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Abstract

Both the Unified Modeling Language (UML) and the Web Ontology
Language (OWL) are used for conceptual modeling. Currently,
a push towards the use of OWL can be observed. However,
whereas UML has been an established conceptual modeling
language for decades, OWL struggles with adoption and tool-
ing. Academic research has attempted to leverage existing UML
models by automatically transforming UML models into OWL
ontologies. But despite research spanning over a decade, there
is no consensus on how UML should be transformed into OWL.
We observed that most studies focus solely on unidirectional
transformations from UML to OWL, and tools implementing the
transformations are often missing, outdated or abandoned. In
addition, there is a lack of case studies that evaluate the quality
of the proposed transformations. We have implemented a bidi-
rectional metamodel based transformation tool between UML and
OWL to contribute to a better understanding of to what extent
it is possible to automatically transform UML models into OWL
ontologies and vice versa. Based on roundtrip transformations
we found out that there is a significant overlap between UML
and OWL, making it possible to automatically transform a sig-
nificant part of UML models into syntactically valid OWL on-
tologies and vice versa. But, there is also a significant loss of
information due to a lack of features. Finally, using case studies
we found that despite being syntactically valid, peculiarities ex-
ist in automatically transformed models and ontologies. These
peculiarities exist due to slight differences in semantics of simi-
lar constructs, and differences in modeling approaches between
UML and OWL.
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Executive Summary

This master’s thesis was motivated by the Linked Energy Data (LinkED) project,
a collaboration between TNO, Alliander and Enexis. In LinkED, they identified
that Web Ontology Language (OWL) ontologies can facilitate the publication
of meaningful information. However, most existing domain models used in
utility companies are maintained in the Unified Modeling Language (UML). To
leverage existing modeling work done in UML, a proof-of-concept of an UML
to OWL metamodel transformation was implemented. This thesis contributes
to metamodel transformations between UML and OWL by evaluating to what
extent it is possible to automatically transform between UML and OWL.

Problem statement

We evaluated the academic literature on model transformations between UML
and OWL. We found out that most studies propose similar mappings but vary
in degree of detail. We observed multiple problems in the current academic
literature. First, most studies focus solely on unidirectional transformations from
UML to OWL, making verification of the transformation rules difficult. Second,
there is a lack of case studies. Finally, tooling lacks behind the mappings. Most
existing tools have limited documentation, have not been updated in a long time,
or have been abandoned completely.

Contributions

We have implemented a bidirectional metamodel based transformation tool,
based on the state-of-the-art mappings presented in the academic literature. Our
tool overcomes technical limitations of existing tools by providing support for
the parsing and writing of OWL ontologies in commonly used OWL serializa-
tions. This allowed us to verify the state-of-the-art mappings more thoroughly,
using case studies.

First, we performed roundtrip transformation on a set of test models and on-
tologies from UML→ OWL→ UML and OWL→ UML→ OWL, to see which
constructs are preserved and lost during the transformations. We found out that
most UML constructs are preserved after the roundtrip transformation, but de-
tails about the structuring and implementation of the model are lost. There are
many OWL constructs that are lost after the roundtrip transformation, because
OWL is based on description logics, which provides various constructs for which
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UML has no equivalent. However, only a small subset of OWL constructs is com-
monly used in practice. Most of these commonly used constructs are preserved
after the roundtrip transformation, which indicates that there is overlap between
UML and OWL that is commonly used for conceptual modeling. In addition, it
could indicate that this overlap is intuitively easy to understand, whereas more
complex OWL constructs require deeper understanding of description logics.
An organization could benefit from using the intersection of constructs that is
relatively easy to understand, because this could result in models that are easy
to understand.

Second, that constructs are preserved after a roundtrip transformation does
not necessarily mean that the automatically transformed models or ontologies
make sense. We manually evaluated a few models and ontologies and found
several peculiarities that exist due to slight differences in semantics of similar
constructs, and differences in modeling approaches between UML and OWL.

Conclusion

To conclude, we found out that in both the UML to OWL transformation and
vice versa information is lost. However, there is also significant overlap between
UML and OWL that allows automatic transformation. Our tool provides the
means to automatically transform this overlap between UML and OWL, which
prevents having to remodel everything by hand when switching between mod-
eling languages.
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Chapter 1

Introduction

This chapter sets the stage for this master’s thesis. Section 1.1 motivates why
model transformations between the static elements of UML class diagrams and
OWL are important. Section 1.2 introduces limitations and problems in the
current body of academic research. Section 1.3 presents research questions ac-
cording to the introduced problems. Section 1.4 presents the approach we took
to answer these research questions. Finally, the outline of this thesis is given in
Section 1.5.

1.1 Motivation

Both the Unified Modeling Language (UML) [29] and the Web Ontology Language
(OWL) [22] are used for conceptual modeling, but each of them originated from
a different paradigm. Atkinson and Kiko [19] describe UML as the flagship
language of the Model-Driven Engineering (MDE) paradigm, which places mod-
els at a central position in the software development process, and OWL as the
flagship language of the ontology engineering paradigm, which originated from
the artificial intelligence community. Both UML and OWL have their own ben-
efits. Whereas UML has an intuitive graphical representation, OWL has formal
semantics, which allows reasoning.

OWL plays an important role in the Semantic Web. The Semantic Web was
introduced by Tim Berners-Lee as an extension of the current World Wide Web,
with the aim of enabling machines to comprehend web content [3]. One of the
key concepts to achieve the Semantic Web is Linked Data, which is data that
are modeled in the Resource Description Framework (RDF) and semantically anno-
tated with OWL ontologies [37]. Currently, a push towards Linked Data can be
observed. Various organizations, such as the Dutch and Flemish governments
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Chapter 1. Introduction 9

have initiatives to make data accessible as Linked Data1,2, hence making the
availability of relevant OWL ontologies ever more important.

However, the availability of OWL ontologies is currently a bottleneck, as
people have observed that tooling and adoption of OWL is limited [25, 37]. UML
on the other hand, has been an established modeling language for conceptual
domain models and industry standards for decades [25]. In order to leverage
existing modeling work done in UML, aligning UML and OWL has become an
active area of research. Specifically, automatically transforming UML models
into OWL ontologies.

1.2 Problem statement

This master’s thesis builds on the Linked Energy Data project (LinkED), a col-
laboration between TNO3, Alliander4 and Enexis5. Within LinkED, a method was
developed to transform the static elements of UML class diagrams into OWL on-
tologies using metamodel transformations. UML consists of a variety of different
diagrams. The static elements of class diagrams are used for conceptual model-
ing. In this thesis, we refer to the static elements of UML class diagrams when
referring to UML. LinkED was not the first attempt to automatically transform
UML into OWL. As early as 2006, researchers have investigated the possibility of
automatically transforming UML into OWL. However, as others have observed,
implementations of transformations tools often have limited documentation, do
not produce valid output, have not been updated in a long time, or have been
abandoned completely [10]. LinkED attempted to fill this gap, by documenting
and implementing a transformation tool based on the UML to OWL mappings
as suggested by the Ontology Definition Metamodel (ODM) [25].

In addition to technical limitations, there is still no consensus on how UML
should be transformed into OWL and vice versa. A study from 2016 mentions
that there are still no effective proposals for UML to OWL transformations that
could be considered standard methods that preserve the original structure of the
source UML diagram [13]. More recently, a 2019 study states that even though
there are many publications on UML to OWL transformations, to the best of
the authors knowledge, there is no study that investigates a complete mapping
emphasized by pragmatic needs [30]. Thus, despite various publications span-
ning one and a half decade, there is still no consensus on how UML should be
transformed into OWL and vice versa. ODM can help us understand why there

1 https://www.omgevingswetportaal.nl/
2 https://overheid.vlaanderen.be/producten-diensten/OSLO2
3 https://www.tno.nl
4 https://www.alliander.com
5 https://www.enexis.nl

https://www.omgevingswetportaal.nl/
 https://overheid.vlaanderen.be/producten-diensten/OSLO2
https://www.tno.nl
https://www.alliander.com
https://www.enexis.nl


Chapter 1. Introduction 10

is still no consensus on how to transform UML into OWL and vice versa. In
addition to their proposed mappings between UML and OWL, ODM states the
following:

“mappings based solely on the general structure of the languages will often
lead to less than ideal choices for mapping some structures. Any particular
mapping project will have additional constraints arising from the structure
of the particular models to be mapped and the purposes of the project, so
will very likely make different mapping choices than those provided in the
ODM. [27]”

This is one of the problems in the current body of research on mappings be-
tween UML and OWL. Most studies present mappings solely based on the gen-
eral structure of UML and OWL. In addition, most studies present only unidi-
rectional transformations from UML and OWL, which makes it difficult to verify
whether information is lost during the transformation. Finally, most studies do
not verify their mappings using case studies. This is evident in projects that at-
tempted to use OWL ontologies that were created by automatically transforming
UML models. For example, within the NEN36106, a standard for the exchange
of geo-information, automatically generated ontologies were evaluated. They
state that although automatic transformations between UML and OWL can re-
sult in correct ontologies, these ontologies have little practical value, because the
ontologies are modeled using an UML perspective rather than a Linked Data
perspective7. Thus, although there are many studies that provide some map-
pings between UML and OWL, implementations are often missing, outdated or
abandoned, not applicable in practice and lack adequate verification.

1.3 Research questions

This master’s thesis aims to contribute to the problems mentioned before, by
examining the difficulties of transforming UML to OWL and vice versa, and why
these difficulties exist. The overarching research question guiding this thesis is:

Research question: To what extent is it possible to automatically transform
UML models into OWL ontologies and vice versa?

To tackle the main research question the following subquestions are an-
swered:

Subquestion 1: What are the state-of-the-art mappings between UML and
OWL?

6 https://geonovum.github.io/NEN3610-Linkeddata/#iso19150-2
7 See Footnote 1

https://geonovum.github.io/NEN3610-Linkeddata/##iso19150-2
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Subquestion 2: What are the most commonly used constructs in UML and
OWL?

SQ1 and SQ2 helped us evaluate the current state-of-the-art in model trans-
formations between UML and OWL, and get a better understanding of whether
these transformations are relevant for models and ontologies used in practice.

Subquestion 3: How can we implement a metamodel based bidirectional
transformation tool between UML and OWL?

Subquestion 4: What information is lost in a roundtrip transformation from
UML to OWL and OWL to UML based on the state-of-the-art mappings?

Subquestion 5: What peculiarities exist in automatically transformed UML
models and OWL ontologies?

SQ4 and SQ5 forced us to move away from evaluating transformations based
on the general structures of UML and OWL, to examining the transformations
based on case studies.

1.4 Approach

Part of this research is performed at TNO and Alliander, the Dutch organiza-
tion for applied scientific research and a Dutch utility company. Because of
the applied nature of these organizations, this thesis takes a rather pragmatic
approach. The following steps were taken to answer the research questions:

1. Study the background information on important concepts used throughout
this thesis.

2. Gather and analyze the current academic research on model transforma-
tions between UML and OWL.

3. Gather test sets of relevant UML models and OWL ontologies, and count
the metamodel constructs used in these test sets.

4. Implement a bidirectional transformation tool between UML and OWL,
based on the state-of-the-art mappings between UML and OWL presented
in the literature, and the metamodel constructs used in practice.

5. Use our transformation tool to perform roundtrip transformations from
UML → OWL → UML, and OWL → UML → OWL, in order to eval-
uate whether information is lost in the roundtrip transformations, and if
information is lost, evaluate why this is the case.
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6. Use our transformation tool to evaluate automatically transformed UML
models and OWL ontologies. In this step, we manually evaluate whether
there are any peculiarities in the automatically transformed results. This
requires a more in-depth evaluation of the epistemic differences in model-
ing approach between UML and OWL.

1.5 Outline

This thesis is structured in the following manner. Chapter 2 discusses the back-
ground information on MDE, the Semantic Web and LinkED (Step 1). Chapter 3
answers SQ1, by giving an overview and comparing proposed mappings from
the literature (Step 2). Chapter 4 answers SQ2, by presenting an overview of
used metamodel construct in a test set of relevant UML models and OWL on-
tologies (Step 3). Chapter 5 gives a technical overview of our implementation of
a bidirectional transformation tool between UML and OWL and answers SQ3
(Step 4). Chapter 6 answers SQ4 by presenting the evaluation of the roundtrip
transformations (Step 5). Chapter 7 answers SQ5 by discussing the evaluation of
the automatically transformed UML models and OWL ontologies (Step 6). Fi-
nally, Chapter 8 concludes by answering the main research question, discussing
limitations, and providing directions for future work.



Chapter 2

Background

This chapter introduces the most important concepts used throughout this the-
sis. Section 2.1 gives an overview of Model-Driven Engineering. Section 2.2
briefly discusses the Semantic Web, in which OWL plays an important role. Fi-
nally, Section 2.3 gives a brief overview of LinkED.

2.1 Model-Driven Engineering

This section gives an overview of Model-Driven Engineering (MDE). Brambilla et
al. [5] observed that a common problem that practitioners encounter when they
first enter the model-driven universe, is differentiating between all the differ-
ent acronyms. They define Model-Driven Development (MDD) as a development
paradigm that uses models as primary artifacts in the development process. The
Model-Driven Architecture (MDA) has been proposed by the Object Management
Group (OMG), which describes their vision of MDD. Last, they describe Model-
Driven Engineering (MDE) as a superset of MDD, because it goes beyond devel-
opment activities and includes other modeling tasks in the complete software
engineering process.

2.1.1 MDE Rationale

MDE was introduced as an approach to deal with the complexity of develop-
ing and maintaining complex software. Throughout the history of software en-
gineering, researchers and developers have been creating abstractions to help
them program in terms of their design intent, instead of the underlying comput-
ing environment [31]. For example, programming in assembly instead of writing
machine code. However, these abstractions still had a computing-oriented focus,
rather than a problem space focus [31]. As a consequence, the computing solu-
tion is often intertwined with the problem solution.

13
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Due to the intertwining of the computing and the problem solution, soft-
ware engineers encountered various integration, interoperability and mainte-
nance problems. Software technology is constantly changing, for instance, due
to new middleware platforms. As a result of the intertwining of the computing
and the problem solution, software engineers often spend considerable amounts
of time to port applications to different platforms, or newer versions of platforms
[31]. For example, porting a Java application to a web-based application can take
a considerable amount of time if the solution has platform-specific dependen-
cies, which require a different system architecture on a different platform. Fur-
thermore, if only the computing solution exists, knowledge about the problem
solution might get lost when the developer of a system leaves the organization
or company.

MDE aims to solve these integration, interoperability and maintenance prob-
lems, by separating functionality, or behaviour, from specific platforms and tech-
nologies. MDE does this by considering models not only as documentation
artifacts, but as central artifacts with a direct role in the software engineering
process [5, 7, 18]. Vital in this MDE approach is the distinction between plat-
form independent models (PIM) and platform-specific models (PSM) [18]. PIMs are
formal specifications of the structure and behaviour of a system. MDE claims
that by using PIMs that abstract away platform-specific details, integration and
interoperability across various platforms should become easier to produce [18].

2.1.2 OMG Model-Driven Architecture

The Model-Driven Architecture (MDA) is the specific view of Model-Driven De-
velopment (MDD) as proposed by the Object Management Group (OMG), which
is one of the most popular modeling frameworks in the industry [5]. In this sec-
tion, MDE is discussed in more detail using this architecture. MDA is used
because of the importance of the OMG in the software industry.

Models and Metamodels

Models have a central role in MDA and MDE. MDA describes models used
in the context of software engineering as “information selectively representing
some aspect of a system based on a specific set of concerns” [26]. These models
only have value within MDE if they are expressed in a language that is un-
derstood by stakeholders and relevant technologies [26]. For the Model-Driven
Architecture, this implies that “the structure, terms, notations, syntax, seman-
tics, and integrity rules of the information in the model are well defined and
consistently represented” [26]. In other words, the model should be expressed
using a commonly agreed upon modeling language. Within the object-oriented
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modeling world, the most well-known general purpose modeling language is
the Unified Modeling Language (UML) [29]. MDA prescribes that a modeling
language should be defined in a model [26]. A model that defines a model-
ing language is called a metamodel, and this metamodel is also expressed in a
modeling language. Figure 2.1 illustrates this concept of metamodel.

expressed in

defined by

expressed in

Model Modeling language

Metamodel Modeling language

Figure 2.1: Illustration of Models and Metamodels

This definition of metamodel could result in a problem: if each metamodel
is expressed using a modeling language, this could lead to a never ending hi-
erarchy of meta-meta models. A common solution to this problem is to let a
modeling language define itself at a certain level in the hierarchy [7].

Meta Object Facility

The Model-Driven Architecture is not a single standard, but a family of stan-
dards [26]. Meta Object Facility (MOF) lies at the foundation of MDA. MOF is
used to define metamodels.

represented by

instance of

instance of

M0

M1

M2

M3

The concrete level

The model level

The metamodel level

The metametamodel level

The real world

A model conform with a MOF defined metamodel

Metamodels defined by the MOF

MOF

Figure 2.2: OMG metamodel hierarchy as dicussed in [4]

MOF is used in the OMG metamodel hierarchy, which is depicted in Fig-
ure 2.2. MOF is positioned at the highest level in the hierarchy, namely the
metametamodel (M3) layer. It is used to model metamodels, or in other words,
it is the language that is used to define the modeling languages. MOF is de-
fined using MOF to make M3 the top-layer in the OMG metamodel hierarchy
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[7]. The M2 layer contains modeling languages, which are instances of MOF.
The most prominent example of a modeling language instantiated from MOF is
UML. An M1 model is an instance of a M2 layer model that provides a language
and representation of a user-domain of interest, which conforms to a modeling
language as defined at layer M2. Finally, the M0 is the concrete level, which
contains real situations that are represented by models on the M1 layer. Another
interpretation of the M0 level states that the M0 level contains objects that are
instances of the M1 level objects [1]. To keep the scope of this report clear, the
M0 level is described as defined in [4], as illustrated in Figure 2.2.

Model transformations

Besides models and metamodels, MDA describes another key element of MDE:
model transformations, which define mappings between different source and
target models. In the literature about model transformations two main types of
model transformations are identified: model-to-model and model-to-text [7].

Model-to-model transformations Generally speaking, a model transformation
takes one or multiple source models and converts them into one or multiple
target models. The UML to OWL transformation developed within the LinkED
project is an example of a model-to-model transformation. Model transforma-
tions work by specifying transformation rules from metamodel elements of the
source model to the metamodel elements of the target metamodel. These trans-
formation rules themselves can be viewed as models, which are instances of a
transformation language. Figure 2.3 illustrates the model transformation pro-
cess.

instance of instance ofuses

uses
instance of

instance of

instance of instance of

Source model Target model

Transformation

Source metamodel Target metamodel

Transformation language

Metametamodel

Figure 2.3: Illustration of the model transformation process

Mainstream programming languages such as Java, or C# can in principle be
used as transformation language. However, languages developed specifically for
model transformations exist. MDA recommends the OMG Query/View/Transform
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(QVT) [28] standard for model-to-model transformations [26]. QVT consists of
two declarative languages: QVTr − Relations Language and QVTc − Core Lan-
guage, and one imperative language: QVTo − Operational Mapping Language.
Collectively, these languages provide a hybrid language of both declarative and
imperative constructs.

Model-to-text transformations One could argue that model-to-text transfor-
mations are actually model-to-model transformation as well, since text could be
seen as just another type of model. However, model transformations that gener-
ate software artifacts are generally considered a distinct type of model transfor-
mation (model-to-text) [7]. One of the most well-known type of model-to-text
transformation is code generation from models[7], but model-to-text transfor-
mations are not limited to code generation. Other examples of model-to-text
transformations include models to XML, JSON and HTML transformations.

2.1.3 MDE tools

Although MDA defines useful standards for MDE, the implementation of these
standards is realized by third-parties. Various proprietary tools for MDE exists,
but the open source Eclipse Modeling Framework (EMF) has become one of the
most popular tooling platforms for MDE [5]. The LinkED project also leveraged
the EMF for their MDE activities. Our bidirectional transformation tool also
relies heavily on EMF. Therefore, instead of listing various MDE tools, EMF is
discussed in more detail in this section.

The core of EMF is Ecore, which is an implementation of the most essential
constructs of MOF, namely the Essential MOF (EMOF). In EMF, Ecore can ex-
ist on both the M3 and M2 level of the metamodel hierarchy, as it allows for
the definition of metamodels, but may also be used to define models at the M1
level. This is different from MOF, which may only be used to define metamod-
els. EMF comes with capabilities to serialize and deserialize models defined in
Ecore to and from XMI [5]. Besides Ecore, there are several tools and frame-
works developed on top of EMF that enable model-to-model and model-to-text
transformations.

For model-to-model transformations EMF offers a QVT implementation for
each sub language. EMF also provides an alternative to QVT, namely the ATLAS
transformation language (ATL) [17]. ATL is a hybrid language, containing a
mix of declarative and imperative constructs. ATL was inspired by QVT and
therefore conforms to OMG standards such as XMI and OCL.

For model-to-text transformations EMF provides languages such as Acceleo
[23] and Xpand [8]. However, since this research essay is primarily concerned
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with model transformations between UML and OWL, model-to-text transforma-
tions are less relevant here than model-to-model transformations.

2.2 The Semantic Web

In a famous article from 2001, Tim Berners-Lee introduced the concept of the
Semantic Web [3]. Berners-Lee discussed how at that time, Web content was
being designed for humans to read. Consequently, computers had no reliable
way to process the semantics of Web content. He envisioned the Semantic Web
as an extension of the World Wide Web, in which information is given well-
defined meaning. The goal of the Semantic Web was to enable computers to
comprehend the information available on the Web.

2.2.1 Technology stack

An overview of the Semantic Web technology stack is given in Figure 2.4. Only
the technologies relevant for the scope of this thesis are discussed.

UNICODE and URIs

XML

Resource Description Framework

RDF Schema

OWL

Logic and Proof

Trust

Figure 2.4: Semantic Web technology stack as introduced in [21]

XML The eXtensible Markup language (XML) allows users to add arbitrary
structure to their documents, using tags or labels [3]. However, although XML
provides the means to structure documents using tags, it does not represent
what these structures mean [3, 21]. In other words, XML is used to structure
data, but does not say what the data mean.

RDF and RDFS What data mean is expressed by the Resource Description
Framework (RDF). RDF is a simple metadata representation framework, which
uses a graph model to describe relationships between resources [21]. RDF allows
the definition of information in sets of triples, which can be written using XML
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tags [3]. For example, using RDF one can state that “William Shakespeare is the
author of Hamlet”.

RDF Schema (RDFS) extends RDF by adding class- and property-structuring
capabilities [16]. It provides the basic capabilities for the creation of so-called
ontologies. Berners-Lee defines ontologies as “a document or file that formally
defines the relations among terms” [3]. Using RDFS one can go beyond the
capabilities of RDF, and capture relations among terms. For instance, one can
define that William Shakespeare is an author, and using the rdfs:subClassOf
construct define that an author is a person.

OWL and OWL2 RDFS provides the basic capabilities for the definition of
ontologies. OWL takes these basic capabilities and extends them. OWL is a
family of three language of increasing expressive power: OWL Lite, OWL DL,
and OWL Full [22]. One of its major extensions is the capability to provide
restrictions on how properties behave that are local to a class [16]. Motik et
al. [9] discuss how although OWL has been successful, a number of problems
have been identified in its design. They discuss limitations in expressivity with
respect to qualified cardinality restrictions, relational and datatype expressivity.
OWL2 extends and revises OWL with the aim of resolving these limitations.

2.2.2 Push towards ontologies

Although the complete vision of the Semantic Web is quite far from being
achieved, Semantic Web technologies are gaining in popularity. This section
discusses a number of reasons for the push towards OWL ontologies specifi-
cally.

Data integration and alignment In 2006, Berners-Lee et al. [32] observed an
increased need for data integration, shared semantics and a web of data. They
discussed how multiple heterogeneous datasets from various sources have to be
integrated. Ontologies are commonly used to integrate datasets. For instance,
OWL is extensively used in the life sciences community for ontology develop-
ment and data interchange [9, 32].

Reasoners and inferences Besides data integration and alignment, another ap-
pealing aspect of ontologies is the support for automatic reasoning and infer-
ences. The OWL2 semantics is based on Description logic [9], which allows the
use of reasoners to deduce implicit facts. Because of this capability, there is no
need to specify explicitly what is already implicitly available in the ontology.
This reduces redundancy in the knowledge base and makes ontologies easier to
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maintain [14]. Many reasoners for OWL have been developed, like HermiT [33]
and Pellet [35].

Government push Bauer et al. [2] discuss the Open Government Data move-
ment, which they describe as the movement that aims to open up data and in-
formation from governmental institutions and other relevant stakeholders such
as business/industry, citizens, NPOs and NGOs, for use and re-use by civil soci-
ety, economy media, academia as well as politicians and public administrators.
Bauer et al. argue that in order to fully benefit from Open Data, information
should be put into context, by moving towards Linked Open Data. They sug-
gest that data should be published in RDF, and various links should be created
between different datasets, creating a web of data, or Linked Data.

2.3 Linked Energy Data

LinkED can be positioned in the movement towards OWL ontologies. LinkED
was motivated by the revised Environment and Planning Act (omgevingswet)1,
which makes it mandatory to publish more and more data from the energy sec-
tor. However, instead of publishing raw data, data must be published in a mean-
ingful manner. Like the Platform Linked Data Nederland2, within LinkED they
identified that Linked Data can facilitate the publication of meaningful informa-
tion. More specifically, this entails publishing data on the internet conform with
an ontology defined in OWL. Currently, Enexis is working on publishing their
Open Data as Linked Open Data. Thus, within LinkED the need for conceptual
domain models defined in OWL ontologies has been observed.

However, most existing domain models used in utility companies are often
maintained in UML or easily convertible into UML. To prevent having to re-
model the existing domain knowledge available in these models in OWL, within
LinkED a method was developed to automatically transform UML models to
OWL ontologies. Furthermore, Olije et al. [25] discuss that it is unlikely that
existing modeling communities will leave model engineering in UML in favour
of ontology engineering. Therefore, within the LinkED project, an attempt was
made to develop a method to simultaneously maintain UML models and corre-
sponding OWL ontologies.

1https://www.government.nl/topics/spatial-planning-and-infrastructure/
revision-of-environment-planning-laws

2http://www.pilod.nl/wiki/Boek 5/Thema: De rol van Linked Data en REST APIs bij de
totstandkoming van de Omgevingswet

https://www.government.nl/topics/spatial-planning-and-infrastructure/revision-of-environment-planning-laws
https://www.government.nl/topics/spatial-planning-and-infrastructure/revision-of-environment-planning-laws
http://www.pilod.nl/wiki/Boek_5/Thema:_De_rol_van_Linked_Data_en_REST_API’s_bij_de_totstandkoming_van_de_Omgevingswet
http://www.pilod.nl/wiki/Boek_5/Thema:_De_rol_van_Linked_Data_en_REST_API’s_bij_de_totstandkoming_van_de_Omgevingswet
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2.3.1 Achievements

Within LinkED, a method was developed to transform conceptual domain mod-
els maintained in Sparx Enterprise Architect (EA) into OWL ontologies. The
source code of the transformation method is available at the Linked Energy Data
Transformations Github repository3. The transformation process consists of the
following steps:

Preprocessing Models maintained in EA cannot be directly loaded in the Eclipse
EMF environment. In order to use EA UML models, the models are transformed
into an Eclipse UML2 (Ecore) compatible UML model using an XSLT transfor-
mation.

XSLT
UMLEA UMLEcore

Figure 2.5: Preprocessing EA UML models

UML to OWL transformation The preprocessed UML models are transformed
into OWL ontologies using an ATL transformation, based on the transformation
suggested by ODM [27].

ATL
UMLEcore OWLEcore

Figure 2.6: UML to OWL using ATL

OWL serialization Using the transformation as illustrated in Figure 2.6, UML
models that conform with the Eclipse (Ecore) UML2 metamodel are transformed
into OWL ontologies that conform with an OWL Ecore metamodel4. Although
the transformed OWL ontologies correctly represent an ontology, they are not
serialized in an accepted OWL serialization. Using another ATL transformation
and a dedicated projector the OWLEcore is transformed into valid OWLRDF/XML.

ATL projector.jar
OWLEcore XMLEcore OWLRDF/XML

Figure 2.7: OWL serialization process

Using this approach, a number of UML models maintained in EA were suc-
cessfully transformed into syntactically valid OWL ontologies. The LinkED
project also briefly examined the possibility of using an UML profile (a generic
extension mechanism for UML) to express OWL ontologies in UML. They did

3https://github.com/linkedenergydata/transformations
4Our transformation tool uses a different OWL metamodel, a corrected version of the meta-

model used here

https://github.com/linkedenergydata/transformations
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this by examining the well-known pizza ontology5, and recreating this pizza
ontology in UML by hand. They found a number of OWL constructs, such as
equivalence between classes, that they were unable to express in UML. Olij et al.
[25] created an UML profile that aims to bridge the semantic gap between UML
and OWL, while leaving the original UML model intact.

2.3.2 Limitations

It seems that the LinkED transformation method is, at least syntactically, able
to transform UML models into OWL ontologies. However, due to the currently
used serialization method it is not possible to transform OWL ontologies back
to UML models. Because the used projector can only transform from XMLEcore

to OWLRDF/XML and not back from OWLRDF/XML to XMLEcore. In addition,
only a subset of the transformation rules suggested by ODM have been imple-
mented, and some implementations differ from the ODM suggestions. Finally,
note that the LinkED transformation method was based on an ATL use case6

that transformed between UML and OWL. The aim was to create a proof of
concept of an UML to OWL metamodel transformation, writing a jar that can
transform OWLRDF/XML back to XMLEcore was outside the scope of the project.
The LinkED transformation method could be improved significantly, which we
have attempted as described in Chapter 5.

5 https://protege.stanford.edu/ontologies/pizza/pizza.owl
6 http://www.eclipse.org/atl/usecases/ODMImplementation/

https://protege.stanford.edu/ontologies/pizza/pizza.owl
http://www.eclipse.org/atl/usecases/ODMImplementation/
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Related work

Besides LinkED, various studies have investigated model transformations be-
tween the static elements of UML Class diagrams and OWL. This chapter dis-
cusses this related work. Section 3.1 and 3.2 give an overview of mappings
between UML and OWL constructs, and briefly explains the purpose of the con-
structs. We use the OWL Functional Syntax1 to notate OWL examples. Section
3.3 discusses tools that implement these mappings. Finally, Section 3.4 concludes
this chapter by answering SQ1: What are the state-of-the-art mappings between
UML and OWL?

3.1 UML to OWL

In a recent paper, Sadowska and Huzar [30] give an overview of mappings from
UML to OWL, based on a literature study that examined 18 studies of transfor-
mations between UML and OWL. This section presents a high level overview
of their mappings, and compares these to mappings proposed in OMG’s ODM
[27] and Jesper Zedlitz’s PhD thesis [38]. Appendix A.1 presents the proposed
mappings in more detail. Since the LinkED mappings are a subset of the ODM
mappings we do not include these separately in our comparison, but do mention
where the mappings of LinkED differ from ODM.

3.1.1 UML Packages

Namespaces in UML are represented using the Package construct. Packages
provide the main structuring and organizing capability of UML [29]. Most UML
constructs are packageble elements, which can be contained by a Package. OWL
ontologies are structured using the Ontology and Axiom constructs. In [27, 30,
38], each Package is mapped to a new Ontology. LinkED differs from this, in
that they map each Package in an UML model to the same Ontology construct.

1 https://www.w3.org/TR/owl2-syntax/#Ontologies
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https://www.w3.org/TR/owl2-syntax/##Ontologies


Chapter 3. Related work 24

3.1.2 UML Class

Both UML and OWL have a Class construct, which is used to model a set of
objects. For instance, one could create an UML or OWL Class that represents
students. Figure 3.1 and 3.2 illustrate the relevant metaconstructs to define a
Class in UML and OWL.

packagedElement

0..*
Package

Class

ownedAttribute : Property
isAbstract : boolean

Figure 3.1: Simplified2 metamodel of UML Class

axioms

0..*

entity

1..1
Ontology DeclarationAxiom Class

Figure 3.2: Simplified metamodel of OWL Class

In [27, 30, 38], an UML Class is mapped to an OWL Class. For each UML
Class in an UML Package, an OWL DeclarationAxiom of an OWL Class is
added to an Ontology. Figure 3.3 illustrates the student example in UML and its
transformed OWL equivalent.

Student Declaration( Class ( :Student ) )

Figure 3.3: Student Class example in UML and OWL

Abstract Classes

It is possible to declare Abstract Classes in UML using the isAbstract prop-
erty (see Figure 3.1). This entails that it is not possible to instantiate the Class.
In [27, 30], no mapping for Abstract Classes is suggested, since they state
that OWL lacks this feature. In [38], Abstract Classes are mapped to regular
Classes, but they argue that it cannot be ensured that these OWL Classes are
not instantiated. We discuss the usage and semantics of Abstract Classes in
more detail in Section 6.1.2.

Attributes

In UML, a Class can have ownedAttributes (See Figure 3.1). An UML Attribute

has an UML Property as Type. Both UML and OWL have constructs to represent
Properties. Figure 3.4 and 3.5 illustrate how Properties are modeled in UML
and OWL, respectively. An example of an Attribute or Property is a student
number of a student.

2We omitted some constructs and properties to improve readability
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ownedAttribute

0..*

Property

type : Type
lowerValue : ValueSpecification
upperValue : valueSpecification

Type

DataType Class

PrimtiveType Enumeration

Figure 3.4: Simplified metamodel of UML Property and Type

While UML has one metaconstruct for Property, OWL has a seperate con-
struct for ObjectProperties and DataProperties. In [27, 30, 38], Properties
are mapped to OWL Object or DataProperties depending on the Type of the
Property. If the Type is a complex DataType (that is when a DataType has
ownedAttributes), or the Type is a Class, an ObjectProperty is used in the
mapping. If the Type is a PrimitiveType or Enumeration, a DataProperty is
used.

axioms

0..*

entity1..1

Ontology DeclarationAxiom

Entity

ObjectProperty DataProperty

Figure 3.5: Simplified metamodel of OWL Properties

In addition, the domain and range of the UML Property are mapped to OWL
ObjectPropertyRange and ObjectPropertyDomain, or DataPropertyRange and
DataPropertyDomain constructs, respectively. In [38], the suggestion is made
to make OWL Properties disjoint, to prevent OWL from interpreting UML
Properties with the same name as semantically equivalent. Within LinkED each
Property was prefixed with the containing Class name to achieve the same. Fig-
ure 3.6 illustrates the transformation of a student Class with Attribute student
number into OWL.

Student

studentNumber : Integer

Declaration( Class ( :Student ) )

Declaration( DataProperty( :studentNumber ) )

DataPropertyDomain( :studentNumber :Student )

DataPropertyRange( :studentNumber xsd:integer )

Figure 3.6: Student number example in UML and OWL
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DataTypes

As Figure 3.4 illustrates, UML differentiates between three types of datatypes:
DataType, PrimitiveType and Enumeration. In [30, 38], a DataType is mapped to
a regular OWL Class with an OWL HasKey axiom. A PrimitiveType is mapped
to a corresponding XSD DataType, or a new OWL DataTypeDefinition if no
equivalent XSD DataType exists. In [27, 30, 38], Enumerations are mapped to
DataTypeDefinition constructs with a DataOneOf expression. LinkED mapped
Enumerations using an Instanceof expression instead of a DataOneOf expres-
sion.

Cardinality constraints

In UML, it is possible to specify cardinality constraints on properties using the
lowerValue and upperValue properties (see Figure 3.4). Cardinality constraints
are used to constrain the number of values that may be contained by an property
[29]. For instance, one could specify that a student can only have one student
number. In [27, 30, 38], UML cardinality constraints are mapped to the Data

or Object MinCardinality, MaxCardinality, and ExactCadinality constructs,
depending on whether the Property is mapped to an Object or DataProperty.
Figure 3.7 gives an example of this mapping.

Student

studentNumber : Integer [1..1]

Declaration( Class ( :Student ) )

Declaration( DataProperty( :studentNumber ) )

DataPropertyDomain( :studentNumber :Student )

DataPropertyRange( :studentNumber xsd:integer )

DataExactCardinality( :studentNumber 1 )

Figure 3.7: Cardinality example in UML and OWL

3.1.3 UML Associations

Figure 3.8 illustrates the metamodel constructs relevant to an UML Associations.
Associations refer to Properties in their definition.

navigableOwnedEnd

0..*

association

0..1

memberEnd

2..*

Association

type : Type
lowerValue : ValueSpecification
upperValue : valueSpecification

AggregationKind

- none
- shared
- composite

Property

aggregation : AggregationKind
type : Type

Figure 3.8: Simplified metamodel of UML Association
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Like Attributes, Associations are used to model relationships between
Classifiers such as Classes. We discuss the difference between Attributes

and Associations in Section 6.1.2. If an Association has two memberEnds, it is
commonly called a Binary Association. An example is the relation between a
student and a university. In [30, 38], Binary Associations are mapped to an
ObjectProperty for each memberEnd, and an InverseObjectProperties axiom.
In [27], different mappings are suggested, depending on the navigableOwnedEnd

association. If both the memberEnds of the Associations are navigableOwnedEnds,
the mapping is identical to the one suggested in [30, 38]. If only one memberEnd

is a navigableOwnedEnd, a single objectProperty is created instead.
Associations with more than two memberEnds are N-ary Associations. In

[38], it is suggested that N-ary Associations can be transformed into Binary

Associations. The mapping suggested in [30] differs, in that they state that it
is not possible to directly transform N-ary Associations and they only present
mapping that maps parts of the semantics of an N-ary Association. In addition
to Binary and N-ary Associations, [27, 30] present a mapping for Association
Classes.

Finally, UML allows the specification of AggregationKind on Properties.
Shared represents an UML Aggregation end, and Composite represents an UML
Composition. In [27, 30], no mapping for Aggregation and Composition is sug-
gested, as they argue that OWL lacks these features. In [38], mappings for the
constraints defined by Aggregations and Compositions are suggested. Figure
3.9 presents an example of the Binary Association mapping.

hasStudent

attendsUniversity

Student

University Declaration( Class ( :Student ) )

Declaration( Class ( :University ) )

Declaration( ObjectProperty ( :hasStudent ) )

Declaration( ObjectProperty ( :attendsUniversity ) )

ObjectPropertyDomain ( :hasStudent :University )

ObjectPropertyDomain ( :attendsUniversity :Student )

ObjectPropertyRange ( :hasStudent :Student )

ObjectPropertyRange ( :attendsUniversity :University )

InverseObjectProperties ( :hasStudent :attendsUniversity )

Figure 3.9: Binary Association example in UML and OWL

3.1.4 UML Generalizations

GeneralizationSet and Generalization constructs are used to model UML
Generalizations, which is illustrated in Figure 3.10. A Generalization can be
used to specify that a Classifier inherits from another Classifier. For in-
stance, one can specify that a student inherits from person. Or in other words,
that a student is a subset of people. In [27, 30, 38], mappings are suggested for
Classifiers of type Class and Association. A Generalization between two
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UML Classes is mapped to the OWL SubClassOf axiom. A Generalization be-
tween Associations is mapped to the OWL SubPropertyOf axiom. In addition,
[38] presents a mapping for a Generalization between Enumerations.

generalizationSet

0..*

generalization

1..*

GeneralizationSet

isCovering : Boolean
isDisjoint : Boolean

Generalization

general : Classifier
specific : Classifier

Figure 3.10: Simplified metamodel of UML Generalizations

Figure 3.10 illustrates the possibility of specifying whether Generalizations
in a GeneralizationSet are Covering or Disjoint. Depending on the values
of the isCovering and isDisjoint properties, GeneralizationSet is mapped to
DisjointClasses, DisjointUnion, EquivalentClasses and ObjectUnionOf ex-
pressions. Figure 3.11 shows an example of a Generalization and its OWL
mapping.

Student

Person
Declaration( Class ( :Student ) )

Declaration( Class ( :Person ) )

SubClassOf( :Student : Person )

Figure 3.11: Generalization example in UML and OWL

3.2 OWL to UML

Sadowska and Huzar only discuss unidirectional mappings from UML to OWL,
but Zedlitz and ODM discuss bidirectional mappings. This section gives an
overview and comparison of their mappings from OWL to UML. More detail is
given in Appendix A.2.

3.2.1 Inverse Mappings

The following mappings from OWL to UML are the inverse of previously dis-
cussed mappings in the UML to OWL section:

• In [27, 38], OWL Ontology is mapped to UML Package.

• In [27, 38], OWL Classes are mapped to UML Classes.

• In [27, 38], OWL DataProperties are mapped to UML Class Attributes.

• In [27, 38], OWL Objectproperties are mapped to UML Class Attributes.
Except when the ObjectProperty is InverseFunctional or has an Inverse,
then the ObjectProperty is mapped to an UML Association.
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• In [27, 38], OWL SubObjectProperties are mapped to UML Property

Generalizations.

• In [27, 38], OWL DataOneOf is mapped to an UML Enumeration.

• In [38], OWL HasValue is mapped to an UML Attribute with a default
value equal to the specified HasValue.

• In [38], OWL HasKey is mapped to UML Key.

• In [38], OWL DataTypes are mapped to established UML libraries for XML
DataTypes, such as the XML DataTypes library of Enterprise Architect.

3.2.2 OWL ClassAxioms

SubClassOf

In Section 3.1.4, SubClassOf was only used with OWL Classes, which can be
mapped to UML Classes. Figure 3.12 illustrates the relevant metamodel con-
structs of SubClassOf and a subset of the possible ClassExpression types, which
are discussed in Section 3.2.3. SubClassOf has associations with ClassExpression,
which do not necessarily have to be Classses.

subClassExpression

1..1superClassExpression

1..1

SubClassOf ClassExpression

Class ObjectUnionOf ObjectIntersectionOf

Figure 3.12: Simplified metamodel of SubClassOf and a subset of
ClassExpression

If the subClassExpression and superClassExpression are of type Class, [27,
38] suggest mapping SubClassOf to an UML Generalization. In [38], a mapping
is suggested for a SubClassOf with a necessary condition as ClassExpression.

EquivalentClasses

Similar to SubClassOf, EquivalentClasses takes a number of ClassExpressions.
In [27, 38], EquivalentClasses with ClassExpressions that are mapped to UML
Classes are mapped to an UML Generalization.
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3.2.3 OWL ClassExpressions

ObjectUnionOf and ObjectIntersectionOf are ClassExpressions that have as-
sociations with ClassExpressions, as illustrated in Figure 3.13. The upcom-
ing mappings are suggested when the associated ClassExpressions are of type
Class.

classExpressions

2..*

classExpressions

2..*

ClassExpression

ObjectUnionOf ObjectIntersectionOf

Figure 3.13: Simplified metamodel of ObjectUnionOf and
ObjectIntersectionOf

ObjectUnionOf

An ObjectUnionOf expression contains all the instances that are instances of at
least one of the ClassExpressions. For example, ObjectUnionOf could be used
to get the set of all individuals that are adults or children. In [27], each Class in
the ObjectUnionOf is mapped to an UML SubClass in a GeneralizationSet and
a helper class that represents the union. In [38] a slightly different mapping is
proposed, in which the SuperClass in the GeneralizationSet is set to Abstract.
Figure 3.14 gives an example of an ObjectUnionOf and the mapping to UML.

Adult Child

UnionOf Adult Child

Person

SubClassOf(

:Person

ObjectUnionOf( :Adult :Child )

)

Figure 3.14: ObjectUnionOf example in OWL and UML

ObjectIntersectionOf

An ObjectIntersectionOf expression contains all the instances that are instances
of all the ClassExpressions. For example ObjectIntersectionOf( :Person

:Student ) contains all the instances that are both a person and a student. In
[27, 38], each Class in the ObjectIntersectionOf is mapped to a SubClass in an
UML Generalization and an Abstract SuperClass.
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3.2.4 OWL Range and Domain

In [27, 38], three cases of OWL Domain and Ranges of Properties are discussed:

1. One class is declared for Domain and Range, this is mapped to regular UML
Attributes and Associations.

2. In OWL it is allowed to declare Properties without specifying a Domain

and Range. In this case, the Domain and Range are specified as OWL:thing,
which can be mapped to an UML Class named Thing.

3. In OWL it is possible to declare more than one Class as Domain or Range.
In this case the Domain and Ranges are mapped to an UML Generalization

construct as Range or Domain for UML Properties.

3.2.5 OWL Cardinality Constraints

Most of the OWL Cardinality Constraints mappings are the inverse of earlier dis-
cussed mappings, namely Min, Max and ExactCardinality for DataProperties
and ObjectProperties. In [27, 38], mappings for FunctionalProperty and
InverseFunctionalProperty are suggested.

3.3 Transformation tools

Tools are necessary to automate model transformations, which are especially
useful for the transformation of large models. Andreas Grunwald [10] gives an
extensive overview of existing transformation tools between UML and OWL.
He describes many tools that claim to be able to transform UML into OWL,
such as CIMTool, CODIP, DIA and OntoStudio. He also mentions a Protegé
4.0 plugin that transforms OWL into UML using the ODM OWL UML pro-
file. However, Grünwald deemed the currently available tools insufficient for his
specific requirements: correctly transforming Visual Paradigm UML models to
OWL ontologies. Furthermore, he found that most tools were not up to date or
disbanded. He presents his own UML to OWL transformation tool that uses a
UML metamodel and Java to transform UML into OWL. However, his tool only
supports unidirectional transformations from UML to OWL.

Although various UML to OWL transformation tools exist, no working bidi-
rectional transformation tools could be found. ODM [27] and Zedlitz [38] present
bidirectional mappings between UML and OWL, but no working implementa-
tion could be found. Most tools focus solely on transforming UML into OWL,
mainly because they are only interested in extracting information from UML
models to use this in OWL ontologies, or due to technical limitations, such as
the transformation tools presented by LinkED and Grünwald.
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3.4 Conclusion

To answer SQ1: What are the state-of-the-art mappings between UML and
OWL? We found that the mappings of Sadowska and Huzar [30], ODM [27]
and Zedlitz [38] describe the current state-of-the-art mappings between UML
and OWL. We gave an overview and comparison of their presented mappings
in this chapter, and provided the mappings in more detail in mappings 1-59 in
Appendix A.1 and A.2. We found that most of the time, the different studies
propose similar mappings. Sadowska and Huzar include and discuss the map-
pings presented in a paper based on the thesis of Zedlitz in their work. Zedlitz
refers to ODM in his work, explaining the similarity between the mappings of
Sadowska and Huzar, ODM and Zedlitz. In some cases, there are slight differ-
ences between the mappings, and some studies cover mappings that others do
not. We found that Sadowska and Huzar provide the most extensive account
of UML to OWL mappings and they include mappings and considerations that
ODM and Zedlitz do not. However, they do not consider transformations from
OWL to UML at all. Zedlitz gives the most extensive account of OWL to UML
mappings. He considered the ODM mappings and in addition, presented dif-
ferent mappings, more details and considerations.



Chapter 4

Evaluating UML and OWL
usage

Since this master’s thesis aims to analyze the state-of-the-art mappings using
case studies, we decided to investigate which UML and OWL constructs are
commonly used in UML models and OWL ontologies. Section 4.1 examines
UML models used within Alliander and Enexis. Section 4.2 examines represen-
tative OWL ontologies. Finally, Section 4.3 concludes this chapter by answering
SQ2: What are the most commonly used constructs in UML and OWL?

4.1 Evaluating UML

UML consists of a wide variety of 14 diagrams such as class, activity and state di-
agrams. In this master’s thesis, we focus on the static elements of class diagrams,
which are commonly used in business and conceptual modeling. Sadowska and
Huzar [30] identified a number of UML constructs that are suggested in the lit-
erature as most important for conceptual modeling. We evaluated whether these
findings corresponded with UML constructs used in the UML models used by
Alliander and Enexis.

4.1.1 Preparing a test set

Many UML domain models exist. We focus on UML models used in the en-
ergy sector, specifically at Alliander and Enexis. Most of the UML models used
within Alliander and Enexis are maintained and distributed in Sparx Enterprise
Architect. Although many UML tools serialize their models as XMI, which was
introduced as an interchange format, different tools adopt XMI in different vari-
ants, making interoperability between UML tools difficult. We encountered this
problem as well, as we used the Eclipse UML2 project, which currently provides

33
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an implementation of the UML2.5 specification, that is not directly compatible
with Sparx Enterprise Architect. Within the LinkED project, XSLT was used to
transform Enterprise Architect models to Eclipse UML2 models [25]. Our UML
test set consists of the following UML models that were successfully transformed
using the LinkED XSLT preprocessor1:

• Common Information Model (CIM)2: a standard developed by the elec-
tric power industry, which facilitates information exchange about electrical
networks.

• Inspire3: a standard that facilitates interoperability of spatial data sets and
services. We evaluated only a subset of the Inspire UML model that is
relevant for the energy sector.

• SEAL: an UML model based on CIM, which facilitates data exchange
within Alliander.

4.1.2 Results

Using the Eclipse UML2 project, we iterated over the UML constructs in the test
set. The results are presented in this section. Figure 4.1 shows the count of all
UML metaconstructs used in the test set.
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Figure 4.1: Count of UML constructs present in the test set

1 Our test set is available at https://github.com/reycs/Transformations
2 https://www.iec.ch/smartgrid/standards/
3 https://inspire.ec.europa.eu/portfolio/data-models

https://github.com/reycs/Transformations
https://www.iec.ch/smartgrid/standards/
 https://inspire.ec.europa.eu/portfolio/data-models
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As discussed in Section 3.8, Properties are used as Class Attributes and
in Associations. Figure 4.2 breaks down which Properties are used as Class

Attributes and which function as Association memberEnds. Section 3.8 also
discussed that Associations can be Aggregations and Compositions. Figure 4.3
breaks down which Associations are Aggregations, Compositions and regular
Associations. Note that our test set did not contain any Compositions.
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Figure 4.2: Breakdown of UML
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Figure 4.3: Breakdown of UML
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In UML, it is possible to specify Generalization relationships between var-
ious constructs. Figure 4.4 presents the different usages of Generalization in
the UML test set. Finally, it is possible to assign UML Comments to various con-
structs. Figure 4.5 presents the different constructs which have Comments in the
UML test set.
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4.1.3 Discussion

Sadowska and Huzar identified the following most popular UML constructs:
classes, attributes of classes, associations (including aggregation), cardinality of
properties and generalization relationships [30]. These constructs correspond
closely to the results of our UML evaluation see Figure 4.1 and 4.3. Note that
cardinality of properties is represented using the LiteralUnlimitedNatural and
LiteralInteger constructs. In addition to these constructs, we observed that
packages, comments, enumerations and dependencies are often used as well.

4.2 Evaluating OWL

Several studies have examined the usage of OWL. Wang et al. [36] published a
survey which examines the OWL landscape. However, this paper was published
before the introduction of OWL2, making the results less relevant for our study.
A more recent study by Matentzoglu et al. [20] examines a large number (4547)
of OWL2 ontologies. Although their results are relevant, they do not present
results for each individual OWL construct, but present more general categories,
namely, entity usage, constructors and axiom types. We present an evaluation
of a set of ontologies on both the axiom type level and at the level of each
metamodel construct that can be instantiated.

4.2.1 Preparing a test set

We scraped .ttl .rdf and .owl files from w3.org and w3id.org, which resulted
in a set of 242 ontologies. We removed all the ontologies that the OWL API
was unable to parse, which left us with 216 ontologies. As Matentzoglu et al.
observed, most ontologies that the OWL API was unable to parse were due to
unavailable imports [20]. We added the well-known pizza ontology4 to our set
which raised our set to 217 ontologies. We removed all the ontologies without
axioms, which left us with 176 ontologies. Finally, we only kept ontologies in
the test set with an unique ontology IRI, to filter out duplicates in our test set,
which left us with a final test set of 147 ontologies.

4.2.2 Results

Metamodel coverage

The OWL metamodel has 74 constructs that can be instantiated. We found out
that added together the ontologies in the test set covered 66/74 (89%) of these
constructs. We visualized the metamodel coverage of each ontology in the test
set in Figure 4.6.

4 https://protege.stanford.edu/ontologies/pizza/pizza.owl

w3.org
w3id.org
https://protege.stanford.edu/ontologies/pizza/pizza.owl
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10 20 30 40 50

Figure 4.6: Boxplot of the metamodel coverage (in percentage) of the ontologies
in the test set

Construct usage

We measured the used OWL constructs in the ontology test set, by iterating over
the ontologies. The OWL metamodel construct count is presented in Figure 4.7
and 4.8. We also present a list of percentages of ontologies that use a construct
for each instantiable OWL construct in Appendix C.
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Figure 4.8: Count of OWL constructs (continued)

We observed that the following constructs did not appear in the test set at all:
DisjointDataProperties, NegativeDataPropertyAssertion, DisjointObjectProper-
ties, HasKey, DisjointUnion, DataIntersectionOf, DataComplementOf, DataType-
Definition.
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Axiom types

As mentioned in Section 3.1.1, ontologies are structured using Axioms. In Section
6.2 we discuss which information is lost in a roundtrip transformation from
OWL → UML → OWL using a list of lost constructs ordered by Axiom Type.
This, because a comparison list of all OWL constructs is difficult to overview.
For completeness, Figure 4.9 presents the count of Axiom Types in the test set.
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4.2.3 Discussion

Our findings are similar to the results of Matentzoglu et al. [20]. Figure 4.7 and
4.8 show that Classes, ObjectProperties and Individuals, are used often.
Figure 4.9 shows that simple axioms such as ClassAssertion and SubClassOf

are often used as well. In addition, Figure 4.7 and 4.8 show that almost all OWL
constructs are used at least ones in the test set. However, the majority of ontolo-
gies uses only a relatively small number of constructs, as Figure 4.6 illustrates.

4.3 Conclusion

To answer SQ2: What are the most commonly used constructs in UML and
OWL? We presented the most commonly used UML and OWL constructs in
Figure 4.1, 4.7, and 4.8. These figures are based on a UML test set consisting
of three UML models that are used within Alliander and Enexis and an OWL
test set of 147 OWL ontologies. Although the numbers suggest that there is a
high discrepancy between evaluated UML models and OWL ontologies, the ab-
solute count of constructs show that the difference is relatively small. A possible
explanation could be that the UML test set contains 150 packages, which is com-
parable to 147 ontologies. We found that the UML models used within Alliander
and Enexis use only a small subset of UML: the static elements of UML Class
diagrams. Our findings align closely to the list of most popular UML constructs
for conceptual modeling as suggested by Sadowska and Huzar [30]. We found
that our OWL test set uses almost every instantiable OWL construct and our
findings are similar to the results of Matentzoglu et al. [20]. However, despite
the wide variety of constructs used in the test set, only a small subset of OWL
constructs is commonly used, as Figure 4.6, 4.7 and 4.8 illustrate.
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A bidirectional transformation
tool

This chapter discusses the implementation of our bidirectional transformation
tool. Section 5.1 gives a high level overview of the architecture of our tool. Sec-
tion 5.2 describes the implementation of the state-of-the-art transformation rules
as found in Chapter 3. Section 5.3 discusses our changes to the OWL metamodel,
to make it conform with the latest specification. Section 5.4 discusses our exten-
sion of the OWL API, which allows us to serialize and deserialize ontologies
conforming with the OWLEcore metamodel. Section 5.5 presents the GUI of our
transformation tool. Finally, Section 5.6 concludes this chapter by answering
SQ3: How can we implement a metamodel based bidirectional transformation
tool between UML and OWL?

5.1 Architecture

As discussed earlier in Section 3.3, we were unable to find a tool that can trans-
form between UML and OWL bidirectionally. Within LinkED, the transforma-
tion from OWL to UML was not realized due to the complicated serialization
process of ontologies. Our tool solves this serialization problem and realizes
transformations between UML and OWL in both directions. Figure 5.1 illus-
trates the architecture of our tool. The tools consists of two main components:
QVT transformations and the OWL (de)serialization.

QVT transformations The bidirectional transformations are written in the open
source Eclipse QVT Operational implementation1. The transformations require
an UML and an OWL metamodel. We used the UML2.5 metamodel from the

1 https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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Eclipse UML2 project2, and the OWL2 model from the W3 Wiki3. We found
out that the OWL2 metamodel from the Wiki did not conform with the latest
OWL specification. We updated the metamodel, which is described in Section
5.3. Both the UML and the OWL metamodel are in Ecore format, the metamodel
specification language of EMF.

QVT transformations

OWL (de)serialization
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instance of
input output

inputoutput
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instance of

instance of

output

input

inputoutput

UML to OWL
{transformation rules}
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OWL to UML
{transformation rules}
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UML metamodel
{ecore}

OWL metamodel
{ecore}

OWL API
{extension}

OWL API

OWL serialization

RDF/XML OWL/XML

Functional syntax Turtle

Figure 5.1: Transformation tool architecture

As mentioned in Chapter 4, different UML tools implement the XMI seri-
alization standard differently. To prevent having to deal with UML tool in-
teroperability issues, our tool only transforms UML models that conform with
the Eclipse UML metamodel. Our UML to OWL transformation takes an UML
model that conforms with the Eclipse UML metamodel as input and transforms
it to an OWL ontology that conforms with the OWL metamodel. The OWL to
UML transformation does the same in the opposite direction.

2 https://www.eclipse.org/modeling/mdt/?project=uml2
3 https://www.w3.org/2007/OWL/wiki/MOF-Based Metamodel

https://www.eclipse.org/modeling/mdt/?project=uml2
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
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OWL (de)serialization Although the QVT transformation component produces
semantically valid OWL ontologies, ontologies that conform with the OWL2
Ecore metamodel are not serialized in a format that is used in practice. The
OWL (de)serialization component solves this problem. This component extends
the OWL API, a high-level API implemented in Java, which is closely aligned to
the OWL2 structural specification [15]. The OWL API is able to parse and write
various OWL serialization formats. We wrote an extension that is able to parse
and write OWL ontologies conform the OWL Ecore metamodel to the OWL API,
making it possible to use and serialize ontologies in popular serializations, such
as RDF/XML and Turtle.

5.2 Implementing the transformation rules

We relied heavily on the research done in Chapter 3 and 4 for the implementa-
tion of the transformation rules. First, we evaluated whether the state-of-the-art
mappings cover the used UML constructs that were used in the UML test set. Ta-
ble 5.1 presents the UML constructs with corrosponding mappings as specified
in Appendix A.1 which are implemented as QVT rules in our transformation
tool.

Table 5.1: Implemented UML QVT rules in our transformation tool

UML Construct Mapping

Package Mapping32

Comment
on Classes Mapping33

Class Mapping1

Property
Cardinality

Mapping4-5
Mapping23-27

Association Mapping7-8

AssociationClass Mapping9

Generalization
between Classes
between Enumerations
between Properties

Mapping17
Mapping19
Mapping18

Enumeration Mapping31

We did the same for OWL constructs. Table 5.2 presents the available state-
of-the-art mappings as specified in Appendix A.2 for OWL constructs used in
the test set. The mappings specified in Table 5.2 are implemented as QVT rules
in our tool.
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Table 5.2: Implemented OWL QVT rules in our transformation tool

OWL Construct Mapping

Ontology Mapping34

Class Mapping35

SubClassOf
with declared classes
with necessary conditions as SuperClass

Mapping36
Mapping38

SubObjectProperty Mapping50

EquivalentClasses
with declared classes Mapping39

ObjectUnionOf
with declared classes Mapping41-42

ObjectIntersectionOf
with declared classes Mapping43

DataOneOf Mapping44

DataProperty
DataPropertyRange
DataPropertyDomain
DataExactCardinality
DataMinCardinality
DataMaxCardinality

Mapping45
Mapping47-49
Mapping47-49
Mapping55
Mapping53
Mapping54

ObjectProperty
ObjectPropertyRange
ObjectPropertyDomain
ObjectExactCardinality
ObjectMinCardinality
ObjectMaxCardinality

Mapping45-46
Mapping47-49
Mapping47-49
Mapping55
Mapping53
Mapping54

InverseObjectProperties Mapping57

FunctionalProperty Mapping51

InverseFunctionalProperty Mapping52

HasValue
Object
Data

Mapping56
Mapping56
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5.3 Updating the OWL metamodel

We thoroughly verified whether the OWL2 metamodel from the W3 Wiki4 con-
forms with the latest structural specification of December 11, 20125 and found
out, as mentioned earlier, that the metamodel does not conform with the latest
specification. We found a number of constructs that did not conform with the
specification, which can be categorized in: name changes, missing constructs
and constructs modeled differently. We present an overview of our changes to
the OWL2 metamodel from the W3 Wiki in this section, which makes the OWL
metamodel conform with the latest structural specification.

Name changes

We changed the names of several constructs. Some of the names had to be
changed because their name has been changed in the latest structural specifi-
cation, others had to be renamed because a name different from any structural
specification was given. Although ontologies can still be expressed semanti-
cally correct using these constructs, working with the constructs can be confus-
ing. KeyFor was renamed to HasKey, ObjectExistSelf to ObjectHasSelf and
Constant to Literal.

Missing constructs

Some constructs available in the latest structural specification were missing. We
added AnnotationAxiom, DataTypeDefinition and DataRange subclasses.
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superAnnotationProperty1

1

annotationProperty

1

1

domain1

1

range1

1

annotationProperty

1

Axiom

AnnotationAxiom

SubAnnotationPropertyOf AnnotationPropertyDomain AnnotationPropertyRange

AnnotationProperty URI

Figure 5.2: Added AnnotationAxiom part (1/2)

4 https://www.w3.org/2007/OWL/wiki/MOF-Based Metamodel
5 https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
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Figure 5.3: Added AnnotationAxiom part (2/2)
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Figure 5.4: DataTypeDefinition has been added
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Figure 5.5: Added DataIntersectionOf and DataUnionOf

Constructs modelled differently

We found several constructs that were modeled differently. Some of them were
modeled incorrectly, while others were modeled conform with older specifica-
tions. We updated the following constructs:
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Literal

TypedLiteral

lexicalValue : EString

StringLiteral

quotedString : EString
languageTag : EString

Figure 5.6: Changes to Literal

Figure 5.6 shows the changes to Literal. In the latest specification Literal

can be either a TypedLiteral or a StringLiteral, whereas in older specifica-
tion a single Constant construct was used. Figure 5.7 and 5.8 illustrate sim-
ilar changes to URI. In the latest specification a URI can be a FullURI or an
AbbreviatedURI.

URI

value : EString

Figure 5.7: URI before changes.

URI

FullURI

iri : EString

AbbreviatedURI

localName : EString

Figure 5.8: URI after changes.
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Figure 5.9: Annotation before changes
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Figure 5.10: Annotation after changes

Figure 5.9 and 5.10 show the changes to Annotation. The latest specification
simplified the Annotation construct by creating a super class that replaces the
AnnotationBy classes for AnonymousIndividual, Entity and Constant. Due to
the addition of the AnnotationAxiom the AnonymousIndividualAnnotation and
EntityAnnotation were removed, this is shown in Figure 5.11.
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anonymousIndividualAnnotations*

1

entityAnnotations*

Axiom

AnonymousIndividualAnnotation EntityAnnotation

Annotation

Figure 5.11: Removed AnonymousIndividualAnnotation and EntityAnnotation

Figure 5.12, 5.13, 5.14 and 5.15 show the changes to ClassAssertion and
SameIndvidual. Both ClassAssertion and SameIndividual had the same mod-
eling mistake. Instead of having an association with the super class Individual,
the association was modeled to NamedIndividual.
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ClassAssertion NamedIndividual

Figure 5.12: ClassAssertion before changes
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Figure 5.13: ClassAssertion after changes
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Figure 5.14: SameIndividual before changes
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Figure 5.15: SameIndividual after changes

Finally, FacetLiteralPair had a minor mistake. FacetLiteralPair had a
property with type EString, whereas in the latest specification, an association
with Literal was modeled instead. Figure 5.16 and 5.17 illustrate this change.
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facet : EString Literal

Figure 5.16: FacetLiteralPair before changes

1

restrictionValue1

1

constrainingFacet

1

FacetLiteralPair

((((((facet : EString
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Figure 5.17: FacetLiteralPair after changes

5.4 Extending the OWL API

Our OWL (de)serialization component extends version 5.1.10 of the OWL API6

with a parser and writer for ontologies conform the OWL metamodel. Using
EMF, we generated a Java representation of the corrected OWL metamodel. In
addition to the representation, EMF also generates a Switch class that allows us
to iterate over all the constructs of an ontology and handle each construct in a
separate case function. We mapped each construct in the OWL metamodel to the
corresponding construct in the OWL API. This allowed us to parse ontologies
that conform with the OWL metamodel to the OWL API.

6 https://github.com/owlcs/owlapi

https://github.com/owlcs/owlapi
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Ontologies parsed by the OWL API are written to ontologies that conform
with the OWL metamodel in a similar manner. The OWL API uses the visi-
tor design pattern7 for most of its writers and parsers. We extended the base
OWLObjectVisitor class of the OWL API, which allowed us to iterate over the
OWL API objects and map it to the appropriate OWL metamodel constructs.
This parser and writer make it possible to serialize ontologies resulting from
our UML to OWL transformation in every available OWL API serialization and
makes it possible to use ontologies serialized in OWL API parseable serializa-
tions in our OWL to UML transformation.

5.5 Transformation tool GUI

One obstacle with existing transformation tools is that they can be difficult to
use due to platform dependencies. The LinkED transformation method for in-
stance, requires the Eclipse environment with ATL dependencies installed. We
wanted to create a tool that is as easy to use as possible. We used the QVTo
TransformationExecutor8 class to launch QVTo programmatically using java.
In addition, we build a GUI on top of our tool using Java Swing9. All the re-
quired dependencies are packaged in a Jar that requires only Java 8 to be run.
Figure 5.18 shows the GUI of our transformation tool.

Figure 5.18: GUI of our transformation tool

7 https://en.wikipedia.org/wiki/Visitor pattern
8 https://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
9 https://docs.oracle.com/javase/tutorial/uiswing/

https://en.wikipedia.org/wiki/Visitor_pattern
https://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
https://docs.oracle.com/javase/tutorial/uiswing/
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5.6 Conclusion

To answer SQ3: How can we implement a metamodel based bidirectional trans-
formation tool between UML and OWL? We have implemented a bidirectional
transformation tool between UML and OWL using QVTo and the OWL API,
based on the state-of-the-art mappings and the commonly used UML and OWL
constructs in practice. We extended the OWL API to make it possible to use and
serialize ontologies in commonly used serialization formats, such as RDF/XML
and Turtle. This extension made it possible to bidirectionally transform between
UML models and OWL ontologies. We found out that for most of the used UML
constructs in our test set, mappings to OWL can be found in the literature. Fi-
nally, we observed that the state-of-the-art mappings do not cover all the used
OWL constructs, which could indicate that UML lacks features to express OWL
concepts. We investigate this in detail in Chapter 6.



Chapter 6

Roundtrip transformations

This chapter evaluates the implemented state-of-the-art mappings, by perform-
ing roundtrip transformations on the UML and OWL test sets introduced in
Chapter 4. Section 6.1 presents the UML results and discussion. Section 6.2 dis-
cusses the OWL results. Finally, Section 6.3 concludes this chapter by answering
SQ4: What information is lost in a roundtrip transformation from UML to OWL
and OWL to UML based on the state-of-the-art mappings?

ODM [27] identified several common problems in metamodel transforma-
tions.We use some of their terminology throughout this chapter:

• Structure conflation: two constructs in the source metamodel map to a
single construct in the target metamodel.

• Loss of structure: a complex construct is mapped to a collection of simpler
constructs. However, there is insufficient information to map the simple
constructs back to the complex constructs.

• Trapdoor mappings: a construct in the source metamodel is mapped to a
very specific arrangement of constructs in the target metamodel.

• Lack of features: the target metamodel lacks a construct that is available
in the source metamodel.

6.1 UML roundtrip

Figure 6.1 illustrates our UML roundtrip transformation method. We used the
UML test set consisting of INSPIRE, SEAL and CIM, serialized in Eclipsexmi,
as introduced in Chapter 4. First, we transformed the UML test set into OWL
using our transformation tool. Second, we transformed the OWL test set back
into UML. Finally, we compared the original UML test set and the roundtrip test
set. This comparison consists of counting the relevant UML constructs in the

52



Chapter 6. Roundtrip transformations 53

original and the roundtrip UML test set. In addition, we evaluated whether the
constructs model the same instance, by comparing the instance names.

outputinput

inputoutput

comparison

UML test set Transformation tool UML roundtrip test set

OWL test set

Figure 6.1: Illustration of UML roundtrip data gathering process

6.1.1 Results

Table 6.1 presents the count of UML constructs before and after the roundtrip
transformation for each of the UML models in the test set. Some constructs are
broken down into properties of the construct. For instance, whether a Class was
set to Abstract. We visualized the accumulative counts of the constructs before
and after the roundtrip in Figure 6.2.

UML Construct INSPIRE INSPIRE
roundtrip

SEAL SEAL
roundtrip

CIM CIM
roundtrip

Package 2 1 16 1 132 1
Class 91 92 113 113 1527 1374
isAbstract 27 0 - - - -
Association1 24 25 15 15 1148 1148
Aggregation 13 0 11 0 94 0
Unidirectional 15 0 11 0 0 0
Bidirectional 4 0 - - - -
Not specified 5 25 4 15 1148 1148
AssociationClass 1 0 - - - -
Generalization 49 49 120 120 1063 1063
Property2 246 158 122 122 8135 8129
ownedAttribute 221 108 103 92 5839 5833
Comment - - 23 0 7945 0
Enumeration 2 2 5 4 291 291
Dependency - - - - 89 0
DataType - - 0 1 - -

Table 6.1: Used UML constructs before and after the roundtrip transformation

1Association names are lost in the roundtrip transformation
2The names of properties that are used in associations are different
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Figure 6.2: Total constructs before and after the roundtrip

6.1.2 Discussion

Table 6.1 and Figure 6.2 show that many constructs are preserved in the roundtrip
transformation. However, there are also various constructs for which the num-
bers differ, which could indicate that information is lost. We evaluate which
constructs are lost, and why these constructs are lost.

Packages

The state-of-the-art mappings briefly discuss Packages and package imports.
However, they do not go into detail on how to resolve nested packages. In the
current implementation of our transformation tool, all the elements in packages,
including nested packages are mapped to a single Ontology. Consequently, the
package structure is lost after the roundtrip transformation, as only a single
package remains. In addition, all Dependency constructs are lost during the
roundtrip, because each of these dependencies specifies a dependency between
packages.
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Alternatively, one could map each Package to a new Ontology with appro-
priate imports. By doing this, the package structure can be preserved. Further-
more, the dependencies on packages can then be preserved as well. ODM [27]
suggests mapping dependencies to an OWL:Annotation with RDF:Property as
OWL:AnnotationProperty. We suggest a different mapping. Instead of mapping
to an RDF:Property, we suggest using http://purl.org/dc/terms/requires as
AnnotationProperty, which is defined as “A related resource that is required
by the described resource to support its function, delivery, or coherence”3. This
definition is close to the meaning of a Dependency.

Classes

The number of classes in CIM and INSPIRE before the roundtrip is different
from those after the roundtrip. There are two explanations for this difference in
number of classes:

1. CIM contains 153 classes without names. These nameless classes are not
mapped, because each OWL:Class requires a unique IRI which is based on
the name of the UML:Class. This results in fewer classes after the roundtrip.

2. INSPIRE contains an extra Class after the roundtrip transformation. This,
due to the UML:AssociationClass that is mapped to a UML:Class and an
UML:Association in the OWL → UML step of the roundtrip transforma-
tion.

Abstract classes

Before the roundtrip transformation, INSPIRE contained 27 classes that were
marked as abstract. After the roundtrip, these classes were no longer marked as
abstract due to lack of features. OWL has no equivalent construct to mark classes
as abstract. Guizzardi et al. [12] discuss the meaning of abstract classes. They
discuss that the UML specification states that abstract classes are not instan-
tiable and are commonly used to reify constructs, share structure and organize
a model. They argue that abstract classes are conceptual constructions in the
form of a hierarchy whose bottom elements denote universals. In other words,
abstract classes are used in a hierarchy to specify a more general conceptualiza-
tion of more concrete classes. Figure 6.3 shows an example of the usage of an
abstract class in INSPIRE.

3 http://purl.org/dc/terms/requires

http://purl.org/dc/terms/requires
http://purl.org/dc/terms/requires
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cables

cables
Pipe Cable Duct

ElectricityCable

Figure 6.3: Subset of INSPIRE that shows an abstract class

It shows that a pipe and duct can have cables, and one particular type of
cable is an electricity cable. The abstract class cable is a more general concep-
tualization of specific cables. After the roundtrip, the cable class is no longer
marked abstract. However, despite no longer being marked abstract, the cable
class is still a conceptual construction in the form of hierarchy with more specific
classes. We claim that the loss of abstract class markings does not imply a loss
of information about the conceptual domain, but rather has practical implica-
tions for the instances of the model. For instance, the reason why the abstract
class cable was added, could be to make relations between pipes, ducts and ca-
bles easier to maintain. Instead of specifying associations between every type of
cable and ducts and pipes, only associations with the conceptual construction
cable have to be made. However, this is still possible without making the cable
class abstract. The loss of abstract class has consequences for the instance level.
Imagine that this slice of the INSPIRE model is used to create a database. If cable
is an abstract class, we can only instantiate or populate the database with con-
crete cables. Whereas if cable is not an abstract class, we can find cables in the
database, which could be undesirable. Thus, by losing the abstract class prop-
erty, no conceptual information is lost. Instead, a constraint on the instances, or
population of the model, is lost.

Associations and attributes

Table 6.1 shows that associations can have unidirectional, bidirectional or un-
specified navigability. After the roundtrip, all associations have unspecified nav-
igability. As discussed in Chapter 3, ODM is the only state-of-the-art mapping
that briefly considers the difference between uni- and bidirectional navigability
of associations, but this discussion is not taken into account in their mapping of
associations. Consequently, our transformation tool does not preserve the nav-
igability of associations in a roundtrip transformation. There are two ways to
specify the navigability of an association:

1. An associationEnd property that is owned by a class (ownedAttributes) is
navigable.
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2. An associationEnd property that is in the navigableEnd set is navigable
(See Figure 3.8 for more details).

If both associationEnd properties are navigable, the association is bidirec-
tional, if one is navigable, unidirectional and otherwise unspecified. This ex-
plains the difference in properties that are an owned attribute from before and
after the roundtrip transformation. In our test set, the navigability of associations
is specified by ownership of properties by classes. SEAL has 11 unidirectional
associations, which results in 11 more properties that are owned by a class in the
original test set than in the roundtrip test set. The differences in properties and
owned attributes in INSPIRE is partly due to the navigability of associations but
has an additional reason. INSPIRE contains properties without a type. These
properties are not transformed because the transformation requires a type to
determine whether to map to an OWL:DataProperty or OWL:ObjectProperty.

We suggest a mapping for navigability of associations like ODM suggested,
but with additional details. An unidirectional navigable association is mapped
to an OWL:ObjectProperty with the non-navigable end as domain. Both as-
sociations whose navigability is unspecified and bidirectional are mapped to
OWL:Objectproperties with an OWL:InverseObjectProperties axiom. In the
transformation from OWL→ UML we suggest setting the navigability of mapped
associations to bidirectional by default, instead of unspecified.

The implementation of this mapping resolves some of the previously men-
tioned roundtrip issues but introduces new ones. All associations after the
roundtrip that had unspecified navigability will have bidirectional navigabil-
ity. However, when navigability is not specified in our UML test set, bidirec-
tional navigability is meant in most cases. Therefore we see the transformation
from unspecified navigability to bidirectional as desirable. The new mappings
also introduce structure conflation. Since both uni-directional associations and
class owned attributes are mapped to OWL:Properties, it is unclear whether an
OWL:Property should be transformed into an association or a class owned at-
tribute in the OWL→ UML transformation. In the current implementation, both
unidirectional associations and class owned attributes will become class owned
attributes after the roundtrip.

The question then becomes whether information is lost when unidirectional
associations are transformed into class owned attributes. Colomb et al. [6],
have evaluated the distinction between unidirectional associations and class at-
tributes. They argue that they are semantically equivalent, hence no information
about the conceptual domain is lost when choosing between unidirectional as-
sociations and class attributes. They give two practical explanations why the
distinction between unidirectional associations and class attributes can be use-
ful:
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1. If the UML model is used to implement a relational database, attributes
are usually implemented as columns in a table, whereas associations are
implemented as multiple tables with foreign keys. Multiple tables with
foreign keys are heavier to process, so in this case, the choice between
attributes and associations is an engineering decision.

2. The distinction between associations and attributes can help with the clar-
ity of the model. Associations can represent the most important connec-
tions and attributes the less important, which can then be hidden in the
visual overview of the model.

Finally, a best practice in industry is to represent UML:Properties that have
a Class as Type as an Association and UML:Properties that have a DataType as
Type as Class Attributes4. We suggest following this best practice instead of
the current mapping proposed in the state-of-the-art mappings. So, instead of
mapping all OWL:Properties except for those that have OWL:InverseProperties

to attributes, we suggest mapping OWL:DataProperties to class attributes and
OWL:ObjectProperties to associations.

Aggregation

Associations can represent an aggregation relation. These aggregation relations
are lost in the roundtrip transformation due to a lack of a feature. Despite this
lack, the state-of-the art mappings suggest that the restrictions that an aggrega-
tion relation imposes can be transformed. Zedlitz states that aggregations are
antisymmetric and an object must not be in an aggregation relation to itself [38].
He suggests adding an AsymmetricObjectProperty axiom and an irreflexiveOb-
jectProperty axiom to satisfy these constraints.

However, although the constraints that an aggregation relation imposes can
be transformed, the semantics of the aggregation relation are lost in a roundtrip
transformation. The semantics of an aggregation relation are commonly under-
stood as an association that specifies that a type of object consists of other types
of objects [24], or as others have put it a component of relation [11]. Figure 6.4
gives an example of an aggregation relation in CIM.

Region

0..1

Regions

*
GeographicalRegion SubGeographicalRegion

Figure 6.4: Example of an aggregation association in CIM

Figure 6.4 represents that a GeographicalRegion consists of SubGeograph-
icalRegions, or in other words, that SubGeogrpahicalRegions are components

4 https://bellekens.com/2011/08/10/uml-best-practice-attribute-or-association/

https://bellekens.com/2011/08/10/uml-best-practice-attribute-or-association/
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of a GeographicalRegion. This information is lost because after the roundtrip
aggregation relations become regular associations.

Association class

INSPIRE has one association class that is lost in the roundtrip due to loss of
structure. After the roundtrip, this association class is transformed into a regular
class and association, as illustrated in Figure 6.5. The association class adds an
extra constraint on the subunit association between UnitOfMeasure. For each
UnitOfMeasure that is a subunit of another UnitOfMeasure, there may only exist
one SubUnitsperUnit class that adds information to this association, whereas in
the model after the roundtrip, the SubUnitsPerUnit can be associated with as
many UnitOfMeasure classes as the cardinalities permit.

subunits subunits

UnitOfMeasure

SubUnitsPerUnits

UnitOfMeasure

SubUnitsPerUnits

UML→ OWL→ UML

Figure 6.5: The association class in INSPIRE before and after the roundtrip

A clearer example is presented on etutorial.org5. They present an association
class between a person and a skill, which describes the competence of someone
in that skill. For each association from a person and a skill, a person can only
have one competence. If this was modeled using a regular class instead of an
association class a person could have multiple competences for a given skill. So,
the association class adds an extra constraint on the instances or population of
the model. This constraint is lost in the roundtrip transformation.

Enumerations, datatypes and comments

In SEAL one enumeration is missing after the roundtrip, which has become a
datatype instead. The enumeration became a datatype because the enumera-
tion was declared without any literals (or values). Our mapping from OWL
→ UML only transforms DataOneOf axioms into enumerations, but because

5http://etutorials.org/Programming/UML/Chapter+6.+Class+Diagrams+Advanced+
Concepts/Association+Class/

http://etutorials.org/Programming/UML/Chapter+6.+Class+Diagrams+Advanced+Concepts/Association+Class/
http://etutorials.org/Programming/UML/Chapter+6.+Class+Diagrams+Advanced+Concepts/Association+Class/


Chapter 6. Roundtrip transformations 60

the enumeration has no literals, only a datatype definition was added without
datatypedefinition that specifies the dataoneof axiom.

Finally, the comments are missing after the roundtrip. Although a mapping
from UML:Comments to OWL:Annotations has been implemented, no mapping
from OWL:Annotations to UML:Comments has been suggested in the state-of-
the-art mappings. We discuss this in more detail in Section 6.2.2.

6.1.3 Metamodel overview

Figure 6.6 gives a compact overview of our UML roundtrip evaluation using
a simplified version of the UML metamodel. It presents which constructs are
preserved and lost after the roundtrip transformation.

packagedElement

0..*

comment

0..*

general

1..1

specific

1..1

ownedAttribute

0..*

type

1..1

association

0..1

memberEnd

2..*

navigableOwnedEnd

0..*

Model

Package PackagebleElement Comment

Classifier Generalization

Type

Enumeration

Property

lowerValue : ValueSpecification
upperValue : valueSpecification

AggregationKind

- none
- shared

Class

isAbstract : boolean

Association

AssociationClass

Figure 6.6: Overview of preserved and lost constructs after the roundtrip
transformation

Constructs colored green are preserved after the roundtrip transformation.
Constructs and associations colored red have missing information. As discussed
in Section 6.1.2, the problem of choosing between associations and class owned
attributes can be resolved by creating associations for relations between classes
and class owned attributes for relations with types. We lost constraints on the
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population of the models by losing the association class and the abstract prop-
erty of classes. Finally, we lost the semantics of the aggregation relation.

6.2 OWL roundtrip

Figure 6.7 illustrates our OWL roundtrip transformation method. We used
the OWL test set introduced in Chapter 4. First, the OWL test set was trans-
formed into OWL serialized as Eclipsexmi using our OWL API extension. Sec-
ond, the OWL test set was transformed into UML using our transformation tool.
Third, the UML test set was transformed back into OWL serialized as Eclipsexmi.
Fourth, the OWL was serialized as RDF/XML using our OWL API extension. Fi-
nally, we compared the original OWL test set with the roundtrip test set using
the equal comparison function of the OWL API. This function compares two
ontologies and returns the axioms that are missing and those that are added.

input

output

input

outputinput

output

input

output

comparison

OWL test set OWL API extension OWL roundtrip test set

OWL test set (Eclipse) Transformation tool OWL roundtrip test set (Eclipse)

UML test set

Figure 6.7: Illustration of OWL roundtrip process

6.2.1 Results

For clarity, we structured the results of the OWL roundtrip transformation based
on axiom type. Figure 6.8 presents the cumulative counts of axiom types before
and after the roundtrip test. The ”Axioms after roundtrip” numbers were ac-
quired by subtracting the missing axioms, and adding the added axioms to the
original count. Figure 6.9 shows the cumulative counts of the missing and added
axiom types, which we gathered using the comparison function provided in the
OWL API.
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Figure 6.8: Axioms before and after the roundtrip
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Figure 6.9: Missing and added axioms
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Figure 6.10 illustrates the cumulative counts of lost and preserved axioms
after the roundtrip. Figure 6.11 breaks down the lost axioms in axioms related
to individuals, annotations and other axiom types.

18870

42260

Axioms preserved Axioms lost

Figure 6.10: Cumulative count of lost
ans preserved axioms

5806

17605

18849

Other axiom types lost Individual axioms lost

Annotation axioms lost

Figure 6.11: Breakdown of lost axioms

6.2.2 Discussion

Figure 6.8 and 6.10 show that a significant part of the axioms in the OWL test
set is lost after the roundtrip transformation. However, Figure 6.11 shows that a
large part of the lost axioms are related to Annotations and Individuals and only
a small part is related to other axiom types. We discuss the missing annotation
axioms in Section 6.2.2 and the missing individual axioms in Section 6.2.2. In
the upcoming sections we evaluate the various missing and added axioms types
shown in Figure 6.9.

Names of properties

If an OWL:Property has an inverse relationship with another property, these
properties are mapped to an UML:Association in the OWL → UML transfor-
mation. In the transformation back from UML → OWL the names of the prop-
erties are different than those in the original test set. Consequently, there is
a large number of missing Declaration(ObjectProperty), InverseobjectProperties,
ObjectPropertyDomain, ObjectPropertyRange and SubObjectPropertyOf axioms.
However, semantically equivalent axioms do exist in the roundtrip set, the only
difference is that the properties are named differently.
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Domain and range of properties

The state-of-the-art mappings suggest setting the domain and range of prop-
erties without range or domain specification to OWL:Thing. However, this in-
troduces structure conflation in the UML → OWL mapping. If both data and
object properties are transformed to UML:Properties with OWL:Thing as type, it is
unclear whether the UML:Property should be mapped to a data or object prop-
erty. We suggest mapping data properties without range to UML:Properties

with xsd:anytype as type. By doing this, it is unambiguous whether an UML
property should be transformed into an object or data property.

A consequence of this mapping is that in the roundtrip transformation in-
formation that is implicit in an OWL ontology is made explicit, namely, ex-
tra axioms are added that state the range of object and data properties are
OWL:Thing and xsd:anyType. We suggest slightly adjusting the transformation of
UML:Property types, in the UML→ OWL transformation, by adding a constraint
that an object or axiom range axiom is only added if the type is not OWL:Thing
or xsd:anyType.

Cardinality constraints

Some axioms have cardinality constraints specified with OWL:Thing as range,
even when a property range to a more specific class is specified. An example is
the class key-entity pair from the prov#dictionary ontology6. The OWL:Class key-
entity pair has the following SubClass axiom: SubClassOf(:Key Entity Pair

ObjectExactCardinality(1, pair-key, OWL:Thing). After the roundtrip trans-
formation, OWL:Thing is replaced with a more specific class: prov:entity. This
information was also available in the original ontology through reasoning, but
the roundtrip makes this implicit information explicit.

In Figure 6.9, we observed that a large number of DataMinCardinality and
ObjectMinCardinality axioms were added. These added axioms specify that the
min cardinality of object and data properties is 0. However, this information was
also implicitly available in the original ontology. We suggest adding a constraint
in the mapping from UML → OWL that does not map lower bound cardinality
constraints of 0.

Union and intersection

OWL has constructs to express the union and intersection of classes. We imple-
mented a transformation rule based on the state-of-the-art mappings that maps
union and intersection constructs for classes. However, in Figure 6.9 we ob-
served various missing axioms that use object union and intersection constructs,

6 https://www.w3.org/ns/prov#KeyEntityPair

https://www.w3.org/ns/prov##KeyEntityPair
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because the mappings of union and intersections of object properties are trap-
door mappings. We explain this using an example roundtrip transformation of
a union constructs from an ontology that represents hardware7.

OWL original
Declaration( Class ( :Speaker ) )

Declaration( Class ( :Microphone ) )

Declaration( DataProperty ( :Muted ) )

DataPropertyRange( :Muted xsd:boolean )

DataPropertyDomain( :Muted ObjectUnionOf(

:Speaker :Microphone ) )

Speaker union Microphone

Muted : Boolean

Speaker Microphone

OWL roundtrip
Declaration( Class ( :Speaker ) )

Declaration( Class ( :Microphone ) )

Declaration( Class ( :Speaker union Microphone ) )

Declaration( DataProperty ( :Muted ) )

DataPropertyRange( :Muted xsd:boolean )

DataPropertyDomain( :Muted :Speaker union Microphone)

OWL→ UML UML→ OWL

Figure 6.12: Roundtrip transformation of the hardware example

As the hardware example illustrates, the axiom containing the union con-
struct is missing after the roundtrip. Instead a new class declaration is added
that represents the union constructs. This construct cannot be transformed
back into a union construct based on the available meta construct data alone.
The same happens for the ObjectIntersection construct. Semantically, the spe-
cific arrangement of union and intersection representations in UML are equiv-
alent to the OWL union and intersection, but the use of the OWL:ObjectUnion,
OWL:ObjectIntersection constructs is lost in the roundtrip transformation.

Equivalences

OWL has properties to define that classes, data and object properties are equiv-
alent to each other. This is done using the EquivalentDataProperties, Equiva-
lentObjectProperties and EquivalentClasses axioms. After the roundtrip, these
axioms are missing due to structure loss. A mapping for the equivalences be-
tween classes, data and object properties is implemented. By making equivalent
data properties both a sub data property, and a super data property of the other,
the semantics of the equivalence axiom can be preserved. However, a differ-
ent construction is used and the equivalence axioms are lost in the roundtrip
transformation.

7 https://www.w3.org/2007/uwa/context/hardware.owl

https://www.w3.org/2007/uwa/context/hardware.owl
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Disjoint classes

Axioms that specify that classes are disjoint are missing after the roundtrip trans-
formation. The state-of-the art does consider disjoint classes axioms. Though,
Zedlitz discusses that in general, UML classes with different names are consid-
ered disjoint, hence there is no need to make explicit that classes are disjoint
in the OWL → UML transformation [38]. However, the assumption that UML
classes are disjoint is not made explicit in the UML → OWL transformation,
resulting in the loss of disjoint classes axioms.

Individuals

Individuals are not mapped to UML in the state-of-the art mappings. As a
consequence, all axioms that assert something about individuals are lost in the
roundtrip transformation, namely: ClassAssertion, DataPropertyAssertion, Ob-
jectPropertyAssertion, DifferentIndividuals and SameIndividuals.

Lack of features

There are several OWL constructs for which UML does not have an equivalent.
If one of these constructs is used in an axiom for which UML does not have
an equivalent, this axiom will be lost after the roundtrip transformation. The
following constructs are not mapped due to a lack of features: someValuesFrom,
allValuesFrom, inverseOf, complementOf. In addition the following axioms are
not mapped due to a lack of features: Asymmetric, Transitive, Irreflexive, Sym-
metric, and ReflexiveObjectProperty axioms.

Annotation assertions

Finally, all annotation assertions are lost during the roundtrip transformation,
since they are not discussed in the state-of-the art mappings. UML comments are
similar to annotation assertions, but annotation assertions provide more func-
tionality. Comments simply present a string with a comment (text), whereas
with annotation assertions it is possible to specify an annotation property, which
adds semantic information to the annotation. Examples of annotation proper-
ties are rdfs:label and rdfs:isDefinedBy. UML lacks the features to represent
annotation properties. We suggest mapping all annotation properties to UML
comments to preserve as much information as possible. Although the annotation
property is lost during the roundtrip, the textual information is preserved. In ad-
dition, implementing this mapping preserves UML comments over a roundtrip
transformation.
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6.3 Conclusion

To answer SQ4: What information is lost in a roundtrip transformation from
UML to OWL and OWL to UML based on the state-of-the-art mappings? Figure
6.2, 6.8 and 6.9 show the number of missing UML constructs and OWL axioms
after the roundtrip transformations. Some constructs were not mapped in the
state-of-the-art mappings, such as annotation assertions and navigability of asso-
ciations. We suggested additional transformation rules and slight changes to the
state-of-the-art mappings to preserves as much information as possible. These
mappings can be found in Appendix B.

In both the UML and the OWL roundtrip, some information is lost. Most
of the information in the UML models is preserved after a roundtrip transfor-
mation, except for the semantics of an aggregation association. In addition,
constraints on the instances of the model and visual structuring of the model
are lost after the roundtrip transformation. On the other hand, we found out
that UML has severe feature lack to express OWL concepts. A large part of the
OWL axioms does not have an UML equivalent. Furthermore, in some cases
ontologies are more verbose after the roundtrip or include axioms that explicitly
state what can be inferred through reasoning. However, despite this lack of fea-
tures, a large number of axioms is preserved after the roundtrip, which indicates
that there is an intersection between UML and OWL that is commonly used.



Chapter 7

Evaluating transformation
results

Although the roundtrip evaluation gives an impression of which information is
lost in the transformation process, it is insufficient to evaluate whether the au-
tomatically transformed UML models and OWL ontologies make sense in UML
and OWL, respectively. We discuss a few peculiarities in the models and ontolo-
gies to explain subtle differences in semantics and modeling approaches and the
implications of these differences. Section 7.1 discusses a number of observations
made in automatically transformed OWL ontologies from UML models. Section
7.2 discusses a few observations made in automatically transformed UML mod-
els from OWL ontologies. Finally, Section 7.3 concludes this chapter by answer-
ing SQ5: What peculiarities exist in automatically transformed UML models
and OWL ontologies?

7.1 UML to OWL evaluation

7.1.1 Stereotypes

When evaluating the resulting ontologies from the UML test set transformation
we observed a number of peculiar OWL:Class instances. We observed class dec-
larations for what we would commonly consider datatypes. For instance, Dec-
laration(Class (:Boolean)) and Declaration(Class (:DateTime)). Furthermore, due
to the modeling of datatypes as classes, each property that we would except to
become a data property, turns into an object property. We can understand why
this happens when looking at the original UML models. In all the UML models
in the test set, datatypes have been defined as classes, which are annotated with
a stereotype which classifies them as primitive or datatype. This way of model-
ing datatypes in UML is not captured by the current state-of-the-art mappings.
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We have resolved this issue by adding project-specific transformation rules for
our UML test set that transform datatypes that are modeled as classes to equiv-
alent XSD datatypes where possible. In the back transformation from OWL →
UML we propose mapping the XSD datatypes to the UML metamodel construct
datatype instead of defining ones own datatypes using stereotypes. This exam-
ple shows that when bringing metamodel transformations between UML and
OWL to the industry, there could be a need for project specific transformations
based on the specific use of UML and OWL. For example, NEN36101, a standard
for the exchange of geo-information, contains stereotypes that could be mapped
using project specific mappings.

7.1.2 Inheritance

Another peculiarity can be observed related to inheritance. Figure 7.1 represents
a subset of CIM. After the transformation from UML → OWL this results in
an ontology with three class declarations for document, skill and bank account.
Furthermore, two OWL:SubClassOf axioms are added to represent the inheri-
tance relations between document and skill, and document and bank account.

Document

authorName : String
subject : String
comment : String

Skill

skill : SkillLevelKind
crafts : Craft

BankAccount

accountNumber : String

Proficiency level of a
craft, which is required
to operate or maintain
a particular type of
asset and/or perform
certain types of work.

Proficiency level of a
craft, which is required
to operate or maintain
a particular type of
asset and/or perform
certain types of work.

Bank account.Bank account.

Figure 7.1: Representation of Skills and BankAccounts in CIM

However, the interpretation of the generated ontology might raise questions.
In OWL, the subclass of relation implies that every sub class is of the same type
of the super class. In other words, if we interpret the generated ontology along
with the comments that were placed on the classes, we read that a bank account
is some sort of document, and a proficiency level of a craft is some sort of docu-
ment. In OWL, we assert knowledge, therefore asserting that a skill is some sort
of document seems nonsensical conceptually. On the other hand, in the UML

1 https://geonovum.github.io/NEN3610-Linkeddata/#iso19150-2

https://geonovum.github.io/NEN3610-Linkeddata/##iso19150-2
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world, properties are local to classes and inherited through subclasses, which
are visually represented (as it is shown in Figure 7.1). When looking at the
UML diagram it is easier to understand, due to the specified properties within
the classes, that we are not talking about the concept of a skill, or the concept
of bank account, but rather a document that registers information about some-
one’s skill in a certain craft, and a document that registers information about
someone’s bank account. We suggest that the abstraction level of class, which
conceptualizes something, should be specified in more detail to prevent seman-
tic misunderstandings in OWL. This could be done by creating class names that
more explicitly represent the intended concept or adding a comment in which is
clarified what the class aims to represent.

7.1.3 Properties

Another strange mapping occurs due to differences in the definitions of proper-
ties in UML and OWL. In UML, properties are defined locally to a class, whereas
in OWL properties are standalone entities that can exist in the OWL universe
[34]. After the transformation from UML → OWL, properties are modeled in a
strange manner. We illustrate this using a CIM example presented in Figure 7.2.

Outage

cause : String

Document describing
details of an active or
planned outage in a
part of the electrical
network.

Document describing
details of an active or
planned outage in a
part of the electrical
network.

Incident

cause : String

Description of a prob-
lem in the field that
may be reported in a
trouble ticket or come
from another source.
It may have to do with
an outage.

Description of a prob-
lem in the field that
may be reported in a
trouble ticket or come
from another source.
It may have to do with
an outage.

Figure 7.2: CIM UML subset describing outage and incident

This example is transformed into two declared classes for outage and inci-
dent, cardinality constraint for the property, and two declarations for properties
that are asserted as being disjoint. However, if we had started modeling in OWL
we would have probably added only one axiom to represent the property cause,
because one can argue that the property that models ”being the cause of some-
thing” has the same semantic meaning for both outage and incident. However,
this is not always the case, as Figure 7.3 illustrates.
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Mechload1

b : Float

Speed coefficient bSpeed coefficient b

EquivalentShunt

b : Subsceptance

Positive sequence
shunt susceptance
Positive sequence
shunt susceptance

Figure 7.3: CIM UML subset presenting two classes with property named b

In Figure 7.3 we see that the property name b is both used to represent a
property about ”speed coefficient (b)” and about ”positive sequence shunt sus-
ceptance”. It would be incorrect to mark these properties as semantically equiva-
lent, therefore in this case, the added axioms for specifying properties as disjoint
is required. We see that within the same UML model, both properties that are
disjoint and properties that are semantically equivalent. A potential solution to
this problem is making property names in UML more explicit, since by giving
each property more descriptive names it becomes easier to determine whether
the properties are semantically equivalent or not. In UML, there is no urgent
need to give properties descriptive names, since they are always encapsulated
within classes. A proper transformation to OWL, however, would benefit from
more descriptive property names.

7.2 OWL to UML evaluation

7.2.1 Intersection and union in domain and ranges

We observed a number of odd constructions in the transformed UML models
from OWL ontologies, such as the intersection helper class illustrated in Figure
7.4.

Building City Country District Street

Building intersection City intersection Country intersection District intersection Street

in

Figure 7.4: Subset of the transformed Hungarian postal address ontology
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Figure 7.4 shows a subset of the in UML transformed Hungarian postal ad-
dress ontology2. We can read this subset as: an object that is a building and a
city and a country and a district and a street, can be located in another object
that is a building a city a country a district and a street. However, semantically
this does not make sense. If we look at the real world around us there are (to our
knowledge) very few objects that are both a building, a city, a country, a district
and a street at once. What was probably meant with the OWL ontology is that
each of the classes building, city, country, district and street can be in a building,
city, country, district or street. This makes more sense; a building and a street
can be located in a city or country. In other words, in the original ontology the
range and domain of the property ”in” is modeled incorrectly. What the model-
ers probably meant was the union of the classes instead of the intersection. This
is a problem that we encountered in various ontologies in our test set. For in-
stance, in an ontology about CT Eligibility3, the object property named hasCTID
has the intersection of exclusion and inclusion as domain. However, Exclusion
and Inclusion is specified as disjoint in the ontology. Hence, the intersection of
Exclusion and Inclusion is the empty set and the domain of ”hasCTID“ has been
set to a domain that has no instances per definition. Which shows that modeling
in OWL can be difficult.

7.2.2 Universal superclass

Another odd construction in the transformed OWL ontologies is the introduction
of a universal superclass in the resulting UML model. Figure 7.5 shows a subset
of a transformed ontology about wine4 that uses a universal superclass in UML.

OWL:Thing

hasBody : WineBody [0..*]
hasFlavor : WineFlavor [0..*]
hasSugar : WineSugar [0..*]

Figure 7.5: Subset of the transformed wine ontology

In the wine ontology, the properties hasBody, hasFlavor and hasSugar have
no domain specified, which results in them being encapsulated by an UML:Class
that represents the OWL universal superclass. This peculiarity exists because of
the difference in definition of properties between UML and OWL, as discussed

2https://www.w3.org/2001/sw/Europe/reports/dev workshop report 9/
HungarianPostalAddress.owl

3https://www.w3.org/wiki/images/d/d8/HCLS%24%24ClinicalObservationsInteroperability%
24CTEligibility.owl

4https://www.w3.org/TR/owl-guide/wine.rdf

https://www.w3.org/2001/sw/Europe/reports/dev_workshop_report_9/HungarianPostalAddress.owl
https://www.w3.org/2001/sw/Europe/reports/dev_workshop_report_9/HungarianPostalAddress.owl
https://www.w3.org/wiki/images/d/d8/HCLS%24%24ClinicalObservationsInteroperability%24CTEligibility.owl
https://www.w3.org/wiki/images/d/d8/HCLS%24%24ClinicalObservationsInteroperability%24CTEligibility.owl
https://www.w3.org/TR/owl-guide/wine.rdf
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in Section 7.1.3. Since in OWL properties are standalone entities that exist in the
universe they can be specified without domain and range. In the OWL world,
which is closely aligned to triple storage and graph databases, this is not a prob-
lem, since one can define arbitrary triple relations between objects and the stan-
dalone properties. For instance, one could specify in triple storage that the wine
“Corbans Private Bin Sauvignon Blanc” hasFlavor “Strong”. In UML, standalone
properties without domain or range can become problematic, as UML is closely
related to object-oriented programming languages, data schemas and relational
databases. In these cases, we would like to know which specific classes can have
these properties, to generate appropriate classes, data schemes and databases.

7.3 Conclusion

To answer SQ5: What peculiarities exist in automatically transformed UML
models and OWL ontologies? By examining transformed UML models and
OWL ontologies we found a number of peculiarities, which illustrate differences
between UML and OWL. Even though automatically transformed constructs are
syntactically correct, they do not necessarily make sense in UML and OWL.
We explained these differences with the underlying modeling assumptions and
relevant technologies of UML and OWL, respectively. In addition, we made a
couple of suggestions to improve the automatically transformed models and on-
tologies. Namely, more expressive names for UML classes and properties, and
explicit specification of domains and ranges of OWL properties.



Chapter 8

Final remarks

8.1 Conclusion

In this master’s thesis we examined to what extent it is possible to automat-
ically transform UML models into OWL ontologies and vice versa. In order
to do this, we have implemented a bidirectional metamodel based transforma-
tion tool using QVT and the OWL API, based on the state-of-the-art mappings
between UML and OWL proposed in the literature. Our transformation tool
allowed us to overcome the current lack of case studies in academic work on
metamodel transformations between UML and OWL. We moved away from ex-
amining metamodel transformations based on the general structure of UML and
OWL, and instead performed case studies to evaluate the transformations. We
performed roundtrip transformations and evaluated several transformed UML
models and OWL ontologies. Based on the roundtrip transformations we have
suggested additional transformation rules that were missing in the state-of-the-
art mappings and some minor changes to some of the state-of-the-art mappings.

The roundtrip transformations showed that most UML constructs can be
expressed in OWL, but OWL has various constructs for which UML has no
equivalent. Despite this feature lack of UML, there are a significant number
of constructs that are preserved throughout the roundtrip, which indicates that
an intersection of similar modeling constructs exists between UML and OWL.
Based on our evaluation of automatically transformed models and ontologies,
we observed that even when syntactically information is preserved throughout
a roundtrip transformation, peculiarities can be found in the models and ontolo-
gies obtained. These peculiarities exist due to slight differences in semantics of
similar constructs, and differences in modeling approaches between UML and
OWL.

To conclude, there is significant overlap between UML and OWL and most
of this overlap allows for automatic transformation. However, there is also a
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significant loss of information due to lack of features, differences in semantics
and modeling approaches. We believe that our transformation tool can function
as a starting point for deriving OWL ontologies from UML models and models
from ontologies. In addition, we hope that our observations, and explanations
of the limitations and peculiarities in metamodel transformations between UML
and OWL can assist modelers to create better ontologies and models.

8.2 Future work

Our work aimed to identify the problems and limitations of metamodel transfor-
mations between UML and OWL. We present some directions for future work:

• We discuss a notion of semantic equivalence based on interpretations and
applications of models and ontologies. Future work could define a math-
ematical definition of semantic equivalence for a more formally grounded
evaluation.

• A limitation of our research is in the evaluated UML models. In our re-
search, we examined only a few UML models used within the energy do-
main, more specifically Alliander and Enexis. Future work could evaluate
more UML models from different domains.

• One could research the possibility of implementing metamodel transfor-
mations between UML + OCL and OWL + SHACL. OCL could be used
to capture the axioms of OWL, and SHACL could be used to capture the
constraints defined by UML constructs. However, adoption of OCL by the
industry is limited. Alternatively one could delve deeper into extending
UML with profiles to capture OWL constructs, as others, such as LinkED,
have attempted.

• One could try to bring the transformation tool to the industry. We are
currently in contact with the CIM community to see if they can use our
tool for a formal OWL publication of CIM. To stimulate this, one could
try to improve the usability and quality of the transformation tool. For
instance, by making explicit which UML constructs were mapped using
which OWL constructs and vice versa.

• Finally, one could examine potential use cases for the automatically trans-
formed ontologies and models. We identified one use case that is related
to publishing data on the semantic web. For example, some researchers
are using OWL ontologies to validate UML models [30].
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model transformation tool. Science of computer programming, 72(1-2):31–39,
2008.

[18] Stuart Kent. Model driven engineering. In International Conference on Inte-
grated Formal Methods, pages 286–298. Springer, 2002.

[19] Kilian Kiko and Colin Atkinson. A detailed comparison of uml and owl.
University of Mannheim, 2008.

[20] Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A snapshot of the
owl web. In International Semantic Web Conference, pages 331–346. Springer,
2013.

[21] Brian Matthews. Semantic web technologies. E-learning, 6(6):8, 2005.

[22] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fok-
oue, Carsten Lutz, et al. Owl 2 web ontology language profiles. W3C
recommendation, 27:61, 2009.



Bibliography 79

[23] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers, Cédric
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Appendix A

Mappings between UML and
OWL

The Functional OWL Syntax1 is used to represent OWL constructs. Mapping is
abbreviated as map. The mappings are numbered incrementally.

A.1 UML to OWL

Table A.1: Mapping of UML Class

UML Construct Class

Map1 [27, 30, 38] Declaration(Class(:Class))

Table A.2: Mapping of UML Abstract Class

UML Construct Abstract Class

Map2 [27, 30] Not possible.

Map3 [38] Could be mapped to a regular OWL Class, but there is no guarantee
that the Class is not instantiated:

Declaration(Class(:Class))

Table A.3: Mapping of UML Attributes

UML Construct Attributes

Map4 [27, 30, 38] If the attribute type is an UML Class or complex datatype:

1 https://www.w3.org/TR/owl2-syntax/
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Declaration(ObjectProperty(:Property))

Declaration(ObjectPropertyDomain(:Property :Domain))

Declaration(ObjectPropertyRange(:Property :Range))

Map5 [27, 30, 38] If the attribute type is a primitive type or enumeration:

Declaration(DataProperty(:Property))

Declaration(DataPropertyDomain(:Property :Domain))

Declaration(DataPropertyRange(:Property :Range))

Notes In [38] DisjointDataProperties or DisjointObjectProperties are
added to prevent different properties from being interpreted as a
single property.

Table A.4: Mapping of UML Binary Association (different classes)

UML Construct Binary Association (between two different

classes)

Map6 [27, 30, 38] Declaration(ObjectProperty(:Property1))

Declaration(ObjectProperty(:Property2))

Declaration(ObjectPropertyDomain(:Property1 :Domain))

Declaration(ObjectPropertyDomain(:Property2 :Domain))

Declaration(ObjectPropertyRange(:Property1 :Range))

Declaration(ObjectPropertyRange(:Property2 :Range))

InverseObjectProperties(:Property1 :Property2)

Table A.5: Mapping of UML Binary Association (to itself)

UML Construct Binary Association (class to itself)

Map7 [30] Map6 +

AsymmetricObjectProperty(:Property1)

AsymmetricObjectProperty(:Property2)

Table A.6: Mapping of N-ary Association

UML Construct N-ary Association

Map8 [27, 30] Partially possible, by declaring a new class and n in [3...*] properties
with domain and ranges:

Declaration(Class(:Class))

Declaration(ObjectProperty(:Property-n))

Declaration(ObjectPropertyDomain(:Property-n :Domain))

Declaration(ObjectPropertyRange(:Property-n :Range))
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Table A.7: Mapping of Association Class

UML Construct Association Class

Map9 [27, 30] Map6 without the ObjectPropertyRange declarations +

ObjectPropertyDomain(:Property1 ObjectUnionOf(:Property2

:AssociationProperty)) ObjectPropertyDomain(:Property2

ObjectUnionOf(:Property1 :AssociationProperty))

Declaration(Class(:AssociationClass))

Declaration(ObjectProperty(:AssociationProperty))

ObjectPropertyDomain(:AssociationProperty

ObjectUnionOf(:Property1 :Property2))

ObjectPropertyRange(:AssociationProperty

:AssociationClass)

Table A.8: Mapping of UML Ordered Association

UML Construct Ordered Association

Map10 [38] Not possible.

Table A.9: Mapping of UML Aggregation

UML Construct Aggregation

Map11 [27, 30] Not possible.

Map12 [38] Map6 + restrictions on aggregations by adding:

AsymmetricObjectProperty(:AggCompEnd)

IrreflexiveObjectProperty(:AggCompEnd)

Table A.10: Mapping of UML Composition

UML Construct Composition

Map13 [27, 30] Not possible.

Map14 [38] If the composition is navigable from part to whole: Map12 + :

FunctionalObjectProperty(:AggCompEnd)

Map15 [38] If the composition is navigable from whole to part: Map12 + :

InverseFunctionalObjectProperty(:AggCompEnd)

Map16 [38] If the composition is bidirectionally navigable: choose between
Map14 & Map15.
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Table A.11: Mapping of UML Generalization (between classes)

UML Construct Generalization (between classes)

Map17 [27, 30, 38] SubClassOf(:SubClass :SuperClass)

Table A.12: Mapping of UML Generalization (between associations)

UML Construct Generalization (between associations)

Map18 [27, 30, 38] SubPropertyOf(:SubProperty1 :SuperProperty1)

SubPropertyOf(:SubProperty2 :SuperProperty2)

Table A.13: Mapping of UML Generalization (between datatypes)

UML Construct Generalization (between datatypes)

Map19 [38] In general not possible. Exception for generalization of enumera-
tions:

Declaration(DataType(:SuperType))

Declaration(DataType(:Enumeration1)

Declaration(DataType(:Enumeration2)

Declaration(DataTypeDefinition(:Enumeration1

DataOneOf("value1", "value-n")))

Declaration(DataTypeDefinition(:Enumeration2

DataOneOf("value1", "value-n")))

Declaration(DataTypeDefinition(:SuperType

DataUnionOf(:Enumeration1 :Enumeration2)))

Table A.14: Mapping of UML GeneralizationSet

UML Construct GeneralizationSet

Map20 [27, 30, 38] Case { Incomplete, Disjoint }. Specify for each pair of classes in the
generalization:

DisjointClasses(:Class1 :Class2)

Map21 [30, 38] Case { Complete, Disjoint }:

DisjointUnion(:Class :SubClass1 :SubClass-n)

Map22 [27, 30, 38] Case { Complete, Overlapping }:

EquivalentClasses(:Class ObjectUnionOf(:SubClass1

:SubClass-n))
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Table A.15: Mapping of UML Cardinality Restrictions

UML Construct Cardinality Restrictions

Map23 [30, 38] Case property with lower bound equal to the upper bound [x..x]:

SubClassOf(:Class ObjectExactCardinality(x :P :R))

Map24 [38] Case property with lower bound and upper bound [1..1]:

SubClassOf(:Class ObjectExactCardinality(1 :P :R))

SubClassOf(:Class FunctionalObjectProperty(:Property))

Map25 [27, 30, 38] Case property with lower bound and upper bound [x..y]:

SubClassOf(:Class ObjectMinCardinality(x :P :R))

SubClassOf(:Class ObjectMaxCardinality(y :P :R))

Map26 [30] Case property with lower bound and upper bound [x..*]:

SubClassOf(:Class ObjectMinCardinality(x :P :R))

Map27 [30] Case property with multiple value ranges e.g. [1, 6..7]:

SubClassOf(:Class ObjectUnionOf(...))

Notes Mappings 23-27 describe mappings for properties that are trans-
formed into OWL object properties. If properties are transformed
into data properties, DataUnionOf, DataExactCardinality, DataM-
inCardinality and DataMaxCardinality is used instead.

Table A.16: Mapping of UML Primitive DataTypes

UML Construct Primitive DataTypes

Map28 [30, 38] If possible map the datatype to an equivalent XML datatype.

Map29 [38] If the datatype is user defined:

DataTypeDefinition(...)

Table A.17: Mapping of UML Structured DataTypes

UML Construct Strucutered DataTypes

Map30 [30, 38] Mapped to a class, key and properties with domain and range for
each structured type attribute:

Declaration(Class(:Class)

Declaration(DataProperty(:Attribute))

DataPropertyDomain(:Attribute :Class)

DataPropertyRange(:Attribute :Type)

HasKey(:Class (:Attribute))
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Table A.18: Mapping of UML Enumeration

UML Construct Enumeration

Map31 [27, 30, 38] Declaration(DataType(:EnumName))

DataTypeDefinition(:EnumName DataOneOf("values"))

Table A.19: Mapping of UML Package

UML Construct Package

Map32 [27, 38] Ontology(...)

Table A.20: Mapping of UML Comment (on class)

UML Construct Comment (on class)

Map33 [30] AnnotationAssertion(rdfs:comment :Class "comment")

A.2 OWL to UML

Table A.21: Mapping of OWL Ontology

OWL Construct Ontology

Map34 [27, 38] UML Package

Table A.22: Mapping of OWL Class

OWL Construct Class

Map35 [27, 38] UML Class

Table A.23: Mapping of OWL SubClassOf

OWL Construct SubClassOf

Map36 [27, 38] Case SubClassOf with declared classes:
UML Generalization

Map37 [38] Case SubClassOf with necessary conditions as SubClass:
Not Possible.
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Map38 [38] Case SubClassOf with necessary conditions as SuperClass:
Possible but not specified.

Table A.24: Mapping of OWL EquivalentClass

OWL Construct EquivalentClass

Map39 [27, 38] Case EquivalentClass with declared classes:
A pair of UML Generalization

Table A.25: Mapping of owl:Thing

OWL Construct owl:Thing (universal superclass)

Map40 [27, 38] UML Class named ”Thing”

Table A.26: Mapping of OWL ObjectUnionOf

OWL Construct ObjectUnionOf

Map41 [27] Case ObjectUnionOf with declared classes:
UML Generalization with instances of the union as subclasses.

Map42 [38] Case ObjectUnionOf with declared classes:
UML GeneralizationSet with instances of the union as subclasses,
and an abstract class as superclass.

Table A.27: Mapping of OWL ObjectIntersectionOf

OWL Construct ObjectIntersectionOf

Map43 [27, 38] Case ObjectIntersectionOf with declared classes:
UML Generalization with instances of the intersection as super-
classes and a new abstract class as subclass.

Table A.28: Mapping of OWL DatOneOf

OWL Construct DatOneOf

Map44 [27, 38] UML Enumeration

Table A.29: Mapping of OWL Properties
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OWL Construct Properties

Map45 [27, 38] Case DataProperty or ObjectProperty with no inverse and not in-
verse functional:
UML Class Attribute

Map46 [27, 38] Case ObjectProperty with inverse or inverse functional:
UML Association

Table A.30: Mapping of OWL Domain and Range

OWL Construct Domain and Range

Map47 [27, 38] Case no class declared:
UML Class named ”thing”

Map48 [27, 38] Case one class declared:
UML Class

Map49 [27, 38] Case more than one class declared:
Intersection of the declared classes using an UML Generalization

Table A.31: Mapping of OWL SubObjectProperty

OWL Construct SubObjectProperty

Map50 [27, 38] UML Association Generalization

Table A.32: Mapping of OWL Cardinality Restrictions

OWL Construct Cardinality Restrictions

Map51 [27, 38] Case FunctionalProperty:
UML Property with [0..1]

Map52 [27, 38] Case InverseFunctionalProperty:
UML Association with [0..1]

Map53 [27, 38] Case ObjectMinCardinality:
UML Property with lower bound

Map54 [27, 38] Case ObjectMaxCardinality:
UML Property with upper bound

Map55 [27, 38] Case ObjectExactCardinality:
UML Property with lower bound qual to upper bound

Notes Mappings 53-55 are the same for DataMinCardinality, DataMax-
Cardinality and DataExactCardinality
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Table A.33: Mapping of OWL HasValue

OWL Construct HasValue

Map56 [38] UML Class Attribute with default value

Table A.34: Mapping of OWL InverseObjectProperties

OWL Construct InverseObjectProperties

Map57 [38] UML Association

Table A.35: Mapping of OWL HasKey

OWL Construct HasKey

Map58 [38] UML Key

Table A.36: Mapping of OWL Primitive types

OWL Construct Primitive Types

Map59 [38] Map to established UML libaries for XML datatypes
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Added and changed mappings

We present an overview of our suggested mappings and changes to existing
mappings. The same format is used as in Appendix A. The count of the map-
pings is continued from A.

B.1 UML to OWL

Table B.1: Mapping of UML Dependency

UML Construct Dependency

Map60 AnnotationAssertion(http://purl.org/dc/terms/requires

:Subject : Value)

Table B.2: Mapping of UML Association Navigability

UML Construct Association Navigability

Map61 Case unidirectional:
Map4 or Map5

Map62 Case bidirectional:
Map6 or Map7

Map63 Case unspecified:
Map6 or Map7

Table B.3: Mapping of UML Comment (on property)

UML Construct Comment (on property)

Map64 AnnotationAssertion(rdfs:comment :Property "comment")
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Table B.4: Mapping of UML Cardinality Restrictions

UML Construct Cardinality Restrictions

Notes In Mappings 23-27, we suggest not mapping cardinalities with a
lower bound of 0.

B.2 OWL to UML

Table B.5: Mapping of OWL Properties

OWL Construct Properties

Map65 Case DataProperty:
UML Class Attribute

Map66 Case ObjectProperty:
UML Association

Table B.6: Mapping of OWL Annotation Assertion

OWL Construct Annotation Assertion

Map67 UML Comment

Table B.7: Mapping of OWL Range

OWL Construct Range

Map68 Case no range declared and ObjectProperty:
UML Class named ”thing”

Map69 Case no range declared and DataProperty:
Map to xsd:anyType



Appendix C

OWL construct usage
(percentages)

For each metamodel construct that occurs in the OWL test set, the percentage of
ontologies that uses the construct is shown.
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Figure C.1: OWL construct usage (continues next page)
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Figure C.2: OWL construct usage (continued)
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