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Abstract
This thesis studies Input–to–State Stability (ISS) for bilinear systems. The purpose of this thesis
is to compare different notions of ISS, for example ISS itself, integral ISS and small–gain ISS
for linear and bilinear systems. This is started with discussing the different notions of ISS with
regard to finite dimensional linear and bilinear systems. After that, infinite dimensional systems
are considered. For the infinite dimensional systems it makes a big difference regarding stability
whether all operators involved in the system are bounded or not. Therefore, two situations for
the input operators are discussed. The main result of this thesis is a condition under which the
infinite dimensional bilinear systems with an unbounded input operator are integral Input–to–
State Stable. The thesis is concluded with examples of infinite dimensional systems based on
partial differential equations.
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Chapter 1

Introduction

In the study of dynamical systems the notion of stability is omnipresent. There are different
notions of stability that can be used in different situations or for different types of systems. In
this thesis the focus will be on different notions of Input–to–State Stability (ISS).

ISS was introduced by Eduardo Sontag in 1989 in [16] and is a combination of Lyapunov state–
space stability and Zames–like external stability based on H∞, which uses optimisation and
input–output methods. For linear state–space systems the stability properties are already well
known, therefore ISS is mainly used for nonlinear systems or linear systems with nonlinear
(unknown) perturbations or inputs. ISS notions combine internal stability and robustness with
respect to the outputs. Based on the notion of ISS multiple slightly weaker notions are developed.
The most prominent one is integral Input–to–State Stable (iISS) which first appeared in [17].
This notion of ISS is useful since it does give a property of stability, but is less strict than ISS.
Small gain ISS is a notion that lies in between ISS and iISS and was introduced in 1994 by
Jiang, Teel and Praly in [12]. The notion of small–gain ISS is older than the notion of iISS; first
the notion of ISS was defined, then it was weakened to small–gain ISS and then relaxed to iISS.
Finally we mention the notion of strong iISS, which combines iISS and small–gain ISS and can
for example be found in [8]. Strong iISS is a weaker notion than ISS, but stronger than iISS
and small–gain ISS. It can also be shown that a system is ISS with a Lyapunov type argument.
This was already mentioned when ISS was first defined in [16], but the necessity was not proven
until 1995 in [18]. An overview of ISS theory is given in [1].

ISS was at first used for finite dimensional systems and only around 2008 a corresponding
concept of ISS for infinite dimensional systems was developed. An example of early research
regarding ISS for infinite dimensional systems is given in [11]. The development of ISS for
infinite dimensional systems is motivated by studying stability for Partial Differential Equations
(PDE’s) in the context of control theory, but up until today there is still a lot unknown about
ISS for these systems. In [14] an overview of the research of infinite dimensional systems up
until 2019 can be found.

The notions of ISS are typically applied to systems in state–space representation. In a state–
space system often x is used for the state and u for the input. An example of a state–space
system is

ẋ(t) = f(x(t), u(t)), t ≥ 0,
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CHAPTER 1. INTRODUCTION

with some initial condition x0 and an input u. There might be certain requirements on the
function f such that the solution x exists for all times t. In the special case that

ẋ(t) = f(x(t), u(t)) = Ax(t) +Bu(t), t ≥ 0,

with some initial condition x0, an input u and with matrices A and B being mappings between
suitable spaces, the system reduces to a linear system. Suitable spaces are for example Rn and
Rm.

In this thesis the focus will lie on ISS for bilinear systems. In bilinear systems the function f
that was mentioned above will have a multiplication of the input u and the state x. The form
of multiplication depends on the dimensions of x and u, but it will look like

ẋ(t) = Ax(t) + u(t)Bx(t), t ≥ 0,

with some initial condition x0 and an input u. In practice such a multiplication can occur in
linear systems with a feedback control of the form u = Kx and a multiplicative disturbance or
change in time v, but the applications are broader. Bilinear systems are used in both engineering
and science, for example in chemical engineering and biology. An example of a bilinear system
is a system for chemotherapy (Example 6.2 of [6]). Here the state is in R2 with x1 being the
number of tissue cells in phases where they grow and synthesise, phase 1. x2 is the number of
cells preparing for cell division or dividing, phase 2. We have the following system:

ẋ(t) =

[
−a1 2a2
a1 −a2

]
x(t) + u(t)

[
0 −2a2
0 0

]
x(t).

In this system a1 is the mean transit time of cells from phase 1 to phase 2. Cells in phase
2 either divide and two daughter cells proceed to phase 1 at rate 2a2, or they are killed by
a chemotherapeutic agent at rate 2ua2 in which u ∈ [0, 1]. An overview of the theory about
bilinear systems and a short history is given in [6].

If one considers ISS for bilinear system you can see that most bilinear systems are not ISS, but
that they are iISS. This will be shown in Chapter 5. In the paper where iISS is introduced also the
example of bilinear systems is given [17] and the idea of the notion of iISS is related to the bilinear
systems which are not ISS, but do have some stability property. We will consider different types
of ISS to show when linear and bilinear systems have certain stability properties.

In this thesis at first some general definitions and assumptions will be discussed in Chapter 2.
These notions are used in the rest of the thesis. After that the different notions of ISS are given
in Chapter 3. In Chapter 4 these ISS notions will be shown for finite dimensional linear systems.
Subsequently the different notions of ISS will be shown for finite dimensional bilinear systems
in Chapter 5. After that the switch will be made to infinite dimensional systems. The different
notions for ISS for infinite dimensional systems are discussed in Chapter 6. In this chapter first
linear systems are discussed, followed by bilinear systems. For infinite dimensional systems it
is relevant whether all operators involved in the system are bounded or not, therefore this will
also be discussed in separate sections. The main result of this paper is Theorem 6.21, which is
adopted from recent results in [9] and [10]. The thesis will be concluded with some examples in
Chapter 7 and a conclusion in Chapter 8.
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Chapter 2

General definitions and
assumptions

Before starting with the the main part of the thesis some general definitions that might not be
known to all readers are stated. Next to that some assumptions are stated.

Definition 2.1. A function α : R≥0 → R≥0, in which R≥0 := {s ∈ R|s ≥ 0}, which is
continuous, strictly increasing and satisfies α(0) = 0 is called of class K. A function of class K
which is unbounded is said to be of class K∞. In addition, a function β : R≥0 × R≥0 → R≥0
with β(·, t) ∈ K∞ for each t ≥ 0 and β(r, t) goes to zero as t goes to ∞ is said to be of class KL.

A function V : Cn → R, n ∈ N, is positive definite if V (0) = 0 and V (x) > 0 for all x 6= 0. Such
a function V is proper if lim‖x‖→∞ V (x) =∞. Finally a function V : Cn → R is called smooth
if all the derivatives exist and are continuous.

As said before we will mainly use state–space systems. These systems have a state named x
and an input named u. For any fixed t ≥ 0, x(t) and u(t) are supposed to lie in normed spaces
X and U respectively. For example if X = Cn we will use the Euclidean 2-norm for x ∈ X,
so

‖x‖2 =
√
|x1|2 + |x2|2 + . . .+ |xn|2,

however a more general norm ‖x‖X is also allowed, so that different spaces X are allowed, for
example

X = Lp(a, b) := {measurable functions f(t)|(
∫ b

a

|f(t)|pdt)
1
p <∞},

equipped with its natural norm. For u ∈ UR≥0, which is the set of functions u : R≥0 → U . We
have the function norm which is defined as ‖u‖∞[0,t] := ess supt∈[0,t] ‖u(t)‖U . We also have the
norm of elements of U , u(t), this is again the Euclidean 2-norm, or a general norm ‖u(t)‖U .
Here the essential supremum is defined as follows: for f : X → R and Lebesgue measure µ we
define

ess sup f := inf{a ∈ R : µ({x : f(x) < a}) = 0}.
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CHAPTER 2. GENERAL DEFINITIONS AND ASSUMPTIONS

This means that the function is bounded by the essential supremum almost everywhere, so at
some individual points the function might be higher than the essential supremum. For this
norm two functions are identified to be equal if they are equal almost everywhere. Often u
is piecewise continuous, in that case also the supremum can be used instead of the essential
supremum. Finally we have the following notation for u, u|[0,t] := {u(s)|s ∈ [0, t]}.

An inequality that is useful in getting estimates that we need is the integral version of Gronwall’s
inequality. The version we will use is Theorem 1.3.1 of [2].

Lemma 2.2. Let u and f be continuous and nonnegative functions defined on I = [a, b], so
u(t) ≥ 0 for all t ∈ I and f(t) ≥ 0 for all t ∈ I. Furthermore let α be a continuous, nonnegative
and nondecreasing function defined on I, so α(t) ≥ 0 for all t ∈ I. If

u(t) ≤ α(t) +

∫ t

a

f(s)u(s)ds, t ∈ I, (2.1)

then,

u(t) ≤ α(t) exp(

∫ t

a

f(s)ds), t ∈ I. (2.2)

When we are going to discuss infinite dimensional systems we will use semigroups and operators.
An operator is a mapping that maps elements from some normed space X to another normed
space Y and are assumed to be linear. For an operator A : X → Y the operator norm is as
follows:

‖A‖ = sup
x∈X,x 6=0

‖Ax‖Y
‖x‖X

.

If ‖A‖ is finite, the operator is called bounded. For operators A : X → Y and B : Z → X it
holds that ‖AB‖ ≤ ‖A‖‖B‖. Typically all normed spaces are assumed to be Banach spaces. All
matrix norms will be induced by the considered vector space norm. Moreover, we define L(X,Y )
as the space of bounded linear operators from X to Y and L(X) as the space of bounded linear
operators from X to X. Now we can define a semigroup:

Definition 2.3. An operator-valued function T from R≥0 to L(X) is called a strongly continuous
semigroup if it satisfies the following properties:

1. T (t+ s) = T (t)T (s), for all t, s ≥ 0,
2. T (0) = I,
3. For all x0 ∈ X, we have that ‖T (t)x0 − x0‖X converges to zero, when t→ 0+.

A semigroup T is linked with a special operator, namely the generator, A. We will often use
that an operator generates a semigroup and therefore the definition of a generator is given
here.

Definition 2.4. The infinitesimal generator A of a strongly continuous semigroup on a Hilbert
space X is defined by

Ax = lim
t→0+

1

t
(T (t)− I)x,

whenever the limit exists. The domain of A, D(A), is the set of elements x in X for which the
limit exists.
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CHAPTER 2. GENERAL DEFINITIONS AND ASSUMPTIONS

We remark that all integrals in this thesis refer to the Lebesgue integral, but most of the time
it suffices to consider the Riemann integrals.

Finally we will also need the Banach Fixed Point Theorem.

Theorem 2.5. Let X be a Banach space, D ⊆ X closed and F : D → D a contraction, which
means that T is Lipschitz continuous with Lipschitz constant L < 1:

‖F (u)− F (v)‖X ≤ L‖u− v‖X ∀u, v ∈ D.

Then F has a unique fixed point ū ∈ D, which means that F (ū) = ū.
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Chapter 3

Definition ISS

The notions of ISS will be defined for state–space systems, which we specify below. These
are defined in a general way, so that both finite and infinite dimensional systems are covered.
Moreover, this definition contains linear and nonlinear systems.

Definition 3.1. Let X and U be Banach spaces with corresponding norms. Let φ : R≥0×D → X
in which D ⊂ X × UR≥0 . We call (X,U, φ) a system if it satisfies the following properties for
all t, h ∈ R≥0 and for all (x, u), (x, u2) ∈ D:

1. φ(0, x, u) = x
2. (φ(t, x, u), u(t+ ·)) ∈ D and φ(t+ h, x, u) = φ(h, φ(t, x, u), u(t+ ·))
3. (x, u|[0,t]) ∈ D and u|[0,t] = u2|[0,t] implies that φ(t, x, u) = φ(t, x, u2)

In this system we name X the state–space and U the input space. The inputs u are functions
of time, so u : R≥0 → U .

Systems defined in this way can also be found in [15]. In this definition 1. represents the initial
condition, 2. represents the fact that if the starting conditions are the same, the starting time
is independent and 3. represents that if two inputs are the same for a certain time and the state
is equal at the beginning of this time, then the system will behave the same, this is also named
the causality of the system. Moreover, a system as in Definition 3.1 is defined for all t ≥ 0. This
system is defined in general and usually a more specific form is used. The following systems are
a subset of the systems defined in Definition 3.1:

Definition 3.2. Let f : X × U → X be a Lipschitz continuous function, then we can define a
system by the solutions to the equations

ẋ(t) = f(x(t), u(t)), (3.1)
x(0) = x0,

for all t > 0, (x, u) ∈ D with D = X ×UR≥0 . Here x is the state and u is the input. The input
u can be seen as a piecewise continuous function from R≥0 to U , so u(t) ∈ U . Then we have
that φ(t, x0, u) = x(t).

In this a certain set of inputs is allowed, usually U = Cm and x(t) ∈ X = Cn, but they are also
allowed to be infinite dimensional. We call a system finite dimensional if the dimension of X

9



CHAPTER 3. DEFINITION ISS

is finite and we call a system infinite dimensional if the dimension of X is infinite. For ease of
notation the dependence on t is often not written down.

Remark 3.3. In Definitions 3.1 and 3.2 the state and the input are allowed to be complex-
valued, but real-valued state and input are also allowed and from the practical perspective perhaps
more useful. However, for this thesis the definition of the system is kept more general and thus
also allow complex-valued state, X, and input, U.

We can now define ISS for systems as in Definition 3.1

Definition 3.4. A system (X,U, φ) as in Definition 3.1 is Input–to–State Stable (ISS) if there
exists β ∈ KL and γ ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖u‖∞[0,t]), (3.2)

for all t ≥ 0, with (x, u) ∈ D and x(t) = φ(t, x, u).

ISS can be seen as if the state of a system has to stay small relative to the initial value of
the state and the maximum input given. So if no input is given the state converges to zero if
time goes to infinity due to β being a KL function. However, this also means that if the input
is nonzero and time goes to infinity the state is bounded by a function depending only on the
maximum of the input. Since for some systems this restriction might be too strict we also define
a weaker form of ISS, iISS.

Definition 3.5. A system as in Definition 3.1 is integral Input–to–State Stable (iISS) if there
exists β ∈ KL and γ1, γ2 ∈ K such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ1
( ∫ t

0

γ2(‖u(s)‖U )ds
)
, (3.3)

for all t ≥ 0, with (x, u) ∈ D and x(t) = φ(t, x, u).

In this definition the state is bounded by the integral of the input. This means that the state
is only required to decrease in time if the input is decreasing. If one compares with a constant
input it is clear that now there is more freedom in how the system responds to inputs. For
finite dimensional systems, iISS is weaker than ISS and if a finite dimensional system is ISS it
automatically is iISS. This is the case since for ISS the restriction on u is stricter than with
iISS. This is also mentioned in [4].

The next notion that is going to be discussed is small–gain ISS.

Definition 3.6. A system as in Definition 3.1 is small–gain Input–to–State Stable (small–gain
ISS) if there exists a R > 0, β ∈ KL and γ ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖u‖∞[0,t]), (3.4)

for all t ≥ 0, with (x, u) ∈ D, x(t) = φ(t, x, u) and ‖u‖∞[0,t] < R.

This definition is useful for systems that are unstable for large inputs, but that have bounded
state if the input is small. This can be seen in the following example:

Example 3.7. Take the system

ẋ(t) = −x(t) + x(t)u(t),

x(0) = x0,
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CHAPTER 3. DEFINITION ISS

with X = U = R and t ≥ 0. If a constant input u(t) = 2, t ≥ 0, is applied the system takes the
form of ẋ(t) = x(t) and thus is unstable, but if the input is smaller than 1, then the system is
stable. This system is iISS and small–gain ISS which will be proved later on.

There is one more notion of ISS that we will use, namely strong iISS.

Definition 3.8. A system as in Definition 3.1 is called Strong integral Input–to–State Stable
(strong iISS) if it is small–gain ISS and iISS.

The notions of ISS can also be shown with a Lyapunov type argument.

Definition 3.9. A function V : X → R≥0 is called an ISS-Lyapunov function for a finite
dimensional system as in Definition 3.2, if V is proper and smooth, there exist α1, α2 ∈ K∞
such that α1(x) ≤ V (x) ≤ α2(x) and there exist class K∞ functions γ and α so that

∇V (x)f(x, u) ≤ −α(x) + γ(‖u‖U ) (3.5)

for all t ≥ 0, with (x, u) ∈ D and x(t) = φ(t, x, u).

Theorem 3.10. A finite dimensional system as in Definition 3.2 is ISS if and only if there
exists an ISS-Lyapunov function for the system.

A proof can be found in [18].

A Lyapunov type argument can also be used for small–gain ISS, but then there has to exist an
R > 0 such that Equation (3.5) holds for ‖u‖U < R. There also is a Lyapunov type definition
for iISS, this is as follows:

Definition 3.11. A function V : X → R≥0 is called an iISS-Lyapunov function for a finite
dimensional system as in Definition 3.2, if V is proper and smooth, there exist α1, α2 ∈ K∞
such that α1(x) ≤ V (x) ≤ α2(x) and there exist class K∞ function γ and α : [0,∞) → [0,∞)
so that

∇V (x)f(x, u) ≤ −α(x) + γ(‖u‖U ) (3.6)

for all x ∈ X and u ∈ U .

Theorem 3.12. A finite dimensional system as in Definition 3.2 is iISS if and only if there
exists an iISS-Lyapunov function for the system.

A proof can be found in [3] (Proof of Theorem 1).

The difference between Definitions 3.9 and 3.11 is quite small and therefore might not clear at
first sight, but the difference is that in Definition 3.9 the α ∈ K∞ and that in Definition 3.11
α : [0,∞)→ [0,∞), this also shows that Definition 3.11 is weaker.

For systems as in Definition 3.2, with X = Rn and U = Rm, the relation between the different
types of ISS is shown in a clear figure in Figure 3.1. There are more notions of stability for
state–space systems, but in this figure the ones that are used in this thesis are mentioned.
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CHAPTER 3. DEFINITION ISS

Figure 3.1: Relation between different types of ISS for systems as in Definition 3.2 with X = Rn
and U = Rm [4]
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Chapter 4

Linear systems

To get a feeling for the notions of ISS we will first have a look at finite dimensional linear
systems. Linear systems are systems that are as in Definition 3.2, with f(x, u) = Ax + Bu,
where A ∈ Cn×n and B ∈ Cn×m are matrices fitting with the dimension of X = Cn and
U = Cm. Thus for a linear system we have

ẋ(t) = Ax(t) +Bu(t), (4.1)
x(0) = x0.

This is a system of the type of Definition 3.2 if u satisfies the conditions mentioned. Again the
dependence on time is often omitted. This is the system that will be used in this chapter. The
differential equation in this system can be solved using an integrating factor to give the exact
solution x(t) = eAtx0 +

∫ t
0
eA(t−τ)Bu(τ)dτ . In Section 6.1.1 this derivation will be shown for

the infinite dimensional case.

We will show that if A is Hurwitz that then the linear system is ISS. To show that linear
systems are ISS it is needed to find an estimate of ‖eAt‖. We will therefore prove the following
lemma:

Lemma 4.1. Let A ∈ Cn×n be a matrix. Then for every ω > max{Re(λ) : λ eigenvalue of A},
there exists a constant M ≥ 1 such that

‖eAt‖ ≤Meωt (4.2)

holds for all t ≥ 0. Moreover, if A is not Hurwitz, then ‖eAt‖ does not converge to 0 for t→∞.

Proof. We know that for every matrix A there exists an invertible matrix T ∈ Cn×n and a
matrix J ∈ Cn×n in Jordan normal form such that A = TJT−1. Thus, using the definition of
the matrix exponential,

‖eAt‖ = ‖eTJT
−1t‖

= ‖TeJtT−1‖
≤ ‖T‖‖T−1‖‖eJt‖,

13



CHAPTER 4. LINEAR SYSTEMS

where we used the sub-multiplicity of the matrix norm. Here we see that ‖T‖‖T−1‖ ≥ 1 since
1 = ‖I‖ = ‖T · T−1‖ ≤ ‖T‖‖T−1‖. Now we want to further estimate ‖eJt‖. To do this we will
first look at a certain block Ji of the Jordan matrix J ,

‖eJit‖ = ‖et(Ji−λiI)+tλiI‖ = ‖et(Ji−λiI)etλiI‖ ≤ etλi‖eJi−λiI‖.

This holds since tλiI is a diagonal matrix. To make notation a bit easier we will now write
Ji − λiI = J0

i , since the diagonal is set to zero. Due to the form of this matrix we know that if
J0
i ∈ Rhi×hi , hi ≤ n, then (J0

i )hi = 0. Since a matrix exponential can be written as its Taylor
series we have the following:

‖eJ
0
i t‖ =

∥∥∥∥∥
∞∑
m=0

(J0
i t)

m

m!

∥∥∥∥∥ ≤
∞∑
m=0

∥∥∥∥ (J0
i t)

m

m!

∥∥∥∥ =

hi−1∑
m=0

∥∥∥∥ (J0
i t)

m

m!

∥∥∥∥ ≤ hi−1∑
m=0

tm

m!
‖J0
i ‖m.

Now we will show that for every ε > 0, there exists an Mε ≥ 1 such that ‖eJ0
i t‖ ≤ Mεe

εt.
Consider a single term of the summation

∑hi−1
m=0

tm

m!‖J
0
i ‖m. Then we want to get the following

estimate:
tm

m!
‖J0
i ‖m ≤ Ceεt (4.3)

tm‖J0
i ‖m

m!eεt
≤ C.

Define fm,J(t) :=
tm‖J0

i ‖
m

m!eεt . We know that fm,J(0) = 0, limt→∞ fm,J(t) = 0 and fm,J(0) ≥ 0
if t,m ≥ 0. Thus this function reaches a maximum somewhere and if we choose C to be
this maximum we know that Equation (4.3) is satisfied. The maximum is attained where the
derivative equals zero, if the derivative is zero more than once there might be a minimum as
well, or it might be that there are local extrema, so then there has to be checked which of the
extreme values is the maximum. The derivative is as follows:

d

dt
fm,J(t) = 0

‖J0
i ‖m

m!
mtm−1e−εt − ‖J

0
i ‖m

m!
tmεe−εt = 0

‖J0
i ‖m

m!
tm−1e−εt(m− tε) = 0

t =
m

ε
.

So C = fm,J(mε ) =
mm‖J0

i ‖
m

εmm!em and indeed Equation (4.3) holds. Therefore, we now know the
following:

‖eJit‖ ≤ etλi(

hi−1∑
m=0

tm

m!
‖J0
i ‖m)

≤ etλi(

hi−1∑
m=0

(
mm

εmm!em
‖J0
i ‖meεt))

= et(λi+ε)
hi−1∑
m=0

(
mm

εmm!em
‖J0
i ‖m)

≤ et(λi+ε)Mε,i.
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CHAPTER 4. LINEAR SYSTEMS

Here Mε,i is larger or equal then 1.

Finally we need to show the relation between ‖eJt‖ and ‖eJit‖. We will do this using the 2-norm
for matrices. Due to the block structure of the matrix J that is in Jordan normal form, we
know that

J =


J1

J2
. . .

Jk

 and hence, eJ =


eJ1

eJ2

. . .
eJk

 .
If we now want the 2-norm of eJ we have that this is the same as the largest singular value.
The singular values of eJ are the eigenvalues of eJ · (eJ)∗ = eJ · eJ∗

. Substituting this in the
former equation gives:

eJ · eJ
∗

=


eJ1

eJ2

. . .
eJk

 ·

eJ

∗
1

eJ
∗
2

. . .
eJ

∗
k



=


eJ1eJ

∗
1

eJ2eJ
∗
2

. . .
eJkeJ

∗
k

 .
So the eigenvalues of eJ · eJ∗

are in the combination of the eigenvalues of eJ1 · eJ∗
1 , eJ2 · eJ∗

2 ,
..., eJk · eJ∗

k . These are the singular values of eJ1 , eJ2 , ..., eJk , since the norm of eJ is the
largest singular value we now know that ‖eJ‖ = maxi ‖eJi‖. So we know that for every ω >
max{Re(λ) : λ eigenvalue of A} there exists a constant M ≥ 1 such that

‖eAt‖ ≤ ‖T‖‖T−1‖‖eJt‖ = ‖T‖‖T−1‖max
i
‖eJit‖

≤ ‖T‖‖T−1‖max
i
et(λi+ε)Mε,i

≤Meωt.

Since the matrix 2-norm is a vector induced matrix norm, this is equivalent with other vector
induced matrix norms and can be estimated with a constant. Thus this also holds for other
vector induced matrix norms, which are all the matrix norms considered in this thesis.

Now we still have to show that if A is not Hurwitz, then ‖eAt‖ does not converge to 0 if t goes
to infinity. We will do this using the eigenvalues and corresponding eigenvectors of A. We use
the 2-norm, thus

‖eAt‖2 = sup
x∈Cn,x6=0

‖eAtx‖2
‖x‖2

,

so if we have a certain x ∈ Cn for which this does not converge to zero we know the norm does
not converge to zero. Take v the normalised eigenvector corresponding with the eigenvalue λ
that has non negative real part, so Re(λ) ≥ 0. Then we have the following:

‖eAt‖ ≥ ‖eAtv‖2 = ‖eλtv‖2 = eλt‖v‖2 = eλt.

15
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Since the real part of λ is non-negative we see that this will not converge to zero if t goes to
∞.

Now we can use the previous lemma to prove the following theorem:

Theorem 4.2. For linear systems of the form (4.1) the following are equivalent:

1. A is Hurwitz,
2. The system is ISS,
3. The system is iISS,
4. The system is small–gain ISS,
5. The system is strong iISS.

Proof. Because the linear system is finite dimensional we have that 2 ⇒ 4. Also we have by
definition that 3∧ 4⇒ 5, 5⇒ 4 and 5⇒ 3. If A is not Hurwitz we see by Lemma 4.1 that then
‖eAt‖ will not converge to zero. Therefore, when the input is zero, x(t) will not converge as t
goes to infinity and the system is not iISS nor ISS. Thus 2 ⇒ 1, 3 ⇒ 1 and 4 ⇒ 1. Now the
only things left to show are 1⇒ 2 and 1⇒ 3.

To show this we will use the solution of the differential equation,

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ.

We will look at the norm to estimate this in such a way that we get Equation (3.2). Since A
is Hurwitz we will use that according to Lemma 4.1 there exist M ≥ 1 and ω < 0 such that
‖eAt‖ ≤Meωt. Therefore,

‖x(t)‖ = ‖eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ‖

≤ ‖eAt‖‖x0‖+

∫ t

0

‖ea(t−τ)‖‖B‖‖u(τ)‖dτ

≤Meωt‖x0‖+M‖B‖
∫ t

0

eω(t−τ)‖u(τ)‖dτ.

The next step is to use the Hölder’s inequality. Note that
∫ t
0
eω(t−τ)‖u(τ)‖dτ is actually

‖eω(t−τ)‖u(τ)‖‖1, thus it can be estimated. We will use the infinity-norm for the part with
u and the 1-norm for the part with the exponential,

‖x(t)‖ ≤Meωt‖x0‖+M‖B‖
∫ t

0

eω(t−τ)‖u(τ)‖dτ (4.4)

≤Meωt‖x0‖+M‖B‖
∫ t

0

eω(t−τ)dτ‖u‖∞[0,t]

= Meωt‖x0‖+M‖B‖(− 1

ω
+

1

ω
eωt)‖u‖∞[0,t]

≤Meωt‖x0‖ −M‖B‖
1

ω
‖u‖∞[0,t].

Where the last step holds since ω < 0. Thus Equation (3.2) is satisfied with β(‖x0‖, t) =
Meωt‖x0‖ and γ(s) = −M‖B‖ 1ω s. Therefore, 1⇒ 2.
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To show 1 ⇒ 3, we take a look at Equation (4.4), the term eω(t−τ) can be estimated with 1.
Therefore, already Equation (3.3) is satisfied with β(‖x0‖, t) = Meωt‖x0‖, γ1(s) = M‖B‖s and
γ2 = s. Thus 1⇒ 3 and the proof is completed.

17



Chapter 5

Bilinear systems

After having looked at finite dimensional linear systems we will now take a look at ISS for
bilinear systems. The class of finite dimensional bilinear systems is a subset of the systems as
in Definition 3.2 and is defined as

ẋ(t) = Ax(t) +

m∑
i=1

ui(t)Bix(t), (5.1)

x(0) = x0.

with x ∈ X ⊆ Cn, u ∈ U ⊆ Cm, A ∈ Cn×n and Bi ∈ Cn×n, i ∈ {1, ...,m}. Without loss of
generality we will assume that there is only one input and that therefore there also is just one
B matrix and the summation vanishes, this gives the system

ẋ(t) = Ax(t) + u(t)Bx(t), (5.2)
x(0) = x0.

If you take A = −1 and B = 1 as in Example 3.7, it can already be seen that this system is not
ISS, since if the constant input u = 2 is applied, the system becomes ẋ = x, which is unstable.
However, we would like to show that the system (5.2) is iISS.

Proposition 5.1. Bilinear systems are iISS if and only if A is Hurwitz. In this case,

β(s, t) = (1 +Meωts)2 − 1, γ1(s) = e2s − 1 and γ2(s) = M |s|‖B‖.

In which M ≥ 1 and ω ∈ R such that ‖eAt‖ ≤Meωt for all t ≥ 0.

Proof. To proof ‘⇐’ we use the idea of Theorem 4.2 of [13]. To start with we rewrite and
integrate both sides of ẋ = Ax+ uBx,

ẋ(τ) = Ax(τ) + u(τ)Bx(τ)

e−Aτ ẋ(τ) = e−AτAx(τ) + e−Aτu(τ)Bx(τ)

e−Aτ ẋ(τ)− e−AτAx(τ) = e−Aτu(τ)Bx(τ)

d

dτ
(e−Aτx(τ)) = e−Aτu(τ)Bx(τ).

18
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Now we will integrate both sides to get rid of the derivative,∫ t

0

d

dτ
(e−Aτx(τ))dτ =

∫ t

0

e−Aτu(τ)Bx(τ)dτ

e−Atx(t)− x0 =

∫ t

0

e−Aτu(τ)Bx(τ)dτ

x(t) = eAtx0 +

∫ t

0

eA(t−τ)u(τ)Bx(τ)τ.

This almost looks like the solution of a linear system, only now there still is an x(τ) on the right
side, therefore the estimation will be done a bit different, but with the help of Lemma 2.2 it is
possible to get rid of this term. To get an estimate like in Equation (3.3) we take the norm.
This gives,

‖x(t)‖ = ‖eAtx0 +

∫ t

0

eA(t−τ)u(τ)Bx(τ)τ‖

‖x(t)‖ ≤ ‖eAt‖‖x0‖+

∫ t

0

‖eA(t−τ)u(τ)Bx(τ)‖dτ.

Now we apply Lemma 4.1, multiply the entire inequality with e−ωt and define z(t) = e−ωtx(t)
to rearrange this inequality. This gives,

‖x(t)‖ ≤Meωt‖x0‖+

∫ t

0

Meω(t−τ)|u(τ)|‖B‖‖x(τ)‖dτ (5.3)

e−ωt‖x(t)‖ ≤M‖x0‖+

∫ t

0

Me−ωτ |u(τ)|‖B‖‖x(τ)‖dτ

‖z(t)‖ ≤M‖x0‖+

∫ t

0

M |u(τ)|‖B‖‖z(τ)‖dτ.

This inequality now is in the right form to apply Lemma 2.2. After that again z(t) = e−ωtx(t)
is used to go back from z to x,

‖z(t)‖ ≤M‖x0‖ exp (

∫ t

0

M |u(τ)‖B‖dτ)

e−ωt‖x(t)‖ ≤M‖x0‖ exp (

∫ t

0

M |u(τ)|‖B‖dτ)

‖x(t)‖ ≤ eωtM‖x0‖ exp (

∫ t

0

M |u(τ)|‖B‖dτ). (5.4)

At this point at first it seems to make sense to apply ab ≤ 1
2a

2 + 1
2b

2, however, Equation (3.3)
requires γ1, γ2 ∈ K, thus γ1(0) = 0, this is not satisfied if ab ≤ 1

2a
2 + 1

2b
2 is used. Therefore, we

have a little trick to apply the function α(r) = ln (1 + r) to both sides. This function has the
following property:

ln(1 + aeb) ≤ ln((1 + a)eb)

= ln(1 + a) + b.
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So if we now use a = Meωt‖x0‖ and b =
∫ t
0
M |u(τ)|‖B‖dτ we get the following:

α(‖x(t)‖) ≤ α(eωtM‖x0‖ exp (

∫ t

0

M |u(τ)|‖B‖dτ))

α(‖x(t)‖) ≤ ln(1 +Meωt‖x0‖) +

∫ t

0

M |u(τ)|‖B‖dτ

‖x(t)‖ ≤ α−1
(

ln(1 +Meωt‖x0‖) +

∫ t

0

M |u(τ)|‖B‖dτ
)
.

Now use α−1(a+ b) ≤ α−1(2a) + α−1(2b) to estimate ‖x(t)‖ with a sum of a term with x0 and
a term with u. Also use that α−1(s) = es − 1,

‖x(t)‖ ≤ α−1(2 ln(1 +Meωt‖x0‖)) + α−1(2

∫ t

0

M |u(τ)|‖B‖dτ)

‖x(t)‖ ≤ (1 +Meωt‖x0‖)2 − 1 + exp (2

∫ t

0

M |u(τ)|‖B‖dτ)− 1.

So now we have Equation (3.3) with β(s, t) = (1 + Meωts)2 − 1, γ1(s) = e2s − 1 and γ2(s) =
M |s|‖B‖. Thus bilinear systems are iISS.

If A is not Hurwitz, then the system with zero input is not stable, thus you will never be able
to find a suitable β function.

We have just shown that bilinear systems are iISS. This is done by establishing an estimate for
‖x(t)‖. Now the question arises how strict this estimate is. To discuss this let us first write
down the estimate we made:

‖x(t)‖ ≤ β(‖x0‖, t) + γ1(

∫ t

0

γ2(‖u(s)‖U )ds)

= (1 +Meωt‖x0‖)2 − 1 + exp
(
2M‖B‖

∫ t

0

‖u(s)‖Uds
)
− 1.

If we now look at t = 0 we get the following:

‖x(0)‖ ≤ (1 +M‖x0‖)2 − 1 = 2M‖x0‖+M2‖x0‖2.

Recalling that M ≥ 1 we see that the estimate is more than twice as big as actually needed.
Also note that if from a certain time t0 the input is zero, the state will go to zero if time goes to
infinity. However if we look at the ‘γ-part’ of the estimate this can only increase and will never
decrease. Therefore this will also give a big estimate for times after this so called t0.

It is hard to get a better feeling for these estimates by just looking at the formulas. Therefore
we will look at an example.

Example 5.2. In this example we will consider the system simple

ẋ(t) = −0.1x(t) + u(t)x(t),

x(0) = x0.
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Figure 5.1: Behaviour of the state for the system ẋ(t) = −0.1x(t) + u(t)x(t) with x0 = 1 and
input u a step-function that is 0.4 until t = 2.5 and 0 after t = 2.5. Also the iISS estimate is
plotted, next to the total estimate also the ‘β-part’ and the ‘γ-part’ are shown.

In which we have X = U = R. Using Matlab the differential equation is solved for a certain
input u and the solution x(t) is plotted. To get an idea of how strict the estimates for iISS are
we plotted x(t), the total estimate, the ‘β-part’ of the estimate and the ‘γ-part’ of the estimate.
This can be seen in Figure 5.1. In this case we used x0 = 1 and for u a stepfunction that first
is 0.4 and becomes equal to zero at t = 2.5.

In Figure 5.1 it can be seen that the ‘β-part’ of the estimate is quite high at the beginning. Also
it can be seen that when the time continuous the ‘β-part’ of the estimate goes to zero by which
the ‘γ-part’ becomes important. This will always be the case, since the β-function has to decrease
in time. Finally it can be seen that the ‘γ-part’ never decreases, so that even when the input
becomes equal to zero and state is still allowed to have some off set.

Now that it is known that bilinear systems in general are iISS, but not ISS, the question now
arises whether they are small–gain ISS. If we look at Example 3.7, ẋ = −x + xu and constant
inputs are considered. Then it can be seen that this system is stable if u < 1. So this could be
a bound for the small–gain ISS. To show that bilinear systems are small–gain ISS we will use a
Lyapunov method. Now first we will show using a Lyapunov function that all bilinear systems
are iISS and then we will extend this proof to show that they are also small–gain ISS.

We have the system ẋ = Ax+ uBx and for this system a first guess for the Lyapunov function
is the function V (x) = x∗Px with P the positive symmetric solution of A∗P + PA = −I. This
matrix P exists if A is Hurwitz and that is also a criterion for the system to be stable. Now we
will show that with this choice of V Equation (3.6) is not satisfied and that this standard choice
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is not a Lyapunov function for bilinear systems as in Definition 3.11. This goes as follows,

∇V (x)f(x, u) = 2x∗P · (Ax+ uBx)

= 2x∗PAx+ 2x∗PuBx

= −‖x‖2 + 2ux∗PBx

≤ −‖x‖2 + 2|ux∗PBx|
≤ −‖x‖2 + 2|u| · ‖PB‖ · ‖x‖2

≤ −‖x‖2 + ‖x‖4 + 4|u|2 · ‖PB‖2.

However, −‖x‖2+‖x‖4 is positive for larger x, thus we can never find a positive α function, such
that this is smaller than −α. Therefore this choice of V is not a Lyapunov function for bilinear
systems as in Definition 3.11. In [17] a dissipation Lyapunov iISS theorem is given and with
this theorem it is possible to prove that a bilinear system is iISS using the Lyapunov function
x∗Px.

Theorem 5.3. If we have a finite dimensional system as in Definition 3.2. There exists a
positive-definite proper smooth function V : Cn → R≥0, such that there exists α1, α2 ∈ K∞ such
that α2(‖x‖) ≤ V (x) ≤ α2(‖x‖). If moreover, there exists a constant q > 0 and γ1, γ2 ∈ K∞ so
that

∇V (x)f(x, u) ≤ (γ1(‖u‖)− q)V (x) + γ2(‖u‖) (5.5)

for all x ∈ Cn and u ∈ U , then the system is iISS.

Proof. In this proof we will show that when a Lyapunov function as in Theorem 5.3 exists, that
then also Equation (3.3) is satisfied and thus the system is iISS. To do this we will start with
the estimation of V (x) and we want to get an estimation of ‖x‖. The steps made in this proof
are quite similar to the steps in the proof of Proposition 5.1. First we have an equation with
a derivative of V and we want to get an equation with V . Also there exists γ ∈ K∞ such that
γ1(s) ≤ γ(s) for all s ≥ 0 and γ2(s) ≤ γ(s) for all s ≥ 0. This gives the following estimation,

∇V (x(t))f(x(t), u(t)) ≤ (γ1(‖u(t)‖)− q)V (x(t)) + γ2(‖u(t)‖)
d

dt
V (x(t)) ≤ (γ(‖u(t)‖)− q)V (x(t)) + γ(‖u(t)‖).

Now we multiply both sides with eqt and get,

eqt∇V (x(t))f(x(t), u(t)) ≤ eqt(γ(‖u(t)‖)− q)V (x(t)) + eqtγ(‖u(t)‖)

eqt
d

dt
V (x(t)) + eqtqV (x(t)) ≤ eqtγ(‖u(t)‖)V (x) + eqtγ(‖u(t)‖)

d

dt
(V (x(t))eqt) ≤ eqtγ(‖u(t)‖)V (x(t)) + eqtγ(‖u(t)‖)

V (x(t))eqt − V (x(0)) ≤
∫ t

0

eqτγ(‖u(τ)‖)(V (x(τ)) + 1)dτ

V (x(t))eqt ≤ V (x0) +

∫ t

0

eqτγ(‖u(τ)‖)(V (x(τ)) + 1)dτ.
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We will substitute z(t) = eqtV (x(t)),

z(t) ≤ V (x0) +

∫ t

0

γ(‖u(τ)‖)(z(τ) + eqτ )dτ

z(t) ≤ V (x0) +

∫ t

0

γ(‖u(τ)‖)eqτdτ +

∫ t

0

γ(‖u‖)z(τ)dτ.

This is now in the correct form to apply Lemma 2.2, so we get the following:

z(t) ≤ V (x0) +

∫ t

0

γ(‖u(τ)‖)eqτdτ +

∫ t

0

γ(‖u(τ)‖)z(τ)dτ

z(t) ≤ (V (x0) +

∫ t

0

γ(‖u(τ)‖)eqτdτ) exp(

∫ t

0

γ(‖u(τ)‖)dτ)

eqtV (x(t)) ≤ (V (x0) +

∫ t

0

γ(‖u(τ)‖)eqτdτ) exp(

∫ t

0

γ(‖u(τ)‖)dτ)

V (x(t)) ≤ e−qtV (x0) exp(

∫ t

0

γ(‖u(τ)‖)dτ) +

∫ t

0

γ(‖u(τ)‖)e−q(t−τ)dτ exp(

∫ t

0

γ(‖u(τ)‖)dτ).

Here we substituted z(t) = eqtV (x(t)) to get back to x. Now we note that e−q(t−τ) ≤ 1 and to
simplify we substitute h(t) =

∫ t
0
γ(‖u(τ)‖)dτ . What we want in the end is an estimate of ‖x‖

with a β function depending on x0 and t and a γ1 function depending on u. Right now we still
have the product of x0 and a term with u. We apply a little trick to get this to a sum and to
make sure that in the end we get γ1(0) = 0. This trick is as follows:

e−qtV (x0) exp(h(t)) = e−qtV (x0) + e−qtV (x0)(exp(h(t))− 1)

≤ e−qtV (x0) +
1

2
e−2qtV (x0)2 +

1

2
(exp(h(t))− 1)2.

Here we used that ab ≤ 1
2a

2 + 1
2b

2. We will now use all of this to rewrite the estimation of
V (x(t)),

V (x(t)) ≤ e−qtV (x0) exp(

∫ t

0

γ(‖u(τ)‖)dτ) +

∫ t

0

γ(‖u(τ)‖)e−q(t−τ)dτ exp(

∫ t

0

γ(‖u(τ)‖)dτ)

V (x(t)) ≤ e−qtV (x0) exp(

∫ t

0

γ(‖u(τ)‖)dτ) +

∫ t

0

γ(‖u(τ)‖)dτ exp(

∫ t

0

γ(‖u(τ)‖)dτ)

V (x(t)) ≤ e−qtV (x0) exp(h(t)) + h(t) exp(h(t))

V (x(t)) ≤ e−qtV (x0) +
1

2
e−2qtV (x0)2 +

1

2
(exp(h(t))− 1)2 + h(t) exp(h(t)).

For the next steps we will use that there exist α1(s), α2(s) ∈ K∞ such that α1(‖x‖) ≤ V (x) ≤
α2(‖x‖). Also we define K∞ functions θ1 and θ2 to be θ1(r) = r+ 1

2r
2 and θ2(r) = 1

2 (r−1)2+rer.

23



CHAPTER 5. BILINEAR SYSTEMS

This gives

V (x(t)) ≤ e−qtV (x0) +
1

2
e−2qtV (x0)2 +

1

2
(exp(h(t))− 1)2 + h(t) exp(h(t))

α1(‖x(t)‖) ≤ e−qtV (x0) +
1

2
e−2qtV (x0)2 +

1

2
(exp(h(t))− 1)2 + h(t) exp(h(t))

α1(‖x(t)‖) ≤ θ1(e−qtV (x0)) + θ2(h(t))

α1(‖x(t)‖) ≤ θ1(e−qtα2(‖x0‖)) + θ2(h(t))

‖x(t)‖ ≤ α−11 (θ1(e−qtα2(‖x0‖)) + θ2(h(t)))

‖x(t)‖ ≤ α−11 (2θ1(e−qtα2(‖x0‖))) + α−11 (θ1(h(t))

‖x(t)‖ ≤ α−11 (2θ1(e−qtα2(‖x0‖))) + α−11 (θ1(

∫ t

0

γ(‖u(τ)‖)dτ)).

So β(‖x0‖, t) = α−11 (2θ1(e−qtα2(‖x0‖))), γ̃1(s) = α−11 (θ1(s)) and γ̃2(s) = γ(s). Thus Equation
(3.3) is satisfied and the system is iISS.

What is interesting to observe is that these different theorems need different Lyapunov functions.
For example where V (x) = x∗Px was not sufficient to show that bilinear systems are iISS
regarding Equation (3.6), this Lyapunov function will work to show that bilinear systems are
iISS using Theorem 5.3, which will be shown now and which will give a start for showing
small–gain ISS.

Proposition 5.4. If A is Hurwitz, then the Lyapunov function V (x) = x∗Px, with P the
solution of AP + PA∗ = −I, is a Lyapunov function for bilinear systems as in Theorem 5.3,
thus bilinear systems are iISS.

Proof. To show this we will use the Lyapunov function V (x) = x∗Px with P the solution of
PA+A∗P = −I,

∇V (x)f(x, u) = 2x∗PAx+ 2ux∗PBx

= −‖x‖2 + 2ux∗PBx

≤ −‖x‖2 + 2|u|‖x‖2‖PB‖
≤ (2|u|‖PB‖ − 1)‖x‖2

≤ (r2|u|‖PB‖ − q)V (x).

Where 1
r is the smallest eigenvalue of P and 1

q is the largest eigenvalue of P . The last step
needs some extra explanation, since P is positive definite and symmetric, P has only positive
eigenvalues. Then it holds that 1

r‖x‖
2 ≤ x∗Px ≤ 1

q‖x‖
2, thus ‖x‖2 ≤ rV (x) and −‖x‖2 ≤

−qV (x). Thus the requirements from Theorem 5.3 are satisfied and the bilinear system is
iISS.

We had already proved that bilinear systems are iISS, but above we have shown that it is also
possible to prove this with a Lyapunov function. We can continue from here for small–gain
ISS.

Proposition 5.5. A bilinear system is small–gain ISS if and only if A is Hurwitz. In that
case, R can be chosen to be R = 1

2‖B‖‖P‖ . In which P is the positive solution of the Lyapunov
equation PA+A∗P = −I.
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Proof. Take V (x) = x∗Px, with P the solution of PA+A∗P = −I. Then we assume that there
is an R > 0 such that ‖u‖∞ < R. This R we can still choose, but we will already assume there
is one. This gives the following estimation:

∇V (x)f(x, u) ≤ −‖x‖2 + 2|u| · ‖PB‖ · ‖x‖2

≤ −‖x‖2 + 2R‖P‖ · ‖B‖ · ‖x‖2

= (−1 + 2R‖P‖ · ‖B‖)‖x‖2. (5.6)

To prove the system is small–gain ISS we need to show that Equation (3.5) is satisfied. Thus
we need that (1 − 2R‖P‖‖B‖)s2 = α(s) ∈ K∞. This is the case if 1 − 2R‖P‖‖B‖ > 0, thus if
R < 1

2‖B‖‖P‖ . In fact, equality will also work since it already holds that ‖u‖ < R.

This chapter can be summarised with the following theorem for bilinear systems:

Theorem 5.6. For bilinear systems ẋ = Ax+ uBx, the following are equivalent:

1. The system is iISS,
2. The matrix A is Hurwitz,
3. The system is strong iISS,
4. The system is small–gain ISS.

Proof. 1⇔ 2 follows from Proposition 5.1. 2⇔ 4 follows from Proposition 5.5. Because of the
definition of strong iISS we have that 3 ⇒ 1 ∧ 4 and because 2 implies both 1 and 4 we have
that 2⇒ 3. Thus the proof is completed.
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Chapter 6

Infinite dimensional systems

After having reviewed the ISS properties of finite dimensional linear and bilinear systems we
will have a look at infinite dimensional systems. At first linear systems will be considered and
after that bilinear systems will be considered.

Infinite dimensional systems are formulated using more general operators instead of matrices.
For these operators we distinguish bounded and unbounded operators which are defined be-
low.

Definition 6.1. An operator B : D(B)→ X with D(B) ⊆ X, is called bounded if

‖B‖ = sup
x∈D(B),x 6=0

‖Bx‖
‖x‖

<∞.

An operator that is not bounded is called unbounded.

If we make the step from finite dimensional systems to infinite dimensional systems often the
requirement thatA is Hurwitz is replaced by the requirement thatA should generate an exponen-
tially stable semigroup. For finite dimensional matrix operators this requirement is equivalent
and in that case we have that T (t) = eAt. Using Lemma 4.1 it is easy to show that this indeed
is a semigroup. However, if we make the switch to infinite dimensional systems it is not suffi-
cient that all eigenvalues of A are negative in order for A to generate an exponentially stable
semigroup. This can for example be seen in [7].

6.1 Linear systems
There are two categories of infinite dimensional linear systems. The difference is whether B
is bounded or not. The ‘easy’ case is when B is bounded, therefore this will be treated first.
After that the case where B is unbounded will be treated, what is done for the systems with
unbounded B will also hold for the case B is bounded.

6.1.1 Bounded B

At first we define general linear systems with bounded B. This can be seen as an example of
the system class defined in Definition 3.1.
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Definition 6.2. Let A : D(A) → X with D(A) ⊆ X and B ∈ L(U,X), let A generate a
semigroup T, we call

φ(t, x0, u) = x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds (6.1)

a mild solution related to the formal equation

ẋ(t) = Ax(t) +Bu(t) (6.2)

with (x0, u) ∈ D = X × UR≥0 and u piecewise continuous. We call (X,U, φ) a (infinite dimen-
sional) linear system.

Remark 6.3. Let us show that the system from Definition 6.2 indeed satisfies the condition
from Definition 3.1. Therefore, we will show that (X,U, φ) satisfies the three properties of a
system. To show this, we need that φ is well defined. This is the case since the integral in
Equation (6.1) exists in X as X-valued Lebesgue integral as can be seen in [5].

1. We have to show that φ(0, x, u) = x, this is the case since

φ(0, x0, u) = T (0)x0 +

∫ 0

0

T (−s)Bu(s)ds = x0.

2. We have to show that (φ(t, x, u), u(t+ ·)) ∈ D and φ(t+ h, x, u) =
φ(h, φ(t, x, u), u(t + ·)), this is the case since at first x(t) = φ(t, x0, u) ∈ X, which holds
because the integral exists in X, thus (φ(t, x0, u), u(t+ ·)) ∈ D and secondly

φ(t+ h, x, u) = T (t+ h)x0 +

∫ t+h

0

T (t+ h− s)Bu(s)ds

= T (h)(T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds) +

∫ t+h

t

T (t+ h− s)Bu(s)ds

= φ(h, φ(t, x0, u), u(t+ ·)).

3. We have to show that (x, u|[0,t]) ∈ D and u|[0,t] = u2|[0,t] implies that φ(t, x, u) = φ(t, x, u2),
this is the case since to determine x(t) only u(s)|[0,t] is used, so if the input on this interval
is the same, then x(t) will be the same.

Therefore, the system in Definition 6.2 is indeed a system as defined in Definition 3.1.

In practice ystems are often written in Ordinary Differential Equation (ODE) form, this is also
possible for systems as in Definition 6.2 and can be seen in the next remark.

Remark 6.4. The ODE stated below will be understood in the sense of Definition 6.2, which
gives its mild solution. The ODE is as follows:

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0.

Where x ∈ X, u ∈ U and u : [0,∞)→ U is piecewise continuous. Next to that B : U → X and
A : D(A)→ X has to generate a semigroup. (6.1).
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We will now show how to solve the ODE in Remark 6.4 to get the mild solution stated in
Equation (6.1) using an integrating factor. This goes as follows,

dx

dt
(t) = Ax(t) +Bu(t)

dx

dt
−Ax(t) = Bu(t)

e−At
dx

dt
− e−AtAx(t) = e−AtBu(t)

d

dt
(e−Atx(t)) = e−AtBu(t)∫ t

0

d

dτ
(e−Aτx(τ))dτ =

∫ t

0

e−AτBu(τ)dτ

e−Atx(t)− x(0) =

∫ t

0

e−AτBu(τ)dτ

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

So indeed the solution of the ODE in Remark 6.4 is Equation (6.1). For the finite dimensional
linear systems and the infinite dimensional linear system with bounded B this gives the exact
solution. However, if B is unbounded the solution given here cannot be seen as an exact solution,
but is a mild solution.

For the situation with the linear system with bounded B the proof to show that the system is
ISS is similar to what is done in Theorem 4.2. It does still hold that ISS implies small–gain ISS
by definition.

Theorem 6.5. For infinite dimensional linear systems as in Definition 6.2 the following state-
ments are equivalent:

1. A generates an exponentially stable semigroup,
2. The system is ISS,
3. The system is iISS,
4. The system is small–gain ISS,
5. The system is strong iISS.

Proof. First we will show 2 ⇒ 1. We already know that A generates a semigroup T , we only
have to show that this semigroup is exponentially stable. If we set u equal to zero we know
from the ISS or iISS property that for all t ≥ 0,

‖x(t)‖ = ‖T (t)x0‖ ≤ β(‖x0‖, t).

If we use a slightly different, but equivalent definition of the operator norm that we used before,
we get the following for every t ≥ 0:

‖T (t)‖ = sup
‖x0‖≤1

‖T (t)x0‖ ≤ sup
‖x0‖≤1

β(‖x0‖, t) ≤ β(1, t).

Where the last inequality holds since β is increasing in ‖x0‖. Because β is decaying in t we
know that there is a t0 ≥ 0 such that β(1, t) < 1 for all t ≥ t0. Therefore we know that there
exists a t0 ≥ 0 such that ‖T (t)‖ < 1 for all t ≥ t0. Now we also know that there exists an ω < 0
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such that ‖T (t0)‖ = eωt0 . Moreover we know by the uniform boundedness principle that for
every compact interval in [0,∞) we have that ‖T (·)‖ is bounded by a constant. This will also
hold for the interval [0, t0]. Thus there exists a C ≥ 0 such that for any r ∈ [0, t0] we have that
‖T (r)‖ ≤ C. Now we will combine this together with the properties of a semigroup to show
that T is exponentially stable. To do we use that for every t ≥ 0 there exists an r ∈ [0, t0] and
an n ∈ N such that t = nt0 + r. This gives,

‖T (t)‖ = ‖T (nt0 + r)‖ = ‖T (t0)nT (r)‖

≤ ‖T (t0)‖n‖T (r)‖ ≤ Cenωt0 = Cenω
t−r
n

= Ceωte−ωr = Meωt,

in which M = Ce−ωr. Therefore the semigroup is exponentially stable and thus, 2⇒ 1, 3⇒ 1
and 4 ⇒ 1. By the definition of small–gain ISS we have that 2 ⇒ 4 and by the definition of
strong iISS we have that 5 ⇒ 3 and that 3 ∧ 4 ⇒ 5. Thus we now only have have 1 ⇒ 2 and
1⇒ 3 left to show.

First we will show 1⇒ 2. We will do this by estimating the norm of x(t) to get Equation (3.2).
To do this we will use the mild solution defined in Definition 6.2. Next to that we will use that
for an exponentially stable semigroup T there exist M ≥ 1 and ω < 0 such that ‖T (t)‖ ≤Meωt

for all t ≥ 0. This gives,

‖x(t)‖ = ‖T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds‖

≤ ‖T (t)x0‖+ ‖
∫ t

0

T (t− s)Bu(s)ds‖

≤ ‖T (t)‖‖x0‖+

∫ t

0

‖T (t− s)‖‖B‖‖u(s)‖ds

≤Meωt‖x0‖+

∫ t

0

M‖B‖eω(t−s)‖u(s)‖ds.

Next we will apply Hölder’s inequality on the integral part with the infinity-norm on u and the
1-norm on the other terms,

‖x(t)‖ ≤Meωt‖x0‖+

∫ t

0

M‖B‖eω(t−s)‖u(s)‖ds

≤Meωt‖x0‖+M‖B‖
∫ t

0

eω(t−s)ds‖u‖∞[0,t]

≤Meωt‖x0‖+M‖B‖(− 1

ω
+

1

ω
eωt)‖u‖∞[0,t]

≤Meωt −M‖B‖ 1

ω
‖u‖∞[0,t].

Where the last step holds since ω < 0. Therefore, Equation (3.2) is satisfied with

β(‖x0‖, t) = Mωt‖x0‖ and γ(s) = −M‖B‖ 1

ω
s,

thus 1⇒ 2.
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Finally we will show that 1 ⇒ 3. This goes similar as before, only Hölder’s inequality will not
be applied. So we already know the following:

‖x(t)‖ ≤Meωt‖x0‖+M‖B‖
∫ t

0

eω(t−s)‖u(s)‖ds.

Now we use that eω(t−s) ≤ 1 and then we get that the system is iISS with β(‖x0‖, t) = Mωt‖x0‖,
γ1(s) = M‖B‖s and γ2(s) = s. Thus 1⇒ 3, which completes the proof.

Remark 6.6. For iISS different choices of γ1 and γ2 are allowed if further estimations are
made. Therefore, we will apply Hölder’s inequality with a general q-norm for u and a p-norm
for the other terms satisfying 1

p + 1
q = 1. This gives,

‖x(t)‖ ≤Meωt‖x0‖+M‖B‖(
∫ t

0

epω(t−s)ds)
1
p (

∫ t

0

‖u(s)‖qds)
1
q

≤Meωt‖x0‖+M‖B‖(− 1

pω
+

1

pω
epωt)

1
p (

∫ t

0

‖u(s)‖qds)
1
q

≤Meωt‖x0‖+M‖B‖(− 1

pω
)

1
p (

∫ t

0

‖u(s)‖qds)
1
q .

Where the last step holds since ω < 0. Thus Equation (3.3) is also satisfied with β(‖x0‖, t) =

Mωt‖x0‖, γ1(s) = M‖B‖(− 1
pω )

1
p s

1
q and γ2(s) = sq.

6.1.2 Unbounded B

To discuss all the results regarding infinite dimensional systems with unbounded operator B
we need another notion that is not yet discussed. This is an extension of X, named X−1. To
define this we use the resolvent operator based on A. We take a λ ∈ C in the resolvent set
of A, then we say that all x in the completion of X with ‖(λI − A)−1x‖X < ∞ are in X−1,
this set is independent of λ. Now we can define the operator A−1 as an operator that has the
same operation as A, but with D(A−1) = X, so A−1 : X → X−1. If A generates a semigroup,
then the corresponding semigroup T−1 generated by A−1 has the same action as T and has
T−1 : X−1 → X−1.

Now this is made clear we can define infinite dimensional linear systems with unbounded
B.

Definition 6.7. Let A : D(A) → X−1 with D(A) ⊆ X and B ∈ L(U,X−1), let A generate a
semigroup T on X. We call

φ(t, x0, u) = x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds (6.3)

a mild solution, with values in X−1, related to the formal equation

ẋ(t) = Ax(t) +Bu(t) (6.4)

with u piecewise continuous and (x0, u) ∈ D ⊆ X × UR≥0 such that x ∈ X for all t ≥ 0. We
call (X,U, φ) a (infinite dimensional) unbounded linear system.
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Remark 6.8. Let us show that the system from Definition 6.7 indeed satisfies the conditions
from Definition 3.1. Therefore, we will show that (X,U, φ) satisfies the three properties of a
system. To show this, we need that φ is well defined. This is the case since the integral in
Equation (6.3) exists in X−1 as X−1-valued Lebesgue integral is bounded as can be seen in [5].

1. We have to show that φ(0, x, u) = x, this is the case since

φ(0, x0, u) = T (0)x0 +

∫ 0

0

T (−s)Bu(s)ds = x0.

2. We have to show that (φ(t, x, u), u(t+ ·)) ∈ D and φ(t+ h, x, u) = φ(h, φ(t, x, u), u(t+ ·)),
this is the case since at first (φ(t, x0, u), u(t+ ·)) ∈ D by the definition of D and secondly

φ(t+ h, x, u) = T (t+ h)x0 +

∫ t+h

0

T (t+ h− s)Bu(s)ds

= T (h)(T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds) +

∫ t+h

t

T (t+ h− s)Bu(s)ds

= φ(h, φ(t, x0, u), u(t+ ·)).

3. We have to show that (x, u|[0,t]) ∈ D and u|[0,t] = u2|[0,t] implies that φ(t, x, u) = φ(t, x, u2),
this is the case since to determine x(t) only u(s)|[0,t] is used, so if the input on this interval
is the same, then x(t) will be the same.

Therefore, the system in Definition 6.7 is indeed a system as defined in Definition 3.1.

In practice systems are often written in ODE form, this is also possible for systems as in
Definition 6.7 and can be seen in the next remark.

Remark 6.9. The ODE stated below will be understood in the sense of Definition 6.7, which
gives its mild solution. The ODE is as follows:

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0.

Where x ∈ X−1, u ∈ U and u : [0,∞)→ U is piecewise continuous. Next to that B : U → X−1
and A : D(A)→ X−1 has to generate a semigroup.

Under a certain condition these systems are iISS, however, the condition that we will show only
holds for ‘diagonal’ systems, therefore we will now define what ‘diagonal’ systems are.

Definition 6.10. We call an operator A : D(A)→ X with D(A) ⊆ X diagonal, if A possesses
an orthonormal basis of X consisting of eigenvectors (en)n∈N with eigenvalues (an)n∈N lying in
a sector in the open left half-plane C−, where the vertex of the sector is at zero and the opening
angle is less than π.

For a diagonal operator A : D(A)→ X with D(A) ⊆ X, we therefore have that for any x ∈ X
there exists a unique sequence of coefficients (xn) ∈ `2 such that x =

∑
n∈N xnen. Moreover, it

follows that

D(A) = {x =
∑

xnen :
∑

anxnen converges } = {x =
∑

xnen : (anxn) ∈ `2}.

For infinite dimensional linear systems with unbounded B the following result is proved in
[10].
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Theorem 6.11. Let U = C, and assume that the operator A is diagonal as defined in Definition
6.10. Let X−1 be defined as mentioned in the beginning of Section 6.1.2 and B ∈ L(U,X−1).
Then the system as in Definition 6.7 is iISS.

For the proof see [10]. Since we will encounter a similar proof for bilinear systems, see Section
6.2.2, we refrain from including it here.

6.2 Bilinear systems

6.2.1 Bounded B

At first we define general linear systems with bounded B. This can be seen as yet another
example of Definition 3.1.

Definition 6.12. Let A : D(A) → X with D(A) ⊆ X and B ∈ L(U,X), let A generate a
semigroup T. We call a function x : [0,∞)→ X solving

x(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds (6.5)

for all t ≥ 0 a mild solution related to the formal equation

ẋ(t) = Ax(t) + u(t)Bx(t) (6.6)

with (x0, u) ∈ D = X×UR≥0 and u piecewise continuous. We call this solution x(t) = φ(t, x0, u).
We call (X,U, φ) an (infinite dimensional) bilinear system. With Theorem 2.5 it can be shown
that a unique solution x(t) of Equation (6.5) exists.

Remark 6.13. Let us show that the system from Definition 6.12 indeed satisfies the conditions
from Definition 3.1. Therefore, we will show that (X,U, φ) satisfies the three properties of a
system. To show this, we need that φ is well defined. This is the case since the integral in
Equation 6.5 exists in X as X-valued Lebesgue integral as can be seen in [5].

1. We have to show that φ(0, x, u) = x, this is the case since

φ(0, x0, u) = T (0)x0 +

∫ 0

0

T (−s)u(s)Bx(s)ds = x0.

2. We have to show that (φ(t, x, u), u(t+ ·)) ∈ D and φ(t+ h, x, u) = φ(h, φ(t, x, u), u(t+ ·)),
this is the case since at first φ(t, x0, u) ∈ X, which holds because the integral exists in X,
thus (φ(t, x0, u), u(t+ ·)) ∈ D and secondly

φ(t+ h, x, u) = T (t+ h)x0 +

∫ t+h

0

T (t+ h− s)u(s)Bx(s)ds

= T (h)(T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds) +

∫ t+h

t

T (t+ h− s)u(s)Bx(s)ds

= φ(h, φ(t, x0, u), u(t+ ·)).

In which we used that Equation (6.5) has a unique solution x.
3. We have to show that (x, u|[0,t]) ∈ D and u|[0,t] = u2|[0,t] implies that φ(t, x, u) = φ(t, x, u2),

this is the case since to determine x(t) only u(s)|[0,t] is used, so if the input on this interval
is the same, then x(t) will be the same.
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Therefore, the system in Definition 6.12 is indeed a system as defined in Definition 3.1.

In Equation (6.5) x(t) is mentioned both at the left and right hand side. When using Definition
6.12, Theorem 2.5 should be used to show that there exists a x(t) satisfying Equation (6.5).
Now we will sketch the idea of how to show this. We will take a certain interval I = [0, δ] and
have t ∈ I and take x, y : I → X. To apply Theorem 2.5 we will fix x0 and u. Moreover, we
will take F (x) to be the right hand side of Equation (6.5), in which x : [0, δ]→ X. We want to
find a unique solution x : [0, δ]→ X that satisfies Equation (6.5). To do this we have to make δ
small enough such that F becomes a contraction on the set of continuous functions from [0, δ]
to X.

‖F (x)(t)− F (y)(t)‖ = ‖T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds− T (t)x0 −
∫ t

0

T (t− s)u(s)By(s)ds‖

≤ ‖
∫ t

0

T (t− s)u(s)B(x(s)− y(s))ds‖

≤
∫ t

0

‖T (t− s)u(s)B(x(s)− y(s))‖ds

≤
∫ t

0

‖T (t− s)‖‖u(s)‖‖B‖‖x(s)− y(s)‖ds.

Now take M ≥ 1, ω ∈ R such that ‖T (t)‖ ≤Meωt. This gives,

≤
∫ t

0

Meω(t−s)‖u(s)‖‖B‖‖x(s)− y(s)‖ds

≤ ‖B‖Meωt sup
s∈[0,t]

(‖u(s)‖‖x(s)− y(s)‖X)

∫ t

0

e−ωsds

≤ ‖B‖Meωδ sup
s∈[0,δ]

‖u(s)‖ sup
s∈[0,δ]

‖x(s)− y(s)‖X
1

ω
(1− e−ωδ).

The constant, ‖B‖Meωδ sups∈[0,δ] ‖u(s)‖ 1ω (1− e−ωδ), goes to zero if δ goes to zero. Therefore,
the interval can be made such that the constant is smaller than 1. Then according to Theorem
2.5 there exists a solution x(t) for t in the interval. Moreover, the interval can be moved and
therefore it can be shown that a solution exists for all t ≥ 0.

In practice systems are often written in ODE form, this is also possible for systems as in
Definition 6.12 and can be seen in the next remark.

Remark 6.14. The ODE stated below will be understood in the sense of Definition 6.12, which
gives its mild solution. The ODE is as follows:

ẋ(t) = Ax(t) + u(t)Bx(t),

x(0) = x0.

Where x ∈ X, u ∈ U and u : [0,∞)→ U is piecewise continuous. Next to that B : U → X and
A : D(A)→ X has to generate a semigroup.

We will show that infinite dimensional bilinear systems with bounded B are iISS. To show this,
the proof of 5.1 should be extended.

Theorem 6.15. An infinite dimensional bilinear system as in Definition 6.12 is iISS if and
only if A generates an exponentially stable semigroup T .
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Proof. The proof is similar to the proof of Proposition 5.1. Only the beginning is a bit different,
so we will show how to get to Equation (5.3) and from there the same steps can be applied, so
they will not be repeated.

To get to Equation (5.3) we will start with the mild solution from Definition 6.12. We will take
the norm and again use that for an exponentially stable semigroup T there exist M ≥ 1 and
ω < 0 such that ‖T (t)‖ ≤Meωt for all t ≥ 0. This gives,

‖x(t)‖ = ‖T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds‖

≤ ‖T (t)x0‖+ ‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖

≤ ‖T (s)‖‖x0‖+

∫ t

0

‖T (t− s)‖|u(s)|‖B‖‖x(s)‖ds

≤Meωt‖x0‖+

∫ t

0

Meω(t−s)|u(s)‖B‖‖x(s)‖ds.

This is equal to Equation (5.3) and the proof can be continued like the proof in Proposition
5.1. Therefore, the system is iISS with β(s, t) = (1 + Meωts)2 − 1, γ1(s) = e2s − 1 and
γ2(s) = M |s|‖B‖.

Finally, if the system is iISS then A generates an exponentially stable semigroup. This follows
from the proof of Theorem 6.5, since if u is equal to zero the linear and bilinear system are
identical.

Next we will show that these infinite dimensional bilinear systems with bounded B are also
small–gain ISS.

Theorem 6.16. An infinite dimensional bilinear system as in Definition 6.12 with bounded B
is small–gain ISS if and only if A is exponentially stable. In that case, R can be chosen to be
R = −ω

M‖B‖ . In which ω < 0 and M ≥ 1 are such that ‖T (t)‖ ≤Meωt for all t ≥ 0.

Proof. We will only show ‘⇐’, the other way is clear from what is mentioned before. For the
finite dimensional case we used a Lyapunov argument to show small–gain ISS. However this
cannot be extended to the infinite dimensional case. Therefore we will show small–gain ISS
using Definition 3.6. This also is the reason why there is a different bound as in the finite
dimensional case.

In the proof of Theorem 6.15 we already showed for the infinite dimensional case how to reach
Equation (5.3). In the proof of Proposition 5.1 we showed how to go from Equation (5.3)
to Equation (5.4). Therefore we will now continue from Equation (5.4) to show that infinite
dimensional bilinear systems are small–gain ISS. In this we used that there exist ω < 0 and
M ≥ 1 such that ‖T (t)‖ ≤ Meωt for all t ≥ 0. Furthermore we will use that there exists a
R > 0 for which we will take |u(t)| < R for all t ≥ 0. This gives the following:
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‖x(t)‖ ≤ eωtM‖x0‖ exp(

∫ t

0

M |u(τ)|‖B‖dτ)

≤ eωtM‖x0‖eMR‖B‖t

= Me(ω+MR‖B‖)t‖x0‖.

Which gives an estimate as in Definition 3.6 if ω + MR‖B‖ < 0. This means that the system
is indeed small–gain ISS with R = −ω

M‖B‖ . However, it might be that there is a bigger R that is
also allowed.

The results given above can again be combined into one theorem.

Theorem 6.17. For infinite dimensional bilinear systems with bounded B, systems as in Def-
inition 6.12, the following are equivalent:

1. A generates a semigroup that is exponentially stable,
2. The system is iISS,
3. The system is strong iISS,
4. The system is small–gain ISS.

Proof. 1 ⇔ 2 follows from Theorem 6.15. 1 ⇔ 4 follows from Theorem 6.16. Because of the
definition of strong iISS we have that 3 ⇒ 2 ∧ 4 and because 2 implies both 1 and 4 we have
that 2⇒ 3.

6.2.2 Unbounded B

What starts to get more complicated is the same idea for the infinite dimensional bilinear
system, but now with unbounded B. This does change the definition of the system slightly, so
the system will be defined again.

Definition 6.18. Let A : D(A) → X with D(A) ⊆ X and B ∈ L(U,X−1), let A generate a
semigroup T. We call

x(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds (6.7)

a mild solution related to the formal equation

ẋ(t) = Ax(t) + u(t)Bx(t) (6.8)

with u piecewise continuous and (x0, u) ∈ D ⊆ X × UR≥0 such that x ∈ X for all t ≥ 0. We
call (X,U, φ) a (infinite dimensional) unbounded linear system. Due to Theorem 2.5 a unique
solution x(t) of Equation (6.7) exists. We call this solution φ(t, x0, u).

Remark 6.19. Let us show that the system from Definition 6.18 indeed satisfies the conditions
from Definition 3.1. Therefore, we will show that (X,U, φ) satisfies the three properties of a
system. To show this, we need that φ is well defined. This is the case since the integral in
Equation (6.7) exists in X−1 as X−1-valued Lebesgue integral as can be seen in [5].

1. We have to show that φ(0, x, u) = x, this is the case since

φ(0, x0, u) = T (0)x0 +

∫ 0

0

T (−s)u(s)Bx(s)ds = x0.
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2. We have to show that (φ(t, x, u), u(t+ ·)) ∈ D and φ(t+ h, x, u) = φ(h, φ(t, x, u), u(t+ ·)),
this is the case since at first (φ(t, x0, u), u(t+ ·)) ∈ D by the definition of D and secondly

φ(t+ h, x, u) = T (t+ h)x0 +

∫ t+h

0

T (t+ h− s)u(s)Bx(s)ds

= T (h)(T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds) +

∫ t+h

t

T (t+ h− s)u(s)Bx(s)ds

= φ(h, φ(t, x0, u), u(t+ ·)).

In which we used that Equation (6.7) has a unique solution x.
3. We have to show that (x, u|[0,t]) ∈ D and u|[0,t] = u2|[0,t] implies that φ(t, x, u) = φ(t, x, u2),

this is the case since to determine x(t) only u(s)|[0,t] is used, so if the input on this interval
is the same, then x(t) will be the same.

Therefore, the system in Definition 6.18 is indeed a system as defined in Definition 3.1.

In Equation (6.7) x(t) is mentioned both at the left and right hand side. When using Definition
6.18, Theorem 2.5 should be used to show that there exists a function x satisfying Equation
(6.7). This can be done similarly to the bounded case if the extended semigroup T−1(t) :
X−1 → X−1 is considered and if it is allowed that x ∈ X−1. This results in a generalised
solution x : [0,∞)→ X−1. When it is needed that x ∈ X this needs to be shown separately, an
example of how this is done can be seen in the proof of Theorem 6.21.

In practice systems are often written in ODE form, this is also possible for systems as in
Definition 6.18 and can be seen in the next remark.

Remark 6.20. The ODE stated below will be understood in the sense of Definition 6.18, which
gives its mild solution. The ODE is as follows:

ẋ(t) = Ax(t) + u(t)Bx(t),

x(0) = x0.

Where x ∈ X−1, u ∈ U and u : [0,∞)→ U is piecewise continuous. Next to that B : U → X−1
and A : D(A)→ X−1 has to generate a semigroup.

We will now show that under certain circumstances this system is also iISS. Because B is
unbounded the norm of B does not exist and cannot be used in the estimate for iISS. The proof
is based on the proof of Proposition 5.1, but the norm of B is avoided and instead there is a
requirement on a combination of A and B just like is done in [10] for the linear systems.

Theorem 6.21. An infinite dimensional bilinear system as in Definition 6.18 with diagonal A
and B is iISS if A generates an exponentially stable semigroup T and

f(s) =
∑
n∈N

|bn|2

|an|
e(an−ω)s

gives f ∈ Lp[0,∞) with some p such that 1 < p < ∞. Here, an, n ∈ N are the eigenvalues A,
bn, n ∈ N are the eigenvalues of B and ω is such that ω − an < 0 for all n ∈ N. If the system
is iISS we have that

β(s, t) = (1 + 2Mse
1
2ωt)2 − 1, γ1(s) = e2s − 1 and γ2(s) =

4qKq

2q
|s|2q

with q such that 1
p + 1

q = 1, M ≥ 1 such that ‖T (t)‖ ≤Meωt and K = ‖f‖Lp
.
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Proof. As mentioned before this proof is based on the proof of Proposition 5.1, but does not use
the norm of B. Therefore, also ideas from the proof of Theorem 6.11 are used, these can be found
in [10]. We will again us that there exists an M ≥ 1 and an ω < 0 such that ‖T (t)‖ ≤Meωt for
all t ≥ 0. Moreover, we assume that ω is chosen such that an − ω < −ε holds for all n and an
ε > 0. We will also use that en, n ∈ N is an orthonormal basis for X.

Since B is unbounded the first step is to show that the mild solution as in Definition 6.18 exists.
The mild solution is

x(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds

and we will show that the integral exists as element of X, because f ∈ Lp. This is done as
follows:

‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖2 = ‖
∫ t

0

(
∑
n∈N

ean(t−s)bnenxn(s))u(s)ds‖2

≤
∑
n∈N
|bn|2 · |

∫ t

0

ean(t−s)xn(s)u(s)ds|2

≤
∑
n∈N
|bn|2 · (

∫ t

0

ean(t−s)|xn(s)| · |u(s)|ds)2

≤
∑
n∈N

|bn|2

|an|2
· (
∫ t

0

|an|ean(t−s)|xn(s)| · |u(s)|ds).

This holds since the inequality occurs if the sum and the integral are interchanged. Another
inequality occurs when the norm is taken into the sum and integral. Now we will apply Cauchy-
Schwarz with f(s) =

√
|an|ean(t−s)|xn(s)| · |u(s)| and g(s) =

√
|an|ean(t−s) and then one of the

integrals is always smaller than 1, so an upper bound is 1. Also the sum and the integral will
be interchanged:

‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖2 ≤
∑
n∈N

|bn|2

|an|2
(

∫ t

0

|an|ean(t−s)|xn(s)|2|u(s)|2ds) · (
∫ t

0

|an|ean(t−s)ds)2

≤
∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))‖x(s)‖2|u(s)|2ds.

Now we will multiply with e−ωt. Also we will add the term eωse−ωs, which equals 1. This will
be rewritten to get f in the estimation:

‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖2 ≤ e−ωt
∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))eωse−ωs‖x(s)‖2|u(s)|2ds

≤
∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))eωse−ωs‖x(s)‖2|u(s)|2ds

≤
∫ t

0

(
∑
n∈N

|bn|2

|an|
e(an−ω)(t−s))e−ωs‖x(s)‖2|u(s)|2ds

=

∫ t

0

f(t− s)e−ωs‖x(s)‖2|u(s)|2ds.
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Now we will apply Hölder’s inequality and apply a substitution in the integral over f , which
will result in the norm of f that we named K. This gives,

‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖2 ≤ (

∫ t

0

f(t− s)pds)
1
p (

∫ t

0

e−qωs‖x(s)‖2q|u(s)|2qds)
1
q

≤ (

∫ t

0

f(v)pdv)
1
q sup
s∈[0,t]

(‖x(s)‖2q|u(s)|2q)
∫ t

0

e−ωsds

≤ K sup
s∈[0,t]

(‖x(s)‖2q|u(s)|2q) 1

ω
(1− e−ωt).

This shows that the integral is bounded and is properly defined. Later on we will show that this
system is iISS, which implies that the state is bounded. Therefore, the integral exists. Note that
this estimate will also work if the boundaries of the integral are changed. The only difference
will be that the bound gets smaller. With the same estimate we can show with Theorem 2.5
that there actually exists a unique solution x(t). The constant goes to zero if the interval gets
smaller. Therefore, the interval can be constructed such that the constant is smaller than 1.
Then according to Theorem 2.5 there exists a solution x(t) for t in the interval. Moreover, the
interval can be moved and therefore it can be shown that a solution exist for all t ≥ 0.

Next we will show the system is iISS. Many of the estimations made on the integral are similar
to what has been done above:

‖x(t)‖2 = ‖T (t)x0 +

∫ t

0

T (t− s)u(s)Bx(s)ds‖2

≤ (‖T (t)‖‖x0‖+ ‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖)2

≤ 2‖T (t)‖2‖x0‖2 + 2‖
∫ t

0

T (t− s)u(s)Bx(s)ds‖2

≤ 2M2e2ωt‖x0‖2 + 2‖
∫ t

0

(
∑
n∈N

ean(t−s)bnenxn(s))u(s)ds‖2

≤ 2M2e2ωt‖x0‖2 + 2
∑
n∈N
|bn|2 · |

∫ t

0

ean(t−s)xn(s)u(s)ds|2

≤ 2M2e2ωt‖x0‖2 + 2
∑
n∈N
|bn|2 · (

∫ t

0

ean(t−s)|xn(s)| · |u(s)|ds)2

= 2M2e2ωt‖x0‖2 + 2
∑
n∈N

|bn|2

|an|2
· (
∫ t

0

|an|ean(t−s)|xn(s)| · |u(s)|ds)2.

Now we will apply Cauchy-Schwarz with f =
√
|an|ean(t−s)|xn(s)|·|u(s)| and g =

√
|an|ean(t−s).

This gives the following:

‖x(t)‖2 ≤ 2M2e2ωt‖x0‖2 + 2
∑
n∈N

|bn|2

|an|2
(

∫ t

0

|an|ean(t−s)|xn(s)|2|u(s)|2ds) · (
∫ t

0

|an|ean(t−s)ds)

≤ 2M2eωt‖x0‖2 + 2

∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))‖x(s)‖2|u(s)|2ds.
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The next step is to multiply the entire inequality with e−ωt and substitute z(t) = e−ωt‖x(t)‖2,

‖x(t)‖2 ≤ 2M2eωt‖x0‖2 + 2

∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))‖x(s)‖2|u(s)|2ds

e−ωt‖x(t)‖2 ≤ 2M2‖x0‖2 + 2e−ωt
∫ t

0

(
∑
n∈N

|bn|2

|an|
ean(t−s))‖x(s)‖2|u(s)|2ds

e−ωt‖x(t)‖2 ≤ 2M2‖x0‖2 + 2

∫ t

0

e−ω(t−s)(
∑
n∈N

|bn|2

|an|
ean(t−s))e−ωs‖x(s)‖2|u(s)|2ds

z(t) ≤ 2M2‖x0‖2 + 2

∫ t

0

(
∑
n∈N

|bn|2

|an|
e(an−ω)(t−s))z(s)|u(s)|2ds.

Next we will use a substitution of the variables, namely v = t − s and later on s = t − v to
go back. Moreover, we will define f(s) =

∑
n∈N

|bn|2
|an| e

(an−ω)s and assume that f ∈ Lp. This
implies that there exists a K > 0 such that ‖f‖Lp ≤ K. This is useful after Hölder’s inequality
is applied. Since we choose ω such that an − ω < 0 it seems to be reasonable, to assume that
f ∈ Lp. The estimation is as follows:

z(t) ≤ 2M2‖x0‖2 + 2

∫ t

0

(
∑
n∈N

|bn|2

|an|
e(an−ω)(t−s))z(s)|u(s)|2ds

z(t) ≤ 2M2‖x0‖2 + 2

∫ t

0

|bn|2

|an|
e(an−ω)v)z(t− v)|u(t− v)|2dv.

Now we will apply Hölder’s inequality and use f like defined above. This gives,

z(t) ≤ 2M2‖x0‖2 + 2(

∫ t

0

f(v)pdv)
1
p (

∫ t

0

(z(t− v)|u(t− v)|2)qdv)
1
q

z(t) ≤ 2M2‖x0‖2 + 2K(

∫ t

0

(z(s)|u(s)|2)qds)
1
q

z(t)q ≤ (2M2‖x0‖2 + 2K(

∫ t

0

(z(s)|u(s)|2)qds)
1
q )q.

Now the inequality (a+b)q ≤ (2a)q+(2b)q is applied for a, b ≥ 0 and q ≥ 1. These requirements
are satisfied due to the norms and the fact that when applying Hölder’s inequality you have
that p, q ≥ 1. Also Lemma 2.2 will be applied here:

z(t)q ≤ (4M2‖x0‖2)q + (4K(

∫ t

0

(z(s)|u(s)|2)qds)
1
q )q

z(t)q ≤ 4qM2q‖x0‖2q +

∫ t

0

4qKqz(s)q|u(s)|2qds

z(t)q ≤ 4qM2q‖x0‖2q exp(

∫ t

0

4qKq|u(s)|2qds).
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Now we will substitute z(t) = e−ωt‖x(t)‖2 to again get x in there. This gives,

(e−ωt‖x(t)‖2)q ≤ 4qM2q‖x0‖2q exp(

∫ t

0

4qKq|u(s)|2qds)

e−qωt‖x(t)‖2q ≤ 4qM2q‖x0‖2q exp(

∫ t

0

4qKq|u(s)|2qds)

‖x(t)‖2q ≤ 4qM2q‖x0‖2qeqωt exp(

∫ t

0

4qKq|u(s)|2qds)

‖x(t)‖ ≤ 2M‖x0‖e
1
2ωt exp(

4qKq

2q

∫ t

0

|u(s)|2qds).

From now on we continue like in the proof of Proposition 5.1. So we again will apply α(r) =
ln(1 + r) with the same properties and inverse as mentioned in the proof of Proposition 5.1:

α(‖x(t)‖) ≤ α(2M‖x0‖e
1
2ωt exp(

4qKq

2q

∫ t

0

|u(s)|2qds))

α(‖x(t)‖) ≤ ln(1 + 2M‖x0‖e
1
2ωt) +

4qKq

2q

∫ t

0

|u(s)|2qds

‖x(t)‖ ≤ α−1(ln(1 + 2M‖x0‖e
1
2ωt) +

4qKq

2q

∫ t

0

|u(s)|2qds)

‖x(t)‖ ≤ α−1(2 ln(1 + 2M‖x0‖e
1
2ωt)) + α−1(2

4qKq

2q

∫ t

0

|u(s)|2qds)

‖x(t)‖ ≤ (1 + 2M‖x0‖e
1
2ωt)2 − 1 + exp(2

∫ t

0

4qKq

2q
|u(s)|2qds)− 1.

Now we have Equation (3.3) with

β(s, t) = (1 + 2Mse
1
2ωt)2 − 1, γ1(s) = e2s − 1 and γ2(s) =

4qKq

2q
|s|2q.

Thus the infinite dimensional bilinear system is iISS if f ∈ Lp and A generates an exponentially
stable semigroup T .

Remark 6.22. The condition of f ∈ Lp[0,∞) is not a necessary condition. There are systems
that do not satisfy this condition, but that are iISS. An example can be found in [9].
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Chapter 7

Examples

7.1 Linear system

At first we will start with an example of a linear infinite dimensional system. This is based on the
PDE of the heat equation with Neumann boundary control on one side, and is as follows:

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t)− π2x(ξ, t),

∂

∂ξ
x(0, t) = 0,

∂

∂ξ
x(1, t) = u(t),

x(ξ, 0) = x0(ξ) with ξ ∈ (0, 1), t > 0,

where u is piecewise continuous.

From this PDE a state–space system can be generated. The state is still allowed to change in
time, so we will have that X = L2(0, 1), by which the ‘location’ is included in the state. At
first we will assume u = 0 and determine A. After that B will be determined. If u is set to be
identical to zero we can derive the form of A as follows:

Af =
∂2

∂ξ2
f − π2If,

D(A) = {f ∈ H2[0, 1] :
∂2

∂ξ2
f ∈ X, ∂

∂ξ
f(0) = 0,

∂

∂ξ
f(1) = 0},

where H2 refers to the Sobolev space. As you can see now on both boundaries there is the
requirement that the derivative is zero, this would be the case if u is equal to zero. This A has
a convenient property, namely that the eigenfunctions form an orthonormal basis for X. These
eigenfunctions are as follows: e0(ξ) = 1, en(ξ) =

√
2 cos(nπξ), n ∈ N. We will first show that

these are indeed eigenfunctions of A and after that we will show that this is an orthonormal
basis for X. To show that they are eigenfunctions we will determine Ae0 and Aen. We will
note that this becomes equal to the corresponding eigenfunction multiplied by a constant, the
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eigenvalue. This can be seen here,

Ae0 =
∂2

∂ξ2
1− π2

= −π2

= −π2e0,

Aen =
∂2

∂ξ2

√
2 cos(nπξ)− π2

√
2 cos(nπξ)

= −
√

2n2π2 cos(nπξ)− π2
√

2 cos(nπξ)

= (−n2π2 − π2)en.

So these are indeed eigenfunctions of A with the eigenvalues an = −π2(n2 + 1). The next step
is to show that these eigenfunctions form an orthonormal basis. To do this we will show that
the inverse of A+ (1 + π2)I is

(Sh)(x) =

∫ x

0

(
cot(1) cos(x) cos(s) + sin(x) cos(s)

)
h(s)ds

+

∫ t

x

(
cot(1) cos(x) cos(s) + sin(s) cos(x)

)
h(s)ds.

From A.4.21 in [5] we know that this operator S is compact and self-adjoint. So if we show that
S is indeed the inverse of A+ (1 +π2)I, then the eigenfunctions of A form a basis. Now we will
show that (((A+ (1 + π2)I)S)h)(x) = h(x) and that (S(A+ (1 + π2)I)h)(x) = h(x).

Lemma 7.1. The inverse of the operator A+ (1 + π2)I with A being the operator ∂2

∂2ξ − π
2I is

(Sh)(x) =

∫ x

0

(cot(1) cos(x) cos(s) + sin(x) cos(s))h(s)ds

+

∫ t

x

(cot(1) cos(x) cos(s) + sin(s) cos(x))h(s)ds.

Proof. Now we will show that (((A+ (1 + π2)I)S)h)(x) = h and that (S(A+ (1 + π2)I)h)(x) =
h(x):

((A+ (1 + π2)I)S)h)(x) = ((
d2

dx2
S)h)(x) + (Sh)(x)

=
d2

dx2
( ∫ x

0

(cot(1) cos(x) cos(s) + sin(x) cos(s))h(s)ds+∫ 1

x

(cot(1) cos(x) cos(s) + sin(s) cos(x))h(s)ds
)

+ (Sh)(x)

=
d2

dx2
(

cot(1) cos(x)

∫ x

0

cos(s)h(s)ds+ sin(x)

∫ x

0

cos(s)h(s)ds+

cot(1) cos(x)

∫ 1

x

cos(s)h(s)ds+ cos(x)

∫ 1

x

sin(s)h(s)ds
)

+ (Sh)(x).
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Now we will differentiate this once using the product rule and rewrite the terms that cancel out,

=
d

dx

(
cot(1) cos(x) cos(x)h(x)− cot(1) sin(x)

∫ x

0

cos(s)h(s)ds

+ cos(x) sin(x)h(x) + cos(x)

∫ x

0

cos(s)h(s)ds

− cot(1) cos(x) cos(x)h(x)− cot(1) sin(x)

∫ 1

x

cos(s)h(s)ds

− sin(x) cos(x)h(x)− sin(x)

∫ 1

x

sin(s)h(s)ds
)

+ (Sh)(x)

=
d

dx

(
− cot(1) sin(x)

∫ x

0

cos(s)h(s)ds+ cos(x)

∫ x

0

cos(s)h(s)ds

− cot(1) sin(x)

∫ 1

x

cos(s)h(s)ds− sin(x)

∫ 1

x

sin(s)h(s)ds
)

+ (Sh)(x).

We will differentiate again and use that cos(x)2 + sin(x)2 = 1. This gives,

= − cot(1) sin(x) cos(x)h(x)− cot(1) cos(x)

∫ x

0

cos(s)h(s)ds

cos(x) cos(x)h(x)− sin(x)

∫ x

0

cos(s)h(s)ds

cot(1) sin(x) cos(x)h(x)− cot(1) cos(x)

∫ 1

x

cos(s)h(s)dsds

+ sin(x) sin(x)h(x)− cos(x)

∫ 1

x

sin(s)h(s)ds+ (Sh)(x)

= −(Sh)(x) + h(x) + (Sh)(x)

= h(x).

Thus this operation indeed is equal to the identity operation. Now we will show it the other
way around. This will be done with integrating by parts twice:

(S(A+ (1 + π2)I)h)(x) = (S
d2

dx2
h)(x) + (Sh)(x)

= cot(1) cos(x)

∫ x

0

cos(s)
d2

ds2
h(s)ds+ sin(x)

∫ x

0

cos(s)
d2

ds2
h(s)ds

+ cot(1) cos(x)

∫ 1

x

cos(s)
d2

ds2
h(s)ds+ cos(x)

∫ 1

x

sin(s)
d2

ds2
ds+ (Sh)(x)

= cot(1) cos(x)
(

cos(s)
d

ds
h(s)

∣∣∣∣x
s=0

+

∫ x

0

sin(s)
d

ds
h(s)ds

)
+ sin(x)

(
cos(s)

d

ds
h(s)

∣∣∣∣x
s=0

+

∫ x

0

sin(s)
d

ds
h(s)ds

)
+ cot(1) cos(x)

(
cos(s)

d

ds
h(s)

∣∣∣∣1
s=x

+

∫ x

0

sin(s)
d

ds
h(s)ds

)
+ cos(x)

(
sin(s)

d

ds
h(s)

∣∣∣∣1
s=x

−
∫ 1

x

cos(s)
d

ds
h(s)ds

)
+ (Sh)(x).
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Now we will use that h ∈ D(A) and that thus d
dsh(s)

∣∣∣∣
s=0

= d
dsh(s)

∣∣∣∣
s=1

= 0. This will make

some terms cancel out. This goes as follows,

= cot(1) cos(x) cos(x)
d

ds
h(s)

∣∣∣∣
s=x

+ cot(1) cos(x)

∫ x

0

sin(s)
d

ds
h(s)ds

+ sin(x) cos(x)
d

ds
h(s)

∣∣∣∣
s=x

+ sin(x)

∫ x

0

sin(s)
d

ds
h(s)ds

− cot(1) cos(x) cos(x)
d

ds
h(s)

∣∣∣∣
s=x

+ cot(1) cos(x)

∫ 1

x

sin(s)
d

ds
h(s)ds

− cos(x) sin(x)
d

ds
h(s)

∣∣∣∣
s=x

− cos(x)

∫ 1

x

cos(s)
d

ds
h(s)ds+ (Sh)(x)

= cot(1) cos(x)

∫ x

0

sin(s)
d

ds
h(s)ds+ sin(x)

∫ x

0

sin(s)
d

ds
h(s)ds

+ cot(1) cos(x)

∫ 1

x

sin(s)
d

ds
h(s)ds− cos(x)

∫ 1

x

cos(s)
d

ds
h(s)ds+ (Sh)(x).

We will integrate by parts again and use that cot(1) = cos(1)
sin(1) ,

= cot(1) cos(x)
(

sin(s)h(s)

∣∣∣∣x
s=0

−
∫ x

0

cos(s)h(s)ds
)

+ sin(x)
(

sin(s)h(s)

∣∣∣∣x
s=0

−
∫ x

0

cos(s)h(s)ds
)

+ cot(1) cos(x)
(

sin(s)h(s)

∣∣∣∣1
s=x

−
∫ 1

x

cos(s)h(s)ds
)

− cos(x)
(

cos(s)h(s)

∣∣∣∣1
s=x

+

∫ 1

x

sin(s)h(s)ds
)

+ (Sh)(x)

= −(Sh)(x) + cot(1) cos(x) sin(x)h(x)− 0 + sin(x) sin(x)h(x)− 0

+ cot(1) cos(x) sin(1)h(1)− cot(1) cos(x) sin(x)h(x)

− cos(x) cos(1)h(1) + cos(x) cos(x)h(x) + (Sh)(x)

= h(x).

Now we have shown that S indeed is the inverse of A + (1 + π2)I, with A being the operator
∂2

∂2ξ − π
2I.

Therefore as stated above we know that the eigenvectors of A from a basis for X. Next we will
show that this A generates an exponentially stable semigroup. To do this we will assume that
for every x ∈ X there exists xn ∈ R, n ∈ N such that x =

∑
n∈N xnen. The semigroup that is

generated by A is as follows: T (t)x =
∑
n∈N e

antxnen. First we will show that this indeed is a
semigroup, after that we will show that this is the semigroup that is generated by A.

To show that this is a semigroup we need to show the three properties from definition 2.3.

44



CHAPTER 7. EXAMPLES 7.1. LINEAR SYSTEM

1. T (t+ s) = T (t)T (s), for all t, s ≥ 0 is satisfied since

T (t)T (s)x = T (t)
∑
n∈N

eansxnen

=
∑
n∈N

eansxnT (t)en

=
∑
n∈N

eansxne
anten

=
∑
n∈N

ean(t+s)xnen

= T (t+ s)x.

2. T (0) = I is satisfied since

T (0)x =
∑
n∈N

ean0xnen =
∑
n∈N

xnen = Ix

3. For all x ∈ X, we have that ‖T (t)x− x‖X converges to zero, when t→ 0+. This takes a
bit longer to show. We will assume that t ≤ 1 which is a fair assumption, since we will
take t→ 0+. This gives,

‖T (t)x− x‖2 = ‖
∑
n∈N

(eantxnen − xnen)‖2

= ‖
∑
n∈N

(eant − 1)xnen)‖2

=
∑
n∈N
|eant − 1|2|xn|2

=

N∑
n=1

|eant − 1|2|xn|2 +

∞∑
n=N+1

|eant − 1|2|xn|2

Now we define K := sup0≤t≤1&n≥1 |eant − 1|2. Moreover, for any ε > 0 there exists an
N ∈ N such that

∞∑
n=N+1

|xn|2 ≤
ε

2K
.

After this we choose δ ≤ 1 such that sup1≤n≤N |eant − 1|2 ≤ ε
2‖z‖2 for all 0 ≤ t ≤ δ. This

δ depends both on ε and N . Now we can continue with the estimate:

‖T (t)x0 − x0‖2 =

N∑
n=1

|eant − 1|2|xn|2 +

∞∑
n=N+1

|eant − 1|2|xn|2

≤ sup
1≤n≤N

|eant − 1|2
N∑
n=1

|xn|2 + sup
0≤t≤1&n≥1

|eant − 1|2
∞∑

n=N+1

|xn|2

≤ ε

2‖z‖2
+K

ε

2K

≤ ε.

Thus we have that ‖T (t)x− x‖X converges to zero, when t→ 0+.
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Now it is known that T is a semigroup we still have to show that A is its generator. In Definition
2.4 it is defined what the generator of the semigroup is. We have to show that

Ax = lim
h→0+

1

h
(T (t)x− x) exists ⇔ x ∈ D(A).

We will start with showing ‘⇒’. As before we have that for every x ∈ X there exists xn ∈ R,
n ∈ N such that x =

∑
n∈N xnen. Moreover, we have that x ∈ D(A) ⇔

∑
n∈N |anxn|2 < ∞.

Now we will work out the limit, but not use the fact that we have the solution Ax already,

lim
h→0+

1

h
(T (t)x− x) exists ⇔ ∃y ∈ X s.t. lim

h→0+
(
1

h
(T (t)x− x)− y) = 0

⇔ ∃y ∈ X s.t. lim
h→0+

‖ 1

h
(T (t)x− x)− y‖2 = 0

⇔ ∃y ∈ X s.t. lim
h→0+

∑
n∈N
| 1
h

(eanh − 1)xn − yn|2 = 0

in which y =
∑
n∈N ynen. Since all terms in the sum are positive we know that if the sum goes

to zero all individual terms need to go to zero. Therefore, we can continue,

lim
h→0+

1

h
(T (t)x− x) exists ⇔ ∃y ∈ X s.t. lim

h→0+
| 1
h

(eanh − 1)xn − yn|2 = 0 ∀n ∈ N

⇔ ∃y ∈ X s.t. | lim
h→0+

1

h
(eanh − 1)xn − yn|2 = 0 ∀n ∈ N.

Next we will use the definition of the derivative of eant at t = 0 to get that limh→0+
1
h (eanh−1) =

an. This gives,

lim
h→0+

1

h
(T (t)x− x) exists ⇒ ∃y ∈ X s.t. |anxn − yn|2 = 0 ∀n ∈ N

⇒ ∃y ∈ X s.t. anxn = yn ∀n ∈ N

⇒ ∃y ∈ X s.t.
∑
n∈N
|anxn|2 =

∑
n∈N
|yn|2 <∞.

The sum over yn is finite since y ∈ X. Therefore, we now have shown ‘⇒’ with the limit equals
Ax. The next step is to show ‘⇐’. We know that x ∈ D(A) and that therefore

∑
n∈N |anxn|2 <

∞. Now we will show that limh→0+
1
h (T (t)x− x) = Ax. We have shown above that

lim
h→0+

1

h
(T (t)x− x) exists ⇔ ∃y ∈ X s.t. lim

h→0+

∑
n∈N
| 1
h

(eanh − 1)xn − yn|2 = 0

⇔ lim
h⇒0+

∑
n∈N
| 1
h

(eanh − 1)xn − anxn|2 = 0.

In which we will already use that y = Ax =
∑
n∈N anxnen. Without loss of generality we will

now assume that h ∈ [0, 1], since we take the limit of h to 0+, we can assume that h is not
big. Now we would like to switch around the limit and the sum, therefore we will show that
the sum converges absolutely and uniformly for h ∈ [0, 1]. This will be done by estimating the
sum, ∑

n∈N
| 1
h

(eanh − 1)xn − anxn|2 ≤
∑
n∈N

(2| 1
h

(eanh − 1)xn|2 + 2|anxn|2)

≤
∑
n∈N

(2| 1
h

(eanh − 1)|2|xn|2 + 2|an|2|xn|2).
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Now we will use the mean value theorem for f(t) = eant. By the mean value theorem we know
there exists an c ∈ [0, h] such that f(h)−f(0)

h−0 = f ′(c). Therefore, we know that

|eanh − 1|
h

= |aneanc| ≤ sup
s∈[0,h]

|aneans| = |an|.

Using this to further estimate the sum gives,∑
n∈N
| 1
h

(eanh − 1)xn − anxn|2 ≤
∑
n∈N

4|an|2|xn|2 <∞,

where this sum is finite since x ∈ D(A). Since we estimated the sum independent of h, we
know by the Weierstrass M-test that the sum converges absolutely and uniformly for h ∈ [0, 1].
Therefore, the sum and the limit can be switched around. If we then also apply the definition
of the derivative like done before, this gives:

lim
h⇒0+

∑
n∈N
| 1
h

(eanh − 1)xn − anxn|2 =
∑
n∈N

lim
h⇒0+

| 1
h

(eanh − 1)xn − anxn|2

=
∑
n∈N
| lim
h⇒0+

1

h
(eanh − 1)xn − anxn|2

≤
∑
n∈N

lim
h⇒0+

|anxn − anxn|2 = 0.

This implies that limh→0+
1
h (T (t)x− x) exists and is equal to Ax, thus we have now shown ‘⇐’

and indeed A is the generator of the semigroup T .

The next step is to determine B. To determine B we will use a general system that has the same
Neumann boundary condition as mentioned before and we will use that it is known what the
solution of a bilinear system looks like. We will start with a general system in the form

ẋ(t) = Ax(t),

Bx(t) = u(t),

x(0) = x0.

Here we have A defined like A was defined before, but with a slightly different domain, so

Af =
∂2

∂ξ2
f − π2If,

D(A) = {f ∈ H2[0, 1] :
∂2

∂ξ2
f ∈ X, ∂

∂ξ
f(0) = 0},

where H2 refers to the Sobolev space. So now the boundary condition where u was mentioned
is not in D(A). Furthermore, B is the operator that takes the spatial derivative and then
substitutes ξ = 1, so Bf = ∂

∂ξf
∣∣
ξ=1

. In this way you can see that the domain of A extended
with the requirement that f should be in the kernel of B gives exactly the domain of A. Thus
A|ker(B) = A.

Now we define z = x − B0u, with B0f(ξ) = ξf(ξ) and we will have a look at d
dtz = ż. This

might seem a bit unusual, but this substitution will give us the opportunity to get u and x
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together and to get a linear state–space system:

ż = ẋ−B0u̇

ż = Ax−B0u̇

ż = Az + AB0u−B0u̇.

Using the combination of the generalised solution for the linear system in Definition 6.7 we can
get rid of the derivative to z. After that it will be further rewritten to get something similar to
the generalised solution of a linear system in x, from which B can be determined. Moreover,
we use that AB0 = 0, since B0 = ξ is not in the domain of A. This gives,

z(t) = T (t)z(0) +

∫ t

0

T (t− s)(AB0u−B0u̇)ds

z(t) = T (t)z(0)−
∫ t

0

T (t− s)B0u̇ds

x(t)−B0u(t) = T (t)(x(0)−B0u(0))−
∫ t

0

T (t− s)B0u̇ds

x(t) = T (t)x(0)− T (t)B0u(0) +B0u(t)−
∫ t

0

T (t− s)B0u̇ds.

Next we want to get rid of the u̇ and get a u instead. The most intuitive way to do this is by
integration by parts. However, that would mean we need to differentiate T , from the theory of
semigroups we know that the derivative of T (t)x is T (t)Ax, see also Theorem 2.1.13 of [5]. Since
we have an unbounded B we will use the extension of T defined at the beginning of Chapter 6.
So, we can integrate by parts using the extended space X−1. This goes as follows:

x(t) = T (t)x(0)− T (t)B0u(0) +B0u(t)−
∫ t

0

T (t− s)B0u̇(s)ds

x(t) = T (t)x(0)− T (t)B0u(0) +B0u(t)− T (t− s)B0u(s)|ts=0 −
∫ t

0

T−1(t− s)A−1B0u(s)ds

x(t) = T (t)x(0)− T (t)B0u(0) +B0u(t)−B0u(t) + T (t)B0u(0)−
∫ t

0

T−1(t− s)A−1B0u(s)ds

x(t) = T (t)x(0)−
∫ t

0

T−1(t− s)A−1B0u(s)ds.

If we look at the general solution of a linear system as in Definition 6.7 we can now conclude that
Bf = −A−1B0f . We want to write this again in terms of the eigenfunctions, such that we can
say Bx =

∑
n∈N bnxnen, where x =

∑
n∈N xnen. To do this we will determine the coefficients cn

such that ξ =
∑
n∈N cnen. This will be done by calculating the inner product 〈ξ, en(ξ)〉, since

cn = 〈ξ, en(ξ)〉. First we will determine c0 and then cn for n > 0. This goes as follows:

c0 = 〈ξ, e0(ξ)〉 = 〈ξ, 1〉 =

∫ 1

0

ξdξ =
1

2
ξ2
∣∣∣∣1
ξ=0

=
1

2
.
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Now we will determine cn for n > 0,

cn = 〈ξ, en(ξ)〉

=

∫ 1

0

ξ cos(nπξ)dξ

= ξ
1

nπ
sin(nπξ)

∣∣∣∣1
ξ=0

−
∫ 1

0

1

nπ
sin(nπξ)dξ

=
1

nπ
sin(nπ) +

1

(nπ)2
cos(nπξ)

∣∣∣∣1
ξ=0

=
1

(nπ)2
cos(nπ)− 1

(nπ)2

=

{
0 n is even,
− 2

(nπ)2 n is odd.

Now we have that bn = ancn, thus

bn =


− 1

2π
2 n = 0

0 n is even, n 6= 0,

2n
2+1
n2 n is odd.

Now we can conclude that

∑
n∈N

|bn|2

|an|2
=

1

2
+

∑
n∈N,n odd

4 (n2+1)2

n4

π4(n2 + 1)2

=
1

2
+

∑
n∈N,n odd

4

π4n4
<∞.

Thus B ∈ X−1 and according to Theorem 6.11 the system is iISS.

7.2 Bilinear system
For the bilinear system we want to show a system that has an unbounded B and will be iISS
due to Theorem 6.21. This example will not be based as literally on a PDE as the example in
Section 7.1, but we will use the same operator A : D(A) → X, with X = L2(0, 1). B will be
picked such that we have a bilinear system that will be iISS.

So we will have a system of the form

ẋ(t) = Ax(t) + u(t)Bx(t),

with u(t) ∈ C, u piecewise continuous and A the operator defined as follows:

Af =
∂2

∂ξ2
f − π2If,

D(A) = {f ∈ H2[0, 1] :
∂2

∂ξ2
f ∈ X, ∂

∂ξ
f(0) = 0,

∂

∂ξ
f(1) = 0},
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where H2 refers to the Sobolev space. We have shown before that regarding the eigenfunctions
e0(ξ) = 1, en(ξ) =

√
2 cos(nπξ), n ∈ N, this operator can be seen as a ‘diagonal’ operator

with an = −π2(n2 + 1). Now we will take the operator B also ‘diagonal’ with bn =
√
|an| =

π
√
n2 + 1. If we now look at Theorem 6.21 we see that the requirement is that f ∈ Lp(0, 1) with

f(s) =
∑
n∈N

|bn|2
|an| e

(an−ω)s. In this case the fraction with bn and an will be equal to 1. Thus we

will show that f(s) =
∑
n∈N e

(−π2(n2+1)−ω)s is in Lp(0, 1). Where we choose ω = − 1
2π

2 such
that we have −π2 < ω < 0 and we will take p = 2. Now we will show that ‖f‖2L2 is finite:

‖f‖2L2 =

∫ ∞
0

(
∑
n∈N

e−π
2(n2+ 1

2 )s)2ds

=

∫ ∞
0

∑
n∈N

∑
m∈N

e−π
2(n2+ 1

2 )s−π
2(m2+ 1

2 )sds.

Here we used that (
∑
n∈N cn)2 =

∑
n∈N

∑
m∈N cncm. Further estimation gives,

‖f‖2L2 =
∑
n∈N

∑
m∈N

∫ ∞
0

e−π
2sds

=
∑
n∈N

∑
m∈N

1

−π2(n2 +m2 + 1)
e−π

2(n2+m2+1)s

∣∣∣∣∞
s=0

=
∑
n∈N

∑
m∈N

1

π2(n2 +m2 + 1)
.

Note that
∑
n∈N

1
n2 is finite. Thus for each n this means that the sum over m is converging,

since it is always be smaller than
∑
n∈N

1
n2 . Then the same can be done with the sum over n and

thus the complete sum is finite. Therefore, f ∈ L2(0, 1) and thus the system is iISS according
to Theorem 6.21.
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Chapter 8

Conclusion

The goal of this thesis was to research ISS for bilinear systems. This resulted in a clear overview
of the ISS stability properties of finite dimensional linear and bilinear systems. It is also shown
that these stability properties can be extended to infinite dimensional linear and bilinear systems
with bounded operators.

For bilinear infinite dimensional systems with unbounded operators we presented a sufficient
requirement under which these systems are iISS. Not all bilinear infinite dimensional systems
with unbounded operators that are iISS are contained by this requirement. However, this
requirement is useful, since it does give a class of systems that are iISS. Further research could
be done to check how strict the requirements for the infinite dimensional bilinear system with
unbounded operators are. It might be possible to find other requirements that are practically
better to check. Further research might also be done regarding a small–gain property for infinite
dimensional bilinear systems with unbounded B.
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