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ABSTRACT

Analyzing whether two photos depict the same scene can
algorithmically be done by counting the different features of
each image and comparing these totals. In doing this, however,
information about where in the image each feature was found
is discarded. This research investigates possible improvements
to using a visual bag-of-words model in automated location
retrieval. Two new models for grouping features of an image
by their position are proposed and evaluated. Based on the
recall rate it is shown that these models can reach a rate of 94%,
compared to an 88% rate of the basic bag-of-words
implementation. Both models indeed can be applied to improve
the performance of bag-of-words based scene recognition. All
the code used in this research is available in a public repository
at https://github.com/cievers/Location-Retrieval.
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1. INTRODUCTION

When describing to another person where you are, one might
logically do so by describing the objects one can see. The
listener can match the selection of objects against possible
known locations, and with enough details, determine the
location being described. This describes the bag-of-words
model, which can also be used by computers to determine the
location of where an image was taken [1].

Simply describing the objects in an image comes with one
major issue; there is no information on the positional relation
between different objects. One solution might be to evenly
divide the image into cells, and pairwise compare each cell to
ensure the same objects are found in the same location. Another
might be to look at the distinct ‘landmarks’ in the skyline.

1.1 Motivation

Most research into location retrieval using computer vision
focusses on the use of neural networks to represent an image.
While these networks show great results, it is much more
difficult to understand how they decide what is important in an
image [2]. Therefore, more understanding of how to do this task
algorithmically is required to fully comprehend the problem
and discover new solutions.

While other positioning systems exist, such as GPS, they are
not always accurate enough on smaller scales [3]. Gardening
robots such as TrimBot [4] are one of the applications that need
far more accurate positioning. The TB-Places data set [5] is
recorded from the perspective of such a robot and depicts
scenes in an outdoor environment. Combining aspects such as
varying lighting conditions, a textured environment, a lack of
strong geometry, and an overwhelming green colour palette
makes this data set one worth investigating.

Since the TB-Places data set is recorded at a different time in
an outdoor garden, it includes varying lighting situations. The

chosen feature extracting algorithm should, therefore, be robust
enough to detect the same features in each scenario. For this
reason, the SIFT algorithm is chosen, which can also deal with
small changes in viewpoint and texture [6], which are likely to
occur due to wind and other outdoor circumstances.

With robust feature detection, a bag-of-words model can be
effective at recognizing individual objects. It cannot, however,
discern two different scenes composed of the same objects,
which can be in a garden environment featuring similar plants.
Some positional information of a feature is needed to achieve
this.

1.2 Problem Description

Methods counteracting the downside bag-of-words approach,
removing contextual data on where a word was found, are
investigated.

1.3 Objectives

This research aims to answer the following main question:
Question 1: How can including some positional information of
image features improve a bag-of-words model’s location
retrieval accuracy on the TB-places data set?

To find an answer to this question, it is divided into three
different sub-questions.

Question 1.1: How accurate is a bag-of-words model for
location retrieval with SIFT for feature extraction on the TB-
places data set?

Question 1.2: How can implementing grid-based key point
grouping into a bag-of-words model improve location retrieval
accuracy on the TB-places data set?

Question 1.3: How can implementing skyline sensitive key
point grouping into a bag-of-words model improve location
retrieval accuracy on the TB-places data set?

These questions are answered through the implementation of
different models and testing their performance on the selected
data set. These performances are compared to evaluate whether
bag-of-words scene recognition is a viable option and if it can
be improved by adding contextual information of image
features.

1.4 Background

The field of computer vision encapsulates far more methods of
storing, processing, extracting and representing images than
can be analyzed in this research [7], and many more
applications than just location retrieval. This includes, but is
not limited to, object classification, [8] human recognition [9],
spatial modelling [10], and camera calibration [11].

Even within the specific application of location retrieval, there
are different methods available to achieve this goal. However,
since the problem consists of representing and comparing the
global structure of an image, much of the work focusses on
methods based on neural networks [12]-[15].
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The data sets used in these approaches cover a large variety of
sceneries, such as indoor environments [11], cities [12], or a
little bit of everything [14], [15]. However, these data sets
largely have distinct features and geometry, making one scene
easily distinguishable from another. There has not been enough
research  specifically focused on monotone garden
environments such as that by Maria Leyva-Vallina et al. [5],
[16].

A task more frequently tackled using a bag-of-words method is
that of object recognition. This works effectively with the
downside of lacking positional information to be able to locate
an object anywhere in an image [17]. Additionally, this also
allows for efficient classification of objects within an image
[8]. As described by Jia Liu [18], This would suggest that with
the specificity of objects that can be detected a bag-of-words
approach can also effectively be applied to image retrieval, and
thus location retrieval.

While this research makes use of the SIFT algorithm, research
into feature extractors is ongoing, developing extractors such
as the SURF, boasting large speed improvements at the cost of
precision [19], or feasible application on smaller devices such
as mobile phones [20].

2. METHODS
2.1 Architecture

The process of using a bag-of-words approach for finding the
location from an image and evaluating a full data set is as
follows. The first step is to extract the identifying features of
the images. The extracted raw feature descriptors are too
specific to be compared directly and need to be standardized
into a finite set of words which will form the vocabulary to
which all features will be mapped. With the vocabulary, an
image can be represented as a histogram through the chosen
model. Comparing the histograms for all images allows the
creation of a comparison matrix, describing the differences
between each pair of images. Finally, using the ground truth
poses and similarities the performance of the chosen model can
be evaluated. This process is also summarized in figure 1
below.

2.2 Feature Extraction

Extracting the features is done using the SIFT algorithm. For
each key point found SIFT then uses the 16x16 pixel area
around the found key point to calculate a 128-dimensional
vector describing that key point [6]. The output of the algorithm
is then this list of feature descriptors for each feature. For this
research, the Python OpenCV implementation of SIFT is used.

2.3 Vocabulary

Expecting to count the occurrences of an exact feature
description vector is highly unlikely, due to the exceedingly
large number of unique descriptors. To allow for comparing
two image’s representations, a fixed size vocabulary is created.
A full feature descriptor will be counted as the nearest
neighbour within the vocabulary.

Creating this vocabulary is done by training a k-means
clustering classifier on a subset of the data set. To train the
classifier in a reasonable timeframe, all training data should be
in memory at once. However, the size of all feature descriptors
in the data set exceeds the available memory. To counteract
this, the classifier is trained on ten percent of all features. Since
the images are recorded in sequences, each tenth image is
selected and has its features extracted for training the classifier.
This ensures a diverse selection of scenes is represented in the
vocabulary.

The size of the vocabulary also affects how well an image can
be represented. A fitting size of the vocabulary is determined
by testing several sizes, centred around the estimated value
obtained by equation 1 below.

vocabulary size = |1/,

Equation 1. Rule of thumb for estimating cluster count

Here, n is the number of features descriptors, in the data set.
The best size is identified by the total squared error of the
trained classifier using the elbow method.

2.4 Similarity Comparison

Once a bag-of-words vector has been calculated for a query
image, it is compared to those of images in the data set. There
are multiple different methods to evaluate the similarity of two
vectors. This research tests and compares the performance
using Euclidean distance and cosine similarity. Using
Euclidean distance, the vector is normalized first to prevent
skewed results

2.5 Models
2.5.1 Baseline

The baseline model only extracts features using the SIFT
algorithm, with the suggested parameters as found by David
Lowe [6]. This creates a list of all key points in the image. With
the precomputed vocabulary, these features are directly
converted into the bag-of-words representation. The created
representations are compared to one another using one of the
vector difference functions. The following models follow the
same steps but have their own methods of creating and
comparing an image representation from the extracted features.

: Dataset : : Performance :
1 1 1 1
1 1 Kmeans Vocabulary - 1
1 1 i 1 1
SIFT Model Comparison
1 L i 1 1
| Images ; Features Represantations Matrix | Recall Rate |
1 1 | 1
1 1 1 1
1 1 1 1
1 1 1 1
| Similarity | Ground Truth for Scene Matches | |
1 Matrix 1 1 1
: : : PhysicalAccuracy :
1 1 Ground Truth for Calculated Position 1 1
| Poses T T 1
1 1 1 1

Figure 1. Schematic of the location retrieval process



2.5.2 Grid

One method to add positional information of an image’s
features is to group them by the part of the image they have
been detected in. When the same segmentation is applied to two
images, a feature in one section of the query image must then
also occur in that same section of an image depicting the same
scene. A straightforward segmentation is a rectangular grid,
evenly dividing an image into cells.

The grid model is implemented by splitting the image into NXN
cells and computing the bag-of-words vector individually for
each cell. The total representation of the image is then a
concatenation of the representations of all cells. These vectors
are compared just like in the baseline model to find the
difference between two images.

Since a grid of 1x1 cell is no different from the baseline, the
minimum value of N is thus 2. The maximum value of N is
dependent on the size of the source images, and the chosen
algorithm. The SIFT algorithm describes a feature with an area
of 16x16 pixels. Ideally, features on the border between two
cells should not be considered as in either cell, but this is
beyond the scope of this research. A minimum cell size of
32x32 pixels is chosen to somewhat negate this. In the TB-
places data set, each image is 752x480 pixels. Dividing the
image height by the minimum cell size gives a maximum value
for N of 480 / 32 = 15. Due to memory limitations, however, a
maximum value of N = 8 is used.

2.5.3 Skyline

Outdoor scenes such as these found in the TB-Places data set
often include the sky. Features disturbing the skyline are highly
contrasting, making them easily identifiable for extraction. Key
points derived from these landmarks in the sky could prove
more reliable than key points closer to the ground.

Similar to the grid model, the image is split into sections, one
section above the skyline, and another below. These sections of
a query image are again compared to their respective
counterparts for an image in the data set. To represent a
difference in importance the two resulting differences of these
two sections are averaged by weight, in which the skyline can
be more or less represented. This combined value is computed
by equation 2, where a represents the weight of features in the
sky. The value of @ is bounded by 0 < a < 1. For this research,
a step size of 0,1 for a is used, and value 0,5 skipped as it is
identical to the baseline model.

Aporar=a X Asky + (1 —-a)x Aground
Equation 2. Combining sky and ground difference

A second parameter required in the skyline model is the height
of the skyline in the data set. For the TB-Places data sets, the
skyline will be defined as the horizon. While the horizon is not
clearly visible in each image, measuring its height in various
images from the data set resulted in a height of 50% from the
top of the image. The actual orientation of the camera at the
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Figure 2. Illustration of a) the baseline model, b) the grid model, and c) the skyline model on an image from W17

point of taking the picture was not taken into account and
assumed to be facing straight forward. Landing at a skyline
height of 50% then matches the intuition; a camera facing
directly forward close to the ground will capture about 50%
below and 50% above the horizon.

3. EVALUATION
3.1 Data set

The TB-Places data set is used for this research, as it depicts
the scenery and environmental conditions TrimBot would be
operating in. The data set consists of the public subsets W16,
W17, and W18 recorded in Wageningen, and a private set R17
recorded in Renningen. This research will train on the W17 set,
and test on both the W17 and W18 sets. Figure 2 visualizes how
the different models would apply to an example image from the
W17 set.

3.2 Vocabulary Size

Before staring the experiments, the vocabulary size needs to be
determined. For this, the total squared error of the trained k-
means classifier is measured at various sizes around the value
estimated through equation 1. The W17 set contains a total of
19.873.064 features, leading to an estimated vocabulary size of
3.152.

3.3 Testing

The performance of a model on a data set is tested by querying
each image in the set against the trained model. The
representation of the query image for the chosen model is
compared to the representations of all other images in the
testing set. The resulting differences are then sorted from most
to least similar to find which images in the data set the model
determines to be most similar. The data set then provides a
ground truth matrix of which images indeed depict the same
location as the query image. This matrix is used to evaluate the
correctness of the result from a query.

First, the W17 data set is tested against itself to analyse normal
performance. Next, images from the W18 data set are queried
against the W17 data set to determine how each model
performs under changing conditions in the same environment.

3.4 Metrics

Querying each image in a set against the model yields an
ordered set of matches. The top K of these matches are then
used for evaluation. The performance of a model is defined by
the recall rate at K, where a query is considered positive if there
is at least one result depicting the same location in the top K
matches. In operation, TrimBot would only consider the most
similar result, however, to better evaluate the performance, a
larger range of values for K have been selected. Additionally,
the physical location of the best match can be compared to that
of the query image’s ground truth to compute the physical
accuracy and precision. The physical distance is defined by the
Euclidean distance between the computed and true locations.



4. RESULTS
4.1 Vocabulary Size

The measurements of the first experiment are shown in figure
3 below. This shows the total squared error after training a k-
means classifier on the W17 data set. From the results of figure
3 below there is no indication of a clear structure in the error of
the classifier. Application of the elbow method is not possible,
therefore a cluster count of 3.000 will be used for further
experiments as a balance between distortion and computation
cost.
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Figure 3. Error measurements for training k-means
classifier on W17 at various cluster counts
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4.2 Vector Comparison

To determine the influence of different vector comparison
functions two full tests have been done on the W17 set. Table
1 highlights the differences between the Euclidean distance and
cosine similarity functions for each of the models. The full
measurements can be found in Appendix A. Figures 4 & 5
provide a visual comparison for the grid and skyline models in
comparison to the baseline. From these measurements, it is
clear that comparing two vectors using cosine similarity yields
the best result, and this function will be used for all further
experiments.

Table 1. Recall rate at K on W17
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Figure 4. Recall rates at K on W17 using Euclidean distance
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Figure 7. Recall rates at K testing W18 against W17

4.3 Physical distance

Additionally, the Euclidean distance between the location of
the computed best match compared to the true location of the
query image has been recorded. Figure 6 compares the various
parameters of the grid and skyline model against the baseline
on the average distance to the true location.

Table 2. Recall rate at K testing W18 on W17

Model K=1 K=5

base 0,577% 1,784%
grid-2 1,206% 3,073%
grid-3 0,707% 2,365%
grid-4 1,593% 4,144%
grid-5 1,988% 4,279%
grid-6 2,066% 4,496 %
skyline-0.2 0,825% 2,530%
skyline-0.3 0,920% 2,834%
skyline-0.4 1,089% 3,086%
skyline-0.6 1,341% 3,841%
skyline-0.7 1,532% 4,214%
skyline-0.8 1,580% 4,492%

4.4 Generalization

Finally, the models trained on W17 have been tested with W18
to validate whether they are robust against changes in
environmental conditions in the same scenes. Figure 7 shows
the performance of each of the models when testing W18. Table
2 shows several of the best performing models in detail. The
performance of all models, however, is far below that of the
normal W17 tests. The complete measurements for this
experiment can be found in Appendix B.

5. DISCUSSION

In comparison to similar research, the performance of the
implemented models holds up well. One research applying and
testing vocabulary trees on a custom urban environment data
set achieves a recall rate just under 70% for the top match and
around 78% for the top five matches [21]. Research that also
aims for location retrieval introduces a new indoor parking
garage data set covering 1200 square meters. When training
and testing on this data set, positional accuracy of 0.749 meters
is achieved [11]. A most fitting comparison is, however, the
work of Maria Leyva-Vallina et al, applying several
convolutional neural networks on the same TB-Places data set
[16]. This research presents an average precision of 0.7055 on
the W17 set, and 0.2339 when testing the W18 set with
networks trained on W17. While not directly comparable to the
results of this research’s experiments, it shows a better
generalization in performance when testing W18 against W17



than this research, which demonstrated high performance on
W17, but an abysmal one on W18.

One factor that can play a role in the difference in performance
between W17 and W18 is that of image preprocessing. In the
experiments, the images have not been preprocessed, and are
taken straight from the cameras as TrimBot would have
captured them. However, this means that any changes in
illumination are not compensated, and have a clear negative
effect on the performance. Introducing a preprocessing step to
somewhat equalize the lighting could improve tests using W18.

A few more remarkable observations can be made in the
measurements of W18. Increasing the grid size no longer
decreases the performance, but generally increases it instead.
This is with exception of sizes 3 and 7, where the performance
dips. However, if it were caused by important features on the
borders between cells, a comparable dip could be expected in
multiples of these numbers, which is not the case. For the
skyline model, all values of @ now outperform the baseline, and
peaks at an even higher value of a. This further highlights the
importance of large features in the sky, which in the W18 data
set are less affected by the different lighting conditions.

6. CONCLUSION

As shown in table 1, the baseline model achieves an 88,445%
recall rate within the top match using cosine similarity. Since
TrimBot has multiple cameras onboard, simultaneously
photographing its environment, a baseline bag-of-words
approach is a viable option for scene recognition.

Table 1 also shows that grouping features into evenly
distributed cells can improve the performance to reach a
93,844% recall rate for the top match for a 2x2 grid, with the
performance slightly decreasing as the number of cells
increases. In addition to this, the skyline model has also shown
to be a reasonable improvement to the baseline model, peaking
at arecall rate of 91,286% for the best match with a sky features
weight of 0,7.

The average physical distance, as shown in figure 6, indicates
that the best performing parameters are close to determining the
location of the robot, but not always close enough to distinguish
between standing next to one plant and another. The high
standard deviation also indicates that if the best match does not
match the true scene, the calculated location is far from the
truth.

When testing the generalization of the models, is has been
shown that even though the second data set has been recorded
in the same garden, the different environmental conditions have
shown that the vocabulary extracted from W17 is not applicable
for generalization.

Lastly, both models have shown to be capable of outperforming
a baseline bag-of-words model. The position of where a feature
was found is indeed valuable information when analyzing
whether two images depict the same scene. This information is
however not enough to make a such a bag-of-words model
robust enough against changes in illumination as seen between
W17 and W18.
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APPENDIX

A. COMPLETE VECTOR COMPARISON MEASUREMENTS
Table Al. Recall rate at K on W17 using Euclidean distance

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25

base 40,501% | 45,077% | 47,598% | 49,132% | 50,411% | 54,996% | 57,335% | 59,116% | 60,632%
grid-2 31,832% | 34,792% | 36,527% | 37,742% | 38,582% | 41,962% | 44,072% | 45,862% | 47,251%
grid-3 23,886% | 26,206% | 27,612% | 28,690% | 29,622% | 32,517% | 34,481% | 35,787% | 36,911%
grid-4 17,053% | 18,442% | 19,812% | 20,771% | 21,547% | 24,123% | 26,151% | 27,293% | 28,480%
grid-5 12,185% | 13,875% | 15,564% | 16,588% | 17,254% | 19,547% | 20,981% | 21,922% | 22,853%
grid-6 9,454% | 10,815% | 12,121% | 12,934% | 13,491% | 15,610% | 16,935% | 18,095% | 18,917%
grid-7 7,810% 8,705% | 10,047% | 10,751% | 11,281% | 13,190% | 14,733% | 15,665% | 16,524%
grid-8 6,394% 7,326% 8,285% 9,207% 9,609% | 11,025% | 12,468% | 13,637% | 14,395%
skyline-0 24,443% | 29,074% | 31,686% 33,76% | 35,267% | 40,153% | 43,122% | 45,278% | 46,757%
skyline-0.1 32,125% | 37,368% | 40,281% | 42,108% | 43,707% | 48,548% | 51,023% | 52,905% | 54,375%
skyline-0.2 37,331% | 42,620% | 45,543% | 47,579% | 48,986% | 53,590% | 56,111% | 58,120% | 59,664%
skyline-0.3 41,615% | 46,977% | 49,735% | 51,790% | 53,215% | 57,718% | 60,477% | 62,523% | 63,939%
skyline-0.4 44,611% | 49,808% | 52,375% | 54,083% | 55,407% | 59,691% | 62,349% | 64,240% | 65,802%
skyline-0.6 | 46,063% | 50,767% | 53,233% | 55,051% | 56,248% | 59,837% | 62,020% | 63,701% | 64,971%
skyline-0.7 43,862% | 48,895% | 51,324% | 52,914% | 54,202% | 58,075% | 60,413% | 61,874% | 63,171%
skyline-0.8 40,829% | 45,771% | 48,374% | 50,027% | 51,169% | 55,544% | 58,075% | 59,883% | 61,472%
skyline-0.9 36,125% | 41,624% | 44,355% | 46,218% | 47,744% | 52,740% | 55,736% | 57.892% | 59,655%
skyline-1 29,558% | 34,956% | 38,281% | 40,747% | 42,391% | 48,064% | 51,553% | 53,955% | 55,828%

Table A2. Recall rate at K on W17 using cosine similarity

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25

base 88,445% | 92,857% | 94,629% | 95,424% | 96,018% | 97,242% | 97,790% | 98,191% | 98,484%
grid-2 93,844% | 96,830% | 97,917% | 98,520% | 98,767% | 99,351% | 99,626% | 99,726% | 99,799%
grid-3 93,250% | 96,301% | 97,497% | 98,283% | 98,666% | 99,397% | 99,689% | 99,772% | 99,845%
grid-4 92,547% | 95,698% | 96,904% | 97,762% | 98,310% | 99,260% | 99,562% | 99,726% | 99,799%
grid-5 91,158% | 94,867% | 96,383% | 97,324% | 97,991% | 99,114% | 99,470% | 99,717% | 99,808%
grid-6 89,916% | 93,962% | 95,689% | 96,757% | 97,424% | 98,794% | 99,324% | 99,580% | 99,671%
grid-7 88,884% | 93,140% | 94,958% | 96,100% | 96,885% | 98,575% | 99,114% | 99,342% | 99,525%
grid-8 87,386% | 91,852% | 93,962% | 95,113% | 95,944% | 98,082% | 98,685% | 99,077% | 99,342%
skyline-0 66,049% | 74,571% | 78,425% | 80,599% | 82,426% | 86,975% | 89,578% | 91,149% | 92,273%
skyline-0.1 74,160% | 81,841% | 84,874% | 86,829% | 88,071% | 91,834% | 93,579% | 94,693% | 95,460%
skyline-0.2 79,412% | 86,271% | 88,984% | 90,692% | 91,916% | 94,775% | 95,853% | 96,575% | 97,077%
skyline-0.3 83,522% | 89,715% | 91,880% | 93,140% | 94,319% | 96,493% | 97,333% | 97.,881% | 98,191%
skyline-0.4 86,929% | 92,245% | 94,264% | 95,332% | 96,036% | 97,579% | 98,228% | 98,548% | 98,758%
skyline-0.6 90,309% | 94,666% | 96,328% | 97,159% | 97,616% | 98,648% | 99,087% | 99,260% | 99,397%
skyline-0.7 | 91,286% | 95,342% | 96,849% | 97,589% | 98,027% | 98,977% | 99,269% | 99,470% | 99,543%
skyline-0.8 91,140% | 95,332% | 96,958% | 97,616% | 98,118% | 99,050% | 99,324% | 99,516% | 99,580%
skyline-0.9 90,254% | 94,593% | 96,200% | 96,986% | 97,634% | 98,557% | 98,995% | 99,260% | 99,370%
skyline-1 87,258% | 92,181% | 93,962% | 94,949% | 95,753% | 97,296% | 97,890% | 98,292% | 98,621%




B. COMPLETE GENERALIZATION MEASUREMENTS
Table B1. Recall rate at K on testing W18 on W17

Model K=1 K=2 K=3 K=4 K=5 K=10 K=15 K=20 K=25
base 0,577% 1,024% 1,328% 1,545% 1,784% | 2,704% | 3,554% | 4,214% | 4,735%
grid-2 1,206% 1,831% | 2,348% | 2,760% | 3,073% | 4,318% | 5,169% | 5,924% | 6,631%
grid-3 0,707% 1,081% 1,454% 1,936% | 2,365% | 3,515% | 4,084% | 4,539% | 5,121%
grid-4 1,593% | 2,495% | 3,224% | 3,784% | 4,144% | 5,802% | 6,909% | 7,959% | 8,831%
grid-5 1,988% | 2,929% | 3,619% | 4,279% | 4,726% | 6,709% | 8211% | 9,487% | 10,420%
grid-6 2,066% | 3,073% | 3,910% | 4,496% | 4,978% | 6,870% | 8,298% | 9,721% | 10,953%
grid-7 0,903% 1,328% 1,714% | 2,257% | 2,734% | 4,006% | 4,726% | 5,307% | 5,958%
grid-8 Too computationally expensive

skyline-0 0,733% 1,193% 1,562% 1,866% | 2,144% | 3,211% | 3,936% | 4,630% | 5,182%

skyline-0.1 0,803% 1,285% 1,645% 1,983% 2,339% 3,424% 4,218% 4,943% 5,564%

skyline-0.2 0,825% 1,293% 1,801% 2,179% 2,530% 3,832% 4,765% 5,429% 6,058%

skyline-0.3 0,920% 1,593% 2,027% 2,552% 2,834% 4,179% 5,030% 5,824% 6,484%

skyline-0.4 1,089% 1,736% 2,278% 2,738% 3,086% 4,474% 5,546% 6,362% 7,256%

skyline-0.6 1,341% 2,200% 2,864% 3,355% 3,841% 5,550% 6,935% 8,033% 9,057%

skyline-0.7 1,532% 2,400% 3,133% 3,676% 4,214% 6,180% 7,651% 9,009% | 10,172%

skyline-0.8 1,580% | 2,613% | 3,285% | 3,910% | 4,492% 6,501% | 8,285% 9,612% | 10,797%

skyline-0.9 1,497% 2,404% 3,242% 3,793% 4,392% | 6,540% 8,193% | 9,777% | 11,019%

skyline-1 1,272% 2,152% 2,864% 3,485% 3,997% 6,145% 7,833% 9,330% | 10,537%




