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ABSTRACT 

Analyzing whether two photos depict the same scene can 

algorithmically be done by counting the different features of 

each image and comparing these totals. In doing this, however, 

information about where in the image each feature was found 

is discarded. This research investigates possible improvements 

to using a visual bag-of-words model in automated location 

retrieval. Two new models for grouping features of an image 

by their position are proposed and evaluated. Based on the 

recall rate it is shown that these models can reach a rate of 94%, 

compared to an 88% rate of the basic bag-of-words 

implementation. Both models indeed can be applied to improve 

the performance of bag-of-words based scene recognition. All 

the code used in this research is available in a public repository 

at https://github.com/cievers/Location-Retrieval. 
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1. INTRODUCTION 
When describing to another person where you are, one might 

logically do so by describing the objects one can see. The 

listener can match the selection of objects against possible 

known locations, and with enough details, determine the 

location being described. This describes the bag-of-words 

model, which can also be used by computers to determine the 

location of where an image was taken [1]. 

Simply describing the objects in an image comes with one 

major issue; there is no information on the positional relation 

between different objects. One solution might be to evenly 

divide the image into cells, and pairwise compare each cell to 

ensure the same objects are found in the same location. Another 

might be to look at the distinct ‘landmarks’ in the skyline.  

1.1 Motivation 
Most research into location retrieval using computer vision 

focusses on the use of neural networks to represent an image. 

While these networks show great results, it is much more 

difficult to understand how they decide what is important in an 

image [2]. Therefore, more understanding of how to do this task 

algorithmically is required to fully comprehend the problem 

and discover new solutions. 

While other positioning systems exist, such as GPS, they are 

not always accurate enough on smaller scales [3]. Gardening 

robots such as TrimBot [4] are one of the applications that need 

far more accurate positioning. The TB-Places data set [5] is 

recorded from the perspective of such a robot and depicts 

scenes in an outdoor environment. Combining aspects such as 

varying lighting conditions, a textured environment, a lack of 

strong geometry, and an overwhelming green colour palette 

makes this data set one worth investigating. 

Since the TB-Places data set is recorded at a different time in 

an outdoor garden, it includes varying lighting situations. The 

chosen feature extracting algorithm should, therefore, be robust 

enough to detect the same features in each scenario. For this 

reason, the SIFT algorithm is chosen, which can also deal with 

small changes in viewpoint and texture [6], which are likely to 

occur due to wind and other outdoor circumstances. 

With robust feature detection, a bag-of-words model can be 

effective at recognizing individual objects. It cannot, however, 

discern two different scenes composed of the same objects, 

which can be in a garden environment featuring similar plants. 

Some positional information of a feature is needed to achieve 

this. 

1.2 Problem Description 
Methods counteracting the downside bag-of-words approach, 

removing contextual data on where a word was found, are 

investigated. 

1.3 Objectives 
This research aims to answer the following main question: 

Question 1: How can including some positional information of 

image features improve a bag-of-words model’s location 

retrieval accuracy on the TB-places data set? 

To find an answer to this question, it is divided into three 

different sub-questions.  

Question 1.1: How accurate is a bag-of-words model for 

location retrieval with SIFT for feature extraction on the TB-

places data set? 

Question 1.2: How can implementing grid-based key point 

grouping into a bag-of-words model improve location retrieval 

accuracy on the TB-places data set? 

Question 1.3: How can implementing skyline sensitive key 

point grouping into a bag-of-words model improve location 

retrieval accuracy on the TB-places data set? 

These questions are answered through the implementation of 

different models and testing their performance on the selected 

data set. These performances are compared to evaluate whether 

bag-of-words scene recognition is a viable option and if it can 

be improved by adding contextual information of image 

features. 

1.4 Background 
The field of computer vision encapsulates far more methods of 

storing, processing, extracting and representing images than 

can be analyzed in this research [7], and many more 

applications than just location retrieval.  This includes, but is 

not limited to, object classification, [8] human recognition [9], 

spatial modelling [10], and camera calibration [11]. 

Even within the specific application of location retrieval, there 

are different methods available to achieve this goal. However, 

since the problem consists of representing and comparing the 

global structure of an image, much of the work focusses on 

methods based on neural networks [12]–[15]. 

https://github.com/cievers/Location-Retrieval


 

The data sets used in these approaches cover a large variety of 

sceneries, such as indoor environments [11], cities [12], or a 

little bit of everything [14], [15]. However, these data sets 

largely have distinct features and geometry, making one scene 

easily distinguishable from another. There has not been enough 

research specifically focused on monotone garden 

environments such as that by María Leyva-Vallina et al. [5], 

[16]. 

A task more frequently tackled using a bag-of-words method is 

that of object recognition. This works effectively with the 

downside of lacking positional information to be able to locate 

an object anywhere in an image [17]. Additionally, this also 

allows for efficient classification of objects within an image 

[8]. As described by Jia Liu [18], This would suggest that with 

the specificity of objects that can be detected a bag-of-words 

approach can also effectively be applied to image retrieval, and 

thus location retrieval. 

While this research makes use of the SIFT algorithm, research 

into feature extractors is ongoing, developing extractors such 

as the SURF, boasting large speed improvements at the cost of 

precision [19], or feasible application on smaller devices such 

as mobile phones [20]. 

2. METHODS 

2.1 Architecture 
The process of using a bag-of-words approach for finding the 

location from an image and evaluating a full data set is as 

follows. The first step is to extract the identifying features of 

the images. The extracted raw feature descriptors are too 

specific to be compared directly and need to be standardized 

into a finite set of words which will form the vocabulary to 

which all features will be mapped. With the vocabulary, an 

image can be represented as a histogram through the chosen 

model. Comparing the histograms for all images allows the 

creation of a comparison matrix, describing the differences 

between each pair of images. Finally, using the ground truth 

poses and similarities the performance of the chosen model can 

be evaluated. This process is also summarized in figure 1 

below. 

2.2 Feature Extraction 
Extracting the features is done using the SIFT algorithm. For 

each key point found SIFT then uses the 16x16 pixel area 

around the found key point to calculate a 128-dimensional 

vector describing that key point [6]. The output of the algorithm 

is then this list of feature descriptors for each feature. For this 

research, the Python OpenCV implementation of SIFT is used. 

2.3 Vocabulary 
Expecting to count the occurrences of an exact feature 

description vector is highly unlikely, due to the exceedingly 

large number of unique descriptors. To allow for comparing 

two image’s representations, a fixed size vocabulary is created. 

A full feature descriptor will be counted as the nearest 

neighbour within the vocabulary. 

Creating this vocabulary is done by training a k-means 

clustering classifier on a subset of the data set. To train the 

classifier in a reasonable timeframe, all training data should be 

in memory at once. However, the size of all feature descriptors 

in the data set exceeds the available memory. To counteract 

this, the classifier is trained on ten percent of all features. Since 

the images are recorded in sequences, each tenth image is 

selected and has its features extracted for training the classifier. 

This ensures a diverse selection of scenes is represented in the 

vocabulary. 

The size of the vocabulary also affects how well an image can 

be represented. A fitting size of the vocabulary is determined 

by testing several sizes, centred around the estimated value 

obtained by equation 1 below.  

𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 = √𝑛
2⁄  

Equation 1. Rule of thumb for estimating cluster count 

Here, n is the number of features descriptors, in the data set. 

The best size is identified by the total squared error of the 

trained classifier using the elbow method. 

2.4 Similarity Comparison 
Once a bag-of-words vector has been calculated for a query 

image, it is compared to those of images in the data set. There 

are multiple different methods to evaluate the similarity of two 

vectors. This research tests and compares the performance 

using Euclidean distance and cosine similarity. Using 

Euclidean distance, the vector is normalized first to prevent 

skewed results 

2.5 Models 

2.5.1 Baseline 
The baseline model only extracts features using the SIFT 

algorithm, with the suggested parameters as found by David 

Lowe [6]. This creates a list of all key points in the image. With 

the precomputed vocabulary, these features are directly 

converted into the bag-of-words representation. The created 

representations are compared to one another using one of the 

vector difference functions. The following models follow the 

same steps but have their own methods of creating and 

comparing an image representation from the extracted features.

 

Figure 1. Schematic of the location retrieval process
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Figure 2. Illustration of a) the baseline model, b) the grid model, and c) the skyline model on an image from W17

2.5.2 Grid 
One method to add positional information of an image’s 

features is to group them by the part of the image they have 

been detected in. When the same segmentation is applied to two 

images, a feature in one section of the query image must then 

also occur in that same section of an image depicting the same 

scene. A straightforward segmentation is a rectangular grid, 

evenly dividing an image into cells.  

The grid model is implemented by splitting the image into N×N 

cells and computing the bag-of-words vector individually for 

each cell. The total representation of the image is then a 

concatenation of the representations of all cells. These vectors 

are compared just like in the baseline model to find the 

difference between two images.  

Since a grid of 1×1 cell is no different from the baseline, the 

minimum value of N is thus 2. The maximum value of N is 

dependent on the size of the source images, and the chosen 

algorithm. The SIFT algorithm describes a feature with an area 

of 16×16 pixels. Ideally, features on the border between two 

cells should not be considered as in either cell, but this is 

beyond the scope of this research. A minimum cell size of 

32×32 pixels is chosen to somewhat negate this. In the TB-

places data set, each image is 752×480 pixels. Dividing the 

image height by the minimum cell size gives a maximum value 

for N of 480 / 32 = 15. Due to memory limitations, however, a 

maximum value of N = 8 is used. 

2.5.3 Skyline 
Outdoor scenes such as these found in the TB-Places data set 

often include the sky. Features disturbing the skyline are highly 

contrasting, making them easily identifiable for extraction. Key 

points derived from these landmarks in the sky could prove 

more reliable than key points closer to the ground.  

Similar to the grid model, the image is split into sections, one 

section above the skyline, and another below. These sections of 

a query image are again compared to their respective 

counterparts for an image in the data set. To represent a 

difference in importance the two resulting differences of these 

two sections are averaged by weight, in which the skyline can 

be more or less represented. This combined value is computed 

by equation 2, where a represents the weight of features in the 

sky. The value of a is bounded by 0 < a < 1. For this research, 

a step size of 0,1 for a is used, and value 0,5 skipped as it is 

identical to the baseline model. 

∆𝑡𝑜𝑡𝑎𝑙= a × ∆𝑠𝑘𝑦 + (1 − 𝑎) ×  ∆𝑔𝑟𝑜𝑢𝑛𝑑 

Equation 2. Combining sky and ground difference 

A second parameter required in the skyline model is the height 

of the skyline in the data set. For the TB-Places data sets, the 

skyline will be defined as the horizon. While the horizon is not 

clearly visible in each image, measuring its height in various 

images from the data set resulted in a height of 50% from the 

top of the image. The actual orientation of the camera at the 

point of taking the picture was not taken into account and 

assumed to be facing straight forward. Landing at a skyline 

height of 50% then matches the intuition; a camera facing 

directly forward close to the ground will capture about 50% 

below and 50% above the horizon. 

3. EVALUATION 

3.1 Data set 
The TB-Places data set is used for this research, as it depicts 

the scenery and environmental conditions TrimBot would be 

operating in. The data set consists of the public subsets W16, 

W17, and W18 recorded in Wageningen, and a private set R17 

recorded in Renningen. This research will train on the W17 set, 

and test on both the W17 and W18 sets. Figure 2 visualizes how 

the different models would apply to an example image from the 

W17 set. 

3.2 Vocabulary Size 
Before staring the experiments, the vocabulary size needs to be 

determined. For this, the total squared error of the trained k-

means classifier is measured at various sizes around the value 

estimated through equation 1. The W17 set contains a total of 

19.873.064 features, leading to an estimated vocabulary size of 

3.152. 

3.3 Testing 
The performance of a model on a data set is tested by querying 

each image in the set against the trained model. The 

representation of the query image for the chosen model is 

compared to the representations of all other images in the 

testing set. The resulting differences are then sorted from most 

to least similar to find which images in the data set the model 

determines to be most similar. The data set then provides a 

ground truth matrix of which images indeed depict the same 

location as the query image. This matrix is used to evaluate the 

correctness of the result from a query. 

First, the W17 data set is tested against itself to analyse normal 

performance. Next, images from the W18 data set are queried 

against the W17 data set to determine how each model 

performs under changing conditions in the same environment. 

3.4 Metrics 
Querying each image in a set against the model yields an 

ordered set of matches. The top K of these matches are then 

used for evaluation. The performance of a model is defined by 

the recall rate at K, where a query is considered positive if there 

is at least one result depicting the same location in the top K 

matches. In operation, TrimBot would only consider the most 

similar result, however, to better evaluate the performance, a 

larger range of values for K have been selected. Additionally, 

the physical location of the best match can be compared to that 

of the query image’s ground truth to compute the physical 

accuracy and precision. The physical distance is defined by the 

Euclidean distance between the computed and true locations. 



 

4. RESULTS 

4.1 Vocabulary Size 
The measurements of the first experiment are shown in figure 

3 below. This shows the total squared error after training a k-

means classifier on the W17 data set. From the results of figure 

3 below there is no indication of a clear structure in the error of 

the classifier. Application of the elbow method is not possible, 

therefore a cluster count of 3.000 will be used for further 

experiments as a balance between distortion and computation 

cost. 

 

Figure 3. Error measurements for training k-means 

classifier on W17 at various cluster counts 

 

4.2 Vector Comparison 
To determine the influence of different vector comparison 

functions two full tests have been done on the W17 set. Table 

1 highlights the differences between the Euclidean distance and 

cosine similarity functions for each of the models. The full 

measurements can be found in Appendix A. Figures 4 & 5 

provide a visual comparison for the grid and skyline models in 

comparison to the baseline. From these measurements, it is 

clear that comparing two vectors using cosine similarity yields 

the best result, and this function will be used for all further 

experiments. 

Table 1. Recall rate at K on W17 

Model Euclidean distance Cosine similarity 

K=1 K=5 K=1 K=5 

base 40,501% 50,411% 88,445% 96,018% 

grid-2 31,832% 38,582% 93,844% 98,767% 

grid-3 23,886% 29,622% 93,250% 98,666% 

skyline-0.2 41,615% 53,215% 79,412% 91,916% 

skyline-0.3 44,611% 55,407% 83,522% 94,319% 

skyline-0.4 46,063% 56,248% 86,929% 96,036% 

skyline-0.6 43,862% 54,202% 90,309% 97,616% 

skyline-0.7 40,829% 51,169% 91,286% 98,027% 

skyline-0.8 36,125% 47,744% 91,140% 98,118% 

 

  

Figure 4.  Recall rates at K on W17 using Euclidean distance 

  

Figure 5. Recall rates at K on W17 using cosine similarity 
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Figure 6. Physical distances of all models on W17 

 

Figure 7. Recall rates at K testing W18 against W17 

4.3 Physical distance 
Additionally, the Euclidean distance between the location of 

the computed best match compared to the true location of the 

query image has been recorded. Figure 6 compares the various 

parameters of the grid and skyline model against the baseline 

on the average distance to the true location. 

Table 2. Recall rate at K testing W18 on W17 

Model K=1 K=5 

base 0,577% 1,784% 

grid-2 1,206% 3,073% 

grid-3 0,707% 2,365% 

grid-4 1,593% 4,144% 

grid-5 1,988% 4,279% 

grid-6 2,066% 4,496% 

skyline-0.2 0,825% 2,530% 

skyline-0.3 0,920% 2,834% 

skyline-0.4 1,089% 3,086% 

skyline-0.6 1,341% 3,841% 

skyline-0.7 1,532% 4,214% 

skyline-0.8 1,580% 4,492% 

 

4.4 Generalization 
Finally, the models trained on W17 have been tested with W18 

to validate whether they are robust against changes in 

environmental conditions in the same scenes. Figure 7 shows 

the performance of each of the models when testing W18. Table 

2 shows several of the best performing models in detail. The 

performance of all models, however, is far below that of the 

normal W17 tests. The complete measurements for this 

experiment can be found in Appendix B.  

5. DISCUSSION 
In comparison to similar research, the performance of the 

implemented models holds up well. One research applying and 

testing vocabulary trees on a custom urban environment data 

set achieves a recall rate just under 70% for the top match and 

around 78% for the top five matches [21]. Research that also 

aims for location retrieval introduces a new indoor parking 

garage data set covering 1200 square meters. When training 

and testing on this data set, positional accuracy of 0.749 meters 

is achieved [11]. A most fitting comparison is, however, the 

work of María Leyva-Vallina et al, applying several 

convolutional neural networks on the same TB-Places data set 

[16]. This research presents an average precision of 0.7055 on 

the W17 set, and 0.2339 when testing the W18 set with 

networks trained on W17. While not directly comparable to the 

results of this research’s experiments, it shows a better 

generalization in performance when testing W18 against W17 
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than this research, which demonstrated high performance on 

W17, but an abysmal one on W18. 

One factor that can play a role in the difference in performance 

between W17 and W18 is that of image preprocessing. In the 

experiments, the images have not been preprocessed, and are 

taken straight from the cameras as TrimBot would have 

captured them. However, this means that any changes in 

illumination are not compensated, and have a clear negative 

effect on the performance. Introducing a preprocessing step to 

somewhat equalize the lighting could improve tests using W18. 

A few more remarkable observations can be made in the 

measurements of W18. Increasing the grid size no longer 

decreases the performance, but generally increases it instead. 

This is with exception of sizes 3 and 7, where the performance 

dips. However, if it were caused by important features on the 

borders between cells, a comparable dip could be expected in 

multiples of these numbers, which is not the case. For the 

skyline model, all values of a now outperform the baseline, and 

peaks at an even higher value of a. This further highlights the 

importance of large features in the sky, which in the W18 data 

set are less affected by the different lighting conditions. 

6. CONCLUSION 
As shown in table 1, the baseline model achieves an 88,445% 

recall rate within the top match using cosine similarity. Since 

TrimBot has multiple cameras onboard, simultaneously 

photographing its environment, a baseline bag-of-words 

approach is a viable option for scene recognition. 

Table 1 also shows that grouping features into evenly 

distributed cells can improve the performance to reach a 

93,844% recall rate for the top match for a 2x2 grid, with the 

performance slightly decreasing as the number of cells 

increases. In addition to this, the skyline model has also shown 

to be a reasonable improvement to the baseline model, peaking 

at a recall rate of 91,286% for the best match with a sky features 

weight of 0,7. 

The average physical distance, as shown in figure 6, indicates 

that the best performing parameters are close to determining the 

location of the robot, but not always close enough to distinguish 

between standing next to one plant and another. The high 

standard deviation also indicates that if the best match does not 

match the true scene, the calculated location is far from the 

truth. 

When testing the generalization of the models, is has been 

shown that even though the second data set has been recorded 

in the same garden, the different environmental conditions have 

shown that the vocabulary extracted from W17 is not applicable 

for generalization. 

Lastly, both models have shown to be capable of outperforming 

a baseline bag-of-words model. The position of where a feature 

was found is indeed valuable information when analyzing 

whether two images depict the same scene. This information is 

however not enough to make a such a bag-of-words model 

robust enough against changes in illumination as seen between 

W17 and W18. 
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APPENDIX 

A. COMPLETE VECTOR COMPARISON MEASUREMENTS 
Table A1. Recall rate at K on W17 using Euclidean distance 

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25 

base 40,501% 45,077% 47,598% 49,132% 50,411% 54,996% 57,335% 59,116% 60,632% 

grid-2 31,832% 34,792% 36,527% 37,742% 38,582% 41,962% 44,072% 45,862% 47,251% 

grid-3 23,886% 26,206% 27,612% 28,690% 29,622% 32,517% 34,481% 35,787% 36,911% 

grid-4 17,053% 18,442% 19,812% 20,771% 21,547% 24,123% 26,151% 27,293% 28,480% 

grid-5 12,185% 13,875% 15,564% 16,588% 17,254% 19,547% 20,981% 21,922% 22,853% 

grid-6 9,454% 10,815% 12,121% 12,934% 13,491% 15,610% 16,935% 18,095% 18,917% 

grid-7 7,810% 8,705% 10,047% 10,751% 11,281% 13,190% 14,733% 15,665% 16,524% 

grid-8 6,394% 7,326% 8,285% 9,207% 9,609% 11,025% 12,468% 13,637% 14,395% 

skyline-0 24,443% 29,074% 31,686% 33,76% 35,267% 40,153% 43,122% 45,278% 46,757% 

skyline-0.1 32,125% 37,368% 40,281% 42,108% 43,707% 48,548% 51,023% 52,905% 54,375% 

skyline-0.2 37,331% 42,620% 45,543% 47,579% 48,986% 53,590% 56,111% 58,120% 59,664% 

skyline-0.3 41,615% 46,977% 49,735% 51,790% 53,215% 57,718% 60,477% 62,523% 63,939% 

skyline-0.4 44,611% 49,808% 52,375% 54,083% 55,407% 59,691% 62,349% 64,240% 65,802% 

skyline-0.6 46,063% 50,767% 53,233% 55,051% 56,248% 59,837% 62,020% 63,701% 64,971% 

skyline-0.7 43,862% 48,895% 51,324% 52,914% 54,202% 58,075% 60,413% 61,874% 63,171% 

skyline-0.8 40,829% 45,771% 48,374% 50,027% 51,169% 55,544% 58,075% 59,883% 61,472% 

skyline-0.9 36,125% 41,624% 44,355% 46,218% 47,744% 52,740% 55,736% 57,892% 59,655% 

skyline-1 29,558% 34,956% 38,281% 40,747% 42,391% 48,064% 51,553% 53,955% 55,828% 

 

Table A2. Recall rate at K on W17 using cosine similarity 

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25 

base 88,445% 92,857% 94,629% 95,424% 96,018% 97,242% 97,790% 98,191% 98,484% 

grid-2 93,844% 96,830% 97,917% 98,520% 98,767% 99,351% 99,626% 99,726% 99,799% 

grid-3 93,250% 96,301% 97,497% 98,283% 98,666% 99,397% 99,689% 99,772% 99,845% 

grid-4 92,547% 95,698% 96,904% 97,762% 98,310% 99,260% 99,562% 99,726% 99,799% 

grid-5 91,158% 94,867% 96,383% 97,324% 97,991% 99,114% 99,470% 99,717% 99,808% 

grid-6 89,916% 93,962% 95,689% 96,757% 97,424% 98,794% 99,324% 99,580% 99,671% 

grid-7 88,884% 93,140% 94,958% 96,100% 96,885% 98,575% 99,114% 99,342% 99,525% 

grid-8 87,386% 91,852% 93,962% 95,113% 95,944% 98,082% 98,685% 99,077% 99,342% 

skyline-0 66,049% 74,571% 78,425% 80,599% 82,426% 86,975% 89,578% 91,149% 92,273% 

skyline-0.1 74,160% 81,841% 84,874% 86,829% 88,071% 91,834% 93,579% 94,693% 95,460% 

skyline-0.2 79,412% 86,271% 88,984% 90,692% 91,916% 94,775% 95,853% 96,575% 97,077% 

skyline-0.3 83,522% 89,715% 91,880% 93,140% 94,319% 96,493% 97,333% 97,881% 98,191% 

skyline-0.4 86,929% 92,245% 94,264% 95,332% 96,036% 97,579% 98,228% 98,548% 98,758% 

skyline-0.6 90,309% 94,666% 96,328% 97,159% 97,616% 98,648% 99,087% 99,260% 99,397% 

skyline-0.7 91,286% 95,342% 96,849% 97,589% 98,027% 98,977% 99,269% 99,470% 99,543% 

skyline-0.8 91,140% 95,332% 96,958% 97,616% 98,118% 99,050% 99,324% 99,516% 99,580% 

skyline-0.9 90,254% 94,593% 96,200% 96,986% 97,634% 98,557% 98,995% 99,260% 99,370% 

skyline-1 87,258% 92,181% 93,962% 94,949% 95,753% 97,296% 97,890% 98,292% 98,621% 



 

B. COMPLETE GENERALIZATION MEASUREMENTS 
Table B1. Recall rate at K on testing W18 on W17 

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25 

base 0,577% 1,024% 1,328% 1,545% 1,784% 2,704% 3,554% 4,214% 4,735% 

grid-2 1,206% 1,831% 2,348% 2,760% 3,073% 4,318% 5,169% 5,924% 6,631% 

grid-3 0,707% 1,081% 1,454% 1,936% 2,365% 3,515% 4,084% 4,539% 5,121% 

grid-4 1,593% 2,495% 3,224% 3,784% 4,144% 5,802% 6,909% 7,959% 8,831% 

grid-5 1,988% 2,929% 3,619% 4,279% 4,726% 6,709% 8,211% 9,487% 10,420% 

grid-6 2,066% 3,073% 3,910% 4,496%  4,978% 6,870% 8,298% 9,721% 10,953% 

grid-7 0,903% 1,328% 1,714% 2,257% 2,734% 4,006% 4,726% 5,307% 5,958% 

grid-8 Too computationally expensive 

skyline-0 0,733% 1,193% 1,562% 1,866% 2,144% 3,211% 3,936% 4,630% 5,182% 

skyline-0.1 0,803% 1,285% 1,645% 1,983% 2,339% 3,424% 4,218% 4,943% 5,564% 

skyline-0.2 0,825% 1,293% 1,801% 2,179% 2,530% 3,832% 4,765% 5,429% 6,058% 

skyline-0.3 0,920% 1,593% 2,027% 2,552% 2,834% 4,179% 5,030% 5,824% 6,484% 

skyline-0.4 1,089% 1,736% 2,278% 2,738% 3,086% 4,474% 5,546% 6,362% 7,256% 

skyline-0.6 1,341% 2,200% 2,864% 3,355% 3,841% 5,550% 6,935% 8,033% 9,057% 

skyline-0.7 1,532% 2,400% 3,133% 3,676% 4,214% 6,180% 7,651% 9,009% 10,172% 

skyline-0.8 1,580% 2,613% 3,285% 3,910% 4,492% 6,501% 8,285% 9,612% 10,797% 

skyline-0.9 1,497% 2,404% 3,242% 3,793% 4,392% 6,540% 8,193% 9,777% 11,019% 

skyline-1 1,272% 2,152% 2,864% 3,485% 3,997% 6,145% 7,833% 9,330% 10,537% 

 


