
University of Twente

Creative Technology

Low-cost Autonomous Temperature Measurements
System

Max Pijnappel

supervised by
Ir.Ing. Richard Bults and Ir. Hans Scholten

14-02-2020

Abstract
The ITC wants to develop an accurate weather model for the city of Enschede.
To accomplish this eighty sensor nodes will be distributed through the city of
Enschede. The goal of this graduation project is to build one of those low-cost
autonomous sensor nodes. The sensors of the node are undere400,- andmea-
sure air temperature, solar radiation, relative humidity, and wind speed. The
sensors alsomeet the requirements set by the ITC. Besides the senors, a power
management system was built and a housing that protects it.

This study finds that the sensors perform well and an housing that allows
for easy swapping of sensors. And power is provided by solar energy with a
li-ion battery. The whole system is controlled by an ESP32. For future work, it
would be recommended to implement a system that stops charging at sub-zero
temperatures since that can damage the battery.

1

Acknowledgement
There are several people I would like thank for there help during this project.
First of all I would like to thank Richard Bults and Hans Scholten for supervis-
ing me during the project. Secondly I would like to thank Alfred de Vries for
assisting me in building the prototype and allowing me to use all 3D printer for
an week. Lastly I would like to thank Wim Timmermans my stakeholder in help-
ing me set requirements for the sensors.

2

Contents
1 Introduction 8

1.1 Problem Statement . 8
1.2 Research question . 9

2 State of the art 10
2.1 Requirements . 10
2.2 IoT based weather stations . 11

2.2.1 EnskeTemp . 11
2.2.2 Design of an Autonomous Wireless Weather Stations . . 13
2.2.3 Weather Station Design Using IoT Platform Based On Ar-

duino Mega . 13
2.3 Non-weather sensor nodes . 15

2.3.1 The prototype of an infant incubator monitoring system
based on the internet of things using NodeMCU ESP8266 15

2.3.2 Design ofMushroomHumidityMonitoring SystemBased
on NB-IoT . 16

2.3.3 IoTEnabled Intelligent SensorNode for Smart City: Pedes-
trian Counting and Ambient Monitoring 17

2.4 Component and material selection 18
2.4.1 Sensor survey . 18
2.4.2 Housing material . 20
2.4.3 Discussion (temperature and humidity sensor, housingma-

terial) . 21
2.5 Pyranometer and wind sensor . 22

2.5.1 Reference from Davis . 22
2.5.2 Sonic wind sensor . 24

2.6 Design radiation shielding sensor node 25
2.6.1 multi-plate radiation shielding 25
2.6.2 Helical radiation shielding 26

2.7 Conclusion . 27

3 Method 28
3.1 creative technology design process 28

3.1.1 Ideation . 29
3.1.2 Specification . 29
3.1.3 Realisation . 29
3.1.4 Evaluation . 29

3.2 Stakeholder identification . 29
3.3 MoSCoW . 30
3.4 Interview . 30

3

4 Ideation 31
4.1 Stakeholders . 31

4.1.1 ITC . 31
4.1.2 Twente47 . 31
4.1.3 The city of Enschede . 31
4.1.4 Inhabitants of Enschede 32

4.2 Housing . 32
4.2.1 Central housing . 32
4.2.2 Radiation shield . 34
4.2.3 Attaching the external sensor 34

4.3 Sensors . 35
4.3.1 Power consumption . 35

4.4 Communication . 36
4.4.1 Wireless . 36
4.4.2 Protocols . 36

4.5 Microcontrollers . 37
4.5.1 ESP32 . 37
4.5.2 Sodaq ONE . 37
4.5.3 Data processing . 38

5 Specification 39
5.1 Basic system overview . 39
5.2 Software overview . 40
5.3 Final Requirements . 41

6 Realisation 42
6.1 Components . 42

6.1.1 Davis instruments Anemometer 44
6.1.2 Davis Instruments Pyranometer 45
6.1.3 SHT31 Temperature and Humidity 46
6.1.4 Power management . 46
6.1.5 ESP32 . 47
6.1.6 Complete system . 47

6.2 Sensor housing . 49
6.2.1 Main Housing . 50
6.2.2 Attaching components . 52

7 Evaluation 55
7.1 Component test . 55

7.1.1 Temperature . 55
7.1.2 Relative Humidity . 56
7.1.3 Solar Radiation . 56

7.2 Test outside . 57
7.2.1 Temperature . 57
7.2.2 Relative Humidity . 58
7.2.3 Solar Radiation and Wind Speed 59

4

7.3 Controlled test . 59
7.3.1 Solar Radiation . 59
7.3.2 Wind Speed . 61

7.4 Water proofing . 64

8 Discussion 65
8.1 Waiting on components . 65
8.2 LoRaWAN . 65
8.3 Water damage . 66

9 Conclusion 67

10 Recommendations 69
10.1 Micro controller . 69
10.2 OTA Updates . 69
10.3 Temperature based switch . 69
10.4 Larger production . 70

References 71

A Code for ESP32 75
A.1 Main arduino code mqtt . 76
A.2 Deep sleep function . 80
A.3 Functions for flash storage . 81
A.4 Solar radiation . 82
A.5 Forming of the packet . 83
A.6 Temperature and Humidity sensor 84
A.7 Temperature and Humidity sensor 85
A.8 Code for measuring wind speed 86
A.9 Code for measuring the battery voltage 88
A.10 Main arduino code TTN . 89
A.11 Code for LoRaWAN ESP32 . 93

B Python Code 96
B.1 Code to get data from TTN and insert in mysql database 97
B.2 Code to get data from mqtt broker and insert in mysql database . 99
B.3 Code to input data manually and insert in mysql database 101

C Pictures of test setup 103
C.1 Pictures of components test . 103
C.2 Pictures of light test . 105
C.3 Pictures of wind test setup . 107

5

List of Figures
1 Multi-plate radiation shield (Davis) 25
2 Helical design radiation shielding 26
3 Atmospheric air temperature measurement error 26
4 Creative technology design process diagram 28
5 slider sensor Connection . 33
6 double hinge sensor Connection 34
7 Hinge Sensor Connection . 34
8 A basic overview of the system 39
9 slider sensor Connection . 42
10 Anemometer from Davis Instruments 44
11 Pyranometer from Davis Instruments 45
12 SHT31 temperature and humidity sensor 46
13 Solar panels . 47
14 Exploded view sensor node . 49
15 Exploded view sensor node . 49
16 The assembled sensor node housing 49
17 The assembled sensor node housing 49
18 This allows the node to be attached to a pole 50
19 Holes where Weipu connectors can be put trough 51
20 The lid of the sensor node . 51
21 The lid of the sensor node . 52
22 The lid of the sensor node . 53
23 Picture of radiation shield . 54
24 3D model of solar radiation shield 54
25 The lid of the sensor node . 54
26 Temperature data from first sensor test 55
27 Humidity data from first sensor test 56
28 Solar radiation data from first sensor test 57
29 Temperature data from sensor node with housing outside 58
30 Humidity data from sensor node with housing outside 58
31 Solar radiation test with floodlight 20cm 59
32 Solar radiation test with flood light 35cm 60
33 Solar radiation test with halogen light 61
34 Wind speed test (22Hz) . 62
35 Wind speed test (22Hz) . 62
36 Temperature data from controlled test 63
37 Humidity data from controlled test 64

6

List of Tables
1 Sensor requirements . 10
2 The performance comparison of the temperature sensors 18
3 Humidity sensors . 19
4 Final MoSCoW requirements . 41
5 All the connections from the sensors to the ESP32 43
6 Prize over view sensor node . 48

7

1 Introduction

1.1 Problem Statement
Due to the hot summers lately, like the summer of 2018 which was the warmest
in 300 years [1], the city of Enschede has identified heat stress as a problem
[2]. To try and combat this problem the city of Enschede has started climate
adaptation initiatives. An example of such an initiative is “Wat Heet Eanske
Greune Stad!” (WHEGS) . This is a project that aims to measure the air temper-
ature in various locations with the help of low-cost autonomous sensor nodes.
The WHEGS project is currently running for six months at UT-CreaTe, with a
focus on functionality, feasibility and provides the requirements for this gradu-
ation project. Prior to theWHEGS project, several students of UT-Create worked
on the development of prototype autonomous sensor nodes. Four parameters
were found to get an accurate air temperature measurement. These parame-
ters are: air temperature, relative humidity, wind speed and solar radiation. To
make these sensor nodes autonomous there is also somework done on energy
harvesting via solar energy and a low-cost weatherproof sensor node housing.
And to collect the data autonomously LoRaWAN was used because of a fairly
large range with low energy consumption.

However, during this development work, some problems with the reliabil-
ity of the temperature sensors and energy harvesting subsystems have been
found. This is why the challenge of this graduation project will be getting re-
liable measurements within the given budget of e400. And since this budget
would be too small to have all the sensors of high-quality, research has to be
done and what compromises can be made. This means finding out which pa-
rameters are most important in getting the minimum required accuracy of air
temperature measurements. But the accuracy and quality of sensors are not
the only factors in gathering accurate measurements. The processing of the
data from the sensors is a step in the data gathering process that could result
in a loss of quality. For example a bad analogue to digital converter (ADC) that
has either a low resolution or not a linear measurement curve. Loss of mea-
surement quality can also occur in the data transmission phase. For example,
this can be due to a limited bandwidth of the data communication infrastructure
which will not allow sending all data with a high resolution. Another problem
could be lost packages when sending data. Measurements will arrive incom-
plete and will become unusable.

A second challenge is going to be making a low-cost sensor node hous-
ing that can protect the embedded sensors during all weather conditions while
these sensors maintain the ability to keep measuring accurately. The housing
also needs to able to let solar rays trough so the solar panel can charge the
battery and power the controller en sensors.

8

1.2 Research question
From the previous discussion, the following research question has been made:

How to develop a low-cost autonomous system to measure air temperature
developments in the city of Enschede?

To solve this, a few sub-questions have to be made concerning the quality
of data since that is amajor focus of the project. And not just quality but also to
get the best possible quality within the given budget. So the first sub-question
is:

“How to optimize the quality of measurements?”
Besides the quality of data, another aspect is protecting the sensors, con-

troller and energy harvesting sub-systems. Since without a good sensor hous-
ing the sensors vulnerable to weather elements. And if sensors are damaged
or broken they will not be able to give qualitative data or any data at all. So the
second research question is:

“How to optimize the protection of used sensors and energy harvesting sub-
systems?”

9

2 State of the art
To design and built the sensor node some research has to be done about the
relevant sensors and the design of the sensor node housing. As well as looking
at some comparable existing sensor nodes.

That is why this chapter I will examine what other sensor nodes are already
made and deployed. What sensors are available for the parameters that need to
be measured. And some option related to sensor node housing design. These
options are for material selection but also curtain parts like the radiation shield.

2.1 Requirements
The four sensors that need to be chosen have to comply with some require-
ments set by the stakeholder Wim Timmermans. As can be seen in Table 1.

Table 1: Sensor requirements

Parameter Accuracy
Relative Humidity 3%
Temperature 0.3 - 0.5 ◦C
Wind Speed 0.1 - 0.2 m/s
Solar Radiation 20 W/m2

The sensors can, of course, have better accuracy but they at least have to
fill these requirements. Another requirement set by Wim Timmermans is that
at least every thirty minutes data has to be received and the data that is then
sent need to be averaged. The preference of Wim is ameasurement done every
minute. And since the current wind sensor has to measure for 2.25 seconds,
the other sensor can do multiple measurements in that minute since they are
nearly instantaneous. This means that every minute average data is collected
and every thirty minutes average data of those average data. In theory, this is
possible but research has to be done on what that will do to the power con-
sumption of the system.

10

2.2 IoT based weather stations
First, research will be done about a few already existing weather station sensor
nodes. To see what is out there and what sensor they use. What method of
transmitting data is used and what problems they come across. What advan-
tages they have or with the disadvantages they have when compared to each
other.

2.2.1 EnskeTemp

This graduation project will build upon the results of the EnskeTemp project.
This project has the aim to set up autonomous sensor nodes all over Enschede
to measure the temperature build-up in the city. The first iteration is made by
Tom Onderwater[3] and only measured the air temperature. The hardware con-
sisted of a Sodaq one which has GPS and LoRa build in. The power was pro-
vided by a solar panel of 1W and the power storage is done with a 1200 mAh
LiPo battery. And the temperature is measured by the DS18B20 digital tempera-
ture sensor[4]. The temperature data is sent via LoRaWAN to the things network
(TTN).

The second iteration is done by Laura Kester[5] and from the research was
learned that more factors had to be measured to get an accurate temperature
reading. Due to this a WH1080 anemometer from Froggit[6] was added and a
SHT15[7] humidity sensor. This gives a better insight into the temperature build-
up. Since wind speed and humidity influence the way air temperature feels. It
also has a direct influence on the measure air temperature, this way correction
to the measure air temperature can be mode when making a model.

The last build iteration is done by David Vrijenhoek[8] some small changes
where made in the housing. An addition of a second solar panel was done
since the changes done in iteration 2 increased the power consumption and
one panel was no longer sufficient. Mostly this iteration was about testing the
dependability of the sensor node. And the sensor node matched the given re-
quirements.

All the iterations used the Sodaq one and transmitted their data over Lo-
RaWAN to TTN. The casing overall stayed mostly the same, consisting of a
radiation shield to protect the temperature and humidity sensor from the rain
while allowing for airflow. A 3D printed exterior made from PLA, because it is
3D printed since that is the easiest when prototyping or when making a low
volume custom product. The solar panel in a separate housing from the rest.
Every iteration also used deep sleep to save on battery life.

For the moment the biggest problems are the reliability of the sensors and
low quality of data. The reliability is a problembecause some sensor nodes that
have been deployed by Tom Onderwater stopped reading temperature values.
As for quality the temperature sensor (DS18B20[4]) also was lacking since it
was 0.5◦CC.

And with the addition of the humidity sensor SHT15 there where now two
temperature sensors. This makes the DS18B20 redundant and drains unnec-

11

essary power. The problem with the SHT15 is that it is an older model and no
longer available so a new sensor has to be chosen that is currently available.
And the froggit WH1080 is a replacement part for a different weather station
and gives no real specifications but from David reliability research came for-
ward that the accuracy was lacking.

For this graduation project, a more professional wind sensor needs to be
found and a more up to date temperature and humidity sensor that is more
reliable. This means the node will be more expansive but there is a budget this
time. This budget allows for some more expansive sensors than previously
used.

12

2.2.2 Design of an Autonomous Wireless Weather Stations

This was also a graduation project which used a Sodaq to make a weather sta-
tion [9]. This weather station measured the air temperature (SHT30), relative
humidity (SHT30)[10], air pressure (BMP180), wind speed (ATMOS 22), wind di-
rection (ATMOS 22) and precipitation (RG-11). It measures all these parameters
every minute and is autonomous with the use of solar panel and battery. The
data is transmitted with the LoRaWAN protocol. The sensors used in this So-
daq based weather station are of high quality and can be good considerations
for this graduation project. Although not all sensor are necessary and some
are to expansive to use. But the SHT30 is a good candidate for high quality and
reliable temperature and humidity sensor.

The powermanagement is donewith a 15-watt solar panel (Eco Line ES10P36)
that chargers 3 li-ion batteries (NCR18650B) of 3350 mAh in series. The charg-
ing is managed by a battery management system (HX-3S-FL25A-A) and a DC
buck regulator (LM2596).

Compared to previous iterations of the EnskeTemp project. The power sys-
tem is more powerful and the used wind sensor of a higher quality without
moving parts. It also is made for a higher measuring frequency than the au-
tonomous sensor node from this GP.

To conclude this sensor ticks a lot of boxes the WHEGS sensor node needs
to have. For instance, the temperature and humidity sensor and thewind sensor
would be perfect if it would have been cheaper. However, it is missing a solar
radiation sensor. And also the more powerful solar panel and power buffer in-
crease its reliability, might be overkill for the WHEGS sensor node.

2.2.3 Weather Station Design Using IoT Platform Based On Arduino Mega

This project [11] describes a small weather station, that can display loads of
weather parameter that can be read from a screen, SD card or on a website.
The goal of the project was to give weather information of a placewithout being
there. This goal was reached of course with the website this weather station
offers.

The core of this weather station is an Arduino mega 2560 that connects to
the internet via an ESP-8266 WiFi module. The sensors used to measure the
parameters are a DHT-22 for temperature and humidity, a BMP180 for pressure
and FC-37 to measure precipitation and lastly an RTC DS-3231 to keep track
of the time. Part of this paper was testing the DTH-22 against a professional
temperature and humidity module, the PCE-TBH 40. During the testing, they
found that the mean error of the DHT-22 temperature sensor was 1.35 ◦C with
the biggest error being 3◦C. The humidity performed even worse with a mean
error of 2.24% and the biggest error being 5%.

To conclude it is a cheap do it yourself alternative to expensive weather
stations but it is not suitable for professional use. Since it currently does not
have a housing which makes it vulnerable. A second problem is the lack of an
autonomous power harvesting like solar power. The whole node is not aimed at

13

functioning autonomously. This can be seen by using Wi-Fi and an LCD screen.
These additions do not add extra features when collecting data and consume
a lot of power. And lastly, as for the temperature sensor they used performed
poorly so the DTH-22 is not a viable option for this GP project. This is because
it does not fit the given accuracy requirement of 0.3◦C for temperature and 3%
for humidity.

14

2.3 Non-weather sensor nodes
Besides weather sensing nodes other sensor nodes exist. These have a differ-
ent goal than measuring the temperature built up, but so have things in com-
mon. Since they either function autonomously or also have to have a high qual-
ity of data in for example temperature or humidity. The challenges they come
across might also occur when a sensor node is built that measure the temper-
ature built up.

2.3.1 The prototype of an infant incubator monitoring system based on the
internet of things using NodeMCU ESP8266

This prototype [12] is made to monitor important environmental parameters in
an infant incubator. This is done by monitoring the head position, the air tem-
perature, the air humidity and the weight of the baby.

The sensors have to be fairly precise since a low quality of data could have
detrimental effects on the baby. Especially since the babies in an incubator
already are at a higher risk.

The sensors that measure the data for this system is an SHT31 sensor to
measure the temperature and humidity. The weight of the baby is measured
with a load cell and the location of the baby is measured with the help of two
HC-SR04ultrasonic sensor. The computing power and local internetweb server
hosting is done with an ESP8266 microcontroller.

This node doesmeasure someair temperature parameters like humidity and
temperature. But it is not autonomous and uses WiFi to show and send data.
But since the data quality used had to be of higher quality, it can give an idea of
the sensor that can provide that, which in this case is the SHT31.

15

2.3.2 Design of Mushroom Humidity Monitoring System Based on NB-IoT

This project [13] is about automating the humidity in the greenhouse that grows
mushrooms. This is done by measuring the humidity and controlling the mist-
ing installation. Together they make sure the humidity is perfect for growing
mushrooms. This is important since when the humidity is too high or low the
mushrooms develop rust spots, hollow fruiting bodies and slow growth. But
when the humidity is to low it will also slow the growth of the mushroom. The
goal of the system to keep the relative humidity as close as possible to 90%.
The test is done in five greenhouses

The setup works with central nodes that receive all the data over narrow-
band IoT from the sensing nodes and upload it to the remote management
software so the data can be viewed. The central nodes can support 50.000
non-delay sensitive low-speed services with an up and downstream of at least
160 bit/s per user. The sensor that is used to monitor the temperature and hu-
midity is an SHT20 from Sensirion. All the sensing nodes are powered with
the use of a 5 Wh battery which will last 10 years. This is an excellent exam-

ple of a functioning node network which can work autonomously for 10 years.
However, the use of narrowband IoT might not be ideal since it is a commercial
infrastructure in contrast to for example LoRaWAN. And since a special narrow-
band IoT band is needed it might not be cost-effective since it will not have that
many nodes in its range. This can be a good example of what extra functions
a network can do like controlling sprinkler systems at ideal times. The solution
of this article is not applicable to this graduation project since it misses some
measuring parameters. And this system is used meant for indoor use.

16

2.3.3 IoT Enabled Intelligent Sensor Node for Smart City: Pedestrian Count-
ing and Ambient Monitoring

This article [14] is about making a sensor node that can track the number of
pedestrians comepast a certain point. It senses the number of pedestrianswith
the help of multiple sensors. It will upload this information over the LoRaWAN
network and works autonomously with the help of solar power.

This node senses the number of pedestrians with a combination of sen-
sors. The first and biggest difference it has compared with comparable sensor
nodes is via a passive infrared sensor (PIR). This sensor detects when an ob-
ject passes through its line of sight. By using six of such sensors it can see in
what way object travel and at 3 different distances.

The second method of detecting pedestrians is with the use of a sensor
(CCS811) that detects CO2 and total volatile organic compounds in the air. If the
amount of CO2 rises in the air this means that more people are in the vicinity of
the sensor.

The lastmethod is bymeasuring the air pressure, humidity and temperature.
These parameters are measured with the help of a BME280. The influence of
these parameters is not really explained but it supports the PIRmeasurements.
It also makes the system have multiple functions since it can track the weather
and the number of people that walk past a certain point. This sensor node has

a lot in common with what the node of this graduation project has to do. It can
function autonomously and does this with the help of a solar panel and data
transfer over LoRaWAN. It also measures air temperature and humidity. But
it lacks the function to measure solar radiation and wind speed. It also quite
bulky but it can give an idea on vandalism or theft since it also stands out and
is placed in a public place. Unfortunately, the article mentions nothing about
this.

17

2.4 Component and material selection
An important part about a sensor node is off course thematerial of the housing
and the sensors that are chosen. That is why this section will focus on what 3D
print filament works best and what temperature and humidity sensor fits best
with in the requirements.

2.4.1 Sensor survey

When getting reliable quality data, choosing the right sensor is important. The
first choice, one has to make is getting a digital sensor or an analogue sen-
sor. Since the project will need more than one sensor node, but not enough
to use mass production, digital temperature and humidity sensor will be used.
Since digital sensors have the advantage of having their data pre-processed.
However there are a lot of digital temperature and humidity sensors that can
be chosen, so a comparison will be made. The sensor will be compared to the
Davis Instruments vantage pro[15] and if they match the requirements given by
WHEGS. The requirements can be seen in Table 1.

Temperature
The temperature sensors will be evaluated based on their accuracy and res-

olution. These two performance measures are informative indicators for the
quality of their provided data. Accuracy is defined as: the difference between
an observed value and the ground truth. In terms of performance, this means
that high accuracy is achieved if the deviations from the ground truth are small.
A sensor is said to have a high resolution if it can handle small step sizes.
The temperature sensors that will be compared in this literature review are the
BME280 [16], the SHT31 [10], the HDC1080 [17] and the MCP9808 [18]. They will
be compared to the Davis temperature and humidity sensors [19], since this is a
sensor used in professional weather stations. The performance measures for
all temperature sensors can be seen in Table 2.

Table 2: The performance comparison of the temperature sensors

Sensor Accuracy (◦C) Resolution (◦C) Requirement met
Davis Instruments [19] 0.3◦C 1◦C yes
BME280 [16] 1◦C 0.01◦C no
SHT31 [10] 0.3◦C 0.01◦C yes
MCP9808 [18] 0.25◦C 0.5 - 0.0625◦C yes
HDC1080 [17] 0.2◦C 0.01◦C yes

18

The accuracy of the chosen sensors is close to each other except for one as
can be seen in table 1. To illustrate, the Davis sensor [19] gives an accuracy of
0.3◦C. This value holds also true for the SHT31 [10]. The accuracy is better for
the MCP9808 [17] with 0.25◦C and the HDC1080 [18] with 0.2◦C. However, the
BME280 [16] has an accuracy that is more than 3 times higher than the Davis
sensor [19], with an accuracy of 1◦C. Sowhen looking at the accuracy of a sensor
all the chosen sensors are candidates except for the BME280. Most likely the
HDC1080 [17] will be chosen since it does have the best accuracy. Secondly,
the resolution of the sensors is going to be compared. The BME280 [16], the
SHT31 [10] and the HDC1080 [18] all have a step size of 0.01◦C. These values are
good when compared with the MCP9808 [19] which has a resolution of 0.5◦C
to 0.0625◦C depending on which mode is chosen. However, the baseline is
the Davis temperature and humidity sensor [19] and since it has a resolution
of 0.1◦C, all sensor options are better. To conclude the best option based on
resolution is are the BME280 [16], the SHT31 [10] and the HDC1080[18]. Since
the HDC1080 was the best option based on accuracy the HDC1080 is the best
option based on temperature to replace the Davis temperature and humidity
sensor.

Humidity

The second part of the sensor comparison part is humidity, which again will
have some sensors compared to the Davis temperature and humidity sensor.
Since most sensors from the previous comparison also have both temperature
and humidity. It will mostly be the same however, the MCP9808 will be left out
since it does not have a humidity sensing part. Just as with the temperature
sensing part some parameters will be used to compare the sensors on. For
humidity, these are accuracy, resolution and long term drift. The performance
of the sensors will be shown in Table 3.

Table 3: Humidity sensors

Sensor Accuracy(%) Resolution(%) Long term drift(%/year)
Davis Instruments [19] 2% 0.1% <0.25 %/year
BME280 [16] 3% 0.008% 0.5 %/year
SHT31 [10] 2% 0.01% <0.25 %/year
HDC1080 [17] 2% 0.006% 0.25 %/year

The accuracy of the humidity sensing part is just like with the temperature
sensing of the sensors close together. With the SHT31 [10] andHDC1080 [18] be-
ing the same as the Davis temperature and humidity sensor [19] being 2%. And
only the BME280 [16] has a slightly worse accuracy with 3%. So solely based on
accuracy the SHT31[10] and the HDC1080 [18] are the best options but looking
at the other parameters might give a clear best option. The second parameter
that is going to be compared is the resolution. And just as the case was with

19

temperature all sensors perform better than the Davis temperature and humid-
ity sensor [19] which has a resolution of 0.1%. The HDC1080 [18], BME280 [16]
and SHT31 [10] are close with 0.008% for the BME280 [16], 0.006% [18] for the
HDC1080 and 0.01% for the SHT31. Although the resolutions are similar, the
HDC1080 is the most precise and thus the best option. Thirdly the long term
drift will be compared, this parameter tells how much the sensors can drift off
from the ground truth over a year. The lower this value is the more precise the
sensor stays over time. This parameter is the only parameter where the Davis
temperature and humidity sensor [19] had the best value. That value being be-
low 0.25 %/year and is shared with the SHT31 [10]. The datasheets do not tell
howmuch under below 0.25 %/year the long term drift is. From the datasheets,
no clear difference with the previous two sensors and the HDC1080 [17] can
be derived since the HDC1080 [17] has a long term drift of 0.25 %/year. The
BME280 [16] has a long term drift of 0.5 %/year which seems like a small differ-
ence with the rest. However, the drift is per year so over a span of 5 years this
small difference will accumulate. Based on the long term drift the SHT31 [10] is
the best replacement for the Davis temperature and humidity sensor [19]. The
best replacement for the Davis temperature and humidity sensor [19] is going
to be the HDC1080 [18] since its data quality was the best for all parameters
both in humidity and temperature. Only in long term drift had it not the highest
quality however it was close and since the best option did not have an exact
value, the difference could be in terms of 0.01% per year.

2.4.2 Housing material

Tomake a sensor node not only choosing the right sensor is important, but it is
also relevant to protect the sensors of the sensor node. The casing is needed
to protect the sensors against the weather (rain, hail or snow). The method
of making this protective casing is going to be 3D printing, but what type of
material (filament) will be used to print. A lot of materials are available and
one of them is Acrylonitrile Butadiene Styrene (ABS). There is some variation in
ABS like the amount of silica in the ABS material. Adding 5 to 10% silica to ABS
increases both the tensile strength and hardness of the filament [20]. Hence
when choosing for an ABS 3D filament using one with a higher silica content
will be preferred.

Besides ABS, PLA is also a popular 3D print filament. It is worthwhile to
mention that the fabrication method affects the quality of the print. Letcher
[21] found that when choosing a print orientation of 0◦C or 45◦C gave the best
results when it comes to printing. Likewise, these results could be used for
other materials like ABS because the printing technique is generally material-
independent. The result of Letcher’s [21] paper did show the best prints with a
45◦C raster orientation. This would be the prefered method. However, in slight
disagreement with Letcher [21], Fernandes [22] states that the best results are
obtained with a raster orientation of either 0◦C or 90◦C. But this was only be-
cause this gave the highest tensile strength. In conclusion, the general consen-

20

sus for an ideal raster orientation is 0◦C.
Raster orientation is not the mere variable that should be considered. The

temperature of the extruder, the layer height and print speed also plays an im-
portant role. Liu [23] states that when using PLA these parameters deliver the
best result when the extruder temperature is 220◦C, the build layer is 0.1mm
and the print speed is 60mm/s. In accordance with Liu [23], Fernandes [22]
confirms that an extrusion temperature of 220◦C and a build layer of 0.1mm
gives the best results These would then be the preferred printing parameters
with PLA. But these parameters only deliver the best result when using PLA,
since these parameters are dependent on the used print material. Therefore,
when PLA would be the material of choice, an extrusion temperature of 220◦C
and a build layer of 0.1mm will be used.

ABS and PLA are the most commonly used printing filaments, each with
their own benefits. Therefore, these will be compared to choose the most ad-
equate material for this project. The research from Shabana [24] shows that
PLA is the strongest when compared to ABS. With regards to ultimate tensile
strength, a combination of ABS and PLA gives the best result. When looking at
microhardness and compressive strength it was equal to ABS and the PLA/ABS
sandwich. The sandwich did have a higher flexure strain value but PLA was al-
most the same. Therefore, PLA would be the best choice for the housing of the
weather station.

2.4.3 Discussion (temperature and humidity sensor, housing material)

To conclude the literature review when looking at the research question “How
to develop a low-cost autonomous system tomeasure air temperature develop-
ments in the city of Enschede?” Some parts can be answered like which digital
sensor fits the specified parameters the best? This review only answers this
for temperature and humidity and the best sensor to replace Davis one is the
HDC1080. This is because the data it gathers is either of a higher quality or
equal quality when compared to the Davis one. And the sensor is cheaper than
the Davis sensor.

The question “What 3D filament is best suited for printing an outside sen-
sor node?” can be answered with PLA printed at 220◦C, with a layer height of
0.1mm, a feed rate of 60mm/minute and a roster angle of 0◦C. Since this was
proven to be the most flexible and durable of the researched methods and ma-
terials.

However, some questions are still left unanswered. This has to do with the
fact that documents and prices of pyranometers and anemometers were not
readily available. Additionally, no peer-reviewed papers on sensors could be
found. The only academic papers that are available are datasheets. Fortunately,
datasheets are provided by the creator of the sensors. It could be helpful if
independent third parties would check the given specifications. The lack of
academic resources for this particular topic confirms the novelty and relevance
of this study.

21

As of now, the research on different types of 3D printing filament for sensor
node housing is rather limited, due to the absence of scientific literature on
this topic. However, mainstream 3D printing technology is still up and coming.
Consequently, more papers might be published over time. Therefore, for future
studies, it is recommended to find more information on the use of different
types of filament.

Since direct literature relating to the previously addressed topics is unavail-
able, it is recommended to look into related domains. Alternative fabrication
methods could be insightful as well. Furthermore, material properties of other
filaments, such as nylon and PETG could be investigated separately outside
of the context of 3D printing. Based on the properties, it could potentially be
inferred whether they are suitable candidates for this project.

Finally, since the academic community has failed to provide resources on
all research questions, there is no guarantee that the conclusions drawn from
this literature review are the most optimal ones. Therefore, it is time to set one
of the first steps in this field by performing an exploratory study to contribute
to the research community.

2.5 Pyranometer and wind sensor
Temperature and humidity are not the only parameters that have to be mea-
sured. The solar radiation and wind speed/direction also have to be measured.
This is why this part of the state of the art will focus on the sensors that mea-
sure these parameters.

2.5.1 Reference from Davis

The reference sensors used will be from Davis and are the anemometer [25]
and solar radiation sensor or solar pyranometer [26]. These sensors are ex-
pensive but do fit within the budget and provide sufficient quality of data. The
anemometermeasureswavelengths in the electromagnetic spectrum from400
to 1100 nanometers. This is visible light and a bit from the infrared spectrum.
The range of the light intensity measured in W/m2 is from 0 to 1800 W/m2. It
gives an analogue output from 0 to 3V with every step of 1.67mV being 1W/m2.

The anemometer measures the wind speed and wind direction. The wind
speed can be measured in a range of 1 to 322 km/h with steps of 1km/h. The
wind speed is outputted every 2.25 seconds. The sensor works by counting
pulses that are created when the wind cups rotate. When the cups rotate a
switch is closed which will create a short pulse. The pulses are counted for
2.25 seconds and will then be converted to wind speed. The wind direction is
measured with the help of a potentiometer so by measuring the voltage out-
put. This value can be mapped from 0 to 360 ◦C if the circuit inputs 3V that
means that when the controller measures 3V the direction is 360 ◦C. If it is 1.5V
the direction is 180 ◦C. To get the accurate direction, the north has to be fac-
ing the right side otherwise the data is only comparative within the node self.

22

Both these sensors will deliver a high enough quality of data. However, the

anemometer contains moving parts which are vulnerable and attract attention.
This attention could result in vandalism or theft since the node will be placed in
areas accessible to the general public. So an option to look for wind speed and
wind direction sensor without moving parts might be preferable. An example of
such a sensor was in the article about a different Sodaq weather station build
[4], which used the ATMOS 22 [27].

23

2.5.2 Sonic wind sensor

The best solution which is robust, accurate and attracts less attention would
be a sonic sensor. However, these sensors on itself are more than the per node
budget of e400. Two examples of such nodes are the ATMOS-22 [27] from
Metergroup or the WindSonic from Gill Instruments [28]. But the Windsonic
starts with a prize of e 780 and according to the other sodaq weather station
[4], the ATMOS-22 is e540. This means it is not feasible to have such a sensor
on every station. But an option can be to put such a sensor on half of the sensor
or a third. Since it could be possible the sensor nodeswill be clustered together.
This way a sonic sensor can be used which is preferred by the client.

24

2.6 Design radiation shielding sensor node
All radiation shield designs function better when the wind speed is higher. This
is due to the fact that the air forces out the heat build-up that is created in the
housing. However there a few types of designs of radiation shielding. Two
of these are the commonly used multi-plate radiation shielding and the newer
helical radiation shielding.

2.6.1 multi-plate radiation shielding

Multi-plate radiation shielding is used inmostweather stations and allows fresh
air to cycle through the housing while protecting the temperature and humid-
ity sensor from rain and direct solar radiation. It is made by stacking multiple
plates that face down at the rim as can be seen in figure 1. Between every plate,
there is an air gap. An example of such a radiation shield is made by Davis [29].

The effect is not completely gone but can be correctedwith a Solar radiation
sensor [30, 31]. The effect can also be minimized in a few ways. The first one is
making the space where the sensor is placed as small as possible. The second
is making the outside of the radiation shielding of highly reflective material.

This type of radiation shield can easily be 3D printed since it could be printed
per plate. This is also the used design in the previous project Enske Temp [3, 5,
8] and did not cause any known problems in measuring.

Figure 1: Multi-plate radiation shield (Davis)

25

2.6.2 Helical radiation shielding

A newer and less used form of radiation shielding is a helical design. This type
of radiation shielding is made in one piece, instead of the layer design that is
used in the multi-plate type. An example of this helical can be seen in Figure 2.
This design is created by Barani design. The design is used in the Meteo shield
line of weather stations [32]. They claim that the performance of their helical
design without a fan, is better than one with a multi-plate design with a fan, as
can be seen in Figure 3. It is not used widely as of yet but if the claims that
are made hold, it can be a good design for a radiation shielding. The modelling
and printing might be more of a challenge especially compared to the multi-
plate radiation shielding. However, it can be considered and tested to see if
this design works as the creator claimed.

Figure 2: Helical design
radiation shielding

Figure 3: Atmospheric
air temperature

measurement error

26

2.7 Conclusion
There are some conclusions that can be made from the state of the art. The
first one being that currently, no one has made a sensor node that fulfils all the
requirements. Some weather nodes but they always seem to lack something.
Too expansive, not autonomous, too low quality of data or do not measure a
certain parameter.

The second conclusion that can be made is about the temperature and hu-
midity sensor and three options seemed viable and need to be tested. Those
sensors are the MCP9808 for temperature and the SHT31 and HDC2080 for hu-
midity and temperature. These are cheap and match the given requirements.

The third conclusion is about the 3D print filament or the sensor node hous-
ing. The most durable material is PLA printed at 220 ◦C, with a layer height of
0.1mm, a feed rate of 60mm/minute and a roster angle of 0 ◦C. This should
result in the most durable housing when using 3D printing as fabrication.

The fourth conclusion is that the pyranometer fromDavis Instruments is the
best option since it fits in the budget and fits the given requirement. And that
either every sensor node gets an anemometer from Davis Instruments or that
part of the sensor node get a more expensive sonic wind sensor from ATMOS-
22 made by meter group.

The last conclusion is about the design of the radiation shielding. This is that
a helical design worksmost effective in keeping the sensor clean and protected
from the weather while not interfering with the measurements. However, some
tests might be needed to conclude if this holds true since no real independent
test could be found about this subject.

27

3 Method
This chapter describes what methods and techniques are used in this gradua-
tion project. The main method that structures this graduation project is the cre-
ative technology design process. The method of choosing what components
are going to be in the sensor node will be the MoSCoW method. This together
with interviewing the stakeholder (Wim Timmermans) to see what he finds im-
portant.

3.1 creative technology design process
To structure of this graduation project is given by the creative technology design
process[33] and starts with a design question. In the case of this graduation
project that is “ How to develop a low-cost autonomous system to measure air
temperature developments in the city of Enschede?”. After this, four phases
are used to find a solution to the design question and the whole process can be
seen in Figure 4.

Figure 4: Creative technology design process diagram

28

3.1.1 Ideation

The ideation is used to come up with requirements that need to be filled. This
is done by looking at stakeholders and see what they want. Most requirements
were already known at the beginning of this graduation project. Those being
the budget that a sensor node has and the minimum quality the four sensors
need to have (accuracy). From this, some sensors that fulfil these requirements
will come forward and the best combination will be chosen. The same goes for
the way the sensor node housing will be designed.

Of course, some other requirements will be found during the ideation phase.
Since there are some more basic requirements that need to be solved.

3.1.2 Specification

Themain goal of the specification is describing the final requirements this grad-
uation project aims to solve. Besides the final requirements, a basic overview
of the system will be made of how everything is going to be connected to each
other. But also what type of components will be in the system on both the hard-
ware side as well as the hardware side.

3.1.3 Realisation

In this phase, the system is going to be built with components chosen that fit
within the requirements chosen by the specification. Multiple tests will be done
in this phase and the problems encountered during this phasewill be addressed
in the next iteration,

3.1.4 Evaluation

During the evaluation phase, the requirements will be tested. To see if they are
met in the design. This means the components, software and the sensor node
housing. The chosen sensors will be compared to Davis instruments vantage
pro 2 [15]. The sensor housing by simulating some weather conditions.

3.2 Stakeholder identification
When designing a product not only the end-user is important. People that are
affected during development are also important and how they influence the de-
sign en development of the product. The main stakeholder will be the one that
gives the assignment and will have the most influence. But other parties that
are involved also have some influence. For example, the party that the budget,
or people that do not buy or want the product but are going to interact with the
product. These parties can not be ignored.

29

3.3 MoSCoW
TheMoSCoWmethod[34] is amethod where requirements are categorized into
four categories: most have, should have and could have. Must have require-
ments are requirements that have to be in the project. Should have require-
ments are requirements that have to be in the product if it does not interfere
with themust-have requirements. Can have requirements are requirements that
are implemented when they do not interfere with the must and should have re-
quirements. And the will not requirements will not be in this project. Since this
graduation project requires allocating budget to sensors it is a good way to see
how much money should be used for each sensor.

3.4 Interview
For this graduation project, an unstructured interviewwill be used with themain
stakeholder Wim Timmerman. The focus will be on what sensors he would
prefer, and if some extra requirements are needed for the system.

An unstructured interview means that a topic is set beforehand and that
questions arise during the interview. This is much like a normal conversation
and can help stimulating more out of the box requirements or ideas.

30

4 Ideation

4.1 Stakeholders
To know who is going to be involved and has interaction in the project, it can be
good to have a stakeholder analyze. And by knowing how much power those
stakeholders have in the project it can also help to sort the ethical by impor-
tance.

4.1.1 ITC

The ITC is the faculty of Geo-information science and earth observation of the
Univerity of Twente. It wants to use the nodes to make a model for accurate
weather predictions in the city of Enschede. This is why they determine the
specifications of the sensor node. Since they want to use the data of the sen-
sors node, to do research on the temperature build-up in Enschede. Due to this,
they have the most interest in this project and also the most power.

So any problems that involve the ITC, must have a high priority. However,
they are not responsible for funding. This means that they have little to say
about the budget of this project.

4.1.2 Twente47

The sponsoringwill be done by twente47, which is an IoT accelerator for projects
in Twente. Their goal is to make Twente a leader in the area of IoT. Since they
provide the budget for the project they have a lot of power in the project. This
means that if the problems are against their views they could stop the project
until a new sponsor is found.

So just like with the ITC any problems that Twente47 has also have a high
priority. So listening to them is important, since they also have experience in
similar projects. So it is also smart to listen to thembecause of their experience.

4.1.3 The city of Enschede

Since the nodes and research will be done in the city of Enschede they are a big
stakeholder in this project. They, of course, have an interest in the nodes since
it can be beneficial to have accurate weather data and predictions in the city. It
can help them with where to plant trees to provide shade. Or other measures
in building to counter heat build-up, since that happens in cities. This is the so-
called urban heat island effect, and this effect can be minimized with certain
building styles.

They have a lot of power because if they do not allow sensor nodes to be
places in Enschede, the project can not take place. So if the nodes are going
to be an eyesore they probably will not like it to be placed all over the city. And

31

they of course also listen to any complaints the inhabitants of Enschede could
have with the project.

4.1.4 Inhabitants of Enschede

Another big stakeholder is the people that live in the city of Enschede. Since
they can come in contact with on a daily basis. And they also are going the
results of the nodes since one of the goals to improve Enschede. They also are
with a lot of people so the chance that they have problems with the finished
result of the projects is also bigger.

So it is also important to account for the effect it is going to have on them.
And if the node does damage it will likely involve these stakeholders the most.
Even dough they have the least power or direct interest in the project. They
probably are an important group to analyze from an ethical point of view. But
more so the finalized product and not the development.

4.2 Housing
When designing the housing some key factors have to be taken into account.
Especially when the final sensors are not necessarily chosen. These factors are
maintenance, prototyping and flexibility.

Maintenance is important to keep in mind since the sensors will run outside
for a long time. Since they are outside and various weather conditions, some
part may get broken. And if that is the case it would be inefficient to replace all
components while only one is broken. So a design where a single component
can be easily replaced is preferable.

Prototyping, since the final sensors are not yet determined. So a design
where a single sensor can easily be replaced can save a lot of work. Since
redesigning a complete node just to change one small part takes a lot of design
and 3D printing time.

Finally, flexibility, since the goal is not one but a whole network of nodes.
The situation could occur that sensor nodes with multiple configurations are
deployed. This way a few sensor nodes could have more expensive sensors
while others some cheaper sensors. So a design that can accommodate both
with changing much to the design saves designing time and allows for easy
changes to a deployed node.

This is why the design of the sensor node should be modular. So the main
housing that houses the controller and power management. But the ability to
attach the various amount of sensor with having the make big design changes.

4.2.1 Central housing

The main part of the system is going to be the central housing. This will house
the microcontroller or the brains of the system. Connected to this is are the

32

systems that send the data over to LoRaWAN, the circuits for the sensors and
the circuit for the power management.

Since the housing must be able to easily connect sensors to the main con-
troller. Some connectors have to be on the outside so no soldering work is re-
quired. And for the sake of prototyping more connectors than sensors should
be there. Since internally a digital sensor needs a different connection to the
controller than an analogue one. The connectors should not compromise the
waterproofing of the housing.

Not only do the sensors have to be able to attach there wiring to the con-
troller. They should also be able to attach physically to the main housing. And
this also needs to be done with compromising the waterproofing of the main
housing or the sensors. And the parts of the connections on the main housing
should not have to change when a different sensor is used. Since then it would
have to be 3D printed again.

There are a few ways to have connections to the main housing with having
the screw indirectly in the main housing. The first one is a sliding mechanism
that is open on top and closes on the bottom. This way gravity will keep it in
place and no screws are needed this can be seen in Figure 5.

Figure 5: slider sensor Connection

33

A second way is a sort of hinge mechanism that is connected with a nut
and bolt. A single has the ability to be adjusted and when the tightened stay in
that place. This can be handy for sensors that need to be directed directly at
the sun or a Solar panel. This type can be seen in Figure 7. Or with two holes
so it stays in a non-adjustable position perpendicular to the housing. This is a
stronger connection and does not move and this type can be seen in Figure 6.

Figure 6: double hinge sensor
Connection

Figure 7: Hinge Sensor
Connection

4.2.2 Radiation shield

The radiation shield is the part of the node that will house the temperature and
humidity sensor. Special housing is needed for these because the sensors need
to be kept safe from the weather elements. However, in order to get reliable
data from these sensors, there has to be air circulation. This will be done with
a radiation shield since that is designed specifically for that purpose.

The radiation shield that is used most for weather stations consists of a
stack of hollow rings that are slanted downwards like in Figure 1. There is a gap
between each ring so air can get trough but rain can not go inside. There is a
different design that is a helix and made in one piece like in Figure 2. However,
this is not widely used and some tests can be done to see differences.

4.2.3 Attaching the external sensor

Since modularity is key the sensors cannot be directly soldered to the micro-
controller. And jumper cables are not exactly sturdy or waterproof. This is why
every sensor will be connected with the use of a connector. This connector can
be placed on the outside of the node so it is easy to change a sensor. An exam-
ple of such a connector is made by Weipu[35], the Weipu SP13 is fairly small,
waterproof and available in multiple connection types.

34

Since the sensors that are going to be attached do not all need the same
amount of connections. Some only need a plus and minus connection like the
solar panel. But some sensors use a digital protocol or have two analogue con-
nections. And they use four different wires and thus four connections. By using
different connections amount is will also be less likely that sensors are going
to be connected to the wrong microcontroller io pins. It will mean that some
connections are redundant.

4.3 Sensors
The node is going to have multiple sensors attached so it is able to measure all
the different types of parameters. Since the quality of data is important choos-
ing the right sensor is important and the research for that has been done in the
state of the art. From the research, some sensors have been chosen that are
attached to the node.

4.3.1 Power consumption

Being able to run day and night autonomously is not only determined by how
much energy the node generates and can store. The power consumption is
also very important and there some tricks to reduce this. The first one using an
efficient controller so instead of a computer or raspberry pi a microcontroller.
This is not as fast is more efficient in small tasks like reading sensor data.

The second is only using the controller when something has to be done like
measuring or data sending. Since data does not need to be measured con-
stantly but once every minute for a few seconds. This means that the rest of
the time node can go in a deep sleep mode that consumes a lot less power.

The last trick is to make sure the sensors that are attached do not consume
any power. Since when having three or four sensors attached and all of them
use a small amount of power it will add up. A way to make sure that the sen-
sors do not consume any power, a switch can be used. The microcontroller
can switch the power to the sensor when leaving deep sleep and turn it of when
entering deep sleep. The switching can be done with a relay, MOSFET or tran-
sistor.

35

4.4 Communication
Since the node is functioning autonomously the data has to send a wireless to
a receiver node. There are multiple forms of wireless communication and it is
key to choose the right one. Since they can vary in range, power consumption,
and data transfer rate.

4.4.1 Wireless

There are three options when choosing wireless communication those being
WiFi, IoT band 4G and LoRaWAN. The first way is WiFi it is widely spread and
openly available in Enschede due to the "Enschede stad van nu" WiFi network.
WiFi is also reliable since a lot of conformation is done when sending data. But
it uses a lot of power, and inmore rural areasmay be not available. The network
is also used a lot which could cause issues.

The second wireless communication method is IoT band 4G. The network
has good coverage and high data rate. There also are a lot of conformations in
place when sending data. And the possibility to route data to the correct place.
But just as with WiFi the power consumption is fairly high.

The last option is LoRaWAN, the conformations with sending data are not
as good as the other two options. The data rate is also not high but the amount
of data that has to be sent is also low. And a big advantage of LoRa is that it has
a large range so getting good coverage is fairly easy. The power consumption
is also the lowest of the three communication options.

4.4.2 Protocols

Thedata that can be sent over the TTNnetwork is limited because it can be used
by everyone and if too much is send it could block someone’s data. So the data
has to be sent in an efficient waywithout losing quality. So sending the different
data types in the same order with the same amount of data per packet can
ensure this. So when it is decoded by the ttn the data can be parched correctly.
If only averages are send every 30 minutes this should not be a problem and
every parameter can start with a character. The data limit might become an
issue when the min and max of that half-hour also have to be sent.

36

4.5 Microcontrollers
There are a few microcontrollers that can be used to send LoRaWAN data and
readout sensor data. They can differ in compute power, energy consumption or
features. Themicrocontroller of this project must be able to read I2C data since
a lot of sensors use this protocol. The analogue reading will also be done with
an I2C board. The controller also must be able to have a LoRaWAN chip built in
to send data. And it would be nice if it is widely used and not too expensive so
problems can be solved with the IoT community or themicrocontroller supplier.

4.5.1 ESP32

When researching two microcontrollers filled in the criteria the ESP32 and So-
daq One. both can be used in the Arduino IDE which was handy since I was
familiar with that environment. The ESP32 is the cheaper of the two and is
more used in the DIY community. It also has the benefit of having a Wi-Fi and
Bluetooth module. They can be turned off, but Wi-Fi can be useful to update the
software when sensors are exchanged. The ESP32 also can save data in non-
volatile memory meaning that if the batteries are completely empty data can
still be saved for when energy is available. However, it can be difficult to find
ESP32 modules that have the LoRaWAN module attached. They are available
in china but that can be unreliable and take a long time.

4.5.2 Sodaq ONE

The benefit of the Sodaq One is the better availability by a more professional
company. Which means better support from the company self. However, the
price is higher and it is not as widely used in the DIY community. So in most
cases, support from Sodaq is necessary of something strange happens. Stor-
ing things non-volatile is also not possible, so when power is lost data will also
be lost. The Sodaq One also does not have a Wi-Fi chip so updating software
has to be done with a cable.

37

4.5.3 Data processing

The microcontroller has to process the data, this can be digital or analogue.
Analogue could be done directly which both the Sodaq One and the ESP32 can
do. Or with an external board that sends the data digitally with I2C to the micro-
controller like the ADS1115[36]. It has a higher resolution and can focus on one
task.

For now, only digital I2C data and analogue data have to be read but it can
be good to support more than those. Because in the future other sensors are
used that do not use I2C or analogue signals it has to be able to support those.

38

5 Specification
This chapter tells everything about the specification phase. It will contain the
final requirements and chosen ideas from the ideation phase. And also an
overview of how the system will be put together. This is shown with a system
diagram for the hardware. The software will be explained.

5.1 Basic system overview
Figure 8 gives a global overview of what the sensor node is going to do. This
means that the Sensor node gets input from its environment and collects data
from this. In the case of the sensor node the air temperature, relative humid-
ity, solar radiation and wind is measured. And solar radiation is not only used
for measuring but also for power. The node then sends the measured values
to a database so the data of all nodes can be processed. The data go to the
database via the TTN network. This means the sensor node sends the data
over LoRaWAN to a TTN gateway. This will get the data on the internet where a
server can access the sensor data. The data will then be put in a GIS database
so data can be analysed based on location.

Figure 8: A basic overview of the system

39

The data collected from the sensors can be sent with an analogue and dig-
ital signal. If the sensor sends an analogue signal the data processing is done
in the controller. When a digital sensor is used the controller only has to read
the values that are already processed by the sensor. They’re also a USB cable
connected to the controller. This is necessary for uploading code, but also for
debugging. Since the controller only sends average data to the TTN from 30
measurements. So to find weird values and to debug it is good to read every
measurement that is done via the serial monitor.

5.2 Software overview
The software of the sensor node is also designed with modularity in mind. So
the software is build-out of a few functions. Every function belongs to a cate-
gory. The categories are temperature and humidity, solar radiation, wind speed,
wind direction, battery, communication and a main.

The main consists out of two functions the setup and loop. The setup is
used to setup op every sensor or communication system. In the loop, the actual
measurements and data communication are actually done. Most of the time no
data communication over LoRaWAN is done. Since the systemwill measure 30
times before sending. So the LoRaWAN module is only turned in in the 30th
loop. This is tracked with a counter variable. At the end of the loop, the system
is put in a deep sleep. This means that the power to the sensors is turned off of
the controller goes in a standby mode. All the other functions are called in the
main, but since they are separated from each other it is fairly easy to change
just that part of the code when a different sensor is used.

40

5.3 Final Requirements
In the end, a list of requirements has been made sorted with the MoSCoW
method as can bee seen in Table 4

Table 4: Final MoSCoW requirements

Must Have Should have
The systemmust be able to function
autonomously

The system should be able to remain
data when power is lost

The systemmust be able to function
in freezing conditions

The system should be able to mea-
sure every minute and calculate the
average value every 30 minutes

The systemmust function outside in
the rain

The system should be able to modu-
lar very easy sensor changes

The systemmust be able to function
24/7 Could have

The system must be able to send
data every 30 minutes to TTN

The system could have OTA soft-
ware updates

The temperature sensor must have
an accuracy of 0.3-0.5 ◦C Will not have

The humidity sensor must have an
accuracy of 3%

System will not be able to charge
when it is freezing

Thewind speed sensormust have an
accuracy of 0.1 - 0.2 m/s
The solar radiation sensormust have
an accuracy of 20 w/m2

41

6 Realisation
The final prototype that has been developed with the help of the requirements
will be described in this chapter.

6.1 Components
In the end, the system consists of a lot of components. This entails sensors,
energy system and controller. All these together form the functional part of the
sensor node. The way everything is connected to each other can be seen in
Figure 9. What connections and colours are actually used can be seen in Table
5.

Figure 9: slider sensor Connection

42

Table 5: All the connections from the sensors to the ESP32

Connection Sensor Wire colour from sensor Connection ESP32 Wire colour to controller
SHT31
SDA Green Pin 21 Orange
SCL Blue Pin 22 Yellow
Vin Red 3.3V Red
Ground Black ground Black
Davis Instruments
Pyranometer
Analog out Green Pin 34 Green
Vin Yellow 3.3V Red
Ground Red and Black ground Black
Davis Instruments
Anemometer
Wind Speed Out Black Pin 36 Blue
Wind Direction Out Green Pin 35 Purple
Vin Yellow 3.3V Red
Ground Red ground Black
Voltage divider
battery voltage
Divider out Grey Pin 39 Grey
Vin Red + Battery NA
Ground Black Ground Black
SX1276
(LoRaWAN)
nss NA Pin 18 NA
rst NA Pin 14 NA
dio NA Pin 26, 32, 33 NA
bs170
gate White Pin 23 White

43

6.1.1 Davis instruments Anemometer

The first component of the system is the Anemometer from Davis instruments
[25] as can be seen in Figure 10. This sensor measures two parameters. The
wind speed and wind direction and they output there data on separate wires.
Both will be discussed separately since they work quite differently.

Figure 10: Anemometer from Davis Instruments

Wind Direction
The wind direction part of the sensor is the easiest of the two sensors. The
Wind sensor is a potentiometer that is turned in the wind by rotating a wind
vane. The code is fairly simple and is just mapping the analogue value from 0 -
360 degrees. As can be seen in appendix A.7.

Wind Speed
The second sensor in the anemometer is the wind speed sensor. This sensor
works quite simple but the processing of the signal is a bit more difficult. The
sensor itself is a reed switch connected to the input power with a 1K resistor.
Every time the sensor has made a turn the switch opens. This means that the
analogue value received by the controller is usually maximum and in this case
4095. And when the switch is opened to value is zero. The wind speed sensor
does not quite fit within the requirements set in Table 1. But sensors that did
were to expensive for now, and this sensor is also the one that is tested against.

The code is a bit more difficult A.8 and works by counting the pulses for
2.25 seconds. However, the value stays zero for more than one measurement
which means that a pulse can be counted again only after the analogue value
has returned to 4095. This is done with some sort of smith trigger in code. It
uses some a Boolean that is true and set to false when a pulse is detected. The
Boolean is set to true when the value is high again. The conversion from pulses

44

to wind speed is fairly simple V = P (2.25/T). In this equation V = speed inmph,
P = the number of pulses per sample period and T = sample period in seconds.
This means that the amount of pulses measured in 2.25 seconds is the wind
speed in mph. To get the wind speed in kph this value has to be multiplied with
1.61.

Besides the code for measuring the wind speed, the wind speed measure
function also calls the function that measures battery voltage, temperature, hu-
midity, solar radiation and wind direction. This is because those value can be
measured almost instantly. So once the 2.25 seconds of measuring is done for
wind speed the other parameters are measured.

6.1.2 Davis Instruments Pyranometer

The Pyranometer from Davis Instruments [26] is the sensor that measures the
solar radiation. This is a photodiode with an amplifier that outputs a digital
signal that has that can be converted to a value inW/m2with the simple formula
solarradiation = mV/1.67. These components are then put in a waterproof
housing to protect them against the rain which can be seen in Figure 11. The
accuracy of the pyranometer is given in percentages, and not in absolute values
so it does not always meet the requirements given in Table 1.

Figure 11: Pyranometer from Davis Instruments

The code what is shown in Appendix A.4 is almost the same is the one used
for wind direction. The analogue value that is received by the ESP32 is first
divided by 3300 to get the amount of mV that is received. This is because the
maximum value the ESP32 can receive on an analogue pin is 3.3V. That value
is then divided by 1.67 to get the amount of W/m2.

45

6.1.3 SHT31 Temperature and Humidity

The last sensor attached to the sensor node is the SHT31 [10] as seen in Figure
12. Since this sensor is digital all processing is done by the sensor self. The
sensor outputs the values over the I2C protocol to the ESP32. The I2C protocol
uses two wires for power and ground, but also two wires for communication
one for the clock (SCL) and one for the data (SDA). This sensor fits within the
specifications given in Table 1.

Figure 12: SHT31 temperature and humidity sensor

6.1.4 Power management

The power management system is built out of a couple of components; solar
panel(s), Li-ion 28650 battery, tp4056 and a voltage divider. Together with the
components supply power and battery management. The solar panels used
Figure 13, supply a peak voltage of 5V but less when the sun is not ideal. They
have two wires one ground and one plus. They are connected to the tp4056 li-
ion charge controller. This controller board makes sure the health of the Li-ion
battery stays good. This means it only charges when the solar panels deliver
4.2V or step the voltage down to 4.2V. But also ensures they are not discharged
when they drop under 2.5V.

The tp4056 is connected to the battery and the ESP32. The Battery is also
connected to a voltage divider that multiplies the voltage of the battery with 0.7
since 4.2V is to high for the analogue pins of the ESP32. This way the battery
level can be measured to check on the power of the system.

All the sensors and the voltage divider above have there ground connected
to a MOSFET (bs170). This is set up as a switch so that those components
do not use power when no measurements are done. When the gate pin of the
MOSFET is pulled to ground the switch is open and the sensors are then turned

46

off. This way when a voltage is applied to the gate power can flow and the
sensors turn on and can measure.

Figure 13: Solar panels

6.1.5 ESP32

The ESP32 with an integrated LoRaWAN chip is chosen to control all the com-
ponents. All the code that is running on the ESP32 can be seen in Appendix
A. Due to some problems with the TTN gateway WiFi was used for some of
the tests. This is why two main code parts are in the appendix since they func-
tion somewhat different. The code on the ESP32 is set up in such a way that
the code that reads out the sensors is separated and can be easily adapted or
completely changed when a different sensor is used. Between cycles as de-
scribed as in 5.2 Software overview, the measured sensor values are stored in
the flash memory. This is one of the reasons the ESP32 is chosen over the SO-
DAQONE. Thismeans that when power is completely lost to themicrocontroller
measurements are not lost.

6.1.6 Complete system

The complete system should have a prize of around e400,- and the complete
cost now is e435,45 (Table 6). But officially that budget is for the sensors and
those together are below e400,-. The sensors together cost e300,86 And at
the moment most Weipu connectors are redundant so of the redundant con-
nectors are removed everything fits in the budget.

47

Table 6: Prize over view sensor node

Description amount Price / piece total
Sensiron SHT31-D 1 14,17 14,17
Davis Instruments
Pyranometer 1 156,98 156,98

Davis Instruments Anemometer 1 129,71 129,71
resistors (1k, 43k, 100k) 1 2 2
bs170 mosfet 1 0,10 0,10
3x 5V solar panels 3 5,04 15,12
TP40561A Lithium Battery Charging 1 2.65 2.65
Samsung ICR186500 1 9,75 9,75
Samsung 3.7V 18650
Lithium-ion Battery, 2600mAh 1 7,91 7,91

lilygo ttgo esp32, 1 12,- 12,-
Breadboard wish big with
power lane(s) (73x142 mm) 9,92

Wires in various colours 5,- 5,-
4 polig cable connector weipu (3x) 2 4.18 8,36
3 polig cable connector weipu (4x) 1 4,18 4,18
2 polig cable connector weipu(2x) 1 4,18 4,18
4
polig node connector weipu (3x) 3 4,18 12,54

3
polig node connector weipu (4x) 4,18 16,72

2
polig node connector weipu (2x) 2 4,18 8,36

protective cap node weipu connector 2,95
- plexiglas 4mm 1 5 5
-
seal material (Black Natural
Rubber Sheets)

1 5 5

- PLA 1 22,50 22,50
Total ex btw 435,45
Total incl btw 526,89

48

6.2 Sensor housing
The final design of the sensor housing which will protect all the hardware com-
ponents. The sensor node is made up out of a lot of parts. These parts can be
seen in Figure 14 and Figure 15 in a exploded view. The assembled sensor node
can be seen in Figure 16 and Figure 17

Figure 14: Exploded view sensor
node

Figure 15: Exploded view sensor
node

Figure 16: The assembled
sensor node housing

Figure 17: The assembled
sensor node housing

49

6.2.1 Main Housing

In the centre is the main housing where the controller is situated plus compo-
nents to help the sensors or energy management. To be able to be used this
housing has to be attached to something and in the case of this graduation
project that is a simple pole.

Figure 18: This allows the node to be attached to a pole

Securing the node
This attachment can be seen in Figure 18. It is designed in such a way, that if
the node has to be attached to a different type of object. Only the two parts
not connected to the node have to be redesigned. And the current mounting
method works by putting a bolt through the holes on the node and middle part
and securing it with a nut. And to actually attach it to a pole put a nut and bolt
combo trough the holes on the two left parts. By really tightening it together it
will stay in the pole.

Connectors
As can be seen in Figure 19 the sensor node housing has a few holes. These
holes allow theWeipu [35] to be attached to the sensor node. The holes have to
fit tightly between the two parts of the Weipu connector. If that is not the case
water can get in the node and damage the components.

50

Figure 19: Holes where Weipu connectors can be put trough

Lid
To be able to put the components in the sensor housing there has to way to
access the inside. This is done with some kind of lid as can be seen in Figure
20. Since the housing has to be waterproof with the lid attached there are a few
important things in the design. The first one is a small grove on the inside of
the node, in this grove a rubber seal [37] can be placed so no water can enter.
The second one has to do with the bolt that secures the lid in place. On every
bolt, there has to be an o-ring so no water can seep through the hole where the
bolt is.

Figure 20: The lid of the sensor node

51

6.2.2 Attaching components

Many components need to be secured to the sensor node, with the option to
replace them easily. Without having to redesign the whole housing.

Attaching the Pyranometer
The Pyranometer uses a single hinge design to attach to the sensor node as
can be seen in Figure 21 and Figure 11. The sensor itself is mounted to a sort
of plate that clamps on the main part. The hinge part connected to the main
part is printed separately and glued with PVC glue. This is done to make 3D
printing easier since that side can be used as a plat starting surface. Since a
single hinge design is used there is some degree of movement so the sensor
can be mounted directly at the sun.

Figure 21: The lid of the sensor node

52

Attaching the Wind Sensor
Attaching the wind sensor is similar to how the sensor node is attached to a
pole. Only the pole is turned 90 degrees since that is how the sensor needs to
be orientated. The mounting mechanism can be seen in Figure 22 and Figure
10. However, the hinge self is a single hinge is it can rotate somewhat to make
sure the wind sensor is oriented correctly.

Figure 22: The lid of the sensor node

Attaching the Temperature and Humidity sensor
The temperature and humidity sensor hasmore components than the other sen-
sor. This is because it needs to be protected from the rain. But to get accurate
air temperature data senors does need airflow. The radiation shield allows for
this and the design can be seen in Figure 23 and Figure 24.

The rings are separate objects and are attached with a piece of wire steel
and two bolts. At the bottom of the radiation, shield is a closed piece to protect
the components. At the top is a piece the allows the SHT31 [10] to be secured
and the shielding to be attached to the main part of the housing. This connec-
tion is a bit different than the other connection and does not really use a hinge
but two plates that can be bolted together.

53

Figure 23: Picture of radiation
shield

Figure 24: 3D model of solar
radiation shield

Attaching the Solar Panel
The solar panels are placed in a separate housing that is attached to the main
part of the housing. Just as with the wind sensor and pyranometer this is done
with a single hinge. This allows the solar panels to be angled for maximum
solar power. The housing where the panels are placed in is a box that is open
at the top. And just as with the lid part of the main housing a small grove for
some rubber is made. This is to make the housing waterproof that is why there
are also o-rings used on the bolts. The top is Plexiglas so the sun can enter the
housing while protecting the components. The designs can be seen in Figure
13 and Figure 25.

Figure 25: The lid of the sensor node

54

7 Evaluation
In this chapter, the sensors from the build sensor node will be tested. Both to
see if they work and give sensible data and in comparison to the Davis Instru-
ments vantage pro 2 [15]. Besides the sensors, the housing will also be tested
to see if it meets the requirements.

7.1 Component test
The first test is testing of the components, this is without the final housing and
not compared to the vantage pro 2. The setup can be seen in Appendix C.1.
The data is gathered from the things network (TTN) with the help of a python
script shown in Appendix B.1. In this test the parameters air temperature, rel-
ative humidity and solar radiation will be examined since the place where the
measurements are done is closed off and has no wind. The values are not yet
the averaged like with measurements done later on. The measurements took
place on 27th of November from 10:06 until 8:40. somewhere after 8:40, there
was some water damage in the temporary housing and the controller broke.
These measurements were done with the SODAQ ONE instead of the ESP32
[38].

7.1.1 Temperature

The first parameter that will be evaluated is the air temperature. As can be seen
from Figure 26 the data gathered from the SHT31 [10] is data that can be used.
Since it makes sense that the temperature decreases as night, which is seen in
Figure 26.

Figure 26: Temperature data from first sensor test

55

7.1.2 Relative Humidity

The second parameter is that is going to be evaluated is the relative humid-
ity. Since it was rainy the air was quite humid so then it makes sense that the
humidity was at least 80% as can be seen in 27.

Figure 27: Humidity data from first sensor test

7.1.3 Solar Radiation

The last parameter that will be evaluated is solar radiation. This makes not as
much since it would be expected that at night there is no solar radiation. It does
get lower but is it still quite high as can be seen in Figure 28. So there might
have been some problems in the processing of the pyranometer sensor.

56

Figure 28: Solar radiation data from first sensor test

7.2 Test outside
The seconds test is with the complete system, pictures of the system can be
seen in Figure 16 and Figure 17. The test is done on the 27th of January from
12:23 to 17:34. Every thirty minutes of data sent to a MySQL database that runs
on a raspberry pi. The data is first sent to aWiFi router that then routes the data
to a MQTT broker. A python script (Appendix B.2 listens to the MQTT broker
inputs the data in the MySQL database. This had to be done since at the time
the LoRaWAN gateway was offline so LoRa could not be used. The data from
the Davis Instruments vantage pro 2 was collected by filming a time-lapse of
the console that displayed the data. This was done manually entered in the
database with the help of a python script (Appendix B.3)

7.2.1 Temperature

First, the temperature data from the test with the final node outside will be com-
pared. The comparison is between the self-build node and the Davis Instru-
ments vantage pro 2 [15] and the data is shown in Figure 29. As can be seen
from data the values measured by the two sensors are close to each other. The
only real difference is the resolution, the data from the vantage pro has a res-
olution of 1.0◦C. Meanwhile, the resolution of the SHT31 [10] is 0.01◦C, so the
highest value of 9.4◦Cwould be rounded to 9◦C. The same value as the vantage
pro. This means that the SHT31 is comparable to the vantage pro.

57

Figure 29: Temperature data from sensor node with housing outside

7.2.2 Relative Humidity

The second parameter humidity also ismeasuredwith a higher resolution in the
self-made node, when compared to the vantage pro. When looking at the data
in Figure 30 it can be seen that they follow the same trend, but not entirely the
same. So gives the self-build node first a lower value and later a higher value
than the vantage pro 2.

Figure 30: Humidity data from sensor node with housing outside

58

7.2.3 Solar Radiation and Wind Speed

Due to lack of wind, a not much sun in this time of year no useable comparative
data came out the test for solar radiation and wind speed. The vantage pro did
give some values for solar radiation but very low. So that could have something
to dowith how the analogue to digital converter. For example that it is non-linear
in the beginning and end. And for wind speed was the lack of wind the problem
since both the vantage pro and self-made station said there was no wind.

7.3 Controlled test
The last test was done in a controlled environment and focused on wind speed
and solar radiation. The data is gathered the same way as the last test. In
this test, the amount of cycles has been reduced to 5 and the averaged data is
uploaded every 5-6 minutes.

7.3.1 Solar Radiation

There are three tests for solar radiation, two with a floodlight of 120 watts and
onewith a halogen light of 650watts. The floodlight is donewith two distances,
one where the floodlight is 20 cm from the sensors and one with 35 cm. The
pictures from the setup can be seen in appendix C.2.

Pyranometer test with floodlight (20cm)
The values of the two sensor nodes in this test are close together and swing
around each other (Figure 31). From this, it can be said that the ESP32 can pro-
cess the data from the Davis Instruments reliably in the range 240-255 W/m2.

Figure 31: Solar radiation test with floodlight 20cm

59

Pyranometer test with floodlight (35cm)
The next is done with the same light but a bit further (35cm). The values of the
two nodes do follow the same trend but the self-made node is roughly half the
value of the vantage pro (Figure 32). This could have two causes, the first one
is that the sensors were not exactly the same distance from the light source.
Since the sensor is sensitive this can cause this difference. The other explana-
tion is non-linear behaviour in the analogue to digital converter.

Figure 32: Solar radiation test with flood light 35cm

Pyranometer test halogen light
The last test with the pyranometer is done with a big halogen light of 650

watts. The light source was 30cm away from the sensors and the setup can
be seen in appendix C.2. The range of 880 to 930 W/m2 also is nicely in the
middle of the total range. And again the measured values are close to each
other (Figure 33). Whichmakes the theory that the analogue to digital converter
is non-linear at the beginning of the range very likely. The values also value the
same trend although not always exactly the same.

60

Figure 33: Solar radiation test with halogen light

7.3.2 Wind Speed

For wind speed, there were done two tests with a fan, and to make sure the
two anemometers turn at the same speed a strobe light was built. Strobe light
consisted of a frequency generator connected to the same bright LEDs via a
MOSFET. When the frequency of the strobe light matched the frequency of
the anemometer it would appear as if the anemometer did not turn. If both
anemometers appeared to stead still, they would turn roughly the same speed.
But the airflow from a fan is not very consistent so it was not perfect. The pic-
tures of the setup are in appendix C.3

Wind speed test 22Hz The first test is done with the frequency generator set to
22Hz and the two anemometers matching that. When testing they sometimes
seemed to stand still but not always. When looking at the data from Figure 34
the values are very close.However, the self-made node has an offset but seems
to follow the same trend. This could be due to a difference in wind flow since
a fan was used. But it also can be a problem with the processing. Like in the
accuracy in the time the controller measures per wind speed measurement.

61

Figure 34: Wind speed test (22Hz)

Wind speed test 39Hz The second test is done with the frequency generator
set to 39Hz. And just like with the previous test the speed of the anemometers
were placed in such a way that it seemed they stood still. And the data in Figure
35 shows fairly similar values. However, the self-made node again has a small
offset down. So it could mean that it measures for less than 2.25 seconds or
maybe it is in the setup. It could be something small as a difference in airflow
when setting up the sensors. Since I stand behind it when setting up but am not
when measuring. The test would have been more accurate if it would be done
in a wind tunnel.

Figure 35: Wind speed test (22Hz)

62

Temperature data gathered during controlled test
The room where the tests took place are was climate controlled. However,

the temperature was not set constant or monitored. But the data gathered from
the two sensor doesmatch except for two peaks from the Davis sensor as seen
in Figure 36. Unfortunately due to the low resolution of the vantage pro sensor,
it is difficult to see how close they really are. This does show that a resolution
of 1◦C is not good enough to get real meaning full data.

Figure 36: Temperature data from controlled test

Humidity data gathered during controlled test
The same holds for the humidity data gathered from the two sensors. The

data is not exactly the same but circle around each other. This can be due to
the accuracy of the sensors. But the show the same trend when looking at
decreasing or increase of the humidity as seen in Figure 37.

63

Figure 37: Humidity data from controlled test

7.4 Water proofing
Thewaterproofing of the sensor node has been donewith the help of awatering
can. And some of the tests have also been done outside in the rain. With both
types of tests, nowater entered themain sensor housing or solar panel housing.

64

8 Discussion

8.1 Waiting on components
A big obstacle I came across was waiting for components since the project re-
quired rapid prototyping this was not ideal. The biggest example of this was
the Weipu connectors since they had to fit precisely in the main sensor hous-
ing. Since this is one of the biggest prints I wanted it to fit the first time. The
connectors were ordered before the Christmas holidays but since the univer-
sity closes around the time they were, send back during the holidays. And after
the holidays they still had not arrived and were lost somewhere at the shipping
company. This meant that I could not test fit and that the largest and most
important print had to wait. This had cost me a lot of time. And for other com-
ponents, the wait was not that long but since everything had to go through the
university it did at a few days.

Of course not only waiting till components arrived added delay, but the 3D
printing of components also took some time. Some prints took more than 24
hours and some of them messed up halfway through the print. And since there
were so many components that took a week even though I had three to four
printers available to me.

8.2 LoRaWAN
A big set back came with the final test of the whole system. Since I had to
gather the data via LoRaWAN I needed access to a LoRaWAN gateway. During
the course of my graduation project, there was a node available that could be
accessed on the university. Butwhen Iwanted to run the latest test that gateway
was offline. This meant that I had to change my way of gathering data from
LoRaWAN to WiFi. Luckily I decided during my graduation project that I wanted
to use the ESP32 instead of the SODAQ ONE. Since the SODAQ ONE would not
have the ability to use WiFi but only LoRaWAN.

Otherwise, I had to switch microcontroller and build a network to collect the
data. Now I only had to make my own network with a database to store the
data and rewriting some code for the ESP32. It still took some more than a
day to set up but it would have taken a whole lot longer if I had to find a new
microcontroller and write the code for that.

65

8.3 Water damage
During the first with the sensors without the self-made housing, some water
damage occurred. Since the setup was set up with the help of 2 first iteration
sensor node housing and a waterproof box with some holes drilled in for wires.
The sensor housingswere fine but de box that housed the controller had a small
leak. This could have been prevented if the hole for the wires were on the sides
and not on top. The first time there were a few drops inside and everything was
still fine. I added somemore hot glue to make everything waterproof. But it still
was not since over the weekend a lot of water entered due to a lot of rain. The
systemdied a few hours before a got to the university and a lot of water entered.
Luckily only the microcontroller died wich was a SODAQ ONE back then.

The first test after this one I made sure to really test the waterproofing of the
housing before putting components in. This was done under the water faucet
or with a watering can.

66

9 Conclusion
In this chapter, the research questions will be answered that were set at the
beginning of this research project.

How to optimize the quality of measurements?
This sub-question has been solved by making the sensor node modular.

Since the time would not allow for big sensor node iterations. This is why I
designed the node in such a way that in the future it should be easy to test
different sensors.

But on the area of quality measurements, some conclusions can be made.
The first one is for the temperature and humidity sensor, the measurements
show that the SHT31 has the same data quality as the one from the vantage
pro. It might even be higher since the SHT31 as a better resolution. The sen-
sors for wind speed and solar radiation are the same as the vantage pro so the
quality of data from the sensors is equal. From testing, it did seem that for solar
radiation lower values did deviate from the vantage pro. This could be from the
analogue to digital converter or some damage from the water damage after the
first component test. As for the wind speed sensor the vantage pro gave higher
values across the board which could be from the post-processing but also the
test setup. This could be verified in a better test setup like for example a wind
tunnel.

But since the SHT31 is the only sensor that deviates from the vantage pro,
and the rest still has to be replaced with alternative one can conclude that the
temperature and humidity sensors quality of measurements have been opti-
mised.

How to optimise the protection of used sensors and energy harvesting sub-sys-
tems?
The protection of the components are protected with a sturdy housing made
from PLA. But physical protection is the least important for the sensor node.
The most important is being protected against rain. And this was done by mak-
ing sure that every hole is sealed. Since the node still has to be opened just
putting silicone sealant or hot glue every was was not an option. Instead, every
bolt that entered the main housing or solar panel housing uses an o-ring. And
the lids of the solar panel housing and main housing have a rubber seal [37].
This seal is made from black natural rubber and cut to exact size in a laser cut-
ter. When this seal is placed and the lids tighten correctly, no water can enter
the housing.

67

How to develop a low-cost autonomous system to measure air temperature?
In the end a system was build that was slightly too expensive, but this was
due to the use of redundant connectors. As can be seen in table 6 the sensor
node with housing is a bit more thane400,-. However the sensors together are
e300,- and the sensor budget itself ise400,- so the sensor budget is met. Dur-
ingmost tests the controller was connectedwith a USB cable to the laptop. This
means that no data there is little data on battery life and thus autonomous func-
tionality. The data gathered was autonomous so that the requirements were
met. The first test in the housing was outside but quite short, so not much can
be said about that.

68

10 Recommendations

10.1 Micro controller
The ESP32 that was used for this project has some faults. The first one is that
fact it only really is available via aliexpress which is not always reliable. The
second might not be an issue but I could not test it. And that is that it has two
channelswith analogue to digital converters and that ADC2does notworkwhen
WiFi is used. This should not be a problem when LoRaWAN is used but I do not
know for certain. There should not be a problem since each channel has more
than enough inputs to accommodate all sensors but 3 inputs for channel one
will damage the USB controller on something is plugged in. This is probably
a problem with this particular ESP32 board version. So one from a different
manufacturer can be used and it might not have this problem.

But it might be an option to look at a different controller. When looking at
this it is important to keep in mind that must have LoRaWAN, the ability to store
values in flash memory and a way to input from battery power.

10.2 OTA Updates
Since the whole system is modular and easy to physically change sensors. It
would be nice if the software also allows for easy exchange of sensor code.
This can be done in two ways, a port in the sensor housing that can access
the controller via USB. But if the controller has the ability to use WiFi a button
that puts the controller in a state where it turns in to a WiFi access point and
allows new code to be uploaded over WiFi. This way of uploading new code for
different sensors easy.

10.3 Temperature based switch
Since it is bad for the battery to be charged when temperatures reach sub-zero.
It would benefit the sensor node system in the long run if a switch is built in that
disconnects the battery from the charging circuit when it is freezing. And turns
it on when the temperature is big to above zero. The best way to do this is me-
chanical since this system would be able to function with the microcontroller.
Otherwise, the system could shut off permanently if it freezes to long and the
battery is completely drained.

69

10.4 Larger production
If the sensor node reaches the phase where 80 units have to be deployed 3D
printing is not a feasible solution. Since it could take a week to print all housing
parts per sensor node. So finding a production process that is more suitable
for a semi-large production is optimal. But since it is still relatively a small scale
production an assembly line is not cost-efficient.

Besides the housing, the circuitry between the sensors and the microcon-
troller could also be replaced with a custom PCB. Instead of a piece of perf
board like is used now. But this is relevant when the final sensor configuration
is chosen. It would reduce the cable mess that is currently in the sensor hous-
ing. Another benefit would be a bit more reliability.

70

References
[1] “Hittestress - gemeente enschede.,” Oct 2018. Available:

https://www.enschede.nl/duurzaam053/klimaatadaptatie/hittestress.

[2] “Zomer 2018 (juni, juli, augustus).” Available at:
https://www.knmi.nl/nederland-nu/klimatologie/maand-en-
seizoensoverzichten/2018/zomer.

[3] T. Onderwater, Developing a sensor network for real time temperature
monitoring in Enschede. utwente, February 2018. Retrieved from:
https://essay.utwente.nl/74930/.

[4] Maxim Integrated, Programmable Resolution 1-Wire Digital
Thermometer , 19-7487 datasheet, 2019. Retrieved from:
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf.

[5] L. Kester, Climate measurements in public spaces. utwente, July 2018. Re-
trieved from: https://essay.utwente.nl/75748/.

[6] Argent Data systems,Weather sensor Assembly p/n 80422. Retrieved from:
https://cdn.sparkfun.com/assets/8/4/c/d/6/Weather_Sensor_Assembly_Updated.pdf.

[7] Senserion, Datasheet SHT1x (SHT10, SHT11, SHT15) Humid-
ity and Temperature Sensor, July 2008. Retrieved from:
https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf.

[8] D. Vrijenhoek, Improving the dependability of the temperature build-up sen-
sor system in the city of Enschede. utwente, July 2019. Retrieved from:
https://essay.utwente.nl/78700/.

[9] M. Kusriyanto and A. A. Putra, “Weather station design using iot platform
based on arduino mega,” 2018 International Symposium on Electronics and
Smart Devices (ISESD), 2018. DOI: 10.1109/isesd.2018.8605456.

[10] Senserion, Datasheet SHT3x-Dis Humidity and Tem-
perature Sensor, February 2019. Retrieved from:
https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_
Sensors_SHT3x_Datasheet_digital-971521.pdf.

[11] T. Brasser, I. Tesselaar, and D. Offerhaus, “Design of an au-
tonomouswireless weather station: Ee3l11 - bachelor graduation
thesis,” in Design of an AutonomousWireless Weather Station, 2018.
Retrieved from: https://www.semanticscholar.org/paper/Design-
of-an-Autonomous-Wireless- Weather-Station-EE-Brasser-
Offerhaus/8abf9597f218188f07e08bd36f5fcfcc1786fb8d.

[12] R. Firmansyah, A. Widodo, A. D. Romadhon, M. S. Hudha, P. P. S. Sapu-
tra, and N. A. Lestari, “The prototype of infant incubator monitoring sys-
tem based on the internet of things using nodemcu esp8266,” Journal of

71

Physics: Conference Series, vol. 1171, p. 012015, 2019. Retrieved from:
https://iopscience.iop.org/article/10.1088/1742-6596/1171/1/012015.

[13] C. Sun and Y. Cao, “Design of mushroom humidity monitoring system
based on nb-iot,” Advances in Intelligent Systems and Computing Interna-
tional Conference onApplications and Techniques in Cyber IntelligenceATCI
2019, p. 281–289, 2019. DOI: 10.1007/978-3-030-25128-4_37.

[14] F. Akhter, S. Khadivizand, H. R. Siddiquei, M. E. E. Alahi, and S. Mukhopad-
hyay, “Iot enabled intelligent sensor node for smart city: Pedestrian count-
ing and ambient monitoring,” Sensors, vol. 19, p. 3374, Jan 2019. DOI:
10.3390/s19153374.

[15] “Vantage pro2.” Available: https://www.davisinstruments.com/solution/vantage-
pro2/.

[16] Bosch, BME280 Combined humidity and pressure sensor,
0273141185 datasheet, May 2015. Retrieved from: https://cdn-
shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf.

[17] Texas Instruments, HDC1080 Low Power, High Accuracy Digital Humidity
Sensor with Temperature Sensor , SNAS672 datasheet, November 2015. Re-
trieved from: http://www.ti.com/lit/ds/symlink/hdc1080.pdf.

[18] Microchip, MCP9808 +- 0.5 C Maximum accuracy digital tempera-
ture sensor, DS25095A datasheet, October 2011. Retrieved from:
http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf.

[19] Davis Instruments, Temperature Humidity Sensor,
DS6834 datasheet, March 2019. Retrieved from:
https://www.davisinstruments.com/product_documents/weather/spec_
sheets/6834

[20] P. Kyratsis and D. Tzetzis, “Investigation of the mechanical properties
of acrylonitrile butadiene styrene (abs)-nanosilica reinforced nanocom-
posites for fused filament fabrication 3d printing,” IOP Conference Se-
ries: Materials Science and Engineering, vol. 416, p. 012086, 2018. DOI:
10.1088/1757-899x/416/1/012086.

[21] T. Letcher andM.Waytashek, “Material property testing of 3d-printed spec-
imen in pla on an entry-level 3d printer,” Volume 2A: Advanced Manufactur-
ing, 2014. DOI: 10.1115/imece2014-39379.

[22] J. Fernandes, A. M. Deus, L. Reis, M. Vaz, and M. Fátimaand Leite, “Study
of the influence of 3d printing parameters on the mechanical properties of
pla,” Proceedings of the 3rd International Conference onProgress in Additive
Manufacturing, pp. 547–552, 2018. DOI: 10.1115/IMECE2014-39379.

72

[23] W. Liu, J. Zhou, Y. Ma, J. Wang, and J. Xu, “Fabrication of pla fila-
ments and its printable performance,” IOP Conference Series: Materials
Science and Engineering, vol. 275, p. 012033, 2017. DOI: 10.1088/1757-
899x/275/1/012033.

[24] J. K. V. V. Shabana, R.V.Nikhil Santosh, “Evaluating the mechanical prop-
erties of commonly used 3d printed abs and pla polymers with multi
layered polymers,” International Journal of Engineering and Advanced
Technology Regular Issue, vol. 8, no. 6, p. 2351–2356, 2019. DOI:
10.35940/ijeat.f8646.088619.

[25] Davis Instruments, Anemometer, DS7911
datasheet, February 2013. Retrieved from:
https://www.davisinstruments.com/product_documents/weather/spec_sheets/7911_SS.pdf.

[26] Davis Instruments, Solar Radiation Sensor, DS6450 datasheet, July 2014.
Retrieved from: https://www.davisinstruments.com/product_documents/
weather/spec_sheets/6450_SS.pdf.

[27] Meter group, ATMOS 22 | Sonic Anemome-
ter | METER Environment. Retrieved from:
http://library.metergroup.com/Manuals/20419_ATMOS22_Manual_Web.pdf.

[28] Gill Instruments, WindSonic Ultrasonic Wind
Sensor | Gill Instruments. Retrieved from:
http://gillinstruments.com/products/anemometer/windsonic.htm.

[29] Davis Instruments, Radiation shields passive and fan as-
pirated., DS7714 datasheet, March 2019. Retrieved from:
https://www.davisinstruments.com/product_documents/weather/spec_sheets/DS7714_6838_Rad

[30] R. Nakamura and L. Mahrt, “Air temperature measurement errors in nat-
urally ventilated radiation shields,” Journal of Atmospheric and Oceanic
Technology, vol. 22, no. 7, p. 1046–1058, 2005. DOI: 10.1175/jtech1762.1.

[31] S. J. Richardson, F. V. Brock, S. R. Semmer, and C. Jirak, “Minimizing errors
associated with multiplate radiation shields,” Journal of Atmospheric and
Oceanic Technology, vol. 16, no. 11, p. 1862–1872, 1999.

[32] “Radiation shields.” Available: https://www.baranidesign.com/radiation-
shields.

[33] A. Mader and W. Eggink, “A design process for creative technology,” in
Proceedings of the 16th International conference on Engineering and Prod-
uct Design, E&PDE 2014 (E. Bohemia, A. Eger, W. Eggink, A. Kovacevic,
B. Parkinson, and W. Wits, eds.), pp. 568–573, The Design Society, 9 2014.

[34] “Moscow method.”

[35] “Sp13 series connectors.” Available: https://www.weipuconnector.com/Product_show_8.htm.

73

[36] Texas Instruments, ADS111x Ultra-Small, Low-Power, I 2C-Compatible,
860-SPS, 16-Bit ADCs With Internal Reference, Oscillator, and
Programmable Comparator, January 2018. Retrieved from:
http://www.ti.com/lit/ds/symlink/ads1115.pdf.

[37] RS PRO, Datasheet black natural rubber sheet. Retrieved from:
https://docs.rs-online.com/fe96/0900766b81580c6a.pdf.

[38] espressif, ESP32-WROOM-32. Retrieved from:
https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf.

74

A Code for ESP32

75

A.1 Main arduino code mqtt
/*

used pins esp32 = what = wire color
pin 21 = SDA = orange or light pink
pin 22 = SCL = Yellow (esp32 without screen not numbered pin after 19)
pin 23 = Sensors on/off (ground) = White

I2C device = I2C addres
SHT31 = 0x44

Analog read
pin 34 = SolarRad = green
pin 35 = WindDir = purple
pin 36 = WindSpeed = blue
pin 39 = BatVoltage = brown or grey

*/

//sets up all libraries
#include <Arduino.h> // is for easy pin definitions
#include "ArduinoNvs.h" // allows for variables to be stored in flash memory
#include <SPI.h> // is for spi communication
#include <Wire.h> // is for i2c communication
#include <WiFi.h> // this allows for usage of the WiFi module
#include <PubSubClient.h> // library for mqtt communication

//sets up the login for mqtt and WiFi
const char* ssid = "*******";
const char* password = "********";
const char* mqttServer = "*********";
const int mqttPort = ****;
const char* mqttUser = "******";
const char* mqttPassword = "*******";

// is for the setup of the WiFi for the ESP32
WiFiClient espClient;
PubSubClient client(espClient);

//sets up everything for the SHT31
#include "Adafruit_SHT31.h"
Adafruit_SHT31 sht31 = Adafruit_SHT31();

// definitions for the deepsleep and amount of cycles before data upload
#define uS_TO_S_FACTOR 1000000 // turns miliseconds in seconds
#define TIME_TO_SLEEP 56 // amount of seconds the controller goes in deep sleep
int Cycles = 5; // amount of cycles

76

// pin used for the different sensors
int PinWindSpeed = 39;
int PinSolarRad = 34;
int PinWindDir = 35;
int RelayPin = 23;

bool Save; // a boolean for the arduinoNVS library
// declaring the analog values for the sensors
float AnalogValueWindSpeed = 0; float AnalogValueWindDir = 0; float AnalogValueSolarRad = 0; float AnalogValueBat = 0;

//declaring the values to calculate or store sensor values
float TempSHT, HumSHT, Time, OldTime, WindSpeedMPH, WindSpeedKPH, WindSpeedMS, Pulses, SolarRadV, SolarRad, TimeDif, Counter, BatVoltage, WindDir, WindSpeed = 0;

float MeasureTime = 2250; // ammount of milliseconds the windsensor will be counting pulses

// variables for the NVS Storages
float TempStorage, HumStorage, WindSpStorage, SolRadStor;

//booleans
bool WSMeasured = false; // boolean that checks of the sensor measerments have been done
bool SwitchPulse = true; // boolean that makes sure a pulse is counted once
bool TimeBool = false; // boolean so oldtime is set to time once

String mydata; //declared the string that is send to mqtt
char charMydata[50]; //char array for the data string

void setup() {
Serial.begin(115200); //setup of serial communication
Serial.println("========================");
pinMode(RelayPin, OUTPUT); // initializes the relaypin

digitalWrite(RelayPin, HIGH); // sets the relaypin to HIGH so the sensors have power
// starts the NVS library and includes the function NVSSTorage

NVS.begin();
NVSStorageSetup();

SetupTAndHSHT(); // set up of temperature/humidity sensor

// initialized the deepsleep timer
esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR);

// if statement that only initialized WiFi when data has to be uploaded
if (CounterStorage >= Cycles) {

WiFi.begin(ssid, password);

77

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.println("Connecting to WiFi..");

}
Serial.println("Connected to the WiFi network");
client.setServer(mqttServer, mqttPort);
while (!client.connected()) {

Serial.println("Connecting to MQTT...");
if (client.connect("ESP32Client", mqttUser, mqttPassword)) {

Serial.println("connected");
} else {

Serial.print("failed with state ");
Serial.println(client.state());
delay(2000);

}
}

}
}

void loop() {

if (!WSMeasured) { // if statement that makes sure measerments are done once per cycle
windSpeed(); // call the function that measure windspeed and within all other sensors

}

// prints all measered values in the serial monitor, stores all values in flash storage and puts controller in deepsleep when no data is send
if (WSMeasured && CounterStorage < Cycles) {

NVSStorage();
Serial.print("Humidity = ");
Serial.println(HumSHT);

Serial.print("Temperature = ");
Serial.println(TempSHT);

Serial.print("Solar Radiation = ");
Serial.println(SolarRad);

Serial.print("Wind Direction = ");
Serial.println(WindDir);

Serial.print("Wind Speed in km/h = ");
Serial.println(WindSpeedKPH);

Serial.print("Battery Voltage = ");
Serial.println(BatVoltage);

78

Serial.print("Counter = ");
Serial.println(CounterStorage);
Serial.println("========================");
//delay(1000);
Serial.flush();
esp_deep_sleep_start();

}

// if statement that is called when data has to be send
if (WSMeasured && CounterStorage >= Cycles) {

PacketString(); // calls function that makes the string that is send
mydata.toCharArray(charMydata, 50); //turns the string into a char array
client.publish("GP/Data", charMydata); // send the data to the mqtt broker
NVSStorageReset(); // reset all stored values to zerp
Serial.println("========================");
Serial.flush();
esp_deep_sleep_start(); // puts the controller in deepsleep

}
}

79

A.2 Deep sleep function
void print_wakeup_reason(){

esp_sleep_wakeup_cause_t wakeup_reason;

wakeup_reason = esp_sleep_get_wakeup_cause();

switch(wakeup_reason)
{

case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;

}
}

80

A.3 Functions for flash storage
// function that declared all flash storage variables
void NVSStorageSetup() {

CounterStorage = NVS.getInt("CounterStorage");
TempStorage = NVS.getFloat("TempStorage");
HumStorage = NVS.getFloat("HumStorage");
WindSpStorage = NVS.getFloat("WindSpStorage");
SolRadStor = NVS.getFloat("SolRadStor");

// Testing = NVS.getInt("Testing");
}

// function that adds measured values to the previous one and stores them back in flash storage
void NVSStorage() {

++CounterStorage;
TempStorage = TempStorage + TempSHT;
HumStorage = HumStorage + HumSHT;
WindSpStorage = WindSpStorage + WindSpeedKPH;
SolRadStor = SolRadStor + SolarRad;

Save = NVS.setInt("CounterStorage", CounterStorage);
Save = NVS.setFloat("TempStorage", TempStorage);
Save = NVS.setFloat("HumStorage", HumStorage);
Save = NVS.setFloat("WindSpStorage", WindSpStorage);
Save = NVS.setFloat("SolRadStor", SolRadStor);

}

// function that sets all stored values to zero
void NVSStorageReset() {

Save = NVS.setInt("CounterStorage", 0);
Save = NVS.setFloat("TempStorage", 0);
Save = NVS.setFloat("HumStorage", 0);
Save = NVS.setFloat("WindSpStorage", 0);
Save = NVS.setFloat("SolRadStor", 0);

}

81

A.4 Solar radiation
void solarRad() {

AnalogValueSolarRad = analogRead(PinSolarRad); //reading the values from the pyranometer
float SolarRadV = map(AnalogValueSolarRad,0, 4095, 0, 3300); //Maping the analogue value to mV
SolarRad = SolarRadV / 1.67; //converting mV w/M2

}

82

A.5 Forming of the packet
void PacketString() {

String initial = "T"; //Initializing of the string packet
float TempAvg = TempStorage / Cycles; //Calculating the average temperature from past cycles
float HumAvg = HumStorage / Cycles; //Calculating the average humidity from past cycles
float SolarRadAvg = SolRadStor / Cycles; //Calculating the average solar radiation from past cycles
float WindSpeedKPHAvg = WindSpStorage / Cycles; //Calculating the average wind speed from past cycles

digitalWrite(RelayPin, HIGH); // connecting the sensors to power to measure the wind direction and battery voltage
windDir(); //calling the function that measure the wind direction
BatteryVoltage(); // calling the function that measure the battery voltage (only in TTN version)
digitalWrite(RelayPin, LOW); // disconnecting the sensors from power

//forming the string that is send to mqtt or TTN
mydata = initial + TempAvg + "H" + HumAvg + "S" + SolarRadAvg + "V" + WindSpeedKPHAvg + "D" + WindDir + "B" + BatVoltage;

// printing the string that is send to mqtt or TTN to the serial monitor
Serial.print("test mydata: ");
Serial.println(mydata);

}

83

A.6 Temperature and Humidity sensor
//function that sets up the SHT31
void SetupTAndHSHT() {

//searches if the SHT31 is on the in i2c addres 0x44
if (! sht31.begin(0x44)) { // Set to 0x45 for alternate i2c addr

Serial.println("Couldn't find SHT31");
while (1) delay(1);

}
}

// function that reads the SHT31 sensor
void TAndHSHT() {
//stores the sensor data in variables

TempSHT = sht31.readTemperature();
HumSHT = sht31.readHumidity();

}

84

A.7 Temperature and Humidity sensor
//function that measures the wind direction in degrees
void windDir() {

AnalogValueWindDir = analogRead(PinWindDir); //Reading out the wind direction part of the anenometer
WindDir = (AnalogValueWindDir / 4095) * 360; //Mapping the analog values to degreees

}

85

A.8 Code for measuring wind speed
void windSpeed() {

Time = millis(); // sets the Time variable equal to runtime of controller

//sets the OldTime variable equal to intitial Time variable
if (!TimeBool) {

OldTime = Time;
TimeBool = true;

}

TimeDif = Time - OldTime; // calculates how long the Wind speed is measured
AnalogValueWindSpeed = analogRead(PinWindSpeed); //reads the analog data of the wind speed sensor of the anenometer
delay(1); // small delay, otherwise weird values are read from analog pin

//If statement that counts how often the anenometer is turned and adds them up
if (AnalogValueWindSpeed < 1000 && TimeDif <= MeasureTime && SwitchPulse == true) {

Pulses = Pulses + 1;
SwitchPulse = false; // boolean that makes sure the pulse has returned to normal value before counting again

}

// if statements the resets the boolean if analog value has returned to normal
else if (AnalogValueWindSpeed > 500 && TimeDif <= MeasureTime && SwitchPulse == false) {

SwitchPulse = true;
}

// if statements that stops the measering when measure time has past
else if (TimeDif > MeasureTime) {

OldTime = Time;
WindSpeedMPH = Pulses * (2250 / MeasureTime); //calculated the wind speed in mph from the counted pulses
Serial.print("pulses: ");
Serial.print(Pulses); //prints the amount of pulses to the serial monitor
Pulses = 0; //resets the pulse variable
WindSpeedKPH = WindSpeedMPH * 1.61; // converts wind speed from mph to kph
WindSpeedMS = WindSpeedKPH / 3.6; // converts wind speed from kph to ms

//prints all wind speed types to serial monitor
Serial.print(" mph: ");
Serial.print(WindSpeedMPH);
Serial.print(" kph: ");
Serial.print(WindSpeedKPH);
Serial.print(" ms: ");
Serial.println(WindSpeedMS);
TAndHSHT(); // calls function to measure temperature and humidity
solarRad(); // calls function that measure the solar radiation
//BatteryVoltage(); //calls function that measure to battery voltage
windDir(); // calls function that measure wind direction

86

// if statement that ensures that the temperature and humdity is done correct
if (TempSHT != -40) {

WSMeasured = true; // sets boolean to measerments done
TimeBool = false;
digitalWrite(RelayPin, LOW); //shuts off the power to the sensors

}
}

}

87

A.9 Code for measuring the battery voltage
void BatteryVoltage() {

AnalogValueBat = analogRead(PinBatVoltage); //reads analog value battery
float AnalogVoltBat = AnalogValueBat * 0.0008058608; // converts analog value to mV
BatVoltage = (AnalogVoltBat / 0.6993006993); // corrects offset made of voltage divider to get actual voltage level

}

88

A.10 Main arduino code TTN
/*

used pins esp32 = what = wire color
pin 21 = SDA = orange or light pink
pin 22 = SCL = Yellow (esp32 without screen not numbered pin after 19)
pin 23 = Sensors on/off (ground) = White

I2C device = I2C addres
SHT31 = 0x44

Analog read
pin 34 = SolarRad = green
pin 35 = WindDir = purple
pin 36 = WindSpeed = blue
pin 39 = BatVoltage = brown or grey

*/

//sets up all libraries
#include <Arduino.h> // is for easy pin definitions
#include "ArduinoNvs.h" // allows for variables to be stored in flash memory
#include <lmic.h> //library used for LoRaWAN module
#include <hal/hal.h> //library used for LoRaWAN module
#include <SPI.h> // is for spi communication
#include <Wire.h> // is for i2c communication

//sets up everything for the SHT31
#include "Adafruit_SHT31.h"
Adafruit_SHT31 sht31 = Adafruit_SHT31();

// definitions for the deepsleep and amount of cycles before data upload
#define uS_TO_S_FACTOR 1000000 // turns miliseconds in seconds
#define TIME_TO_SLEEP 56 // amount of seconds the controller goes in deep sleep
int Cycles = 5; // amount of cycles

// pin used for the different sensors
int PinWindSpeed = 13;
int PinSolarRad = 34;
int PinWindDir = 35;
int PinBatVoltage = 39;
int RelayPin = 23;

// Various constants to connects to the TTN network
static const u1_t PROGMEM APPEUI[8] = { *************** };
void os_getArtEui (u1_t* buf) {

memcpy_P(buf, APPEUI, 8);
}

89

static const u1_t PROGMEM DEVEUI[8] = { **************** };
void os_getDevEui (u1_t* buf) {

memcpy_P(buf, DEVEUI, 8);
}

static const u1_t PROGMEM APPKEY[16] = { *********************** };
void os_getDevKey (u1_t* buf) {

memcpy_P(buf, APPKEY, 16);
}

// setup code that confirms connection to TTN
static osjob_t sendjob;

// pins used to interface with the LoRaWAN module
const lmic_pinmap lmic_pins = {

.nss = 18,

.rxtx = LMIC_UNUSED_PIN,

.rst = 14,

.dio = {26, 33, 32},
};

const unsigned TX_INTERVAL = 60;

bool Save; // a boolean for the arduinoNVS library
// declaring the analog values for the sensors
float AnalogValueWindSpeed = 0; float AnalogValueWindDir = 0; float AnalogValueSolarRad = 0; float AnalogValueBat = 0;
//declaring the values to calculate or store sensor values
float TempSHT, HumSHT, Time, OldTime, WindSpeedMPH, WindSpeedKPH, WindSpeedMS, Pulses, SolarRadV, SolarRad, TimeDif, Counter, BatVoltage, WindDir, WindSpeed = 0;

float MeasureTime = 2250; // ammount of milliseconds the windsensor will be counting pulses

// variables for the NVS Storages
float TempStorage, HumStorage, WindSpStorage, SolRadStor;

//booleans
bool Connected = false; // boolean to make sure the node has made connection to TTN
bool Transmitted = false; // boolean to make sure data has been send to TTN
bool WSMeasured = false; // boolean to make sure all sensor measurements are done
bool Setup = false; // boolean that is executed ones but could not be in void setup
bool SwitchPulse = true; // boolean that ensure a single pulse is counted once

String mydata; //String that contains data that is going to be send

90

void setup() {

Serial.begin(115200); //setup of serial communication
Serial.println("========================");
pinMode(RelayPin, OUTPUT); // initializes the relaypin

digitalWrite(RelayPin, HIGH); // sets the relaypin to HIGH so the sensors have power
// starts the NVS library and includes the function NVSSTorage
NVS.begin();
NVSStorageSetup();

SetupTAndHSHT(); // set up of temperature/humidity sensor

// initialized the deepsleep timer
esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR);

}

void loop() {

\\if statement so measerements are done once per cycle
if (!WSMeasured) {

windSpeed(); // call wind speed measering function
}

// sets up the LoRaWAN data sending
if (WSMeasured && !Setup && CounterStorage >= Cycles) {

os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();

// Start job (sending automatically starts OTAA too)
do_send(&sendjob);

// sets boolean setup to has been done
Setup = true;

}
// if statement that is called one no data needs to be send
if (WSMeasured && CounterStorage < Cycles) {

digitalWrite(RelayPin, LOW); // shuts off power to sensors
NVSStorage(); // calls function that stores measured values in flash memory
Serial.println("Going to sleep now");
Serial.flush();
esp_deep_sleep_start(); // puts controller in deepsleep

}

91

// if statements that is called when data has to be send
if (WSMeasured && CounterStorage >= Cycles && Setup) {

os_runloop_once();
}

// if statement that is true when connection to TTN has been made
if (Connected) {

NVSStorageReset(); // sets all variables stored in flash memory to zero
Serial.println("Going to sleep now");
delay(1000);
Serial.flush();
Connected = false;
esp_deep_sleep_start(); // puts controller to deepsleep

}
}

92

A.11 Code for LoRaWAN ESP32
void onEvent (ev_t ev) {

Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {

case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;

case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;

case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;

case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;

case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;

case EV_JOINED:
Serial.println(F("EV_JOINED"));
{

Connected =true;
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print("devaddr: ");
Serial.println(devaddr, HEX);
Serial.print("artKey: ");
for (int i=0; i<sizeof(artKey); ++i) {

Serial.print(artKey[i], HEX);
}
Serial.println("");
Serial.print("nwkKey: ");
for (int i=0; i<sizeof(nwkKey); ++i) {

Serial.print(nwkKey[i], HEX);
}
Serial.println("");

}
// Disable link check validation (automatically enabled

93

// during join, but because slow data rates change max TX
// size, we don't use it in this example.

LMIC_setLinkCheckMode(0);
break;

/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:

Serial.println(F("EV_JOIN_FAILED"));
break;

case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;

case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)

Serial.println(F("Received ack"));
if (LMIC.dataLen) {

Serial.print(F("Received "));
Serial.print(LMIC.dataLen);
Serial.println(F(" bytes of payload"));

}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;

case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;

case EV_RESET:
Serial.println(F("EV_RESET"));
break;

case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;

case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;

case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;

94

/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:

Serial.println(F("EV_TXSTART"));
break;

default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned) ev);
break;

}
}

void do_send(osjob_t* j) {
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {

Serial.println(F("OP_TXRXPEND, not sending"));
} else {

// calls packet forming function
PacketString();

LMIC_setTxData2(1,(uint8_t*)mydata.c_str(), mydata.length(), 0);
Serial.println(F("Packet queued"));

}
// Next TX is scheduled after TX_COMPLETE event.

}

95

B Python Code

96

B.1 Code to get data from TTN and insert in mysql database
import time
import ttn
import mysql.connector

Application ID and access_key to TTN network
app_id = "**************"
access_key = "**************"

#Variables that allow the connection to the mysql database
mydb = mysql.connector.connect(

host = "*******", #ip of mysql database
user = "*******", #user of mysql database
passwd = "******", #password of mysql database
port = "*******", #port of mysql database

database = "*****" #database name
)

def uplink_callback(msg, client):

TimeStamp = msg.metadata.time # sets TimeStemp to current time
Data = str(msg.payload_fields.Data) #Sets the payload from TTN to string data
Counter = int(msg.counter) #Sets the counter from to TTN to integer counter
PrototypeNumber = str(msg.dev_id) #Sets the board name to variable PrototypeNumber

#parses the string with data so all paramaters are set to the right variable
Split0 = Data.split("B")
BatteryLevel = float(Split0[1])
Split1 = Split0[0].split("D")
WindDirection = float(Split1[1])
Split2 = Split1[0].split("V")
WindSpeed = float(Split2[1])
Split3 = Split2[0].split("S")
SolarRadiation = float(Split3[1])
Split4 = Split3[0].split("H")
Humidity = float(Split4[1])
Temperature = float(Split4[0][1:])

#prints the parsed data
print("Wind Direction = ", WindDirection, "Wind Speed = ", WindSpeed, "Solar Radiation = ", SolarRadiation, "Humidity = ", Humidity, "Temperature = ", Temperature, "Battery Level = ", BatteryLevel)

print(Split2)
#prints message received from TTN

print("///")
print(msg)

97

print("///")
print("prototype version = ", PrototypeNumber,"Payload = ", Data,"Counter = ", Counter,"Time stamp = ", TimeStamp)
print("///")

initialises connection with mySQL database
mycursor = mydb.cursor()

makes string with sql querry
sql = "INSERT INTO Node1 (Device_ID, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)"

#makes string with all the sensor data
val = (PrototypeNumber, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel)

#enters the data in the mySQL database
mycursor.execute(sql,val)
mydb.commit()

handler = ttn.HandlerClient(app_id, access_key)

using mqtt client from TTN
mqtt_client = handler.data()
mqtt_client.set_uplink_callback(uplink_callback)
mqtt_client.connect()
#defines how long the is going to run
time.sleep(432000)
mqtt_client.close()

using application manager client
app_client = handler.application()
my_app = app_client.get()
#print(my_app)
my_devices = app_client.devices()
#print(my_devices)

98

B.2 Code to get data frommqtt broker and insert inmysql database
import paho.mqtt.client as mqtt #import the client1
import time
import mysql.connector
from datetime import datetime

Counter = 1 # sets Counter to starts at 1

#Variables that allow the connection to the mysql database
mydb = mysql.connector.connect(

host = "*******", #ip of mysql database
user = "*******", #user of mysql database
passwd = "******", #password of mysql database
port = "*******", #port of mysql database

database = "*****" #database name
)

############
def on_message(client, userdata, message):
#sets string Data to message recieved from mqtt broker

Data = str(message.payload.decode("utf-8"))
print("message received " ,Data)

#parses the string with data so all paramaters are set to the right variable
Split0 = Data.split("B")
BatteryLevel = float(Split0[1])
Split1 = Split0[0].split("D")
WindDirection = float(Split1[1])
Split2 = Split1[0].split("V")
WindSpeed = float(Split2[1])
Split3 = Split2[0].split("S")
SolarRadiation = float(Split3[1])
Split4 = Split3[0].split("H")
Humidity = float(Split4[1])
Temperature = float(Split4[0][1:])
PrototypeNumber = "WindStrobe22mqtt"
global Counter

print("inserting")
makes string with sql querry

sql = "INSERT INTO GPData (Device_ID, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)"

99

#makes string with all the sensor data
val = (PrototypeNumber, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel)

initialises connection with mySQL database
mycursor = mydb.cursor()
mycursor.execute(sql,val)
mydb.commit()
print("inserted")
print(Counter)

#makes a string of the current time
dateTimeObj = datetime.now()
timeObj = dateTimeObj.time()
print(timeObj.hour, ':', timeObj.minute, ':' , timeObj.second)

adds 1 to the counter when data is inserted in the database
Counter = Counter + 1

##
broker_address="*********"
client = mqtt.Client("P1") #create new instance
client.username_pw_set(username="***********", password="*********")
client.on_message=on_message #attach function to callback

client.connect(broker_address) #connect to broker
client.loop_start() #start the loop
#subscribes to a certain topic in the mqtt broker
client.subscribe("GP/Data")

time.sleep(4) # wait

100

B.3 Code to input data manually and insert in mysql database
import time
import mysql.connector

#Variables that allow the connection to the mysql database
mydb = mysql.connector.connect(

host = "*******", #ip of mysql database
user = "*******", #user of mysql database
passwd = "******", #password of mysql database
port = "*******", #port of mysql database

database = "*****" #database name
)

#code that makes the console ask all the values
#Values that stay constant are made constants

#BatteryLevel = float(input("What is the Battery level? "))
BatteryLevel = float(0)

#WindDirection = float(input("What is the Wind Direction? "))
WindDirection = float(0)

WindSpeed = float(input("What is the Wind Speed? "))
#WindSpeed = float(0)

#SolarRadiation = float(input("What is the Solar Radiation? "))
SolarRadiation = float(0)

Humidity = float(input("What is the Humidity? "))

Temperature = float(input("What is the Temperature? "))

Counter = int(input("What is the Counter? "))

Time = "2020-02-01 " +str(input("At what time? "))

PrototypeNumber = "WindStrobe22Davis"

#make the sql querry and inserts it in the database
print("inserting")
sql = "INSERT INTO GPData (Device_ID, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel, Time) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)"
val = (PrototypeNumber, Counter, Temperature, Humidity, SolarRadiation, WindSpeed, WindDirection, BatteryLevel, Time)

101

initialises connection with mySQL database
mycursor = mydb.cursor()
mycursor.execute(sql,val)
mydb.commit()

time.sleep(4) # wait

102

C Pictures of test setup

C.1 Pictures of components test

103

104

C.2 Pictures of light test

105

106

C.3 Pictures of wind test setup

107

108

