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ABSTRACT

ibration-based Structural Health Monitoring (SHM) techniques are effective for detecting fatigue

damage in structures by assessing changes in the dynamic behavior. When it comes to structures
that exhibit significant nonlinear dynamic behavior, general SHM methods are not able to adequately
describe the occurring dynamical phenomena. Furthermore, previous studies have shown that for
flexible structures, changes in nonlinear system parameters were more sensitive to damage precursors
than changes in linear system parameters. These facts suggest that a proper understanding of nonlinear
dynamic properties is of high importance within SHM.

This work identifies changes in the nonlinear dynamic behavior of cantilever beams over various
stages of fatigue cycles by employing an experimental and analytical approach. The main aim was
to investigate to what extent the monitoring of nonlinear dynamic system parameters can result in
improved detection of damage precursors. A multidisciplinary literature review was conducted to gain
broad insights into the latest advancements in SHM. Experiments were carried out to characterize
linear and nonlinear system parameters of AI7075-T6 cantilever beams. The dynamic characterizations
included sine-sweep excitation (forced) and free vibration (transient). For each characterization, tests
for the nonlinear and linear region were conducted. A signal processing approach was applied to
convert the experimental data into useful results, such as backbone curves and damping skeletons.
By employing fatigue testing, the results were correlated to different levels of component health. An
analytical approach was carried out to develop the equation of motion (EoM) and to model the dynamic
response. Techniques applied to derive the EoM include Nonlinear Euler-Bernouilli and the Assumed
Modes method. The dynamic response was modeled using the Harmonic Balance method, the Method
of Averaging and numerical methods (Runge-Kutta). The research uncovers interesting changes in
various nonlinear properties due to the increasing presence of damage, and shows that the inclusion of
nonlinear analysis can lead to improved techniques in the field of SHM.
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CHAPTER

INTRODUCTION

T he opening chapter begins by discussing the motivation behind the research performed for this
Master’s thesis in section 1.1. This is followed by a literature review in section 1.2, which provides
context and background for the current work, and current scientific gaps. Thereafter, in section 1.3,
the research goals, objectives, and research questions are stated. Finally, in section 1.4 the research
methodology is detailed.

1.1 Motivation

In aerospace applications, effective Structural Health Monitoring (SHM) systems are essential for
ensuring the reliability and safety of aircraft. The main goal of SHM is to detect structural anomalies
before reaching a critical damage level [1]. SHM is important for identifying the severity of damage due
to various failure mechanisms, such as shock, vibration fatigue, or thermal stresses [2] [3]. Because
SHM has significant potential for life-safety and economic benefits, there has been a rapid increase in
multidisciplinary research efforts, and technological improvements for advancements concerning the
reliability and sensitivity of SHM [4]. One of the earlier techniques applied in SHM is modal analysis,
which is established as a fundamental strategy in identifying fatigue damage within SHM. However,
modal analysis is a linear theory, and cannot be applied to significantly nonlinear systems [5-7]. In
reality, numerous engineering structures do not comply with the assumption of linear behavior and these
structures exhibit various nonlinear behaviors [7-9]. Engineers are often confronted with nonlinearities
in: the aerospace industry [8, 10], the military [11], robotics [12, 13] and MEMS devices [12, 14, 15].

The effect of nonlinearities on modal analysis is quite detrimental, because all the invariant system
parameters, which are generally taken for granted for a linear system, including resonant frequencies,
damping ratios, frequency response functions (FRFs) and modeshapes, now become dependent on the
magnitude of applied excitation [16]. When nonlinear effects in structures are no longer negligible,
then linear modal analysis cannot accurately describe the occurring dynamical phenomena [17, 18].
The study of nonlinearities in the monitoring of structures is highly essential for the development of
SHM techniques, since these effects can be incorrectly viewed as structural changes [19]. According
to Worden et al. [20] damage detection can be notably improved by incorporating nonlinear effects
during the extraction of damage features. Various techniques have been proposed to deal with nonlinear
systems, but a generally accepted technique remains undefined [19, 21].

Flexible beam structures are important elements, with widespread usage in airplane wings, helicopter
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blades, robot arms, MEMS devices and flexible satellites [13]. Usually beam elements are used as
simplified models for more complex structures or as precision mechanisms. If the amplitude of vibration
increases, beam structures are also subjected to significant nonlinear vibrations [13, 22]. The nonlinear
mechanics of these structures are a popular research interest [22-24].

A promising concept within fatigue damage identification is the detection of Damage Precursor
(DP)s, which are defined as observable early degradation in the material properties of a structure, that
precede the initiation of fatigue cracks [25]. To this end, researchers [11, 25, 26] have conducted
various microstructural experiments to investigate fatigue DPs in metal cantilever beams, including:
nanoindentation, Electron Backscatter Diffraction (EBSD), X-Ray Diffraction (XRD) and Atomic Force
Microscopy (AFM). The researchers were thereby able to observe changes in the material properties due
to increases in fatigue cycles, such as elastic modulus, residual stresses, crystal orientation, and grain
size. All these changes were detectable before large scale damage were present and can be considered
as evidence of potential DPs. These microstructural changes, as expected, lead to changes in the
macro-structural properties. Studies have shown that nonlinear system parameters for steel cantilever
beams exposed to transverse [26] and [27] vibration fatigue, specifically the nonlinear stiffness terms
in the equation of motion (EoM), was found to be more sensitive to fatigue damage precursors than
linear stiffness terms. Haynes et al. [11] reported similar nonlinear structural dynamic results for
aluminum cantilever beams exposed to random base excitation. In this study forward and backward
sine-sweeps were applied frequently to monitor the FRF response, which appeared to increase with
damage accumulation. The performed research related to DPs, suggests that proper understanding
of nonlinear dynamic properties is of high importance within SHM. There is significant room for
improvement in our understanding of how these parameters change over various stages of component
health for different materials.

This research work aims to investigate changes in the nonlinear dynamic response of flexible beams
over various stages of fatigue cycles. The fundamental goal is provide experimental and theoretical
tools to improve detection of DPs based on changes in nonlinear parameters in the equation of motion.
The tools are vibration-based detection, which include sine-sweep, step-sine, and free-vibration. Trends
can be extracted from each technique to detect and assess the severity of DPs. The experimental tools
were applied for flexible aluminum cantilever beams fatigued in a similar manor to [11, 26]. In this
study, nonlinear free-vibration appears to be the most time efficient with reasonable accuracy compared
to traditional methods. To this end, a multidisciplinary literature review was necessary to gain broad
insights into the latest advancements within SHM. It is important to point out that due to the substantial
breadth of SHM, it is difficult to survey all major advancements generated in the last ten years. Thus,

the majority of the survey includes studies focused on nonlinear phenomena.

1.2 Literature Review

Due to the substantial breadth of SHM, the primarily objective of literature review is to identify relevant
research related to the analysis of nonlinear dynamical systems, nonlinear structural dynamics, damage
detection methods, and damage precursors. Hereby the focus is primarily on, but not restricted to,

flexible structures. Several other topics deemed potentially useful for the research are also included.
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The literature review is divided into the following categories:

1. System Identification and Data-Driven Methods (subsection 1.2.1)

s W

Physics-Based Methods (subsection 1.2.2)
Hybrid Methods (subsection 1.2.3)

Damage Precursors (subsection 1.2.4)

Scientific Gaps and Paths for Improvement (subsection 1.2.5)

The review is not intended as a comprehensive review of all existing methods related to the mentioned

fields, but rather to provide numerous illustrations of approaches common in current literature. Figure 1.1

depicts a visual representation of the review structure, which also emphasizes the connections among

the sections of the review and and aims to enhance the reader’s understanding. This figure is further

explained in subsection 1.2.5. The review is also helpful in the selection of the most appropriate

techniques in order to accomplish the research goal.
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Figure 1.1: Visual representation of methods used in the literature and areas for impovement.

1.2.1 System Identification and Data-Driven Methods

The field of System Identification (SI) focuses on creating models of dynamic systems from measured

input and output data [28]. The field is very broad with various techniques applicable to different

type of systems, e.g., linear, nonlinear, hybrid, nonparametric, etc. [28]. Within SI three types of
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model classifications are defined: white-box, black-box, and grey-box models [29]. White-box models
(bottom-up approach) are purely theoretical and based on first principles. Such models are synonymous
with the physics-based approach within SHM and Predictive Maintenance (PdM). In many cases,
white-box models are complicated to obtain due to the inherently complex nature of many systems.
Therefore, the model types that are dominant in the domain of SI are black-box and grey-box models.
In black-box modeling (top-down approach) no model form is assumed and it can be considered
purely data-driven and statistical. It can be viewed only in terms of the input and output data without
actual knowledge of the internal workings of the system. The third type is grey-box modeling, which
combines a model structure with data-driven techniques to complete the model. The model structure is
thereby assumed beforehand, and subsequently, the model parameters are estimated [30]. Data-driven
techniques can often be combined with machine learning to increase the accuracy and effectiveness of
anomaly detection. Models broadly used within nonlinear system identification include: Volterra series
[19, 31, 32], NARMAX [31-33] and artificial neural networks [19, 33].

Cheng et al. [33], who reviewed Volterra-Series-based nonlinear system modeling and its engineering
applications, stated that although many researchers have made progress in the past decades, the method
still presents many challenges. Brewick and Masri [21] explored a variety of data-driven identification
techniques for complex nonlinear dynamic systems. The Volterra/Wiener neural network (VWNN) was
hereby compared against several existing methods, including polynomial-based nonlinear estimators
and artificial neural network systems. The authors found that VWNN provided superior accuracy in
its estimates. The application of SI techniques for damage detection has also been explored by several
researchers. Shiki and Silva [19] proposed damage indicators based on Volterra series by considering
nonlinear contributions of the response of an aluminum beam test rig. The identified metric was sensitive
to structural changes even under the nonlinear range of motion. A Volterra model was also proposed by
Chatterjee [34] for a cantilever beam with a breathing crack. The model was based on the harmonic
probing method and the authors managed to correlate variations in the system response to the opening
of the crack. A new SHM framework was presented by Rabiei et al. [35] based on the evolution of DPs
using dynamic Bayesian networks. The method was suitable when a conventional damage indicator,
such as a crack, is difficult to measure. The method was successfully applied to estimate damage and

predict crack initiation in 7075-T6 aluminum samples subject to fatigue.

A data-driven technique with potential in damage identification is Symbolic Dynamic Filtering (SDF).
Several researchers have studied the theory of SDF and its various applications for anomaly detection
and pattern recognition. According to Gupta and Ray [36], the core concept of SDF is based on the
phase-space partitioning of a dynamical system to yield a symbolic alphabet and to obtain symbol
sequences from time series data. The time series data of sensors are processed and converted from
real numbers into discrete symbols. This process results in a so-called symbolic dynamical system that
can aid to understand the dynamical behavior of the original system. The key idea of SDF is then to
quantify deviations of the current pattern from the baseline pattern, which can indicate the occurrence
of anomalies. Rao et al. [37] presented a review of SDF and evaluated its performance for anomaly
detection compared to other types of pattern recognition techniques, such as Bayesian Filters and
Artificial Neural Networks. They concluded that SDF is well suited for health monitoring applications.

Patankar et al. [38] developed a data-driven signal processing method using SDF to identify anomalies
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and monitor failure precursors. They stated the technique to be superior to conventional techniques
such as neural networks and principal component analysis.

The covered topics are only a fraction of all the existing SI methods. If the reader is interested in
more, a literature review of SI articles related to SHM was conducted by Sirca and Adeli [39], which
also includes approaches such as chaos theory and biologically-inspired approaches. The authors [39]
also stated that SI of real-life structures with nonlinear behavior subjected to unknown dynamic loading
is challenging and they believe a multi-paradigm approach might be the best strategy for this issue.

Based on the research related to data-driven SI and damage identification techniques, it can be
stated that these methods are promising for damage detection in nonlinear dynamical systems, however,

data-driven approaches go paired with a lack of thorough understanding of the system physics.

1.2.2 Physics-Based Methods

Physics-based methods are essentially bottom-up approaches. These methods require a proper un-
derstanding of the system physics and aim to provide accurate representations of reality. The main
advantage of these methods is that they can be linked to the physical properties of a system such as
changes in material properties. Of interest in this section are the fields of nonlinear dynamics, and
nonlinear solid mechanics. According to Lacarbonara [40], there is a need for a multidisciplinary ap-
proach to the analysis of structural systems. Nonlinear dynamics has overlaps with the fields of analytical
dynamics, and applied mathematics and physics. The current section outlines various techniques related
to nonlinear dynamic systems, nonlinear structural mechanics, and also treats general physics-based
damage identification methods.

The Method of Multiple Scales (MMS), which is a perturbation method, is widely used to provide
approximate solutions for systems with weakly nonlinear functions [41]. Several researchers have used
MMS to perform nonlinear system analyses on flexible beam structures. Usually, to perform the analysis,
the governing EoM is first derived using the Euler-Bernouilli beam theory and the extended Hamilton’s
principle. Hereafter the Galerkin approach is applied to discretize the equation and MMS is then used
for solving the nonlinear equation to obtain the response. This procedure was applied by Yan et al. [42],
and Singh et al. [15], who investigated the influence of nonuniform cantilever beams on the nonlinear
response. MMS was also used by Chakrapani and Barnard [43], who determined nonlinear system
parameters of aluminum and Pyrex beams.

Another technique applicable for identifying nonlinearities is Nonlinear Normal Modes (NNM). The
method is useful for interpreting a wide range of nonlinear dynamical phenomena, yet it also has a clear
relation to the common linear normal mode, which structural engineers are familiar with [44] [45].
Based on NNM, Peters et al. [46] proposed a methodology that was demonstrated using a cantilever
beam with a spring at its free end. By employing NNM, Lacarbonara et al. [47] proposed a damage
identification strategy, where they applied numerical methods to simulate damage on a flexible beam. A
schematic of their method is shown in Figure 1.2. They found that the nonlinear coefficients describing
the behavior of the beam were more sensitive to damage than the linear frequencies. This supports
the notion that the experimental identification of the nonlinear coefficients can be a viable strategy for

damage detection. NNM, however, is argued to be inaccurate when significant damping is present [48].
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Figure 1.2: Proposed damage identification strategy by Lacarbonara et al. [47].

A related approach is to search for a simplifying transformation of the nonlinear EoM using Normal
Form Theory (NFT) [49]. The theory has been used to treat various dynamics problems. In 2011, Neild
and Wagg [49] demonstrated that Normal Form analysis can be carried out on nonlinear vibration
problems. Four years later, the use of NFT was proposed by Neild et al. [48] as a superior method
compared to NNM. The authors showed how the method was able to predict nonlinear mode shapes,
and bifurcations accurately. Cammarano et al. [50] presented a method that exploited NFT to identify
the nonlinear system coefficients. NFT was also successfully applied by Shaw et al. [51], combined
with experiments on cantilever beams. They also showed how a local nonlinearity can introduce rich
dynamics into a structure that would otherwise be a typical case of linear modal dynamics.

Other methods were applied in recent research to model nonlinear behavior of flexible beam
structures. Belinchon et al. [52] obtained an approximate solution of the strongly nonlinear differential
equation describing the free vibrations of a cantilever beam by using a method based on the Laplace
transform and the convolution theorem. Wang et al. [53] proposed a strategy which was successful
for characterizing beam structures with a localised nonlinearity using a Finite Element Method (FEM)
model and experimental response data. Jamal-Omidi et al. [54] examined the nonlinear behavior of a
cantilever beam under free vibration analytically and experimentally. The PDE EoM was first derived
using Crespo da Silva and Glynn beam theory. The EoM was then discretized using Gallerkin method.
Subsequently, an exact solution was developed, which showed good agreement with the experiments.

Many researchers have studied the modeling and identification of fatigue damage by considering
changes in the dynamic response of structures. Ostachowicz and Krawczuk [55] investigated the effect of
cracks on the natural frequencies in a cantilever beam by employing fracture mechanics and a numerical
method. Mia et al. [56] extracted the natural frequencies, and mode shapes of the transverse vibration
for a cracked cantilever beam using FEM modeling to perform the analyses. Changes in the natural
frequency were correlated to crack location, depth and size. Tinga and Loendersloot [57] conducted a
comparison study of structural health monitoring (SHM), condition based maintenance (CBM), and

prognostics and health management (PHM), and proposed a methodology for integrating them. Various
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damage identification techniques were thereby discussed, including the effective Modal Strain Energy —
Damage Identifier (MSE-DI) algorithm [58], which is based on the comparison between the curvatures
of the mode shapes of pristine and damaged structures. To investigate fatigue damage, Kos et al. [59]
performed sweep-sine and random excitation experiments, and the Palmgren-Miner rule was applied to
calculate the fatigue life. Mrsnik et al. [60] used modal decomposition to link the fatigue damage with

various dynamic parameters.
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Figure 1.3: Clarification of nonlinear FRFs, jump phenomena and backbone curves [61] [46].

1.2.3 Hybrid Methods

The hybrid methods draw on physics-based approaches, but combine system identification and signal
processing as a means for efficient analysis of nonlinear dynamic systems. Although not completely
belonging to bottom-up approaches, the techniques have a solid foundation based on the system’s
physics. A common ground within these methods is to conduct experiments and to apply processing

techniques to obtain useful metrics of nonlinear systems.

The Harmonic Balance Method (HBM) is a frequency domain method used to calculate the steady-
state response of nonlinear systems. This method can only be applied once the system EoM is known,
and this is usually assumed beforehand. According to Hosen and Chowdhury [62], who applied HBM to
approximate periods of a strongly nonlinear Duffing oscillator, the procedure is simple and takes little
computational effort, while also showing a good agreement compared with exact methods. A strategy
based on HBM was employed by Liao [63] to study the nonlinear oscillations of an airfoil. HBM was also
used by Motallebi and Sazesh [24] to investigate jump (Figure 1.3a) and bifurcation phenomena for a
geometrical nonlinear cantilever beam. Considering HBM, Lu et al. [64] introduced jump amplitudes
as a supplement condition in the estimation of various nonlinearities. Their method appeared to be
effective for systems exhibiting strong nonlinearities. Doughty et al. [65] applied HBM and MMS to
identify nonlinear modal behavior of cantilever beams. The research showed that the performance of
each method actually improved as the nonlinearities increased in magnitude. A comparison of NFT,
HBM, and MMS was performed by Hill et al. [41], where all methods gave good accuracy at low

response amplitudes, but NFT and HBM also give good accuracy as the response amplitude increases.
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Elliot et al. [66] investigated the accuracy of HBM, MMS and NFT for a MDOF oscillators. All three
methods produced accurate results, with errors less than 0.2% for NFT and HBM, and 1% for MMS.

A related technique for approximating nonlinear system behavior is the Incremental Harmonic
Balance (IHB) method, which is a combination of the Incremental method (Newton-Raphson procedure)
and the HBM method. IHB was applied by Dou and Jensen [67], where it showed good agreement with
a FEM method for modeling geometrically nonlinear beam structures. By applying IHB, Liu et al. [68]
investigated the aeroelastic response of an airfoil with a hysteresis nonlinearity. Various bifurcations
were detected as the flow speed was varied.

The Energy Balance Method (EBM) is a technique for solving strong nonlinear oscillators, which has
been stated to provide a more accurate result than HBM [69]. Using EBM, Akbarzade et al. [13] studied
the frequency-amplitude relationship for transversely vibrating beams, whereby it led to excellent
results. Hosen et al. [70] proposed an analytical technique based on EBM to obtain approximate
periodic solutions for three types of highly nonlinear oscillators.

First introduced several centuries ago in celestial mechanics, the Method of Averaging (MoA) has had
a profound influence in physics and engineering [71]. The technique can predict solutions of strongly
nonlinear oscillators. Through employing MoA, Zaghari et al. [18] researched the nonlinear dynamic
response of a cantilever beam under base excitation. Hereby the response amplitude was explained
analytically for various system parameters and it was in agreement with numerical results. Kumar
et al. [72] investigated the nonlinear behavior of a base-excited, flexible cantilever beam. Response
parameters were analyzed through the use of MoA and experiments were performed to validate the
analytically predicted behaviors. MoA was also used by Zhu [73] to study the dynamics of a 2DOF
vibration system with nonlinear damping and nonlinear stiffness.

Several researchers have investigated nonlinear phenomena occurring during aircraft flights. Ac-
cording to Dowell [74], who reviewed recent advances in the field of nonlinear aeroelasticity, many
physical mechanisms can lead to nonlinear aeroelastic response during flights. Fuellekrug and Goege
[75] described an experimental strategy for nonlinear modal identification of nonlinear effects within
complex aerospace structures. A method called Modal force appropriation was thereby used to identify
the nonlinear restoring forces. Piraccini et al. [76] presented a novel approach for testing structural
components to nonlinear vibrations. Instead of using common electromagnetic shakers they employed
an air-jet excitation method, which drives the test specimens with a contactless pulsed air-jet force. The
authors measured the nonlinear vibration response in aerospace composite blades. Through a signal
processing approach, nonlinear FRFs, nonlinear damping ratios and backbone curves, were obtained.

The Backbone Curve is an invaluable tool capable of offering a better understanding of the nonlinear
system behavior (as shown by the dashed line in Figure 1.3b). In backbone curves, the natural frequency
is plotted as a function of the system response amplitude [10]. Backbone curves can be obtained by
performing a series of sine-sweeps at different amplitudes or by processing the free decay signal. Several
techniques exist for the extraction of backbone curves from free decay data, including the Hilbert
transform, Wigner—Ville distribution and the Wavelet transform [77]. However, these methods can be
sensitive to noise, which is detrimental to their estimation capabilities. Londono et al. [10] presented a
technique for the extraction of backbone curves of damped nonlinear systems from resonance decay

responses. This experimental approach, which is based on the Resonance Decay Method (RDM), was
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proved well suited of structures exhibiting nonlinear behavior. Two years later, Londono et al. [78]
presented a similar identification method for structures containing nonlinear stiffness, again using
backbone curves. The results between the decay response and stepped sine seemed to agree well with
each other. Another way of experimentally obtaining backbone curves, is Control-Based Continuation
(CBCQ). This technique entails testing nonlinear dynamic systems in a controlled manner and thereby
assessing the dynamic features. According to Renson et al. [77], who compared the use of CBC and
RDM, the repeatability and results of both methods were excellent. Pickard [79] used backbone curves
to assess changes in nonlinear response of composite plates over different stages of high-cycle fatigue.
The backbones were obtained through sine-sweep experiments with various excitation amplitudes. The
results showed not just the reductions in frequency, but also indicated variations in the gradient of the
softening and stiffening regions of the response. His obtained results are shown in Figure 1.4. The
author concluded that there is a clear potential of using changes in nonlinear behaviour as an indicator

of damage development.
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Figure 1.4: Backbone curves obtained by Pickard [79] for bending mode 2-4.

1.2.4 Damage Precursors (DPs)

As introduced in section 1.1, damage precursors are an interesting research area. Examples of measurable
DPs to fatigue crack development include changes in the microstructure, electrical signal, acoustic
response or mechanical response of a structure [27]. In addition to the findings stated in section 1.1,
several DP-related studies are discussed in the following.

Vantadori et al. [80] proposed a methodology to assess the development of embryonic cracks
in structures under high-cycle multiaxial random vibrations. Hereby the frequency-domain critical
plane criterion was outlined and evaluated using experimental results of steel cantilever beams under
nonlinear base vibration. Cole et al. [25] provided insight into fatigue DPs and provided a framework
for connecting the materials evolution (micro-scale) to nonlinear structural dynamics (macro-scale) by
considering microstructural transformations of steel cantilevers prior to conventional damage formation.
By performing nanoindentation, they showed that the indentation modulus of the materials decreased by
up to 50% in high-stress areas. Through employing Electron Backscatter Diffraction (EBSD) (Figure 1.5),
X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM), the researchers were able to observe

additional microstructural changes related to residual stresses, crystal orientation, and grain size. A
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damage precursor indicator was proposed by Haynes et al. [11] based on the nonlinear dynamic
behavior of aluminum cantilever beams. Macro- and micro-testing was performed. The observed
changes in the material microstructure and dynamic response were detectable before the onset of large
scale damage and can be considered as evidence of DPs. Habtour et al. [5] proposed an integrated
materials-structures-dynamics approach to improve the overall structural state awareness. The main
idea was to track changes in the energetics of the materials-structures-dynamics states and connect
these traditionally detached fields to enable improved damage precursor detection within SHM. Various
methods were discussed, including the restoring force surface method for the global states, and EBSD

characterizations for the local material state, as shown in Figure 1.5.

50000 cycles §

111

001 101

Figure 1.5: EBSD results for 1095 steel cantilevers exposed to nonlinear harmonic oscillation. The results show
clear changes in grain size and grain orientation prior to crack initiation (Obtained from Habtour et al. [5]).

The findings related to damage precursors suggest that harnessing and exploiting damage precursor
detection holds promise in improving the reliability and resilience of assets by assessing oncoming
damage in a very early stage. There is much that still needs to be learned about fatigue DPs. Research
into the microstructural evolution and resulting changes in the nonlinear dynamic responses of fatigue

structures are expected to be highly advantageous for future SHM applications.

1.2.5 Scientific Gaps and Paths for Improvement

Referring back to Figure 1.1, possible paths for improvement are visualized by the red dashed lines. The
interpreted gaps and improvement opportunities are detailed in the following.

Currently, there is still a lack in understanding of how DP-related microstructural properties change
over usage cycles. It is unknown how these microstructural changes affect the global dynamic behavior
compared to fatigue cracks. There is much room for improvement within this domain.

Additionally, most techniques in experimental nonlinear dynamics and signal processing assume
an ODE EoM a priori. For flexible structures subject to fatigue loading, this assumption can be highly
inaccurate and incorporation of nonlinear structural mechanics (solid mechanics) becomes necessary.
This incorporation would also enable to establish the link to microstructural DP-related changes.

Much research has been performed for experimental techniques in identifying nonlinear dynamic
behavior, but these techniques are not incorporated into current SHM methods. There has been minimal
overlap between nonlinear dynamics and SHM. Most SHM methods appear to use linear methods to
analyze structures, which are inaccurate for numerous systems that show nonlinear behaviour. There is
still a lack of knowledge regarding how nonlinear parameters change over fatigue cycles compared to
general (linear) parameters for different types of structures. It is possible that nonlinear dynamics can

be exploited to improve current SHM techniques.
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1.3 Research Goal, Objectives and Research Questions

The goal of this work is to investigate changes in nonlinear system properties of cantilever beams over
various stages of component health. The focus is on changes in the global dynamic behavior, but with
further research into the microstructural phenomena in mind, which could bridge the two areas in
the future. Hence, nonlinear structural mechanics and nonlinear dynamics are the scope of this work

(Figure 1.6). The research is geared towards finding improved precursors to damage (Figure 1.7a).

/

Materials ‘ Structural,  Nonlinear
Science | Mechanics.  Dynamics

Figure 1.6: Scope of this work

To realize the aim of this work, the following objectives are defined:

* Develop an analytical method to model nonlinear dynamic behavior based on the system physics

* Develop an experimental and signal processing approach to characterize nonlinear system param-
eters over different stages of fatigue cycles

* Analyze and compare the results of the analytical model and experiments

* FElaborate on the value and potential applications of monitoring nonlinear dynamic parameters

Drawing on the previous sections, the following main research question is postulated:

B Can nonlinear dynamic analysis lead to improved damage precursor detection and why?

. [=]
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= Damage Precursor Zone : Damage /5 45, Nonli
]

2 . Zone : 2 onlinear

gn Current detection limit : ! [5 Parameters?

kS : 1 =
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& : g Linear
i IS

% ) 5 Parameters
]

A ~

Component Life Component Life
(a) The way forward for damage detection (b) Potential increased sensitivity of nonlinear parameters

Figure 1.7: Main research ideas

The main question is broken down into several sub-questions, which are:
1. Which nonlinear effects (e.g. stiffness, damping, inertial) significantly contribute to the system
dynamics and are therefore important to include in the analysis?

2. Can the applied analytical model accurately describe the experimental results?

11
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3. How sensitive are the changes in nonlinear parameters over fatigue cycles compared to changes
in the standard linear parameters? (visualized in Figure 1.7b)

4. What is the potential value of including nonlinear analysis in SHM applications?

1.4 Methodology

To accomplish the stated research goal and objectives, a strategic research method has been developed,
which is visualized in Figure 1.8. An analytical approach and an experimental approach are followed.
Based on the review, suitable analytical and experimental methods are chosen. As these methods are
thoroughly detailed in further chapters, they are discussed briefly here.

The analytical approach was followed to develop the Equation of Motion (EoM) for the system and
to model its response, which were detailed in Chapter 2. Techniques applied to derive the EoM include
the Nonlinear 2D Euler-Bernouilli beam theory and the Assumed Modes method. To model the system
response, HBM, MoA and numerical methods (Runge-Kutta) were employed. Experiments were set up
and carried out to characterize linear and nonlinear system parameters over different levels of fatigue.
A cantilever beam made of aluminum (Al 7075-T6) was used as the system of focus. The dynamic
characterizations included sine-sweep excitation (forced), and free vibration (transient). For each
characterization, tests for the nonlinear and linear region were conducted. A signal processing approach
was subsequently applied to convert the collected experimental data into useful results. By employing
fatigue testing, the results were correlated to different levels of component health. The experimental
method and the data processing approach were detailed in Chapter 3. The experimental and analytical
results were compared and discussed in Chapter 4. Finally, Chapter 5 contains the conclusions and

recommendations for future work.
EXPERIMENTAL APPROACH
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Figure 1.8: Research Methodology
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CHAPTER

ANALYTICAL APPROACH

T his chapter details the analytical methods applied for modeling the dynamic response of cantilever
beams. Firstly, in section 2.1, the kinematics are derived for the dynamic system, and the equation of
motion is developed. Hereafter various analytical methods are explored to model the nonlinear vibration
response of the cantilever beam system. These methods include Harmonic Balance (section 2.2), the

Method of Averaging (section 2.3), and Runge-Kutta (section 2.4).

2.1 Equation of Motion Development

A cantilever beam is considered having a uniform cross-section with a length L, width b, and thickness
h. The beam has a uniform volumetric density g, and cross-sectional area A. The distributive mass
is denoted by m;, and the rotary inertia is denoted by I.. The beam is clamped rigidly to a support
base boundary, which is able to move vertically described by the base displacement Y, as shown in
Figure 2.1. The support boundary is excited harmonically in the transverse direction. The selected

reference configuration of the beam is a straight stress-free state.

M

— - — =

Y sin (wf)

0000000000000000
o
\
\

A4

L

Figure 2.1: The nonlinear 2D Euler-Bernoulli beam theory with the undeformed coordinate system xy and the
deformed coordinate system &7).

If the length to thickness ratios of structures are = 10, they can be represented using an Euler-
Bernoulli beam model [23]. Since the beam length to width ratio is kept short (<30), the assumption

can be made that the beam undergoes purely planar flexural vibrations, as long as the cross-section
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geometry remains symmetric with respect to the beam’s centerline [25]. The beam is assumed to be
inextensible, which means that the stretching of the beam’s neutral axis can be neglected. The effects
of torsion and shear deformation are also ignored in the analysis [25]. To account for the various

nonlinearities, the Nonlinear 2D Euler-Bernoulli beam theory is followed as described in [81].

Two coordinate systems are hereby used to describe the undeformed and deformed geometries of an
initially straight beam. The xy system is a Cartesian system describing the undeformed geometry and
the &n system is a local, orthogonal curvilinear coordinate system describing the deformed geometry, as
shown in Figure 2.1. Each differential beam element has infinitesimal thickness ds and a fixed finite area.
The base motion causes each point on the undeformed cross-section of the beam to experience an elastic
displacement. The deformation with respect to the x, and y axes along the beam’s undeformed arclength
from the fixed-end to a reference point, s, and time, t, are expressed in terms of two displacements and
one rotation: axial displacement, u(s, t), transverse displacement, v(s, t) and rotational angle, 8(s, £).
These displacements are visualized in Figure 2.2. Throughout the analysis the overdots () denote
the temporal partial derivatives with respect to time, ¢, and the primes (') indicate the spatial partial

derivatives with respect to position, s.

Y

A

> X
ds
Figure 2.2: The displacements u and v and rotation angle 6 [81].
The displacement vector can be expressed as follows:
R=(s+uix+ viy+nin 2.1
By substituting i, = —sinfix + cosfiy, this reduces to:
R= (s +u—nsinb)ix + (v +ncosb)iy (2.2)

The time derivative of the displacement vector, with Y included to account for the base fixture

velocity in the transverse direction, becomes:
R = (&t—nb cosO)ix + (Y + 0 —nfsinO)iy (2.3)

The kinetic energy of the cantilever beam system can be expressed as [27]:

L
r=1 f f oR-RdAds 2.4)
2Jo Ja
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Substituting Equation 2.3 in Equation 2.4 then results in:

L . . . 2
T:%f f[(u—necose)ix+(Y+ D—n@sin@)iy] dAds (2.5
0 Ja
o (L i i . . . iy
T=§f f[(u2+1)2+Y2+21')Y+n202—ZnuHCOSQ—ZnDHSinﬂ—ZnYBSinH]dAds (2.6)
0 Ja
The following parameters are set:
mszdeA 1,=f9n2dA 2.7)
A A

523 2 2
e[z h (h) mgh
I,== —d{=phb|—|= 2.8
' 3f_g 7 d=erh )= @8)

The product of inertia is set to zero because the reference axis coincides with the mass centroid and
the associated terms can thus be omitted from analysis.

Upon substitution and elimination of irrelevant terms in Equation 2.6, the following is obtained:

ds 2.9

ms[u2 + (i}+ Y)z] +1,6%

The strain energy is considered to be a function of the bending strain only, because of the inex-
tensionality assumption, which renders the axial strain to be zero. The potential energy due to the

gravitational force is considered negligible as the beam is considered straight in equilibrium position.

Therefore the expression for the total potential energy of the system becomes:

1 L
H:—f Elp*ds (2.10)
2 Jo

where: E is the material elastic constant (Young’s modulus),

I is the second moment of inertia,
p is the normalized bending curvature (associated with pure bending).

It follows from Figure 2.2 that the axial strain is given by:

e=V(1+u)2+v? -1

By applying the inextensionality constraint (e = 0) this reduces to:

(2.11)

A+u)+v?%=1 (2.12)

To express the nonlinear displacement and its partial derivatives in convenient forms, Taylor Series

expansions are performed and terms up to the cubic order are kept. It is assumed that © and v are small
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but finite and the influence of higher order terms is insignificant. The simplification process begins by

obtaining up to the order three Taylor series expansions of u’' and 6 as follows [81]:

u'+1:\/1—v’2:1—%1/2—%1/4—%61/6—13—81}’8+..., u'z—%vlz (2.132)
1
sinf = v/, O=arcsinv' =v' + 30+ S0P+ 3507+, 0~ v’+év’3 (2.13b)
The time derivative of (6) and the squared thereof are approximated by:
O~v'+10/v? 0% ~ 0%+ 00" (2.14)
The normalized bending curvature and the squared curvature become:
ol _ N 1 ",
p=0"=v +5v v (2.15a)
1
p2 — V//Z + U//Z yrz + Z vllz U/4 ~ U//2 + UNZ U/2 (2.15b)
To express the time derivates of u in terms of v, the following is obtained:
1 ¢ 10 (¢ 10 ¢ 2
u=——f v?ds, u =———f v?ds, uzz—(—f v’zds) (2.16)
2Jo 20t Jo 4\9t Jo
Subsequently, the kinetic and potential energies are expressed as follows:
1L 140 (¢ 2 )2 1t
T==| m —(—f v2ds| +({v+Y ds+—f I (1‘/'2+1'/2v'2 ds (2.17a)
2 j(; ‘la\or 0 ) ( ) 2 Jo r )
1 L
Hzif EI(U"2+U”ZU’2)ds (2.17b)
0

In a real dynamic beam system, damping is always present. Hereby a part of the mechanical motion
is converted to heat, sound or other forms of energy. The damping force present during the oscillations
of the beam is also included in the analysis by introducing a term for the dissipative energy, which
is classified as non-conservative energy. A convenient way of treating damping forces is by the use of
Rayleigh ’s dissipation function where the dissipated energy can be expressed in terms of the linear

viscous damping as follows [82]:

1 L
D:—f cvds (2.18)
2Jo

where c is the viscous damping coefficient.

Unlike discrete systems where the governing equations are Ordinary Differential Equations (ODEs),
continuous or distributed mass systems are governed by spatial-temporal Partial Differential Equations
(PDEs). Therefore, these systems require converting the PDEs (as the one expressed by Equation 2.17)
to more manageable temporal forms. This can be achieved by the use of various discretization methods.

Common methods used for the discretization of such problems include the Rayleigh-Ritz method and
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the Gallerkin method [83]. In this work, the Assumed-Modes method is applied to obtain the discretized
EoM for the cantilever beam system. This method is closely related to the Rayleigh-Ritz method and
it is best suitable to model the forced response. The method removes the position dependence from
the PDEs such that the displacement at a single point on the structure can be expressed as a function
of time only [84]. The Assumed-Modes method begins with the discretization of the boundary-value
problem. The method requires assumed approximate functions for the mode shapes of the continuous
system. These mode shapes are then substituted into the PDEs. The Assumed Modes expansion and
Euler-Lagrangian approach together can be utilized to ensure stability and periodicity analysis [85].

Assumed solutions are the response contribution of n-th modes [84], given by:

N
v(t,8) =Y Yn(s)gn(®) (2.19)
n=1

where ¥, denotes the eigenfunctions of the continuous structure, which is given by a sufficiently
differentiable orthogonal set of trial functions to satisfy the kinematic boundary conditions of the system
and g, denotes the generalized coordinates, which are a function of time, that represent the time

modulation of the n‘" mode and ¥,,.

Considering the single mode assumed solution (first mode only; N =1), v can now be expressed in

terms of ¥ and ¢:
v(t,s) =¥ (s)q(2) (2.20)

Subsequently, by substituting the assumed solution, the kinetic, potential and dissipative energies

are now expressed as follows:

1 L L 1 L, ¢ 2 L
T== msf ‘Pzds+1,f v2ds|g*+ = mgf (f ‘P’zds) ds+1rf \P’4ds]q2q2
2 0 0 2 o ‘Jo 0
I ' ] I ' (2.21a)
+ msf ‘Pds]Y(]+— msf ds|v?
0 2 0
1 L "2 2 1 L 112\ 12 4
Im=- f EIvY"™“ds|g”+ - f EIVY"™“¥“ds|q (2.21b)
21Jo 21Jo
1 L
D=7 cf \Pzds]qz (2.21¢)
0

For distributed-parameter oscillatory systems (continuous systems) Lagrangian mechanics are the
method of choice for deriving equations of motion [84]. The Euler-Lagrangian equation is applied. With

a term included to account for dissipative energy, this equation is expressed as [82]:

0(0%\ 0% 0D
( ) =0 (2.22)

at\'og )" oq "4 -

where £ denotes the Lagrangian for a system, which is defined by: £ = T —II. Noting that the potential

energy is not a function of the generalized velocities, Equation 2.22 is now written as:

6(6T) oT oIl oD
+—=0

—|=|-=+= = 2.23
0t\6q) aq " 99 " 54 @29
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The individual terms of Equation 2.23 are worked out as follows:

2

oT Lirs L
—= msf (f ‘I"st) ds+Irf ‘P’4ds} q4°
dq o \Jo 0
L L
1" grymqs qg+2 f EI‘I’"Z‘P'st]q3
0q 0 0
oD L
— = cf ‘I’st]c']
aq 0
T Ly e 2
9 [msf ‘I’st+lrf W2ds| g+ /(f ‘P’st)
g 0 o Jo
L
+ msf Yds|Y
0
o (0T L L L pé 2
( ) msf ‘P2d5+1,/ W2ds| g+ msf (/ ‘P’zds)
ot aq 0 0 o \Jo

+2

L pé 2 L
msfo (/0 ‘P’zds) ds+IrU(’) \I”4ds) q4° +

(2.24a)
(2.24b)
(2.24¢)
L
ds+1r/ vds| g*g
0 (2.24d)
L
ds+Irf vids | g%d
’ (2.24e)

o ['v]

Upon obtaining and rearranging the result of the Euler-Lagrangian, the following is produced:

[msf v ds+1rf v?2ds
0
L
msf (f ‘I”zds) ds+1rf yds
0 0
L
msf (f ‘I"zds) ds+Irf wds
0
cf w2ds
0

L
[ EIVY'"?ds
0

+

+

+

L
+|2 f EIv"?w"?ds
0

L
—[msf Yds
0

qa-q
qq

q (2.25)

By introducing new coefficients to simplify Equation 2.25, the resulting equation of motion can now

be formulated as:

mléj+m3(qzé]+qc‘]2)+clé]+k1q+k3q3=mbY (2.26)
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where:
L L
Linear inertial coefficient: my = mg f P2ds+ f IVY?ds
0 0

L pé 2 L
Nonlinear inertial coefficient: ms = m f ( f 2 ds) ds+1I, [ wds
o \Jo 0

L

Viscous damping coefficient: ca=c f w2ds
e (2.27)
Linear stiffness coefficient: ki = f EIY"?ds
0
L
Cubic stiffness coefficient: ks=2 f EIY"?9"?ds
0
L

Driving inertial coefficient: mp=—ms f Yds

0

Similar expressions for a cantilever beam EoM were obtained and applied by researchers [23, 26].
To determine the coefficients, the derived equations are coded in MATLAB, by using the code created by

[26] and making modifications to fit the current use case.

The mode shapes are obtained using the widely known differential eigenvalue problem, as applied

in [84]. In the case of free vibration of a cantilever beam, this takes the form of the following differential

equation:
d'vx) , _ . WPmg
P! -fYx)=0, O<x<L; with:f =—E7 (2.28)
The general mode shape can thereby be expressed as [84]:
Y (x) = a; cos Bx + azsin fx + az cosh fx + a4 sinh fx (2.29)

In order to produce the modal equations, the boundary conditions for a cantilever beam are applied

on Equation 2.29, which are:

¥ (x) =0, P'(x)=0, at x=0
(2.30)
Y'x) =0, ¥"(x)=0, at x=L
Applying the boundary conditions leads to the characteristic equation:
cos(BL)cosh(BL) = -1 (2.31)

The transcendental equation is solved numerically to produce the eigenvalues, of which the first
three solutions of L are: B;L =1.875104, BL =4.694091, B3L =7.854757. The first three mode

shapes are visualized in Figure 2.3.

After applying the boundary conditions, the corresponding mode shape for each vibrational mode

(n) can then be expressed as [26]:

sin(,L) —sinh(B,L)
cos(f,L) + cosh(B,L)

¥, (x) = An(cos(ﬁnx) —cosh(fB,x) + (sin(B,x) —sinh(ﬁnx))) (2.32)
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Mode 1 Mode 2 Mode 3
= 0 =0 B0
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Figure 2.3: First three analytically derived mode shapes

The eigenfunction and its spatial derivatives necessary for calculating the coefficients are thus:

() = A c08(Bx) ~cosh(Bx) + Cu(sin(n) ~ sinh(6,.))) (2.33a)
W}, = Anfn( = $in(Bn) = Sinh(B) + Ca( c0S(Bn2) = cosh(fn:0)) (2.33b)
V,(x) = Anﬁi( —c08(Bnx) — cosh(Bpx) + Cy(—sin(Bx) — sinh(ﬁnx))) (2.330)
where: in(8,L) - sinh(f,,L)
_ sm(Pyn —sin n
"~ cos(BnL) +cosh(B,L) (2.34)
From this, the natural frequencies for the n‘" mode can be obtained:
_ 2 EI
wp = (L) T (2.35)

The eigenvectors are normalized by the total mass of the system to obtain the modal amplitude

constant A,, such that:

L L
f ms‘Pi‘I’de+f Ir‘I”i‘I’}dSZ&‘j (2.36)
0 0

where §;; is the Kronecker delta (6;; =1 for i = j).

Thus A, is calculated using:

1
A, = -
J M foL (A%)Z ds+1, fOL (:}_,,)2 ds

(2.37)

The final equation of motion for the cantilever beam system then becomes (substitute F = m;,¥):

67+mg(qzq+qq2)+clq+qu+k3q3:ﬁ (2.38)
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2.2 Harmonic Balance

Within SHM, the most widely-used method of visualizing the input—output properties of a dynamic
system is by means of the FRF. The Harmonic Balance Method (HBM) is an applied mathematical
method which allows the FRF approximation of nonlinear systems [16]. Thus, the steady-state response
of nonlinear differential equations can be calculated in the frequency domain. In this work, HBM is
applied to simulate the response of the slow sine-sweep excitation, which is essentially equivalent to
the steady state amplitude of the beam due to stepped sine excitation. HBM is also applicable for
differential equations where the nonlinear terms are not small [86]. One of the major advantages of
HBM is that the different nonlinearities are additively separable within the technique [16]. This means
that an additional nonlinearity can easily be incorporated into the existing model. Additionally, unlike
numerical techniques for solving ODEs, HBM calculates equivalent linear and nonlinear expressions for a
dynamical systems algebraically more efficiently. The expressions state for example the magnitude of the
effective stiffness or the effective damping as a function of the response amplitude. Those expressions
can be employed to identify experimental coefficients through curve fitting techniques on experimental

results, such as backbone curves and damping skeletons (which are discussed in chapter 3).

2.2.1 Nonlinear Stiffness

This section details the harmonic balance method for solving the equation of motion for a damped
dynamic system with a cubic stiffness, which is known as the damped Duffing oscillator [16]. The

equation of motion of this system takes the following form:
G+c1g+kig+ksq® = Esin(wt—¢) (2.39)

where o is the excitation frequency and ¢ is the phase.

Upon using HBM, it is assumed that the response due to a sinusoidal excitation is a sinusoid, and
has the same frequency. Hereby, a harmonic trial solution is substituted into the EoM (2.39). Using the

first-order trial solution, g = asin(wt), where a is the amplitude, yields:
—wlasin(wt) + cwacos(t) + kyasin(wt) + kya’ sin®(wt) = Fsin(wt — b) (2.40)

After applying the trigonometric relationships (sin36 = 3sin@ —4sin®@), and (sin(A—B) = sin Acos B—

cos Asin B), the following is obtained:

—w?asin(wt) + cqwacos(t) + kyasin(wt) + kga?’(% sin(wt) — i sin(Bw t))

) ) (2.41)
= Fsin(wt)cos¢p — Fcos(wi)sing
Equating the coefficients of sin(wt) and cos(w?) yields the following equations:
2 37. .3 _ f
—w atkia+jksa” =Fcos¢p (2.42)
aqwa = —ﬁsin(/) (2.43)

Squaring and adding Equation 2.42 and Equation 2.43 results in:
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2 =a? [( — 0’ +ky +3kza?)’ + cfwz] (2.44)

72
== w*+(cf -2k - Skza?)w? + kS at + Sk ksa® + kS (2.45)
Upon applying the quadratic formula, the roots are obtained, which yields the following expression

for w, based on a given input force and response amplitude:

|
~A |
EF2
w1,2:J k1+§lk3a2—%cf)i\/—cf ki+3ksa? - 1c? t—3 (2.46)

The system backbone curve is [87]:

wpp = \/ keq — 3¢ (2.47)

where, kg is the equivalent stiffness of the dynamic system, which is:

keq = k1 +3ksa® (2.48)

2.2.2 Nonlinear Damping

In addition to viscous damping forces encountered by a vibrating system, nonlinear damping can also
be present at high response amplitudes. Anderson et al. [88] and Malatkar [83] showed that including
quadratic damping in an analytical model may significantly improve the agreement between experimen-
tal and theoretical results for vibrating flexible beams. Quadratic damping is usually attributed to drag
forces acting on cantilever beams [83, 89]. In the current work, the contribution of nonlinear damping
is included in the analysis. Typically, the magnitude of nonlinear damping coefficients are determined

experimentally [88, 89].

In the study of nonlinear oscillations, the influence of quadratic damping can be expressed as c2|glq
[90]. Hereby c, is the quadratic damping coefficient and the absolute velocity term (|g|) is included
to ensure that the force is always opposing the velocity. For compatibility, c,, similar to the other

coefficients, is also normalized by the mass.

The following damping equation is now considered, which includes linear and quadratic damping:

fal@=caq+clqglg (2.49)

HBM is now applied to obtain the equivalent damping equation, but in a different manner than in
subsection 2.2.1. The analysis performed to obtain the equivalent stiffness, although effective, is not
very systematic and for other nonlinearities that manner of implementation could fail to produce a valid
result [16]. Fortunately, there is a simple procedural way of implementing the HBM method that works

for all types of nonlinearities, which is described in [16].
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2.2. HARMONIC BALANCE

Hereby the relevant function (e.g., stiffness function, damping function or inertial function) first
has to be expanded as a Fourier Series [16]. The fundamental terms are thereby considered the only

important parts of this expansion. These terms are denoted by ay, a; and b;.

After applying the Fourier expansion of the fundamental terms on Equation 2.49 (with trial solution:

q = asin(wt)), whereby ay =0 and b; = 0, the following expression is used:

fa(@) = a1 cos(wt) = Ceqq = Coqgwa cos(wi) (2.50)

Thus the equivalent damping becomes (for convenience wt is substituted with 6):

a 1 2n

Ceq=—=—"—| falwacosh)cosfdf (2.51)
wa nwa o
a [ 2 2 [* 5 4
Ceq = f wacos“0df + —— w-a“cos”0O|cosO|db (2.52)
TWa Jo nTwa Jo
Finally, the equivalent damping can be expressed as:
8cow,a

Ceg=C 2.53
eq 1 31 ( )

Similar expressions for the equivalent stiffness and the equivalent damping have been employed by
[10] and [7], where they used the equations combined with curve fitting techniques to experimentally

estimate the nonlinear stiffness and damping coefficients.

2.2.3 Nonlinear Inertia

The nonlinear inertial term can be simplified using HBM. Similar to the derivations in section 2.1, the

linear and nonlinear inertial terms are expressed as:

fnld) = G+ m3(qgg* + q° ) (2.54)

By substituting the trial solution, g = asin(wt), into Equation 2.54, the following is obtained:

fm(§) = —0*asin(wt) + myw®a®sin(wt) cos®(wt) — myw*a’ sin® (wt) (2.55)
The Fourier Series expansion is employed on Equation 2.55, (whereby ay =0 and a; = 0) to yield:
by = —w’a(l+3msa’) (2.56)
Subsequently, the equivalent mass can be determined by the following relation:
fm(@) = by sin(wt) = Meqd = —Meqw*asin(wt) (2.57)
Thus:

Meg =1+ %mgaz (2.58)
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2.2.4 General Expression for the Nonlinear FRF
After obtaining the equivalent expressions for the system’s mass, stiffness and damping, it is necessary

to derive a general expression to obtain the FRF and backbone. The relationship between F and a can
(2.59)

+ cngz]

(keq - meqwz)2
(2.60)

be expressed as [16]:
2=

£2
2 4 (2 2,72
7 = Mg + (coq —2megkeq)™ + ki,
Upon application of the quadratic formula, the equation can be rewritten to calculate the response
frequencies corresponding to a given response amplitude and given input force. Via Harmonic Balance,

the general formula to obtain frequency values (w;,2) based on a given amplitude («) and input force

(F) is derived and expressed as follows:
1

2 fr

2 (12 Mg I

(Zceq - meqkeq) +

Megkeq — %cgq + \/ceq
(2.61)

2
meq

w12 =
This equation can be employed to simulate the FRF of a slow sine-sweep excitation (with fixed input

force). Conveniently, using the first part of Equation 2.61, the backbone curve can be expressed as:
(2.62)

Wpp =

In figure 2.4 examples are shown of FRFs and backbones plotted using Equation 2.61 and Equa-

tion 2.62. The example also clearly shows the effect of each included nonlinear effect.
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Figure 2.4: Examples of FRFs and backbone curves obtained through HBM, which show the effect of cubic stiffness,

nonlinear inertia, and quadratic damping on the shape of the FRF.
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2.3 Method of Averaging

This section details the analyses concerned with the free decay of the nonlinear dynamical systems.
The decay envelope of a linear (viscous) system response is purely exponential, and the decay speed
depends on the linear damping magnitude. For nonlinear systems, the decay envelope has to be modified
according to the type of nonlinearity present. In order to determine the envelopes of nonlinear systems
an effective technique known as the Method of Averaging (MoA) is utilized [90]. MoA is applied for
approximating the response of slow transient response. Thus, the method is adequate for dynamic
systems with low damping ratios, as the amplitude and phase do not significantly change over one

period. The response is assumed of the form:
q(1) = a(f) sin(w, t + P(1)) (2.63)

where, the envelope amplitude (a) and the phase (¢p) vary with time, but slowly compared to the

natural period of the system.

The following system is considered, which describes the free decay of an oscillator with nonlinear

damping, described by the function f,;(g):
G+ fa(@)+whq=0 (2.64)
The velocity can be represented as:
q(t) = a()wycos(w, t+ ¢(1)) (2.65)
This equation is incomplete, therefore 2.63 is differentiated to uphold consistency, which results in:
G(t) = a(t)sin(w, t + P(1) + a(t)w, cos(@, £+ P(1) + a(t)P(t) cos(w, t + (1)) (2.66)
Upon comparison with 2.65 this results in:
a(t)sin(w, t+ ¢(1)) + a(t)P(t) cos(wp t+P() =0 (2.67)
Equation 2.65 can be differentiated to yield the acceleration:
G(t) =a(Hwpcos(wut+d(1)) — a(t)w‘:‘l sin(w,t+¢(1) — a(HP(Hw,sin(w, t + P(1)) (2.68)
Substituting the previous equations into the equation of motion (Equation 2.64) results in:
a(t)wy,cos(@nt+ (1)) — a(t)(b(t)wn sin(w,t+ (1) = —fala(t)w, cos(@nt + (1)) (2.69)
Multiplying Equation 2.67 by w, sin(w,t + ¢(t)) and 2.69 by cos(w,t + ¢(t)) and adding yields:
a(t) = —winfd(wna(t) cos(wnt+¢(1)) cos(wnt+ ¢(1) (2.70)
Multiplying 2.67 by w, cos(w,t + ¢(t)) and 2.69 by sin(w, t + ¢(t)) and differencing yields:

OEE

—— falwna (1) COsnt + (D)) SNt + (1) (2.71)
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These equations together are two first-order differential equations equivalent to the second-order
equation (Equation 2.64), which is the original equation of motion. If one makes use of the fact that
a(t) and ¢(t) are essentially constant over one vibration period, the right-hand sides of the equations
can be replaced by an average over one cycle, as follows (with 8 = w,t) [16]:

2n

2o Jo fa(wpacos(@+ ) cos(O +¢p)do (2.72)

a(t) =-—

2n
e d Jo falwpacos(@ +¢))sin(0 + ¢p)dO (2.73)

G =—

These two equations can be used to determine the values of the amplitude and the phase over time.
In the current work, only Equation 2.72 is applied, because the interest is in the amplitude decay.

At this point it is important to note that the (cubic) nonlinear stiffness term does not have a influence
on the shape of the decay envelope. If one were to apply MoA on an undamped Duffing equation, the am-
plitude rate of change (&(f)) would equal zero, and the effect of cubic stiffness would manifest as a phase
modulation (([)(t)) [90, 91]. The same case is assumed for the nonlinear inertial term. Hence, the equa-

tion describing the nonlinear damping (Equation 2.74) suffices in the derivation of the damping envelope.

As described in subsection 2.2.2, the suitable equation describing the damping is recalled in slightly

different form than Equation 2.49 (by substituting ¢; = 2{;w,):

fa(@) = RGLiwn+c2lgD) g (2.74)

Upon substitution of this equation into Equation 2.72, this produces:

2r
a(t) =— f (20 1wn + 2lwyacos(@ + P)) wnacosz(9+(/>) do (2.75)
n JO
) W 21 )
a(t) =— an (201 + colacos(@+¢l) cos“(B+¢) dO (2.76)
0
21 2 p2n
a(t)z—“‘”—”“f cos?(0 + ) do — 2L f cos3(0 + )| dO 2.77)
T 0 2 0
. 4crwp 2
a(t):_CIwna(t)_?a(t) (2.78)

The first-order nonlinear differential equation (Equation 2.78) can be solved numerically or ana-
Iytically to obtain the decay envelope. From this equation the linear and nonlinear part can also be
considered separately. Solving the differential equation with an ansatz of Ce™1“! and applying the
initial condition for the linear part only (by taking ¢, = 0) results in the following expression for an

exponential decay [84]:

a(t) = age $19n! (2.79)

where, a( denotes the initial displacement amplitude at ¢ = 0. For vibrations in the small amplitude

range this damping model holds up fairly accurate. When the velocity amplitude becomes significantly
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large, it becomes necessary to apply nonlinear damping models. Considering the nonlinear part of
Equation 2.78 only (by taking {; = 0), the quadratic decay envelope is [90]:
@0

HT;WOt (280)
Y/

a(t) =
In this case, the amplitude decays algebraically rather than exponentially. If the amplitude of the
initial displacement is large, one expects the initial decay to be slower for linear damping than for
quadratic damping. If the initial amplitude is small, the opposite is true [90]. For small amplitude
vibrations quadratic damping solely cannot properly simulate the decay. A proper expression would have
to incorporate both damping contributions (linear viscous and quadratic). By solving Equation 2.78,
the analytical expression for both damping models combined is obtained. This is achieved through
employing the Wolfram | Alpha engine. This leads to the final expression of the decay envelope based on

Equation 2.74:

C10n o 2.81)

a(t) =
100000 (pLint — 1) + {1001

Examples of decay envelopes plotted using Equations 2.79, 2.80, and 2.81 are shown in Figure 2.5.

Decay Envelopes - Method of Averaging

Qo Viscous damping (¢;=0.0024)
—— Quadratic damping (c; =1)

- —— Viscous + quadratic damping (¢;=0.0024,c,=1) -
<P
o
=
)
E
5
<

O 1 1
0O 0.5 1 1.5 2 2.5

Time (sec)

Figure 2.5: Examples of decay envelopes obtained through MoA equations.
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2.4 Numerical Method (Runge-Kutta)

The nonlinear EoM is also solved using Runge-Kutta, which is a numerical method that considers a
discrete-time solution directly. The technique can be applied to systems for which the nonlinearity is

not necessarily small [84]. The numerical integration for the equation of motion is carried out in terms

of two first-order ODE equations.
By adding quadratic damping (Equation 2.49) to Equation 2.38, the complete system EoM becomes:
G+ms(a*G+ad?) + g+ ealdlq+ kg +ksq® = F (2.82)

Equation 2.82 is recast into a set of first-order ODEs in the following manner:

n q N q V2
] = [ . = T s T mmesnyiayp-eplyl-kiyi—ksyi+ F (2.83)
J/z q J/z q 1+m3y12

MartLAB software includes a function (ode45) which is used to conveniently solve the first order
equations above. This numerical solver combines an explicit fourth order and a fifth order method
(called the Dormand-Prince pair), which is a variation of the common Runge-Kutta method. The solver
ode45 is suitable for a broad range of initial value problems [92]. The numerical method has been used

by several authors [7, 10, 93]. An example of a FRF obtained using ode45 based on Equation 2.82 is
depicted in Figure 2.6.

FRF: ode45 (RK)

Amplitude

1 1.02 1.04 1.06
Frequency, Q

Figure 2.6: Example of a FRF obtained through ode45 (current result for m3 =2- 104, ¢1=0.002, {»=0.002
k1=1.25-10°, k3 =2-101° and F =2).
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CHAPTER

EXPERIMENTAL DESIGN AND METHOD

I n this chapter the experimental approach, which entails testing and characterizing the linear and
nonlinear dynamic response of cantilever beams at different fatigue damage levels, is detailed. Firstly,
in section 3.1 information about the test samples and testing equipment is provided. The test plan is
detailed in section 3.2. Several FEM analyses that aided in obtaining necessary testing parameters are
provided in section 3.3. The specific testing procedure and test parameters are detailed in section 3.4.
Hereafter, in section 3.5, a static deflection experiment performed to investigate the static stiffness of

the structure, is discussed. Finally, the data processing methods are detailed in section 3.6.

3.1 Sample Information and Testing Equipment

For the experiments a cantilever beam setup is used with blade-like aluminum beams. The beam samples
used for testing are made from aluminum alloy type Al7075-T6, provided by the manufacturer Kaiser
Aluminum. Table 3.1 lists the material properties [94] and the complete manufacturers specification is
provided in Figure D.3. Figure 3.1 shows a compilation of fatigue data and S-N curves of the material
AL7075-T6 obtained from various sources [95] [96] [97] [98]. The beams are dimensioned at a length
of 150mm (of which a part is clamped), a width of 50 mm and thickness of 1mm. It is also verified that

the grain direction is parallel to the beam length. A picture of a clamped sample is shown in Figure 3.2c.

551 - \ 4 A Aerospace Hb
o1 4 N — - Aerospace Fit
Property Value st N\ NASA, 1973
. — -NASA Fit
Density 2810 kg/m® o | 3 3 | X Zalnehad et .
Ultimate Tensile Strength 557 MPa e N A\ ".--Za(ljnzhad Fit
Tensile Yield Strength 485 MPa f 301 - XA\ < _i o Ne::a:; Fit
Hardness 150 HB g Xﬁ\é\ i
Ultimate Shearing Strength 330 MPa ~ © %1 -
Fatigue Endurance Limit (¢ 158 Mpa 1 i
Elastic Modulus 71 Gpa o \\
(a) R.R. Moore type endurance limit based on 5 x 108 ” i .
cycles of completely reversed stress [99]. © 1 w0 00 1000 100000 1000000

N, 103 Cycles
Table 3.1: Material properties of Al7075-T6

Figure 3.1: Stress versus life (S-N) curves obtained from
various sources

29



CHAPTER 3. EXPERIMENTAL DESIGN AND METHOD

The equipment used to perform the experiments include the following:
* Bruel & Kjaer Electrodynamic Vibration Exciter Body Type 4802 with head attachment Type 4817
(Figure 3.2b); used to excite the structure
* Bruel & Kjaer Power Amplifier Type 2708; to amplify the generator signal going to the exciter
* Polytec PSV-500 Scanning Laser Vibrometer and Workstation (Figure 3.2a); used to measure the
response velocity at the beam tip, for data acquisition and for excitation signal generation
* Steel fixture (self-manufactured); used to clamp the beam samples and to fasten to the shaker
head (Figure 3.2¢)
* PCB Piezotronics single-axis accelerometer (Model number: 352A21); used to measure the base
acceleration (input)
The software used for generating the excitation signals, monitoring real time testing parameters and

collecting all the measurement data is the Polytec Scanning Vibrometer Software Suite.

(a) PSV-500 vibrometer (b) Main test setup (c) Fixture with clamped sample

Figure 3.2: Hardware used for the experiments

3.2 Test Plan

A testing strategy is designed to characterize the linear and nonlinear behavior of cantilever beams over
various stages of fatigue life.
1. Linear characterizations conducted at low response amplitudes, consisting of:
a) Free vibration through initial displacements in the linear region
b) Sine-sweep excitations over a wide range of frequencies for modal analysis.
2. Nonlinear response characterizations conducted at high response amplitudes, consisting of:
a) Free vibration through imposed initial displacements at high amplitudes.
b) Sine-sweep excitations (forward and backward) with a slow frequency rate of change.
3. Fatigue testing to induce different levels of damage to the specimens. After each fatigue test the

whole process is repeated again starting at step 1, until the beam has failed.

After having completed all the tests, it is recommended that the samples are further analyzed

micro-structurally by utilizing techniques such as DMA and EBSD. This provides the possibility for
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analyzing the link between the changes in global dynamic behavior and evolution of microstructural

properties. However, this aspect is not considered within the scope of the current work.

Figure 3.3 depicts a schematic overview of the test plan. To describe the plan in more detail, the

testing methods are detailed in the following subsections.

Dynamic Characterization
Linear

Micro Testing

e Imposed Initial Tip

> F Vibrati
Displacement ree Vibration

Repeat
Characterizations
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Dynamic Characterization
Nonlinear

¢ Imposed Initial Tip

»{  Free Vibrati
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|
|
|
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e Start & End Frequency '
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+ Fixed Frequency
s Number of Cycles

Backbone T, k; AFj,

Figure 3.3: Schematic depiction of the testing strategy with relevant inputs and outputs.

3.2.1 Linear Characterization

Linear characterizations are performed to obtain the linear coefficients (natural frequency and viscous
damping) of the underlying linear system. As explained in section 1.1, linear characterizations are the
general method for SHM techniques. This will also enable the comparison between results obtained
from linear analysis and nonlinear analysis. Within the current work, the linear region is defined for

tip displacement amplitudes of less than 1% of the beam length (decided after examination of the results).

Free Vibration
Free vibration testing is performed by imposing an initial displacement upon the beam, quickly releasing
and waiting until it comes to a rest. This is repeated at least five times per beam per fatigue level. The
nonlinear and linear responses are obtained from the same tests. This testing method is important for

the quantification of the linear damping coefficients (c;).
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Sine-sweep Excitation
This test phase consists of sine-sweep excitations, which are performed at low response amplitudes
(= 1mm). Forward and backward sine-sweep testing is conducted in the linear region and the time data
is collected. The sweeps are performed at relatively fast speeds (compared to the nonlinear sweeps)

and the frequency range is chosen to cover the first three vibrational modes.

3.2.2 Nonlinear Characterization

After performing the linear characterizations, nonlinear experimental characterizations are conducted.
In order to generate a nonlinear beam response, high amplitude excitations are required. This entails

tip responses greater than 1% of the beam length.

Free Vibration
This is performed the same way as for the linear characterization, but the initial displacement is of
a higher magnitude. From these measurements backbone curves and damping skeletons can also be

obtained by employing signal processing techniques. This will be further explained in section 3.6.

Slow Sine-sweep Excitation
These experiments include forward and backward sweeps. The excitation frequency is varied with a
constant rate between two frequency values around the nonlinear resonant frequency. The sweep speed
is kept very low (0.025 Hz/s). With a sweep speed this low the response is highly similar to a stepped
sine exctitation, which is steady-state for each increment. This way HBM can be applied to model this
experimental response, as it approximates steady state responses. The slow sweep speed also enables
the proper capturing of jump phenomena. Similar experimental methods were performed by Haynes et
al. [11], Lu et al. [64] and Dossogne et al. [8], in which they showed this excitation method effective

for characterizing nonlinear dynamic behaviour of metal beams.

3.2.3 Fatigue Testing

After having performed the free vibration and sine-sweep tests, fatigue testing is performed. This entails
applying an excitation of a fixed force and fixed frequency for specific periods of time in order to impose
certain levels of fatigue damage to the specimens. The excitation frequency used is near the natural
frequency w, (= 0.5 Hz lower) of the system. To obtain multiple increments of fatigue infliction, each
fatigue period is first chosen to be 10 minutes. Based on the S-N curve of Aluminum 7075-T6 an
excitation force is chosen that results in a stress associated with the desired degradation rate. After each
fatigue test the beams go trough the complete testing process again until complete fatigue is reached.

This is defined to be when the crack has grown to approximately half of the beam width.

3.3 FEM Analyses

Prior to performing tests, several estimations are performed to obtain certain necessary testing pa-

rameters. For this reason, analyses are performed using Finite Element Method (FEM) in ABAQUS
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software. This includes a static stress analysis and a modal analysis. Hereby sensitivity analyses were
also performed to ensure enough elements were used.

3.3.1 Static Stress Analysis

A stress analysis is performed to correlate certain tip displacement magnitudes with local stresses. In
combination with the S-N curves (Figure 3.1) the fatigue life can be roughly estimated. The estimation
will provide an indication of the necessary parameters to be used with the sine-sweep, free vibration
and fatigue testing. Deflection amplitudes are chosen, in such a way that the stresses do not exceed
the yield strength. A test sample is modeled in ABAQUS using quadratic quadrilateral elements. At the
fixture the sample is fixed and at the beam tip various initial deflections are imposed. Figure 3.4 depicts
the model in its deflected state. The stresses in the x-direction (parallel to the beam length) are shown

as well. Bending of the beam causes the largest stresses in this direction. The region with the highest
stress is near the beam root (clamped end).

5511

(Avg 75%)
+2547e+08
+2.123e408
+1.698e+08
+1.274e+08
+8.491e407
+4.245e407
-2.400e+01
-4.245e+07
-8491e+07
-1.274e+08
-1698e+08
-2.123e+08
-2547e+08

Figure 3.4: Maximum stresses occurring during a tip deflection of 28 mm for a beam length of 120mm.

3.3.2 Modal Analysis

Modal analysis is performed to obtain the natural frequencies and mode shapes of the system. This
enables the assurance that the natural frequencies are sufficiently spaced out from each other and gives
insight into the necessary excitation frequency ranges for the sine-sweep tests. Figure 3.5 shows the

first three mode shapes of the test subjects. The corresponding frequencies for the first five modes are
provided in Table 3.2.

— | ——  a—
| -

(a) Mode 1: Bending (b) Mode 2: Twisting (c) Mode 3: Bending

Figure 3.5: First three mode shapes of test subject
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‘ Mode1l Mode2 Mode3 Mode4 Mode5

Type Bend Twist Bend Twist Bend
Natural Frequency (Hz) 58.3 289 363 926 1023
Natural Frequency (w;/w1) 1 4.96 6.23 15.88 17.5
Relative error with analytical (%) | 2.62% - 2.37% - 2.44%

Table 3.2: Natural frequencies of test samples with the relative error

3.4 Testing Procedure and Parameters

Testing Parameters
An overview off all testing parameters is provided in Table 3.3. Hereby fr; and frs denote the experi-

mentally obtained (nonlinear) resonant frequencies for mode 1 and mode 3 respectively.

Start freq. End freq. Sweep speed Sampling Time per

Test type (Hz) (Hz) (Hz/s) freq. (Hz) test (s)
Linear sweep 10 450 10 3125 44

NL Forward (Mode 1) fr1—-2 fr1+2 0.025 3125 160

NL Backward (Mode 1)  fgr1 +2 fr1—-2 0.025 3125 160

NL Forward (Mode 3) fr3—2 fr3+2 0.025 3125 160

NL Backward (Mode 3)  fr3 +2 fr3—2 0.025 3125 160
Free Vibration N/A N/A N/A 3125 64
Fatigue fr1—0.5 fr1—0.5 N/A 1000 600

Table 3.3: Testing parameters.

Testing Procedure
Test samples are securely clamped in a steel fixture which is attached to the shaker. To ensure the
bolts have equal pressure distribution and the fixture is securely fastened, a calibrated torque wrench is
used for the fastening. Each time the test is paused, the bolt tightness is checked again with the torque
wrench to ensure proper boundary conditions. The clamping length is measured and it is ensured that
the sensors and additional measurement devices are properly fastened and connected. The generation
of excitation signals and data acquisition is performed using the Polytec workstation and software suite.
The measurements from the laser vibrometer, the accelerometer and reference voltage are collected.
The time data with values for each sensor measurement is saved along with the time value at each
sampling interval. Thereafter the data is exported in ASCII format, which is accessed within MATLAB for

further processing.

3.5 Static Deflection Experiment

To gain greater insight into the static stiffness over different measures of beam tip deflection, a static

deflection experiment is performed. The underlying theory is first explained.
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3.5.1 Static Bending Theory

Nonlinear springs show a force-deflection relation according to Equation 3.1 [100]. Hereby k;s denotes

the linear stiffness and ks, the cubic stiffness.

Fs = kysv + ks v° (3.1)

The effective static stiffness can thus be expressed as:
F
kgs = 75 =k13+kgsl/2 (3.2)

It should be noted, however, that the static stiffness is not of the same value as the dynamic stiffness of
the first mode. This is mainly due to the fact that part of the energy goes to higher modes of vibration.
Considering the linear regime, the dynamic stiffness and static stiffness are closely related. In fact the
static stiffness is near identical to the first mode dynamic stiffness [101]. In the linear regime the static
stiffness can be represented by the equation as derived from standard Euler-bernouilli beam theory.

This is achieved by first obtaining the deflection formula for a end-loaded cantilever beam, given by:

2

v =X 30— v (3.3)
~ BEI '

From Equation 3.3, the linear static stiffness at the beam tip (x = L) can be expressed as:

3EI

kls = F (34)

The effective mass (modal mass) can be expressed by m; from Equation 2.27, with ¥ now normalized

to equal 1 at x = L, denoted by ¥ [101]. The expression and subsequent computation become:

L, m;L
My = msf ¥ (x)?dx = Ts (3.5)
0

By using Equation 2.35, 3.4 and 3.5, the ratio of the linear modal stiffness of the fundamental mode

(k1) to the linear static stiffness (ki) can be determined:

1 EI myL L[ (B;L)*
_:w%m'mlm'_:(ﬂll‘)zl s = ﬂl

~1.03 (3.6)
ki

msl4 4 3EI 12

This result agrees with the statement that the modal stiffness of the fundamental mode is very close

to the static stiffness for the studied case.

L

Unloaded Beam

Loaded Beam

Figure 3.6: Setup of the static deflection test.
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3.5.2 The Experiment

During the experiment a beam sample is tightly clamped at the base and gradually loaded with weights.
The test set-up is visualized in Figure 3.6. Deflection is measured using a vernier height caliper after the

addition of each weight. The test is performed three times with beams of slightly different lengths.
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Figure 3.7: Resulting normalized effective stiffness from the deflection test using E=65GPa

Figure 3.7 depicts the results obtained from the experiment. The effective stiffness is normalized
by kis, to clearly show the deviation of linear behavior. The results show that the stiffness is well
approximated as a cubic nonlinearity, which is justified by good agreement using a curve fit in form of
Equation 3.2. It is also relevant to know that at a vertical deflection of 0.75L, the effective stiffness is
approximately twice as large in value compared to the original (linear) static bending stiffness, k;s. The
effect of the nonlinear geometric nonlinearity as defined in the analytical approach is also included in
Figure 3.7. Hereby k3 is calculated in Equation 2.27 using the deflection formula in Equation 3.3. The
results show that at large ampltudes, this underpredicts the effective stiffness. Figure 3.8 gives a visual
explanation of this underestimation of the nonlinear static stiffness. As the deflection increases, part of
the force gets compensated by the axial rigidity and pure bending is no longer an accurate assumption.
The exact relationship between the nonlinear static and nonlinear dynamic stiffness given the relevant

loading conditions is unknown.

///// Unloaded Beam

Loaded Beam

Figure 3.8: Bending stiffness transitions into axial stiffness at high displacements
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3.6 Data Processing

The data processing (signal processing) strategy used for converting the experimentally obtained data
into proficient results is detailed within the current section. The section is divided into the processing
of the free vibration tests (subsection 3.6.1) and the sine-sweep tests (subsection 3.6.2). All collected

experimental data is processed using MATLAB software.

3.6.1 Free Vibration Processing

The free vibration data files contain measurements of tip responses as an effect of imposing an initial
displacement. Per measurement at least five free vibrations are imposed, with each one starting in the
nonlinear region of displacement. The linear parameters are obtained from the same measurements by
using the data starting at low amplitudes (< 1% of the beam length). The MATLAB code created for pro-

cessing free vibration data is provided in Appendix B. The processing steps are explained in the following.

Subtract Base Velocity
The beam tip response measured by the laser vibrometer is recorded in terms of the absolute velocity. As
the response velocity relative to the base velocity is desired, the base velocity is subtracted from the tip
response data. The base acceleration is measured by the accelerometer attached to the base fixture. The
acceleration data is converted to velocity data by applying numerical cumulative trapezoidal integration
(MaTLAB cumtrapz function). A bandpass filter (Butterworth) was hereby applied to prevent data
drifting and a moving average filter was applied to improve the accelerometer signal, which was not

clean compared to the laser vibrometer signal.

Obtain Partitioned Displacement Data
The relative beam tip response is now obtained in terms of velocity. From this data, the tip displacement
is obtained by integrating the signal, again via trapezoidal integration. For each fatigue level, each free
vibration decay is first separated by using a peak identification function (MATLAB findpeaks function).
An example of a tip displacement time signal with identified peaks is depicted in Figure 3.9a. Based
on the minimum distance between peaks, a general time window is determined and the time data is
partitioned to have 1 single free vibration in one window. The data is also sorted from high to low
initial amplitude vibrations. The nonlinear and linear region are separated by applying a threshold
for the tip displacement amplitude at 0.01L (1% of beam length) and the signals are split at that
point. Peak envelopes are then created for the linear signal part in order to identify the linear damping

magnitude. An example of partitioned and split up signals with fitted envelopes is depicted in Figure 3.9b.

Linear Damping Ratio ({;) Estimation
The damping ratio ({;) is generally obtained using methods such as the Logarithmic Decrement or the
Half Power Method [102] [103]. In this work a method based on the logarithmic decrement is followed

to estimate (. The displacement time signal of a free vibration can be expressed as:

v(t) = aoe_(‘“’"tsin(wdtwh(p); t>0 3.7
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Free vibration time signal

Partitioned signal with envelopes
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(a) Time signal of the tip displacement (b) Partitioned and split data with peak envelopes

Figure 3.9: Experimental data processing methods (Free Vibration)

where @ is the initial maximum displacement amplitude and w, is the damped natural frequency

(wg = wy, for small damping ratios). {; is related to the linear damping coefficient ¢; by:
c1=2m{ 1w, (for mass normalized EoM: ¢; =2{ 0p) (3.8)

Considering only the peaks, the decay envelope for linear free vibration can be represented using

the first part of Equation 3.7 (a(f) = age *'“~?). By taking the natural logarithm of this expression, the
following relationship is obtained:

In(a(?)) =In(agy) —w,(1t; t>0 (3.9

Hence, the slope of the logarithmic decay envelope is equal to —w,{;. To experimentally estimate the
linear damping, a straight line is fitted over the logarithmic envelope, which should behave this way
according to Equation 3.9. The value of the slope of this line allows the estimation of the linear damping
ratio ;. Hereby only results with a relatively low standard deviation over the different measurements
are kept, due to high amounts of noise present in some of the cases (filtering techniques would not
solve this issue). This process is visualized in Figure 3.10a. In the figure it also clearly evident that the
logarithmic decay envelope of the nonlinear signal part is not linear.

Backbone Curves

Generally backbone curves are obtained by performing a series of sweep tests over different excitation
levels and capturing each resonant frequency. In the current work free decay data is used for the
estimation. By applying processing methods on the decay data, backbone curves can be obtained with
better efficiency and accuracy. The backbone curves can be used to estimate the nonlinear parameters by
fitting the experimental data to the equations derived from the Harmonic Balance analysis. Processing
methods to estimate the backbone curves, as conducted by Londono et al. [10], are applied in the

current work. This first requires the assessment of the instantaneous frequency and the decay envelope,
which is explained in the following.
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Figure 3.10: Experimental processing methods

Instantaneous Frequency Assessment
The zero-crossing method is used to estimate the instantaneous frequency. For every time the input
signal crosses the x-axis in a downward manner, the two data points that capture this crossing are
identified (x; > 0 A xr41 <0), as visualized in Figure 3.10b. By means of interpolation based on each
pair of point amplitude values, the exact time at which the crossing of the horizontal axis occurs, is
approximated. The periods between crossing points are then directly related to the frequency within

that specific time period. The instantaneous frequency is thus expressed as [10]:

fad =l -6 p (3.10)

An additional process is necessary to smooth out imperfect predictions of Equation 3.10. A moving
average (MA) filter is hereby proposed, which in spite of its simplicity, offers optimal reduction of
random noise [10]. The final result delivers only the dominant frequency variation in the decaying
signal. . This procedure assumes that the instantaneous frequency is not rapidly altered for sequential
vibration periods. The filter order needs to be selected based on the magnitude of noise present in the
signal. In this work the instantaneous frequencies are smoothed over 5 points, gave sufficient results
while not negatively influencing the overall result values. An example of an instantaneous frequency

estimation is depicted in Figure 3.11a.

Amplitude Envelope
The experimental decay envelope can be obtained by employing a peak envelope function in MATLAB.
The envelopes are determined using spline interpolation over local maxima separated by at least a
specified number of samples. This sample number is chosen such that slight immediate fluctuations in

the decay envelope are not captured.

After having obtained the instantaneous frequencies and amplitude envelopes, the backbone curves

and damping skeletons can be produced. The backbone curves are simply created by plotting each
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instantaneous frequency data point, along with the corresponding magnitude of the amplitude envelope

at that point. The processing and theory related to the damping skeletons are explained next.

Instantaneous frequency
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(a) Instantaneous frequency (b) Amplitude envelope depicting the method for obtaining

the effective damping ratio, {, ¢ (visualized for k=1).

Figure 3.11: Experimental processing methods

Damping Skeletons
A damping skeleton plots the effective damping ratio of the system versus the amplitude of vibration
[10]. In this work the damping skeletons are used to analyze the nonlinear damping contribution.
The method is based on the logarithmic decrement method, but in this case, applied for sequential
increments within a single decay. An approach similar to Londono [10] is used to estimate the damping
skeletons. However, in this work the effective damping ratio is estimated in a slightly different manner,

by assuming the logarithmic decay envelope as a piece-wise linear function.

For the nonlinear signal, the same equation describing the decay of a viscous damper is used to

express the amplitude envelope, but now { and w, are taken as variables instead of constants:
a(t) = a,_pe (DwoAL (3.11)

For each increment, the effective (linear) damping ratio is determined. Hence, based on Equa-
tion 3.11, the effective damping ratio at each zero-crossing can be determined using the following

expression (similar to Equation 3.9):

Copr(8) = (In(a(_) - In(a(z}, ) (3.12)

wo(1)) At

For clarity this is visualized in Figure 3.11b. The relationship between the effective damping ratio

({err) and effective damping coefficient (c.rr) is hereby defined as [10]:
Coff =2m e () wo (1)) (3.13)

Equation 3.13 and Equation 2.53 (HBM) allow the following expression for the effective damping

ratio in the following manner (substitute ¢, = 2{>wy):

8w,
(eff:(1+—{23nn (3.14)
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The estimation of the quadratic damping (c;, or {») is performed using the damping skeletons. To
obtain {, Equation 3.14 is matched to the experimental effective damping ratio by performing curve
fitting (MatLAaB Curve Fitting Toolbox) with {; fixed at the previously determined values. At this point

in the analysis the linear (viscous) and nonlinear (quadratic) damping coefficients are both known.

Repeatability
Figure 3.12 provides an example of obtained backbone curves and damping skeletons. In this figure
different colors represent different vibration decays for the pristine case. Evidently, the repeatability is
fairly good. The plots also clearly show that the shape of the curve is not influenced by varying initial tip
displacement amplitudes. Throughout all cases a similar level of repeatability was observed, although

certain cases had a higher influence of noise.
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Figure 3.12: Example of experimental backbone curve and damping skeleton

3.6.2 Sine-sweep Processing

The collected data from the sine-sweep excitations include forward and backward sweeps performed in

the linear and nonlinear region. The processing of this data is explained in the following.

Linear Sweeps
For the linear sweeps the data is processed by means of a Fast Fourier Transform (FFT) analysis. The
linear natural frequencies are determined to serve as a baseline for the nonlinear results. The simple
FFT procedure is depicted in Figure 3.13a, which shows that the response is in fact linear and the
repeatability between the forward and backward sweeps is evident. The figure also shows that the

frequency consistently decreases for increasing fatigue cycles.
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the first mode for various damage cases jump phenomena

Figure 3.13: FFT of linear sweeps and definition of AF;y;p

Nonlinear Sweeps
The nonlinear sweeps are processed differently in order to capture the instabilities (jumps) and to
represent the actual maximum amplitudes on the vertical axis of the plots. Firstly, integration is per-
formed to obtain the tip and base signals in terms of displacement. This is achieved using the same
computational methods as described in subsection 3.6.1. Subsequently, peak identification is performed
on the absolute of the signal to capture all the data points where the amplitude is at a maximum. Hereby
the minimum distance between peaks is chosen to be as small as possible, while not capturing signal
peaks below the actual amplitude envelope. The time data is converted to the frequency domain by
means of the zero-crossing method to assess the instantaneous frequency. This method is the same as
the one described in the previous section (Equation 3.10), but this time performed on the input signal.
Hereby the start frequency, the end frequency and the frequency rate of change (sweep speed) are
determined and potential syncing errors (which were observed in the current case) due to hardware
and software delay issues are compensated. A frequency vector is then created by fitting a linear line
to the instantaneous frequency data and thus the time data is accurately converted to the frequency
domain. Finally, the response displacement is divided by the base displacement to obtain the FRFs.
Important parameters within this test type include w4 and wj,, which denote the jump down and
jump up frequency respectively. The difference between the jump frequencies is hereby also of interest,

which is denoted by AF;y;p. Jump phenomena and AFjy,), are visualized in Figure 3.13b.

Supplementary information regarding the experimental approach is provided in Appendix D.
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RESULTS AND DISCUSSION

I n this chapter the obtained results are provided and critically discussed. Firstly, the experimental re-

sults are provided in section 4.1. Subsequently, the results obtained through the analytical approach

are detailed in section 4.2. Finally, the results are compared and discussed in section 4.3.

Procedure for nonlinear system identification

At this phase of the research, a procedure is followed by combining the experimental and analytical

aspects in order to successfully achieve the identification of nonlinear system coefficients. This procedure

is depicted in Figure 4.1 and serves as a guide for this chapter. The visualization shows the method

for obtaining the various coefficients and graphs. It also shows the necessary conditions to successfully

achieve and verify physics-based identification of the nonlinear system. Although tests were also

performed for higher modes, only results for the first mode are considered in this work.

NL Euler-Bern.
Lagranges Eq.
Assumed Modes

m) (k) (e

A

r b

—w
4,®

AL7075-T6
Beams

Test Time
Data

|

LEGEND
Analytical Entity

Experimental Entity
[ Process/ Analysis
O Coefficient / Parameter

4@7
4@7

¥

Nonlinear System

Harmonic Underlying FFT . Decay Fitting Method of
e Balance Linear System ID (Lin.) g | CEE T Linear/Nonlinear Averaging
Analytical Analytical Exp. Exp. Experimental Analytical
FRFs Backbone FRFs Backbone L——»( Decay Envelopes Decay Envelopes
Curves Curves & Skeletons & Skeletons
Successful Revise
Yes Yes No
Model

Revise No.
Model

Figure 4.1: Procedure employed for nonlinear system identification

43

Identification
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4.1 Experimental Results

The results obtained for three beams are provided in this work, which are named 'Beam A’, 'Beam B’

and ‘Beam C’. Table 4.1 lists the details of the beams and the fatigue testing specifications.

Beam Fatigue Fatigue Cycles Free Length Prist. Exp. Avg. Fatigue
Periods per Period (=) (mm) Fnqar (Hz)  Stress (MPa)

A 7 35000 115.5 56.4 174.8

B 5 35000 114 57.8 183.4

C 3 35000 115 56.8 195.9

Table 4.1: Fatigue testing parameters.

4.1.1 Free Vibration Results

Backbone Curves

The backbone curves obtained for all beams are depicted in Figure 4.2. For further insight into the
repeatability of all backbone curves, refer to Appendix C. Additionally, the same backbone curves
zoomed into the linear amplitude region are depicted in Figure 4.3a. In all these figures, the colored
dashed vertical lines represent the (linear) natural frequencies obtained from the linear sine-sweeps.
For the backbone curves zoomed into the linear region, a (heavy) Gaussian filter is applied to make
the results more presentable. This additional filter was necessary to remove noise originating from the
amplifier, which was left on during some of the tests. Hence Figure 4.3a serves more as an indicative
result. The effect of the noise is mostly present at low amplitudes, but at high amplitudes it becomes
negligible. In the linear region, it is evident that the frequency stays nearly constant and is approximately
equal to the natural frequency from the linear sine-sweeps (dashed lines). Considering the backbone
curves of the whole amplitude range (Figure 4.2), significant nonlinear behavior is observed. At high

amplitudes, significant deviation from the natural frequency is present.

Three interesting occurrences are witnessed in the backbone curves (Figure 4.2):

* For each curve there is a noticeable amplitude point at which the hardening starts to occur. The
amplitude of this point seems to drop for increasing fatigue cycles.

e The shape of the curves become more complex for increasing fatigue cycles. Two additional
inflection points appear. In pristine cases and early fatigue cycles, the shape is almost coincident
with a bilinear line, but in later stages of fatigue life the dynamics become more rich.

* At amplitudes around 0.015L, slight softening is present at later fatigue stages. This is attributed
to changes in the material stiffness, as it was ensured that the boundary conditions were kept

consistent by continually checking the torque of the bolts.
These three witnessed phenomena are speculated to be attributed to crack occurrence and other DP-

related material changes. With the current experimental approach it is not possible to say to what extent

damage precursors or crack occurrences have contributed to these effects.
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Figure 4.2: Backbone curves obtained for all three beams over different fatigue cycles
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Figure 4.3: (a) Backbone curves filtered and zoomed into the linear region and (b) Damping skeletons.

Damping Skeletons

The obtained damping skeletons are depicted in Figure 4.3b. These curves show the effective damping
ratio as a function of the amplitude of vibration by assuming piecewise logarithmic decay. In these
figures the dashed lines indicate the viscous damping ratio, {; (of the linear signal). Due to excessive
noise (damping estimation was extremely sensitive to noise) in some of the measurements, the damping
skeletons were not constructed for all cases. From the obtained damping skeletons it appears that the
effective damping ratio is approximately equal to the viscous damping ratio at low amplitudes. However,
the effective damping ratio appears to increase in a nearly linear fashion as the amplitude increases.
Various coefficients and metrics obtained from the backbone curves and damping skeletons are detailed

in the following.
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Nonlinear Coefficients and Other Metrics

Using Equation 3.14, {» is obtained from the damping skeletons by performing curve fitting with {;
fixed at the obtained value. The obtained values for {; and {» are plotted in Figure 4.4 and provided in
Table A.1. Upon examination of Figure 4.4a, it was observed that the linear damping ({;) consistently
increased for accumulating fatigue cycles. This could be caused by increased dissipation due to the
occurrence of cracks and other micro-structural changes. In the literature viscous damping ratio’s ({;)
for aluminum cantilever beams have been reported at 0.35% [104]. The quadratic damping, depicted in
Figure 4.4b, does not appear to change substantially over fatigue cycles. No clear pattern of change was
observed, which is in line with expectations. The quadratic damping is mainly attributed to the air drag
force, which is a function of beam geometry, beam orientation and velocity. Because these parameters

stay the same, it is logical that the quadratic damping stays (nearly) constant over different fatigue cycles.
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Figure 4.5: Values for cubic stiffness obtained from curve fitting

From this point in the analysis, a distinction is made between k3 from the structural (analytical)
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model, now called k3, (theoretical cubic stiffness), and k3 obtained through curve fitting Equation 2.62
with the experimental backbones, simply denoted by k3. The nonlinear stiffness (k3) is obtained through
curve fitting Equation 2.62 to the experimental data. Obtained k3 values are shown in Figure 4.5 and
the specific values are provided in Table A.1. No clear pattern of change was observed for this parameter.
The accuracy of this coefficient estimation is not ideal, because the curve fits had insufficient goodness
of fit measures (avg. R?=0.90). Experimental values for k3 are used instead of the values calculated
from the analytical model (k3;j), because of a severe underestimation of this coefficient through the
model, which is further explained in section 4.3. The theoretical values for m3 are hereby assumed to

be correct. Table 4.2 gives an overview of theoretical and experimental coefficients.

Beam ki(x10°) ki (x10°) ma(x10%)  ks(x1010) ks (x10'0)
A 1.26 1.26 2.13 1.87 0.191
B 1.32 1.33 2.22 1.32 0.21
C 1.27 1.28 2.16 1.51 0.197

Table 4.2: Theoretical and experimental coefficient values for the pristine cases (using E=61GPa).

Aside from the k3 coefficient, other ways of quantifying the changes in shape of the backbone curves,
are explored. An interpretative dissection of the backbone curves is depicted in Figure 4.6. Within
this figure: (i) inflection points are identified, (ii) based on these points four regions are identified,
(iii) slopes of different sections are considered. This analysis is mainly qualitative, but two features
are hereby quantified. The quantified parameters are the amplitude of the first bending point, called
bending point amplitude (BPA), and the instantaneous slope upward of this bending point, called the
bending point slope (BPS). These metrics are correlated to fatigue life and depicted in Figure 4.7. Both
metrics show a consistent and considerable drop of magnitude. The other inflection points (IP1 and

IP2) and the slope between them also show consistent changes, however these are not quantified.
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Figure 4.6: Dissection of the backbone curves showing identified regions and points of interest.
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Figure 4.7: Secondary damage features from the backbone curves (semi-quantitative)

4.1.2 Sine-sweep Results

The evolution of the natural frequencies obtained from the linear sine-sweeps (FFT) is shown in

Figure 4.8a. The results from the forward and backward slow sine-sweeps, after applying the processing

techniques, are depicted in Figure 4.9. The y-axis represents the displacement amplitude of the tip

(response) divided by the displacement amplitude of the base (input). The average acceleration at the

base is also provided in the plots (grey labels), because this was not exactly constant for all measurements,

as was aimed for. The metrics obtained using these results are provided in Table A.1 (Appendix A).

These include the nonlinear resonant frequency (Fgrs) and the difference between the jump-down and

jump-up frequencies (AF ;). The maximum amplitudes are hereby not considered as viable metric,

because of the aforementioned undesired variability in excitation amplitude. It is evident that the

nonlinear resonant frequency decreases as the fatigue cycles increase, which is expected because it is

based on the linear natural frequency, which also decreases. Of interest, is the observed increase in the

difference between the jump-up and jump-down frequencies (AFjy;p). The evolution of AFjyy,), is

visualized in Figure 4.8b. It is unknown at which point in time significant cracks occurred.
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Figure 4.9: Results of the forward and backward sweeps of all beams over different fatigue cycles
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4.2 Analytical Results

Decay Envelopes (Method of Averaging)

The derived analytical equation to plot the decay of combined linear and quadratic damped system
(Equation 2.81), is now applied. The experimentally obtained linear ({;) and nonlinear ({») damping
ratios, which were specified in Table A.1, are used as input parameters to plot the decay. Two arbitrary
cases are chosen to display the results: Beam A in pristine condition and Beam B fatigued at 105000
cycles. The resulting envelopes for decays in the nonlinear and linear range are depicted in Figures
4.10 and 4.11. Considering the decay starting at high amplitude values (Figure 4.10), it is remarkable
that the analytical envelope with combined linear and quadratic damping is almost indistinguishable
from the experimental signal envelope. In these same cases it is evident that a solely linear decay
model (standard logarithmic decrement) does not even remotely model the path of the actual decay.
Now, upon examination of the decays originating from an amplitude in the linear range equal to 0.01L
(Figure 4.10), it can be stated that both damping models are fairly accurate in estimating the decay. In
this amplitude range the decay is in fact well approximated by a pure exponential decay (viscous linear

damper). These results indicate that the obtained values for {; and {, are accurate.

Harmonic Balance and ODE45
In Figure 4.12 nonlinear FRFs are plotted using HBM and RK (ODE45). The results of the two methods
agree very well with each other. The fact that these results match also gives greater confidence in the
correctness of the derived equivalent equations from HBM used for curve fitting. One aspect where
the models differ is the additional range HBM extends to, which could give greater insight into jump

phenomena (instabilities).
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Figure 4.12: Results of the Harmonic Balance Method compared with Runge-Kutta (ODE45)
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4.3 Comparison of Results

In the current section results obtained through the various methods are compared and similarities or
discrepancies are discussed. Figure 4.13 plots different results in a single graph. These include the
FRFs obtained through HBM and RK, the experimental backbones and the experimental sine-sweeps.
These results are plotted using ks values from curve fitting the backbones, m3 values from the analytical
model and ¢, values from curve fitting the damping skeletons. The results show that the analytical

result underestimates the response amplitude. The reason for this is unknown.
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0.15r Exp. Sweeps 00 0.15¢
----Analyt. Backbone .
o Analytical HB
o ODE45 (RK)
Exp. Backbone

]
=

o
%

0.05 owd”’ 0.05

Normalized Amplitude, a/L
%
Y
Normalized Amplitude, /L

-3
®°°°°°°®°moo

0.99 1 .01 102 103 1.04 1.05 0.99 1 1.01 1.02 1.03 1.04
Normalized Frequency, {2 Normalized Frequency, §2

Figure 4.13: Experimental results compared with analytical results; FRF and backbone.

Discrepancy between analytic and experimental cubic stiffness

A discrepancy between experimental and analytical cubic stiffness coefficients was witnessed (Table 4.2).
The analytically obtained values for the cubic stiffness (k3;j) are significantly lower than the experimental
values (k3). More specifically stated, the hardening was underestimated in the model. This means
that either the experimental results or the analytical results are inaccurate. Upon comparison of the
experimental results, it is evident that the FRFs, backbones and FFTs all agree with each other and
therefore no significant errors are expected. Hence, the analytical model might have shortcomings
for the current use case. According to the fundamental relationship expressed in Equation 4.1, the
discrepancy is attributed to either an underestimation of the nonlinear stiffness or an overestimation of

the nonlinear inertia. The nonlinear inertia is assumed to be accurate in the current case.

keq(a)

ol = Meq (@)

“4.1)

Reasons for the discrepancy and potential model improvement suggestions are now speculated:

* The assumption in the analytical model that the bending strain energy is the only contribution
to the potential energy might be incorrect. At low amplitudes this assumption does hold true,
however, at large amplitudes, geometrical effects could cause this assumption to no longer be
valid. At high amplitudes, a part of the inertial forces causes axial stresses. This hypothesised
effect is visualized in Figure 4.14. The occurring axial stress does not contribute to the bending

strain. This would explain the additional hardening at high amplitudes. Pure bending is therefore
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no longer the case and the mechanics become more complicated. This effect can be seen as an
additional nonlinearity. The contribution of the axial strain energy would have to be included to
account for these effects. A stiffening effect due to axial stresses for vibrating cantilever beams
subjected to base rotation was also reported by researchers [22] [105]. Using the same nonlinear
structural theory as this work (nonlinear Euler-Bernouilli theory), Villanueva et al. [23] also
witnessed a significant mismatch between their analytical and experimental results for the first
bending mode of cantilever beams. They also found the discrepancy to increase for lower length
to width ratios. According to the researchers [23], theories beyond Euler-Bernoulli would have to
applied, which account for more complex stress distributions.

* To account for nonlinearities with large deformations, Euler-Bernouilli can be extended using von
Karman strains. The full von Karman nonlinearity accounts for the coupling between extensional
and bending responses in beams with moderately large rotations but small strains. According to
Khodabakhshi and Reddy [106], the von Karman nonlinearity has a stiffening effect in beams.
They also stated that the influence is more prominent in thin beams than in thick beams [106].

* The exclusion of higher order terms in the Taylor series expansions and related approximations
(Equation 2.13, 2.14 and 2.15) might have led to significant inaccuracies. Only terms up to the
third order were kept within the approximation, but at high amplitudes of vibration the influence
of these terms could be increasingly significant. As evident from the experimental backbone
curves, the inclusion of higher order terms would result in better agreement between results.

* It might give improved results by calculating the nonlinear mechanics using nonlinear classical
plate theory instead of beam theory. According to Rao [107], if the thickness to width ratio is
less than 0.05 (which is true in the current case), plate theory should be employed to model the

system. Nonlinear plate theories as described in [81] would be applicable for the system of focus.

In accordance with these statements, the limitations and assumptions of the applied model should
be kept in mind upon application. It should be pointed out that the model in the current form is less
suitable for highly nonlinear systems of this kind. Therefore it should be avoided for nonlinearities of
this degree or improvements would have to be made to facilitate the mentioned shortcomings. All the

suggested improvements would inevitably give rise to more complexity in the model.
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Figure 4.14: Possible explanation for the discrepancy in ks values.
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CHAPTER

CONCLUSIONS AND RECOMMENDATIONS

This research has investigated the nonlinear dynamic behavior of AL7075-T6 cantilever beams. Free
vibration and sine-sweep experiments were performed showing significant nonlinear behavior. Several
metrics were obtained and correlated to various stages of fatigue life. An analytical method based
on Nonlinear Euler-Bernouilli theory and the Assumed Modes method, was employed to obtain the
equation of motion. Analytical approximations, including Harmonic Balance, the Method of Averaging
and Runge-Kutta, were applied to model the system response. The following section (5.1) details the
conclusions drawn from this work, provides answers to the research questions, and states possible

technical challenges. Finally, in section 5.2, recommendations for future work are given.

5.1 Conclusions

5.1.1 Answers to the Research Questions

Firstly, the research sub-questions stated in section 1.3 are answered:
1. Which nonlinear effects (e.g. stiffness, damping, inertial) significantly contribute to the system

dynamics and are therefore important to include in the analysis?
Nonlinear stiffness (k3), which is the main cause of the hardening (stiffening), can be stated to
have been the most influential nonlinearity. Nonlinear stiffness had the biggest influence on the
shape of the FRFs and backbone curves. It is hereby important to note that the local changes in
material elasticity (E) are linked to this parameter.
It was evident that nonlinear damping (c, or {») was significant. Through estimation of this
coefficient via the damping skeletons and subsequent verification using the MoA decay envelope
model, the influence of this nonlinearity was clearly present. It was shown that at high amplitudes
(=0.1L) the effective damping ratio increased to approximately 500% of {; for all beams.
Nonlinear inertia (1m3), is also determined to have a significant influence based on the analytical
model. In the current case, the inclusion of the nonlinear inertial effects had a significant impact
on the shape of the FRF (shifts to the left). Noninclusion of this coefficient would unfairly neglect

the effect of all horizontal inertial forces.
2. Can the applied analytical approach accurately describe the experimental results?

In terms of the free decay analysis, the decay envelopes obtained through MoA had excellent

accuracy. The analytically determined envelopes were essentially indistinguishable from the
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experimental envelopes. These results indicate the proper estimation of the damping coefficients
c1 (¢1) and ¢z ((2).

Considering the FRFs and backbones, a difference in results was witnessed. The k3;;, values
from the theoretical analysis significantly underestimated the stiffening. Because of this, k3
values obtained through curve-fitting the experimental backbones were used to plot the FRFs,
which resulted in a better (but still imperfect) agreement. This indicates that the considered
nonlinear effects in the analytical model are not the only factors for the nonlinear behavior. The
discrepancy is expected to be caused by shortcomings of the model for the current use case. The

potential reasons for this and model improvement suggestions were broadly detailed in section 4.3.

3. How sensitive are the changes in nonlinear parameters over fatigue cycles compared to changes in the
standard linear parameters?
The experimental results revealed significant changes in the shape of the backbone curves. For
the obtained k3 values no consistent pattern of change was noticeable. This is speculated to be
caused by the insulfficient fit of the model and the experimental data. Attributing the changes in
the backbones to only the single coefficient k3 would be unfair, because evidently higher order
coefficients would be necessary to correctly quantify the witnessed phenomena.
By quantifying the changes in the backbone curves in a different manner, such as the proposed
bending point amplitude (BPA) and bending point slope (BPS), a damage precursor index could
also be developed. The witnessed changes in BPA and BPS were fairly consistent and for all
beams approximately 5 times more sensitive than the changes in linear frequencies. Based on the
sensitivity alone, this would be a highly effective damage indicator.
The metric AFjyump was also shown to be sensitive to damage. For all three beams this metric
increased over fatigue levels, with a sensitivity more than ten times higher than changes in linear
frequencies. However, because the magnitude of excitation was not precisely constant for all tests,
this correlation can only be stated with a certain level of uncertainty.
In the case of nonlinear damping (c,) there was no definitive pattern of change, which is in line
with the expectations, because no potential changes could have occurred with the parameters

linked to the physics behind this nonlinearity (air drag).

4. What is the potential value of including nonlinear analysis in SHM applications?
Depending on the degree of nonlinearity that the system exhibits, the value of monitoring the
identified nonlinear parameters can be essential. Aside from the mentioned increased sensitivity
to damage, these identification methods and additional parameters provide more system informa-
tion than one would obtain by traditional (linear) methods. Incorrect estimations of the natural
frequency due to nonlinearities would also be avoided. By incorporating nonlinear effects in
failure models and control techniques, increased reliability and resilience is soundly expected.
These nonlinear techniques should not be considered a replacement for current techniques, but

rather an extension that enables more sophisticated failure models.
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Having answered the sub-questions, the main research question is answered next:

B Can nonlinear dynamic analysis lead to improved damage precursor detection and why?
Based on the obtained results, it can be stated that the monitoring of nonlinear parameters can lead to
improved detection. The increased sensitivity observed for parameters linked to the backbone curves
(BPA and BPS), could be exploited for improved damage detection. Other techniques, such as data-driven
methods, could also be applied to assess the clear changes witnessed in the backbone curves. The metric
A fjump was also found to be sensitive, but may not be practical to monitor in real-world applications,
because of the necessity of highly specific and controlled excitation frequency and amplitude. The
additional system information associated with the inclusion of nonlinear effects is also expected to result
in improved decision-making and control techniques. It is hereby important to note that a thorough
understanding of nonlinear dynamics, nonlinear structural mechanics and the potential failure mecha-
nisms, is considered a necessity for effective implementation. The discussed dynamic effects also depend
on the type of system in question and it is unknown how these parameters evolve for other systems
(e.g.: other shapes, materials and dimensions). In summary, if it is possible to extract the necessary
parameters for nonlinear systems in real-world applications with reasonable accuracy, then the answer

to the research question is: yes.

5.1.2 General Conclusions

Further relevant conclusions drawn from the current research are stated in the following:

* The experimental and signal processing techniques applied in this work are a simple and effective
means for the production of useful graphs, such as backbone curves and damping skeletons. It
was shown that the nonlinear coefficients can be obtained experimentally using these graphs and
the equivalent equations (k.4 and c,,) derived from the Harmonic Balance Method.

* Backbone curves have proven to be a very valuable tool for tracking material degradation. It was
evident that the shapes of the obtained backbone curves change for increasing fatigue cycles. This
is caused by local changes in the elasticity and the occurrence of cracks in the damage-prone
region. In terms of data-driven or hybrid analysis, higher order terms (stiffness and inertial)
would be necessary to accurately replicate this behavior. The inclusion of higher order stiffness
terms was also recommended and applied by [78].

* Nonlinearities of the magnitudes in the experiments of this work are unlikely to be encountered
in practical applications, therefore the structural mechanical theory used within this work, which

works better in regions of weakly nonlinear behavior, could still be fairly accurate to apply.

It can be stated that for systems exhibiting nonlinear behavior, the monitoring of changes in nonlinear
system parameters can potentially lead to higher sensitivity in tracking damage precursors and the
inclusion of these parameters should result in more sophisticated failure models. This does depend
on the system and use case. Further investigation is necessary to establish a proper failure model or
damage precursor index. Technical challenges that may arise upon implementation are discussed in the

following.
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5.1.3 Technical Challenges

Although the methods treated in this work show to be very promising for application in damage (precur-
sor) detection, it is important to note that certain technical challenges may arise upon implementation,
which should be considered to successfully incorporate into practical applications. The first challenge
entails the necessity of high accuracy sensors capable of identifying structural response with minimal
error and noise. Whats more, most of the analysis techniques require a considerable amount of com-
puting power, which might not be practical for real time application. On a positive note, sensor and
computing technologies continue to improve, allowing for the implementation of increasingly complex
identification methods in the future. Experimental techniques for nonlinear dynamical analysis usually
depend on controlled excitations, but in practical applications the loads are less predictable and more
random in nature. The practical constraints should be kept in mind, such as the time-varying nature
of the response and the absence of precise excitation measurement. The presence of noise, which
was witnessed to be highly detrimental to the results, is also an important aspect to consider, because
practical applications are generally not noise proof. The additional burden associated with nonlinear
analysis can be substantial. Therefore the additional efforts should be weighed against the impact of
nonlinearities. And of course, if the system does not exhibit nonlinear behavior, there is no need to

apply such methods.

5.2 Recommendations

Based on the findings and shortcomings of this study, the following recommendations are given for

potential future work:

Analytical Approach:

* Investigate potential improvements upon the nonlinear structural model based on the stated
suggestions in section 4.3 to resolve the observed discrepancy for the nonlinear stiffness.

* Perform FEM analyses (dynamic nonlinear) to model the behavior. The complexity associated with
(strongly) nonlinear behavior makes accurate analytical methods difficult to realize. Cracks and
local changes in elasticity could be modelled to investigate the effects on the system dynamics.

* Investigate the evolution of parameters related to the phase (e.g. phase portraits and Bode plots).

* Develop an expression for drops in material elasticity as a function of beam horizontal position,
E(x). For this additional micro/meso-experiments would have to be performed to assess the
changes in elasticity along the length of the beam. This could then be used to analytically simulate

the damaged responses.

Experimental approach

* Investigate sequential amplitude values of resonance (both linear and nonlinear regime). This
would give an additional metric, which can be correlated to fatigue life. Due to unfavorable
variances in the sine-sweep excitation amplitudes this was not possible in the current work. The

magnitude of stiffening is also sensitive to small changes in excitation amplitude.
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Perform automatically controlled (with feedback loop) fatigue testing instead of manually con-
trolled tests. This would achieve more sophisticated and consistent infliction of fatigue damage.
Vary the fatigue testing parameters including the stress (amplitude) and duration of each period.
A lower fatigue infliction per period would better detail the ‘damage precursor’ zone.

Retrieve more data sets through extensive experiments to have stronger statistical verification of
the results. Due to technical difficulties not all the planned tests were executed in this work.
Additionally test nonlinear sine sweeps at lower excitation amplitudes. Based on the obtained
backbone curves, softening is expected at response amplitudes around 0.015L, for increasing
fatigue cycles. It would be interesting to experimentally verify this notion. Furthermore, it would
be worthwhile to also obtain the backbones using sine sweep excitations of varying amplitudes
and to assess whether they match the backbones curves obtained from free decay data.

Include more measuring points across the beam length to assess the changes in the mode shapes.
In the current work only the response at the beam tip was measured.

It is important to have zero/minimal noise during free vibration testing, because it can have a
detrimental effect on the backbone curves and damping skeletons. It would also be interesting to
investigate whether nonlinear parameters can be extracted from data with noise levels similar to
practical cases.

Develop a method for analyzing nonlinear response due to excitations similar to loads in occurring
practice, which are less predictable or consistent. The processing would not be as straightforward
as controlled testing, but some of the techniques in this work could be applied.

Employ a method to visually verify cracks upon occurrence to distinguish between dynamics

brought on by cracks or by other microstructural changes associated with damage precursors.
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TABLES OF EXPERIMENTAL RESULTS

APPENDIX

Beam A
Fatigue Level {1 (%) (2(%)  k3(x10'%) F,u (Hz) Fgs (Hz) AFjyump (Hz)
Pristine 0.201 0.243  1.87 56.4 58.33 0.29
1 n/a 0.224 1.67 56.21 57.9 0.15
2 0.233 0229 1.3 56.11 57.74 0.24
3 n/a 0.239 1.31 55.65 57.41 0.39
4 n/a 0.228 1.41 55.07 57.12 0.57
5 0.29 0.245 1.38 54.53 n/a n/a
6 n/a 0.239 1.5 53.81 55.96 0.79
7 n/a 0.239 1.88 52.9 55.35 0.85
Beam B
Fatigue Level {1 (%) (%)  k3(x10'%) F,o (Hz) Fgs (Hz) AFjump (Hz)
Pristine n/a 0.21 1.32 57.77 59.27 0.22
1 0.222  0.207 2.07 57.04 59.15 0.31
2 0.228 0.207 1.62 56.82 58.67 0.35
3 0.274 0217 1.22 55.84 57.5 0.52
4 0.293 0226 1.62 53.9 56.4 1.23
5 n/a 0.21 3.53 49.97 53.82 1.68
Beam C
Fatigue Level {1 (%) {(»(%)  k3(x10'°) F,o (Hz) Fgs (Hz) AFjump (Hz)
Pristine n/a 0.214 1.51 56.82 58.41 0.19
1 0.231 0211 1.62 55.74 n/a n/a
2 0.258 0.218 1.29 55.09 56.75 0.37
3 n/a 0.229 2.94 51.7 54.56 0.63

Table A.1: Experimentally obtained nonlinear coefficients (k3,{; and {») and parameters from the sine sweeps

(Fnat, Frs and AFjymp).

{1: Viscous damping ratio (Experimental)

{»: Quadratic damping ratio (Experimental)

ks: Cubic stiffness coefficient (Experimental)

Fpa¢: Natural frequency from linear sine-sweeps

Fgrs: Resonant frequency from nonlinear (slow) sine-sweeps
Fjump: Difference between jump up and jump down frequencies
(Each fatigue level is 35000 cycles.)
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APPENDIX

MATLAB CODE FOR PROCESSING FREE VIBRATION

9% 96% %% %96 % % %6 % 96 % % %6 % %6 % % %6 % %6 % % %6 % %6 %6 % %6 % %6 %6 % %6 % %6 %6 % %6 % %6 %6 % %6 % %6 %6 % %6 % % %6 % %6 % % %6 % 96 % % %6 % %6 % % %6 % %6 % % %6 %
% DESCRIPTION:
% Experimental Data Processing - Free Vibration

% Code for analyzing time data of the free vibration of a cantilever beamn.

R

% Code Created: july 2018
% Code Author: T.

% University of Twente,

Dragman
The Netherlands

Enschede,

%REFERENCES :

%Londono, J. M., Neild, S. A., (2015).
%backbone curves of nonlinear systems from resonance decay responses.

% %%%%%%6% %% %% %% % %6 % %6.% %% %% % %6 % %6 % %6 % % % % %6 % %6 % %6 % % % % % % %6 % %6 % %6 % % % % % % %6 % %6 % %6 % % % % % % %6 % %6 % % % %
clear all;

& Cooper, J. E. Identification of

close all; clc;
set (0, defaultAxesFontSize’,22);set(0®,’DefaultTextFontSize’,22);
set(®, DefaultLinelLineWidth’,1); set(®,’DefaultLineMarkerSize’,5);

set (0, 'DefaultAxesFontName’,’Sitka Subheading’)

%% Load data from experiments

delimiterIn = ; %Data seperator character

headerlinesIn = 7;

%Tip response velocity data (laser vibrometer):
’Data\b0®6_fl0_free_vib_1.txt’;
importdata(filename®,delimiterIn,headerlinesIn);
’Data\b06_fl1_free_vib_1.txt’;
importdata(filenamel,delimiterIn,headerlinesIn);
’Data\b06_fl2_free_vib_1.txt’;
importdata(filename2,delimiterIn,headerlinesIn);
’Data\b06_fl1l3_free_vib_1.txt’;
importdata(filename3,delimiterIn,headerlinesIn);
’Data\b06_fl4_free_vib_1.txt’;
importdata(filename4,delimiterIn,headerlinesIn);
’Data\b06_f15_free_vib_1.txt’;
importdata(filename5,delimiterIn,headerlinesIn);

filename® =
A0 =
filenamel =
Al =
filename2 =
A2 =
filename3 =
A3 =
filename4d =
A4 =
filename5 =
A5 =
%Base acceleration data (accelerometer):
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DATA

%Number of lines in the text file before the main data starts
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APPENDIX B. MATLAB CODE FOR PROCESSING FREE VIBRATION DATA

filename® = ’Data\b06_fl0_free_r2a_1.txt’;
CO = importdata(filename®,delimiterIn,headerlinesIn);
filenamel = ’Data\b06_fll_free_r2a_1.txt’;
Cl = importdata(filenamel,delimiterIn,headerlinesIn);
filename2 = ’Data\b06_fl2_free_r2a_1.txt’;
C2 = importdata(filename2,delimiterIn,headerlinesIn);
filename3 = ’'Data\b06_fl3_free_r2a_1.txt’;
C3 = importdata(filename3,delimiterIn,headerlinesIn);
filename4 = ’Data\b06_fl4_free_r2a_1.txt’;
C4 = importdata(filename4,delimiterIn,headerlinesIn);
filename5 = ’Data\b06_fl5_free_r2a_1.txt’;
C5 = importdata(filename5,delimiterIn,headerlinesIn);

%% Specify sample and test details

%The natural frequency is obtained by running two or three linear sine sweep

%experiments at the start of an experimental session and averaging those values.

Fnat=57.75; %ENTER the average natural frequency (Fnat) of beam B in Hz (Pristine
case)

CL=114; %ENTER clamping length (CL) in mm

N=6; %ENTER the number of measurements (# Damage cases + 1)

SL = length(Al.data(:,2)); %Sample length (#samples)

T = Al.datac(:,1); %Time vector (Same for all files)

Ts = T(2)-T(1); %Sampling rate (secs)

Fs = 1/Ts; %Sampling Freq (Hz)

NoNoise=[2 3 5]; %Cases without noise (Prist=1,Fatl=2,Fat2=3,...)

% ENTER Experimental natural frequencies obtained from linear sine sweeps:

Fvect=[57.75 57.04 56.82 55.84 53.9 49.89];

Nvect=[1 2 3 4 5 6];

%Color specification vector used to add colors to the plots at the various

%fatigue levels ([r g b], black=[0 0 0], white=[1 1 1])

c={%k,'m,’bp",[0 .7 0],[.7 .7 01, r’,[.8 .5 01,[0 .7 .71};

%% Creation of data matrices

%Creation of matrices consisting of a seperate column for each fatigue level
measurement .

%The sampling length and frequency should be the same for each column. E.g.
1 is

%data for pristine case, column 2 is data for fatigue level 1,...etc

Umat=zeros(SL,N); Amat=zeros(SL,N); %(rows=SL , columns=N)
%Tip Velocity

Umat(:,1) = A®.data(:,2)-mean(A®.data(:,2));
Umat(:,2) = Al.data(:,2)-mean(Al.data(:,2));
Umat(:,3) = A2.data(:,2)-mean(A2.data(:,2));
Umat(:,4) = A3.data(:,2)-mean(A3.data(:,2));
Umat(:,5) = Ad4.data(:,2)-mean(A4.data(:,2));
Umat(:,6) = A5.data(:,2)-mean(A5.data(:,2));
%Base Acceleration

Amat(:,1) = CO.data(:,2)-mean(CO®.data(:,2));
Amat(:,2) = Cl.data(:,2)-mean(Cl.datac(:,2));
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Amat(:,3) = C2.data(:,2)-mean(C2.data(:,2));
Amat(:,4) = C3.data(:,2)-mean(C3.data(:,2));
Amat(:,5) = C4.data(:,2)-mean(C4.data(:,2));
Amat(:,6) C5.data(:,2)-mean(C5.data(:,2));

%% Subtract base acceleration to get relative response and obtain improved results

%Intergrate base acceleration signal to obtain base velocity

Afilt=zeros(SL,N); BaseVel=zeros(SL,N);

%Bandpass filter to prevent drift in base velocity (Butterworth filter)

%(order ,[F1/Nyquist F2/Nyquist], ’bandpass’)

[b, a] = butter(2,[0.003 0.5], 'bandpass’); %LP & HP: 0.003[4.7Hz] & 0.5[782Hz]

for i=1:N

Afilt(:,i)=filtfilt(b,a,Amat(:,1i));

BaseVel (:,i)=cumtrapz(T(:,1),Afilt(:,1)); %Perform the trapezoidal integration
and normalize (x/L)

BaseVel(:,i)=-1*smooth(BaseVel (:,i),20); %Apply smoothing to base signal (very
noisy compared to laser data)

BaseVel(:,i)=BaseVel(:,i)-mean(BaseVel(:,i)); %Subtract mean again

Umat(:,i)=Umat(:,i)-BaseVel(:,1i); %Subtract the base velocity from
response velocity

end

%% Identifying peaks to determine time periods of interest

pksU=zeros(10,N); %Assuming no more than 10 free vibrations per measurement
locsU=zeros(10,N);

for i=1:N

[pks,locs] = findpeaks(Umat(:,i),’ ’MinPeakDistance’ ,10000, MinPeakHeight’,0.5);
Nlocu=length(locs);

pksU(1l:Nlocu,i)=pks;

locsU(1l:Nlocu,i)=1ocs;

NlocsU(l,i)=Nlocu;

end

%Plot figure displaying velocity time signals along with the identified peaks

figure (1),

title(’Forward Sweeps with peaks’)

for i = 1:N

subplot(3,2,i), hold on

caption = sprintf(’Beam 3 - Tip Velocity - Free Vibration Case #%d’, i);

title(caption, ’FontSize’, 10);

plot(T(locsU(l:NlocsU(i),i),1),pksU(1l:NlocsU(i),i), color’,C{i}, marker’,’o’,’
linestyle’,’none’);

hold on

plot(T(:,1),Umat(:,1i), color’,C{9-i},’ ’linestyle’,’-");

xlim([O® 60])

ylim([-10 10])

end

%Make values of range ZerolLen right before peaks zero. This eliminates

%unwanted data regions when the beam is loaded before being released.
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APPENDIX B. MATLAB CODE FOR PROCESSING FREE VIBRATION DATA

ZeroLen=5000; % 5000points ~ 1.5 sec

for i=1:N
for k=1:NlocsU(i)

Umat ((locsU(k,i)-ZerolLen):1locsU(k,i),1i)=0;
end

end

%Initialize variables to integrate velocity signal
Xmat=zeros(SL,N); Ufilt=zeros(SL,N);

%Bandpass filter (Butterworth) to prevent drift in displacement
%(order[=2],[F1/Nyquist F2/Nyquist],’bandpass’)

[b, a] = butter(2,[0.003 0.5], 'bandpass’); %0.003[4.7Hz] & 0.5[781Hz]
for i=1:N

Ufilt(:,i)=filtfilt(b,a,Umat(:,1i));

end

clear a b

% Perform the integration using the Riemann method and normalize (x/L)
for i=1:N

Xmat(:,i)=cumtrapz(T(:,1),Ufilt(:,1)); %Cumulative trapezoidal integration
Xmat(:,i)=Xmat(:,i)/CL*1000; %Normalize by beam length
Xmat(:,i)=Xmat(:,i)-mean(Xmat(:,1i)); %Subtract mean again

end

%Identify peaks in Displacement matrix (Xmatrix)

for i=1:N %(play with peak ID parameters)

[pksx,locsx] = findpeaks(Xmat(:,i),’ MinPeakDistance’,10000, MinPeakHeight’ ,0.01);
Nlocsx=1length(locsx);

pksMx (1:Nlocsx,i)=pksx;

locsMx (1:Nlocsx,i)=locsx;

NlocsMx(1l,i)=Nlocsx;

end

%Make values of range ZerolLen right before peaks zero again
for i=1:N

for k=1:NlocsMx (i)
Xmat ((locsMx(k,i)-ZeroLen):locsMx(k,i),i)=0;
end
end
%% Construct 3D X Matrix for further processing

maxNpeaks=max (NlocsMx); %Maximum number of peaks
minNpeaks=min(NlocsMx); %Maximum number of peaks

% Calculate distances between consecutive peaks
DistLocs=zeros (maxNpeaks,N);
for i=1:N
for k=1:NlocsMx(i)-1
DistLocs(k,i)=locsMx(k+1,i)-locsMx(k,i);
end
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MinDistLocs=min(DistLocs(DistLocs>0),[], all’);

N3D=MinDistLocs-501; %length for 3D displacement matrix
for i=1:N

for k=1:NlocsMx (i)
if (length(Umat(:,i))-locsMx(k,i) < N3D) % if last peak too close to end of

time signal

Xmat (locsMx(k,i)-20:end,i)=0; % make that part of the signal

Zero
end

end

end

%Identify peaks in the new displacement matrix (Xmat)

for i=1:N

[pksx,locsx] = findpeaks(Xmat(:,i),’ MinPeakDistance’,10000, MinPeakHeight’ ,0.01);
Nlocsx=1length(locsx);

pksMx (1:Nlocsx,i)=pksx;

locsMx (1:Nlocsx,i)=1locsx;

NlocsMx(l,i)=Nlocsx;

end

%% Sort displacement signal to go from highest to lowest initial amplitude
LocSort=zeros(size(pksMx)); PksSort=LocSort; IdxSort=LocSort;

for i=1:N

[PksSort(:,i),IdxSort(:,i)] = sort(pksMx(:,i),’descend’);
LocSort(:,i)=locsMx(IdxSort(:,1i),i);

end

%Create 3D Displacement Matrix
X3D=zeros(N3D,N,minNpeaks);
for i=1:N

for k=1:NlocsMx (i)
X3D(1:N3D,i,k)=Xmat(LocSort(k,i):LocSort(k,i)+N3D-1,1i);
end
end
%% Plot figure displaying modified normalized displacement time signals along with

the identified peaks
figure(2),
for i = 1:N
subplot(3,2,i), hold on
caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, i);
title(caption, ’FontSize’, 10);
plot(T(locsMx(l:NlocsMx(i),i),1),pksMx(l:NlocsMx(i),i),’ color’,C{9-i}, marker’,’o’,
’linestyle’,’none’);
hold on
plot(T(:,1),Xmat(:,1i), color’,C{i}, linestyle’,’ -");
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226 x1im ([0 60])

227 ylim([-0.25 0.25])

228 end

229

230 %% Plot to check 3D matrix structure
231 figure(3),

232 for i = 1:N

233 for k=1

234 subplot(3,2,1i),

235 plot(T(1:N3D,1),X3D(:,i,k), color’,C{i},’ ’linestyle’,’-");
236 end

237 end

238

239 Nk=min(NlocsMx); %MINIMUM NUMBER OF MEASUREMENTS
240 PSL=10000; %PLOT WINDOW LENGTH
241

242 %Plot sectioned displacement

243 figure (4),

244 for i = 1:N

245 for k=1:Nk

246 subplot(3,2,1)

247 hold on

248 plot(T(1+(k-1)*PSL:k*PSL,1),X3D(1:PSL,i,k), color’,C{i}, linestyle’,’-");
249 hold on

250 line ([k*PSL/Fs k*PSL/Fs],[-0.25 0.25], Color’,[.5 .5 .5], LineStyle’,’--");
251 end

252 hold on

253 caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, i);
254 title(caption, ’'FontSize’, 10);

255 ylim([-0.25 0.25])

256 x1label (’Time (sec)’)

257 ylabel (" Amplitude (mm/mm)’)

258 end

259

260 %% Separate Linear/Nonlinear

261 pksM3x=zeros(100,N,Nk); locsM3x=zeros(100,N,Nk);

262 for i=1:N %(play with peak ID parameters)

263 for k=1:Nk

264 [pks3x,locs3x] = findpeaks(X3D(:,i,k),’MinPeakDistance’,50, MinPeakHeight’,0.01);
265 Nlocs3x=1length(locs3x);

266 pksM3x(1l:Nlocs3x,i,k)=pks3x;

267 locsM3x(1:Nlocs3x,i,k)=1locs3x;

268 NlocsM3x(1l,i,k)=Nlocs3x;

269 end

270 end

271

272 %Split the signal into a linear part and a nonlinear part
273 X3Dnl=X3D; X3D1i=X3D; ZZ=zeros(l,N,Nk);

274 for i=1:N

275 for k=1:Nk
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276 for j=1:100-1

277 if (locsM3x(j,i,k)>0) && (locsM3x(j+1,i,k)==0) % Find the last peak
278 ZZ(1,i,k) = locsM3x(j,i,k);

279 end

280 end

281 X3D1li( 1:ZZ(1,i,k) ,i,k)=0; %Nonlinear part

282 X3Dnl( ZZ(1,i,k):end ,i,k)=0; %Linear part

283 end

284 end

285

286 %% Envelopes construction

287 ESL=12000; %Envelope signal length total signal

288 EnvLI=zeros(N3D,N,Nk); EnvNL=zeros (N3D,N,Nk); EnvX=zeros (ESL,N,Nk);

289 logEnvLI=zeros(N3D,N,Nk); logEnvNL=zeros(N3D,N,Nk); logEnvX=zeros(ESL,N,NKk);

200 %The envelopes are determined using spline interpolation over local maxima
separated by at least np samples.

201  for i=1:N

292 for k=1:Nk

203 %Construction of peak envelopes for the split up data.

294 EnvLI(:,i,k)=envelope(X3D1i(:,i,k),100, peak’); %LI peak envelope

205 EnvNL(:,i,k)=envelope(X3Dnl(:,i,k), 25,’peak’); %NL peak envelope

206 %Set specific regions to zero:

297 EnvLI(C 1:ZZ(1,i,k),i,k)=0; EnvLI( N3D-200:end ,i,k)=0; EnvNL( ZZ(1l,i,k)+1l:end ,i,k
)=0;

208 logEnvLI(:,i,k)= 1log(EnvLI(:,i,k)); logEnvNL(:,i,k)= 1log(EnvNL(:,i,k)); %
Logarithmic envelopes

299 %Envelope construction for complete signal

300 EnvX(:,i,k)=envelope(X3D(1:ESL,i,k),25, peak’); %Complete envelope for nonlinear

analyses

301 logEnvX(:,i,k)= log(EnvX(:,i,k)) ; %Logarithmic envelope of complete
signal

302 end

303 end

304

305 %% Plot partitioned signal with envelopes
306 figure(5),

307 for i = 1:N

308 for k=1:Nk

309 subplot(3,2,1)

310 hold on

311 plot(T(1+(k-1)*PSL:k*PSL,1),X3D1i(1:PSL,i,k), color’,C{i},’ linestyle’,’-");

312 hold on

313 plot(T(1+(k-1)*PSL:k*PSL,1),X3Dnl1(1:PSL,i,k),’ color’,C{9-1i}, ’linestyle’,’ -");
314 hold on

315 plot (T(1+(Ck-1)*PSL:k*PSL,1) ,EnvNL(1:PSL,i,k),’color’,C{i}, linestyle’,’ --");
316 hold on

317 plot (T(1+(k-1)*PSL:k*PSL,1) ,EnvLI(1:PSL,i,k),’ color’,C{9-i},’linestyle’,’--");
318 1line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25], Color’,[.5 .5 .5], LineStyle’,’--");

319 line ([0 25],[0.01 0.01],’Color’,’r’,’LineStyle’,’ --");

320 end
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APPENDIX B. MATLAB CODE FOR PROCESSING FREE VIBRATION DATA

hold on

caption = sprintf(’Beam B - Tip Displacement - Free Vibration Case #%d’, 1i);
title(caption, ’FontSize’, 10);

ylim([0® 0.1])

ylabel (’Amplitude (mm/mm)’)

end

%% Plot envelopes only

figure(6),

for i = 1:N

for k=1:Nk

subplot(3,2,1)

hold on

plot(T(1+(Ck-1)*PSL:k*PSL,1) ,EnvNL(1:PSL,i,k),’color’,C{i}, linestyle’,’-");
hold on

plot(T(1+(Ck-1)*PSL:k*PSL,1) ,EnvLI(1:PSL,i,k),’color’,C{9-i},’linestyle’,’-");

line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25], ’Color’,[.5 .5 .5],’LineStyle’,’--");
end
hold on

caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’,

);
title(caption, ’FontSize’, 10);
ylim([0 0.08]1)
end
%% Plot complete envelopes only
figure(7),
for i = 1:N
for k=1:Nk
subplot(3,2,1)
hold on

i

plot(T(1+(Ck-1)*PSL:k*PSL,1),X3D(1:PSL,i,k), color’,[0.87 0.87 0.87], linestyle’,’ -’

)
hold on
plot(T(1+(Ck-1)*PSL:k*PSL,1) ,EnvX(1:PSL,i,k), color’,C{7-i},’linestyle’,’-");
hold on
line([k*PSL/Fs k*PSL/Fs],[-0.25 0.25], Color’,[.5 .5 .5],’LineStyle’,’--");
end
hold on

caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’,

)
title(caption, ’FontSize’, 10);

ylim([0® 0.08])
end
%% Polyfitting of logarithmic envelopes to obtain zetal (cl)
Lp=4500; %length for linear fitting
LinSlope=zeros(2,N,Nk); pvl=zeros(Lp,N,Nk);
for i=1:N
for k=1:Nk
LinSlope(:,i,k) = polyfit( T(1l:Lp,1),logEnvLI((ZZ(1,i,k)+1:ZZ(1,i,k)+Lp),i,k)

%linear polyfit
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pvl(:,i,k) = polyval(LinSlope(:,i,k),T(1l:Lp,1));
end

end

%% Plot envelopes in log scale (Linear part should give an approximate straight
line)

figure (8)

for i = 1:N

for k=1:Nk

subplot(3,2,1)

hold on

plot(T(1+(Ck-1)*PSL:k*PSL,1),logEnvNL(1:PSL,i,k), color’,C{i}, linestyle’,’ -");

hold on

plot(T(1+(Ck-1)*PSL:k*PSL,1),logEnvLI(1:PSL,i,k), color’,C{9-1i}, ’linestyle’,’-");

line([k*PSL/Fs k*PSL/Fs],[-10 0], ’Color’,[.5 .5 .5], LineStyle’,’ --");

hold on

plot(T(1+(Ck-1)*PSL+ZZ(1,i,k):ZZ(1,i,k)+k*PSL-(PSL-Lp),1),pvl(:,i,k), color’,’g’,’
linestyle’,’ --");

end

hold on

caption = sprintf(’Beam B - Tip Displacement Envelope - Free Vibration Case #%d’,

)

title(caption, ’FontSize’, 10);

x1lim([O® 25])

ylim([-8 -11)

ylabel (’1In(X) (mm/mm)’)

end

%% Plot slope values of linear envelopes

LinSlope(l,4,3)=LinSlope(1,4,2); LinSlope(l,5,3)=LinSlope(1,5,2); %manual
correction (single outlier points)

figure (9)

for i=1:N
for k=1:Nk

hold on

plot(i,LinSlope(l,i,k), ’marker’,’o’,’color’,C{k})
end

end

legend(’1’,’27,’3’,74°,°57,76")

%% The linear damping coefficient is analyzed next.

% For the linear case the damping decrement abides a logarithmic relation.

% By plotting this in logarithmic scale, a straight line can be fitted to the
% signal peak envelope to estimate the damping coefficient. In the nonlinear
% case, however this is not possible.

avgli=zeros(1l,N); Zetalin=avgli; stdli=avgli; stdzl=avgli;

for i=1:N

avgli(i)=mean(LinSlope(l,i,:));

Zetalin(i)= -avgli(i)/(2*pi*Fvect(i));

stdli(i)= std(LinSlope(l,i,:));

stdz1(i)= std(LinSlope(l,i,:)/(2*pi*Fvect(i)));
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413 end

414

415 figure(10) %plot the linear damping ratios and standard deviations
416 subplot(1,3,1)

417 for i=1:N

418 hold on

419 plot(Nvect(i),ZetalLin(i), 'marker’,’o’,’linestyle’,’--",’color’,C{i})

420 end

421 x1im([O® 8])

422 x1label (’Test Number’)

423 ylabel (’\zeta_1l (%))

424 subplot(l,3,2)

425 for i=[2 3 4 5]

426 hold on

427 errorbar (Nvect(i),ZetalLin(i)*100,stdz1(i)*100, 'marker’,’o’, ’linestyle’,’--", color’

,C{i},’ ’linewidth’,1.5)
428 end
429 x1im([® 8])
430 xlabel (’Test Number’)
431 ylabel (’\zeta_1 (%))
432 subplot(1,3,3)
433 plot(Nvect,stdzl, 'marker’,’x’,’linestyle’, ’none’)
434 line([® 8],[0.008/100 0.008/100], color’,C{1},’LineStyle’,’--");
435 x1im([O® 81)
436 x1label (’Test Number’)

437 ylabel (’Standard deviation of \zeta_1l values’)

438

439 figure(ll)

440 for i=[2 3 4 5]

441 hold on

442 errorbar (Nvect (i) *35000-35000,Zetalin(i)*100,stdz1(i)*100, 'marker’,’o’,’linestyle’,
’--7,%color’,C{i},’linewidth’,1.5)

443 end

444 x1im([-2000 180000]1)

445 ylim([0.2 0.35])

446 x1label (’Cycles’)

447 ylabel (’\zeta_1 (%))

448

449 %% FFT’s for frequency overview and to check for presence of amplifier noise

450 for a=1

451 Lf = N3D; % Length of signal
452 t = Ts; % Time vector
453 £ = Fs*(0:(Lf/2))/Lf; % Frequency axis

454 FFN=zeros(N3D,N,Nk); FFL=FFN; FFNP2=FFN; FFLP2=FFN;
455 FFNPl=zeros(N3D/2+1,N,Nk); FFLP1=FFNP1;

456 for i=1:N

457 for k=1:Nk

458 FFN(:,i,k) = ££t(X3Dnl(:,i,k));

459 FFNP2(:,i,k) = abs(FFN(:,i,k)/Lf);

460 FFNP1(:,i,k) = FFNP2(l:Lf/2+1,i,k);
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FFNP1(2:end-1,i,k) = 2*FFNP1(2:end-1,1i,k);
FFL(:,i,k) = ££ft(X3D1li(:,i,k));
FFLP2(:,i,k) abs(FFL(:,i,k)/Lf);
FFLP1(:,1i,k) FFLP2(1:Lf/2+1,1i,k);
FFLP1(2:end-1,i,k) = 2*FFLP1(2:end-1,1i,k);
end

end

figure(20) % plot linear and nonlinear fft’s
for i = 1:N
for k=1:Nk
subplot(3,2,1i)
caption = sprintf(’FFT - Linear and Nonlinear #%d’, i);

title(caption, ’FontSize’, 5);

plot( f/Fnat*Fnat , FFNP1(:,i,k))%, marker’,’x’)%, markersize’,6,  linestyle’, 'none
)

hold on

plot( f/Fnat*Fnat , FFLP1(:,i,k) ,’linestyle’,’-’)

hold on

caption = sprintf(’Beam B - FFT - Linear Free Vibe Case #%d’, i);
title(caption, ’FontSize’, 10);

x1lim([0.8*Fnat 1.1*Fnat])

set(gca, ’'YScale’, ’'log’)

title(’Single-Sided Amplitude Spectrum of X(t)’)
xlabel (’Frequency (\omega/\omega_n)’)
end
end
end
%% Zero-crossing instantaneous frequency analysis

%Algorithm to find two time points between each downward zero crossing
SLF=N3D-2000;

ZeroCros=zeros (SLF,N,Nk);
for i=1:N
for j=1:Nk
for k=1:SLF-1
if (X3D(k,i,j)>0) && (X3D(k+1,i,j)<0)

%downward-crossings interpolation to estimate exact time point of zero-crossing:
ZeroCros(k,i,j) = X3D(k,i,j)/(X3D(k,i,j)-X3D(Ck+1,i,j))*(T(k+1,1)-T(k,1))+T(k,1);
end
end
end
end

% Run peak alg. over ZeroCros to asses nonzero data and find the indices of
crossings in the main signal

PMzf=zeros (700 ,N,Nk); LMzf=zeros(700,N,Nk); NLMzf=zeros(l,N,Nk);

for i=1:N
for j=1:Nk

[Pzf,Lzf] = findpeaks((ZeroCros(:,i,j)),’ MinPeakDistance’,5, MinPeakHeight’
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APPENDIX B. MATLAB CODE FOR PROCESSING FREE VIBRATION DATA

,0.00001);
NLzf=length(Lzf);
PMzf(1:NLzf,i, j)=Pzf; %creates peak matrix
LMzf(1:NLzf,i,j)=Lzf; %creates peak locations matrix

NLMzf(1l,i,j)=NLzf; %the amount of peaks per case
end

end

NZ1=1; NZ2=180; %Data range for zero-cross analysis

InstFreq=zeros(NZ2,N,Nk);
%0btain instantaneous frequency from distances between consecutive crossings
for i=1:N
for j=1:Nk
for k=NZ1:NZ2
InstFreq(k-NZ1+1,i,j)=1/(PMzf(k+1,i,j)-PMzf(k,i,j));
%make infinities and absurdly large frequencies zero
if (InstFreq(k,i,j)>100)
InstFreq(k,i,j) = 0;
end
end
% Moving average filter (smooth function)
% set span of moving average (for span of five, first two points unfiltered)
InstFreq(1:NZ2,i,j) = smooth(InstFreq(l:NZ2,i,j),5);
end
end
clear ZeroCros

%% Plot the instantaneous frequencies for each damage case
TFaxis=zeros(NZ2,N,Nk); % Time axis

figure (30)

for i=1:N

for j=1:Nk

TFaxis(1:NZ2,i,j)=T(LMz£f(1:NZ2,i,j),1);

subplot(3,2,1i)

hold on
plot(TFaxis(:,i,j),InstFreq(:,i,j), color’,C{j}, marker’,’o’);
end

end

%% Plot the amplitude envelopes for each damage case
figure(31)

for i=1:N

for j=1:Nk

subplot(3,2,1)

hold on
plot(T(1:ESL,1),EnvX(:,i,j), color’,C{j}, marker’,’o’);
end

end

%% Plot backbone curves of pristine case only
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558 figure (40)

559 for i=1

560 for j=1:Nk

561 hold on

562 plot(InstFreq(5:158,i,j),CL*EnvX(LMzf(5:158,1i,j),1i,j), color’,C{j}, marker’,’o’,’
linestyle’,’none’);

563 end

564 end

565 title(’Beam B - Pristine Case - Backbone curve’)

566 xlabel (’Frequency (Hz)’)

567 ylabel (’Tip Amplitude (mm)’)

568

569 %% Plot the main backcurves for all cases

570 figure (41)

571 for a=5:140

572 for j=1:Nk-3

573 for i=1:N

574 if (EnvX(LMzf(a,i,j),i,j)>0.003) % Avoids plotting very low amplitude values
for cleaner graph

575 hold on

576 plot(InstFreq(a,i,j)/Fnat,EnvX(LMzf(a,i,j),i,j), color’,C{i}, 'marker’,’o’,’

linestyle’, ’none’);

577 end
578 end
579 end

580 end

581 for i=1:N

582 hold on

583 line ([Fvect(i)/Fnat Fvect(i)/Fnat],[0®0 CL*0.12], Color’,C{i}’,’LineStyle’,’--","
linewidth’,2);

584 end

585 x1im([49/Fnat 59.5/Fnat])

586 ylim ([0 0.14])

587 grid on

588 set(gca,’box’,’on’)

580 legend(’Pristine’,’Fatigue: N=35000’, Fatigue: N=70000’,’Fatigue: N=105000"...

590 , Fatigue: N=140000’, Fatigue: N=175000’, ’Location’,’NorthWest’)

501 xlabel (’Frequency (\omega/\omega_n)’)

502 ylabel (" Amplitude (X/L)’)

503 title(’Backbone Curves - Beam B’)

594

505 Zrange=[180 180 180 180 180 180]; %custom range for each damage case

506 figure(42) % Plot Backbones with longer signal length and custom ranges

597 for j=1:Nk

508 for i=1:N

599 hold on

600 plot(InstFreq(5:Zrange(i),i,j),EnvX(LMz£f(5:Zrange(i),i,j),i,j), color’,C{j}, marker

,’0’,’linestyle’, ’none’);
601 hold on

602 line([Fvect(i) Fvect(i)],[® CL*0.18], Color’,C{i}’, LineStyle’,’--");
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603 end

604 end

605 x1im([52 59.51)

606 ylim([® 0.14])

607 grid on

608 legend(’Pristine’,’Fatigue: N=35000’,’ Fatigue: N=70000’,’Fatigue: N=105000’,"’
Fatigue: N=140000",...

609 "Fatigue: N=175000’,’Fatigue: N=210000’, Fatigue: N=245000’,’Location’,’
NorthWest’)

610 xlabel (’Frequency (\omega/\omega_n)’)

611 ylabel (’Amplitude (X/L)’)

612 title(’Backbone Curves - Beam B’)

613

614 %% Plot linear region of backbone curves with Gaussian Filter (Heavy Filtering)

615 Zgauss=zeros(size(InstFreq)); % Apply Gaussian filter to make linear region
presentable

616 for i=1:N

617 for j=1:Nk

618 Zgauss(:,i,j) = smoothdata(InstFreq(:,i,j),’ ’gaussian’,30);

619 end

620 end

621

622 %Plot linear region backbone

623 figure (43)

624 for j=1:Nk-3

625 for i=1:N

626 hold on

627 plot(Zgauss(5:Zrange(i),i,j)/Fnat,EnvX(LMzf(5:Zrange(i),i,j),i,j), color’,C{i},’

marker’,’o’,’linestyle’, 'none’);

628 end

629 end

630 for i=1:N

631 hold on

632 line ([Fvect(i)/Fnat Fvect(i)/Fnat],[0®0 0.025], Color’,C{i}’,’ LineStyle’,’--","
linewidth’,2);

633 end

634 hold on

635 line([0.7 1.3],[0.01 0.01], Color’,[0.4 0.4 0.4],’LineStyle’,’--", linewidth’,2);

636 x1im([0.75 1.01])

637 ylim([0 0.012])

638 set(gca, 'box’,’on’)

639 legend(’Pristine’,’Fatigue: N=35000’, Fatigue: N=70000’,’Fatigue: N=105000","’
Fatigue: N=140000",...

640 "Fatigue: N=175000’, Location’,’NorthWest’)

641 xlabel (’Frequency (\omega/\omega_n)’)

642 ylabel ("’ Amplitude (X/L)’)

643 title(’Backbone Curves - Linear Region - Beam B (Guassian Filter)’)

644

645 %% Effective damping ratio calculation.

646 NZ2=150; NZend=180; zetaEFF=zeros(NZend-10,N,Nk); zetaLondono=zeros(NZend-10,N,Nk);
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647 Nzeta=5;

648 for i=1:N

649 for k=1:Nk

650 for j=Nzeta+l:NZend-Nzeta

651 %Piecewise linear interpretation;

652 zetaEFF(j,i,k) =(logEnvX(LMzf(j-Nzeta,i,k),i,k)-logEnvX(LMzf(j+Nzeta,i,k),i,k))...
653 /(2*pi*InstFreq(j,i,k)*(T(LMzf(j+Nzeta,i,k),1)-(T(LMzf(j-Nzeta,i,k),1)))) ;
654 %Londono’s method (2015);

655 zetalLondono(j,i,k) =(logEnvX(LMz£f(1l,i,k),i,k)-logEnvX(LMz£f(j,i,k),i,k))...

656 /(2*pi*InstFreq(j,i,k)*(T(LMzf(j,i,k),1)-(T(LMz£(1,i,k),1)))) ;
657 end

658 end

659 end

660

661 %% Create Arrays to obtain k3 and c2 through Curve Fitting Toolbox
662 M2=21300; % Nonlinear inertial coeff from analytical model (Meff=ml+1/2*m2%X72)
663 NDcf=30; % NDcf = number of data points for curve fitting

664 NJcf=4; % NJcf = number of vibrations for curve fitting

666 ¥INITIALIZE ARRAYS FOR CURVE FITTING SESSION

667 CFK=zeros(NDcf*NJcf,N); CFX=CFK; CFZ=CFK; Meff=CFK;

668 ckl=zeros(NDcf*NJcf,1); ck2=ckl; ck3=ckl; ckd4=ckl; ckS5=ckl; ck6=ckl; %effective
stiffness

669 cxl=zeros(NDcf*NJcf,1); cx2=cxl; cx3=cxl; cx4=cxl; cx5=ckl; cx6=ckl; %amplitude
values

670 czl=zeros(NDcf*NJcf,1); cz2=czl; cz3=czl; czd4=czl; cz5=czl; cz6=czl; %effective
damping

671 OmegaSqr=zeros(N); OmegaSqr=(2*pi*Fvect).A2;

672 for i=1:N

673 for j=1:NJcf

674 % Effective Mass

675 Meff(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=1+M2%0.5*(CL/1000/15*EnvX(LMz£f(5:5+NDcf-1,1i,j)
y1,3)).42;

676 % Keff=omega (X)Ar2*Meff

677 CFK(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=(2*pi.*InstFreq(5:5+NDcf-1,i,3j)).42;

678 % Amplitude values

679 CFX(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=CL/1000*EnvX(LMz£f(5:5+NDcf-1,i,j),1i,3);

680 % Construction of arrays to obtain zeta2:

681 % zetaEFF=zetal+const*omega_n(X)*zeta2*X --> (zetaEFF-zetal)/omega_n(X)=constants*
zeta2*X

682 CFZ(1+(j-1)*NDcf:NDcf+(j-1)*NDcf,i)=(zetaEFF(5:5+NDcf-1,i,j)-Zetalin(i))./(2%pi.*
InstFreq(5:5+NDcf-1,i,j));

683 end
684 CFK(:,1i)=CFK(:,i).*Meff(:,i)-OmegaSqr(i);
685 end

686 ck1(:,1)=CFK(:,1); ck2(:,1)=CFK(:,2); ck3(:,1)=CFK(:,3); ck4(:,1)=CFK(:,4); ck5
(:,1)=CFK(:,5); ck6(:,1)=CFK(:,6);

687 ¢x1(:,1)=CFX(:,1); cx2(:,1)=CFX(:,2); cx3(:,1)=CFX(:,3); cx4(:,1)=CFX(:,4); cx5
(:,1)=CFX(:,5); cx6(:,1)=CFX(:,6);

688 cz1(:,1)=CFZ(:,1); cz2(:,1)=CFZ(:,2); cz3(:,1)=CFZ(:,3); cz4(:,1)=CFZ(:,4); cz5
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(:,1)=CFZ(:,5); cz6(:,1)=CFZ(:,6);
end

%% Plot the damping skeletons

figure(51)

for j=1:3
for i=2:5

hold on

plot (100*zetaEFF(8:80,1i,j),EnvX(LMz£(8:80,i,j),i,j), color’,C{i}, 'marker’,’0’,’
linestyle’, ’none’);
end

end

for i=2:5
hold on
line([ZetalLin(i)*100 100*ZetalLin(i)],[® 0.15],’Color’,C{i}’, LineStyle’,’ --","
linewidth’,2);

end

xlim([0.1 1.2])

ylim([0® 0.12])

legend(’Fatigue: N=35000’,’ ’Fatigue: N=70000’,’Fatigue: N=105000’,’Fatigue: N=140000
’,’Location’,’NorthWest’)

xlabel (’Effective Damping Ratio, \zeta_{eff} (%)’)
ylabel (’Amplitude (X/L)’)
title(’Damping Skeletons - Beam B’)
%%
figure(511)
for j=1:3
for i=1:N
hold on
plot (100*zetaEFF(8:100,1i,j),EnvX(LMzf(8:100,i,j),1i,j), color’,C{i}, 'marker’,’0’,”’

linestyle’, ’none’);
end
end
x1lim([0.1 1.2])
ylim([0 0.12])
legend(’Pristine’,’Fatigue: N=70000’, Fatigue: N=175000’, Location’,’NorthWest’)
xlabel (’Effective Damping Ratio, \zeta_{eff} (%)’)

ylabel (' Amplitude (X/L)’)

title(’Damping Skeletons - Beam B - All’)

%% Damp skeleton Example Visualization (Pristine case)

figure(52)

for j=1:Nk

hold on
plot(100*zetaEFF(8:100,1,j),CL*EnvX(LMzf(8:100,1,j),1,j), color’,C{j}, marker’,’o’,

’linestyle’,’none’);
end
xlabel (’Effective Damping Ratio, \zeta_{eff} (%)’)
ylabel (’Tip Amplitude (mm)’)
title(’Beam B - Pristine Case - Damping Skeletons’)
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REPEATABILITY OF THE BACKBONE CURVES

Backbone Curves - Beam A - All Damage Cases (Repeatability)
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Figure C.1: Backbone curves for Beam A

Backbone Curves - Beam B - All Damage Cases (Repeatability)

o Decay 1
o Decay 2
© Decay 3

| | | | | |
< N ~ o © <+ I
= = <] Q Q Q Q
S} o o o o o

(1/x) epmirdwy

1.02

0.9 0.92 0.94 0.96 0.98
Frequency (w/ wn)

0.88

0.86

Figure C.2: Backbone curves for Beam B
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Backbone Curves - Beam C - All Damage Cases (Repeatability
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Figure C.3: Backbone curves for Beam C
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APPENDIX

SUPPLEMENTARY INFORMATION

FFT - Free Vibration - Complete Frequency Range

= 0.012L)

= 0.162L)

— Low Init. Ampl. (@, ...

— High Init. Ampl. (ainitial

:6.23
I

2 4 6 8 10 12
Normalized Frequency ({2)

Figure D.1: FFT for the whole range of frequencies (Pristine case). Both FFTs were taken for the full decay
duration. Primary peak present at the first bending mode and seconday peak present at the second bending mode.
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Figure D.2: FFT zoomed into Mode 1 showing the interference coming from the amplifier. This was not an issue
for the nonlinear signal. The issue was only present in certain cases where the amplifier was switched on. This
specific result is for free decays of Beam A fatigued at 105000 cycles.

91



APPENDIX D. SUPPLEMENTARY INFORMATION

KAISER — CERTIFIED TEST REPORT

ALUMINLUM http://Online KaiserAluminum.com
FABRICATED PRODUCTS
Kaisar Almanum
Trentwood Works.
Spokana, WA 09215-5108
(BDO) I&T-2586
CUSTOMER PO NUWBER [WORK PACKAGE CUSTOMER PART NUMSER: [PROCUCT DEECRIFTION
5400240313-20 ALFLRO1ET2 HT Flat Shest
[KASER CRDE R FUMBER: JLINE ITER TE ALLOY: CLAD ‘]mn
1184773 1 01022015 TOTS BARE LL:]
ViE IGHT SHIPPED TTF: NUMBER: GALGE EMGTH
5013 LB 177 PCS EST. 2051824 D.0400 1IN 48000 IN 144,000 IN
BT SO TE
\COPPER & BRASS SALES
8 BRASS SALES ATTH: ACCOUNTS PAYABLE
ARTANBURG, SC 29503 US P.O. Box 8118
li' SOUTHFIELD, Mi 48088 US

MHU 185117%: LOT 1114%5B8: 25 placea
MHU 1851180: LOT 11145588: 152 pleces

Certified Specifications

RMS 4045/ /RavE RAMS-0Q-A-250/12/RevA ASTM B 209 /Revid CMMP 019/BevD OMMF 02%Revl

Test Coda: 1512 Test Results:

LOT: 111495BE CAST: 675 DROP: 54 INGOT: 2
Malted in USA

[ASTM 557
03-1

Tansile: Temper Dir/fHTasta Ultimacre ESI {MPA]| Yield XSI (MPA) [Elongation W
Th LT f 02 (MimiMax) B3.7 » BD.B .1 ¢ 0.6 13.8 i 14.3
(556 : S557) (483 : 487)
(ASTM E1251) L
Chemiscry: 81 FE Cu M MG R IN TI v IR OTHER
Actual 0.0 0.14 1.%5 0.0 2.3 ©0.20 5.7 0.02 ©.01 O0.02 TOT Q.05

Chemistry: 58I FE (=i M e Cr N T1 v ER OTHER
TOTS MIN O0.00 O.00 1.2 ©0.00 2.1 0.1 5.1 ©0.00 O©0.00 O.D0 MAX Q.08
MAX ©O.40 O0.50 2.0 0.30 2.% O0.28 E.1 ©0.20 O0.05 0.D5 TOT Q.15

Muminus Remaindgrp

Figure D.3: Material specifications from manufacturer
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