

Bag-of-words location retrieval: including position of
local features

Cas Sievers
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

c.t.sievers@student.utwente.nl

ABSTRACT

Analyzing whether two photos depict the same scene can

algorithmically be done by counting the different features of

each image and comparing these totals. In doing this, however,

information about where in the image each feature was found

is discarded. This research investigates possible improvements

to using a visual bag-of-words model in automated location

retrieval. Two new models for grouping features of an image

by their position are proposed and evaluated. Based on the

recall rate it is shown that these models can reach a rate of 94%,

compared to an 88% rate of the basic bag-of-words

implementation. Both models indeed can be applied to improve

the performance of bag-of-words based scene recognition. All

the code used in this research is available in a public repository

at https://github.com/cievers/Location-Retrieval.

Keywords

Bag-of-words, computer vision, location retrieval

1. INTRODUCTION
When describing to another person where you are, one might

logically do so by describing the objects one can see. The

listener can match the selection of objects against possible

known locations, and with enough details, determine the

location being described. This describes the bag-of-words

model, which can also be used by computers to determine the

location of where an image was taken [1].

Simply describing the objects in an image comes with one

major issue; there is no information on the positional relation

between different objects. One solution might be to evenly

divide the image into cells, and pairwise compare each cell to

ensure the same objects are found in the same location. Another

might be to look at the distinct ‘landmarks’ in the skyline.

1.1 Motivation
Most research into location retrieval using computer vision

focusses on the use of neural networks to represent an image.

While these networks show great results, it is much more

difficult to understand how they decide what is important in an

image [2]. Therefore, more understanding of how to do this task

algorithmically is required to fully comprehend the problem

and discover new solutions.

While other positioning systems exist, such as GPS, they are

not always accurate enough on smaller scales [3]. Gardening

robots such as TrimBot [4] are one of the applications that need

far more accurate positioning. The TB-Places data set [5] is

recorded from the perspective of such a robot and depicts

scenes in an outdoor environment. Combining aspects such as

varying lighting conditions, a textured environment, a lack of

strong geometry, and an overwhelming green colour palette

makes this data set one worth investigating.

Since the TB-Places data set is recorded at a different time in

an outdoor garden, it includes varying lighting situations. The

chosen feature extracting algorithm should, therefore, be robust

enough to detect the same features in each scenario. For this

reason, the SIFT algorithm is chosen, which can also deal with

small changes in viewpoint and texture [6], which are likely to

occur due to wind and other outdoor circumstances.

With robust feature detection, a bag-of-words model can be

effective at recognizing individual objects. It cannot, however,

discern two different scenes composed of the same objects,

which can be in a garden environment featuring similar plants.

Some positional information of a feature is needed to achieve

this.

1.2 Problem Description
Methods counteracting the downside bag-of-words approach,

removing contextual data on where a word was found, are

investigated.

1.3 Objectives
This research aims to answer the following main question:

Question 1: How can including some positional information of

image features improve a bag-of-words model’s location

retrieval accuracy on the TB-places data set?

To find an answer to this question, it is divided into three

different sub-questions.

Question 1.1: How accurate is a bag-of-words model for

location retrieval with SIFT for feature extraction on the TB-

places data set?

Question 1.2: How can implementing grid-based key point

grouping into a bag-of-words model improve location retrieval

accuracy on the TB-places data set?

Question 1.3: How can implementing skyline sensitive key

point grouping into a bag-of-words model improve location

retrieval accuracy on the TB-places data set?

These questions are answered through the implementation of

different models and testing their performance on the selected

data set. These performances are compared to evaluate whether

bag-of-words scene recognition is a viable option and if it can

be improved by adding contextual information of image

features.

1.4 Background
The field of computer vision encapsulates far more methods of

storing, processing, extracting and representing images than

can be analyzed in this research [7], and many more

applications than just location retrieval. This includes, but is

not limited to, object classification, [8] human recognition [9],

spatial modelling [10], and camera calibration [11].

Even within the specific application of location retrieval, there

are different methods available to achieve this goal. However,

since the problem consists of representing and comparing the

global structure of an image, much of the work focusses on

methods based on neural networks [12]–[15].

https://github.com/cievers/Location-Retrieval

The data sets used in these approaches cover a large variety of

sceneries, such as indoor environments [11], cities [12], or a

little bit of everything [14], [15]. However, these data sets

largely have distinct features and geometry, making one scene

easily distinguishable from another. There has not been enough

research specifically focused on monotone garden

environments such as that by María Leyva-Vallina et al. [5],

[16].

A task more frequently tackled using a bag-of-words method is

that of object recognition. This works effectively with the

downside of lacking positional information to be able to locate

an object anywhere in an image [17]. Additionally, this also

allows for efficient classification of objects within an image

[8]. As described by Jia Liu [18], This would suggest that with

the specificity of objects that can be detected a bag-of-words

approach can also effectively be applied to image retrieval, and

thus location retrieval.

While this research makes use of the SIFT algorithm, research

into feature extractors is ongoing, developing extractors such

as the SURF, boasting large speed improvements at the cost of

precision [19], or feasible application on smaller devices such

as mobile phones [20].

2. METHODS

2.1 Architecture
The process of using a bag-of-words approach for finding the

location from an image and evaluating a full data set is as

follows. The first step is to extract the identifying features of

the images. The extracted raw feature descriptors are too

specific to be compared directly and need to be standardized

into a finite set of words which will form the vocabulary to

which all features will be mapped. With the vocabulary, an

image can be represented as a histogram through the chosen

model. Comparing the histograms for all images allows the

creation of a comparison matrix, describing the differences

between each pair of images. Finally, using the ground truth

poses and similarities the performance of the chosen model can

be evaluated. This process is also summarized in figure 1

below.

2.2 Feature Extraction
Extracting the features is done using the SIFT algorithm. For

each key point found SIFT then uses the 16x16 pixel area

around the found key point to calculate a 128-dimensional

vector describing that key point [6]. The output of the algorithm

is then this list of feature descriptors for each feature. For this

research, the Python OpenCV implementation of SIFT is used.

2.3 Vocabulary
Expecting to count the occurrences of an exact feature

description vector is highly unlikely, due to the exceedingly

large number of unique descriptors. To allow for comparing

two image’s representations, a fixed size vocabulary is created.

A full feature descriptor will be counted as the nearest

neighbour within the vocabulary.

Creating this vocabulary is done by training a k-means

clustering classifier on a subset of the data set. To train the

classifier in a reasonable timeframe, all training data should be

in memory at once. However, the size of all feature descriptors

in the data set exceeds the available memory. To counteract

this, the classifier is trained on ten percent of all features. Since

the images are recorded in sequences, each tenth image is

selected and has its features extracted for training the classifier.

This ensures a diverse selection of scenes is represented in the

vocabulary.

The size of the vocabulary also affects how well an image can

be represented. A fitting size of the vocabulary is determined

by testing several sizes, centred around the estimated value

obtained by equation 1 below.

𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 = √𝑛
2⁄

Equation 1. Rule of thumb for estimating cluster count

Here, n is the number of features descriptors, in the data set.

The best size is identified by the total squared error of the

trained classifier using the elbow method.

2.4 Similarity Comparison
Once a bag-of-words vector has been calculated for a query

image, it is compared to those of images in the data set. There

are multiple different methods to evaluate the similarity of two

vectors. This research tests and compares the performance

using Euclidean distance and cosine similarity. Using

Euclidean distance, the vector is normalized first to prevent

skewed results

2.5 Models

2.5.1 Baseline
The baseline model only extracts features using the SIFT

algorithm, with the suggested parameters as found by David

Lowe [6]. This creates a list of all key points in the image. With

the precomputed vocabulary, these features are directly

converted into the bag-of-words representation. The created

representations are compared to one another using one of the

vector difference functions. The following models follow the

same steps but have their own methods of creating and

comparing an image representation from the extracted features.

Figure 1. Schematic of the location retrieval process

a) b) c)

Figure 2. Illustration of a) the baseline model, b) the grid model, and c) the skyline model on an image from W17

2.5.2 Grid
One method to add positional information of an image’s

features is to group them by the part of the image they have

been detected in. When the same segmentation is applied to two

images, a feature in one section of the query image must then

also occur in that same section of an image depicting the same

scene. A straightforward segmentation is a rectangular grid,

evenly dividing an image into cells.

The grid model is implemented by splitting the image into N×N

cells and computing the bag-of-words vector individually for

each cell. The total representation of the image is then a

concatenation of the representations of all cells. These vectors

are compared just like in the baseline model to find the

difference between two images.

Since a grid of 1×1 cell is no different from the baseline, the

minimum value of N is thus 2. The maximum value of N is

dependent on the size of the source images, and the chosen

algorithm. The SIFT algorithm describes a feature with an area

of 16×16 pixels. Ideally, features on the border between two

cells should not be considered as in either cell, but this is

beyond the scope of this research. A minimum cell size of

32×32 pixels is chosen to somewhat negate this. In the TB-

places data set, each image is 752×480 pixels. Dividing the

image height by the minimum cell size gives a maximum value

for N of 480 / 32 = 15. Due to memory limitations, however, a

maximum value of N = 8 is used.

2.5.3 Skyline
Outdoor scenes such as these found in the TB-Places data set

often include the sky. Features disturbing the skyline are highly

contrasting, making them easily identifiable for extraction. Key

points derived from these landmarks in the sky could prove

more reliable than key points closer to the ground.

Similar to the grid model, the image is split into sections, one

section above the skyline, and another below. These sections of

a query image are again compared to their respective

counterparts for an image in the data set. To represent a

difference in importance the two resulting differences of these

two sections are averaged by weight, in which the skyline can

be more or less represented. This combined value is computed

by equation 2, where a represents the weight of features in the

sky. The value of a is bounded by 0 < a < 1. For this research,

a step size of 0,1 for a is used, and value 0,5 skipped as it is

identical to the baseline model.

∆𝑡𝑜𝑡𝑎𝑙= a × ∆𝑠𝑘𝑦 + (1 − 𝑎) × ∆𝑔𝑟𝑜𝑢𝑛𝑑

Equation 2. Combining sky and ground difference

A second parameter required in the skyline model is the height

of the skyline in the data set. For the TB-Places data sets, the

skyline will be defined as the horizon. While the horizon is not

clearly visible in each image, measuring its height in various

images from the data set resulted in a height of 50% from the

top of the image. The actual orientation of the camera at the

point of taking the picture was not taken into account and

assumed to be facing straight forward. Landing at a skyline

height of 50% then matches the intuition; a camera facing

directly forward close to the ground will capture about 50%

below and 50% above the horizon.

3. EVALUATION

3.1 Data set
The TB-Places data set is used for this research, as it depicts

the scenery and environmental conditions TrimBot would be

operating in. The data set consists of the public subsets W16,

W17, and W18 recorded in Wageningen, and a private set R17

recorded in Renningen. This research will train on the W17 set,

and test on both the W17 and W18 sets. Figure 2 visualizes how

the different models would apply to an example image from the

W17 set.

3.2 Vocabulary Size
Before staring the experiments, the vocabulary size needs to be

determined. For this, the total squared error of the trained k-

means classifier is measured at various sizes around the value

estimated through equation 1. The W17 set contains a total of

19.873.064 features, leading to an estimated vocabulary size of

3.152.

3.3 Testing
The performance of a model on a data set is tested by querying

each image in the set against the trained model. The

representation of the query image for the chosen model is

compared to the representations of all other images in the

testing set. The resulting differences are then sorted from most

to least similar to find which images in the data set the model

determines to be most similar. The data set then provides a

ground truth matrix of which images indeed depict the same

location as the query image. This matrix is used to evaluate the

correctness of the result from a query.

First, the W17 data set is tested against itself to analyse normal

performance. Next, images from the W18 data set are queried

against the W17 data set to determine how each model

performs under changing conditions in the same environment.

3.4 Metrics
Querying each image in a set against the model yields an

ordered set of matches. The top K of these matches are then

used for evaluation. The performance of a model is defined by

the recall rate at K, where a query is considered positive if there

is at least one result depicting the same location in the top K

matches. In operation, TrimBot would only consider the most

similar result, however, to better evaluate the performance, a

larger range of values for K have been selected. Additionally,

the physical location of the best match can be compared to that

of the query image’s ground truth to compute the physical

accuracy and precision. The physical distance is defined by the

Euclidean distance between the computed and true locations.

4. RESULTS

4.1 Vocabulary Size
The measurements of the first experiment are shown in figure

3 below. This shows the total squared error after training a k-

means classifier on the W17 data set. From the results of figure

3 below there is no indication of a clear structure in the error of

the classifier. Application of the elbow method is not possible,

therefore a cluster count of 3.000 will be used for further

experiments as a balance between distortion and computation

cost.

Figure 3. Error measurements for training k-means

classifier on W17 at various cluster counts

4.2 Vector Comparison
To determine the influence of different vector comparison

functions two full tests have been done on the W17 set. Table

1 highlights the differences between the Euclidean distance and

cosine similarity functions for each of the models. The full

measurements can be found in Appendix A. Figures 4 & 5

provide a visual comparison for the grid and skyline models in

comparison to the baseline. From these measurements, it is

clear that comparing two vectors using cosine similarity yields

the best result, and this function will be used for all further

experiments.

Table 1. Recall rate at K on W17

Model Euclidean distance Cosine similarity

K=1 K=5 K=1 K=5

base 40,501% 50,411% 88,445% 96,018%

grid-2 31,832% 38,582% 93,844% 98,767%

grid-3 23,886% 29,622% 93,250% 98,666%

skyline-0.2 41,615% 53,215% 79,412% 91,916%

skyline-0.3 44,611% 55,407% 83,522% 94,319%

skyline-0.4 46,063% 56,248% 86,929% 96,036%

skyline-0.6 43,862% 54,202% 90,309% 97,616%

skyline-0.7 40,829% 51,169% 91,286% 98,027%

skyline-0.8 36,125% 47,744% 91,140% 98,118%

Figure 4. Recall rates at K on W17 using Euclidean distance

Figure 5. Recall rates at K on W17 using cosine similarity

8,E+10

1,E+11

1,E+11

2,E+11

2,E+11

1000 2000 3000 4000 5000 6000

Su
m

 o
f

sq
u

ar
ed

d

is
ta

n
ce

s

Cluster count

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Grid models

base

grid-2

grid-3

grid-4

grid-5

grid-6

grid-7

grid-8
20%

40%

60%

80%

100%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Skyline models base

skyline-0

skyline-0.1

skyline-0.2

skyline-0.3

skyline-0.4

skyline-0.6

skyline-0.7

skyline-0.8

skyline-0.9

skyline-1

85%

90%

95%

100%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Grid models

base

grid-2

grid-3

grid-4

grid-5

grid-6

grid-7

grid-8
60%

70%

80%

90%

100%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Skyline models base

skyline-0

skyline-0.1

skyline-0.2

skyline-0.3

skyline-0.4

skyline-0.6

skyline-0.7

skyline-0.8

skyline-0.9

skyline-1

Figure 6. Physical distances of all models on W17

Figure 7. Recall rates at K testing W18 against W17

4.3 Physical distance
Additionally, the Euclidean distance between the location of

the computed best match compared to the true location of the

query image has been recorded. Figure 6 compares the various

parameters of the grid and skyline model against the baseline

on the average distance to the true location.

Table 2. Recall rate at K testing W18 on W17

Model K=1 K=5

base 0,577% 1,784%

grid-2 1,206% 3,073%

grid-3 0,707% 2,365%

grid-4 1,593% 4,144%

grid-5 1,988% 4,279%

grid-6 2,066% 4,496%

skyline-0.2 0,825% 2,530%

skyline-0.3 0,920% 2,834%

skyline-0.4 1,089% 3,086%

skyline-0.6 1,341% 3,841%

skyline-0.7 1,532% 4,214%

skyline-0.8 1,580% 4,492%

4.4 Generalization
Finally, the models trained on W17 have been tested with W18

to validate whether they are robust against changes in

environmental conditions in the same scenes. Figure 7 shows

the performance of each of the models when testing W18. Table

2 shows several of the best performing models in detail. The

performance of all models, however, is far below that of the

normal W17 tests. The complete measurements for this

experiment can be found in Appendix B.

5. DISCUSSION
In comparison to similar research, the performance of the

implemented models holds up well. One research applying and

testing vocabulary trees on a custom urban environment data

set achieves a recall rate just under 70% for the top match and

around 78% for the top five matches [21]. Research that also

aims for location retrieval introduces a new indoor parking

garage data set covering 1200 square meters. When training

and testing on this data set, positional accuracy of 0.749 meters

is achieved [11]. A most fitting comparison is, however, the

work of María Leyva-Vallina et al, applying several

convolutional neural networks on the same TB-Places data set

[16]. This research presents an average precision of 0.7055 on

the W17 set, and 0.2339 when testing the W18 set with

networks trained on W17. While not directly comparable to the

results of this research’s experiments, it shows a better

generalization in performance when testing W18 against W17

-0,5

0

0,5

1

1,5

2 4 6 8

A
ve

ra
ge

 d
is

ta
n

ce
 [

m
]

Grid size

Grid models

grid

base

-2

-1

0

1

2

3

4

5

0 0,5 1

A
ve

ra
ge

 d
is

ta
n

ce
 [

m
]

Sky feature weight

Skyline models

skyline

base

0%

5%

10%

15%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Grid models

base

grid-2

grid-3

grid-4

grid-5

grid-6

grid-7
0%

5%

10%

15%

0 5 10 15 20 25

A
cc

u
ra

cy

Recall rate at K

Skyline models base

skyline-0

skyline-0.1

skyline-0.2

skyline-0.3

skyline-0.4

skyline-0.6

skyline-0.7

skyline-0.8

skyline-0.9

skyline-1

than this research, which demonstrated high performance on

W17, but an abysmal one on W18.

One factor that can play a role in the difference in performance

between W17 and W18 is that of image preprocessing. In the

experiments, the images have not been preprocessed, and are

taken straight from the cameras as TrimBot would have

captured them. However, this means that any changes in

illumination are not compensated, and have a clear negative

effect on the performance. Introducing a preprocessing step to

somewhat equalize the lighting could improve tests using W18.

A few more remarkable observations can be made in the

measurements of W18. Increasing the grid size no longer

decreases the performance, but generally increases it instead.

This is with exception of sizes 3 and 7, where the performance

dips. However, if it were caused by important features on the

borders between cells, a comparable dip could be expected in

multiples of these numbers, which is not the case. For the

skyline model, all values of a now outperform the baseline, and

peaks at an even higher value of a. This further highlights the

importance of large features in the sky, which in the W18 data

set are less affected by the different lighting conditions.

6. CONCLUSION
As shown in table 1, the baseline model achieves an 88,445%

recall rate within the top match using cosine similarity. Since

TrimBot has multiple cameras onboard, simultaneously

photographing its environment, a baseline bag-of-words

approach is a viable option for scene recognition.

Table 1 also shows that grouping features into evenly

distributed cells can improve the performance to reach a

93,844% recall rate for the top match for a 2x2 grid, with the

performance slightly decreasing as the number of cells

increases. In addition to this, the skyline model has also shown

to be a reasonable improvement to the baseline model, peaking

at a recall rate of 91,286% for the best match with a sky features

weight of 0,7.

The average physical distance, as shown in figure 6, indicates

that the best performing parameters are close to determining the

location of the robot, but not always close enough to distinguish

between standing next to one plant and another. The high

standard deviation also indicates that if the best match does not

match the true scene, the calculated location is far from the

truth.

When testing the generalization of the models, is has been

shown that even though the second data set has been recorded

in the same garden, the different environmental conditions have

shown that the vocabulary extracted from W17 is not applicable

for generalization.

Lastly, both models have shown to be capable of outperforming

a baseline bag-of-words model. The position of where a feature

was found is indeed valuable information when analyzing

whether two images depict the same scene. This information is

however not enough to make a such a bag-of-words model

robust enough against changes in illumination as seen between

W17 and W18.

7. REFERENCES
[1] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and

W. T. Freeman, “Discovering objects and their

location in images,” in Proceedings of the IEEE

International Conference on Computer Vision, 2005,

vol. I, pp. 370–377, doi: 10.1109/ICCV.2005.77.

[2] C. Olah et al., “The Building Blocks of

Interpretability,” Distill, vol. 3, no. 3, p. e10, Mar.

2018, doi: 10.23915/distill.00010.

[3] U. S. a Department Of Defense, “Global Positioning

System Standard Positioning Service,”

Www.Gps.Gov, no. September, pp. 1–160, 2008,

[Online]. Available:

http://www.gps.gov/technical/ps/2008-SPS-

performance-standard.pdf.

[4] “TrimBot2020 Project – Cutting Hedge Research.”

http://trimbot2020.webhosting.rug.nl/ (accessed Jun.

15, 2020).

[5] M. Leyva-Vallina, N. Strisciuglio, M. Lopez

Antequera, R. Tylecek, M. Blaich, and N. Petkov,

“TB-places: A data set for visual place recognition in

garden environments,” IEEE Access, vol. 7, pp.

52277–52287, 2019, doi:

10.1109/ACCESS.2019.2910150.

[6] D. G. Lowe, “Object recognition from local scale-

invariant features,” 1999. doi:

10.1109/iccv.1999.790410.

[7] S. Krig, Computer vision metrics: Survey, taxonomy,

and analysis, vol. 9781430259. Apress Media LLC,

2014.

[8] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and

W. T. Freeman, “Discovering objects and their

location in images,” in Proceedings of the IEEE

International Conference on Computer Vision, 2005,

vol. I, pp. 370–377, doi: 10.1109/ICCV.2005.77.

[9] Z. Zhang, “A flexible new technique for camera

calibration,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 22, no. 11, pp. 1330–

1334, 2000, doi: 10.1109/34.888718.

[10] A. Oliva and A. Torralba, “Modeling the shape of the

scene: A holistic representation of the spatial

envelope,” International Journal of Computer Vision,

vol. 42, no. 3, pp. 145–175, May 2001, doi:

10.1023/A:1011139631724.

[11] J. M. Ciou and E. H. C. Lu, “Indoor positioning using

convolution neural network to regress camera pose,”

in International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences -

ISPRS Archives, Jun. 2019, vol. 42, no. 2/W13, pp.

1289–1294, doi: 10.5194/isprs-archives-XLII-2-

W13-1289-2019.

[12] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J.

Sivic, “NetVLAD: CNN Architecture for Weakly

Supervised Place Recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 40,

no. 6, pp. 1437–1451, 2018, doi:

10.1109/TPAMI.2017.2711011.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Communications of the ACM, vol.

60, no. 6, pp. 84–90, Jun. 2017, doi: 10.1145/3065386.

[14] A. López-Cifuentes, M. Escudero-Viñolo, J. Bescós,

and Á. García-Martín, “Semantic-aware scene

recognition,” Pattern Recognition, vol. 102, Jun.

2020, doi: 10.1016/j.patcog.2020.107256.

[15] M. Lopez-Antequera, R. Gomez-Ojeda, N. Petkov,

and J. Gonzalez-Jimenez, “Appearance-invariant

place recognition by discriminatively training a

convolutional neural network,” Pattern Recognition

Letters, vol. 92, pp. 89–95, Jun. 2017, doi:

10.1016/j.patrec.2017.04.017.

[16] M. Leyva-Vallina, N. Strisciuglio, and N. Petkov,

“Place Recognition in Gardens by Learning Visual

Representations: Data Set and Benchmark Analysis,”

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 11678 LNCS,

pp. 324–335, 2019, doi: 10.1007/978-3-030-29888-

3_26.

[17] J. Farooq, “Object detection and identification using

SURF and BoW model,” 2016 International

Conference on Computing, Electronic and Electrical

Engineering, ICE Cube 2016 - Proceedings, pp. 318–

323, 2016, doi: 10.1109/ICECUBE.2016.7495245.

[18] J. Liu, “Image Retrieval based on Bag-of-Words

model,” Apr. 2013, Accessed: May 01, 2020.

[Online]. Available: http://arxiv.org/abs/1304.5168.

[19] H. Bay, T. Tuytelaars, and L. van Gool, “SURF:

Speeded up robust features,” in Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2006, vol. 3951 LNCS, pp. 404–417,

doi: 10.1007/11744023_32.

[20] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,

and D. Schmalstieg, “Pose tracking from natural

features on mobile phones,” Proceedings - 7th IEEE

International Symposium on Mixed and Augmented

Reality 2008, ISMAR 2008, pp. 125–134, 2008, doi:

10.1109/ISMAR.2008.4637338.

[21] G. Schindler, M. Brown, and R. Szeliski, “City-scale

location recognition,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition, 2007, doi:

10.1109/CVPR.2007.383150.

APPENDIX

A. COMPLETE VECTOR COMPARISON MEASUREMENTS
Table A1. Recall rate at K on W17 using Euclidean distance

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25

base 40,501% 45,077% 47,598% 49,132% 50,411% 54,996% 57,335% 59,116% 60,632%

grid-2 31,832% 34,792% 36,527% 37,742% 38,582% 41,962% 44,072% 45,862% 47,251%

grid-3 23,886% 26,206% 27,612% 28,690% 29,622% 32,517% 34,481% 35,787% 36,911%

grid-4 17,053% 18,442% 19,812% 20,771% 21,547% 24,123% 26,151% 27,293% 28,480%

grid-5 12,185% 13,875% 15,564% 16,588% 17,254% 19,547% 20,981% 21,922% 22,853%

grid-6 9,454% 10,815% 12,121% 12,934% 13,491% 15,610% 16,935% 18,095% 18,917%

grid-7 7,810% 8,705% 10,047% 10,751% 11,281% 13,190% 14,733% 15,665% 16,524%

grid-8 6,394% 7,326% 8,285% 9,207% 9,609% 11,025% 12,468% 13,637% 14,395%

skyline-0 24,443% 29,074% 31,686% 33,76% 35,267% 40,153% 43,122% 45,278% 46,757%

skyline-0.1 32,125% 37,368% 40,281% 42,108% 43,707% 48,548% 51,023% 52,905% 54,375%

skyline-0.2 37,331% 42,620% 45,543% 47,579% 48,986% 53,590% 56,111% 58,120% 59,664%

skyline-0.3 41,615% 46,977% 49,735% 51,790% 53,215% 57,718% 60,477% 62,523% 63,939%

skyline-0.4 44,611% 49,808% 52,375% 54,083% 55,407% 59,691% 62,349% 64,240% 65,802%

skyline-0.6 46,063% 50,767% 53,233% 55,051% 56,248% 59,837% 62,020% 63,701% 64,971%

skyline-0.7 43,862% 48,895% 51,324% 52,914% 54,202% 58,075% 60,413% 61,874% 63,171%

skyline-0.8 40,829% 45,771% 48,374% 50,027% 51,169% 55,544% 58,075% 59,883% 61,472%

skyline-0.9 36,125% 41,624% 44,355% 46,218% 47,744% 52,740% 55,736% 57,892% 59,655%

skyline-1 29,558% 34,956% 38,281% 40,747% 42,391% 48,064% 51,553% 53,955% 55,828%

Table A2. Recall rate at K on W17 using cosine similarity

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25

base 88,445% 92,857% 94,629% 95,424% 96,018% 97,242% 97,790% 98,191% 98,484%

grid-2 93,844% 96,830% 97,917% 98,520% 98,767% 99,351% 99,626% 99,726% 99,799%

grid-3 93,250% 96,301% 97,497% 98,283% 98,666% 99,397% 99,689% 99,772% 99,845%

grid-4 92,547% 95,698% 96,904% 97,762% 98,310% 99,260% 99,562% 99,726% 99,799%

grid-5 91,158% 94,867% 96,383% 97,324% 97,991% 99,114% 99,470% 99,717% 99,808%

grid-6 89,916% 93,962% 95,689% 96,757% 97,424% 98,794% 99,324% 99,580% 99,671%

grid-7 88,884% 93,140% 94,958% 96,100% 96,885% 98,575% 99,114% 99,342% 99,525%

grid-8 87,386% 91,852% 93,962% 95,113% 95,944% 98,082% 98,685% 99,077% 99,342%

skyline-0 66,049% 74,571% 78,425% 80,599% 82,426% 86,975% 89,578% 91,149% 92,273%

skyline-0.1 74,160% 81,841% 84,874% 86,829% 88,071% 91,834% 93,579% 94,693% 95,460%

skyline-0.2 79,412% 86,271% 88,984% 90,692% 91,916% 94,775% 95,853% 96,575% 97,077%

skyline-0.3 83,522% 89,715% 91,880% 93,140% 94,319% 96,493% 97,333% 97,881% 98,191%

skyline-0.4 86,929% 92,245% 94,264% 95,332% 96,036% 97,579% 98,228% 98,548% 98,758%

skyline-0.6 90,309% 94,666% 96,328% 97,159% 97,616% 98,648% 99,087% 99,260% 99,397%

skyline-0.7 91,286% 95,342% 96,849% 97,589% 98,027% 98,977% 99,269% 99,470% 99,543%

skyline-0.8 91,140% 95,332% 96,958% 97,616% 98,118% 99,050% 99,324% 99,516% 99,580%

skyline-0.9 90,254% 94,593% 96,200% 96,986% 97,634% 98,557% 98,995% 99,260% 99,370%

skyline-1 87,258% 92,181% 93,962% 94,949% 95,753% 97,296% 97,890% 98,292% 98,621%

B. COMPLETE GENERALIZATION MEASUREMENTS
Table B1. Recall rate at K on testing W18 on W17

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25

base 0,577% 1,024% 1,328% 1,545% 1,784% 2,704% 3,554% 4,214% 4,735%

grid-2 1,206% 1,831% 2,348% 2,760% 3,073% 4,318% 5,169% 5,924% 6,631%

grid-3 0,707% 1,081% 1,454% 1,936% 2,365% 3,515% 4,084% 4,539% 5,121%

grid-4 1,593% 2,495% 3,224% 3,784% 4,144% 5,802% 6,909% 7,959% 8,831%

grid-5 1,988% 2,929% 3,619% 4,279% 4,726% 6,709% 8,211% 9,487% 10,420%

grid-6 2,066% 3,073% 3,910% 4,496% 4,978% 6,870% 8,298% 9,721% 10,953%

grid-7 0,903% 1,328% 1,714% 2,257% 2,734% 4,006% 4,726% 5,307% 5,958%

grid-8 Too computationally expensive

skyline-0 0,733% 1,193% 1,562% 1,866% 2,144% 3,211% 3,936% 4,630% 5,182%

skyline-0.1 0,803% 1,285% 1,645% 1,983% 2,339% 3,424% 4,218% 4,943% 5,564%

skyline-0.2 0,825% 1,293% 1,801% 2,179% 2,530% 3,832% 4,765% 5,429% 6,058%

skyline-0.3 0,920% 1,593% 2,027% 2,552% 2,834% 4,179% 5,030% 5,824% 6,484%

skyline-0.4 1,089% 1,736% 2,278% 2,738% 3,086% 4,474% 5,546% 6,362% 7,256%

skyline-0.6 1,341% 2,200% 2,864% 3,355% 3,841% 5,550% 6,935% 8,033% 9,057%

skyline-0.7 1,532% 2,400% 3,133% 3,676% 4,214% 6,180% 7,651% 9,009% 10,172%

skyline-0.8 1,580% 2,613% 3,285% 3,910% 4,492% 6,501% 8,285% 9,612% 10,797%

skyline-0.9 1,497% 2,404% 3,242% 3,793% 4,392% 6,540% 8,193% 9,777% 11,019%

skyline-1 1,272% 2,152% 2,864% 3,485% 3,997% 6,145% 7,833% 9,330% 10,537%

