BSc Thesis Applied Mathematics

The Pixel Array Method

Leander van der Bijl

Supervisor: Dr. Matthias Schlottbom

June, 2019

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

UNIVERSITY OF TWENTE.

Preface

This report was written for my bachelor assignment, which concludes the last module of
the Applied Mathematics bachelor on the University of Twente. I learned a lot during the
writing of this paper as I did not have a lot of experience with scientific writing.

Firstly, I would like to thank my supervisor, Dr. Matthias Schlottbom, for supervising me
during the writing of this bachelor assignment and helping me when I was not sure how to
proceed.

Furthermore, I would like to thank Jarco Slager for proofreading this report. I would also
like to thank Lotte Gerards, Femke Boelens, Lucas Jansen Klomp, Wisse van der Meulen,
Annemarie Jutte, Jesse van Werven, Tessa Rutjens, Nienke Gerards and Sven Dummer
for helping me with Overleaf problems, working with me at the university and helping me
relax during the lunch break.

The Pixel Array Method

Leander van der Bijl*

June, 2019

Abstract

The Pixel array method is a method that was proposed only a few years ago. It is
used for finding all solutions of a set of equations within a certain bound. The pixel
array method has a few strong properties. For example, it does not return any false
negatives when used. However, because of this property, the error can be quite large.
In this paper, a formal definition of the pixel array method will be given with some
illustrating examples. The method will then be adjusted such that it is also capable
of returning the steady state solutions of a differential equation, this new method
will be referred to as the PASS method. MATLAB is used for calculating the steady
state answers of discrete approximations of the heat equation and the Fisher-KPP
equation with given boundary conditions such that these can be compared to their
actual solutions. The heat equation is approximated quite well by the PASS method
and we see that the PASS solutions converge to the actual solutions as we increase the
resolution. However, the PASS approximation of the Fisher-KPP method does not
converge as nicely. Even though this equations only has 2 solutions, the PASS method
returns hundreds and the amount keeps growing when increasing the resolution. Most
of these PASS solutions are for boundary conditions that do not actually have a steady
state solution. This is due to the tolerance, which has to be higher than some threshold
in order for it to be valid. Our conclusion is therefore that the pixel array method is a
nice method with strong properties. However, further research is needed with respect
to this tolerance and the possibilities of lowering the threshold in order for it to give
meaningful results for relations that change rapidly.

Keywords: Pixel array method, PASS method, steady state solutions, heat equation,
Fisher-KPP equation, hypergraph

1 Introduction

In 2016, a new method for finding all solutions of a set of relations within a certain bound
was introduced [5]. Soon after, many applications of this method were investigated. The
method can be useful for problems related to hypergraphs [1]| or optimizing the lifetime of
a battery [3]. However, this paper will mainly focus on finding its limitations when calcu-
lating the results of some sets of functions which have already been algebraically solved.
Specifically, this paper will focus on the application of the pixel array method to differen-
tial equations. The differential equations that were chosen and the slight adjustments that
had to be made to the pixel array method were inspired by [2]. Section 2 will briefly de-
scribe the pixel array method used in this paper, Section 3 will formally define this method
while also giving examples and stating the mathematical foundation. Finally, Section 4
will define an altered version of the pixel array method, called the PASS method, that can

*Email: leandervdbijl@gmail.com

be used for solving differential equations and then use it to solve the heat equation and
the Fisher-KPP equation. We will also discuss the results found by the PASS method and
compare them to the actual results.

2 Method description

In this section, the pixel array method and its properties are explained. The method was
proposed by David 1. Spivak, Magdalen R.C. Dobson, Sapna Kumari and Lawrence Wu
[5]. The outline of the pixel array method that is used in this paper essentially follows [5],
but there are some alterations.

The pixel array method is a method that can be used for finding all solutions of a set of
relations within a certain bound. The set of relations will be defined as a set of equations
and inequalities. These relations do not have to be differentiable or continuous.

We define the input of the pixel array method as follows:
e A set of equations or inequalities, which we will denote by R.

e All upper and lower bounds of the variables that are used in the relations. Let A be
the set of all variables used in the relations, then the lower bound is given by a(p)
and the upper bounds by b(p) for all p € A.

e The resolution of each variable that is used in the relations. These will be denoted
by r(p) for all p € A.

e A certain threshold e which will define the accuracy of the method.

e A set P’ of variables which we want to find the solutions of, these will be called
exposed variables. The variables that are not exposed will be called unexposed
variables.

The threshold is not part of the input in [5], but it is necessary for the method to work. [5]
does discuss what kind of properties such a threshold must satisfy but a formal algorithm
of finding one was not given. Therefore, we will define it as an input instead and show
later how one could go about finding it for specific cases.

Before the formal definition of the pixel array method is given, we describe the outline of
the method to give the reader an idea about the structure of the method:

1. Every relation f in R will be transformed in a so called boolean array.
2. We obtain a wiring diagram that defines how the arrays should be multiplied.

3. We multiply the boolean arrays to get a final boolean array which we can translate
to solutions of our set of equations R.

Each of these steps will be further elaborated on in Section 3.

3 The mathematical details

This section will go through all the steps of the pixel array method that have been men-
tioned in the last section, while also giving a formal mathematical definition of it.

3.1 Creating the boolean arrays

The first step of our method requires us to map a relation to a boolean array. Which,
when visualized, can be seen as a plot of a function. This subsection will explain how such
an array can be created.

We need to start with several definitions. After most definitions, a simple example will be
given to give the reader some intuition.

Definition 3.1 (Pack). A pack T is defined as a tuple (P,a,b,r), where P is a finite set
and a,b: P — R are functions for which a(p) < b(p) for allp € P. r : P — N>g is also a
function. Each element p € P is called a port. a(p) and b(p) are called its lower and upper
bound respectively, and r(p) its resolution.

We will define a small pixel array problem such that we can give some examples of this
definition in this context.

Example 3.2 (A simple pixel array problem). For this problem, we consider the set of
relations {f1, fo} where f1: 2? = z and fo: 1 —y* = 2. We use the bounds a(x) = a(y) =
a(z) = —1.1 and b(z) = b(y) = b(z) = 1.1, the resolutions r(z) = r(y) = r(z) = 100 and
x,y are the exposed variables.

Example 3.3. Consider Example 3.2. Some examples of packs in this case could be T} =
({z,y},a,b,7) or To = ({x, z},a,b,7).

Definition 3.4. For any pack T = (P,a,b,r), the set of entries in T is defined to be the
following product of finite sets:

Entr(T) := H[r(p)] where [r(p)] :={1,2,...,r(p)}

peEP

Definition 3.5. For any pack T = (P,a,b,r), the bounding box for T is defined to be the
following product of semi-open intervals:

BBox(T) := [[ap.by)
peEP

This bounding of of T" simply equals the set of all possible values the variables in the set
P can have.

Example 3.6. Consider Example 3.2 and the pack T = ({z,y, z},a.b.r). We can then
define Entr(T) as the set of all {(e1,e2,e3)} such that e; € N, 1 < e; <100 fori € {1,2,3}

Similarly, one can define BBox(T) as the set of all {x1,x2,x3} such that x; € [—-1.1 1.1)
forie{1,2,3}

Definition 3.7 (Boolean array). Let T be a pack with P = {p1,pa,...,pn} and resolution
r: P — Nso. A size-T boolean array is a function A :Entr(I')— {0,1}. Given an array
A €Arr(T), where Arr(T) is the set of T-sized boolean arrays, and an entry e € Entr(T),
we define A(e) € {0,1} as the value of A at e.

Definition 3.7 explains how one could go about mapping a pack T to a boolean array
A €Arr(T) but still need to define a method that helps to decide whether A(e) = 0 or
A(e) = 1 for any input e € Entr(7"). Before we can define such a method, we need a
function that maps all values b € B to an entry e € Entr(7'). We will use the following
function to define the preimage:

n

Pixel(e) = [[[a(pi) + 6(pi)(e(i) — 1), a(ps) + 6(pi)e(i)). (1)

=1

Where P = {p1,p2,...,pn} and 6(p) = %p‘;(p). Each pixel is thus a half-open subcube of
B and all pixels have the same size. Namely, if our pack has m variables, its ith coordinate
is of size §(i) where 1 <47 <m and ¢ € N.

Example 3.8. Consider Example 3.2. We can calculate § = 22 = 0.022, and therefore

100
Pizel(1,1,1) = {1, 22, x3} such that x; € [-1.1 — 1.078) fori € {1,2,3}
We will now start connecting functions to packs:

Definition 3.9 (Functionally defined relation). Assume T' = (P, a,b,r) is a pack with a
bounding box B of T, f : B — R¥ is a function for some k € N and S C R*. Then the
functionally defined relation of f,S on T is a relation of the form

Rps:={r€B| f(z) € S}

Where S will be called the target subset and where the part to the right of the symbol |
indicates the condition that has to hold in order for the part to the left to be included in
the set.

Example 3.10. Consider Example 3.2. In order to find the functionally defined relation
Ris on Th = ({x,2},a,b,7), we need to rewrite fi as g1 = 0 where g1 := x> — 2. We
can now define the target subset S1 as 0 and we obtain the functionally defined relation
Ry, 0 = {x €BBox(Ty) | g1(x) = 0}. Similarly, we let go =1 —y* — z, Ty = ({y, 2},a,b,7)
and we define Ry, o = {x € BBox(T») | g2(x) = 0}.

We would like to assign one point z/(e) in Pixel(e) to e such that, when we calculate the
result of f(2/(e)), we also gain some knowledge about the other values of f in Pixel(e). In
order to find such a value, we will define an error measurement of a set N on a functionally
defined relation.

Definition 3.11 (The N-error). Let Rys C B be a functionally defined relation on a
bounding box B. For any subset N C B, we define the N-error set of Ry g to be the set of
distances

Dy(N,S) :={d(f(z),y) € Rxolx € N,y € S}

for 1 >0 and u > 0 and where the part to the right of the symbol | indicates the condition
that has to hold in order for the part to the left to be included in the set. We say that
the N-error of Ry s is always above | if Dg(N,S) C (I,00). Similarly, the N-error of
Ry g achieves u if Dy(N,S)N[0,u] # 0. Finally, the N-error of Ry g is bounded by u if
Dy(z,S)N[0,u] #0 for allz € N

Now that we have a measurement of the error, all we need is a threshold € to compare it
with. Such a threshold will need to satisfy the following property:

Definition 3.12 (Valid tolerance). Let T = (P, a,b,r) be a pack, ce the center of Pizel(e)
and f : Pizel(e) — R for all e € Entries(T'). A tolerance € will be called valid if it satisfies
the following condition:

|f(ce) — f(z)| < € for all z € Pizel(e) (2)

Definition 3.13 (The e-tolerance sample-in-center plot). Suppose given a pack T =
(P,a,b,r) with bounding box B :=BBox(T) and a functionally-defined relation Ry g on
it. For each entry e €Entr(T), let c. denote the center of the corresponding Pizel(e).

For any wvalid tolerance €, we define the e-tolerance sample-in-center plot to be the array
A :Entr(T) — {0, 1} given by

14 e :
Ale) = { if the{c.}-error achieves €

0 otherwise

This method will give us the following control over the error:

Definition 3.14 (e-accurate plot). Let T'= (P, a,b,r) be a pack, R a functionally defined
relation on it, and € > 0. We say that A € Arr(T) is an e-accurate plot of Ry s on T if the
following hold for any entry e € Entr(T)

o If the Pizel(e)-error of Ry g achieves 0 then A(e) = 1.
o If the Pizel(e)-error of Ry.s is always above € then A(e) = 0.
o If A(e) =1, then the Pizel(e)-error of Ry g is bounded by 2e.

The proof of this error is straightforward and can be found in [5].

Because of Definition 3.13 and its implied error stated in 3.14, we are now able to create
boolean array plots for any relation in our set R which have a bounded error and do not
give any false negatives. Finding an e that satisfies Equation (2) is not straightforward,
and it gets harder if a function is not continuous or differentiable as we can not use the
gradient in these cases.

Example 3.15. Consider Example 3.2 and the functionally defined relations in Example
3.10. Before we can start creating the boolean arrays, we need to find a wvalid tolerance
€, meaning that it satisfies 2. The gradient of g1 is equal to (2z,—1). By the definition
of Pizel(e), we know that we are dealing with a box shaped interval of possibilities. We
can also note that the derivative of g1 with respect to z is constant. This means that we
imvestigate the maximal change of the function that is caused by varying x and z separately
and then add them.

We will start with the change caused by varying x. The derivative of g1 with respect to x
gives us 2x, which is a strictly increasing function. This, combined with the fact that both
x? is a symmetric function, means that the function will change faster the higher the value
of |x|. The interval is also symmetric, therefore it does not matter whether we consider

the negative or positive values of x. We will consider the positive values of x. The size of

1.1——1.1 _ 22 _ 1.1

a pizel is equal to =557 = 156 = %o - Lherefore, when calculating a value at the middle
of a pizel, both x and z can vary by =% = =L This means that the pizels in which the
function varies most are the pizels with x interval [1.1 — LL1.1). We can now calculate

50«2 — 100

100
the maximal change in g1 that is caused by varying x by integrating the derivative with
respect to x over this interval: fll'llig 2z dx = [:CQ]H L= (11)2 = (11— 45)? = 0.0241
*+7 100 -1—760

rounded up to 4 decimals. Similarly, we can see that z is also strictly increasing. As it
does not depend on x, we will just take the most positive increasing direction. This gives
11

11 ldr=11—(1.1- IIT%)) = % = 0.011. As both functions are positively increasing,
) 100

we can simply add both values and conclude that g1 satisfies equation (2) when € is chosen
as 0.0241 4+ 0.011 = 0.0351.

We still need to find a threshold for gs == 1 —y* — 2. This gives the gradient (—2y,—1)
This is almost equal to the gradient of g1 except the values are negative and x is replaced
by y. However, all variables have the same intervals and because of symmetry, the same
calculations can be made as for g1. Hence, The value 0.0351 will also bound the change of
g2 in a pizel with respect to its center. We can now initiate the pizel array method with
threshold e = 0.0351.

Doing so gives two boolean arrays, one for each variable. A visualization of these arrays is
given in Figure 1. Where we adjust the azis to the intervals that correspond to Pixel(e) for
each entry e. The white points correspond to zeros in the array and blue points to ones.
The MATLAB code that was used can be found in Appendix A.

-1.1 1.1
-0.66 -0.66
-0.22 -0.22
N N
0.22 0.22
0.66 0.66
1.1 1.1
11 066 022 -022 -066 -1.1 1.1 066 022 -022 066 -1.1
X y
(A) The boolean array of fi : 2% = 2 (B) The boolean array of fo:1—y? =z

FIGURE 1: The boolean arrays of g1 and go

3.2 The wiring diagram and generalized array multiplication

The next step of the pixel array method is to combine all of the boolean arrays into a new
boolean array, where the entries correspond to the pixels of the exposed variables. In order
to accomplish this, we define a function that combines several packs into one.

Definition 3.16 (Wiring diagram). Let T1,Tb, ..., T, T’ be packs and define a new pack T,
where P = P{UP,U---UP,UP’ (U is the disjoint union) with induced bounds a,b: T — R

and resolution function r : T — Nso. We define a wiring diagram ® : Ty, Ts, ..., T, — T’
as a function that consists of a tuple (A, p,an,ba,ra) where

e A is a finite set of which we will call the elements links.

o ¢ : T — Ais a surjective function such that TyUTy,U---UT, — A is also surjective.
e ap,ba : A — R are functions such that apn o ¢ = a and ba o ¢ = b.

o ra A = Nxg is a function such that ra o @ = 1.

Every wiring diagram ® : T, Ty, ..., T, — T" is related to an array multiplication formula.
That is, a function in the form of

Arr(®) : Arr(Ty) x Arr(T3) X -+ - x Arr(T},) — Arr(T")

This generalized array multiplication formula can be seen in Equation 3:

Al(e) = Z HAi(Entr%(e)). (3)

e€Entr(A)| Entrj, (e)=e’ i=1

Where Entr§(e) : Entr(A) —Entr(7;) and Entry(e) : Entr(A) —Entr(7”) and where all
arrays are boolean arrays, hence we will also use the boolean multiplication and addition.
As we only have two elements in our boolean system, we can define both operations by
two 2 x 2 tables:

TABLE 1: Boolean addition.

01
1
1111

TABLE 2: Boolean Multiplication.

01
0
11011

The array multiplication formula may look quite complicated, but it is easy to interpret.
If we see A as the set of all variables used in the relations and all sets P; of packs T; as
sets of variables used in a relation R;, then the generalized matrix formula searches for all
inputs in Entr(A) that are mapped to €’ by Entry,(e). Here follows an example of how this
mapping work:

Example 3.17. say e = (a,b,c) € A, where a € r(p1),b € r(p2),c € r(p3) and P’ =
(p1,p3). Then Entrly(e) = (a,c).

After we found such an entry, we check the values of all other boolean matrices in the
points that correspond to their variables, and then we multiply these values. Therefore,
because of the boolean multiplication rules, A’(e’) will only be 1 if all A;(Entr(e)) are
equal to 1. And 0 if they are not.

When a boolean array A’ is constructed in this way, it will give the solution set of the
exposed variables with an error that is bounded by 2¢, where € = max(ey, €a, ..., €,) and
€; is the threshold corresponding to A;. This array does not have any false negatives when
all ¢; are chosen such that equation 2 holds.

Example 3.18. Consider Exzample 3.2 and the packs we defined in Example 3.15. The
visual representation of its wiring diagram can be seen in Figure 2. Where Py and Ps refer
to the sets of packs T and Ty respectively and the edges that connect them indicate which
variables they have in common. The exposed variables will be connected to the outer ring,
which represents the final pack after the array multiplication is finished.

FI1GURE 2: The wiring diagram of Example 3.18

Example 3.19. Consider Example 3.18. Using this wiring diagram, we can use the gen-
eralized array multiplication algorithm to combine both boolean arrays from FExample 3.15
and create a boolean array that corresponds to the variables we want to expose. The result
of this can be seen in Figure 3c. This result seems to resemble the unit circle. This is the
correct answer as v° = z and 1 — y? = z implies 2% + y?> = 1 which is the formula of the
unit circle. The MATLAB code that was used can be found in Appendiz A.

1.1 -1.1
-0.66] -0.66
-0.22 -0.22
N N
0.22 0.22
0.66 0.66
1.1 1.1
1.1 066 022 -022 066 -1.1 1.1 066 022 -022 066 -1.1
X y
(A) The boolean array of fi : 22 = 2. (B) The boolean array of fo:1—1y? = z.
1.1
0.66
022
>
-0.22
-0.66
1.1

-1.1 066 -022 0.22 066 1.1
X

(€) The result after array multiplying.

FIGURE 3: The array multiplication that returns an answer to the problem in
Example 3.2.

3.3 Clustering

Now that we have defined a wiring diagram and an array multiplication method in the
last section, we are able to combine several boolean arrays to one boolean array which
makes us able to solve the pixel array method problems. However, the generalized array
multiplication algorithm requires a lot of calculations which will often take a long time.
This is due to the fact that it calculates the solutions of all variables simultaneously. A
way of speeding of the algorithm is by clustering.

Assume we have A = {z1,22,...,2,} and resolutions r(z1),r(z2),...,r(x,) > 2. The
generalized array multiplication method will consider all entries in A. Therefore, our cost
will be 71 - rg - ... -, (in this case, - means standard multiplication). Hence, the cost of

the generalized array algorithm for any set L and r : L — N>2 will be denoted by
rf=T]r0 (4)
leL

Clustering means that we are not calculating the result of the wiring diagram at once,
but instead we split it up into several smaller wiring diagrams and only then calculate the

result.

We will now formally define a cluster and investigate when it is useful to include one or
more in the calculation of Arr(7”).

Definition 3.20 (Cluster). Let ® : T1,T5,...,T, — T' be a wiring diagram. A cluster is
choice of subset C C {1,2,...,n}. By symmetry, we assume C = {1,2,...,m} for some
m < n.

Definition 3.21 (interior and exterior links/diagrams). Let C' = {1,2,...,m} be a cluster
and let p : TYUToU---UT,UT" — A be the partition as in Definition 3.16. Consider the
1mages

o= UTU---UTy,) and AL == o(Ty1 UTpioU---UT, UT),

which we will call the sets of C-interior links and C-exterior links respectively. Let Qo =
AL N AY be their intersection, we call Q¢ the C-intermediate pack. Define

(I)/C:Tl,TQ...,Tm—)QC and CD/C,’ : QCaTm+1aTm+2---7Tn —)T/

to be the evident restrictions of ¢ with links Al and A}, respectively. We call O, the
interior diagram and ®f the exterior diagram, and refer to the pair (P, PF) as the C-
factorization of ®.

Definition 3.22 (Trivial cluster). Using the same notation as the last two definitions. We
say C is a trivial cluster if either A = Q¢ or AL = Qc. We refer to L' := Al — Q¢ as
the set of properly internal links and L" := A, — Q¢ as the set of properly external links
in the C-factorization. Hence C is trivial if and only if L' = O or L" = (. If C is not
trivial, it is a nontrivial cluster.

Using the same notation as in the definitions, we conclude that the cost of a wiring diagram
clustered by a nontrivial cluster C' is always smaller or equal than the cost of the wiring
diagram that is not clustered. This is because we get the following equation when we
subtract the costs:

TQ(TL,+L// _ (fr‘L, + TLH)) Z 0 (5)

We derive this formula by noting that A = Q+ L+ L" A’ =L +Q and A” = L +Q and
using this in Equation (4).

Example 3.23. We will give an example of the clustering of a wiring diagram. Consider
the unclustered wiring diagram in Figure 4 (we use the same notation as in Example 3.18).

10

FIGURE 4: An unclustered wiring diagram.

This is a wiring diagram that would be much faster to calculate the boolean array of when
clustered. Because of Equation (5), we know that any non-trivial cluster will speed of the
process. Therefore, we will create a random grouping of packs which are represented by the
colored dotted ellipses around them. The clustering is defined by treating the dotted ellipse
and its interior as a wiring diagram by itself and calculating its result. This will give the
same result as the unclustered diagram, but it requires much less calculations.

FIGURE 5: A clustered wiring diagram.

4 Application to differential equations

In this section, we are going to apply the pixel array method to differential equations to
investigate the possibility of finding steady state solutions with this method. We will start
by slightly adjusting the method such that it will be suitable for this purpose, this new
method will be called the PASS method[2]. We will first analyze some easy differential
equations and proceed to more difficult ones later on.

11

4.1 Modifying the pixel array method

One can directly apply the pixel array method to any discretized partial differential equa-
tion to find its steady state solutions. All the theory explained in Section 3 will still hold
for this case. However, when solving the steady state of a differential equation, the values
of the solution are often important as well, not just the existence of one. Therefore we will
modify our pixel array method such that it will return all values that solve the problem.

Our solution set will no longer be a boolean array. Instead, we will change it to an array
of tuples of local solutions. Hence, our array entries will look like

{(z11, 212, .- -, T1n), (T21,T22, - -, T2n), - o o5 (Tm1s T2, - - s T) }

when we have m solutions for a relation that requires n variables. In order to use this
solution set. We also need to alter our addition and multiplication rules. We define
multiplication of our solution set in the following way:

{(l?l,fL'Q, s 7xn}'{y17 Y2, .- 7ym} = {(xhyl)? (xlv y2)7 AR (xla y’m)7 (.Z'Q, yl)a (3U273/2)7 RN} (xnaym)}

And the addition operation of our solution set will be defined as:

{$1,5U27---7=Tn}+{ylay27~--7ym} = {x17x27'"7xnayivyéa"'7y;c}'

Where 41,95, ..,y; are elements y; from the set {y1,v2,...,ym} for which holds that
y; # xj for all j € N and 1 < j < n. This modified pixel array method will be called the
PASS method.

4.2 The heat equation

The first differential equation we will test the PASS method on will be the heat equation.
This equation is one in the form of:

ur = D(x) Uz, (6)

Where u; denotes the derivative of u with respect to time and w, the derivative of u with
respect to its location x. Hence, u,, is the second order derivative with respect to its
location.

We start by solving the steady states algebraically. A steady state implies that the deriva-
tive with respect to time is equal to zero. Therefore u; = 0, which means D(z)uy, =
0 = wugz; = 0. We will now integrate two times on both sides:

u://Oda:dx:/ad:c:ax+b.

Where a,b are constant real numbers. The solutions for the steady states of the heat
equation can therefore be represented by the set of all straight lines.

12

The heat equation can be interpreted as the temperature of a line on every point. Assume
the line has length 1 and we have a temperature zy at the point 0 and a temperature x;
at the point 1, hence the beginning and end of the line respectively. Then the equation
has reached its steady state if all points x in between have a temperature y that satisfies
the equation y = z(z1 — zp) + xo.

Before we can use the PASS method, we need to discretize the problem. We will approxi-
mate uz, by the following discretization:

Ui—1 — 2U; + Uiyl

Where we have split our line into % pieces and get the set of points H := {0, h,2h,..., 1}
and we define the value u; to be the temperature on the point ¢ € H. In our steady state
solution, u,, is equal to zero. Therefore, we only have to consider

Ui—1 — 2u; + uip; = 0. (8)

This is a function we can use the PASS method for.

In this section, we will be considering 7 partitions. This means that we will be considering
7 variables ug,u1,...,us and 5 relations in the form of Equation (8) that have to hold,
our target set S will be 0 in this case. Every variable u; for ¢ € 0,1,...,6 will have the
lower bound a, upper bound b and resolution r. The variables we expose are ug, ug as they
correspond to the boundary conditions of the differential equation.

The only input that is still needed for using the PASS method, is the threshold e. We
obtain this by studying the gradient of the relations, which are all in the form of Equation
(8). We therefore obtain the gradient (1,—2,1), this gradient does not depend on any
variable and therefore we can take an arbitrary pixel and calculate € := max|f(c) — f(z)]
where c¢ is the center of the pixel and x is any other coordinate inside the pixel. Starting
at the center of a pixel, each variable can change at most § = l’;—ra in either the positive
or negative direction before leaving the pixel. We may therefore assume all variables move
in a direction that increases the function value, this will happen with gradient (1,2,1).

Therefore, e = (1 +2 4 1)6 = 44.

We now have all the information needed to run the PASS method. However, doing so
with the generalized array algorithm will take a lot of time. Computing solutions with a
relatively low resolution of 20 already takes several hours. We will solve this by clustering
our wiring diagram. The visual representation of the wiring diagram we are dealing with
can be seen in Figure 6.

13

Up,

Ug

FIGURE 6: The wiring diagram without clustering.

We choose to cluster the diagram in groups of 2 as this will minimize the computational
costs the most. The visual representation of this clustered wiring diagram can be seen in
Figure 7. In this figure, the same symbols are used as in Example 3.23.

Up

opololoso

Ug

F1GURE 7: The clustered wiring diagram.

We will now calculate the results of this clustered wiring diagram for several resolution
values by using the MATLAB code in Appendix B. Table 3 and Table 4 indicate whether a
solution is found between certain boundary conditions for resolutions 5 and 20 respectively.
A green filled rectangles implies such a solution does exist and a white filled rectangle
implies it does not. As can be seen in the tables, a solution between any two boundary
conditions always exists. This result confirms our algebraically found solution, which stated
that every straight line between two boundary conditions is a steady state solution.

01]703]05|07/|09

0.1
0.3
0.5
0.7
0.9

TABLE 3: The results for resolution 5.

14

[0.0313

0.0938

0.1563

0.2188

0.2813

0.3438

0.4063

0.4688

0.5313

0.5938

0.6563

0.7188

0.7813

0.8438

0.9063

0.9688

0.0313

0.0938

0.1563

However, these tables do not give us any information whether the solutions are actually
straight lines or not. That is where we need the modified solution set of the PASS method
for. We use this solution set to plot all solution between 2 boundary points for several
resolution values. These plots can be seen in Figure 8. The vertical axes represent the
value of u; for all ¢ given by the horizontal axes. All the plots on the left will represent the
solutions where ug has its value in the pixel that is closest to 1 and ug has its value in the
pixel that is closest to 0.The plots on the right represent the solutions where both ug and

TABLE 4: The results of resolution 20.

ug have its value in the pixel that is closest to 0.

15

(A) resolution:16 (B) resolution:16

0.9
0.8
0.7
0.6
0.5
0.4

0.3

0.1 s

(€) resolution:25 (D) resolution:25

(E) resolution:40 (F) resolution:40

(@) resolution:80 (H) resolution:80

(1) resolution:100 (3) resolution:100

F1GURE 8: All solutions between two boundary conditions for several resolutions.

As we can see in Figure 8, the solutions converge more and more to a straight line as the
resolution increases. This makes sense as we know that the error is bounded by 2¢ and
€ decreases as the resolution increases It should be noted though that the method only
approximates the discrete approximation of the heat equation and not the actual heat
equation, therefore the error can sometimes be larger than 2e. However, the plots indicate
that the PASS method correctly approximates the solutions of the actual heat equation as
well.

4.3 The Fisher-KPP equation

In this section, we will introduce a differential equation that is a lot more difficult to find
the solutions of, the Fisher-KPP Equation (9).

Up = Ugy + pu(l —u) 9)

According to [2], this function should only have steady state solutions for v = 0 and u = 1.
We will use the PASS method to find all steady state solutions of the equation and then
compare it to the actual solutions. The discrete version is given by Equation (10).

Ui—1 — 2U; + Uit
72

+ pui (1 — wy) (10)

For this problem, we use the same wiring diagram structure as we did for the heat equa-
tion. We find a valid tolerance € by using similar calculations as for the heat equation
and Example 3.15. The PASS method is used with uniform bounds and resolutions, the
MATLAB code can be found in Appendix C. We start by using the following values: lower
bound a = 0, upper bound b =3, p =1, h = 1/6 and resolution r = 100. This will give a
tolerance of 216.0748. The results of the PASS method for these values are quite similar
to the ones for the heat equation. We once again have a solution for all boundary condi-
tions and there are hundreds of solutions in total. The correct solutions are also included,
however, there are so many solutions that we do not consider this as an accurate result.
Varying the variables did not change these results.

Changing the tolerance to the very low value of 0.6 did return only the right two solutions.
However, this tolerance is way below the validity threshold and therefore the method loses
all its mathematical foundation when using such a value.

An alternative way of finding only the right results is splitting up Equation (10) in its
two terms and inserting these equations separately in the PASS method. However, when
doing so, one neglects a lot of solutions. This simplification can only be made with strong
mathematical foundation, which we do not have.

5 Conclusion

The pixel array method was often able to very precisely find all solutions within the given
bounds. The method does not return any false negatives, which is a strong property, and
the results are given in a format that can easily be visualized. However, the method has

17

10

11

a big flaw. Namely, the finding of a valid tolerance e. It takes quite a bit of time to
find a tolerance that is valid, and we saw during the approximation of the Fisher-KPP
equation that it may very well be possible that the tolerance is simply too high to get
any meaningful results. This creates the doubt that the method might not be that useful
for complex functions, especially when they are not differentiable or continuous as sudden
function changes will increase the valid tolerance threshold. In conclusion, the method is
interesting and seems promising. However, further research should be done with respect to
lowering the valid tolerances in order for the method to be applicable to complex problems.

References

[1] Brendan Fong and David I Spivak. Seven Sketches in Compositionality: An Invitation
to Applied Category Theory. arXiv e-prints, page arXiv:1803.05316, Mar 2018.

[2] Cynthia T. Liu and David I. Spivak. Evaluating the Pixel Array Method as Applied
to Partial Differential Equations. arXiv e-prints, page arXiv:1808.01724, Aug 2018.

[3] J. Lu and J. Andrian. Using pixel array method to optimize battery remaining useful
life model. In 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), pages
1-4, Aug 2018.

[4] David I. Spivak. The operad of wiring diagrams: formalizing a graphical language for
databases, recursion, and plug-and-play circuits. arXiv e-prints, page arXiv:1305.0297,
May 2013.

[5] David I. Spivak, Magdalen R. C. Dobson, Sapna Kumari, and Lawrence Wu. Pixel
Arrays: A fast and elementary method for solving nonlinear systems. arXiv e-prints,
page arXiv:1609.00061, Aug 2016.

A MATLAB code for example 3.18

A.1 The main file

f1 = @(x) x(2) — x(1)"2;
f2 = Q@(x) x(1) + x(2)°2 —1;

R = {fl,f2};

resolutions.lowrange = [—-1.1 —1.1 —1.1];
resolutions.uprange = [1.1 1.1 1.1];
resolutions.res = [100 100 100];
exposevars = [1 3];

usedvars = [1 2; 2 3];

threshold = .0351;

answerarray = Pixelarray (R, resolutions ,exposevars ,usedvars,
threshold);

spy (answerarray)

A.2 Initializing the pixel array method
function outputMat = Pixelarray (R,resolutions ,exposevars , usedvars

,threshold)
M = cell(1,length(R));

18

10

11

12

13

14

15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

for i = l:length(R)
resi.lowrange = resolutions.lowrange(usedvars(i,:));
resi.uprange = resolutions.uprange(usedvars(i,:));
resi.res = resolutions.res(usedvars(i,:));
M{i} = Creatematrix(R{i},resi,threshold);
spy (M{i})

end

outputMat = GAM(M, usedvars, resolutions , exposevars);

end

A.3 Creating the boolean arrays
function matrix = Creatematrix(f,resolutions ,threshold)
lowrange = resolutions.lowrange;

uprange = resolutions.uprange;
res = resolutions.res;

steps = zeros(1,length(res));
for 1 = 1:length(res)
steps (i) = (uprange(i) — lowrange(i))/res(i);

end

if length(res) — 1

matrix = zeros(1l,res);
else
matrix = zeros(res);
end
values = ones(1,length(res));
inputs = lowrange;
for i = l:numel(matrix)
for j = l:length(res)
if values(j) =— res(j)
values(j) = 1;
inputs (j) = lowrange(j) + 0.5%steps(j);
elseif values(j) "= res(j)
values (j) = values(j) + 1;
inputs(j) = lowrange(j) + (values(j)—0.5)xsteps(j);
break ;
end
end

19

35

36

37

38

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

matrix (i) = abs(f(inputs)) < threshold;

end
end

A.4 The generalized array multiplication algorithm

function multiplied = GAM(M, usedvars ,ress ,exposevars)
res = ress.res;

multiplied = zeros(res(exposevars));
testvar = 1;
delta = zeros(res);

values = ones(1,length(res)+1);

for e = l:numel(delta)
a = 1;
for i = l:length (M)
Mi = M{1i};
indexx = values(usedvars(i,:));
indexx3 = Arrayelements(Mi,indexx);

a = axMi(indexx3);

end
for j = l:length(res)
if values(j) = res(j)
values (j) = 1;

elseif values(j) "= res(j)
values (j) = values(j) + 1;

if o o— 4
testvar = testvar + 1
end
break ;
end
end
indexx2 = Arrayelements(multiplied ,values(exposevars));

multiplied (indexx2) = multiplied (indexx2) + a;
end

multiplied = logical (multiplied);

end

A.5 A function that is needed for filling the array

function realindex = Arrayelements(array, indexarray)
realindex = 1;

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10

11

sizee = size(array);
for i = length(indexarray):—1:1

realindex = realindex + (indexarray(i)—1)xprod(sizee(1l:i—1));
end

end

B MATLAB code for the heat equation

B.1 The main file

R = {};

partitions = 7;
reso = 100;
for i = 1l:partitions —2

R{i} = @Q(x) x(1) — 2%x(2) + x(3);

end
resolutions.lowrange = zeros(1l,partitions);
resolutions.uprange = lxones(1l,partitions);
resolutions.res = resoxones(1l,partitions);
exposevars = [2 partitions —1];
usedvars = zeros(partitions ,3);
for i = l:partitions

for j = 1:3

usedvars (i,j) = i+j—1;

end
end
delta = ((resolutions.uprange(l) — resolutions.lowrange(1l))/

resolutions.res(1));
threshold = 2xdelta
answerarray = Pixelarray (R, resolutions ,exposevars ,usedvars,

threshold);
B.2 [Initializing the PASS method

function outputMat = Pixelarray (R,resolutions ,exposevars , usedvars
,threshold)

M = cell(1,length(R));

1= 1;

resi.lowrange = resolutions.lowrange(usedvars(i,:));

resi.uprange = resolutions.uprange(usedvars(i,:));

resi.res = resolutions.res(usedvars(i,:));

M{1} = Creatematrix(R{i},resi,threshold,1);

21

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

M{2} = Creatematrix(R{i},resi,threshold ,0);

M{end} = Creatematrix (R{i},resi,threshold,2);

ress.lowrange = resolutions.lowrange ([1 2 3 4]);

ress.uprange = resolutions.uprange ([1 2 3 4]);

ress.res = resolutions.res([1 2 3 4]);

M{2} = GAM(M([1,2]), [usedvars(1l,:);usedvars(2,:)]|, ress, [1 3
41);

~ |l

for i = 2:length(R)-2

ress.lowrange = resolutions.lowrange ([1 2 3 4]);

ress.uprange = resolutions.uprange([1 2 3 4]);

ress.res = resolutions.res([1 2 3 4]);

M{i+1} = GAM(M([i,i+1]), |usedvars(1l,:);usedvars(2,:)], ress, [1
3 4]);

end

ress.lowrange = resolutions.lowrange (|1 2 3 4]);

ress.uprange — resolutions.uprange([1 2 3 4]);

ress.res = resolutions.res([1 2 3 4]);

M{end} = GAM(M(|[end—1,end]), |[usedvars(1l,:);usedvars(2,:)]|, ress
(14D

outputMat = M{end };

end

B.3 Creating the boolean arrays
function matrix = Creatematrix(f,resolutions ,threshold ,part)
lowrange = resolutions.lowrange;

uprange = resolutions.uprange;
res = resolutions.res;

22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

steps = zeros (1,length(res));
for i = 1l:length(res)

steps (i) = (uprange(i) — lowrange(i))/res(i)

end

if length(res) =— 1

matrix = cell (1,res);

else

matrix = cell(res);

end

values = omnes(1,length(res));
inputs = lowrange+0.5%xsteps;

values (1) = 0;

for i = l:numel(matrix)
for j = 1l:length(res)
if values(j) =— res(j)
values(j) = 1;

elseif values(j) "= res(j)
= values(j) + 1;

values(j)
break;
end

end

for j = l:length(inputs)

inputs(j) = lowrange(j) + (values(j)—0.5)xsteps(j);

end

resultt = f(inputs);
if abs(resultt) <= threshold

if part =1

matrix{i} = {[inputs(1l) inputs(2)]};

elseif part = 2

matrix{i} = {[inputs(2) inputs(3)]};

else
matrix{i} = {inputs(2) };
end
end

23

)

55

56

57

58

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

end
end

B.4 The generalized array multiplication algorithm

function multiplied = GAM(M, usedvars ,ress ,exposevars)

res = ress.res;
if length(exposevars) > 1

multiplied = cell(res(exposevars));
else

multiplied = cell(1,res(exposevars));
end

testvar = 1;

delta = zeros(res);

values = omnes(1,length(res));

values (1) = 0;

for e = l:numel(delta)

for j = l:length(res)

if values(j) = res(j)
values(j) = 1;

elseif values(j) "= res(j)
values(j) = values(j) + 1;
if] — 4

testvar = testvar + 1;

end
break;

end
end

for 1 = 1:length (M)
Mi = M{i};

24

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

11

12

13

14

indexx = values (usedvars(i,:));

indexx3 = Arrayelements(Mi, indexx);
if 1 =1
a = Mi{indexx3 };
else
a = Cellmultiplication (a,Mi{indexx3});
end
end
indexx2 = Arrayelements(multiplied , values(exposevars));
multiplied {indexx2} = Celladdition(multiplied{indexx2}, a);
end
end

B.5 A function that is needed for filling the array

function realindex = Arrayelements(array, indexarray)
realindex = 1;
sizee = size (array);
for 1 = length(indexarray):—1:1
realindex = realindex + (indexarray(i)—1)xprod(sizee(1l:i—1));
end
end

B.6 Defining the tuple addition

function added = Celladdition (a,m)
if isempty (m)

added = a;
elseif isempty(a)
added = m;

else

addindex = [];

25

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

~ =] ot - w [

© o0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

for j = 1l:length (m)
for 1 = 1l:length(a)
if length(a{i}) = length(m{j})

if sum(af{i} =— m{j}) — length(a{i})

break

end
end
if 1 =length(a)
addindex = [addindex j]|;

end
end
end
added = a;

for in = 1l:length (addindex)
added{end+1} = m{addindex(in) };

end
end

B.7 Defining the tuple multiplication

function answercell = Cellmultiplication (a,m)
if isempty(a) || isempty (m)

answercell = {};
else

answercell = cell (1,length(a)*length (m)):

ai = 0;
mi = 1;
for 1 = 1l:length(answercell)
al = ai + 1;
answercell{i} = [a{ai} m{mi}]|;

if mod(i,length(a)) = 0
ai = 0;
mi = mi + 1;

end

end
end

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

C MATLAB code for the Fisher-KPP equation

This uses the same functions as the heat equation, only the main function is different:

R = {};

partitions = 6;
mu = 1;

reso = 100;

a = 0;

b = 3;

h = (b—a)/partitions;

resolutions.lowrange = axones(l,partitions);
resolutions.uprange = bxones(1,partitions);
resolutions.res = resoxones(l,partitions);
exposevars = [2 partitions —1];

usedvars = zeros(partitions ,3);

delta = ((resolutions.uprange(l) — resolutions.lowrange(1l))/
resolutions.res(1));

for i = 1l:partitions —2

R{i} = @Q(x) (x(1) — 2%x(2) + x(3))/(h"2) + muxx(2)*(1-x(2));

end

for i = 1:partitions
for j = 1:3
usedvars (i,j) = i+j—1;

end
end
threshold = (delta/2)*(2/(

mux(b~2—(b—delta /2)~2))
answerarray = Pixelarray (R, resolutions ,exposevars ,usedvars,

threshold);

27

h~2)) + abs((delta/2)%(—2/(h"~2) + mu) —

	Introduction
	Method description
	The mathematical details
	Creating the boolean arrays
	The wiring diagram and generalized array multiplication
	Clustering

	Application to differential equations
	Modifying the pixel array method
	The heat equation
	The Fisher-KPP equation

	Conclusion
	MATLAB code for example 3.18
	The main file
	Initializing the pixel array method
	Creating the boolean arrays
	The generalized array multiplication algorithm
	A function that is needed for filling the array

	MATLAB code for the heat equation
	The main file
	Initializing the PASS method
	Creating the boolean arrays
	The generalized array multiplication algorithm
	A function that is needed for filling the array
	Defining the tuple addition
	Defining the tuple multiplication

	MATLAB code for the Fisher-KPP equation

