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Abstract— In this paper an extended research is done on
a new likelihood ratio (LLR) classifier as proposed by [1].
We analyzed the assumption that histograms, representing
biometric features, can be modeled as draws from a multinomial
distribution and the parameters of this distribution can be
modeled as the Dirichlet probability density. We extracted
the estimated parameter vector of the Dirichlet density from
real data by training it with the LLR classifier and used this
parameter vector to create new synthetic data. This synthetic
data was used to train and test the classifier. In contrary to
the results of training and testing with real data, the results
with synthetic data were nearly perfect. This lead to the
conclusion that the assumption of a multinomial distribution
was not correct. Besides this, we compared the LLR classifier
with another trained classifier: the support vector machine
(SVM). In order to do 1:1 comparisons with the SVM, we
concatonated the histograms. The results showed that the LLR
classifier performed better, however after a simple experiment
we concluded that concatenating the histograms does not result
in a well functioning SVM.

I. INTRODUCTION
In biometrics, biometric samples, e.g. fingerprints or

facial images, are compared in order to establish whether
they originate from the same individual or not. This is done
by means of a so-called classifier. Good biometric features
in these samples are discriminative for every individual.
Histograms of image discriptors such as Binarized Statistical
Image Features (BSIF) are an example of such features and
can be compared, [12]. A graphical representation of this
process can be found in figure 1. In [1] a new classifier
based on the likelihood ratio is presented. The classifier was
derived for 1:1 comparison and were tested on histograms
of Binarized Statistical Image Features (BSIF), [1], [12].
The likelihood ratio classifier is optimal in Neyman Person
sense, as explained in [1], since it reaches the maximum
True Match Rate (TMR) for every given False Match Rate
(FMR). The TMR and FMR will be explained later in this
paper.

Fig. 1. Graphical representation of the process of comparing two objects

The performance of this newly developed classifier was
compared to that of the chi-square classifier and the results

presented in [1] were promising. We will now present two
research goals that will be discussed in this paper.

The new classifier is based on the assumption that the
histograms can be modeled as draws from a multinomial
distribution and the parameters of this distribution can be
modeled as draws from a Dirichlet probability density, [1].
However, observations suggest that this assumption may
not be correct and the data is not (fully) multinomially
distributed. It was found that the classifier performed better
on synthetic data that was based on the Dirichlet probability
density and multinomial distribution than on measured
statistics of real data. The aim is to validate these model
assumptions by deriving synthetic data from real data and
train and test the classifier with this data. These recognition
results can then be compared with the results of the real data.

The other research goal in this paper will be to compare
the likelihood ratio classifier in [1] with another trained
classifier. The likelihood ratio classifier in [1] is compared
with the chi-square classifier. The likelihood ratio classifier
is a trained classifier, unlike the chi-square. In [1] it is
suggested to compare the classifier with other trained
classifiers as the Support Vector Machine (SVM), [4]. For
fair comparison the conventional ways in which the SVM
is used to compare classes, one-vs-all and one-vs-one [9],
are not suited. The solution presented in this paper is to
concatenate the histograms of two datasamples, which will
be explained in section IV-A.3.b.

This document starts with a short (mathematical) summary
of the LLR classifier from [1]. Since not all readers might
be familiar with the field of classifiers we will explain some
terms and concepts in order to understand the results later on
in this document. Then in section III the model assumptions
of [1] will be checked. The original results will be examined,
the method, results and conclusions will also be in this
section. In section IV the comparison with the SVM classifier
will be discussed. Starting with an explanation of the SVM,
followed by the method and results. A discussion of the
results follows, ending with a conclusion about this research
goal. The paper ends with a summarizing conclusion and
recommendations in section V.

II. THEORY

In this section a (mathematical) summary of [1] and the
theory of several concepts related to this research will be
explained. If the reader is already familiar with the concepts,
he can continue at section III.



A. Likelihood ratio classifier
As mentioned in the Introduction (section I), the newly

proposed classifier in [1] is the Likelihood ratio classifier
for histogram features. We will give a short summary of the
mathematical reasoning that results into this new classifier
by [1].
Let us compare two histograms,

∑n
i=1 xi = X and∑n

i=1 yi = Y , the question is whether x and y are from
the same ’person’ (source). Two assumptions made in [1]
are that histogram x is a realisation of random vector x
and that a probability pi ≥ 0 is associated to every bin i
from x, such that

∑n
i=1 pi = 1. From here an interesting

and important assumption follows, that we will investigate
further in section III, namely that the outcomes that follow
from observations are statistically independently allocated
in the histogram. Thus, the realisation of x out of x is
the multinomial distribution with parameters p, as shown in
equation (1), [1].

P{x = x|p} = Mult(x|p) (1)

When we then write the likelihood ratio to compare the
two histograms, assuming that when x and y are from differ-
ent persons (individuals), they are statistically independent,
we get equation 2. In this equation S denotes the condition
that x and y come from the same source.

lr(x,y) =
P{x = x,y = y|S}
P{x = x}P{y = y}

(2)

In [1] it is argumented that a prior probability density fp(p)
can be used to model the parameters of the multinomial
distribution. Using this prior probability density, equation
(2) can be rewritten to equation (3). In [1] it is then
reasoned that the Dirichlet density can be used as the prior
probability density. The expression for the Dirichlet density
is as equation (4). In this equation the α is the parameter
vector and B(α) represents the quotient of gamma functions
that are part of the Dirichlet density, [1]. The complete
description of B(α) and the gamma function can be found in
the Appendix equation (11) and equation (12) respectively.
Then equation (3) and equation (4) are combined, which
results in equation (5), which is the likelihood ratio, [1].

lr(x,y) =

∫
p

Mult(x|p)Mult(y|p)fpdp∫
p

Mult(x|p)fpdp
∫
q

Mult(y|q)fqdq
(3)

Dir(p|α) =
1

B(α)

n∏
i=1

pai−1
i (4)

lr(x, y|α) = B(α)
B(x + y + α)

B(x + α)B(y + α)
(5)

Using a training set, a maximum likelihood estimator can
be developed that computes the estimate α̂ for α. In [1], this
is done by the Nelder-Mead downhill method [11], which
needs an initial estimate for α, α̂init. This α̂init is based on
the expected value and variance of the representative set of
bin probabilities, [1].

B. Data representation

In order to assess the performance of a classifier there
are several terms and graphical plots. Since the reader might
not be familiar with the world of classifiers, we will explain
briefly the ones we use later in this report.

Classifiers have the task to categorize datasamples, to
name a few examples: it is ”Person A” or it is ”not Person
A”, it is black or it is white, these samples are from the
same source or not, etc. Afterwards it will be measured how
many of these samples were categorized correctly. There will
also be situations were the classifier misjudges, which results
in false positives and false negatives, which, in biometric
context, we call false matches and false non-matches. In the
context of this paper we call the decision of a classifier that
two samples are from the same individual when they are not,
is a false match. The decision that two samples are from
different individuals when they are in fact from the same
person, is a false nonmatch.

The comparator’s decision is based on a score, that the
comparator assigns to each sample. When the result of a
sample has a score that is above a certain threshold t it
is decided that this sample belongs to class ”A”, when
it has a score below this threshold it is decided that this
sample belongs to class ”not A”. To get a full idea of the
performance the false matches and false non-matches will
be calculated for a varying threshold. This gives the False
Match Rate (FMR), equation (6) and False Non Match Rate
(FNMR), equation (7). In these equations s is the score and t
is the threshold. The categories of datasamples in the context
of this paper are ’mated’ (two samples originating from
the same individual) and ’nonmated’ (two samples do not
originate from different individuals). We can also calculate
the True Match Rate (TMR), which gives an indication of
the proportion of matches that are actually decided to be a
match, equation (8).

FMR(t) =
|{s|s ≥ t, nonmated|}
|{s|nonmated}|

(6)

FNMR(t) =
|{s|s < t,mated|}
|{s|mated}|

(7)

TMR(t) = 1− FNMR(t) (8)

A value that represents the perfomance of the classifier is
the Equal Error Rate (EER). When the FMR and FNMR are
plotted against the varying threshold, they will intersect at
some point. This means that there is a threshold value for
which the FMR and FNMR are equal. The error rate at this
point is called the EER. The proportion of false matches is
equal to the proportion of false non-matches. The lower this
value, the better the system performs.

When we plot the TMR against the FMR we get Receiver
Operating Characteristic Curve (ROC curve). It originates
from radar analysis and it gives insight in the probability
of detection vs. the probability of false alarm. It can, for
example, be used in a cost/benefit analysis, [3].



III. MODEL ASSUMPTIONS VALIDATION

LLR as classifier is based on the assumption that the data
has a multinomial distribution, as mentioned in section II-
A. This is an important assumption and it can be ques-
tioned whether this assumption is valid. The multinomial
distribution is a generalization of the binomial distribution
and it can for example model the probability of counts for
rolling a dice with k sides n times. It is important that the
n trials are independent. As described in section II-A in [1]
the assumption is made that the allocation of outcomes of
observations into the histogram is statistically independent.
The LLR classifier was tested by the authors of [1] with
two datasets: real data and synthetic data. Real data means
histograms that are derived from actual pictures, in [1] the
Smartphone Biometric Dataset from [13] is used. From this
dataset 75 subjects are used for training and 71 for testing.
Each subjects has 15 samples. From training followed an
estimated parameter vector α̂, which was used for testing,
[1].
The synthetic data is created using the multinomial random
data function (from Matlab), which is based on the multi-
nomial distribution. This required a probability vector as
input, the synthethic data uses the Dirichlet distribution as
probability vector. The parameter vector for this Dirichlet
distribution is based on the reversed number of bins of the
histograms. The synthetic data is created to be multinomially
distributed, [1]. It appeared that classifier performed better
when trained with synthetic data than with the real data. In
figure 2 the ROC curve of the real data is visible, in figure 3
the ROC curve of the synthetic data is visible. Although we
cannot equally compare them, since the underlying Dirichlet
distributions are not alike at all, it is interesting to see that
the classifier for synthetic data performs clearly better than
the one for real data. This indicates that real data might not
completely multinomially distributed, since we know that
the synthetic data is multinomially distributed. In order to
investigate this, we will create synthetic data that we can
compare with the real data to see whether the assumption
that data is multinomially distributed.

Fig. 2. ROC curve after training and testing the LLR classifier with real
data.

Fig. 3. ROC after training and testing the LLR classifier with synthetic
data.

A. Method

In order to test whether the assumption was correct that
the histograms of real data are multinomially distributed, we
will do the following:
• Train the classifier with real data samples. This results

in an α̂ for the supposedly Dirichlet probability density
of the real data.

• Use this α̂ to create synthetic data. Create two datasets:
one for training and one for testing. These will be of the
same size as the ones used with real data (75 subjects
for testing, 71 for training, consisting of 15 samples
per subject). Creating new data is done by creating a
probability vector out of the Dirichlet distribution with
parameter vector α̂. Then a multinomial distribution
with the probability vector as parameter vector is used
to create the histograms.

• Train the classifier with the new synthetic training data.
• Test with synthetic test data.
The existing code from [1] for creating, training and

testing of synthetic data and real data has been modified
to create new code that fulfills the task as described above.

If the real data is indeed multinomially distributed, the
results after testing with synthetic data should not differ too
much from the results of the real data, since it is based on the
estimated parameter vector from the Dirichlet distribution.
However, when the results differ, we have reasons to assume
that the initial assumptions were wrong.



B. Results

For the real data we used the Smartphone Biometric
Dataset from [13], as used in [1]. This consists of in total
146 subject with each 15 samples. The dataset for training
consists of 75 subjects, 71 subjects were used for the testing
dataset. The same number of subjects and samples were
created as synthetic data. The plot of the Error rates is visible
in figure 4 and the EER is calculated to be 0. The TMR at
FMR = 0.0001 is calculated to be 1.

Fig. 4. Error rates of the LLR with the estimated parameter vector that
followed from the new synthetic data.

C. Discussion/Conclusion

It is interesting to see that this system performs perfectly,
the TMR jumps almost instantly to 1 and the EER reaches
to zero. It vastly outperforms the LLR with only real data.
This explains indeed that the original real data is not a perfect
multinomial distribution. However, the classifier on real data
still performs seemingly well, as the results from [1] showed.
This means that the real data is not a perfect multinomial
distribution, but it presumably does resemble one.

IV. COMPARISON WITH SVM

In [1] it is mentioned that the classifier the LLR classifier
is compared to, is an untrained classifier (namely chi square).
Since the LLR is a trained classifier, it is interesting to see its
performance compared to a trained classifier. As an example
the support vector machine (SVM), which is often used, is
chosen.

A. Theory of the SVM

In this section the SVM and related topics will be ex-
plained. When the reader is already familiar with the concept
of SVM he can go to section IV-A.3.b.

1) SVM explained: Support vector machines are two-class
classifiers [4]. The SVM is trained with a set of labeled
data. Labeled means that it is indicated to which category
the data belongs, in the context of this paper these categories
will be mated and nonmated. As the name of the classifier
already unveils, the SVM uses vectors. It represents the data
as vectors, these vectors are mapped into a high-dimensional

space. The SVM then tries to find the seperating hyperplane
with the largest margin towards the datapoints of the two
categories, [4].

To intuitively understand the SVM an example will help.
As shown in figure 5, there are two different categories (or
classes), black and white circles. The hyperplane (indicated
with ’H3’) is placed where it has the largest margin towards
the classes. H1 and H2 could not have been the hyperplanes,
since H1 does not separate the classes and H2 does not have
not the maximum margin.

Fig. 5. H1 does not separate the classes. H2 does, but only with a small
margin. H3 separates them with the maximal margin. Source: adapted from
[5]

The hyperplane in figure 5 was relatively easy to find.
This is because the classes were linearly seperable. Using the
SVM it is also possible to find hyperplanes for non linearly
seperable data, by transforming them to a higher dimension,
[4]. This is called the kernel trick. An example of two classes
that are not linearly seperable is visible in figure 6. When
transforming the data to z = x2 + y2, you will get figure 7.
Here it is possible to seperate the classes. The hyperplane in
the original space is visible in figure 8.

Fig. 6. Example of two classes that are not linearly seperable. Source:
adapted from [6].



Fig. 7. Data of figure 6 transformed to z = x2+y2.Source: adapted from
[6].

Fig. 8. Data of figure 6 seperated by a non-linear hyperplane. Source:
adapted from [6].

2) Radial Basis Function Kernel: As explained a kernel
helps to seperate the classes. The radial basis function (RBF)
kernel is suited for non-linear classification, such as figure
6. The RBF kernel can be described as equation (9), where
x and x’ are two samples and γ is a parameter which will
explained below, |x−x′|2 is the squared Euclidean distance.

K(x,x′) = exp(−γ‖x− x′‖2) (9)

The γ parameter influences how much influence one
data sample has, it can be seen as the inverse of the
standard deviation of the kernel (the radial basis function
is a Gaussian function). It determines the ’width’ of the
function, [8]. Since it is the inverse, a small γ belongs to
a Gaussian function with a large variance. In this situation
two vectors that are far apart will be considered similar. A
large value for γ belongs to a small variance, so two vectors
will be considered similar if they are close to each other.

A parameter that has not been mentioned yet is the C
parameter. The C parameter is of influence in the minization

problem of the SVM, it is not part of the RBF kernel,
[7] The C parameter determines how accurate the training
will be, which is a trade off to the complexity of the
decision function. It is possible that the two classes are not
completely separable, thus there are training errors. The C
parameter controls the influence of these errors (or each
individual support vector). Setting C too low will result in
accepting too much and the training will not be accurate
anymore. Setting C too high will result in ’overfitting’ and
a complex decision function. [4].

3) Comparison: The conventional use of the SVM is not
applicable in our research (comparing it to the LLR). To
explain this, the conventional uses will be described and
the problem will be illustrated using an example. Then a
solution will be proposed.

a) Conventional use: With classification it is often
the idea to identify an object. Imagine a situation where
you have data of features of n objects. You then get new
data of one of these object and you would like to identify
which object it is. As mentioned before, SVM is a two-class
identifier. It can seperate two categories. Now we have n
different object. Usually this is solved in either a One VS
All construction or a One VS One construction. Using the
One VS All construction you have to make an SVM for
each object, the classes are then Object A and Not Object
A. Then some type of scoring system has to be used to
determine to which class your undetermined object belongs.
The one VS one method uses pairs, you create an SVM for
all possible pairs of classes. This results in (n× (n− 1)/2)
SVMs. Again some kind of scoring system has to be used.
The disadvantage of either approach is that the SVMs
are specifically trained for the individuals in the datasets.
They cannot be used to recognize unseen individuals, as is
required in realistic biometric applications. [9]

b) Proposed solution: In [1] the classification context
was different, it was a comparison. Are the two histograms
from the same person? This is a different question than:
who is this person? In this context it is possible to add new
individuals to the dataset. The question if the histograms
origin from the same person, is a binary question: the answer
is either yes or no. This means we can make two classes:
’same persons’ and ’not the same persons’, to which we will
refer to as ’mated’ and ’non-mated’ respectively. This means
the data of two persons has to be combined in order to be
presented as one sample. The idea is to concatenate the two
histograms. This results in a long vector with either the data
of two histograms from the same person or from different
persons.

The expectation is that these classes are separable. The
data from one person is expected to be similar and data from
different persons should be different. When the histograms
would only exist of one bin and we combine the samples, we
can plot them on a two dimensional plane. If the data would
have a mean around zero and a (expected) high covariance



for mated data, it would look like figure 9. The nonmated
data then has a covariance of zero, which is the expectation,
and would look like figure 10.

Fig. 9. Datasamples with a high covariance

Fig. 10. Datasamples with a covariance equal to zero

B. Method

The SVM is created in Matlab, using the fitcsvm
function from the statistics and machine learning toolbox.
The complete code consists of six steps, which we will
explain chronologically.

1) Step 1 Data: The data that is used for training and test-
ing are histograms from the Smartphone Biometric Dataset,
as used in [1]. The code from [1] is reused to load the data.
There are 15 samples per subject and in total there are 146
subjects. 75 of the subjects are used for training, the 71
remaining subjects are used for testing. Every sample is a
histogram with 256 bins. Besides the data of all the subjects,
there is also an Identification vector created, that indicates
to which subject the data belongs. This ID vector is usefull
later on in this experiment.

2) Step 2 Normalize: The feature vectors have to be
normalized, this way they contribute equally. This is done
by dividing each histogram by its sum.

3) Step 3 Training: To evenly train the SVM, an equal
amount of mated and nonmated datasamples have to be used.
This is done the following way:

1) Calculate the total number of samples and make
all possible combinations of sample(number)s using
Combinations in Matlab.

2) Indicate whether the samples belong to the same
subject using the ID tags.

3) Seperate the mated and nonmated combinations.
4) Randomly select the same amount of combinations

from the nonmated combinations as the mated com-
binations.

The data has to be prepared for the training. As mentioned
in section IV-A.3 the (selected) histograms will be concate-
nated. There is also a vector created containing the labels,
mated or nonmated.

To train the SVM the fitcsvm function from Matlab
is used. As described in section IV-A.2 the RBF kernel is
suited for our problem. The γ parameter can be found in the
Matlab function parameter Kernelscale , which equals
1√
γ . The C parameter is called the BoxConstraint .

The KernelScale parameter and Boxconstraint
parameter can be optimized, using the input argument
OptimizeHyperparameters . According to the de-

scription of Matlab it attempts to minimize the cross-
validation loss (error) for fitcsvm by varying the pa-
rameters, [10]. The default is Bayesian optimization and it
searches for the BoxConstraint and KernelScale log-scaled in
the range of [1e-3, 1e3]. The number of function evaluations
is 30. After optimization Matlab gives the best observed
values for the parameters and the best estimated values
(according to the models), [10].

4) Step 4 Testing: The SVM is trained, so now we can
test it, using the testsamples. As mentioned in step 1 (IV-
B.1) we have 71 test subjects with each 15 samples. We
create again combinations of mated and nonmated subjects,
it is possible to use all combinations for testing. Again
the data is concatenated and labels are created. Using the
predict function from Matlab the classification scores

can be obtained. The SVM classification score for classifying
observation X is the signed distance from X to the decision
boundary ranging from -∞ to +∞. A positive score for a
class indicates that X is predicted to be in that class. A
negative score indicates otherwise, [2].

5) Step 5 Analysing the results: Since we know which
combinations are mated and which are nonmated, we can
seperate the scores accordingly. We will use the scores for
the mated class, which means positive scores for X to be in
that class and a negative score for X to be in the nonmated
class. Ideally all the scores are either positive or negative.
To see if this is the case, the normalized histograms of the
scores will be used.



6) Step 6 Presenting the results: The last step is to present
the results so they can be analyzed and discussed. The FMR
and FNMR will be plotted against a varying threshold value
and ROC curve will be plotted. The FMNR can be calculated
as in equation (7), the FMR as in equation (6) and the TMR
as in equation (8). The s is the score, the t in all three
equations is the threshold for the scores. The FNMR, FMR
and TMR are calculated for 1000 values of the threshold,
ranging linearly from the minimal score to the maximum
score.

C. Results

After optimization the following parameter values were
observed best and used for the results:
• KernelScale = 0.032356
• BoxConstraint = 2.7696

As mentioned in the method (IV-B.5) two normalized his-
tograms are created of the scores for the mated and nonmated
testsamples. These histograms are visible in figure 11. It is
already visible that there is no clear separation in scores for
the mated and nonmated samples, which whould have meant
a clear seperation of the peaks of the histograms.

Fig. 11. Histograms of the scores after testing. In blue the histogram for
the mated data, in red the histogram for the nonmated data.

TABLE I
RESULTS OF USING THE SMARTPHONE BIOMETRICS DATASET (FROM

[13]) AS USED IN [1]

EER TMR ×10−2 at FMR =0.0001
LLR 0.25 ×10−2 85.45
SVM 0.198 1.68

Besides the histograms, the plot of error rates and the ROC
plot are avaiable, visible in the Appendix figure 13 and figure
14 respectively. The EER of this system is about 0.198. The
EER of the LLR for 1:1 histogram comparison is 0.25×10−2

for the Smartphone Biometric Dataset, [1]. In [1] the value
for the TMR at FMR=0.0001 is calculated too. For LLR for
1:1 histogram comparison this value equals 85.45×10−2 for

the Smartphone Biometric Dataset, [1]. For the SVM this
value is about 1.68 ×10−2. The results are also visible in
table I

D. Discussion

It is surprising to see that the SVM performs so poorly
compared to the LLR classifier. The overlap in the histograms
(figure 11) indicates that the two classes were not easily
separable. The cause could be that the concatenated data
cannot be seperated well by an SVM.

A simple test to confirm this is to concatenate two
features that consist of only one value, instead of histograms
of 256 bins. The space where the new vector is mapped on
is then in 2D. For the ’mated’ data we create 1000 vectors
using the multivariate normal distribution. To simulate the
idea that they are similar, a high covariance will be used:[
x
y

]
= N

(
0,

[
1 0.99

0.99 1

])
The nonmated data, again 1000 vectors, is created
using the multivariate normal distribution. To simulate that
the data is from a different source, a covariance of zero will
be used:[
x
y

]
= N

(
0,

[
1 0
0 1

])
The scatter plot of the mated data looks like figure 9,
the one of the nonmated data looks like figure 10. Similar
wise testdata is created. The training and testing of the SVM
is done similarly to the method described in section IV-B.
This gives the histograms visible in figure 12. The EER is
equal to 0.111 and the TMR at FMR = 0.0001 equals about
71×10−2. The plot of the error rates and the ROC curve
are available in the appendix figure 15 and figure 16.

We can compare the results of this SVM with a simple
classifier based on a dissimilarity measure. We calculate the
score according to equation (10), where s is the score and
x and y are the features, using the same testdata as was
used to produce figure 12 . The histogram of these scores
can be found in the appendix figure 10. The peaks of the
scores of the mated and nonmated data are comparable with
the ones that the SVM produced (figure 12). This means
that the performance of the SVM is not worse than that of
a simple classifier.

s = −(x− y)2 (10)

Another point of discussion worth mentioning is that the
LLR tests were done with shortened histograms, the last 76
bins were removed and only the 180 first bins were used in
testing and training the LLR classifier, [1]. In the test with
the SVM the original histograms of 256 bins were used.
However, looking at the results presented in figure 15 and
figure 16 it seems like the LLR would have outperformed
the SVM even with fewer bins.



Fig. 12. Histograms of the scores after testing of the 2D data. In blue
is the histogram of the mated data, in red the histogram for the nonmated
data.

E. Conclusion

The SVM using the fitcsvm function from Matlab
does not perform better than the LLR classifier from [1].
The LLR classifier appears to be considerably better than
the SVM, looking at the values of the EER and the TMR at
FMR = 0.0001 (presented in tabel I. The poor performance of
the SVM could be the fact that the two histograms were con-
catenated and that the two categories (mated and nonmated)
were not seperable this way. This was investigated by testing
it with 2D vectors, described in section IV-D. It appeared
that the performance of the SVM on 2D is not worse than
a simple classifier based on a dissimilarity measure. This
all leads to the conclusion that SVM is not suitable for
1:1 histogram comparison and that the concatenating of the
histograms is not the cause of poor performance.

V. CONCLUSIONS

In this paper we discussed two research goals related to
the LLR classifier proposed by [1].

We checked the model assumption of [1] that histograms
can be modeled as draws from a multinomial distribution
and the parameters of this multinomial distributions as
the Dirichlet probability density. We did this by creating
synthetic data which had for sure these characteristics. The
Dirichlet probability density is determined by a parameter
vector. This parameter vector was retrieved from the
estimated Dirichlet parameter vector of real data from the
Smartphone Biometric Dataset (from [13]) as used in [1].
When the histograms of the real data would have been
multinomially distributed the performance of the classifier
trained with the synthetic data should be comparable with
the performance of the classifier trained with real data.
However, it appeared that the LLR classifier performed
nearly perfect on this newly created synthetic data. This lead
to the conclusion that the assumption that the histograms
of real data are multinomially distributed is not correct.
However the performance of the classifier on real data is
sufficiently good and the near perfect performance on the

synthetic data means that the estimated parameter vector
of the real data approximates the multinomial distribution.
The question why the statistics of these histograms are not
independent, could be answered by future research.

Furthermore, the performance of the LLR classifier as
proposed by [1] was compared with another trained classifier:
the support vector machine. To enable 1:1 comparisons for
the SVM we had to concatenate histograms of two samples
and present it as one sample. The RBF kernel was used for
the SVM with optimized parameters γ and C. The results
after training with the same dataset as the LLR classifier are
presented in table I. It can be seen that the LLR classifier
outperforms the SVM. The assumption that the histograms
could be concatenated might have been wrong, this was
tested by concatenating histograms of only one bin. The
mated samples were simulated by draws from a multivariate
random distribution with a high covariance, the nonmated
samples by draws from the same distribution but with zero
covariance. The results of this test are shown in figure
15, where it is clear that the two peaks are not seperable.
However, when the scores are calculated using a simple
classifier based on a dissimilarity measure, they do not differ
too much from the scores of the SVM (figure 17). This leads
to the conclusion that the LLR classifier performs better than
the SVM on 1:1 comparison, however SVM is not the ideal
solution to perform 1:1 comparisons on histograms. Since
this implementation of the SVM was not suitable to compare
with the LLR classifier, further research can be done by
comparing the LLR classifier with other trained classifiers.
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VI. APPENDIX

A. Equations

B(α) =

∏n
i=1 Γ(αi)

Γ(
∑n
i=1 αi)

(11)

Γ(z) =

∫ ∞
0

xz−1e−xdx (12)

B. Figures

Fig. 13. In blue the FMR against the varying threshold for the score and
in red the FNMR against the varying threshold for the score.
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Fig. 14. ROC curve of the SVM Fig. 15. In blue the FMR of the 2D testdata against the varying threshold
for the score and in red the FNMR of the 2D testdata against the varying
threshold for the score.



Fig. 16. TMR against the FMR of the 2D testdata. Fig. 17. Histograms of the scores of the dissimilarity classifier described
in equation (10).
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