Using Static Weight Estimation of General Trees to
Efficiently Parallelize the Execution of DEMKit Simulation
Models

Niklas Lupkes
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

t.n.lupkes@student.utwente.nl

ABSTRACT

To aid the development of control mechanisms of smart
grids, the “Decentralized Energy Management Simulation
and Demonstration Toolkit” (DEMKit) was developed. It
may be used to test and evaluate control algorithms by
simulating complex (smart) energy grids. This research
paper discusses the inherent problems of the models’ struc-
ture, a general tree, which hinders the setup of multi-
processed simulations. An algorithm to automate the di-
vision of weighted general trees is presented, to spread
workload and exploit parallelism. Weighted Tree Distri-
bution (WTD) reduces a tree to a predefined number of
leaves, based on tree contraction and respecting existing
structures. Here, makespan minimization is used to opti-
mize the distribution. The algorithm is tested using 1429
randomly generated trees of varying size. The tests con-
firm the time complexity of O(nlogn) and yield an aver-
age of efficiency of 1.58. Finally, WTD is integrated into
DEMKit, where it is subjected to different models and
distributed over four processes. The implemented auto-
mated model distribution performs best if the distributed
structures are independent.

Keywords

General Tree, Parallelism, Smart Grid, Simulation

1. INTRODUCTION

The ongoing energy transition introduces new challenges
to manage demand and supply. Supply of energy by re-
newable sources of energy is not controllable by energy
providers as the production is heavily influenced by e.g.
weather, tide, etc. On the other hand, consuming de-
vices, such as smart charging electric vehicles and smart
thermostats, offer an increasing amount of control over
their energy consumption. As such, smart grids integrate
the opportunities offered by new technologies to tackle
the challenges imposed by renewable and other, less con-
trollable energy sources. The envisioned system enables
providers to closely match production and consumption,
while also reducing e.g. grid stress and loss of energy.
The energy managing structures, however, are still under
research and development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

33" Tivente Student Conference on IT July. 37¢ 2020, Enschede, The
Netherlands.

Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

To aid, several tools have been developed, one of which
is the “Decentralized Energy Management Simulation and
Demonstration Toolkit” (DEMKIit) [14]. It is used to sim-
ulate, test, and evaluate complex (smart) electricity grids
and custom control algorithms, that e.g. optimize energy
consumption schedules. The toolkit utilizes a tree hier-
archy of abstract devices and controllers that may imple-
ment the specific functionality, e.g. of a washing machine
or of a power plant. In theory, the scale of the simulation
may therefore reach from a single household with multiple
devices up until large grids consisting of multiple blocks
of houses and more. However, as Hoogsteen et al. [13]
have shown, the limit of scalability is computation time,
which practically ceils the size of simulations. To improve
computation times, the application supports parallel pro-
cessing. However, the setup of multi-processed simulation
models is difficult and needs to be configured manually.

Therefore, the goal of this research is to simplify the usage
of parallel computation. To automate the parallel model
setup, firstly, an approach needs to be found to estimate
the weight of a general tree. It should specifically incorpo-
rate the inherent characteristics of DEMKit models. Sec-
ondly, the approximate tree weights shall be used to dis-
tribute the workload equally among available processes.
The utilized technique should maximize speedup and effi-
ciency. To limit the scope of this research the techniques
researched are of static nature, meaning no at-runtime op-
timizations are discussed. Overall, this results in the fol-
lowing research questions:

1. How can the weight of a general tree, as utilized by
DEMKit simulation models, be approximated?

2. Using the approximate weights of subtrees within
a DEMKit simulation model, how can the respec-
tive subtrees and their corresponding computational
workloads be (optimally) distributed among an ar-
bitrary number of processes?

3. How does the proposed division and distribution al-
gorithm affect speedup and efficiency of parallel ex-
ecution of DEMKit simulations?

In the following, the sources of the difficulties regard-
ing the setup of multiprocessed simulations are discussed.
Subsequently, an algorithm is designed in accordance with
the research goals, evaluated experimentally and integrated
into DEMKit. As a basis, existing literature will be re-
viewed. The performance of the integrated algorithm is
finally evaluated using hand-picked representative models,
comparing automated to manual distribution.

2. BACKGROUND

The following section summarizes background informa-
tion about evaluation metrics for parallelized applications.
Furthermore, the structure of DEMKit models is intro-
duced and the resulting problems for parallelized setups
are analysed.

2.1 Evaluation metrics

As stated, this study aims to develop a setup process that
ultimately decreases the computation time of simulations
via parallel execution. The success of suggested algorithms
must be evaluated using empirical measures. These mea-
sures are introduced in the following.

Starting, upon parallel execution let p be the fraction of
time spent in the parallel part of the application. Accord-
ingly, let s be the remaining fraction of time spent in the
sequential part of it, such that p + s = 1. Next, let N
denote the number of processes used. Subsequently, Am-
dahl’s law [2] defines speedup as the fraction of execution
with one process over execution with N processes:

s+p 1

dup = -
PP = /N T s+p/N

(1)

For a given application with certain sequential and parallel
fractions, this defines speedup to be a function of the num-
ber of processes available, by directly comparing achieved
execution times.

However, Gustafson [11] argues that this approach is flawed,
as the common goal is not simply to reduce execution

times but rather to increase the computable problem size.

This applies to DEMKit as well. The objective is not

merely to decrease computation times, it is to enable the

simulation of bigger, more complex models. Hence, Gustaf-
son argues speedup should be expressed in terms of work

computable using parallel execution versus sequential ex-

ecution. The resulting equation is commonly known as

Gustafson’s law:

N
speedup = 5—|—+p =s+pN=N+(1-N)s (2)

Finally, efficiency shall then be defined as speedup per
process.

So far, the metrics introduced purely cover the ideal cir-
cumstances without communication costs or other kinds
of overhead. However, depending on the application, the
influence of additional costs on the performance may be
immense. Further, a change in efficiency may be caused
by a variety of different factors, including communication
costs, as well as idle time due to workload balancing issues.

To aid analysis, Karp and Flatt [16] suggested the use
of the scaled serial fraction f, where k is the growth in
problem size. In accordance with Gustafson’s law, they
define it as follows:

_1/s—1/p

he="T"1 ®)

The serial fraction f = kf) has the advantage that within
an ideal system, it remains constant. This simplifies prob-
lem diagnosis greatly, as irregularities in the behaviour
of f are easier to discover. Specifically, a decreasing serial
fraction indicates that the problem size is not growing fast
enough to utilize the resources by additional processes. On
the other hand, an increasing serial fraction indicates that
the additional costs, such as communication overhead, are
increasing.

2.2 DEMK:Iit model & simulation structure

As mentioned, the usability of multi-processed DEMKit
simulations is lessened due to difficulties setting up the
parallelized environment. The corresponding details are
elaborated upon in the following.

To ensure high efficiency at all assigned processes, the
overall workload should be distributed equally among them.
In the case of the DEMKit, this means that the to be sim-
ulated model needs to be split up such that the resulting
parts each equate approximately the same workload. Fol-
lowing, internal communication between processes is or-
ganized via the master-slave approach, supplemented by a
messaging bus. Currently, division of workload is not de-
fined due to challenges imposed by the structure of models,
as presented subsequently.

Within a DEMKit model, all entities are organized via a
general tree, as displayed in Figure 1. Generally, com-
munication is only permitted between parent and child
nodes. Any other flow of information or instruction, such
as inter-sibling communication, is prohibited. Further-
more, control algorithms such as Profile Steering commu-
nicate significantly more with their children than their par-
ents. Thus, to distribute the resulting workload onto N
processes, the tree needs to be divided into (at least) N
subtrees. Preferably, to optimize efficiency, the weights of
the individual subtrees should be equal. If equal weight is
not achievable, the size of the largest part should be mini-
mized. It is important to note that the weight of a subtree
is not equal to the number of nodes within. A multiplicity
of different factors influences the processing time required
for each node.

e Unrestricted topology: As stated, the model is
structured via a general tree. Aside from technical
limitations, this means there are no restrictions re-
garding the depth of a tree or the number of children.
Hence, the size of subtrees may differ vastly, even if
they reside on the same level.

e Control algorithm: The control algorithm and its
complexity heavily influence the effect a tree’s depth
has. E.g. in the case of profile steering the behaviour
is polynomial [9].

¢ Component implementation: Different compo-
nents serve different purposes, thus requiring differ-
ent computation times. Furthermore, the utilized
control algorithm may vary per device class/instance.
Apart from that, certain components exist that vi-
olate the restraint of exclusive vertical communica-
tion. E.g., smart meters communicate horizontally
as well.

e Simulated environment: Components may only
activate or adjust their tasks according to different
environmental situations, such as time, weather, etc.
This does not just influence the components them-
selves but also the respective subtrees of them.

It follows that computation times vary with the model,
the used control algorithm and within each time interval
simulated. Due to these uncertainties it is very difficult to
predict or even precalculate the weight of a tree, especially
if the to be simulated model has an asymmetric topology.

global controller

device controllers device controllers

device controllers

Figure 1: Example of DEMKit Control Hierarchy[12]

Summarizing, the inherent structure of DEMKit models
creates difficulties distributing the workload across avail-
able processes while maintaining high efficiency. The ab-
sence of constraints regarding topology and the freedom
in implementation, result in highly uncertain and inconsis-
tent computation times, which impede division of respon-
sibility and thus distribution of workload.

3. LITERATURE REVIEW

3.1 Makespan Minimization

The so-called job shop problem is an optimization prob-
lem that deals with the assignment of a set of tasks to a
set of workers. The goal is to compute a schedule that
minimizes the makespan, the completion time, of the en-
tire task set. The problem is NP-hard [8], therefore cur-
rent research focuses on polynomial time approximation
algorithms. Following, given an optimal schedule s with
minimal makespan w, an algorithm producing at worst a
schedule s” with makespan w’ is called c-competitive where
¢ = w'/w. Thus, c defines the upper bound in performance
of said algorithm. This problem is formulated and anal-
ysed in many different variations. However, the following
review shall be limited by the subsequent constraints:

e All n tasks are known beforehand, including their
associated computational cost.

e To complete a task, no skillset is required. Further,
all machines are equally efficient working on each
task.

e Tasks are atomic.

e The number of machines m is constant and known.

The first work in this area has been published by Gra-
ham in 1966. It proposed the List scheduling algorithm
(LS), an approach for task sets that are structured using a
partial order A, that can be represented using a directed,
acyclic graph [10]. Following, tasks are assigned to the
respective machines with the least cumulative workload,
respecting A. This algorithm is (2 — -L)-competitive and
can be implemented in O(n?). It has been proven that
2 — % is the lower bound for m = 2 and m = 3, thus
the List algorithm is optimal in these cases [5]. A slight
variation to this is the Longest Processing Time (LPT)
algorithm [10]. If the partial order is empty, meaning all
tasks are independent, the taskset can be sorted in de-
creasing order and distributed sequentially. This achieves
a competitive ratio of % — i and can be implemented in
O(nlogn). Graham further notes that his algorithm only
considers fixed lists, where a task’s weight has no depen-
dence on future tasks. By using dynamically formed lists,

i.e. by adding directly dependent task costs, the competi-

. . . 13 2
tive ratio can be improved slightly to 2 — 25.

Over the years, several improvements to the upper bound
achieved by Graham’s List algorithm have been published
[7][3][15][1]. The latest, most competitive algorithm, named
MR, is published by Fleisher and Wahl in 2000 [6]. Accord-
ing to them, the worst-cases of LS are caused by situations
where all machines have approximately the same work-
load. Hence, a metric for flatness is defined that helps
identifying such situations. Tasks are then scheduled as
specified by LS if the schedule is steep and a specific pivot
machine M; is exceeding the average load by a predefined
factor. This yields a <1.9201-competitive algorithm, with
unchanged quadratic complexity. Other algorithms with
lower bounds exist for special cases, e.g. for m = 4 an al-
gorithm is known that is 1.733-competitive [4]. Conclud-
ing, Table 1 provides an overview of the relevant presented
algorithms.

Table 1: Overview of Makespan-Minimizing Algorithms

Algorithm | Competitive Ratio | Note
LS 2- 1 Optimal for m < 3
MR <1.9201 Best known to date
LPT % — % For empty A

3.2 Tree contraction

In 1989, Miller and Reif [17] published an algorithm to
parallelize tree structured workloads, called dynamic tree
contraction. T'wo operations are defined, namely rake and
compress, that form the contract operation. The algo-
rithm reduces a tree to its root when applied O(logn)
times. Let the rake operation remove all leaves of a tree
by joining them to their respective parents. As Miller and
Reif show, applied to an unbalanced tree, this operation
could take up to O(n) steps. The reason for this inef-
ficiency are chains of vertices, i.e. sequences of vertices
that have exactly one child: [vi,vit1,...,v5] Where v;11
is the only child of v;. Thus, to improve complexity, the
compress operation is introduced, which reduces chains to
half their length by joining every other vertex to its par-
ent. The remaining chain is therefore [vs,viyo, ..., vg/2].
Applied after each rake operation, this quickly eliminates
worst case structures, reducing the required number of
steps to O(logn). As both rake and compress are applied
to the tree linearly, the overall complexity is O(nlogn).

4. WEIGHTED TREE DISTRIBUTION

In the following, an approach to static distribution of hi-
erarchical model and control structures is introduced. To
limit scope, the following focuses on static factors, i.e. the
topology, the control algorithm behaviour and component
implementation. Non-predictable runtime factors, such as
the environment, are excluded from the subsequent pro-
cess.

AW N

(<, BNV R VI

4.1 Algorithm

The goal of the subsequent distribution algorithm is to
divide the hierarchy and assign each element to one pro-
cessor. It is assumed that the hierarchy is readily available
and weighted. Further, designate the number of processors
assigned as the target. Starting, it would be possible to
finely divide and distribute the entire tree using Fleisher
and Wahl’s MR algorithm, including a dependence relation-
ship equalling the tree structure. This approach has two
immediate downsides. Firstly, because of the absence of
skillset constraints, any node on any level may be assigned
to any process. As a result, heavy communication costs
are to be expected, especially if controller-to-device con-
nections are broken. Secondly, the MR algorithm does not
account for repeated, recursive calls. Hence, huge losses
in utilization due to idle and wait times are likely. Thus,
any distributing algorithm should keep the current, coarse
approach of dividing into and distributing entire subtrees.
This minimizes implementation overhead, communication
costs and does not interfere with repeated, recursive calls,
therefore improving performance.

The to be introduced algorithm, Weighted Tree Distri-
bution (WID), aims to achieve the formulated goals by
employing tree contraction and a makespan minimizing
algorithm. However, multiple modifications are added.
Most importantly, instead of reducing the tree to its root,
it is reduced until it contains the targeted number of leaves:

Function distribute(tree, target)

done < numberO f Leaves(tree) < target
while !done do

done < rake(tree, target) < target
L compress (tree)

Following, the rake operation does not reduce all leaves,
but at most half. In preparation, all leaves are gathered,
ordered by weight, and the max(target, |len(leaves)/2])
largest leaves are marked as persistent, meaning they are
not to be removed during the following rake reduction:

Function rake(tree, target)

// select the heaviest 50%
leaves < leaves(tree)
target < max(target, |len(leaves)/2])
sort(leaves)
for 0 < i < target do
| persistent(leaves(i]) - True

// apply selection
return rakeTree (tree)

Here, rakeTree is recursively removing leaves from the
tree by means of a makespan minimization algorithm. In
the current case, LPT is used, but should the need arise
more advanced algorithms may be integrated. Starting,
the number of remaining children is determined (Line 5-
8). Note that (non-persistent) leaves may be merged into
subtrees and other leaves, but subtrees remain unchanged,
as well as persistent leaves. Apart from that, to improve
granularity, at most half of the leaves are merged away
(Line 9-10). Next, the to be merged items are gathered
and assigned (Line 11-13). To improve performance, all
merged items from previous iterations should be distributed
again. Once the operation on the current vertex is com-
plete, it can be forwarded to the remaining children. Fi-

nally, because this is the only operation that changes the
number of leaves contained, it is helpful to immediately
gather the remaining number of leaves:

Function rakeTree(tree)

// exit condition

1 if isLeaf(tree) then

N

- S BN

10

11
12
13

14

15

16

17

L return 1

// makespan minimization / LPT
buckets + PriorityQueue()
items < PriorityQueue()
for child € children(tree) do
if persistent(child) then
L add child as new bucket

add child and merged leaves to items

while len(buckets) < |len(children(tree))/2] do
L add empty bucket

for item € items do
add item to least filled bucket in queue
update bucket position in queue

// use buckets as new leaves
children(tree) < buckets

/* forward operation to children, return
cumulative number of leaves
leaves + 0
for child € children(tree) do
L leaves < leaves + rakeTree (child)

*/

return leaves

Next, the compress operation is adjusted. The original
implementation intended to execute respective operations
upon joining children to their parent, hence it would only
be possible to join every other vertex. However, as for the
current purpose there are no associated operations, it is
possible to remove chains entirely:

Function compress(tree)

for child € children(tree) do
L compress (child)

if isUnary(tree) then
| children(tree) « children(onlyChild(tree))

Concluding, the makespan WID produces equals the heav-
iest weight of all leaves plus the weight by all parent ver-
tices. Assuming the makespan minimization has linea-
rythmic complexity, the rake operation has a theoretical
complexity of O(nmlogm), where n is the number of ver-
tices in the tree and m is the average number of children
per vertex. However, it is reasonable to assume n > m,
thus the complexity reduces to O(n). The complexity of
the compress operation is O(n) as well. Considering that
each iteration roughly half of the leaves are removed, WID
requires O(logn) iterations to reach the targeted number
of leaves. Overall, this yields a complexity of O(nlogn).

4.2 Vertex Weight Calculation

The previous has assumed the tree to be weighted in any
form. To approximate the complex behaviour of different
DEMKit entities, assigned a base weight of b to each entity
class. Next, let the weight of vertex increase exponentially

in accordance with the recursive behaviour of simulations.
Thus, the weight of a vertex equals bk?, where k is the
average number of recursive calls and d is the depth of
the node. This approach can be further refined by adding
the weight of all children to a parent vertex, which coin-
cides with Graham’s concept of dynamically formed lists
to improve efficiency.

4.3 Example Case

The following displays a single iteration of WID using a
small example. Figure 2 displays the used example tree,
which is to be reduced to three leaves. Subsequently, Fig-
ure 3 shows weights applied using b = 1.0 and k = 3.0:

Loo

L11 Li2 L3

P P
Loy Loo Loz Loy

Figure 2: The Used Example Tree

128

I

63 9 63

BN S
27 27 27 27

Figure 3: The Applied Weights to the Example Tree

The tree currently contains five leaves on different levels
and in different subtrees. Starting with the rake opera-
tion, the heaviest max(3, |5/2|) = 3 leaves are marked as
persistent. In this case, these are La1, Loz and Lasz. The
rakeTree operation subsequently applies this selection re-
cursively. Within Lgo, the two subtrees are persistent and
hence lead to the creation of a bucket. Two buckets sur-
pass the minimal amount required; thus, no further ones
are added. As a result, Li2 is merged into one of the
other subtrees. Apart from that, the entire subtree L1
is marked as persistent, including the children, and there-
fore stays unchanged. Within L13 only Las is selected and
forms a bucket. Accordingly, L24 is merged into it. This
finalizes this operation, the result of which can be seen
in Figure 4. The remaining number of leaves equals the
target, hence this is the final iteration.

128
/\
63 72

N \
27 27 54

Figure 4: The Result of Applying rake to the Tree

Finally, the tree is compressed. A single chain is present,
Li3 to Las, and is removed entirely. The final tree is the
following:

128
N
63 72
N
27 27

Figure 5: The Result of Applying compress to the Re-
maining Tree

4.4 Evaluation

The proposed algorithm is evaluated using randomly gen-
erated, representative trees of varying size, where both
maximum width and depth range within {z e N |4 <z <
8}. This covers different sizes, balanced and unbalanced
trees, trees with many or only few chains, etc. Following,
the respective trees are weighted using b = 1.0 and k = 3.0
and contracted for p processes, with p € {27 |z € N,1 <
x < 6}, corresponding with common core configurations
of modern CPUs. Generated trees that already have less
or equal leaves than targeted are omitted from the results
shown in Figure 6. All simulations are executed on a quad
core (eight threads) Intel®i7-4790K CPU, clocked at 4.3
GHz.

The measured execution times of the contraction (Fig-
ure Ga) fit the algorithm’s complexity of O(nlogn). The
largest tree was generated with over 85.000 vertices and
was reduced to 64 leaves within 7.5 seconds. Furthermore,
as shown in Figure 6b the computed makespans are close
to the respective lower bound, achieved by dividing the
tree’s total weight by the targeted number of processes.
Following, the average efficiency achieved is approximately
1.58.

S. DEMKIT INTEGRATION

5.1 Analysis of DEMKit Structure & Imple-
mentation

To integrate WID into DEMKit the tree structure of the
model needs to be extracted. Subsequently, the model
needs to be split up according to the result of WID. The
following analyses the assembly and structure of models
to find an optimal point of integration.

Any DEMKit model consists of a tree of components man-
aging various entities. The entity class offers a range of
basic functions that may be extended upon via inher-
itance. The different implementations can be grouped
roughly into devices and controllers. Most of the time,
devices, such as washing machines, form the leaves of the
model tree. Opposingly, controllers are vertices within the
tree and manage a group of other entities. Unfortunately,
this is not a constraint but rather a rule of thumb: The
behaviour of child management is not defined within the
entity baseclass, but within each implementation individ-
ually. Further, there does not exist a controller or device
baseclass, all implementations may be separate. This also
means that children may not be stored within a single
object, e.g. a list, but may be stored using multiple ob-
jects. Finally, there exist devices that have children, such
as buffers. Ideally, any approach is capable of extracting
the required structure data without adding additional con-
straints or large complexity. The approach chosen offers
an interface within the entity baseclass that returns a list
of children, which is empty by default. Inheriting classes
may override it to customize the returned structure data.

Next, the act of splitting and distributing the model needs
to be integrated. This may happen some time between the
model compilation phase and the simulation start. Cur-
rently, the manual model split is hardcoded into the model,
and thus determined pre-compilation. This is of course not
a viable option for an automated solution. Further, note
that the model compiler does not construct a ready model
but rather assembles a set of instructions that instantiate a
model. Thus, it is not possible to partially load a model,
any attempts would require severe modifications to the
model code at runtime. These considerations lead to the
following sequence of operations: First, load the model,

10*
1 T
0.8 | N
+
+
— 0.6 . |
u B
&) a4
£ 04 iw‘* R
£ L
ﬁ;+
0.2 * R
0 - |
! ! ! ! !
0 0.2 0.4 0.6 0.8 1
#Nodes 105

(a) Execution Time Depending on Tree Size

108

T T T
21| + Computed Makespan |
—— Lower Bound: Ratio 1.0
1.5 N
g
&
&
9 1 N
<
=
0.5 N
0 N
\ \ \ \ \
0 0.5 1 1.5 2
Weight /Processes 108

(b) Efficiency of Computed Makespan

Figure 6: Results of Reducing 1429 Randomly Generated Trees

extract the model hierarchy using the new, extended entity
interface, distribute the tree structure using WID and store
the result. Secondly, create master and slave processes.
Each of these again load the model in its entirety. Con-
sidering the memory footprint of average DEMKit sim-
ulations has a magnitude of megabytes, this should not
be a limiting factor. Subsequently, replace all references
to objects to be located exclusively on other processes by
corresponding handles. This is a crucial step, as this not
only enables garbage collection, but also eliminates any
duplicate computation. Thirdly and finally, execute the
simulation using the existing multiprocessing facilities for
both master and slaves.

5.2 Evaluation

To evaluate the performance of the WID integration, it is
compared to calculated, theoretical performance as per the
immediate WTD result and to the performance of manual
divisions. For this purpose, different, hand-picked, rep-
resentative simulations are set up, specifically to test sce-
narios of interest. The models consist of numerous streets,
that together contain 400 houses (roughly 2000 entities),
which are further distributed among four processes. All
simulations are run using the newly developed multipro-
cessing implementation, with automated model distribu-
tion. Weights are calculated with b = 1.0 and k = 4.0.
The respective parallel fractions are gathered by measur-
ing the time spent within slave processes. All results are
shown in Table 2.

Firstly, a base case is set up. The according model con-
sists of four streets at 100 houses each. The entire tree is
assigned a weight of 1.05 million, with leaves of 260 thou-
sand. As expected, the WTD algorithm produces a one-to-
one mapping, with one street per process. Accordingly, the
distribution should have a theoretical sequential fraction
of negligible magnitude, considering that only three enti-
ties (rootcontrol-, weather- and sun-entity) reside on the
master process. This would therefore result in a perfect
scaled speedup of N = 4. However, the experimentally
measured parallel fraction is 0.9, hence the speedup is ap-
proximately 3.7, an efficiency of 92.5%. This observation
is likely due to the root controller’s higher than average
workload. Lastly, this results in a scaled serial fraction
of 7.6. The data gathered roughly coincides with results

from previous, manually set up tests[13]. Model and pro-
cess compositions like this have been used for parallelized
simulations before, because of the comparatively trivial
division. Hence, more complicated models are set up for
testing in following cases.

Secondly, three streets at 133 houses each are distributed.
Here, WTD assigns two processes one street each, whereas
the final street is divided equally between the two remain-
ing processes. The parallel fraction is slightly improved,
measuring 0.95. Accordingly, the speedup is 3.8, an ef-
ficiency of 96.1%. However, in contradiction to this, the
total execution time is almost 60% higher compared to the
first test case. This inconsistency can be explained using
the scaled serial fraction: In this test case it equals 15.0.
As the scale factor k is roughly equal in both cases, the
fractions should ideally be equal as well. Instead, the dou-
bled value strongly indicates that a significant part of the
measured parallel fraction is due to communication costs
and/or idle times.

Thirdly, five streets at 80 houses each are distributed. This
case displays inefficient distribution, as instead of splitting
up the fifth street among all four processes, it is assigned
in its entirety to a single process. This result is rooted at
one of the first constraints set up for the development of
WTD: Subtrees are to be assigned as a whole, once reduced
it cannot be split up again. Despite this inefficiency, this
model setup performs similar to the first test case in all
aspects. This could be an indication of dominating com-
munication cost or idle times. However, taking the slightly
smaller street size into account, this could also be a direct
consequence of the polynomial complexity of the control
algorithm. In any case, further research is necessary to
determine the definite cause of this observation.

Finally, a model with more heterogeneous properties is
tested. Five streets are distributed, with different numbers
of houses as detailed in Table 2. Here, WTD assigns the
smallest two streets to one process, the other three streets
are handled by one process each. Again, the measured
performance is very similar to the base case.

Concluding, WID successfully distributes models of differ-
ent underlying structures. The test cases lead to two ma-
jor observations. Firstly, if the need arises to split up a

Table 2: Overview of Tested Models and Respective Results

Streets | Houses per Street | Time (h) P Speedup | sk
4 100 2.3 0.9 3.7 7.6
3 133 3.7 0.95 3.8 15.0
5 80 2.4 0.9 3.7 7.6
5 [40, 60, 80, 100, 120] 2.3 0.9 3.7 7.7
highly dependent substructure, heavy performance losses [3] R. Chandrasekaran, B. Chen, G. Galambos, P. R.

are to be expected due to communication costs. Secondly,
if the distributed structures are mostly independent from
another, losses due to imperfect distributions are negligi-
ble. This holds for homogeneous as well as heterogeneous
model setups. Therefore, as a general guideline to opti-
mize performance, models should contain many indepen-
dent structures.

6. CONCLUSION

Concluding, an algorithm (WID) to divide weighted trees
into equal parts is presented, by utilizing concepts of tree
contraction and makespan minimization. The algorithm’s
implementation executes in linearrythmic time, as deter-
mined theoretically and experimentally. Trees consisting
of several 10° vertices can be reduced within a few sec-
onds. To optimally weigh the tree with respect to recur-
sive DEMKit simulations, vertices are assigned a value
growing exponentially in terms of depth. Following, WTD
is integrated into DEMKit successfully using preexisting
multiprocessing components. Automated, simple configu-
rations, such as direct street to process mapping, perform
similar to manual distributions, as expected. Less triv-
ial configurations, including heterogeneous and homoge-
neous models, all perform similar to this base case, with
a speedup of approximately 3.7 and a serial fraction of
7.6. The exception to this is a test case of three streets
to four processes, leading to the split of street across two
processes. This case requires 60% more time to complete,
caused by an increase in communication costs and idle
times, as indicated by a significantly higher (15.0) serial
fraction. Overall, automatically parallelized models per-
form best if the distributed structures are independent

Future improvements to the parallelization of DEMKit,
such as a reduction in communication delays, could fur-
ther improve the performance of automated distributions,
as indicated by the second test case. Apart from that, it
may be useful to experimentally determine the values of b
and k individually for each entity class to improve accu-
racy of the applied weights. Lastly, should the need arise,
e.g. due to further horizontal connections, a more com-
plex makespan minimization algorithm, such as MR, could
be integrated into WTD.

7. REFERENCES

[1] S. Albers. Better bounds for online scheduling.
SIAM Journal on Computing, 29(2):459-473, 1999.
G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS *67
(Spring), page 483-485, New York, NY, USA, 1967.
Association for Computing Machinery.

2]

[14]

Narayanan, A. Van Vliet, and G. J. Woeginger. A
note on "an on-line scheduling heuristic with better
worst case ratio than graham'’s list scheduling”.
SIAM Journal on Computing, 26(3):870-872, 1997.
B. Chen, A. van Vliet, and G. J. Woeginger. New
lower and upper bounds for on-line scheduling.
Operations Research Letters, 16(4):221 — 230, 1994.
U. Faigle, W. Kern, and G. Turdn. On the
performance of on-line algorithms for partition
problems. Acta cybernetica, 9(2):107-119, 1989.

R. Fleischer and M. Wahl. Online scheduling
revisited. In M. S. Paterson, editor, Algorithms -
ESA 2000, pages 202—-210, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

G. Galambos and G. J. Woeginger. An on-line
scheduling heuristic with better worst-case ratio
than graham’s list scheduling. STAM Journal on
Computing, 22(2):349-355, 1993.

M. R. Garey, D. S. Johnson, and R. Sethi. The
complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2):117-129,
1976.

M. E. T. Gerards, H. A. Toersche, G. Hoogsteen,
T. van der Klauw, J. L. Hurink, and G. J. M. Smit.
Demand side management using profile steering. In
2015 IEEFE FEindhoven PowerTech, pages 1-6, 2015.
R. L. Graham. Bounds for certain multiprocessing
anomalies. The Bell System Technical Journal,
45(9):1563-1581, 1966.

J. L. Gustafson. Reevaluating amdahl’s law.
Commun. ACM, 31(5):532-533, May 1988.

G. Hoogsteen. A Cyber-Physical Systems Perspective
on Decentralized Energy Management. PhD thesis,
University of Twente, Netherlands, 12 2017.

G. Hoogsteen, M. E. T. Gerards, and J. L. Hurink.
On the scalability of decentralized energy
management using profile steering. In 2018 IEEE
PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), pages 1-6, 2018.

G. Hoogsteen, J. L. Hurink, and G. J. M. Smit.
Demkit: a decentralized energy management
simulation and demonstration toolkit. In 2019 IEEE
PES Innovative Smart Grid Technologies Europe
(ISGT-Europe), pages 1-5, 2019.

D. R. Karger, S. J. Phillips, and E. Torng. A better
algorithm for an ancient scheduling problem.
Journal of Algorithms, 20(2):400 — 430, 1996.

A. H. Karp and H. P. Flatt. Measuring parallel
processor performance. Commun. ACM,
33(5):539-543, May 1990.

G. L. Miller and J. H. Reif. Parallel tree contraction
— part i: Fundamentals, 1989.

