %unwanted data regions when the beam is loaded before being released.
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130 ZeroLen=5000; % 5000points ~ 1.5 sec

131 for i=1:N

132 for k=1:NlocsU(i)

133 Umat((locsU(k,i)-ZeroLen):locsU(k,i),i)=0;

134 end

135 end

136

137 %Initialize variables to integrate velocity signal

138 Xmat=zeros(SL,N); Ufilt=zeros(SL,N);

139

140 %Bandpass filter (Butterworth) to prevent drift in displacement

141 %(order[=2],[F1/Nyquist F2/Nyquist],’bandpass ’)

142 [b, a] = butter(2,[0.003 0.5],’bandpass’); %0.003[4.7Hz] & 0.5[781Hz]

143 for i=1:N

144 Ufilt(:,i)=filtfilt(b,a,Umat(:,i));

145 end

146 clear a b

147 % Perform the integration using the Riemann method and normalize (x/L)

148 for i=1:N

149 Xmat(:,i)=cumtrapz(T(:,1),Ufilt(:,i)); %Cumulative trapezoidal integration

150 Xmat(:,i)=Xmat(:,i)/CL*1000; %Normalize by beam length

151 Xmat(:,i)=Xmat(:,i)-mean(Xmat(:,i)); %Subtract mean again

152 end

153

154 %Identify peaks in Displacement matrix (Xmatrix)

155 for i=1:N %(play with peak ID parameters)

156 [pksx,locsx] = findpeaks(Xmat(:,i),’MinPeakDistance’,10000,’MinPeakHeight’,0.01);

157 Nlocsx=length(locsx);

158 pksMx(1:Nlocsx,i)=pksx;

159 locsMx(1:Nlocsx,i)=locsx;

160 NlocsMx(1,i)=Nlocsx;

161 end

162

163 %Make values of range ZeroLen right before peaks zero again

164 for i=1:N

165 for k=1:NlocsMx(i)

166 Xmat((locsMx(k,i)-ZeroLen):locsMx(k,i),i)=0;

167 end

168 end

169

170 %% Construct 3D X Matrix for further processing

171 maxNpeaks=max(NlocsMx); %Maximum number of peaks

172 minNpeaks=min(NlocsMx); %Maximum number of peaks

173

174 % Calculate distances between consecutive peaks

175 DistLocs=zeros(maxNpeaks ,N);

176 for i=1:N

177 for k=1:NlocsMx(i)-1

178 DistLocs(k,i)=locsMx(k+1,i)-locsMx(k,i);

179 end
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180 end

181

182 MinDistLocs=min(DistLocs(DistLocs >0),[],’all’);

183

184 N3D=MinDistLocs -501; %length for 3D displacement matrix

185 for i=1:N

186 for k=1:NlocsMx(i)

187 if (length(Umat(:,i))-locsMx(k,i) < N3D) % if last peak too close to end of

time signal

188 Xmat(locsMx(k,i)-20:end,i)=0; % make that part of the signal

zero

189 end

190 end

191 end

192

193 %Identify peaks in the new displacement matrix (Xmat)

194 for i=1:N

195 [pksx,locsx] = findpeaks(Xmat(:,i),’MinPeakDistance’,10000,’MinPeakHeight’,0.01);

196 Nlocsx=length(locsx);

197 pksMx(1:Nlocsx,i)=pksx;

198 locsMx(1:Nlocsx,i)=locsx;

199 NlocsMx(1,i)=Nlocsx;

200 end

201

202 %% Sort displacement signal to go from highest to lowest initial amplitude

203 LocSort=zeros(size(pksMx)); PksSort=LocSort; IdxSort=LocSort;

204 for i=1:N

205 [PksSort(:,i),IdxSort(:,i)] = sort(pksMx(:,i),’descend’);

206 LocSort(:,i)=locsMx(IdxSort(:,i),i);

207 end

208

209 %Create 3D Displacement Matrix

210 X3D=zeros(N3D,N,minNpeaks);

211 for i=1:N

212 for k=1:NlocsMx(i)

213 X3D(1:N3D,i,k)=Xmat(LocSort(k,i):LocSort(k,i)+N3D-1,i);

214 end

215 end

216

217 %% Plot figure displaying modified normalized displacement time signals along with

the identified peaks

218 figure(2),

219 for i = 1:N

220 subplot(3,2,i), hold on

221 caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, i);

222 title(caption, ’FontSize’, 10);

223 plot(T(locsMx(1:NlocsMx(i),i),1),pksMx(1:NlocsMx(i),i),’color’,C{9-i},’marker’,’o’,

’linestyle’,’none’);

224 hold on

225 plot(T(:,1),Xmat(:,i),’color’,C{i},’linestyle’,’-’);
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226 xlim([0 60])

227 ylim([-0.25 0.25])

228 end

229

230 %% Plot to check 3D matrix structure

231 figure(3),

232 for i = 1:N

233 for k=1

234 subplot(3,2,i),

235 plot(T(1:N3D,1),X3D(:,i,k),’color’,C{i},’linestyle’,’-’);

236 end

237 end

238

239 Nk=min(NlocsMx); %MINIMUM NUMBER OF MEASUREMENTS

240 PSL=10000; %PLOT WINDOW LENGTH

241

242 %Plot sectioned displacement

243 figure(4),

244 for i = 1:N

245 for k=1:Nk

246 subplot(3,2,i)

247 hold on

248 plot(T(1+(k-1)*PSL:k*PSL,1),X3D(1:PSL,i,k),’color’,C{i},’linestyle’,’-’);

249 hold on

250 line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25],’Color’,[.5 .5 .5],’LineStyle’,’--’);

251 end

252 hold on

253 caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, i);

254 title(caption, ’FontSize’, 10);

255 ylim([-0.25 0.25])

256 xlabel(’Time (sec)’)

257 ylabel(’Amplitude (mm/mm)’)

258 end

259

260 %% Separate Linear/Nonlinear

261 pksM3x=zeros(100,N,Nk); locsM3x=zeros(100,N,Nk);

262 for i=1:N %(play with peak ID parameters)

263 for k=1:Nk

264 [pks3x,locs3x] = findpeaks(X3D(:,i,k),’MinPeakDistance’,50,’MinPeakHeight’,0.01);

265 Nlocs3x=length(locs3x);

266 pksM3x(1:Nlocs3x,i,k)=pks3x;

267 locsM3x(1:Nlocs3x,i,k)=locs3x;

268 NlocsM3x(1,i,k)=Nlocs3x;

269 end

270 end

271

272 %Split the signal into a linear part and a nonlinear part

273 X3Dnl=X3D; X3Dli=X3D; ZZ=zeros(1,N,Nk);

274 for i=1:N

275 for k=1:Nk
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276 for j=1:100-1

277 if (locsM3x(j,i,k)>0) && (locsM3x(j+1,i,k)==0) % Find the last peak

278 ZZ(1,i,k) = locsM3x(j,i,k);

279 end

280 end

281 X3Dli( 1:ZZ(1,i,k) ,i,k)=0; %Nonlinear part

282 X3Dnl( ZZ(1,i,k):end ,i,k)=0; %Linear part

283 end

284 end

285

286 %% Envelopes construction

287 ESL=12000; %Envelope signal length total signal

288 EnvLI=zeros(N3D,N,Nk); EnvNL=zeros(N3D,N,Nk); EnvX=zeros(ESL,N,Nk);

289 logEnvLI=zeros(N3D,N,Nk); logEnvNL=zeros(N3D,N,Nk); logEnvX=zeros(ESL,N,Nk);

290 %The envelopes are determined using spline interpolation over local maxima

separated by at least np samples.

291 for i=1:N

292 for k=1:Nk

293 %Construction of peak envelopes for the split up data.

294 EnvLI(:,i,k)=envelope(X3Dli(:,i,k),100,’peak’); %LI peak envelope

295 EnvNL(:,i,k)=envelope(X3Dnl(:,i,k), 25,’peak’); %NL peak envelope

296 %Set specific regions to zero:

297 EnvLI( 1:ZZ(1,i,k),i,k)=0; EnvLI( N3D-200:end ,i,k)=0; EnvNL( ZZ(1,i,k)+1:end ,i,k

)=0;

298 logEnvLI(:,i,k)= log(EnvLI(:,i,k)); logEnvNL(:,i,k)= log(EnvNL(:,i,k)); %

Logarithmic envelopes

299 %Envelope construction for complete signal

300 EnvX(:,i,k)=envelope(X3D(1:ESL,i,k),25,’peak’); %Complete envelope for nonlinear

analyses

301 logEnvX(:,i,k)= log(EnvX(:,i,k)) ; %Logarithmic envelope of complete

signal

302 end

303 end

304

305 %% Plot partitioned signal with envelopes

306 figure(5),

307 for i = 1:N

308 for k=1:Nk

309 subplot(3,2,i)

310 hold on

311 plot(T(1+(k-1)*PSL:k*PSL,1),X3Dli(1:PSL,i,k),’color’,C{i},’linestyle’,’-’);

312 hold on

313 plot(T(1+(k-1)*PSL:k*PSL,1),X3Dnl(1:PSL,i,k),’color’,C{9-i},’linestyle’,’-’);

314 hold on

315 plot(T(1+(k-1)*PSL:k*PSL,1),EnvNL(1:PSL,i,k),’color’,C{i},’linestyle’,’--’);

316 hold on

317 plot(T(1+(k-1)*PSL:k*PSL,1),EnvLI(1:PSL,i,k),’color’,C{9-i},’linestyle’,’--’);

318 line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25],’Color’,[.5 .5 .5],’LineStyle’,’--’);

319 line([0 25],[0.01 0.01],’Color’,’r’,’LineStyle’,’--’);

320 end
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321 hold on

322 caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, i);

323 title(caption, ’FontSize’, 10);

324 ylim([0 0.1])

325 ylabel(’Amplitude (mm/mm)’)

326 end

327

328 %% Plot envelopes only

329 figure(6),

330 for i = 1:N

331 for k=1:Nk

332 subplot(3,2,i)

333 hold on

334 plot(T(1+(k-1)*PSL:k*PSL,1),EnvNL(1:PSL,i,k),’color’,C{i},’linestyle’,’-’);

335 hold on

336 plot(T(1+(k-1)*PSL:k*PSL,1),EnvLI(1:PSL,i,k),’color’,C{9-i},’linestyle’,’-’);

337 line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25],’Color’,[.5 .5 .5],’LineStyle’,’--’);

338 end

339 hold on

340 caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’, i

);

341 title(caption, ’FontSize’, 10);

342 ylim([0 0.08])

343 end

344 %% Plot complete envelopes only

345 figure(7),

346 for i = 1:N

347 for k=1:Nk

348 subplot(3,2,i)

349 hold on

350 plot(T(1+(k-1)*PSL:k*PSL,1),X3D(1:PSL,i,k),’color’,[0.87 0.87 0.87],’linestyle’,’-’

);

351 hold on

352 plot(T(1+(k-1)*PSL:k*PSL,1),EnvX(1:PSL,i,k),’color’,C{7-i},’linestyle’,’-’);

353 hold on

354 line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25],’Color’,[.5 .5 .5],’LineStyle’,’--’);

355 end

356 hold on

357 caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’, i

);

358 title(caption, ’FontSize’, 10);

359 ylim([0 0.08])

360 end

361 %% Polyfitting of logarithmic envelopes to obtain zeta1 (c1)

362 Lp=4500; %length for linear fitting

363 LinSlope=zeros(2,N,Nk); pvl=zeros(Lp,N,Nk);

364 for i=1:N

365 for k=1:Nk

366 LinSlope(:,i,k) = polyfit( T(1:Lp,1),logEnvLI((ZZ(1,i,k)+1:ZZ(1,i,k)+Lp),i,k) ,1);

%linear polyfit
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367 pvl(:,i,k) = polyval(LinSlope(:,i,k),T(1:Lp,1));

368 end

369 end

370 %% Plot envelopes in log scale (Linear part should give an approximate straight

line)

371 figure(8)

372 for i = 1:N

373 for k=1:Nk

374 subplot(3,2,i)

375 hold on

376 plot(T(1+(k-1)*PSL:k*PSL,1),logEnvNL(1:PSL,i,k),’color’,C{i},’linestyle’,’-’);

377 hold on

378 plot(T(1+(k-1)*PSL:k*PSL,1),logEnvLI(1:PSL,i,k),’color’,C{9-i},’linestyle’,’-’);

379 line([k*PSL/Fs k*PSL/Fs],[-10 0],’Color’,[.5 .5 .5],’LineStyle’,’--’);

380 hold on

381 plot(T(1+(k-1)*PSL+ZZ(1,i,k):ZZ(1,i,k)+k*PSL-(PSL-Lp),1),pvl(:,i,k),’color’,’g’,’

linestyle’,’--’);

382 end

383 hold on

384 caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’, i

);

385 title(caption, ’FontSize’, 10);

386 xlim([0 25])

387 ylim([-8 -1])

388 ylabel(’ln(X) (mm/mm)’)

389 end

390

391 %% Plot slope values of linear envelopes

392 LinSlope(1,4,3)=LinSlope(1,4,2); LinSlope(1,5,3)=LinSlope(1,5,2); %manual

correction (single outlier points)

393 figure(9)

394 for i=1:N

395 for k=1:Nk

396 hold on

397 plot(i,LinSlope(1,i,k),’marker’,’o’,’color’,C{k})

398 end

399 end

400 legend(’1’,’2’,’3’,’4’,’5’,’6’)

401

402 %% The linear damping coefficient is analyzed next.

403 % For the linear case the damping decrement abides a logarithmic relation.

404 % By plotting this in logarithmic scale, a straight line can be fitted to the

405 % signal peak envelope to estimate the damping coefficient. In the nonlinear

406 % case, however this is not possible.

407 avgli=zeros(1,N); ZetaLin=avgli; stdli=avgli; stdz1=avgli;

408 for i=1:N

409 avgli(i)=mean(LinSlope(1,i,:));

410 ZetaLin(i)= -avgli(i)/(2*pi*Fvect(i));

411 stdli(i)= std(LinSlope(1,i,:));

412 stdz1(i)= std(LinSlope(1,i,:)/(2*pi*Fvect(i)));
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413 end

414

415 figure(10) %plot the linear damping ratios and standard deviations

416 subplot(1,3,1)

417 for i=1:N

418 hold on

419 plot(Nvect(i),ZetaLin(i),’marker’,’o’,’linestyle’,’--’,’color’,C{i})

420 end

421 xlim([0 8])

422 xlabel(’Test Number’)

423 ylabel(’\zeta_1 (%)’)

424 subplot(1,3,2)

425 for i=[2 3 4 5]

426 hold on

427 errorbar(Nvect(i),ZetaLin(i)*100,stdz1(i)*100,’marker’,’o’,’linestyle’,’--’,’color’

,C{i},’linewidth’,1.5)

428 end

429 xlim([0 8])

430 xlabel(’Test Number’)

431 ylabel(’\zeta_1 (%)’)

432 subplot(1,3,3)

433 plot(Nvect,stdz1,’marker’,’x’,’linestyle’,’none’)

434 line([0 8],[0.008/100 0.008/100],’color’,C{1},’LineStyle’,’--’);

435 xlim([0 8])

436 xlabel(’Test Number’)

437 ylabel(’Standard deviation of \zeta_1 values’)

438

439 figure(11)

440 for i=[2 3 4 5]

441 hold on

442 errorbar(Nvect(i)*35000-35000,ZetaLin(i)*100,stdz1(i)*100,’marker’,’o’,’linestyle’,

’--’,’color’,C{i},’linewidth’,1.5)

443 end

444 xlim([-2000 180000])

445 ylim([0.2 0.35])

446 xlabel(’Cycles’)

447 ylabel(’\zeta_1 (%)’)

448

449 %% FFT’s for frequency overview and to check for presence of amplifier noise

450 for a=1

451 Lf = N3D; % Length of signal

452 t = Ts; % Time vector

453 f = Fs*(0:(Lf/2))/Lf; % Frequency axis

454 FFN=zeros(N3D,N,Nk); FFL=FFN; FFNP2=FFN; FFLP2=FFN;

455 FFNP1=zeros(N3D/2+1,N,Nk); FFLP1=FFNP1;

456 for i=1:N

457 for k=1:Nk

458 FFN(:,i,k) = fft(X3Dnl(:,i,k));

459 FFNP2(:,i,k) = abs(FFN(:,i,k)/Lf);

460 FFNP1(:,i,k) = FFNP2(1:Lf/2+1,i,k);
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461 FFNP1(2:end-1,i,k) = 2*FFNP1(2:end-1,i,k);

462 FFL(:,i,k) = fft(X3Dli(:,i,k));

463 FFLP2(:,i,k) = abs(FFL(:,i,k)/Lf);

464 FFLP1(:,i,k) = FFLP2(1:Lf/2+1,i,k);

465 FFLP1(2:end-1,i,k) = 2*FFLP1(2:end-1,i,k);

466 end

467 end

468

469 figure(20) % plot linear and nonlinear fft’s

470 for i = 1:N

471 for k=1:Nk

472 subplot(3,2,i)

473 caption = sprintf(’FFT - Linear and Nonlinear #%d’, i);

474 title(caption, ’FontSize’, 5);

475 plot( f/Fnat*Fnat , FFNP1(:,i,k))%,’marker’,’x’)%,’markersize ’,6,’linestyle ’,’none

’)

476 hold on

477 plot( f/Fnat*Fnat , FFLP1(:,i,k) ,’linestyle’,’-’)

478 hold on

479 caption = sprintf(’Beam B - FFT - Linear Free Vibe Case #%d’, i);

480 title(caption, ’FontSize’, 10);

481 xlim([0.8*Fnat 1.1*Fnat])

482 set(gca, ’YScale’, ’log’)

483 title(’Single-Sided Amplitude Spectrum of X(t)’)

484 xlabel(’Frequency (\omega/\omega_n)’)

485 end

486 end

487 end

488

489 %% Zero-crossing instantaneous frequency analysis

490 %Algorithm to find two time points between each downward zero crossing

491 SLF=N3D-2000;

492 ZeroCros=zeros(SLF,N,Nk);

493 for i=1:N

494 for j=1:Nk

495 for k=1:SLF-1

496 if (X3D(k,i,j)>0) && (X3D(k+1,i,j)<0)

497 %downward -crossings interpolation to estimate exact time point of zero-crossing:

498 ZeroCros(k,i,j) = X3D(k,i,j)/(X3D(k,i,j)-X3D(k+1,i,j))*(T(k+1,1)-T(k,1))+T(k,1);

499 end

500 end

501 end

502 end

503

504 % Run peak alg. over ZeroCros to asses nonzero data and find the indices of

crossings in the main signal

505 PMzf=zeros(700,N,Nk); LMzf=zeros(700,N,Nk); NLMzf=zeros(1,N,Nk);

506 for i=1:N

507 for j=1:Nk

508 [Pzf,Lzf] = findpeaks((ZeroCros(:,i,j)),’MinPeakDistance’,5,’MinPeakHeight’
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,0.00001);

509 NLzf=length(Lzf);

510 PMzf(1:NLzf,i,j)=Pzf; %creates peak matrix

511 LMzf(1:NLzf,i,j)=Lzf; %creates peak locations matrix

512 NLMzf(1,i,j)=NLzf; %the amount of peaks per case

513 end

514 end

515

516 NZ1=1; NZ2=180; %Data range for zero-cross analysis

517 InstFreq=zeros(NZ2,N,Nk);

518 %Obtain instantaneous frequency from distances between consecutive crossings

519 for i=1:N

520 for j=1:Nk

521 for k=NZ1:NZ2

522 InstFreq(k-NZ1+1,i,j)=1/(PMzf(k+1,i,j)-PMzf(k,i,j));

523 %make infinities and absurdly large frequencies zero

524 if (InstFreq(k,i,j)>100)

525 InstFreq(k,i,j) = 0;

526 end

527 end

528 % Moving average filter (smooth function)

529 % set span of moving average (for span of five, first two points unfiltered)

530 InstFreq(1:NZ2,i,j) = smooth(InstFreq(1:NZ2,i,j),5);

531 end

532 end

533 clear ZeroCros

534

535 %% Plot the instantaneous frequencies for each damage case

536 TFaxis=zeros(NZ2,N,Nk); % Time axis

537 figure(30)

538 for i=1:N

539 for j=1:Nk

540 TFaxis(1:NZ2,i,j)=T(LMzf(1:NZ2,i,j),1);

541 subplot(3,2,i)

542 hold on

543 plot(TFaxis(:,i,j),InstFreq(:,i,j),’color’,C{j},’marker’,’o’);

544 end

545 end

546

547 %% Plot the amplitude envelopes for each damage case

548 figure(31)

549 for i=1:N

550 for j=1:Nk

551 subplot(3,2,i)

552 hold on

553 plot(T(1:ESL,1),EnvX(:,i,j),’color’,C{j},’marker’,’o’);

554 end

555 end

556

557 %% Plot backbone curves of pristine case only
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558 figure(40)

559 for i=1

560 for j=1:Nk

561 hold on

562 plot(InstFreq(5:158,i,j),CL*EnvX(LMzf(5:158,i,j),i,j),’color’,C{j},’marker’,’o’,’

linestyle’,’none’);

563 end

564 end

565 title(’Beam B - Pristine Case - Backbone curve’)

566 xlabel(’Frequency (Hz)’)

567 ylabel(’Tip Amplitude (mm)’)

568

569 %% Plot the main backcurves for all cases

570 figure(41)

571 for a=5:140

572 for j=1:Nk-3

573 for i=1:N

574 if (EnvX(LMzf(a,i,j),i,j)>0.003) % Avoids plotting very low amplitude values

for cleaner graph

575 hold on

576 plot(InstFreq(a,i,j)/Fnat,EnvX(LMzf(a,i,j),i,j),’color’,C{i},’marker’,’o’,’

linestyle’,’none’);

577 end

578 end

579 end

580 end

581 for i=1:N

582 hold on

583 line([Fvect(i)/Fnat Fvect(i)/Fnat],[0 CL*0.12],’Color’,C{i}’,’LineStyle’,’--’,’

linewidth’,2);

584 end

585 xlim([49/Fnat 59.5/Fnat])

586 ylim([0 0.14])

587 grid on

588 set(gca,’box’,’on’)

589 legend(’Pristine’,’Fatigue: N=35000’,’Fatigue: N=70000’,’Fatigue: N=105000’...

590 ,’Fatigue: N=140000’,’Fatigue: N=175000’,’Location’,’NorthWest’)

591 xlabel(’Frequency (\omega/\omega_n)’)

592 ylabel(’Amplitude (X/L)’)

593 title(’Backbone Curves - Beam B’)

594

595 Zrange=[180 180 180 180 180 180]; %custom range for each damage case

596 figure(42) % Plot Backbones with longer signal length and custom ranges

597 for j=1:Nk

598 for i=1:N

599 hold on

600 plot(InstFreq(5:Zrange(i),i,j),EnvX(LMzf(5:Zrange(i),i,j),i,j),’color’,C{j},’marker

’,’o’,’linestyle’,’none’);

601 hold on

602 line([Fvect(i) Fvect(i)],[0 CL*0.18],’Color’,C{i}’,’LineStyle’,’--’);
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603 end

604 end

605 xlim([52 59.5])

606 ylim([0 0.14])

607 grid on

608 legend(’Pristine’,’Fatigue: N=35000’,’Fatigue: N=70000’,’Fatigue: N=105000’,’

Fatigue: N=140000’,...

609 ’Fatigue: N=175000’,’Fatigue: N=210000’,’Fatigue: N=245000’,’Location’,’

NorthWest’)

610 xlabel(’Frequency (\omega/\omega_n)’)

611 ylabel(’Amplitude (X/L)’)

612 title(’Backbone Curves - Beam B’)

613

614 %% Plot linear region of backbone curves with Gaussian Filter (Heavy Filtering)

615 Zgauss=zeros(size(InstFreq)); % Apply Gaussian filter to make linear region

presentable

616 for i=1:N

617 for j=1:Nk

618 Zgauss(:,i,j) = smoothdata(InstFreq(:,i,j),’gaussian’,30);

619 end

620 end

621

622 %Plot linear region backbone

623 figure(43)

624 for j=1:Nk-3

625 for i=1:N

626 hold on

627 plot(Zgauss(5:Zrange(i),i,j)/Fnat,EnvX(LMzf(5:Zrange(i),i,j),i,j),’color’,C{i},’

marker’,’o’,’linestyle’,’none’);

628 end

629 end

630 for i=1:N

631 hold on

632 line([Fvect(i)/Fnat Fvect(i)/Fnat],[0 0.025],’Color’,C{i}’,’LineStyle’,’--’,’

linewidth’,2);

633 end

634 hold on

635 line([0.7 1.3],[0.01 0.01],’Color’,[0.4 0.4 0.4],’LineStyle’,’--’,’linewidth’,2);

636 xlim([0.75 1.01])

637 ylim([0 0.012])

638 set(gca,’box’,’on’)

639 legend(’Pristine’,’Fatigue: N=35000’,’Fatigue: N=70000’,’Fatigue: N=105000’,’

Fatigue: N=140000’,...

640 ’Fatigue: N=175000’,’Location’,’NorthWest’)

641 xlabel(’Frequency (\omega/\omega_n)’)

642 ylabel(’Amplitude (X/L)’)

643 title(’Backbone Curves - Linear Region - Beam B (Guassian Filter)’)

644

645 %% Effective damping ratio calculation.

646 NZ2=150; NZend=180; zetaEFF=zeros(NZend-10,N,Nk); zetaLondono=zeros(NZend-10,N,Nk);
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647 Nzeta=5;

648 for i=1:N

649 for k=1:Nk

650 for j=Nzeta+1:NZend-Nzeta

651 %Piecewise linear interpretation;

652 zetaEFF(j,i,k) =(logEnvX(LMzf(j-Nzeta,i,k),i,k)-logEnvX(LMzf(j+Nzeta,i,k),i,k))...

653 /(2*pi*InstFreq(j,i,k)*(T(LMzf(j+Nzeta,i,k),1)-(T(LMzf(j-Nzeta,i,k),1)))) ;

654 %Londono’s method (2015);

655 zetaLondono(j,i,k) =(logEnvX(LMzf(1,i,k),i,k)-logEnvX(LMzf(j,i,k),i,k))...

656 /(2*pi*InstFreq(j,i,k)*(T(LMzf(j,i,k),1)-(T(LMzf(1,i,k),1)))) ;

657 end

658 end

659 end

660

661 %% Create Arrays to obtain k3 and c2 through Curve Fitting Toolbox

662 M2=21300; % Nonlinear inertial coeff from analytical model (Meff=m1+1/2*m2*X^2)

663 NDcf=30; % NDcf = number of data points for curve fitting

664 NJcf=4; % NJcf = number of vibrations for curve fitting

665

666 %INITIALIZE ARRAYS FOR CURVE FITTING SESSION

667 CFK=zeros(NDcf*NJcf,N); CFX=CFK; CFZ=CFK; Meff=CFK;

668 ck1=zeros(NDcf*NJcf,1); ck2=ck1; ck3=ck1; ck4=ck1; ck5=ck1; ck6=ck1; %effective

stiffness

669 cx1=zeros(NDcf*NJcf,1); cx2=cx1; cx3=cx1; cx4=cx1; cx5=ck1; cx6=ck1; %amplitude

values

670 cz1=zeros(NDcf*NJcf,1); cz2=cz1; cz3=cz1; cz4=cz1; cz5=cz1; cz6=cz1; %effective

damping

671 OmegaSqr=zeros(N); OmegaSqr=(2*pi*Fvect).^2;

672 for i=1:N

673 for j=1:NJcf

674 % Effective Mass

675 Meff(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=1+M2*0.5*(CL/1000/15*EnvX(LMzf(5:5+NDcf-1,i,j)

,i,j)).^2;

676 % Keff=omega(X)^2*Meff

677 CFK(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=(2*pi.*InstFreq(5:5+NDcf-1,i,j)).^2;

678 % Amplitude values

679 CFX(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=CL/1000*EnvX(LMzf(5:5+NDcf-1,i,j),i,j);

680 % Construction of arrays to obtain zeta2:

681 % zetaEFF=zeta1+const*omega_n(X)*zeta2*X --> (zetaEFF-zeta1)/omega_n(X)=constants*

zeta2*X

682 CFZ(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=(zetaEFF(5:5+NDcf-1,i,j)-ZetaLin(i))./(2*pi.*

InstFreq(5:5+NDcf-1,i,j));

683 end

684 CFK(:,i)=CFK(:,i).*Meff(:,i)-OmegaSqr(i);

685 end

686 ck1(:,1)=CFK(:,1); ck2(:,1)=CFK(:,2); ck3(:,1)=CFK(:,3); ck4(:,1)=CFK(:,4); ck5

(:,1)=CFK(:,5); ck6(:,1)=CFK(:,6);

687 cx1(:,1)=CFX(:,1); cx2(:,1)=CFX(:,2); cx3(:,1)=CFX(:,3); cx4(:,1)=CFX(:,4); cx5

(:,1)=CFX(:,5); cx6(:,1)=CFX(:,6);

688 cz1(:,1)=CFZ(:,1); cz2(:,1)=CFZ(:,2); cz3(:,1)=CFZ(:,3); cz4(:,1)=CFZ(:,4); cz5
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(:,1)=CFZ(:,5); cz6(:,1)=CFZ(:,6);

689 end

690

691 %% Plot the damping skeletons

692 figure(51)

693 for j=1:3

694 for i=2:5

695 hold on

696 plot(100*zetaEFF(8:80,i,j),EnvX(LMzf(8:80,i,j),i,j),’color’,C{i},’marker’,’o’,’

linestyle’,’none’);

697 end

698 end

699 for i=2:5

700 hold on

701 line([ZetaLin(i)*100 100*ZetaLin(i)],[0 0.15],’Color’,C{i}’,’LineStyle’,’--’,’

linewidth’,2);

702 end

703 xlim([0.1 1.2])

704 ylim([0 0.12])

705 legend(’Fatigue: N=35000’,’Fatigue: N=70000’,’Fatigue: N=105000’,’Fatigue: N=140000

’,’Location’,’NorthWest’)

706 xlabel(’Effective Damping Ratio, \zeta_{eff} (%)’)

707 ylabel(’Amplitude (X/L)’)

708 title(’Damping Skeletons - Beam B’)

709 %%

710 figure(511)

711 for j=1:3

712 for i=1:N

713 hold on

714 plot(100*zetaEFF(8:100,i,j),EnvX(LMzf(8:100,i,j),i,j),’color’,C{i},’marker’,’o’,’

linestyle’,’none’);

715 end

716 end

717 xlim([0.1 1.2])

718 ylim([0 0.12])

719 legend(’Pristine’,’Fatigue: N=70000’,’Fatigue: N=175000’,’Location’,’NorthWest’)

720 xlabel(’Effective Damping Ratio, \zeta_{eff} (%)’)

721 ylabel(’Amplitude (X/L)’)

722 title(’Damping Skeletons - Beam B - All’)

723 %% Damp skeleton Example Visualization (Pristine case)

724 figure(52)

725 for j=1:Nk

726 hold on

727 plot(100*zetaEFF(8:100,1,j),CL*EnvX(LMzf(8:100,1,j),1,j),’color’,C{j},’marker’,’o’,

’linestyle’,’none’);

728 end

729 xlabel(’Effective Damping Ratio, \zeta_{eff} (%)’)

730 ylabel(’Tip Amplitude (mm)’)

731 title(’Beam B - Pristine Case - Damping Skeletons’)
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Repeatability of the Backbone Curves

Figure C.1: Backbone curves for Beam A

Figure C.2: Backbone curves for Beam B
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APPENDIX C. REPEATABILITY OF THE BACKBONE CURVES

Figure C.3: Backbone curves for Beam C
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Supplementary Information

Figure D.1: FFT for the whole range of frequencies (Pristine case). Both FFTs were taken for the full decay
duration. Primary peak present at the first bending mode and seconday peak present at the second bending mode.

Figure D.2: FFT zoomed into Mode 1 showing the interference coming from the amplifier. This was not an issue
for the nonlinear signal. The issue was only present in certain cases where the amplifier was switched on. This
specific result is for free decays of Beam A fatigued at 105000 cycles.
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APPENDIX D. SUPPLEMENTARY INFORMATION

Figure D.3: Material specifications from manufacturer
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