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Summary
Introduction Accurate risk stratification for patients with coronary

artery disease(CAD) is essential for accurate treatment. The current diag-
nostic pathway comprises a number of medical examinations , including a
computed tomography scan and positron emission tomography myocardial
perfusion, which yield prognostic data that may be utilized for risk strati-
fication purposes. The aim of this thesis was to develop a risk model for
obstructive CAD with machine learning(ML) algorithms. This model may
provide an individualized risk score based on a combination of clinical fea-
tures and quantitative parameters derived from imaging.

Methods We retrospectively included 1007 patients with no prior car-
diovascular history, who were referred for rest and regadenoson-induced
stress Rubidium-82 positron emission tomograpy (PET)/computated tomog-
raphy (CT). Presence of obstructive CAD was defined as a composite of a
significant fractional flow rate measurement during invasive coronary an-
giography, percutaneous coronary intervention or a coronary artery bypass
graft procedure, and was acquired via follow-up. Furthermore, each pa-
tient was characterized by a broad array of features, including cardiovascu-
lar risk factors (cigarette smoking, hypertension, hypercholesterolemia, dia-
betes, positive family history of CAD), prior medical history; current medi-
cation usage age; gender; body mass index (BMI); creatinine serum values;
coronary artery calcification (CAC) score and PET/CT derived myocardial
blood flows. Additionally, the visual interpretation by a team of two clini-
cians of the PET/CT scan was obtained. Two sets of input parameter were
used to train the models. First, the entire set of features except the visual
interpretation. Secondly, the entire set of features, including the visual in-
terpretation. Four different ML algorithms were used, so in total, 8 different
models were optimized. These models were developed using a subset of 805
cases of the dataset to identify obstructive CAD by using 5-fold cross valida-
tion in combination with a grid search, whilst their performance was mea-
sured using the F1-score. The optimized algorithms were validated on 202
cases of the dataset, never previously seen by the models. The performance
on these unseen examples was compared with the current diagnostic perfor-
mance by clinicians, as measured by the visual interpretation of the scan.

Results The best performing algorithm to predict obstructive CAD was
XGBoost, an ensemble of gradient boosted decision trees. On the unseen
dataset this algorithm reached an area under the curve of 0.93 while obtain-
ing a sensitivity of 64% (95% CI: 41-83) and a specificity of 96% (95% CI:
91-98). The sensitivity by the clinicians on this same dataset was 77% (95%
CI 55-93) and the specificity was 92% (95% CI (87-96). The low prevalence
of obstructive events in evaluation dataset (11%) resulted in wide confidence
intervals, making it so that no significant differences were found. Further-
more, we were able to make a ranking via the XGBoost model of important
predictors for obstructive CAD. Summarized, CAC-scores and quantitative
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PET derived features were the most important predictors. Classical risk fac-
tors and medication however, could not be used in the current setup to dis-
tinguish obstructive CAD from non-obstructive CAD. We also conclude that
the visual interpretation by the clinician added incremental prognostic infor-
mation to the model.

Conclusion We used a set of clinical and quantitative features to de-
velop a ML model. This model is able to provide individualized risk strati-
fication by predicting the possibility of an obstructive cardiovascular event.
Although validation with a larger dataset could result in a more well defined
performance range, this model still shows potential to be implemented in the
diagnostic workflow by providing a computer aided second opinion to the
clinicians.
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Chapter 1

General Introduction

The study of Technical Medicine is conceptualized to introduce and implement tech-
nological advances in clinical practice. During the last decades one particular tech-
nological field took on an increase of interest: Artificial Intelligence (AI) and its’
subfield machine learning (ML). Advances not only affected the theoretical aspects.
The practical generation and deployment of ML models has become more accessible
too. Several open source ML frameworks, exponential advances in hardware tech-
nology and the digitization of companies and data are all contributing factors.

In the healthcare industry too, the adaptation of ML exploded. In hospitals this
is visible by the rapid increase of ML related applications, especially in radiology
and intensive care departments. The potential benefit of these applications have led
Isala hospital to include AI into their strategy for the coming years. In Isala, which
is one of the largest general hospitals in The Netherlands, the most important re-
sources required to develop, refine and validate ML applications are available: High
volume and high quality patient data. Combined with Isala’s neverlasting aspira-
tion to improve disease diagnosis and treatment for patients, the potential benefit of
employing the power of ML becomes clear.

The thesis of my final internship will cover this: The development of a clinically
relevant tool with ML. In my case this is a tool that should be able to assist cardi-
ologists in Isala in cases where the clinical decision is not straightforward. More
specifically, I have developed a predictive model for patients with coronary artery
disease (CAD) that can assist clinicians by providing a risk assessment of a patient.
This risk assessment should be based on prognostic factors. Some of these factors
are already well understood. However, other features may not always seem obvious
nor intuitive to a clinician, but are expected to be influential nonetheless.

1.1 Outline of this thesis

The first chapter describes the clinical relevance of CAD, including the relevant clin-
ical background. Also, the problem statement and the aim of this thesis will be de-
scribed in greater detail. In the second chapter an introduction on ML is given in the
context of the problem statement. Four different ML algorithms will be highlighted.
In the third chapter we focus on the development and validation of ML techniques
for the prediction of obstructive CAD. The fifth and final chapter discusses future
perspectives, clinical implementations and recommendations for future research.
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Chapter 2

Clinical Background

2.1 Introduction on Obstructive Coronary Artery Disease

Cardiovascular disease (CD) is an umbrella term for all disease affecting the circu-
latory system or the heart[1]. CD is the most common cause of death, representing
almost 34% of all global deaths in 2015. In developed countries the mortality due to
CD is lower compared to less developed countries due to proper clinical manage-
ment and health campaigns, but the burden on healthcare caused by CD remains
significant. Approximately 4.4% of the Dutch population is known to suffer from
some form of CD in 2019, and most of these people receive some form of therapy[2].
Coronary artery disease (CAD) is responsible for nearly half of the CD related deaths
making it the single largest contributor to mortality[3].

CAD involves progressive narrowing (stenosis) and consequently obstruction of
the coronary arteries, resulting in a reduction of oxygenation of the myocardium.
The progressive process may eventually lead to an ischemia or infarction[1]. The
disease that involves the narrowing of arteries by build-up of plaques is atheroscle-
rosis, which is often the culprit of CAD. So-called atheromatous plaques consist of
fat, cholesterol and calcium and other substances found in blood. Progression of the
plaques is twofold. Over time plaques grow in size and result in a reduction of the
lumen of an artery. Additionally gradual calcification of plaques occurs due to a
process that resembles bone formation[4].

Patients with atherosclerosis can remain asymptomatic for decades due to the
progressive nature of the disease. Although arteries are able to compensate for the
narrowing by growing larger in diameter, a process known as arterial remodeling,
this remodeling can only compensate to an extent[5]. Symptoms start to arise when
stenosis cause a critical reduction of blood flow to organs. For patients with CAD,
the most typical symptom is stable angina pectoris(AP), a type of chest pain that is
the result of an imbalance between myocardial oxygen supply and demand during
stress. The myocardium then becomes ischemic. Even more drastic is a complete
obstruction of an artery, also known as a myocardial infarction (MI). MI typically
follows ulceration of atheromatous plaques causing a cascade of events involving
local blood clotting.

2.2 Anatomy

Three major arteries within the coronary circulation that supply the myocardium of
nutrients and oxygenation can be defined. The first two arise from the left main (LM)
coronary artery, which originates from just above the aortic valves: the left anterior
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descending (LAD) artery and the left circumflex (LCX) artery. The third coronary
artery is the right coronary artery (RCA) and originates directly from the aorta[6].

Most of the coronary blood flow is dedicated to supply the left ventricle, the part
of the heart that contracts as to pump blood to the rest of the body. Hence, myocar-
dial ischemia is the most severe when blood supply to the left ventricle becomes
impaired. The anatomy and the perfusion of the left ventricle can be represented
in a standardized method with the 17-segment model of the American Heart As-
sociation as shown in Figure 2.1[7]. Although there is some natural variability in
coronary anatomy within humans, this model standardizes vascular territories for
most people[6, 7].

FIGURE 2.1: Myocardial segmentation and standard nomenclature from the American Heart
Association. (A) The standard segmentation model divides the myocardium into three major
short-axis slices: apical, mid-cavity and basal. (B) The segments can be flattened into a
bulls-eye. (C) Approximate perfusion regions for the three major coronary arteries can be

projected onto this bulls-eye. Adapted from Dilsizian et al.[8].

2.3 Diagnosis of Obstructive Coronary Artery Disease

Due to the progressive nature of CAD and its long-term consequences, early de-
tection is crucial for patients. Symptoms such as AP are often the reason patients
present themselves to the clinician. The latest European Society of Cardiology (ESC)
guidelines propose a six-step approach for the management of patients with angina
pectoris and suspected CAD, as shown in Figure 2.2. In the first step, symptoms
and signs are assessed to confirm that a patient is not suffering from unstable AP
or acute myocardial infarction and in need of immediate revascularization. In the
second step, the general condition and quality of life of a patient is evaluated. Co-
morbidities that may affect decision making are considered. Subsequently patients
are followed up with basic testing such as ECG, biochemistry, echocardiography and
X-ray. The cardiac function, characterized by wall movements and ejection fraction,
of the left ventricle is assessed. Next, the clinical likelihood or the pre-test proba-
bility (PTP) of obstructive CAD is estimated using predictive risk models. Based on
the PTP a type of additional diagnostic testing is recommended. Once the diagnosis
of CAD is confirmed the patient’s event risk is considered and this risk determines
therapy options[9].
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FIGURE 2.2: Schematic of the diagnostic path for patients suspected of CAD, which com-
prises a six-step approach. In the first step, symptoms are assessed. In case of unstable AP,
the acute coronary syndrome(ACS) guidelines should be followed. With the second, comor-
bidities should be considered. If there are no revascularization options, appropriate medical
therapy is recommended. During the third step a patient is to undergo additional exam-
inations such as electrocardiogram(ECG), chest X-ray, biochemistry testing. Biochemistry
testing includes laboratory tests focused on screening for atherosclerosis, tests focused on
ischemea detection, tests for other cardiomyopathies, but also more general blood tests. If
during these examinations the left ventricle ejection fraction(LVEF) is not found to less than
50%, the PTP is determined. Additional testing follows, depending on the clinical likelihood
of obstructive CAD. For low risk patients, no diagnostic testing is mandated. For medium
risk patients coronary computated tomography angiography(CTA) or myocardial perfusion
imaging(MPI) is recommended. For high risk patients invasive angiography, with option-
ally a fractional flow reserve(FFR) measurement, is recommended. The final therapy should

be chosen appropriately depending on symptoms and event risk.

2.4 Diagnostic pathway of obstructive coronary artery dis-
ease in Isala

More specific to my internship here in Isala, I will describe to some extent the diag-
nostic pathway for the detection of obstructive CAD, which deviates from the ESC
guidelines.
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FIGURE 2.3: Workflow of the diagnostic pathway for patients with suspected CAD in Isala
Hospital. The initial examination depends on the age of a patient. Patients under the age
of 45 are referred for computated tomograpy angiography (CTA) because the likelihood of
presence of calcification is very low, therefore making CTA the preferred choice. For patients
over the age of 45 a CAC scan is made. For patients over 70 this is usually followed up with
a 82Rb PET scan. For patients between 45 and 70 years old, the outcome of the coronary
artery calcification (CAC) scan determines if additional examination is required, and which

modality is preferred.

A simplified workflow of the diagnostic workflow for CAD in Isala is shown in
Figure 2.3. There are multiple diagnostic pathways possible for patients, depending
for example on when and where physical complaints are first diagnosed.

2.4.1 CAC-Score

Risk stratification is a cornerstone in the current diagnostic workup for patients with
suspected CAD. A multitude of diagnostic modalities exist that can be used to in-
vestigate symptoms, and guidelines based on risk stratification provide guidance to
clinicians towards appropriate diagnostic modalities[10]. In Isala patients with no
relevant past medical history undergo coronary artery calcification (CAC) scoring.
The CAC-score is derived from a unenhanced low-dose computed tomography (CT)
scan and is a quantitative measure that is indicative of the severity of atherosclerosis
in the coronary arteries[11]. The CAC-score is the result of a weighted sum of the
lesions that contains calcification as visualized on the CT scan and is expressed in
dimensionless Agatston Units[12]. The weight of the lesion depends on the density
factor. The density factor follows directly from the highest plaque attenuation which
is expressed in Hounsfield unit (HU) values. The relationship between density fac-
tor and HU is shown in Table 2.1.

General clinical interpretation of the value of the CAC-score is shown in Table
2.2[11]. CAC-scoring is especially useful for risk stratification because of the ex-
cellent negative predictive value (NPV) to detect CAD. The NPV is reported to be
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TABLE 2.1: Density factor lookup table

Hounsfield Unit
range (HU)

Density factor

130-199 1
200-299 2
300-399 3

400+ 4

between 93% and 99% and a zero-score is associated a very low prevalence of ob-
structive CAD. Usually in these cases no clinical intervention is required[13]. High
CAC-scores are correlated with an increased risk of obstructive CAD[14]. In order
to distinguish between obstructive and non-obstructive CAD the consensus recom-
mends additional diagnostic examinations in patients with a CAC-score between 1
and 400 AU[11]. Additionally the CAC-score is a useful measure that assists in the
selection for additional diagnostics[9, 11].

TABLE 2.2: Clinical interpretation of the CAC-score

Degree of Coronary
Artery Calcification

Absolute
CAC-score

CAC-score adjusted
for gender, age and

ethnicity – percentile

Clinical
Interpretation

Absent 0 0 Very low risk of future coronary events

Discrete 1-100 75 Low risk of future coronary events;
low probability of myocardial ischemia

Moderate 101-400 76-90
Increased risk of future coronary events

consider reclassifying
the individual as high risk

Accentuated >400 >90 Increased probability of myocardial ischemia

The National Institute for Health and Care Excellence guidelines propose that a
CAC-score of more than 400 should be followed up with additional examinations
like invasive coronary angiography (ICA)[15]. A less invasive approach would be
to use functional imaging, such as myocardial perfusion imaging (MPI) with 82Rb-
positron emission tomography (PET).

2.4.2 CT Angiography

For patients with a CAC-score between 1 and 300, CT Angiography (CTA) is the pre-
ferred option for additional examination of the coronaries. In case of higher CAC-
scores the quality of the scan cannot be guaranteed due to significant blooming ar-
tifacts[16]. An Iodine based contrast agent is intravenously administered prior to
the scan and results in enhanced contrast between the coronaries and surrounding
tissue. The CTA scan results in a 3D volume that allows for anatomic interpretation
as well as evaluation of the trajectory of the lumen of the arteries and of the condi-
tion of the vessel walls. With additional post processing each of the main vessels can
be investigated more thoroughly. CTA is a relatively inexpensive and non-invasive
modality that is highly accurate for the detection of CAD, with a reported pooled
sensitivity and specificity of 66% and 89% respectively[17, 18].
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2.4.3 Myocardial Perfusion Imaging

If CTA is not an option, the quantification and visualization of the perfusion pat-
tern of the heart can provide insights in the origin and severity of the CAD related
symptoms[19]. A well established method for quantification of myocardial perfu-
sion is MPI with PET or single proton emission computated tomography(SPECT).
Both modalities enable accurate non-invasive detection of CAD related perfusion
defects[20]. This includes stenosis related defects but also irreversible defects in-
cluding previous infarcts or scarred tissue[21, 22]. In a comparative study by Danad
et al. PET was found to exhibit the highest accuracy for diagnosis of myocardial
ischemia[23]. Ghotbi et al. raised a number of different advantages of PET over
SPECT, including improved image quality, less radiation dose to patient and staff,
rapid scan times and higher diagnostic accuracy[24].

In Isala, PET is the preferred modality and Rubidium-82 (82Rb) is used as radio-
tracer. After intravenous injection of a saline solution containing 82Rb, the radio-
tracer is distributed throughout the body. The interactions of 82Rb within the human
body are similar to those of potassium ions and the radiotracer is being actively
transported within the myocardium by the sodium-potassium pumps. The uptake
of 82Rb by the myocardium is related to perfusion and therefore viable myocardial
cells can be distinguished from infarcted or necrotic tissue by differences in regional
tracer uptake[25].

Cardiac complaints often become more severe during exercise since the my-
ocardium requires more oxygen (and other nutrients). With MPI, exercise or ‘stress’
can be simulated using pharmaceuticals such as Regadenson or Adenosine[26]. These
pharmaceuticals activate receptors for vasodilatation and this results in an increase
in myocardial blood flow (MBF). In Isala Regadenoson is preferred since it selec-
tively activates A2A receptors, as opposed to other pharmaceuticals that non-selectively
activate the A1, A2B and A3 receptor subtypes. Nonselective activation results in
negative chronotropic, dromotropic, inotropic, and anti-beta-adrenergic effects[27].

During MPI the cardiac perfusion is imaged during two phases: The rest phase
and the pharmacologically induced stress phase. Defects in perfusion that are visible
in both phases indicate previously damaged myocardium or scarred tissue. Perfu-
sion defects that are more prominent during stress are indicative of ischemia.

Multiple methods have been proposed to quantify the myocardial blood flow
from MPI, ranging from retention models, two compartment models and a one-
compartment model, the latter one being used in Isala[25, 28–31]. This one-compartment
model uses 82Rb kinetics and a nonlinear extraction function to obtain estimates of
MBF in normal myocardium[31]. The ratio between rest MBF and stress MBF is
defined as the myocardial flow reserve(MFR). In combination with the 17-segment
cardiac model of the left ventricle MBF and MFR can be characterized globally, per
vessel and even more regionally per segment.

Since abnormal myocardial perfusion is a predictor for future cardiovascular
events, normal ranges for MBF and MFR have been established[19, 32]. These values
were calculated as the weighted mean from eight different studies on healthy sub-
jects (mean age 28.6) with a total sample population of 382. For the one-compartment
model, the average flow values of rest MBF are 0.74 mL/minute/g (range 0.69–1.15)
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and the average flow values for stress MBF are 2.86 mL/minute/g (range 2.5-3.82).
The weighted mean MFR was 4.07 (range 3.88-4.47)[32]. It can be seen that there is
significant intervariability. But in general, low flow values in stress (<1.8) and low
MFR values (<1.5) correlate with a negative prognosis for CAD. Naya et al. and
Murthy et al. concluded that normal MFR had a high NPV for excluding high-risk
CAD, and an abnormal MFR shows an increased probability of significant obstruc-
tive CAD[32, 33].

Overall, Regadenoson PET MPI has a sensitivity of 92% (95% CI 83%-97%) and
a specificity of 77% (95% CI 66%-86%) for significant obstructive CAD[34]. This per-
formance, combined with the non-invasive aspect of PET have both contributed to
the technique becoming an essential element in the diagnostic workflow for CAD in
Isala.

2.4.4 Invasive Coronary Angiography

ICA is the overall reference standard for the detection of a significant stenosis[23].
ICA is a minimally invasive procedure that allows visualization of the coronary ar-
teries. This involves catheterization and injection of a contrast agent in the coro-
nary arteries and subsequent dynamic imaging using X-rays. The same catheter can
be used for pressure measurements in case of intermediate lesions. With pressure
measurements the so-called fractional flow reserve (FFR) can be calculated over a
stenosis to determine if the obstruction is functionally significant. This measure is
the ratio of pressures measured over the stenosis, and is often utilized during ICA
to determine the need of intervention and also to evaluate the result after stenting of
ballooning stenosis.

The absolute diagnosis of significant obstructive CAD can be made with ICA.
However, for diagnostic purposes, ICA is often the last resort not preferred as first
option since the procedure is minimally invasive and therefore still accompanied
with risks. On the other hand, if the likelihood of significant CAD is high, ICA
comes with the benefit of immediate treatment possibilities by stenting.

2.4.5 Management of Patients with Coronary Artery Disease

In general, the management of CAD aims to reduce the symptoms and improve the
prognosis through lifestyle changes accompanied with medical therapy and some-
times revascularization[9].

This requires a personalized approach and involves risk stratification. For pa-
tients classified as low risk of developing a cardiac event life style changes and some-
times medication suffice as treatment. Lifestyle changes aim to reduce risk factors.
This involves smoking cessation, a healthy diet, physical activity and maintaining a
healthy weight. Medication is used to reduce risk factors to prevent disease progres-
sion, but mostly for event prevention[9]. For patients diagnosed with CAD and who
are classified as high risk, revascularization is suggested on top of medical therapy.
Revascularization can be performed minimally invasive via percutaneous coronary
intervention (PCI) or surgically via coronary artery bypass grafting (CABG).



10 Chapter 2. Clinical Background

2.5 Potential Improvements in the Diagnostic Workflow

The CAC-score, the CTA scan and the PET-MPI scan may all provide conclusive di-
agnosis for patients with suspected CAD. If these examinations indicate the need
for intervention or are inconclusive, patients are usually referred for ICA. For many
patients, however, the diagnosis is not definite after these examinations.

Out of 177 patients who were referred for ICA after PET MPI between May 2017
and January 2019, 111 were diagnosed with significant obstructive CAD. This means
that 37% of patients underwent a procedure that could potentially have been omit-
ted. Obviously this is insurmountable in order to reduce the number patients that
have significant lesions, and it can be logically explained because the consequences
of missing a potential case of high risk obstructive CAD (and the associated progno-
sis) outweigh the risks of ICA.

The process of risk stratification can be complicated in some cases. Figure 2.4
shows some of the most important variables that a clinician can use to evaluate the
risk for a patient. It often remains difficult to interpret all these variables and put
them in the correct context of the patient to estimate its risk-profile for cardiac events
in the near future. First of all, there are simply too many variables. Secondly, some
of these variables can be contradictive. It is known that most of these variables are
interrelated via complicated nonlinear relationships, making them difficult to inter-
pret for a clinician.

It has been suggested that advanced risk prediction models can assist the clini-
cian in these difficult cases[9]. Prior work that incorporates these variables in risk
prediction models is promising and showed the potential of integrating imaging de-
rived features with clinical data in risk prediction models for improved risk stratifi-
cation[35–37]. Machine learning (ML) algorithms were used to develop these mod-
els. This had led to the idea that for Isala, a similar risk prediction model can be
developed with ML.

2.6 Aim of this Thesis

This thesis focuses on the use of ML for risk stratification of patients with obstructive
CAD. One aspect of this project comprises the development of ML models, includ-
ing a comparison to find the best performing approach. Another aspect is dedicated
to the clinical evaluation and potential implementation. Since PET MPI is the stan-
dard for cardiac blood flow quantification, the aim is to combine PET MPI derived
features together with a range of clinical features and use ML to obtain individual
risk stratification for obstructive CAD.
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FIGURE 2.4: Variables that can be interpreted by a clinician to eval-
uate the risk of having an cardiovascular event for a patient. This
includes classical risk factors for CAD, medication, imaging, includ-
ing CAC-scores, CTA, and PET/SPECT MPI, biochemistry character-
istics and ECG readings.Not only do these variables affect the risk of
obstructive CAD, but they may also alter the interpretability of other
risk elements. Hence, interpretation of these elements is not always

straight forward.





13

Chapter 3

Technical Background

3.1 Machine Learning

ML is a discipline that falls under the umbrella term Artificial Intelligence(AI). It in-
volves the study of computer algorithms that are trained to execute some task, and
automatically improve in their ability to do so through experience. These algorithms
can be viewed as mathematical functions that attempt to map an input vector X to
a desired output vector Y, and experience can be seen as the process of iteratively
trying to improve on the performance of a task by modifying and fine-tuning pa-
rameters within the mathematical function f (X). These tasks can be understood as
optimization problems where the so-called loss, which is a value that represents the
error, is minimized.

Four main categories of learning problems can be distinguished. The method
of learning depends on the available data and the type of problem. The first cat-
egory is supervised learning, and describes learning from data points where both
input X and output Y are available. This entails learning from example pairs, or a
‘labeled’ dataset. The second category is unsupervised learning, where only input
data is available. Unsupervised learning refers to the analysis of a dataset without
knowing a priori what should be learned. It involves finding patterns or features,
or clustering of data e.g. finding patterns in gene expressions. Finally there is rein-
forcement learning. In reinforcement learning, there is no direct access to the correct
output, but it is possible to get a measure of the quality of output Y following in-
put X. For example, learning a car to drive within a setting that contains rules, and
the distance that the car is able to drive is a measurement of quality. A fourth cate-
gory that can be defined is transfer learning. In transfer learning, a machine exploits
knowledge that it has learned from a previous task, and applies this information to
another problem. For example, a model that has learned to recognize digits can be
used to develop a model that recognizes characters[38].

3.1.1 General Principles

The optimization process of function f (X) can be divided in three phases. Each
phase requires independent examples of the available dataset, and therefore the
dataset is split into parts. Each sub dataset is then used in one of the phases. The
optimization process starts in the training phase and is followed by the validation
and testing phase. Performance metrics are used to evaluate the performance of a
model during these phases. To gain deeper understanding of ML, some of the prin-
ciples explained in the following section will be illustrated with an example dataset
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FIGURE 3.1: A) This graph shows the relationships between iterations, underfitting and
overfitting and the corresponding generalization gap. B) Actual data points (X,Y) are plot-
ted and several functions are implemented to fit the data points. In the case of overfitting,
the accompanied loss is very low, however the function tends to misrepresent the actual
function. On the other hand, in the case of underfitting, the variance is low and the accom-
panied bias is high, as well as the loss. The optimal model sits between underfitting and

overfitting and should approximate the actual function.

that contains real-world data.

3.1.2 Performance Metric

The performance metric describes how well the function f (X) performs a task T,
thus giving an indication how well a model performs. The performance metric is es-
sential for ML because this metric is usually incorporated in the feedback system of
an algorithm, that is, each iteration (e.g. the processing of the entire dataset) param-
eters within the function f (X) will be modified to improve the performance metric
or to reduce the loss until the performance reaches an optimum. This enables the
algorithm to ‘learn’ with experience. This process is visualized in Figure 3.1.

3.1.3 Development Phases while Training a Model

Phase 1: Training

During this phase the function F is ‘trained’ to map X to Y. This process is shown in
Figure 3.1. However, you want this performance not to be exclusive to the dataset X.
The aim is to reach a similar performance on new or unseen data examples. That is
why only a subset of the original dataset (X) is used to optimize f (X), while the re-
mainder of the dataset is used to evaluate the actual performance of f (X) on unseen
data. It is common practice to use the majority (60-80%) of the dataset for this train-
ing phase. However, the proportion of the training, validation and testing dataset
are largely dependent on the size of the dataset. The partitioning should be chosen
in a manner to The risk is that f (X) corresponds too closely or exactly to the dataset
(X, Y) and fails to fit new data reliably. This is overfitting: f (X) exploits apparent
relationships that do not hold outside of the original dataset (X, Y).
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This principle results in a subtle balance between underfitting the data and over-
fitting the data. Generalization is the term used to describe the ability of a model to
interpret new or unseen examples, and this ability of f (X) to generalize is evaluated
later during the testing phase. Sometimes specific regularization terms are added to
f (X) to prevent overfitting. These regularization terms attempt to reduce overfitting,
and are one of the tunable hyperparameter of f (X). Hyperparameters characterize
f (X) and can be modified to control the learning process. Hyperparameters vary
per algorithm and optimal hyperparameters vary per dataset. The subsequent vali-
dation phase is used to identify optimal hyperparameters for a task and to evaluate
(and prevent) overfitting. Regularization generally refers to techniques that aim at
reducing overfitting during training and are an essential component of ML.

Phase 2: Validation

The aim of the validation phase is to create a model that is specific but not exclu-
sive to the dataset and the problem statement. During the training phase, multiple
candidate models are being developed. Each of these models is characterized by a
different sets of hyperparameters in an attempt to find the best performing set of
hyperparameters. In the validation phase the performance of these model is evalu-
ated on an independent dataset: the validation dataset. Depending on the possible
sets of hyperparameters, this process of training and validating is repeated multi-
ple times until models have been trained with all possible sets of hyperparameters.
The validation procedure does not prevent overfitting to the validation dataset, and
therefore the performance of the selected model should be confirmed by measuring
the final performance on an independent set of data. This is done with the testing
dataset during the testing phase.

K-fold cross validation

For this three-phase approach, three datasets are required. The disadvantage of this
method is that the part of the dataset that will be used for training is smaller than
the amount of available data. To partially alleviate this issue k-fold cross-validation
can be implemented. With this technique, the validation and training datasets are
merged. This combined dataset is then split into k number of subsets, and the gen-
eralization loss is calculated by using k− 1 number of subsets for training, and the
remaining subset for validation. This process is visualized in Figure 3.2. Mathemat-
ically, let i denote the index of the data point and N be the total number of observa-
tions. Let f̂−k(xi) be the function f (x), fitted the kth part of the data removed and
let L be the function that calculates the loss over the predicted ŷi and yi This is done
repeatedly until each subset k is used as a validation set. The overall validation loss
is calculated as the average of all k validation losses, as shown in Equation 3.1[39].

CV( f̂ ) =
1
N

N

∑
i=1

L(yi, f̂−k(i)(xi)) (3.1)
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FIGURE 3.2: Visualization of the cross-validation procedure during the training process of
ML models. The entire dataset is initially split into a training and testing dataset. The testing
dataset is only used in the end to evaluate the performance. The training set is used to

optimize hyperparameters via cross-validation
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Phase 3: Testing

After models and hyperparameters have been optimized via training and validation,
one candidate model remains; the model that achieved the smallest loss on the val-
idation set. The generalization of this model is then estimated using a test dataset,
a ‘hold-out’ dataset that was put aside for this purpose. The data from the hold-out
set is never before seen by the model, but consists of data that is thought to have
the same distribution as the training dataset, since all these subsets come from the
original complete dataset. Ideally, the performance on this test set should be similar
to the performance reached on the training set.

3.2 Introduction on ML Algorithms

The prediction of obstructive CAD is a supervised learning problem. In this learn-
ing problem, the task T can be defined as the prediction of obstructive CAD. The
reference, denoted by Y is a binary variable that encodes if patients have obstruc-
tive CAD. The input X can be defined as all information, or the set of explanatory
variables, that characterizes the patient. Since the outcome is binary, the set of algo-
rithms that describe this learning problem is binary classification.

Multiple algorithms are able to perform well at binary classification tasks. Their
effectiveness is strongly dependent on the complexity of the relationship between
input and output, and the number of samples. It can be difficult to know how well a
certain algorithm will perform on a specific classification task. Therefore I have de-
cided to compare the performance of various algorithms that have performed well
on similar classification tasks[37, 40–44]. These are logistic regression (LR), least ab-
solute shrinkage and selection operator (LASSO), the support vector machine (SVM)
and ensembled decision trees using eXtreme Gradient Boosting (XGB). Each of these
models will be described to greater extent and principles will be described and vi-
sualized using an explanatory dataset.

3.2.1 Explanatory Dataset

This explanatory dataset was from Kaggle.com, a popular website for ML chal-
lenges[45]. The dataset, referred to as the Kaggle-dataset, was originally used to in-
vestigate correlations between students’ alcohol consumption and students’ grades.
The most important features within this dataset are age, gender, math grades, weekly
study time, weekly free time, alcohol consumption on weekdays and during week-
ends, and absence days. The entire list of features can be found in Appendix A.
Instead of correlating all these features with a students’ performance, I used this
dataset for a binary classification problem. In terms of ML the task T can be de-
scribed as the following: Predict gender based on alcohol consumption, math grades,
age, study time, etc.. The models were trained for clarification purposes. For that
reason, default hyperparameter optimization was used. 80% of the dataset was used
for training, and 20% was used for testing. The validation phase was bypassed since
there was no hyperparameter optimization done.
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FIGURE 3.3: A) In this graph a linear relationship is modeled by means of linear regression.
As per example, let X1 encode for daily alcohol consumption in ml/day. In the Kaggle-
dataset, it appears that this is a feature that can be used to discriminate gender. The decision
boundary for linear regression is placed where the function f (x) crosses the line y = 0.5. In
this example, each data point is correctly classified. B) In this graph, both linear regression
and logistic regression are used to model the relationship between daily alcohol consump-
tion and gender. To highlight the weakness of linear regression for data imbalance, let’s
suppose that the distribution of females that drink has a skewed distribution. This is a po-
tential cause for inaccurate classification by linear regression. In this figure this is visible
when the linear classifier from figure A is compared with the linear classifier from figure
B. Logistic regression is able to generate a more accurate decision boundary. An important
remark is that this representation is kept one-dimensional for visualization purposes. In
most cases the problem becomes high dimensional, depending on the number of features or

independent variables

3.2.2 Types of Algorithms used in this Thesis

Linear Regression

A better understanding of LASSO and LR can be obtained by explaining some con-
cepts from linear regression. Linear regression is the most basic form of modelling
a relationship. Explanatory values, known as independent variables, X are mapped
to output Y by an linear relationship. The number of independent variables is de-
noted by n. β0 denotes the intercept, and the coefficients β1−n describe the effect of
a independent variable for Y. This relationship is shown in Equation 3.2 and shown
in Figure 3.3A. A direct result is that the magnitude and the sign of β reveal infor-
mation about the type of relationship between the corresponding feature and the
reference Y. These coefficients are optimized by minimizing the sum of the squared
residuals, also known as the mean squared error(MSE). The residuals are the differ-
ence between the Y, calculated by f (xi, β) and the predicted outcome ŷ, as shown in
Equation 3.3.

f (x, β) = β0 + β1x1 + β2x2 + . . . + βnxn (3.2)

MSE =
n

∑
i=1

(yi − f (xi, βi))
2
i (3.3)
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FIGURE 3.4: ROC curves and corresponding AUC values for each of the models that was
trained on the Kaggle-dataset. Note that no hyperparameter optimization was used. The
results on the training set show large variations, caused by overfitting of XGB and SVM, and
underfitting by LASSO. The ROC curves and AUC values that correspond with the test set
show that each of the models was able to discriminate gender based on the features provided
in the Kaggle-dataset except. The performance by the LASSO model was notably worse than

the rest.

Performance of Linear Regression on Kaggle-dataset

When linear regression was used to predict gender using the Kaggle-dataset, we
find that this algorithm can be used to predict gender. Figure 3.4 shows the receiver
operator characteristic (ROC) curves and the calculated area under the curve(AUC).
The linear model is not a strong classifier. Nonetheless it reaches acceptable (0.70 <
AUC < 0.80) discriminative performance on the test dataset. The fact that the AUC
is higher on the training set is an indication of overfitting. However, this does not
usually translate well for problems where the outcome is categorical, for example
with binary classification. One of the problems of using linear regression for classi-
fication problems is that the predicted outcome is a continuous variable, and not the
probability of belonging to a class. Another issue is that it is more sensitive to data
imbalance, as is illustrated in Figure 3.3. Logistic regression handles these issues and
is therefore preferred for classification problems .

Logistic Regression

LR describes a statistical model that approximates the relationship between a cate-
gorical dependent variable and one or more independent variables. Although vari-
ous extensions exist, the most basic form involves binary logistic regression, where
the binary dependent variable has two possible outcomes, namely Y ∈ {0, 1}. Lo-
gistic regression attempts to model the probability belonging to a certain class. Let
P be the probability for observation X of belonging to Y = 1, we can than take the
natural logarithm of the odds and define the relationship between the odds and the
independent variables, as shown in Equation 3.4. An activation function is used
to convert a linear equation to the logistic regression equation. Eventually this can
be simplified via Equation 3.5 to Equation 3.6. The coefficients are optimized using
the maximum likelihood estimation, where the log-likelihood is maximized, and the
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magnitude of the coefficients β hence indicate how much an independent variable
contributes to the odds of belonging to a certain class. Figure 3.3B shows how a
logistic function is able to classify data points.

ln(
P

1− P
) = β0 + β1x1 + β2x2 + . . . + βnxn (3.4)

P
1− P

= eβ0+β1x1+β2x2+...+βnxn (3.5)

P =
eβ0+β1x1+β2x2+...+βnxn

1 + eβ0+β1x1+β2x2+...+βnxn
(3.6)

Performance of Logistic Regression on Kaggle-dataset

We find that logistic regression performs equally well compared to linear regression
(and also compared to the other algorithms). If we consider the coefficients β, it turns
out that the strongest predictor for male gender in this dataset, as measured by the
magnitude of β, was daily alcohol consumption. Daily alcohol consumption was a
categorical variable. For that reason a visualization would not provide additional
insights since we would only have a limited number of data points. However, let
us suppose that daily alcohol consumption was a continuous variable measured in
ml/day. In that case we could use it to make a graph similar to Figure 3.3B.

LASSO

In 1996 a new method for estimation in linear models was proposed: LASSO[46]. If
we consider the estimator from linear regression, linear least squares, the estimates
are calculated by minimizing the residual squared error. In the paper of Tibshirani
et al. two disadvantages of this method were highlighted. Estimation using MSE
usually results in low bias, but high variance, hence low prediction accuracy. It is
sometimes possible to improve the accuracy by shrinking or setting some coeffi-
cients to zero. In practice, this is done by adding a so-called LASSO-penalty term
to the MSE equation. Let λ denote the LASSO-penalty and let p denote the number
of coefficients. The LASSO loss as a function of β and λ, denoted by L can then be
written according to Equation 3.7 For the basic LASSo model, λ is a hyperparameter
that can be altered to change the way this algorithm optimizes. The penalty reduces
the variance at the cost of an additional bias, and can result in an improved overall
prediction accuracy. Setting to 0 of coefficients also results in less coefficients being
used in the equation. The added benefit is improved interpretability of the ‘reduced’
model. This is especially interesting in a clinical setting because of two reasons. Clin-
ical implementation is often met with reservation, especially if a model acts like a
black box. Providing insights in the inner workings of the model can help in the ac-
ceptation phase of implementation. Secondly, you would have to gather all required
input parameters of a patient in order for a model to make a prediction. Therefore,
the benefit of collecting fewer measurements while maintaining model performance
can aid in the clinical implementation. LASSO is not exclusively applicable to linear
or continuous problems and can be adapted to perform binary classification.

L(λ, β) =
n

∑
i=1

(yi − f (xi, βi))
2
i + λ

p

∑
j=1

∣∣β j
∣∣ (3.7)
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FIGURE 3.5: In this graph we can see the effect of varying the LASSO-penalty λ. When λ is
set to zero, the model is identical to linear regression. When the value of λ is increased, we
see a decrease in performance, but also a decrease in model complexity as measured by the

number of non-zero coefficients β

Performance of LASSO on Kaggle-dataset

In Figure 3.5 the ROC curves of the LASSO classifier is graphed for various values
of λ. It becomes clear that the algorithm is identical to linear regression when the
LASSO-penalty is set to zero. However, when the LASSO-penalty is set too high,
the coefficients will be forced zero and the prediction will be equal to the intercept,
which is the mean of the dependent variable. In Figure 3.5 this is visualized: By vary-
ing the LASSO-penalty we see that the discriminative power of the model decreases.
This part of the trade-off between model complexity and model performance. When
the performance (AUC) is graphed against the number of non-zero coefficients β we
see that even though the performance decreases, so does the number of coefficients
(e.g. features) that is used in the model. Only a slight decrease in performance is
achieved with just seven features, as opposed to using all 27 features with linear
regression.

Support Vector Machine

The SVM algorithm is well established as a binary classifier[47]. The SVM generates
a model that represents the data as points in space, and within this space a decision
boundary or hyperplane is then determined. This principle is shown in Figure 3.6.
This hyperplane is constructed using the support vectors: data points that are most
prone to misclassification. The hyperplane is constructed in the point space as to
maximize the margin between data points of both classes. Unseen examples are
classified based on which side of the hyperplane they are positioned in the point
space.

Performance of SVM on Kaggle-dataset

Figure 3.4 shows the performance of a SVM model on the Kaggle-dataset. From
this figure we can learn a number of things. First of all, this is the first algorithm
presenting a clear case of overfitting. We find a significant discrepancy between the
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FIGURE 3.6: After initial transformation of the
data points to a point space, support Vectors
are formed by data points that lie the closest
together. This figure shows a how a hypo-
thetical decision boundary is determined that
maximizes the margins between the support

vectors, marked with a yellow center.

performance of the model on the training dataset and the performance on the test
dataset. No hyperparameter optimalization was done for the development of this
model. The model that was used for this figure is a clear example of when regular-
ization measures should be implemented to reduce overfitting. Another idea that
we can take from this figure stems from the fact that the model was able to overfit.
As opposed to the simpler algorithms such as linear regression, LASSO and Logis-
tic regression, the SVM was able to utilize more relationships within the data. This
does not necessarily mean that the simpler algorithms can not be altered via hyper-
parameters to fit more complicated data, but it does show that a SVM is capable
of fitting high dimensional data. Arguably, the relationships that are found by this
SVM model are probably not useful for the prediction of gender, and therefore only
lead to overfitting. Since data is transformed to point space, it becomes difficult
to identify the contribution of single features to the final prediction, which can be
interpreted as a disadvantage.

Decision Trees

A decision tree(DT) as a ML algorithm can be used for both regression and classi-
fication. A basic DT is shown in Figure 9. The DT models a pathway of different
outcomes, where ‘decisions’ along the way lead to a specific outcome. It can be dis-
sected into branches and leaves. The branches split into other branches at a node,
and the node represents a decision. The decision determines which branch to follow.
Eventually the branch will end and reach an endpoint. These endpoints are called
leaves, and encode for a certain class. The learning occurs iteratively by partition-
ing the data by forcing decisions. The nodes are updated each iteration to optimize
with regards to the performance metric. The relative simplicity and intuitive inter-
pretability of decision trees have popularized their usage, as well as their excellent
performance for certain tasks[48]. complexity of the DT is dependent of the available
data, but can be controlled with parameters that define the depth, e.g. the number of
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decisions to reach a class. DT can model non-linear relationships, but are also prone
to overfitting, and regularization measures are often required to prevent this.

Learning Ensembles of Functions

Another approach to solving difficult problems statements with decision trees whilst
maintaining relative simplicity and preventing overfitting is to use multiple DT’s.
Individual DT are then regarded as ‘weak learners’. An ensemble of DT can be
created to forms a strong ‘learner’. The prediction of an ensemble model is then de-
termined by the combined votes of each weak learner. This basic idea is shown in
Figure 9B Two common methods to develop ensembles are bootstrap aggregating
(bagging) and boosting. In bootstrap aggregating each model has the same voting
weight, but each model is trained with a random subset of the training dataset to in-
crease the variance of models. This can be combined with a random selection of DT
parameters to generate random forests. With boosting, each model is trained with
the aim to correctly classify the misclassified cases of previous models. This is done
by attributing extra weight to these previously misclassified cases.

Boosting can be combined with gradient descent techniques to efficiently opti-
mize parameters of models[49]. These so called gradient boosted decision trees are
currently well established classification algorithms, having outperformed other ap-
proaches including SVM, Naïve Bayes and random forests in a recent comparison
on 71 datasets[50]. The XGB algorithm was used in this thesis.

Performance of XGB on Kaggle-dataset

The results of the XGBoost model on the Kaggle-dataset can be interpreted in a sim-
ilar manner as the SVM model. This is another case of overfitting, but once more,
the tendency of the model to overfit indicates that it is able to utilize complicated,
nonlinear correlations. With boosted decision trees it is easier to determine the im-
portance of features. We can simply derive how often certain features occur in nodes,
and determine the decrease in model performance if a feature was removed from the
dataset. The magnitude of decrease in model performance then inversely encodes
for the feature importance. It is also possible to plot singular trees, an example is
provided in Figure 3.7.



24 Chapter 3. Technical Background

FIGURE 3.7: One out of 100 decision trees used in the model that was trained on the Kaggle
dataset. Via decisions in the nodes, an endpoint that encodes for the probability of belong-
ing to the class for male gender, is reached. The final probability is the summation of the

probabilities of all trees combined.
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Chapter 4

Prediction of Obstructive Coronary
Artery Disease using Machine
Learning Algorithms

4.1 Introduction

Cardiovascular disease is the number one cause of death globally[51]. In Europe, it
is the single largest contributor to mortality, accounting for 40% of all deaths. More-
over, 19% of all deaths in the European Union were due to coronary artery disease
(CAD)[52] . Furthermore, despite the recent decreasing trend in mortality due to
CAD, the burden of CAD is not confined by mortality because the average hospital-
ization duration has increased[52].

The latest European Society of Cardiology (ESC) guidelines propose a six-step
approach for the management of patients with angina and suspected CAD[9]. After
symptom investigation, consideration of comorbidities and basic testing, the pre-test
probability(PTP) and clinical likelihood of CAD is determined. The PTP can be esti-
mated by clinical models. State of the art PTP models currently incorporate part of
the accumulation of data that has been gathered of a patient, including patient char-
acteristics, risk factors, ECG changes, coronary artery calcification[9]. Additional
examinations such as CTA and PET MPI provide additional insights. Myocardial
Perfusion Imaging (MPI) using positron emission tomography (PET) or single pho-
ton emission tomography (SPECT) are commonly used non-invasive techniques to
evaluate the myocardial perfusion. The quantification of the myocardial blood flow
(MBF) and myocardial flow reserve (MFR) further improves the diagnostic accuracy
for detecting significant CAD[23, 53].

The amount of available data that needs to be interpreted for diagnosis keeps
growing. This data may be utilized to improve diagnostic accuracy. However, the
fact that some of these variables intercorrelate with complicated relationships as well
as the shear amount of variables make it increasingly more difficult to interpret in
clinical practice. This causes risk stratification of patients with suspected obstruc-
tive CAD to remain a challenging task. Recent studies have attempted to improve
the identification of obstructive CAD by adapting existing predictive models. They
have shown the potential of integrating imaging derived features with clinical data
in risk prediction models for improved risk stratification[35–37]. In fact, machine
learning (ML) algorithms are excellent for this task because of their ability to es-
tablish relationships between these features and patient outcome, regardless of the
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number of variables.

Some of these ML approaches have already shown the benefit of the integration
of different data types for the detection of significant CAD. Juarez-Orozco et al. de-
veloped several ML models to predict obstructive CAD as determined by SPECT
and concluded that ML is a feasible and applicable method to identify patients who
will present CAD[37]. Reeh et al. developed a model which expanded on the modi-
fied Diamond Forrester model with additional clinical information, resulting in im-
proved identification of low risk subgroups[41]. Furthermore, Hu et al. showed that
deep learning methods that incorporated clinical data and SPECT imaging for the
prediction of obstructive disease improved the automatic prediction of CAD com-
pared to the current standard of care[42].

PET MPI is a well established technqiue for cardiac blood flow quantification[32].
We hypothesize that parameters derived from PET MPI can be used more exten-
sively in the diagnostic pathway. Hence, our aim is to derive and test ML algorithms
to obtain an individual risk stratification of obstructive CAD after PET MPI and CT
coronary artery calcification(CAC) scoring and compare this with the diagnostic ac-
curacy attained by clinicians.

4.2 Methods

4.2.1 Study Design

We retrospectively included 1007 consecutive patients with suspected CAD. These
patients had no prior history of CAD and underwent a CAC-score, and were re-
ferred for rest and Regadenoson-induced stress Rubidium-82 PET/CT (Discovery
690, GE Healthcare). Cardiac risk factors; cigarette smoking, hypertension, hyperc-
holesterolemia, diabetes, positive family history of CAD; prior medical history; age;
gender; body mass index (BMI); creatinine serum values; coronary artery calcifica-
tion (CAC) score and medication usage were registered at time of the PET/CT ex-
amination. Patients were classified as having obstructive CAD if follow-up included
either a conclusive invasive coronary angiography (ICA) for CAD as defined by a
significant FFR measurement (< 0.8) or >70% stenosis on ICA or a revascularization
during follow-up including percutaneous coronary intervention (PCI) or Coronary
Artery Bypass Grafting (CABG) procedure. Obstructive events were retrieved from
electronic patient records whilst maintaining a minimum follow-up time of 1 year.

4.2.2 MPI Data Acquisition and Reconstruction

Prior to MPI, a low-dose CT scan was acquired during free-breathing to provide an
attenuation map of the chest. This scan was made using a 5-mm slice thickness, 0.8
s rotation time, pitch of 0.97, collimation of 32x0.625 mm, tube voltage of 120 kV,
and a tube current of 10 mA. Next, 740 MBq Rb-82 was administered intravenously
with a flow rate of 50 mL/min using a Sr-82/Rb-82 generator (CardioGen-82, Bracco
Diagnostics Inc.). After the first elution, we induced pharmacological stress by ad-
ministrating 400 g (5 mL) of Regadenoson over 10 seconds. After a 5 mL saline flush
(NaCl 0.9%), we administered a second dose of 740 MBq Rb-82. Seven-minute PET
list-mode acquisitions were acquired after both Rb-82 administrations. Attenuation
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correction was applied to all data on the PET system after manual registration of CT
and PET data.

The acquisitions were reconstructed using 26 time frames (12x5 s, 6x10 s, 4x20
s and 4x40 s) with default settings as recommended by the manufacturer using 3D
iterative reconstruction using 2 iterations and 24 subsets, while correcting for decay,
attenuation, scatter and random coincidences, and dead time effects. Neither time-
of-flight information or resolution modeling was used.

CT-based CAC-score scans were performed using a 64-slice CT scanner (Light-
Speed VCT XT, GE Healthcare, StataSE 12.0, StataCorp LP, College Station, Texas,
USA). An unenhanced ECG-gated scan was obtained prospectively, triggered at
75% of the R–R interval by using the following scanning parameters: 2.5mm slice
thickness; gantry rotation time, 330ms; tube voltage, 120 kV; and a tube current of
125–250mA, depending on patients’ size.

4.2.3 Data processing

The reconstructed dynamic scans were post-processed using Corridor4DM software
(v2015.02.64). Myocardium contours were automatically detected in both rest and
stress scans based on the dynamic images. Furthermore, a region of interest (ROI)
was manually placed at the location of the mitral valve to estimate the activity in the
blood pool. The activity concentrations in the myocardium contour and ROI were
measured in the 26 reconstructed time frames to calculate the time activity curves
(TACs) for the left ventricle (LV), for the three vascular territories: left anterior de-
scending (LAD), left circumflex (LCX) and right coronary (RCA) artery, and for the
whole myocardium. The left ventricular ejection fraction(EF) in rest and in stress
was automatically generated. The one-tissue compartment model of Lortie et al.
based on a ROI methodology was used to calculate the MBF[31]. The MBF was cal-
culated for each of the three major coronary arteries for both stress and rest phases
from the TACs using Corridor4DM. The global MBF values were calculated by aver-
aging the MBF of all three vessels. The MFR was derived from the MBF as the ratio
between the MBF in stress and the MBF in rest[31]. Summed Stress Scores(SSS) and
Summed Difference Scores(SDS) were derived automatically within Corridor4DM
and are semi-quantitative evaluations of the perfusion of the myocardium. The SSS
was derived from the stress image and reflects the presence, extent and severity
of perfusion defects, whilst the SDS is the difference between the SSS and the same
semi-quantitative evaluation during the rest phase. The SDS indicates the reversibil-
ity of a defect.

Myocardial perfusion entropy(MPE) is suggested to provide prognostic informa-
tion for the occurrence of major adversarial cardiac events (MACE)[54]. Entropy can
be understood as a measure of order. An analogy can be made by looking at water.
When water is frozen, the molecules are arranged in a somewhat orderly manner
and the entropy of the system is relatively low. If we compare ice with water, we
find that non-frozen water has a higher level of entropy. In human phsyiology, en-
tropy is a metric for quantifying the irregularity and/or complexity contained in
signals[55]. MPE can be understood as the amount of disorder within the myocar-
dial perfusion.

Since the regional flow values (of each of the 17 segments) were available for
data analysis, we decided to calculate the MPE from the regional myocardial flow
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reserve (MFR) values using Shannon’s equation for entropy, as seen in Equation 4.1,
multiplied with the average entropy of the 17 segments[56]. In this equation, p(x)i
is the probability of state i.

H(X) = −
n

∑
i=1

p(xi)log2 p(xi) (4.1)

Dedicated software (SmartScore, Advantage Windows 4.4, GE Healthcare) was
used to calculate the CAC score per vessel according to the standard Agatston crite-
ria, in which the area of calcification (in mm2) of pixels with an intensity larger than
130 HU is multiplied with a factor depending on density[12]. Calcifications were
manually assigned to the vessels by experienced operators to ensure inclusion of all
calcified regions, accurate allocation of the coronary arteries, and to exclude calcium
deposits outside the coronary arteries.

4.2.4 Clinical Evaluation

The clinical diagnosis was determined by the evaluation by a team of two clinicians
(a cardiologist and a nuclear physician) of the clinical report and the MPI scan. A
positive diagnosis for obstructive CAD was defined as a consensus of possible or
definite ischemia on the MPI scan by a nuclear medicine clinician and a cardiologist.
This clinical evaluation parameter is referred to as the visual interpretation of the
scan. Three levels of visual interpretation can be distinguished: 1) no ischemia, 2)
possible ischemia and 3) ischemia.

4.2.5 Machine Learning

We have implemented several machine learning algorithms from the Scikit-Learn li-
brary in python for binary classification of the presence of an obstructive CAD event;
the Least Absolute Shrinkage and Selection Operator (LASSO), Logistic Regression
(LR), Support Vector Machine (SVM) and the XGBoost implementation of gradient
boosted decision trees[57].

Every patient was characterized by an array of features, including PET-MPI and
CAC findings, and the various other clinical features shown in Table III. All features
except CAC score, age, resting heart rate and BMI were transformed to dichotomous
variables. The remaining continuous variables were scaled by standardization. Sub-
sequently, the dataset was randomly split into a train and test set with a 4:1 ratio,
stratified by occurrence of obstructive events, so that both the train and test sets had
a comparable prevalence of obstructive CAD. Subsequently we evaluated a hybrid
approach where the visual interpretation by the clinicians was used as an additional
input parameter. Each of the algorithms was optimized once more whilst including
this additional input parameter.

Model Development

The ML algorithms were optimized with the training dataset, using hyperparameter
optimization via grid search in combination with 3-times repeated, 5-fold stratified
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cross validation. Hyperparameters are parameters that control the learning process
of an algorithm. Different values and different combinations of hyperparameters can
result in alterations in model performance, and the correct set of hyperparameters is
often specific to the dataset that is used. Therefore, various combinations of hyper-
parameters should be tried. A grid search refers to the method of combining various
hyperparameters while evaluating model performance. The grid search table in Ta-
ble 4.2 shows the different hyperparameters per algorithm. For the SVM, several
regularization parameters were used as well some kernel functions. For XGBoost,
the hyperparamters that controlled the model complexity included depth, and num-
ber of estimators. The most important regularization parameters for XGBoost were
is the fraction of features that was used to train each tree, known as ‘Colsample by
tree’ and the fraction of training data that was used to train each tree, known as
the subsample ratio. For LASSO there is only the alpha value to modify the LASSO
penalty. Model performance was evaluated using the F1-score and can be derived
from Equations 4.2-4.4. This metric can be understood as the harmonic mean of
precision and sensitivity especially useful in learning problems with an imbalanced
dataset.

Precision =
TruePositives

TruePositives + FalsePositives
(4.2)

Sensitivity =
TruePositives

TruePositives + FalseNegatives
(4.3)

F1− Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(4.4)

For each algorithm, the best performing model was saved and the performance
was evaluated on the test set. It is clinically relevant which features a model uses as
input since this can aid the clinicans understanding of the model. Therefore, for the
XGBoost model, the order of feature importance was extracted from the model. This
feature importance ranking is based on the number of times a feature appeared in
decision trees within the particular model.

4.2.6 Statistical Analysis

IBM SPSS (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp)
was used for statistical analysis. Differences in patient characteristics between the
training and test dataset were evaluated using Student’s t-test, if the characteristic
was distributed normally according to the Shaprio Wilk test, else the Mann-Whitney
U test was used after validation of homogeneity of variance using Levene’s Statistic.
Bonferroni correction for multiple testing was applied to test if the two groups were
significantly different from each other[58, 59]. For each ML algorithm, the area un-
der the receiver operating curve (AUC), the sensitivity, specificity, accuracy and the
F1-score were calculated. The comparison of the performance of the different mod-
els with the ability of clinicians to diagnose obstructive CAD was made by looking
at sensitivity, specificity, accuracy and the F1-Score. Confidence intervals for sensi-
tivity and specificity were calculated using the exact Clopper-Pearson method[60].
A significance level at 0.05 was used for all statistical tests. This resulted in a p-
value of 0.0013 after Bonferroni correction. Furthermore the predictive performance
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of the ML algorithms was compared with the diagnostic performance by clinicians
by comparing the sensitivity, specificity and the F1-Score.

4.3 Results

4.3.1 Study Population

Patient characteristics and clinical parameters of the study population are shown in
Table 4.1. Within the total population of 1007 patients there were 111 patients with
obstructive CAD (11%) during follow-up. The average time for follow-up was 1.8
years. The minimum follow-up time was 1 year whilst the longest follow-up time
was 3.8 years. 26 deaths were reported from this study population. The cause of
death was not always reported. The majority of obstructive events occurred within
90 days after the PET scan, and can be referred to as early revascularization. 67,4%
of the obstructive events in the training dataset and 72,7% of the obstructive events
in the test dataset can be thought of as early revascularization.

A number of significant differences were found between the characteristics of pa-
tients in the training dataset compared with patients in the test dataset. The percent-
age of patients with a medical history was larger in the test dataset, namely 26.7%
versus 19.5% in the training dataset (p=0.04), and so was the share of patients in the
test set that used beta blockers, namely 62.4% versus 53.8% (p=0.03). Furthermore,
the distribution of the SDS score within the training dataset showed dissimilarities
compared to the test dataset. However, after correction for multiple testing using
the Bonferroni correction, we state that the baseline characteristics of the two groups
as a whole did not differ significantly from each other.
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TABLE 4.1: Comparison of patient characteristics and all features between the training and
test dataset. Normally distributed continuous features are characterized by mean values
and corresponding standard deviations. Non-normally distributed continuous features are
denoted by *, and are characterized by median values and the corresponding interquartile

range. Dichotomous features are characterized by the percentage of occurrences.

Characteristic Training set (n = 805) Test set (n = 202) p-value

Obstructive CAD 11.1% (89) 10.9% (22) 0.95
All Cause Death 2.6% (21) 2.5% (5) 0.91
Time to event* (days) 42 (28-153) 34 (26.5-84.5) 0.89
Event <90 days after scan 67,4% (60) 72,7% (16) 0.82

Age 66.2 ± 10.6 65.7 ± 10.9 0.54
Female 49.70% 48.50% 0.77
Length (cm) 173.6 ± 10.3 174.1 ± 10.5 0.54
Weight (kg) 89.0 ± 19.9 89.4 ± 19.8 0.80
BMI 25.6 ± 5.2 25.6 ± 5.14 0.93
Pulse (beats/min) 69.8 ± 13.6 70.4 ± 11.3 0.56
Creatinine (µmol/L) 97.2 ± 75.9 89.9 ± 40.7 0.19
Smoking never 40.1% 38.60% 0.70
Smoking ever 47.3% 46.5% 0.84
Smoking present 12.5% 14.8% 0.38
Diabetes mellitus 20.0% 17.8% 0.49
Hypercholesterolemia 41.1% 40.6% 0.89
Hypertension 62.3% 61.1% 0.80
Positive Family history 51.1% 46.5% 0.25
Medical history 19.5% 26.7% 0.04
COPD 12.0% 16.3% 0.12
CVA 9.2% 12.9% 0.15

Medication usage 94.3% 97.0% 0.06
Aspirin 28.2% 27.2% 0.78
Clopidogrel 4.1% 4.5% 0.82
Acenocoumerol 9.0% 10.9% 0.40
Beta blockage 53.8% 62.4% 0.03
Ace/AII inhibitor 41.4% 45.0% 0.35
Ca-channel blocker 24.2% 18.3% 0.06
Statin 43.2% 47.0% 0.33
Diuretic 28.9% 35.6% 0.07

Agatston score* (Total) 120 (10-551) 153 (15-663) 0.31
Agatston score* (LM) 0 (0-9) 0 (0-8) 0.93
Agatston score* (LAD) 56 (1-251) 94 (1-270) 0.29
Agatston score* (LCX) 4 (0-79) 3 (0-74) 0.54
Agatston score* (RCA) 5 (0-110) 9 (0-190) 0.17

PET SSS* 4 (1-9) 4 (1-10) 0.47
PET SDS* 1 (0-3) 1 (0-3) 0.02
MBF Stress* (ml/min/g) 2.5 ± 0.7 2.5 ± 0.8 0.30
MBF Rest* (ml/min/g) 1.1 ± 0.3 1.1 ± 0.3 0.75
MBF Reserve* (ml/min/g) 2.5 ± 0.6 2.4 ± 0.6 0.36
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TABLE 4.2: This table shows the values of hyperparameter that were used throughout the
grid search per algorithm. Four algorithms were used: Support Vector Machine (SVM), eX-
treme Gradient Boosting (XGB), Least Absolute Shrinkage and Selection Operator (LASSO)
and Logistic Regression(LR). Sets of hyperparameters that resulted in overall best perfor-
mance are color-coded. Hyperparameters in red indicate that the hyperparameter was se-
lected in the optimization of the regular models. Hyperparameters in blue indicate that the
hyperparameter was selected in the optimization in the hybrid models. Hyperparameters in

green indicate that the hyperparameter was selected in both models.

Classifier Parameters Range or domain

SVM Kernel [Sigmoid, Radial Basis Function]
γ [1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1, 10]
C [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10, 25, 50, 100, 500]
Shrinking [True, False]

XGB Scale Positive Weight [1, 3, 5, 7, 9, 11]
Colsample by Tree Ratio [0.5, 0.6, 0.7, 0.8, 0.9]
Subsample Ratio [0.5, 0.6, 0.7, 0.8, 0.9]
γ [0, 0.1, 0.2, 0.3, 0.4, 0.5]
Learning Rate [0.1, 0.01, 0.05]
Max Depth [3, 5, 7, 9]
Number of Estimators [50, 100, 150, 200]

LASSO α
[1e-5, 5e-4, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2,
5e-2, 0.1, 0.5, 1, 5, 10, 50, 100, 500]

LR Penalty [L1, L2, None]
C [0.01, 0.1, 1, 10, 100, 1000]
Class Weight [Balanced, None]
L1 Ratio [0.1, 0.5, 0.01]
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4.3.2 Model Development

Four ML algorithms were trained for the prediction of obstructive CAD using 5-
fold cross validation in combination with a grid search. To clarify: this process was
repeated twice; the first iteration involved all input features except the visual inter-
pretation by clinicians, referred to as the ‘regular approach’. The second iteration
involved all input features, and is referred to as the ‘hybrid approach’. The result-
ing sets of hyperparameters, for each model and for both approaches, are shown in
Table 4.2.

ROC curves were generated for all models to evaluate their performance on the
training and test dataset. The performance of the regular models on the training
dataset is shown in Figure 4.1 by means of ROC and AUC. The best performing
model during cross validation was XGB which reached an AUC of 0.92, the SVM
performed the worsts, obtaining an AUC of 0.76. A visual comparison of perfor-
mance metrics is provided in figure 4.3. The exact numbers, including confidence
intervals, are given in Table 4.3.

TABLE 4.3: Regular model performance on training dataset

Sensitivity 95% CI Specificity 95% CI F1-Score

Clinician 55.1% 44.1-65.6 93.4% 91.4-95.1 0.53
XGB 57.3% 46.4-67.7 96.9% 95.4-98.1 0.63
LR 41.6% 31.2-52.5 98.5% 97.3-99.2 0.54
LASSO 21.4% 13.4-31.3 99.3% 98.4-99.8 0.34
SVM 33.7% 24.0-44.5 96.8% 95.2-98.0 0.42

TABLE 4.4: Hybrid model performance on training dataset

Sensitivity 95% CI Specificity 95% CI F1-Score

Clinician 55.1% 44.1-65.6 93.4% 91.4-95.1 0.53
XGB 65.2% 54.3-75.0 97.4% 95.9-98.4 0.70
LR 49.4% 38.7-60.3 98.6% 97.5-99.3 0.62
LASSO 28.1% 19.1-38.6 99.3% 98.4-99.8 0.42
SVM 59.6% 48.6-69.8 100.0% 99.5-100.0 0.75

The performance of the hybrid models on the training dataset is shown in Figure
4.2 by means of ROC and AUC. The best performing model during cross validation
was SVM with an AUC of 0.98. The worst performing model was LASSO with an
AUC of 0.89. Again, the visual comparison of performance metrics is provided in
Figure 4.4. The exact numbers including confidence intervals are shown in Table 4.4.



34
Chapter 4. Prediction of Obstructive Coronary Artery Disease using Machine

Learning Algorithms

FIGURE 4.1: ROC curves of the best performing regular models per algorithm on the training
and test dataset respectively. The sensitivity and specificity of the clinicians, as measured
by visual interpretation of PET MPI scan, is plotted with corresponding 95% confidence

intervals.

TABLE 4.5: Regular model performance on test dataset

Sensitivity 95% CI Specificity 95% CI F1-Score

Clinician 77.3% 54.6-92.2 92.2% 87.3-95.7 0.64
XGB 54.6% 32.2-75.6 94.4% 90.0-97.5 0.54
LR 36.4% 17.2-59.3 95.0% 90.7-97.7 0.41
LASSO 22.7% 7.82-45.4 98.9% 96.0-99.9 0.44
SVM 36.4% 17.2-59.3 96.7% 92.9-98.8 0.37

4.3.3 Model evaluation

The four best performing models for both approaches (regular and hybrid) were
evaluated using the test dataset.

The performance of the regular models on the test dataset is shown in Figure 4.1.
The best performing algorithm was XGBoost which reached an AUC of 0.90. Whilst
using the standard threshold of 0.5, this resulted in a sensitivity of 55% (95% CI 32-
76) and a specificity of 94% (95% CI 90% to 97%). Performance metrics of all other
models are shown in Figure 4.3 and the corresponding values are provided in Table
4.5.

The performance of the hybrid models on the test dataset is shown in Figure 4.2.
The best performing algorithm was XGBoost which reached an AUC of 0.93. The
sensitivity of this model was 64% (95% CI 41-83) and the specificity was 96% (95%
CI 91-98) Performance metrics of all other models are provided in Table 4.6 and a
visual interpretation is available in Figure 4.4.
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TABLE 4.6: Hybrid model performance on test dataset

Sensitivity 95% CI Specificity 95% CI F1-Score

Clinician 77.3% 54.6-92.2 92.2% 87.3-95.7 0.64
XGB 63.6% 40.7-82.8 95.6% 91.4-98.1 0.64
LR 40.9% 20.7-63.7 93.9% 89.3-96.9 0.43
LASSO 45.5% 24.4-67.8 98.3% 95.2-99.7 0.57
SVM 22.7% 7.8-45.4 98.3% 95.2-99.7 0.37

FIGURE 4.2: ROC curves of the best performing hybrid models per algorithm on the training
and test dataset respectively.The sensitivity and specificity of the clinicians, as measured
by visual interpretation of PET MPI scan, is plotted with corresponding 95% confidence
intervals. The SVM model shows clear overfitting in the training dataset, and a lack of

ability to perform on the test dataset.

Features were ranked in order of importance for both the regular and hybrid
XGBoost models. The top 10 predictors for the XGBoost model consisted of PET
derived features (in order of importance: PET SDS, MPE. PET SSS, MFR LAD, MBF
Stress LAD), CAC-scoring (total, RCX, LAD, RCA) and creatinine serum level. The
feature importance for the regular XGBoost model can be examined in greater detail
in Figure 4.5, and the feature importance for the hybrid model is shown in figure 4.6.

Features that had a feature importance of zero had negligible little to none pre-
dictive value for obstructive CAD. There were only slight variations between the
hybrid and the regular model. Noteworthy, features that did not contribute to both
models were COPD, past CVA, hypertension, medication usage and clopidogrel us-
age. All prescribed medication categories were found to hold little to none predictive
value.
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FIGURE 4.3: Visual representation of regular model performance on the training dataset and
the test dataset.

FIGURE 4.4: Hybrid model performance on the training dataset and the test dataset.
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Feature Importance Ranking of the Regular XGBoost

FIGURE 4.5: Feature importance ranking of the regular XGBoost model. The F-score was
calculated by the improvement in accuracy brought by a feature to the branches it is on.

Features with low importance can be interpreted as weak predictors for obstructive CAD

Feature Importance Ranking of the Hybrid XGBoost

FIGURE 4.6: Feature importance ranking of the hybrid XGBoost model.
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4.4 Discussion

In this study, ML algorithms were used to predict obstructive CAD based on a com-
bination of clinical parameters and imaging derived quantitative features. We used a
unique combination of classical risk factors, patient characteristics and comprehen-
sive imaging derived features including perfusion, cardiac function and the CAC-
score. We were able to develop a boosted decision tree ensemble model that pro-
vides an individualized risk score for obstructive CAD. Furthermore, we were able
to identify the rationale of the model by analyzing the feature importance. This may
help clinicians understand the model, but as an added benefit, this may also be used
to identify previously unknown correlations. The regular model reached an AUC of
0.90 while the hybrid model reached an AUC of 0.93. It is noteworthy that this level
of performance is unmatched by other approaches to predict cardiovascular risk[37,
40, 42].

On the training dataset some of the models showed similar performance as the
clinician, however this did not translate towards the test dataset. All models were
indicative of some overfitting, however the SVM model performed worse compared
to the other algorithms, both on the training and test datasets. This is highlighted by
the relative low AUC values. The model that was able to achieve the highest AUC
value was XGBoost. This model performed similar to the evaluation of the scan by
a clinician, but the relatively low number of positive cases in the test dataset (n=22)
resulted in large confidence intervals, making it impossible to show a significant dif-
ference in comparison with clinical performance.

No models showed significant improvements after the addition of the visual
interpretation, though during this cross-validation procedure, the SVM model did
overfit on the training dataset, more so than the non-hybrid model. The slight im-
provements were expected since the visual interpretation is rarely just an objective
evaluation of the scan alone. The clinician analyses the image, and places the out-
come of the scan in the context of a patient. The interpretation is therefore guided
by experience, but also by everything else that is known of a specific patient, such as
symptoms, biochemistry results and the CAC-score.

Again, XGBoost achieved the highest AUC of all algorithms. This comes as no
surprise as boosted gradient decision trees have surpassed other algorithmic clas-
sification approaches in recent years[50]. We were also able to identify the most
important predictors via feature importance ranking of the XGBoost model. PET
derived quantification values including MPE, SDS and SSS, as well as CAC-scores
were much stronger predictors for obstructive CAD compared to classical risk fac-
tors such as smoking and hypertension. This is not unexpected, since both CAC-
scoring and MPI findings are well established as independent and complementary
predictors[11, 19, 21, 61, 62]. Furthermore, the creatinine serum level was ranked
as a relatively strong predictor. This may be explained by the experience that renal
dysfunction increases the likelihood of CAD and has a negative impact on the prog-
nosis[63].

An interesting finding is that MPE was ranked as a strong predictor for obstruc-
tive CAD. MPE seems to provide additional prognostic information over the SDS
and SSS and the regional MFR values. Cardiac entropy has been studied in the past,
and Costa et al. concluded that heart rate complexity decreased with the increase
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of age, but also with disease[64]. A review by Chen et al. summarizes a number of
articles about entropy for coronary heart disease. The consensus from five articles
was that patients with CAD had lower entropy values compared to healthy subjects.
These studies measured various type of entropy, including entropy of diastolic heart
sounds, entropy of the heart rate and cardiac magnetic field mapping. If the level of
entropy is also predictive for the severity of CAD, it can be explained that MPE is a
predictor for obstructive CAD.

Medication usage in general was not ranked as a strong predictor for an obstruc-
tive event. The pharmacological management of CAD is aimed to reduce anginal
symptoms and to prevent cardiovascular events, and since it is the primary treat-
ment for patients with low risk, medication usage alone is probably not an indicator
for the occurrence of cardiovascular events since both patients who are more likely
as well as patients who are less likely to suffer a cardiovascular event are prescribed
the same medication. It may be possible that differences in medication dosages are
able to distinguish high risk patients from low risk patients, but this information
was not accessible to us.

Not just medication categories were ranked as weak predictors. The type of gen-
der and non-cardiac medical history did not show any relationship with obstructive
CAD. This is surprising since the contrary was concluded by Reeh at al., who found
that male gender had an odds ratio of 4.25 (95% CI 3.13–5.77) for the prediction of
obstructive CAD[41]. In fact, male gender is a known risk factor for obstructive
CAD, and has been used extensively in PTP-risk models, such as the established
Diamond-Forrester risk score and the Duke criteria for chest pain[65, 66]. Our fea-
ture importance ranking suggests that the model would perform equally well when
features like gender and non-cardiac medical history are not used during training.

No direct comparison can be made with previous ML approaches for the predic-
tion of obstructive CAD because either the variety of input features or the specific
prediction task differed. In a recent study by Hu et al, ML was used to predict per-
vessel early coronary revascularization after SPECT MPI, a LogitBoost model was
implemented and trained with 10-fold crossvalidation[42]. In this study, a combina-
tion of MPI derived parameters and clinical features was used. A notable difference
is that in this study, SPECT MPI was used and not PET PET. Similarities with regards
to predictors can be seen: Similar to what we found, MPI derived parameters were
superior predictors compared to the classical clinical risk factors and other clinical
parameters. The best performing models reached an AUC of 0.79. We were able to
obtain an AUC of 0.90. The main difference between this study and our study is that
we chose to predict long term outcome, and not just early revascularization. Also,
our AUC value was by large determined by the specificity, and since the dataset
that we used to train contained a strong imbalance towards negative cases, a higher
AUC is obtained more easily. Only part of our obstructive events can be considered
as early revascularization.

Juarez-Orozco et al. implemented ML algorithms to predict myocardial ischemia
and the risk of major adversarial cardiac events (MACE). However, here the PET de-
rived quantification was used to classify patient outcome, and not used as input for
the model. A combination of patient characteristics and cardiac parameters were
used to model for the outcome. In their study LogitBoost was found to be the best
performing algorithm out of a number of candidate algorithms, including Naïve
Bayes, Random Forest and Logistic Regression[37].



40
Chapter 4. Prediction of Obstructive Coronary Artery Disease using Machine

Learning Algorithms

Haro Alonso et al. developed ML models to predict cardiac death on a dataset of
8321 patients. Opposed to the previous study, this time the input features included
SPECT MPI findings. Their best performing algorithm was a SVM which reached an
AUC of 0.83[40].

4.4.1 Strenghts and limitations

The integration of MPI derived features with CAC scoring and clinical variables is
what distinguishes this study from previously performed studies. The incremen-
tal prognostic information of a CAC scoring, or another form of characterizing the
atherosclerotic burden should always be incorporated if this kind of risk modeling
is available. Note that the obvious disadvantage of CAC scoring is that it does not
exclude risk caused by soft plaques.

This study has several limitations. First of all, arguably we could have improved
our model even further by adding ECG derived input features such as presence of
atrial fibrillation or left bundle branch block. Other features that may be included
are PTP and anginal symptoms. However, our work resulted in perhaps the most
detailed risk model to date, and never before has MPE, as derived from regional CFR
measurements, been used in a predictive model.

All cause death was not considered as an obstructive CAD event. Death as a re-
sult of myocardial infarction should be classified as an obstructive event. However,
we found that the cause of death was rarely well documented in the patient records
that were available. And a well-documented cause of death is essential in our case
since cardiac death can be attributed to more causes than just myocardial infarction.
Despite the large study population, the number of obstructive events was relatively
low at 11%. This meant that we had to work with a strongly imbalanced dataset,
and performance metrics such as accuracy will not give proper representation of the
actual performance. Unfortunately this caused the confidence intervals of especially
the sensitivity to become quite large. The primary strength of the current XGBoost
model lies in the specificity, as it can be used to exclude patients from further exam-
inations.

In our grid search we limited ourselves to a finite number of hyperparameter
values. The benefit of performing a grid search is that good results can be obtained
in a short time span. However, the final hyperparameters may not be the optimal
hyperparameters. A framework that is able to iteratively optimize the hyperparam-
eters based on the results of the previous result, and actively searches for the best
parameters may be advantageous[67, 68]. The obvious downside is the additional
required computational time whilst the benefit is not guaranteed.

All results reported in this work originated from models that were trained using
5-fold cross-validation. The performance is validated on a dataset that is specific to
our hospital. A dataset from other medical centres are required to evaluate how well
the model generalizes beyond data from Isala.
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4.4.2 Clinical implementation

The XGboost is able to provide a prediction of the occurrence of an obstructive event
after MPI. Therefore, it may be utilized to assist clinicians as a risk stratification tool.
It may be able to offer more assurance before the decision of further evaluation by
means of invasive CAG is made. According to the performance results, this model is
able to provide similar performance compared to the current clinical standard. The
performance of the model is especially accurate in cases which are regarded by the
model as low risk. The integration of this model into the diagnostic workflow can
therefore be beneficial. First of all, the tool can be consulted without much effort
as a second opinion, potentially improving the overall diagnostic accuracy and pre-
venting needless ICA procedures. The model can accurately identify or verify low
risk patients and prevent redundant follow-up. Secondly, the model can be used as
a teaching tool. Guidance provided by the model to unexperienced clinicians may
speed up the learning process and allow them to reach expert levels sooner.

Furthermore, it may be interesting to investigate if models with similar perfor-
mance can be developed with less features. A surplus of irrelevant features can cause
models to overfit more easily[69]. Moreover, potential simplification of these models
is certainly interesting in the context of clinical implementation. As a starting point,
the feature importance ranking can be used to determine a cut-off for features.

4.5 Conclusion

We have implemented multiple ML algorithms to develop a model for the prediction
of obstructive CAD, based on a combination of clinical and quantitative features.
According to our results XGboost outperformed other algorithmic approaches, and
performed equally well as a clinician. The resulting model is able to provide individ-
ual risk stratification by predicting the possibility of an obstructive cardiovascular
event. This indicates the potential of using this model as a decision support tool
to. The model can be implemented to reduce the number of patients sent for ICA.
However, before that is a possibility, further validation of the model and seamless
integration within the diagnostic workflow are required.
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Chapter 5

Future Perspectives

For the past year I worked on a clinically relevant problem that I attempted to tackle
with a ML approach. Though the results seem promising, further improvements can
be addressed considering the development and clinical implementation.

First of all, and this applies to all projects in ML, there can never be enough data.
The amount of data used in this study was acceptable for scientific/medical research
purposes, however for ML, the dataset was quite small. Also, the dataset was heav-
ily imbalanced towards non-obstructive CAD cases. This is not necessarily problem-
atic when developing models. However, the single best step to improve predictive
models is developing them with a larger dataset. Moreover, since we are primarily
interested in detecting obstructive CAD, ideally the dataset should include more of
these training examples. There are methods to (synthetically) increase the volume of
a dataset in this specific task.

First of all, consortia can be formed of multiple medical centers that pool their re-
sources together. There are opportunities in cooperation regarding the development
of models, where sometimes expensive hardware is required. Improvements can be
made regarding the sharing of medical data. Even though data sharing between in-
stitutions is becoming more common, it is still a notoriously difficult process. The
important but strict national and European regulations regarding patient privacy
make the sharing of data more complicated compared to other industries, but also
compared to other regions in the world. There have been some initiatives to share
medical data in a responsible manner. On a European scale, some of the most note-
worthy being the European Medical Information Framework, the European Health
Research and Innovation Cloud and the European Health Data and Evidence Net-
work[70, 71]. Databases are also being established on a global scale. Although most
of these databases (e.g. Cancer Imaging Archive, the Osteoarthritis Initiative and the
National Institute of Arthritis and Musculoskeletal and Skin Diseases) focus on one
specific item, it is a step towards more thorough collaboration[72].

The second approach to gain more data for the development of models is syn-
thetic data generation. The generation of new data can be seen as some form of data
augmentation. Data augmentation is a technique used to reduce overfitting in ML,
but it can also be used to generate synthetic data entries that satisfy statistical proper-
ties of the original dataset. The newly generated data entries can be combined with
the original ones to enhance the variability within the dataset[72]. Another tech-
nique uses synthetic data for heavily imbalanced datasets: the ADASYN algorithm.
This algorithm, as proposed by He et al., aims to improve the learning by reducing
the bias as a result of the class imbalance and focusing on difficult examples. This
is achieved by the generation of data samples that lie next to original observations
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which are wrongly classified by an algorithm[73]. It must be said that the usage of
generated data in healthcare should be handled with care since unwanted biases can
be introduced easily. Still, both techniques can be applied on the dataset used in this
thesis.

Another approach to combat the lack of obstructive CAD cases is to modify the
inclusion criteria. We opted to exclude patients with a cardiovascular history since
the perfusion quantification of patients that underwent PCI or CABG is not verified.
However, including this patient population can be interesting for two reasons. First
of all the size of the dataset will increase. More importantly, in theory, a more versa-
tile model can be developed.

Alongside the prediction of obstructive CAD for patients with prior PCI’s and
CABG’s a number of other improvements can be made to this model in the future.
First of all, there lies a challenge in the prediction of regional obstruction. How-
ever, per-vessel prediction requires per-vessel labeling. In this thesis, a combination
of (semi-)quantitative and qualitative features was used. Since the quantitative fea-
tures are extracted from a scan, there is an opportunity in using the raw data of the
PET scan as additional input for the model. There is a possibility that predictive
information can be extracted from the raw data by well-established techniques from
the domain of deep learning such as a convolutional neural network(CNN)[74]. The
raw data can be processed by a 2-dimensional or 3-dimensional CNN and the out-
come(s) can be integrated within the current XGBoost model as additional input.

Clinical implementation occurs only after extensive validation. However, the
development of ML models is only one aspect of implementation. These AI based
models to be used as tools for healthcare should merge flawlessly into the current
workflow. The majority of tools developed for healthcare fail in this aspect, and
simply remain underused or unused after implementation. Sometimes there is a
sense of reluctance to adapt. To overcome this, the tool should be user friendly, fast
and not require a lot of effort to use. User friendliness can be achieved by intuitive
design choices and integration in existing frameworks such as the electronic health
record system(EHRS) or the radiology information system (RIS). More ideally, the
tool can provide fully automatic risk evaluation. As of now this is impossible since
it requires the coupling of multiple self-contained programs such as the EHRS and
the RIS. This is not yet possible but it is not unimaginable in the near future.

I believe that the technical physician has an important role in all aspects within
this field. This includes the development of models, the validation of the models
and the clinical implementation. It is essential to have knowledge about a specific
domain for which an algorithm is developed. The combination of knowledge that a
technical physician has about a deep understanding of anatomy, pathology, health-
care organization and patient workflow is in that sense unique.

To conclude, it is important to realize that the amount of available data will never
decrease, and the availability of computational power will increase. ML can be uti-
lized to advance healthcare as never before. ML can address challenges by improv-
ing quality of care, reducing healthcare costs, supporting workload management
and reducing human error, while providing an unparalleled personalized approach.
Difficulties remain, but are being addressed on a worldwide scale. The potentiality
for improvement is huge for ML in healthcare.
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Appendix A

Description of the Kaggle-dataset

TABLE A.1: Features of the Kaggle-dataset

Feature Possible values [range]

Male [0, 1]
age [15...23]
RG(00,0,0.7),weekly study time [1,2,3,4]
RG(00,0,0.7),number of past class failures [0,1,2,3]
extra educational support [0, 1]
RG(00,0,0.7),family educational support [0, 1]
extra-curricular activities [0, 1]
strives for higher education [0, 1]
currently in a romantic relationship [0, 1]
quality of family relationships [0,1,2,3,4,5]
amount of free time [0,1,2,3,4,5]
goes out with friends [0,1,2,3,4,5]
Daily alcohol consumption [0,1,2,3,4,5]
Weekly alcohol consumption [0,1,2,3,4,5]
Health status [0,1,2,3,4,5]
Number of absences [0 ... 75]
Math grade term 1 [1 ... 20]
Math grade term 2 [1 ... 20]
Math grade term 3 [1 ... 20]
Travel time to school [1,2,3,4]
Paid educational support [0, 1]
activities [0, 1]
nursery [0, 1]
internet [0, 1]
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Appendix B

Abstract for EANM2020

Topic: B4 CARDIOVASCULAR IMAGING CLINICAL STUDY B41 PERFUSION
Title: Identification of predictors for myocardial blood flow using Rubidium-82 PET
This abstract was accepted for oral presentation for the EANM2020

Authors: RJ Metselaar1,2, JA van Dalen3, BN Vendel2, JR Timmer4, M Mouden4,
JD van Dijk2

1Technical Medicine, University of Twente
2Isala Ziekenhuis, Department of Nuclear Medicine
3Isala Ziekenhuis, Department of Medical Physics
4Isala Ziekenhuis, Department of Cardiology

Introduction Myocardial blood flow (MBF) measurements using Rubidium-82
PET provides incremental diagnostic and prognostic information in the evaluation
of coronary artery disease (CAD). In particular, high myocardial flow reserve (MFR)
values have a high negative predictive value for obstructive CAD. Understanding
which features are characteristic for normal MBF and MFR values can aid in the risk
stratification of patients with suspected obstructive CAD. The aim of this study was
to identify these features for developing a clinical decision tool.

Materials and Methods We retrospectively included 997 patients with suspected
CAD (50,7% Male, age 65,99 ± 10.43 years), who were referred for rest and regadenoson-
induced stress Rubidium-82 PET/CT (Discovery 690, GE Healthcare). Cardiac risk
factors; cigarette smoking, hypertension, hypercholesterolemia, diabetes, positive
family history of CAD; prior medical history; age; gender; body mass index (BMI);
creatinine serum values; coronary artery calcification (CAC) score and medication
usage were registered at time of the PET/CT examination. All variables except CAC
score, age, resting heart rate and BMI were transformed to categorical variables.
Multiple linear regression with forward stepwise selection (F-to-enter < 0.050) was
calculated to correlate variables with rest and stress MBF and MFR. The importance
of significant predictors was determined by ranking using the incremental increase
in adjusted R2.

Results Significant predictors for high rest MBF were, in order of importance,
high heart rate, female sex, calcium-channel blocker usage, low BMI, calcium-channel
blocker usage, hypertension, no acenocoumerol usage and older age. The adjusted
R2 was 0.34. Furthermore, the significant predictors for high stress MBF were, in
order of importance, female sex, high heart rate, low CAC score, low BMI, younger
age, clopidogrel usage, no beta blocker usage, COPD. (Adjusted R2: 0.23). The pre-
dictors for high MFR were younger age, low heart rate, low CAC score, no calcium-
channel blocker usage, no underlying diabetes mellitus, positive family history of
CAD normal creatinine serum levels and male. (Adjusted R2: 0.19).
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Conclusion We identified several features that correlate with MBF and MFR
measurements using Rubidium-82 PET. These features can be used in a clinical de-
cision tool for risk stratification of patients with CAD. Further studies are needed to
determine the prognostic value of the identified features in combination with MBF
and MFR.
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