
Modelling and realizing the Tunnelling Ball

Device in UniTi and CλaSH

Peter Lebbing

June 5, 2019

1

Contents

1 Introduction 4
1.1 Device overview . 6

2 Related work on DC motor control 8

3 UniTi 11
3.1 Overview . 11
3.2 Composition in UniTi . 12
3.3 Components . 12
3.4 Accurate continuous time . 13
3.5 Composition difficulties . 16

4 Modelling the device in UniTi 19
4.1 Model overview . 19
4.2 Incremental refinement . 20
4.3 Ball drop sensors . 22
4.4 Disc angle sensor . 22

4.4.1 Abstract model of the sensor 22
4.4.2 UniTi model . 23
4.4.3 Phase shift . 23
4.4.4 Location of the zero point 24
4.4.5 Modelling noise . 24
4.4.6 Room for experimentation 24

4.5 Disc model . 24

5 Motor control 28

6 Choice of motor 29
6.1 Brushed DC motor . 29

2

List of Figures

1 Basic elements of the Tunnelling Ball Device 7
2 Example components: a mass . 11
3 Composition operators in UniTi 12
4 Formal definition of CT component 12
5 Formal definition of DT component 13
6 Linear interpolation of signal between samples 14
7 All components of the UniTi model 16
8 The model of figure 7 reduced to the bare necessities for verifying

the algorithm . 21
9 Abstract model of rotary encoder 22
10 Output signal of the incremental outputs of the rotary encoder . 22
11 Friction model of the disc . 26
12 System identification . 27
13 Forces from field interaction in PM DC motor 29
14 Schematic view of a commutator 30

List of Tables

1 Some common UniTi operators 15
2 Disc model parameters . 25

List of Listings

1 Delayed sine wave in UniTi . 15
2 Sine wave with two delays in UniTi 15
3 Different ways of composing components 17

3

1 Introduction

This report describes the modelling of the Tunnelling Ball Device using UniTi,
and its implementation using CλaSH. The Tunnelling Ball Device is a cyber-
physical system devised at the department of Electrical Engineering & Computer
Science of the University of California, Berkeley. It consists of a box housing a
spinning disc and a tower structure on top of the box. The disc has two holes at
opposite ends. Small steel balls are dropped from the top of the tower, above
the spinning disc. Sensors mounted on the tower measure the motion of the steel
balls, and the disc is controlled in such a way that the ball passes through a hole
regardless of when it is dropped. [Jen10] introduces the system and models it.

The Tunnelling Ball Device that is described in [Jen10] contains a micro-
controller to control the device. Conversely, our Tunnelling Ball Device is
designed around an FPGA. The FPGA interprets the sensors and controls the
motor. An FPGA (Field Programmable Gate Array) is a logic device that
can be programmed to perform a specific function, and is an example of a
fine-grain reconfigurable platform. It consists of a large array of configurable
logic blocks (CLBs)∗ which can be interconnected by a massive interconnect
structure. Each CLB contains several slices, and each slice performs a very
simple logic task, such as implementing a binary function with six inputs and one
output, optionally followed by a flip-flop. A slice can be configured to perform
several different tasks, but all of the same basic complexity level. Furthermore,
an FPGA contains a small amount of RAM and several specialized functional
units, such as multipliers, digital signal processing (DSP) functions and clock
generation logic to provide a multitude of clock signals. As such, an FPGA
is programmed at a much more basic level than a processor, and in fact, an
FPGA can be programmed to behave like a processor. Implementing a design
on an FPGA can also be a first step towards the production of a new integrated
circuit, an Application-Specific Integrated Circuit (ASIC). This ASIC can then
be mass-produced and perform only the one function it was designed for, unlike
the FPGA where the functionality was first designed and tested.

An FPGA is programmed through the use of a hardware description language
(HDL). Examples of much used HDL’s are VHDL and Verilog. Modern FPGA’s
provide massive amounts of programmable logic, and as such, an HDL needs to
provide ways for the designer to cope with the large complexity of programming
those massive amounts of logic.

CλaSH [Baa15] is a functional hardware description language that bor-
rows both its syntax and semantics from the functional programming language
Haskell [Cla]. There is a clear relation between the semantics of a functional
programming language and the operation of hardware. Digital synchronous
hardware can be seen as a mathematical function that maps inputs, and possibly
state, to outputs and a new state. Haskell, as a functional programming language,
is well suited to work with such mathematical functions, and allows function
composition and higher order functions to be used as the basic abstraction mech-
anisms in describing synchronous hardware. Higher order functions in particular
encourage the designer to make a proper decomposition of the problem at hand.
With hardware designs getting ever more complex, proper abstraction is highly

∗ The terminology is manufacturer-specific. A Xilinx FPGA was used for the Tunnelling
Ball Device, so the Xilinx terminology is used here.

4

desirable to allow the designers to keep working with, and properly comprehend
such large designs.

UniTi [Rov11] is a design flow and modelling environment for model-based
design of embedded systems that interface with the physical world. It accurately
simulates different notions of time by allowing multiple time domains, the
continuous-time (CT), discrete-time (DT) and dataflow (DF) domains, in a single
model. Models are built from components that are signal transformations, and
therefore mathematical functions. These signal transformations can accurately
capture the continuous-time domain, without introducing discretization errors.
UniTi is implemented in Haskell, and UniTi models and components are written
in Haskell code. The result is an ordinary Haskell program that can be executed
to simulate the model.

Given that both UniTi and CλaSH are based on regular Haskell code, the
UniTi code of the simulation is also the basis for the implementation. As the
code that is the implementation is also the code used to verify the system in
simulation, this improves faith in the correctness and reduces development work.

Additionally, I have found that type inference with type-level natural numbers,
combined with Template Haskell, allows for some very nice parameterizations and
compile-time computations. This enhances function reusability and genericity.

A common application area for UniTi and CλaSH is stream processing. But
they are by no means limited to that. The Tunnelling Ball Device is a nice
opportunity to use UniTi and CλaSH in a different setting. That is the ultimate
goal of this project: as a testing ground for these two technologies, to see what
works well and what does not, and to find bugs or missing functionality.

[Jen10] is used as a basis for the project, avoiding unnecessary duplication of
work. The physical realization of the device in [Jen10] is only used as a basis for
a redesign. The device is shrunk physically, so it can be made more cheaply and
is easier to take to conferences.

5

1.1 Device overview

An overview of the basic elements of the Tunnelling Ball Device is schematically
represented in figure 1. Two sensors (b) and (c) are mounted above a spinning
disc (e). Balls (d) are dropped from above the top sensor through a release
platform (a). When a ball passes through a sensor, the ball obstructs a beam
of light, which is registered by the sensor. The disc contains two holes, and is
driven by a motor (f). A rotary encoder mounted on the motor reports the angle
of the motor shaft.

When a ball is dropped, it will first pass through sensor (b) and subsequently
through sensor (c). The distance between the two sensors has been precisely
measured, and the sensors register the time it takes for the ball to fall from
sensor (b) to sensor (c). This allows the speed of the ball to be calculated as
soon as it passes sensor (c). Subsequently, the speed of the disc is varied in such
a way that a hole is presented at precisely the time the ball has dropped down
to the disc. This allows the ball to fall through the disc.

The sensors are connected to an FPGA, and the FPGA outputs a signal to a
current controller. The current controller is responsible for sending an electrical
current through the windings of the motor, which is a basic permanent-magnet
DC motor. The amount of current that runs through the windings of the motor
is directly proportional to the signal sent by the FPGA. The rotary encoder that
encodes the angular position of the motor axle is also connected to the FPGA.
The CλaSH design running on the FPGA is responsible for interpreting all input
from the sensors and for varying the current through the motor windings in such
a way that the position of the disc is precisely controlled.

6

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1 – Basic elements of the Tunnelling Ball Device. (a) Release platform.
(b) Top ball sensor. (c) Bottom ball sensor. (d) Ball. (e) Disc.
(f) Motor with rotary encoder.

7

2 Related work on DC motor control

Searching for literature on trajectory control of a permanent magnet DC motor
such as used in the Tunnelling Ball Device, the article [RAH97] is on using an
artificial neural network (ANN) to control a motor. This appears to have several
appealing properties for use in the TBD. It can be trained with data obtained
from experiments, measuring the response of the disc to applied stimuli, without
needing a proper model of the physical system. Also, the structure of an artificial
neural network can be expressed using higher order functions, making it a good
fit for UniTi and CλaSH. Finally, the non-linear excitation function of a neural
node is commonly a tan sigmoid or a log sigmoid, which are both functions that
can be computed in an FPGA with Xilinx IP blocks. So I focused my literature
study on ANN-based control, with [RAH97] as central piece.

The principle of ANN control as proposed in [RAH97] is learning the con-
trolling ANN the inverse of the transfer function of the motor, such that the
combination of both has the output (actual speed) equal to the input (reference
speed). The analysed transfer function is that of a DC motor system with
constant inertia but resistance as an unknown non-linear function of the speed.
Analysis shows that the inverse transfer function expressed as a difference equa-
tion is a non-linear function of three consecutive speed samples. Since an ANN
can learn a non-linear function by example, and it is known that the desired
function is a function of three consecutive speed samples, it follows that those
should be the inputs to the ANN.

[WES91] offers an alternative, by noting that the contribution of the applied
terminal voltage in the resultant speed change is linear: all non-linearities arise
from other variables than the terminal voltage. Moreover, this relation can be
computed from the motor parameters and the total inertia, which are often
available. This means that the ANN can be trained to learn and account for
just the remaining non-linearities, which is a simpler function and thus easier to
learn.

The major difference between [RAH97] and [WES91] is that [RAH97] has
the ANN learning even while it is deployed and operating. [WES91] just trains
the ANN beforehand. With the on-line learning, the ANN is even able to learn
to control the system when some of its parameters have changed, like the inertia
or a contributing factor in the resistance function. Note that because a changing
inertia is part of the scenario, the alternative control function suggested by
[WES91] would not be appropriate, as the inertia is part of the constant that is
computed rather than learned.

[RAH97] analyses the case where the output of the controller and the input
of the motor is a voltage to be applied across the terminals of the motor. In my
setup, the output is a current through the motor; it is left to an off-the-shelf
device to realize this current. This should not change the principle, just the
actual function to be learned by the ANN. It is still a second order system, so
the inputs to the ANN remain the same.

Another difference is the time scale and speed range of the desired control. It
can be seen in the graphs of [RAH97] that the reference speed is changed every
2 s in the experiment, and that the speed changes are on the order of 200 rad s−1

or more. The control achieves these changes in about a second for the largest
changes. On the other hand, in my setup, the changes in speed are more on
the order of 30 rad s−1, but it needs to be achieved within about 100 ms. The

8

shorter period available for achieving the change in reference speed would suggest
that perhaps the operating frequency of the neural network might have to be
increased. However, it would seem that [RAH97] operated its neural network
control on a frequency of 10 kHz. This seems incredibly high; in fact, the chosen
off-the-shelf current controller for the motor in my project cannot go above 5 kHz.
But more importantly, I suspect there might not be any useful feedback when
operating on such a timescale. The feedback from the motor comes in the form
of a rotary encoder. It is a discrete output whose signal is even quite noisy. If
there is no appreciable information content in a single sample of the feedback
signal at a rate of 10 kHz, it seems futile to base any computations on it.

It appears that figure 2.(a) of [RAH97] contains a rather important mistake.
It gives the overall structure of the control system, but the two ANN’s are most
likely swapped. Such as it is, the reference speed is not even a factor in the inputs
to the ANN that controls the motor. Instead, the reference speed is used in the
computation of an input to the ANN that is used to evaluate the performance of
the controller. It is unlikely this will work at all. The desired trajectory would
need to be achieved by training the ANN not just to learn the system dynamics,
but to also learn the desired trajectory. However, if we compare figure 2.(a) of
[RAH97] to figure 9. of [WES91], it turns out that the two ANN’s of [RAH97]
are most likely accidentally swapped. If figure 2.(a) of [RAH97] is modified
such that the other ANN is connected to the D/A converter, it becomes almost
identical to figure 9. of [WES91], at least for the part of the system they have in
common. The remaining difference is that [RAH97] has all the delays before the
ANN’s and compares the outputs of the two ANN’s directly, whereas [WES91]
moves one unit delay past the controlling ANN, comparing the previous value of
the controlling ANN with the current value of the reference ANN. This latter
arrangement is more logical, as it directly compares prediction and outcome for
each time instant.

[RAH97] says on the choice of [EKAGMS94] to use the reference (target)
speed as one of the inputs to the ANN: “[Unlike the inverse dynamic model],
the reference speed is arbitrarily taken as one of the inputs of the ANN. As a
result, the drive system suffered from the problem of instability.”

The choice of a reference model from which to derive the input sequence to
the ANN is further described in [WES91]. The model is not only chosen for
being asymptotically stable, but also for being achievable by the DC motor. This
seems intuitive: the ANN has only been trained with achievable trajectories, so
asking to do the unachievable takes it outside what it has learned.

The reference model’s output is constructed to be the desired speed trajectory.
The input sequence computed for the reference model is also the input to the
controlling ANN. The asymptotic stability of the reference model ensures that
at any time, an error in the initial conditions of the system will not cause the
system to become unstable.

But the reference model might in a different way have a negative impact on
the control in the TBD. In the TBD, the actual speed of the disc is of secondary
importance. What matters is the position of the disc. Unfortunately, the position
cannot readily be used as an input to the ANN, so the ANN should still be
steered by a reference speed trajectory. Precise position control is only relevant
in the correction trajectory while a ball is dropping; this is only about an eighth
of a second. Hopefully, the accumulated error in the position of the disc during
the correction interval is small enough that the disc is still in a good position.

9

But with the reference model of [RAH97], there is more of a disconnect between
the reference speed trajectory and the actual trajectory than when the reference
speed trajectory is directly an input to the ANN. So when it turns out that the
accumulated error in the position is too large, it is an option to try feeding the
reference speed to the ANN directly before anything else.

As the use of an ANN requires that the reference speed trajectory is realizable,
the reference speed trajectory in the TBD is to be modified to use a sigmoid
curve instead of a step to go from one speed to another. The current design
with a step change in speed is not realizable in reality: no system with mass can
instantly change speed, it can only gradually accelerate or decelerate. Using an
appropriate sigmoid curve ensures all speed changes are gradual and lie within
the limits of the motor.

Also, even though [RAH97] is the basis for an implementation of ANN control
in the TBD, the ANN might actually perform well with just an off-line training
beforehand, because the TBD does not have changes in the dynamic behaviour of
the system. Implementing the on-line learning is non-trivial, and if it functions
well without it, it is superfluous.

10

3 UniTi

3.1 Overview

UniTi is an environment to model multi-domain cyber-physical systems, and
simulate the resulting model. UniTi is described in the thesis of Rovers [Rov11].
The model is composed of components; however, the composition of two or more
components is again a component, and as such, the model as a whole is also a
component itself.

A UniTi component has state, an input, an output and a view, and all of
these are optional. Stateless components are very common. The model as a
whole has no input, which means the first component in the model has no input
unless it happens to be part of a feedback loop. An outputless component is
uncommon. It would probably be something like a plotter or oscilloscope, some
observer.

massactuator affected

Figure 2 – Example components: a mass.

A good example of a component would be one representing an inertial mass∗

(figure 2). Its state would be its location and its momentum or velocity, the

input would be a vector representing the net force on the mass (~F), and the
output would be coordinates representing its current location (~r). It is here
assumed that the velocity is not of interest to the model, so it is not part of
the output. The actuator that exerts a force on the mass would have its output
connected to the input of the mass, and the component that is affected by the
location of the mass has its input connected to the mass’s output.

Even though the velocity might not be relevant for the model, the designer
might still be interested in it. This is where the view comes in: it allows one to
directly communicate simulation data to the simulation environment. The model
as a whole can also have an output, which is data available to the simulation
environment, but the view allows one to extract data from any inner component.
That way, the outputs are only used for signals relevant to the operation of
the model. The previously mentioned outputless component would interpret its
input and deliver data in the view.

Unfortunately, for the model of the Tunnelling Ball Device, views were
unusable in the version of UniTi that was used in this project. This means
that all model data that the designer wants to extract and visualize needs to
be passed to the output of the model as a whole. Every component that has
interesting data needs a “wire” in parallel to any components that follow it,
to guide the data to the exit at the end. This means a lot of clutter in the
composition of the components, and a lot of components that do nothing but
reorganize the wires in different combinations. Views are a very desirable feature
to have.

∗ In Newtonian physics, a mass has two different aspects. It resists a change in velocity:
this is an inertial mass. And it interacts with other masses through gravitational pull: this is
a gravitational mass.

11

3.2 Composition in UniTi

Every component in UniTi is a signal transformation. A component can be
defined directly as a Haskell function, but components can also be composed of
other components. This hierarchical composition is fundamental to modelling in
UniTi. Before elaborating on components, we will introduce the composition
operators.

The basic component composition operators are sequential (>>>), parallel
(||) and feedback (>@>). Figure 3 depicts them graphically and shows how to
use them in code.

ϕ ψ
f ψ(ϕ(f))

Code: φ >>> ψ

(a) Sequential composition.

ϕ

ψ

f

g

ϕ(f)

ψ(g)

Code: φ || ψ

(b) Parallel composition.

ϕ
f g

h

Code: >@> φ

(c) Feedback composition.

Figure 3 – Composition operators in UniTi.

Components can have any number of inputs and outputs. Components
splitting and combining signals are trivial, and UniTi’s standard library of
components includes such functions.

3.3 Components

Time = R
SigCT = Time → R

ComponentCT = SignCT → SigmCT

Figure 4 – Formal definition of CT component.

While all components are signal transformations, it depends on the domain
what a signal is. In the Continuous Time (CT) domain, signals are functions of
time, and the signal transformation is a function transformation, i.e., a higher
order function. A CT component can alter the time reference; a signal could be

12

delayed, sped up, or even reversed if desired. Generally, a CT component can
completely change the time at which the input function is evaluated, in addition
to transforming the function in different ways. These characteristics enable to
succinctly and accurately model physical processes, and can lead to models that
intuitively match the physical process they model.

Figure 4 shows the formal definition of a CT component as in [Rov11]. Here,
signals strictly go from time to a value in R (components can transform n input
signals to m output signals). While this simplification makes it easier to discuss
matter, it should be noted that it is still a simplification. For example, if we take
our physical inertial mass from earlier, it is seen that this component does not
output a value in R, but rather a space vector, expressible as R3. It would still
be possible to express this as three signals of R, but this makes things needlessly
complex. Therefore, while we will continue to discuss signals as having a result
in R, it should be noted that the codomain of a function can in practice be more
general.

SigDT = R
ComponentDT = SignDT → SigmDT

Figure 5 – Formal definition of DT component.

In the Discrete Time (DT) domain, signals are values at a discrete moment
in time, as formalized in figure 5. The signal transformation is therefore a value
transformation only. Signals are essentially piecewise linear functions of time
that only change at discrete intervals; they are samples. However, time is no
longer an explicit part of the signal, and a DT component can only access one
signal value at a time. If it wishes to retain older values, it will need to do so
explicitly. Moreover, it cannot access samples from the future. These limitations
correspond to computations done in a discrete implementation (hardware or
software).

[Rov11] discusses the DT domain in the context of hardware only. We will
use DT components that end up being synthesizable FPGA code as well (which
the thesis considers software).

In the Dataflow (DF) domain, signals represent token updates to channels.
Components are processes that have firing rules determining when to consume
input and how long a computation takes. Through component composition,
processes can communicate tokens to other processes. This formalization is used
to represent computation in a more general fashion than the DT domain does.

3.4 Accurate continuous time

As has been mentioned, UniTi allows to accurately model continuous-time be-
haviour that is often the source of discretization errors in other simulation
toolkits. A good example is time delays that are not a multiple of the discretiza-
tion interval of the simulation. Suppose we want to model a system involving
some wave propagating through a medium, like between a radio transmitter
and several receiver antennas. There are applications where it is necessary to
accurately model the time difference between the wave arriving at two or more

13

1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

(a) The input signal.

1 2 3 4 5 6

0.04

0.02

0.00

0.02

0.04

(b) The discretization error.

Figure 6 – Linear interpolation of signal between samples.

antennas. It is possible to model the behaviour of the propagation of the wave
through the medium by using time delays. The time delays model the different
times of arrival at antennas. A time delay in a model merely delays a signal
by a fixed amount of time. In a model of a system with several antennas, this
represents the different lengths of time it takes for the radio wave to arrive at
the antennas.

However, the system that is modelled is a continuous-time system as it deals
with physical processes. Since the computer running the simulation is a discrete
device, at some point continuous concepts need to be discretized, including time.
Many simulation toolkits therefore globally discretize the continuous-time portion
of the model, which means that all continuous-time processes are simulated at
one common discretization interval. However, the time delays in the model will
in general not be a multiple of this discretization interval. A common approach
to simulate such a time delay is to linearly interpolate between two discretized
samples. Due to the discretization, the only samples available are not at the
desired point in time. The desired value is then linearly interpolated from the
neighbouring available samples. The effects of the discretization error can be
seen in figures 6a and 6b. The signal and the sampling are chosen to give a
good illustration of the problematic effect. The blue sine signal of 6a is sampled
at the orange marks, and the linear interpolation of these points results in the
orange line. Due to a delay element, the actually relevant signal values are at
the red marks, and the linear interpolation leads to a discretization error: the
red marks are not on the blue signal line. Figure 6b shows the error made at
each sample, and fits a sine wave on this error signal. This sine wave has the
same frequency as the sampled signal, but a different phase. When we look at

14

Operator Meaning

>>> Sequential composition
>>>* Sequential; replicate signal as needed
|| Parallel composition
<^> Lift a function to a component
>@> Feedback loop

Table 1 – Some common UniTi operators.

mySine () t = sin t
myDelay f t = f (t - 0.14)
myDelayedSine = (<^>) mySine >>> (<^>) myDelay

Listing 1 – Delayed sine wave in UniTi.

the signal in the frequency domain, the result is that the discretization error
causes a phase shift in the sampled signal, in addition to a decrease in amplitude.
Unfortunately, both phase shift and attenuation are frequency dependent. If
we want to use the simulation to verify the operation of a new type of signal
processing application, we observe small phase shifts and signal attenuations in
the results. But we cannot distinguish whether this is merely a side effect of
simulation errors, whether there is a mistake in the application, or both. The
result is that there are models and situations that cannot be faithfully simulated.

We now discuss how this problem is avoided in UniTi. Since this will be
illustrated through the use of code, table 1 provides a quick reference to some
common UniTi operators, so the following code can be better understood.

Listing 1 shows how a delayed sinus wave could be written in UniTi∗. Every
continuous-time component gets as its arguments an input function and a point
in time to be evaluated. The mySine function, though, is inputless, signified by
the parentheses (an empty argument). It simply produces a sine wave based on
its time argument. The myDelay function gets an input function f , and evaluates
that function at an earlier moment in time. In other words, when myDelay itself
is evaluated at a time t, the input function of myDelay is evaluated at a time
t − 0.14 exactly. There is no need to interpolate, and hence no discretization
error.

The component myDelayedSine is a sequential composition of mySine and
myDelay, and in effect evaluates the function sin(t − 0.14). A more complex
situation might contain two delay elements both fed from the sine wave, such

∗This example code is written to give a sense of the concept; it is not idiomatic UniTi
code, though it is strictly equivalent to it.

twoDelays = sine 1 1
>>>*
(delay 0.14 || delay 0.23)
>>>
(adc 0.1 || adc 0.1)

Listing 2 – Sine wave with two delays in UniTi.

15

FPGA

ballPos
DT

DF

ballSensor1

rotaryEncoder measureDisc

discTimes

disc control

ballSensor2

measureTime initVelo

discAngle

correctAngle correctRate plan

error currentController

CT

Figure 7 – All components of the UniTi model.

as in listing 2. This example uses the sine component from the library; its
arguments are the amplitude A and angular frequency ω, both set to one. The
sine is fed into two delay elements, and the adc components perform sampling
of the signal with a time interval of 0.1 s.

Here a related property of the way UniTi deals with continuous time becomes
apparent. If continuous time were discretized globally, and a single discretization
interval would have had to be chosen to evaluate both delays without error, it
would have to be at most 0.01 s, even though a sample is only needed every 0.1 s.
But no such discretization is needed to evaluate the model, and the sine wave is
only evaluated twice for each sampling interval of 0.1 s (once for each adc).

It is also perfectly possible to model varying time delays, where the delay is
not a fixed length of time. It would not be possible to choose any single correct
discretization interval for a varying time delay. This means that any simulation
system employing a global discretization interval will necessarily be forced to
interpolate when the time delay is not constant.

3.5 Composition difficulties

The composition operators used to compose components in UniTi were not very
pleasant to work with. This is especially the case because, without working
views, every component with interesting parameters needed a wire to the end of
the graph. Good thought should be given to some alternate way of composition.
The structure can become unwieldy and difficult to interpret for the designer
with even a moderate amount of components and connections. I worked out my
composition graphically with pen and paper, laying it out such that it could
be translated to code easily. I was incapable of producing the code without
resorting to pen and paper, and small modifications to the composition took a
lot of mental effort. The feedback from the GHC compiler when one makes a
mistake in the composition can be incredibly difficult to comprehend. This is
often due to type inference going the wrong way. The compiler’s type inference
would infer the type of a definition from the one place where the actual mistake
in the code was, and would subsequently complain about all the places where
the definition was used correctly. It would, however, not complain about that
one place where the mistake actually was. Often, it seems easier to just observe
that a mistake was made and revert some changes until it type-checks again!

The way you can compose in CλaSH is much easier to work with. Figure
7 shows all components of the Tunnelling Ball Device model and how they are
connected. The shape of the component box indicates in which of the three
modelling domains they fall: a round box indicates continuous time, a box with

16

model =
ballPos [(0, 460), (0.35 ,450)]
>>>* (ballSensor1 || ballSensor2)
>>>
(measureTime

>>>
initVelo

)
>>>
(>@>)
((id

||
(disc

>>>
rotaryEncoder
>>>
measureDisc
>>>
discAngle
>>>
dup))

>>>
(compute || id)
>>>
thError
>>>
control
>>>
currentController
>>>
dup)

compute =
((discTimes >>> repC3)

||
id)

>>>
(id || id || correctAngle)
>>>
(id || correctRate)
>>>
plan)

(a) UniTi composition.

model = motorI
where

ballH = ballPos
[(0, 460)
, (0.35 , 450)]

bSens1 = ballSensor1 ballH
bSens2 = ballSensor2 ballH
dropT = measureTime

(bSens1 , bSens2)
v0 = initVelo dropT
discTh = disc motorI
rotO = rotaryEncoder discTh
mDiscO = measureDisc rotO
dAngleO = discAngle mDiscO
targetTh = compute (v0, dAngleO)
errorTh = thError

(targetTh , dAngleO)
controlI = control errorTh
motorI = currentController

controlI

compute (v0, dAngleO) = targetTh
where

discTs = discTimes v0
corrTh = correctAngle

(discTs , dAngleO)
corrOm = correctRate

(discTs , corrTh)
targetTh = plan (discTs , corrOm)

(b) CλaSH style composition.

Listing 3 – Different ways of composing components.

17

straight corners indicates discrete time, and a box with angled corners indicates
a dataflow component. Listing 3 compares the approaches of UniTi and CλaSH
regarding how, ideally, the Tunnelling Ball Device would be composed of its
constituent parts. For a quick overview of UniTi operators, see table 1. The
>>>* operator in listing 3a replicates the single output of ballPos such that it
is the input of both ball sensors. The (>@>) function creates a feedback loop in
its argument. The effect of (>@>) is such that in this model, the output from
initVelo is fed to the first id component and henceforth compute, and the
output of currentController is connected to the input of disc; the output
of currentController is also duplicated to serve as the output of the whole
model. The code in 3a is already rather difficult to interpret. The actual code
for the UniTi composition is pretty much incomprehensible, because of the views
not working.

The CλaSH compositional syntax cannot be copied verbatim to the UniTi
world. Furthermore, as evidenced by the recent, provisional dataflow operators
in CλaSH which look just like the UniTi compositional operators, the solution
falls short in the case where a connection has a bidirectional nature, such as
backpressure. But the defining property of regular composition in CλaSH is
that of named signals: every component is instantiated using variable names
for its inputs and outputs, and connections are made by using the variable of
some output as one of the input variables. This style makes a large composition
more easily comprehensible, even though it hides the actual structure of the
composition. The structure of the composition is better expressed graphically
rather than in code, and a graphical editor would be another alternative for
entry of compositions.

18

4 Modelling the device in UniTi

The whole Tunnelling Ball Device was first modelled in UniTi. In practice, this
meant extending UniTi itself as well, especially in the area of data visualization.
Graphical user interfaces are somewhat of a weak point in Haskell, and we
encountered some typical issues. We could not get wxHaskell to work properly
under the Linux OS that was used at the time, and similarly we could not get
GTK+ to work properly under OS X. So both toolkits were used, providing
either alternative.

4.1 Model overview

Figure 7 shows all components of the Tunnelling Ball Device model and how
they are connected. All components that are in the shaded area are components
that will be implemented in the FPGA controlling the device. Components
outside the shaded area model parts of the physical world that surrounds the
FPGA. All these components model the physical components of the Tunnelling
Ball Device, including the balls.

ballPos This component simulates the movement of the balls. At any time,
it outputs the current height of a dropping ball. When there is no ball
currently in flight, it outputs the special value Nothing.

ballSensor These two components simulate the optical sensors that signal a
ball passing through the fork of the sensor. The input to the components
is the height of the ball, the output is a signal that is active when a ball is
passing through the fork.

measureTime This component measures how much time passes between a ball
passing the top and the bottom sensors. This measurement completely
determines the path of the ball, with the assumptions done on that move-
ment.

initVelo Based on the measurement done, the velocity with which the ball
passed the bottom sensor is calculated. Implicitly, this also defines the
moment in time when the ball passed the bottom sensor.

discTimes This component computes when the ball will be vertically centred
within the disc, and when the ball has completely fallen through the disc.
It follows that at the time the ball is vertically centred, one of the holes of
the disc should be presented such that the ball goes through the hole.

correctAngle This component computes the total amount of correction that
is necessary to position a hole at the correct place when the ball is going
through the disc, based on the current locations of the holes in the disc.

correctRate This component computes the change in velocity that will effect
the needed correction in the available amount of time before the ball will
fall through the disc.

plan This component computes the desired trajectory of the disc. If a ball is drop-
ping towards the disc, it will use the velocity computed by correctRate,
until the ball has completed its fall through the disc as determined by

19

discTimes. At any other time, it will use the default rotation speed as
specified by the human operator. The output is the desired current angle
of rotation of the disc.

disc This component is a model of the whole assembly of the motor and the disc.
The input to the component is the electric current that runs through the
windings of the motor. This current is (assumed to be) directly proportional
to a torque produced by the motor. In the mechanical domain, the rigidly
connected whole of the rotating parts, including motor rotor, is modelled
as a rotating inertial mass experiencing this torque and a certain amount
of friction. The output is the current angle of rotation of the disc.

rotaryEncoder The rotary encoder is a sensor mounted on the motor that
encodes the angle of rotation of the motor axle as a digital signal. Since
the disc is rigidly mounted on the motor axle, it effectively also senses the
angle of the disc. The UniTi component is a model of that sensor. Its
input is the angle of rotation of the disc, and its output is a signal that
corresponds to the three digital signals of the rotary encoder.

measureDisc This UniTi component takes the raw digital signal from the rotary
encoder, and interprets it to produce a series of events that describe
information obtained from the sensor. Each full revolution of the disc
produces 1000 of these events equally spaced along the revolution.

discAngle The rest of the model needs to know the position of the disc at any
time, not just at the events measureDisc produces. This UniTi component
interpolates the position in between events, for an estimation of the actual
position at any time.

θerror This component (called thError in the code) takes the current position
of the disc and the desired position of the disc, and subtracts them to get
the error in the position.

control This component computes the current that needs to flow through the
motor windings such that the error signal eventually goes to zero. When
the error is zero, the disc is in the desired position. When the error is near
zero, it is still good enough. A large error at the moment the ball would
tunnel through the disc would mean the ball hits the disc instead. The
input of the control component is the current error in the position of the
disc, and the output is a desired electric current to run through the motor
windings.

currentController This component models the device that drives the motor.
It is an off-the-shelf motor controller that is used as a current source. The
FPGA generates a PWM signal that is in direct relation to the desired
current (computed by control), and the currentController interprets
the PWM signal and will achieve the desired current through the motor
windings.

4.2 Incremental refinement

The model-based design approach in UniTi allows to start out with just the
essence of the project, and to progressively refine the model until all the detail is

20

balls
DT

DF

discTimesinitVelo

correctAngle correctRate plan

CT

Figure 8 – The model of figure 7 reduced to the bare necessities for verifying the
algorithm.

fleshed out. During all the steps, simulation can be used to check if the behaviour
is still as expected.

For the Tunnelling Ball Device, a good start is to only verify the basic
strategy for aligning the disc with the falling ball. This is depicted in figure
8: relative to figure 7 only the components related to computing the desired
trajectory are left in, and the ballPos component is slightly modified.∗ In the
eventual model, it only outputs the height of a ball. In this modification, it
also outputs the velocity of the ball; data that was internally available anyway,
but not communicated by the component. The initVelo simply outputs the
reported velocity the moment the ball drops to the level of where the bottom
sensor is located.

The final twist in the design is that the actual position of the disc is the desired
position of the disc, linking plan directly to correctAngle. All components in
between can be introduced at a later time.

In this basic form, the ball should tunnel if the algorithm is correct. From
here, finer detail can be added. For instance, the models of the sensors can be
added. Based on those sensors, the components that will end up in the FPGA
and interpret the sensor data can be added and verified.

A step that can be done separately from the other parts is the design of the
disc model and a controller to accurately steer this modelled disc. In fact, it makes
sense to make a model of the system both with rotaryEncoder, measureDisc
and discAngle and a model without those components. The sensors and the
interpolation add some unwanted but unavoidable behaviour to the feedback
loop, and a proper controller needs to be resistant to this in order to work in
practice.

To test the behaviour under various circumstances, the disc model and
controller were given completely different reference trajectories rather than those
produced by plan. Especially reference trajectories that correspond to the most
difficult trajectories plan could produce provide useful data without having
to come up with ways to drop simulated balls at precisely the worst times for
the control loop. In this way, it was also possible to determine the minimum
height difference between the disc and the bottom sensor, which defines the time
available to perform a full correction of the trajectory.

∗ While this way of phrasing it comes natural because in this report, figure 7 was presented
first, in reality the model of figure 8 came first, and the model of figure 7 was only produced
later on in the project.

21

4.3 Ball drop sensors

Due to the nature of modelling in UniTi, modelling a sensor is very intuitive.
The photoelectric sensors that detect a dropping ball can in their most basic
form be modelled as delivering a digital electric signal that is high when a ball is
obstructing the light beam, and low when there is no ball obstructing the light
beam. As input for the model of a photoelectric sensor, one takes the current
height of the ball. The photoelectric sensor itself has a parameterized height it is
mounted at as well. The radius of the ball is a known constant in the model. The
output of the UniTi sensor component is simply 1 when the height of the ball is
such that it obstructs the light beam, and 0 otherwise. Should it be necessary
for accuracy, the component could later be refined to have an analogue output
signal with rise and fall times; however, this was not necessary for this model.

Of course, at any time there might not be a ball that is currently falling.
This is captured by making the height of “the ball” of the Haskell Maybe Height

type, which assumes the value of Nothing when there is no ball currently falling.
Height is just a type synonym for Double, used as a type wherever the variable
signifies a height relative to what is defined as the ground, in millimetres.

4.4 Disc angle sensor

The rotary encoder is the sensor that is mounted on the axle of the motor,
responsible for sensing the angle of the axle. Since the disc is mounted rigidly to
the motor, the rotary encoder effectively senses the angle of the disc.

4.4.1 Abstract model of the sensor



1
2

3

4
1

2

3

4

Figure 9
Mental model of rotary
encoder with 2 counts
per turn and an index

signal in the black
sector.

4 1 2 3 4 1

A

Figure 10 – Output signal of the incremental out-
puts of the rotary encoder.

At a conceptual level, the rotary encoder contains a circular disc mounted on
the axle, and this disc is divided into 500 equal parts, called counts. Each count
is further subdivided into four equal parts, giving rise to a total of 2000 equally
sized circular sectors. Figure 9 is an illustration of the concept for a rotary
encoder with 2 counts per turn instead of the 500 of the actually used sensor.
Two sensor outputs of the encoder are incremental outputs: they signify the disc
rotating from one sector into the next. To this end, the 500 counts are subdivided
into four phases. As the disc rotates clockwise, the four phases pass in the order
1, 2, 3, 4, 1, 2, . . .; that is, in ascending order. If the disc rotates anticlockwise,
they pass in reverse order: 4, 3, 2, 1, 4, 3, Each phase corresponds to a specific

22

combination of low and high electrical levels on the two incremental outputs. As
the disc rotates to the next phase, the incremental outputs change. In figure 9,
the eye corresponds to the sensor output, and it currently sees phase number 3.
Figure 10 shows the incremental outputs and their correspondence to the phases.
Since a steadily rotating disc outputs two square waves which are 90◦ out of
phase, and since such signals are said to be in quadrature, this type of rotary
encoder is also referred to as a quadrature encoder.

4.4.2 UniTi model

To model the rotary encoder in UniTi, the process is again very straightforward.
The input to the UniTi component is the current angle of the disc. The input
angle is not required to lie in the range 0 to 2π; the computations in the UniTi
rotary encoder component will treat the angle as wrapping around at that point.
The 2π rad of a full circle are split into 2000 equal parts, denoted as sectors in
the code. The input angle is converted to a number in the range of 0 to 1999.
To get the incremental outputs, the modulo operation further reduces this to a
repeated pattern of 0 1 2 3, directly corresponding to one of the four phases of
the output signal. This directly maps to an output signal for the incremental
outputs.

There is one more signal on the rotary encoder: the index signal. The two
incremental outputs only register change, but not absolute position. To remedy
this, one of the 2000 equal circular sectors in addition produces an electric pulse
on the third output signal of the rotary encoder, the index output. In other
words, once every full revolution, the index output is electrically high for as long
as the angle is within that specific angular sector. In figure 9, the index sector is
indicated in black. The index output is electrically high when the black sector
passes in front of the eye.

This index signal is the reason why the previously mentioned computation
produces a sector, rather than immediately reducing it to the four phases. At a
specific sector, the index output is high.

The UniTi component that models the rotary encoder is a very simple one-
to-one relation to how one visualizes the operation of the actual sensor. It is
very straightforward to model, giving the designer confidence in the correctness
of the model.

4.4.3 Phase shift

The UniTi component conforms to a conceptual model of the rotary encoder.
In reality, the sensor is built somewhat differently. In the idealized model
just described, the A and B outputs are exactly 90◦ out of phase. In reality,
manufacturing tolerances cause this phase shift to vary a bit. The index output
however is synchronized to either the A or the B output; so it is exactly in
phase with one of the two. Either the datasheet of the rotary encoder or
experimentation should make clear which incremental output it is synchronized
to.

Since it is easily seen that the computation done on the signal is actually
insensitive to this phase shift, it was not modelled. Modelling the phase shift
would be as easy as computing A and B separately and shifting the input angle
of one of the two.

23

4.4.4 Location of the zero point

There is some debouncing for noise in the output of the rotary encoder in the
code that interprets the sensor output, which shifts the computed zero point of
the disc. Additionally, the location of the index pulse with regard to the phase
of the incremental outputs is important for correct operation. This is also noted
in the comments in the code of the function Model.Measure.measureDisc. If
the index pulse is not in φ4, the code needs to be changed.

To compensate for the shift in the computed zero point, the input angle is
used with a small offset in the actual code. The deliberately added offset in the
UniTi component that models the sensor causes the 0◦ point to be the same
both in the UniTi model of the motor and in the computations done with regard
to the interpreted sensor output. This way, a particular angle means the same
to all parts of the model; it is an arbitrary point in any case. The 0◦ point is
put at the point that the index sensor signal is recognized, which is slightly
after it is generated. Note that the 0◦ point is therefore recognized at different
disc angles depending on the direction of rotation of the disc; it is defined as
0◦ for a clockwise rotation. In anticlockwise rotation, it needs to be corrected
by a constant factor to account for the delay, since, unfortunately, delays in
processing generally do not change into an ability to look into the future when
you change direction. The factor is a constant angle of one count of the rotary
encoder.

4.4.5 Modelling noise

The noisiness of the sensor outputs was not modelled in UniTi, but doing so
is probably best done not by changing the existing model, but rather adding
to it. The outputs of the basic model as it is now could be passed through a
second function that adds random amounts of bouncing on signal transitions.
If necessary for accuracy, the length of the bounces could be based on the
angle input to the sensor, concentrating the bounces in a small sector around
the transitions. The large benefit of adding to the existing model rather than
changing it, is that it is easy to verify that the basic operation is not modified,
and different effects are handled separately.

4.4.6 Room for experimentation

It was noted before that the angle that is the input of the model of the rotary
encoder need not be in the range 0 to 2π. Effectively, the model is liberal in
what it accepts. This turned out to be a beneficial programming tactic. Small
changes in models of other components sometimes caused the angle to be slightly
outside the range, but still correct. It was very helpful that the model as a whole
did not break because of it. In the final, completed model, it makes sense that
all signals are in a well-defined range, but while one is working, refining, and
especially experimenting, it is useful that preconditions on data are not overly
strict, as long as the data is still well-defined.

4.5 Disc model

The whole of the motor and the disc is modelled as one rotational system, with
the current through the motor windings as its input. This current is assumed to

24

Property Symbol Value Unit

Torque constant Kτ 2.58× 10−2 N m A−1

Inertia J 2.23× 10−5 kg m2

Coulomb friction RC 3.02× 10−5 N m
Viscous friction Rv 2.44× 10−6 N m rad−1 s

Table 2 – Disc model parameters.

correspond linearly to a torque produced by the motor, with the linear relation
expressed by the parameter Kτ . The mechanical model is one of an inertial
mass with friction. For system identification, a constant current was applied
to the motor windings and the system was allowed to reach equilibrium. The
stabilization process had the shape of exponential decay.

The parameters of the disc model are summed up in Table 2.

Since the torque constant of the motor is given in the datasheet, the constant
current corresponds to a known constant torque. In equilibrium, the torque
applied by the motor is equal in size to the torque caused by the friction. The
system was observed for several different constant currents. This revealed that
the way friction was modelled in [Jen10] was insufficient for our purposes. The
friction model in [Jen10] is a linear relation between velocity and the friction
as a torque. Drawing the points obtained the way just described in a graph of
friction and velocity, a straight line fitting the points did not go through the
origin of the graph.

Instead, the model chosen is one with Coulomb friction (RC) as well as
viscous friction (Rv). That is, a certain, constant dry friction has to be overcome
before the disc will start spinning from standstill, and additionally there is a
viscous component that is linear in the velocity of the disc. The friction function
is thus:

T (ω) = RC · sgn(ω) +Rvω (1)

The result can be seen in Figure 11a. Figure 11b shows the modelled friction
for the velocities involved in a realistic situation. When the disc is running at 3
rotations per second and corrections need to be performed in 100 ms, the green
part of the relation is the range of velocities used by the system. The Coulomb
friction is a large part of the total friction.

The inertia of the system could be computed, as all necessary data is already
available or, in the case of weights, easily measured. But the system identification
that was used to determine the friction also gave an easy way to measure the
inertia directly. Figure 12 shows the velocity as a function of time. The first part
of the blue line is the response when a constant current of 29.7 mA∗ is applied to
the motor windings, starting from standstill at t ≈ −54 s. Equilibrium is reached
at a velocity of 277.5 rad s−1. At t = 0 s, the current is lowered to 9.7 mA while
the disc is running at 277.5 rad s−1. When linearity is assumed for the friction
in this velocity range, the blue line should have the shape of an exponential
function with a time constant τ from t = 0 s onwards. An exponential function

∗The intention was to use 30 mA, but there was a problem with a deviation in the control
signal.

25

300 200 100 0 100 200 300
(rad s 1)

800

600

400

200

0

200

400

600

800

T(Nm)

(a) Full range.

0 5 10 15 20 25 30 35
(rad s 1)

20

0

20

40

60

80

100

120

T(Nm)

(b) Close-up.

Figure 11 – Friction model of the disc. The blue dots are the measured data-
points. The green part is the used velocity range at 3 rps.

26

appears to be a reasonable approximation, and τ = 8.65 s. Because the inertia J
can be calculated through J = τRv, the net inertia is 2.23× 10−5 kg m2.

50 40 30 20 10 0 10 20 30 40 50 60 70
t(s)

0

50

100

150

200

250

300

(rad s 1)

Figure 12 – System identification. System response to a constant current.

27

5 Motor control

As mentioned before, in the model of the combination of disc and motor, the
input is a current. The off-the-shelf motor controller that is used is configured to
accept as its input a PWM signal that has a direct relation to a desired motor
current. The motor controller is capable of delivering 4 A. However, the PWM
signal is quantized by the motor controller; from observation, it would seem that
it quantizes the 0–100% PWM signal range to a 10-bit value. Additionally, while
most of the time the signal is relatively stable, quite often the signal fluctuates
significantly even though the input signal is kept the same. What it comes down
to is that the practical resolution of the signal is far from the full 10 bits.

As per the documentation, the valid input range for the signal is 10–90%
PWM, further limiting the resolution. As shown by experimentation, trying to
use the whole range of current that can be delivered by the controller results in
really imprecise current control, so the range of current is limited to −0.5 A to
0.5 A. It turns out even the largest corrections that occur are still possible with
the range being limited as such.

In the FPGA an algorithm computes the desired current through the motor
windings to realize the desired trajectory. Currently, the only input to this
algorithm is the positional error of the disc with respect to the desired trajectory.
The desired trajectory is an idealized trajectory that cannot be physically realized:
it produces a step change in the rotational velocity, which is physically impossible
with an inertial mass and finite current. As such, the positional error will always
become non-zero when such a step change in velocity occurs, and the algorithm
will strive to reduce this error back towards zero.

The current algorithm was written as a placeholder until a properly designed
algorithm was developed. The algorithm turned out to be able to keep the
disc under control and achieve the tunnelling of the ball. Even at speeds of
100 rad s−1, it is able to perform the largest possible positional correction of
π
2 rad in time for the ball to go through. In the end, developing a properly
designed algorithm was dropped from the project, and the placeholder is kept,
but not documented further.

If a replacement control algorithm needs a realizable reference trajectory as
input, this can be achieved with relatively minor modifications to the surrounding
code. For instance, the velocity changes could be made to follow a sigmoid curve,
which is a class of curves having a characteristic smooth “S”-shaped curve.

28

Figure 13 – Forces from field interaction in PM DC motor.

6 Choice of motor

6.1 Brushed DC motor

A permanent-magnet brushed DC motor, or PM DC motor for short, is a very
basic motor design that used to be very common in a lot of applications, including
toys [Eleb], due to its low cost and ease of operation. In many applications, it is
gradually being replaced by the brushless motor, but it is still a common design.

Forces between permanent magnets and electromagnets propel the rotating
axle of the motor. Figure 13 gives a schematic example of a possible configuration
for a PM DC motor.

In a PM DC motor, the permanent magnets are in the stator of the motor:
the part that doesn’t rotate. The stator is rigidly connected to the motor’s
mounting flange (where the motor housing is connected to the device it is a part
of). In figure 13, the stator is depicted as a dark grey magnet with a light grey
housing. The rotor, which contains the rotating axle, has windings that form
the electromagnet [Elea]. In figure 13, the rotor is depicted in green, with yellow
windings. Electric current through the windings will interact with the magnetic
field of the permanent magnets. This will cause a force to be exerted on the
rotor. By controlling which of the windings have current, and by controlling
the direction of that current, the forces can be made such that they work to
propel the axle in the desired direction. In the figure, a possible example of the
resulting forces on each of the yellow windings is depicted by a red arrow. In the
example, all windings are powered and propelling the rotor to turn clockwise
in the picture. The force exerted on a winding is always perpendicular to the
magnetic field [Elea].

In more advanced motor designs, this selection of which windings to power
and which direction the current flows is often handled by electronics. In a
brushed DC motor, the selection is done completely mechanically. The direction
of current flow is determined relative to the direction of current flow through the
two connecting terminals of the motor; it is still possible to reverse all currents
through the windings by reversing the current through the terminals, meaning
the torque exerted on the axle will also reverse as a whole.

Since the windings on the rotor rotate themselves, it would be impossible
to just connect electrical wire from the outside to the windings, since then the
windings would no longer be able to rotate. Instead, there is a mechanical
commutator that consists of a stationary part with brushes and a rotating part
on the axle. A schematic view of a commutator can be seen in figure 14.

29

Figure 14 – Schematic view of a commutator. Black: brushes with connecting
wire. Red: commutator bars. Grey: axle.

The stationary brushes are connected to the electrical terminals of the motor
and slide over the rotating part of the commutator. They allow electrical current
to flow to the rotating part of the commutator.

The rotating part of the commutator is split into segments, and these segments
individually connect to one of the two brushes at specific parts of a full rotation
of the axle. One segment is called a commutator bar and is indicated in red in
figure 14. By wiring up the multitude of windings on the rotor to the correct
segments of the commutator, the forces between the permanent magnets and
any powered rotor windings are always in the desired direction of rotation. The
direction of the forces can be flipped by reversing the current that is fed through
the motor as a whole.

To a large extent, the transduction behaviour of the permanent-magnet
brushed DC motor is nicely linear: electrical current is transduced into mechanical
torque by a linear relation,

τ(t) = Kτ i(t)

where τ(t) is the torque produced by the motor in newton-metre and i(t) the
current fed through the motor in ampere. Kτ is a constant, the torque constant,
and is determined by the construction of the motor. This linear relation has
desirable properties for control. The complete characteristics of a DC motor
have a lot more components, though, for instance winding resistance, mechanical
friction and back electromotive force (back-EMF). Back electromotive force
describes the phenomenon that a rotating motor induces a voltage in its windings
because of Faraday’s law of induction. With increasing back-EMF (i.e., increasing
speed), keeping the current through the windings constant requires increasing
the voltage across the motor terminals. Thus while the relation between current
and torque is almost ideal over a large range of operation, the relation between
voltage and current or torque is more complicated.

The rotor of brushed DC motors can be designed in several ways. Con-
ventional design is to have the windings wound on a shaped iron core. The
iron core, which is also the basis of the rigidity of the winding assembly, is
magnetized by the windings and functions as part of the electromagnet. The
example in figure 13 has this construction, and the iron core is indicated in
green. Because independently of the magnetization by the windings, the iron
itself also interacts magnetically with the permanent magnets on the stator, an
undesired phenomenon called cogging occurs [Max12]. This is a torque ripple
that occurs as the rotor rotates, leading to vibration, noise, a tendency to stop at
preferential positions, and more in general non-linear disturbances in the control.
By orienting the slots cut into the iron diagonally, cogging can be reduced, but
not eliminated [Max12].

An additional drawback of the iron core is that it increases the inertia of the

30

rotor due to its relatively high weight and diameter.
As an alternative, it is possible to construct the windings such that no core

is needed at all, with the windings supporting themselves [Max12]. This does
not have the aforementioned drawbacks that the iron core poses; on the other
hand, it will heat up quicker and is less resistant to high temperature than the
solid iron core, limiting the duration and magnitude at which the motor can be
operated above its continuous maximum operating conditions.

The coreless motor even exceeds the conventional model with core regarding
the linearity of its transduction behaviour, as saturation effects create non-
linearities in the core at high currents.

A drawback of the brushed DC motor compared to other motor types is
that the making and breaking of a current path between the brushes and the
contacts on the commutator leads to sparking and electromagnetic emissions.
The windings on the rotor have a non-negligible inductance which will oppose the
breaking of the current flow, causing a sharp rise in voltage across the winding
when the current is broken off. Thus sparks can form. Additionally, the brushes
will wear down with use, limiting the time a motor can go without servicing.
Because wear and sparking greatly increase with high speeds, it also effectively
limits the maximum speed the motor can be operated at [Max11].

Variants without permanent magnet

Using a permanent magnet for the stator can also be limiting, as one is re-
stricted to the available magnetic materials and their intrinsic properties. Beside
the permanent-magnet brushed DC motor, there are also brushed DC motors
where the magnetic field is not provided by a permanent magnet but by an
electromagnet. This electromagnet in the stator is called the field electromagnet.

Separately excited motor. When the field electromagnet is not electrically
connected to the windings of the rotor (the armature windings) but has its
own terminals, it is called a separately excited motor. In this case, the torque
produced by the motor can not only be controlled through the current flowing
through the rotor, but also by varying the flux generated by the field windings.
Both are proportional to the torque, provided the other is kept constant [Elee].

Series wound motor. There are several ways of connecting together field
windings and armature windings such that only two motor terminals are needed.
When they are connected in series, the motor is a series wound motor. In this
type of motor, the current that flows through the field windings is equal to the
current through the armature windings, where in differently constructed DC
motors the current through the field windings is generally lower. This results
in a higher heat generation in the series wound motor, but it also enables very
high torque generation due to the high flux generated by the field windings.
Therefore, this motor is generally used when short but powerful bursts of torque
are needed, like in starter motors [Elec].

Shunt wound motor. When field and armature windings are connected in
parallel, the motor is a shunt wound motor. The desirable property that emerges
from this construction is a good speed regulation: with a constant voltage applied

31

to the motor terminals, the motor is relatively insensitive to load changes. Due to
the parallel connection, the flux generated by the field windings remains constant,
which means there is no change in the rotation speed due to flux changes. On the
other hand, a heavier load decreasing the speed will also decrease back-EMF in
the armature windings, which means the current through the armature windings
increases. This increase in current partially compensates the decreasing speed.
Speed regulation is beneficial when the control of the motor is fairly basic and
there are no advanced speed control mechanisms to compensate variations. In
the series wound motor, the properties of constant flux and increasing current
do not hold, which makes the shunt wound motor a better choice where speed
regulation is relevant [Eled].

32

References

[Baa15] Christiaan Pieter Rudolf Baaij. Digital circuit in CλaSH: func-
tional specifications and type-directed synthesis. PhD thesis, Uni-
versity of Twente, Netherlands, 2015.

[Cla] Clash-lang.org. Clash: Home. URL: https://clash-lang.org/
[cited September 8, 2015].

[EKAGMS94] FM El-Khouly, AS Abdel-Ghaffar, AA Mohammed, and
AM Sharaf. Artificial intelligent speed control strategies for
permanent magnet dc motor drives. In Industry Applications
Society Annual Meeting, 1994., Conference Record of the 1994
IEEE, pages 379–385. IEEE, 1994.

[Elea] Electrical4u.com. DC Motor or Direct Current
Motor. URL: http://www.electrical4u.com/

dc-motor-or-direct-current-motor/ [cited May 3, 2016].

[Eleb] Electrical4u.com. Permanent Magnet DC Mo-
tor or PMDC Motor — Working Principle Con-
struction. URL: http://www.electrical4u.com/

permanent-magnet-dc-motor-or-pmdc-motor/ [cited April 29,
2016].

[Elec] Electrical4u.com. Series Wound DC Motor or DC
Series Motor. URL: http://www.electrical4u.com/

series-wound-dc-motor-or-dc-series-motor/ [cited May 3,
2016].

[Eled] Electrical4u.com. Shunt Wound DC Motor — DC
Shunt Motor. URL: http://www.electrical4u.com/

shunt-wound-dc-motor-dc-shunt-motor/ [cited May 3,
2016].

[Elee] Electrical4u.com. Types of DC Motor Sepa-
rately Excited Shunt Series Compound DC Mo-
tor. URL: http://www.electrical4u.com/

types-of-dc-motor-separately-excited-shunt-series-compound-dc-motor/

[cited May 3, 2016].

[Jen10] Jeff C. Jensen. Elements of model-based design. Master’s thesis,
EECS Department, University of California, Berkeley, Feb 2010.
URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/

EECS-2010-19.html.

[Max11] Maxon motor ag. Maxon DC motor and Maxon EC motor — Key
information, April 2011.

[Max12] Maxon motor ag. Maxon Academy - DC motor, 2012.

[RAH97] M Azizur Rahman and M Ashraful Hoque. Online self-tuning ann-
based speed control of a pm dc motor. Mechatronics, IEEE/ASME
Transactions on, 2(3):169–178, 1997.

33

https://clash-lang.org/
http://www.electrical4u.com/dc-motor-or-direct-current-motor/
http://www.electrical4u.com/dc-motor-or-direct-current-motor/
http://www.electrical4u.com/permanent-magnet-dc-motor-or-pmdc-motor/
http://www.electrical4u.com/permanent-magnet-dc-motor-or-pmdc-motor/
http://www.electrical4u.com/series-wound-dc-motor-or-dc-series-motor/
http://www.electrical4u.com/series-wound-dc-motor-or-dc-series-motor/
http://www.electrical4u.com/shunt-wound-dc-motor-dc-shunt-motor/
http://www.electrical4u.com/shunt-wound-dc-motor-dc-shunt-motor/
http://www.electrical4u.com/types-of-dc-motor-separately-excited-shunt-series-compound-dc-motor/
http://www.electrical4u.com/types-of-dc-motor-separately-excited-shunt-series-compound-dc-motor/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-19.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-19.html

[Rov11] Kenneth Christian Rovers. Functional model-based design of
embedded systems with UniTi. PhD thesis, University of Twente,
Netherlands, 2011.

[WES91] Siri Weerasooriya and MA El-Sharkawi. Identification and control
of a dc motor using back-propagation neural networks. Energy
Conversion, IEEE Transactions on, 6(4):663–669, 1991.

34

	Introduction
	Device overview

	Related work on DC motor control
	UniTi
	Overview
	Composition in UniTi
	Components
	Accurate continuous time
	Composition difficulties

	Modelling the device in UniTi
	Model overview
	Incremental refinement
	Ball drop sensors
	Disc angle sensor
	Abstract model of the sensor
	UniTi model
	Phase shift
	Location of the zero point
	Modelling noise
	Room for experimentation

	Disc model

	Motor control
	Choice of motor
	Brushed DC motor

