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Chapter 1

Thesis introduction

In recent years, more attention has risen for robots cooperating with a human operator. Examples
of this would be industrial manipulation, rehabilitation, or medical applications, such as powered
exoskeletons. Because of this close cooperation and humans sharing the same work-space with a
robot, safety must always be guaranteed. Different approaches have been developed for reliable and
safe human-robot interaction. One of these is admittance control, which can make existing non-
backdrivable manipulators show desired behavior.

In admittance control, the forces exerted by an operator are measured and imposed on a virtual
model. The positions and velocities from this virtual model are then used as setpoints for the robot
to follow. Doing so ideally would make the robot behave as if it had the properties of the virtual
model. This would allow for i.e. the removal of friction in the robot or cancellation of gravity.

Fig. 1 shows the schematic layout of an admittance control system. In this, Y, is the virtual
model, converting the measured force F' into the desired velocity v4. The controller Cp, takes the
difference e between this desired velocity and the actual velocity v and uses it to compute a force F,
which aims to make the dynamics of the robot Y, follow the desired velocity vy.

Figure 1: Schematic diagram of an admittance controlled system.

One of the examples in which admittance control is used is powered exoskeletons, which are cou-
pled to the human body. They aim to assist the operator with moving by providing additional force or
to amplify force exerted by the operator [1]. Another example is industrial robots helping operators
with lifting or positioning heavy payloads [2]. However, not in all cases is the assistance of the robot
required. Then the apparent admittance should be much higher than the natural admittance of the
robot, making it easier to move. Ideally, the apparent admittance in that situation should be infinite.

An infinite admittance is impossible in reality, due to a division by zero, so the aim is to increase
the admittance as much as possible. One of the ways to achieve this is to reduce the mass present
in the virtual system, which will cause the mass of the robot to be masked.



The problem shows when an operator attempts to operate such a mass-reduced admittance-
controlled device. In this situation, mechanical power is exchanged between the operator and the
device. A schematic representation of this can be seen in Fig. 2. In this case, the force created by
the operator causes a coupled motion. The operator has an impedance which results in a reaction
force. This impedance is time-varying in nature, and often also non-linear. The reaction force is
measured by the device, effectively creating a force feedback loop. This closed loop can under certain
conditions negatively affect the stability of the system.

D) o

Figure 2: Schematic diagram of a coupled admittance controlled system. The red components belong to
the feedback loop due to the addition of a human operator.

If the virtual model is virtual mass much lower than the robot mass and the system is coupled to
an operator with a high impedance, a normal velocity PI controller will lead to unstable behavior [3].
As this is highly undesirable, extensive research has been done to prevent this. One elegant solution
to this can be found in passivity theory.

Passivity is a concept often used in control design. A system is passive if the energy that can be
extracted from the system is bounded by the injected and initially stored energy. In other words, no
more energy can be extracted from the system than was already put into the system. For example,
consider the admittance controlled system shown in Fig. 1 with the input force F,(¢) and the device
velocity v(t). This combination of a force and velocity vector is also referred to as a power-port. The
energy exchanged between the device and the operator can be expressed as:

E(t) = /Ot Fl(r)v(r)dr + Ey, (1)

in which Ej is the initially stored energy. In this case, positive energy means that energy was
transferred to the system. Negative energy means that energy was transferred to the operator. For
a system to be passive, only one condition must hold:

E(t) > Ey,Vt. (2)

Passive systems, as well as interactions of passive systems, are stable [4]. Humans, although
considered to be active elements, are very capable to interact with passive systems. Furthermore,
involuntary human forces are mostly passive. [5]



1.1 Objective

Multiple attempts were made in recent years to guarantee passivity, described in section I. In these,
the virtual mass was kept equal and by utilizing modified forces or variable virtual dampers, passivity
was preserved or restored. Feragutti et al. [6] introduced the idea of varying the virtual mass as a
way to guarantee stability. Increasing the virtual mass would create virtual kinetic energy, which
could violate the passivity of the virtual model. This problem was solved by using energy tanks to
guarantee the passivity of the virtual model. The concept of varying virtual mass as a means to
guarantee a passive interaction is investigated in this report. The objective is to develop a frame-
work that can guarantee passive interaction of a mass-reduced admittance controlled robot by using
variable virtual dynamics.

With this objective does not come a strict demand on the amount of mass-reduction used. From
literature, it is known that an upper bound exists on the amount of passive mass-reduction possi-
ble, and in this literature, a fixed amount of virtual mass is used. However, since variable virtual
mass will be used, it is not possible to fix the amount of mass-reduction beforehand. Instead the
amount of mass-reduction that can be achieved will be investigated, as well as ways to reach more
mass-reduction.

The presented framework will be tested on a two degree of freedom (DoF) robot in simulation,
where the end-effector attempts to behave as prescribed by the virtual mass-damper model. This
application is closer to the industrial robot helping with payload manipulation. The chosen task is
for the operator to make the robot follow a reference trajectory that is relatively small compared to
the workspace at relatively high speed.

This report is divided into three distinct parts. This chapter serves to provide background infor-
mation to the thesis and to give context and information on specific elements that were focused on
in this report. In section II, a novel framework will be shown which aims to guarantee passivity by
exclusively modifying the virtual dynamics. An optional addition, if the robot allows for direct force
input, is detailed in section III. The simulation set-up to test and show both systems can be found
in section IV, the results of which are shown in section V. The discussion about these results can be
found in section VI. Lastly, chapter 3 is a more elaborate discussion, mostly touching on all points
not mentioned in VI. It also looks back on the apparent end-effector dynamics and the estimated
energy exchanged at the end-effector.



Passive Variable Mass Reduction in Admittance
Control

Bas KOSTER (s1657143)

Abstract—Admittance control has been used in recent years
to reproduce a desired dynamic response on non-backdrivable
manipulators. One of the topics of research has been to increase
the apparent admittance by reducing the virtual mass. However,
mass-reduced admittance controllers become unstable when the
environment (e.g. the operator) the robot is interacting with has
too high impedance. In this paper, a framework is proposed to
guarantee passive interaction between robot and human operator,
while attempting to increase admittance as much as possible. An
additional adaptive feedforward component is proposed, if direct
force control is possible, to increase the apparent admittance
further. The proposed framework is tested in simulation and has
shown to indeed reduce apparent admittance.

I. INTRODUCTION

In recent years, more attention has risen for robots cooper-
ating with a human operator. Examples of this would be indus-
trial manipulation, rehabilitation or medical applications, such
as powered exoskeletons. Because of this close cooperation
and humans sharing the same workspace with a robot, safety
must always be guaranteed. Different approaches have been
developed for reliable and safe human-robot interaction. One
of these is admittance control, which can make existing non-
backdrivable manipulators show desired behavior. A schematic
diagram is shown in Fig. 3. Admittance control is used in
various fields, from exoskeleton control [1] [2] to end-effector
manipulation [3] [4]. In these cases, admittance control aims
to remove undesirable behavior or amplify the force exerted by
an operator. However, when the assistance of the controller is
not required, the robot should have high admittance, preferably
higher than the natural admittance of the robot. One of the
ways to do this is to use a lower mass in the virtual model
than the actual robot. The problem with this is that the robot
becomes unstable when interacting with stiff environments,
such as stiffened human limbs. An elegant solution for this
problem could be found in passivity theory. Passivity is a
concept often used in control design. A system is passive if the
energy that can be extracted from the system is bounded by the
injected and initially stored energy. In other words, no more
energy can be extracted from the system than was already put
into the system. Passive systems, as well as interactions of
passive systems, are stable [5]. Humans, although considered

Fig. 3: Schematic of admittance controlled system.

to be active elements, are very capable to interact with passive
systems. Furthermore, involuntary human forces are mostly
passive [6].

A. Current research

Passivity can be enforced on admittance controlled devices
by having certain parameters, such as controller gains or
virtual model parameters, within certain ranges. One of the
guidelines to find these ranges is the positive real condition [7],
used for linear time-invariant (LTI) systems. In [8], Keemink
performed an analysis of a single degree of freedom LTI mass-
damper system, controlled by an admittance controller with an
LTT virtual mass. He found that the solution provided by the
positive real condition is rather conservative. The lower bound
of the virtual mass was lower than the actual mass, but only
barely so. The reason for the conservative nature of the positive
real condition is that it checks it the power-port of the system
is passive in the frequency domain, which is more strict than
time-domain passivity. Several papers have been written with
suggested frameworks for enforcing time-domain passivity.
One of the more recent papers is by Nabeel et al. to prevent
activity when mass reduction is intended [9]. It is based on
a method to prevent activity in the interaction of impedance
controlled systems, developed by Hannaford and Ryu [10].
They developed the so-called PO/PC method to enforce proper
energy transfer between not mechanically coupled systems,
such as a master-slave setup in teleoperation. The Passivity
Observer (PO) observes all energy E,;s exchanged through
power-ports that are estimated to display active behavior.
When the Passivity Observer registers activity (Eyps < 0),
the Passivity Controller activates and attempts to dissipate this
excess energy. Nabeel et al. considered the copying of the
virtual velocity as the desired motion as the source of activity.
To counter this, they used a PO observing the energy going
into the controller and the energy coming out of the motion-
controller because of the virtual dynamics. The PC is activated
when the output is greater than the input. Keemink [8] came
however with a counterexample to the approach of Nabeel et
al. which showed that their proposed method did not work
for all systems. He used a virtual model with a mass half
of the real system and a position-proportional controller. The
environment was purely elastic. The resulting simulation was
unstable. Keemink [8] also proposed a different approach. The
Strict Passivity Inspired Stability (SPIS) applies a linear fixed
damper on the virtual model only when the strict passivity
condition Fj, > H, no longer holds. In this, E}, is the energy
exchanged between operator and robot, and H, the energy
stored in the virtual model. It has shown that it can stabilize



the tested system, but it is not able to guarantee passivity.
Furthermore, the discontinuous nature of the controller meant
the operator could suddenly feel a jerky movement when the
damper activates. The method shows that a virtual damper
does help in restoring passive behavior, but that at the same
time it may be a conservative approach. Recently, a paper
was written by Ferraguti et al. [11] introducing a method
to stabilize an admittance controlled system by varying the
virtual dynamics. While not guaranteeing passivity, it does
introduce a new method to potentially guarantee passivity. As
such, it forms the basis for the framework presented in this

paper.

II. PASSIVITY PRESERVING FRAMEWORK

This section will show the passivity preserving framework.
First the mechanism to be able to vary the virtual mass
passively derived in [11] is detailed. After this, the framework
is derived.

A. Background

Ferraguti et al. [11] presented a method to restore stability of
an admittance-controlled robot, by increasing the virtual mass
without breaking passivity of the virtual model. Additionally,
the use of a constant mass-to-damping ratio means that an
increase in virtual mass also increases in virtual damping,
which is beneficial to enforcing passivity with mass-reduction
( [8],sec. 4.6.4). This results in the following equation of
motion at sample time k:

M(k)va(k) + M(k)Rava(k) = Fp(k). 3)

In the method proposed by Ferraguti et al, the issue with using
a variable virtual mass matrix is the loss of passivity of the
virtual model. This can be shown by looking at the energy
storage in the virtual model, in this case a kinetic energy
model:

H(va(k)) = ~vT ()M(k)va(k), @

where v4(k) is the velocity vector of the virtual model at
time ¢t and M,, the virtual mass matrix at time ¢. If the time-
derivative is taken and (3) substituted, one obtains:

i (va(k)) =
B (k)va(k) + v () (V) — 2MERava(k), 5)

with Fj, (k) the force of the operator at time ¢, and R, the
mass-to-damping matrix. As can be seen, the term between
brackets can be positive, and as such, it is possible that energy
is injected due to an increasing mass matrix. This means that
the virtual model is no longer passive at all times. The solution
for this is to use energy tanks, which allows for the use of
(virtual) energy present in the system in multiple ways. Here
the energy dissipated by the virtual damper is stored in the
energy tank and can be reused to increase the mass in a way
that preserves the passivity of the virtual model. Therefore,
the dynamics are expanded as follows:

M(k)vVa(k) + M(k)Rava(k) = Fp(k)

Pp(k) —

where
Pp(k) = v (k)M(k)Ravq(k)

Py (k)= %vdT(k)M(k)vd(k) @

is the power dissipated by the virtual damper, and the power
injected or dissipated by the mass variation, respectively, and
z(k) the state of the tank. %x(k) is the velocity vector of the
virtual model. Additionally, let

T(a(k) = 52(k) ®)
be the energy stored in the tank. Due to the shape of (6),
it is assumed that T, < T'(2(k)) < Tpa for all t, with
0 < Thin < Thax- The upper bound of the tank is guaranteed by
the parameters ¢(k) and ~y(k), which disable the injection of
energy in the tank in case the energy limit 7}, is reached. The
available energy in the tank needs to be bound, as the energy
could become very high over time. This could potentially
lead to situations where, although the virtual system as a
whole is still passive, practically unstable behaviors could be
implemented [12]. The following equations are used to enforce
the upper bound:

o) = {1 for T(2(k)) < Thax ©

0 otherwise

which will disable or enable the injection of dissipated energy,
and

, 10
1 otherwise (10)

(k) = {gb if M(k) semi-negative definite
with ¢ € {0, 1} reducing the amount of energy injected due to
mass reduction, while it always allows energy to be extracted
from the tank, allowing an increase of the virtual mass. The
condition M(k:) semi-negative definite theoretically allows for
the transfer of kinetic energy between degrees of freedom.
This is prevented by assumptions on M and design choices
made. The lower bound, required to prevent a division by
zero, is guaranteed by putting limits on the amount of energy
extracted to increase the mass. For this, Ferraguti et al. make
two relevant assumptions, namely:

o The desired inertia matrix M(k) as well as the product of

M(k)Ry, also expressed as B, (k), are diagonal matrices,
defined as

M(k) = diag{mi (k), ma(k), ...mn (k)}
B, (k) = diag{by (k), ba(k), ...bx (k)1

and as M(k) is diagonal, M(k) is also diagonal.

o Every DoF of the virtual model has a robot-configuration-
dependent maximum allowable velocity expressed as &;
(¢=1,...,N).

The entire derivation can be found in [11], but the following

equation expresses the maximum allowable inertia variation
per element of M:

11
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Fig. 4: Bond diagram of single DoF admittance controlled system adapted from [8] with permission. Blue components indicate virtual
signals and powers, black denotes mechanical power flow and signals. Operators impedance F} .o and voluntary force Zj, exert a force
F}, on the robot dynamics Y;, measured as F,. This force is exerted via the modulated effort source (MSe) on the virtual mass I, and
virtual damping R,, yielding virtual velocity vq. This velocity is imposed on the controller C' via the velocity source MSf, yielding a
control force F, that is put on the robot via the interface shown in the inset with dashed lines. Red indicates the energy tank and its required
connections, allowing changes to the virtual mass without losing passivity of the virtual system. Having variable passive virtual mass allows

for a mechanism to keep the operator-robot interaction passive.

w; 1s the ¢’th component of a vector of weights W
{w1,wa, ..., wy}, which divides the available amount of en-
ergy over the IV degrees of freedom, and for which holds that

N
Zwi =1.
i=1

Of course, it should be noted that (12) presents the maximum
allowed inertia variation, energetically speaking, based on the
amount of energy at that time instance. In practice, this could
lead to very large mass fluctuations. As such, a second vector
M = {my,my,...,my} is defined, which present a second
upper bound:

13)

m;i(k+1) —m;(k) <m,, fori=1,...,N. (14)

(12) and (14) can then be used to compute the inertia variation
matrix Sj:

S; = diag{s1, s2, ..., sn}, (15)

with j denoting that this is the j’th instance of a variation of
the virtual inertia. s; is given by:

S; = min {mi,

The last step is the actual variation of the inertia parameters:

2w;(T(2(k))

-2
Z;

(16)

J
M(k+1) = M(0) + Y 8" *F)), (17)
p=0

with M(0) the virtual mass at time 0, F the sample frequency,
and k, the sample instance at which the p’th variation of the
mass took place. 5(0 < 8 < 1) is a forgetting factor that
allows for the desired interaction model, with which the robot
is instantiated, to be restored over time. Lastly, the damping
matrix needs to be updated:

B,(k+1)=M(k+ )Ry (18)

B. Preserving passive interaction

While Ferraguti et al. successfully implemented a method
to restore stability of an admittance controlled robot, it cannot
guarantee passivity of the interaction between operator and
robot. Being able to passively increase the virtual mass is
very useful, but as important is knowing when to increase or
decrease virtual mass to guarantee passivity in the interaction
between robot and operator. In this section will be derived
how the framework detects (potential) loss of passivity in the
interaction and how it varies mass over time to guarantee or
restore a passive interaction.

1) Detection algorithm: The new detection system consists
out of two detection rules, each of which is checked at set
intervals, which do not necessarily have to be the same as
the intervals of the admittance controller. After checking the
conditions, the mass is increased or decreased as described
in section II-B2, depending on the conditions and situation.
The first detection rule is simply the strict passivity condition,
proposed in [8]:

Ehr(k) > Hv(k)7 (19)
with k being the sample instance k, Ej,, the energy exchanged
between operator and robot, and H, the energy stored in
the virtual model. This is the passivity that will be enforced
by this framework on the interaction between operator and
robot. Simply only using this detection rule was observed
in simulation to cause cyclic behavior in the virtual inertia,
including, at times, large virtual masses. This is most likely
caused by the delayed effect of adding virtual mass and
damping, which does not instantly restore strict passivity. The
solution to this problem is a second detection rule that aims to
break this cyclic behavior. It is based on the following passivity
condition:

dEvmred

Fiv >
V="a

(20)



which simply states that the power supplied or withdrawn
from the robot must be greater than the change in energy
stored in the robot. For the second detection rule, the following
intermediate equation is required:

Puag(k) = AP(k) + (1 — X) Pyg(k — 1), Q1)

with A € {0,1} being a lowpass-filter constant, and P(k)
given by:

_ En(k) — Epn(k—1) Hy(k) — Hy(k—1)
a T T ’
A has the purpose of preventing noise, discretization errors,

etc., from falsely triggering the second detection rule, which
is:

P(k) (22)

Pyig(k) > 0. (23)

Something to note here is that, simply due to the presence of
the low-pass filter, the second detection rule is not sufficient to
guarantee any kind of passivity by itself, nor is that its purpose.
Because of that, A does not have to be relatively large, giving
the associated filter a large bandwidth. The only note here
is that a negative P(k) means that energy is returned to the
operator in a way that violates (20). This means that while this
behavior may be strictly speaking passive according to (19),
it could be considered undesirable, which is an argument for
not setting A and the associated bandwidth of the lowpass-filter
too low.

2) Virtual mass variation: The original mass-varying
method of Ferraguti et al. did not explicitly have mass re-
duction in mind. As such, a new method had to be derived.
This method will use a linear increase or decrease of virtual
mass over time:

M(k) = Mo + AM(k), (24)

with M,y the desired virtual mass, AM (k) being a matrix of
the shape AM (k) = diag{Amq(k), Amao(k),...,Amy(k)},
of which each element is either positive or zero. Every single
element is calculated as follows:

Amn,step(k) = Amn(kj — 1)—|—
¥s; if not (.19) or not (23)) 25
0 otherwise

with s; as described in (16). v is another intermediary variable,
defined as:

U (Hy(K) — Bu(k)/ Pag(k) > T,
or (Hv(ki) — Ehr(k))/Pd,ff(k‘) <0
or HU(k') < Ehr(k‘)

1, otherwise

(26)

where T, and v, € {0,1} are constants. The reason for the
first condition in (26) is to check if it is going to satisfy the
first detection rule within the time specified by T;,. If it appears
that the first detection rule is going to be satisfied within the
specified time T, it is possible to reduce the rate at which
mass is added to the virtual system. Adding more mass has
a diminishing return on the rate at which passivity according

to the first detection rule can be restored, and it may not be
desirable to needlessly add more mass to the virtual system.
The other two conditions are to prevent an edge case and to
prevent v, from affecting the mass increase rate when the
second detection rule is triggered, respectively. After this, the
mass reduction step is applied:

Am, (k) =
max{Amy, step(k) — Miss, 0} if Phr > P
and Ey, (k) > H, (k)
Amy, step(k) otherwise

27

with M, the virtual mass decrease rate. It is chosen here as
an identical constant for all degrees of freedom of the virtual
system, but it could also be implemented in a component-
wise manner, so with different mass decrease rates per virtual
degree of freedom. This may be beneficial when working in a
situation where both rotational and linear inertias are present.
Reason for the change to a linear decrease is a finer control,
which was found to work better with the method in section III.
P,in 1s an additional condition implemented, with the purpose
of preventing the virtual mass from being lowered when the
operator is not providing enough power to the robot.

Added to this is another energy source for increasing the
virtual mass. This source is the kinetic energy present in the
virtual model. Ignoring the energy added or removed for the
time being, the following could be said:

vIik — DMk — Dv(k — 1) = v(B)"M(k)v(k), (28)

which, when the virtual mass is increased and on the assump-
tion that the virtual mass matrix M is diagonal, can be reduced
to:

vilk) = vilk =y |

(29)

with 7 € {0,1} a constant determining what fraction of the
mass increase should be compensated for by energy from
the kinetic energy and subscript ¢ the ¢’th component. To be
absolutely clear, this is not supposed to replace the energy
tank, even with n = 1. The disadvantage is that it does cause
a discontinuity on the virtual velocity, which may be felt by
the operator as a sudden change in velocity.

3) Energy-based safety measure: Because the interaction
between operator and robot must be safe, a limit on the amount
of energy stored in the robot could be used. Normally, one of
the ways this can be done is by setting velocity bounds on
the virtual model. However, seeing the method above employs
variable virtual inertia, velocity bounds on the virtual model
may not be sufficient to limit the amount of energy. Similar as
(29), it is based on the assumption that only kinetic energy is
stored in the virtual system, and that the matrix M is diagonal.
Let Ej;, be the maximum allowable energy stored in the virtual
system. To satisfy Ej, = H,, the energy removed from each
virtual degree of freedom should be proportional to the ratio



of that degree of freedom contributing to H,. This results in
the following:
1, 1, Lmv?
§mivi, corr — §mivi - (HU - Elim) 2 7 : ’
v
with m; the ¢’th component of the mass matrix M, v; and
Vi corr the corresponding elements of the vectors vy and vy,
respectively. This can be simplified to:

(30)

1 -Elimlrnfivi2
SV o = — 31)
or even further:
i(k)y/ ms i Hy (k) > By
Ui,corr(k) = v ( ) H, (k) ! ( ) ! (32)
vi (k) otherwise

This safety measure also has the disadvantage of potentially
causing a discontinuity on the virtual velocity vector, which
may be noticeable by the operator.

III. POWER-ADAPTIVE FEED-FORWARD

Where the previous section provides a method to guarantee
a passive interaction, it does have a disadvantage. Where
passivity is achieved, it is done so by increasing the virtual
mass. Especially when the operator keeps grasping the device
with a firm grasp, consciously or by reflex, the above system
will keep the virtual mass high, to prevent the system from
going active. One option to achieve more mass reduction could
be adding more virtual damping, but this is not ideal. This
section has the purpose of investigating a novel method to
achieve mass reduction while keeping the advantages of the
system described in the previous section. The addition of a
perfect feed-forward component can increase the bandwidth
of the motion controller and in doing so achieve passive inter-
action for mass-reduced admittance controllers [8]. However,
this requires a correct model of the robot, which becomes
difficult for multiple DoF robots, or robots with internal
compliance. Adaptive feed-forward controllers have been ex-
tensively researched. These aim to reduce the tracking error
of the feedback controller, which would, by extent, make the
admittance controller passive. Most of these adaptive control
systems require sufficient knowledge of the system, which
could theoretically be derived from physics. In this section,
another type of adaptive feed-forward controller is derived,
based on difference in power exchanged. The schematic of
this proposed controller can be found in Fig. 5.

The method itself is based on gradient descent, which is a
first-order iterative optimization algorithm, originally proposed
by Cauchy [13]. The idea is that if the power exchanged be-
tween the robot and operator, P, (t), is the same as the power
exchanged between the operator and virtual model P, (t) at
any time t, the systems are the same. It was established in
[8] that the phase-lag of the feedback controller, caused by its
finite bandwidth, is one of the causes of active behavior. This
can be interpreted as power that was not injected at the correct
time in the robot, leading to a power error P, = Py, — P,

Effectively, we are attempting to minimize the following
power-error function:
1
Ei(6) = 5 Perri(6)”
in which @ is the vector of the parameters in the feed-forward
component and subscript £ the sample time k. This function
P.,. 1(0) is unknown, especially when the actual robot model
is not (exactly) known. The gradient of this error function can
be found by chain differentiation:

(33)

VEL(0) = (VPerri(0))Perr 1(0). (34)

The first element is based on the measured difference in power:

Perr,k(e) = th(k') - Phr(k)' (35)
The second element P.,, (@) is considered power that
should have been injected by the motion controller. This error
is assumed to be caused by incorrect parameters of the motion
controller, specifically in the feed-forward component. On that
assumption and with the knowledge that the feedforward only
affects Py, it can be said that P, (0) is related to —Py(6).
More specifically, the approximation is made that VP,,.(0)
can be set equal to —VPy(6). This approximation will be
reflected on later.
Let the force injected by the feed-forward component be a
function of parameter vector @, calculated desired angular
acceleration {q(k) and calculated desired angular velocity

qa(k):
Fy(k) = f(0,da(k),qa(k)).

Both §q(k) and qq(k) are desired joint accelerations and
velocities found from the desired end-effector motion. Fy(k)
is a row-vector with as many elements as actuators on the
robot. The power injected at sample k& can then be expressed
as:

(36)

Py(k) = ¥y (k)a(k).

From this, the gradient can be determined w.r.t each element
of 0:

(37

OBy(k) < 815(0,&a(k), Ga(k))d; (k)
H0; _Z 06,

; (38)

j=1

with ¢;(k) the j’th component of the robots actuator velocity
vector g at sample instance k. Doing so for every component
in the parameter vector 6 yields the following vector:

OPy(k)
00
0Py(k)
VPﬁ(k:) = 902
oPy(k)
00N

(39)

It is possible to make a change to the parameter vector 0 every
sample instance k. This is called stochastic gradient descent
[14]. However, this would make the system vulnerable to
noise, e.g via the readout of the robots actuator velocity vector
q. Because of that, 8 is updated every IN sample instances,
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Fig. 5: Bond diagram of single DoF admittance controlled system adapted from [8] with permission. Similar to Fig. 4, with the addition
of proposed adaptive feedforward shown in green. Modulated effort source (adaptive feedforward) creates a virtual force based on virtual
velocity vq, which is converted into a mechanical force F'yy via the delay and zero-order hold. This modulated effort source is adapted by

a combination of vg, v, and Fj,.

based on the information gathered between consecutive up-

dates of 6. This is effectively mini-batch gradient descent. For

one parameter in the vector 8, the update step is as follows:
| V-1

0:(k —1) + N Z €V Pyi(k — n) Perr(k — ), (40)

n=0

0:(k) =
where € is the gradient descent step size and V Py;(k —n) the
i’th component of V Py at sample time k —n. If both the robot
and virtual system are sufficiently excited for long enough, the
parameter vector 6 should have converged to a set of values
which are optimized for the space in which the robot operates
and the desired virtual dynamics.

A. Comparison with other method

To show the similarities between this method and an adap-
tive feedforward method based on tracking errors, an single
DoF example will be considered. Let Cy = 0v4, which for
the proposed new feedforward method would result in the
following feedforward method, ignoring the mean over N
samples:

9:®dth(vd—v). “4n

This would be rather similar to a tracking error-based adaption
method proposed by Nakanishi and Schaal [15]. They assume
an nth order SISO system of the form:

3.31 = X9
. (42)
Tpn—1 = Tn
Tp = f(X) +u,
and that f(x) can be represented as:
F(x) = ¢(x)"0 + A(x), 43)

with ¢(x) a vector of basis functions, 8 the parameter vector
and A(x) the approximation error. The update law proposed
by Nakanishi and Schaal is:

0 = To(xq)ce, (44)

with I" is a positive adaptation gain. ce is given by

ce = Aje + Aqé. (45)

Comparing (41) to (44), and assuming that the used basis-
function ¢(x4) is equal to vg4, it can be seen that if Ay =
0, Ao = 1 is used, the velocity errors are present in both
equations. In that case, setting I' equal to vF}, yields the same
equation, even though vF}, is time-varying.

B. Limits on parameter updates

Based on section III-A, as well as some experimental
insights, some conditions are established that prevent (part
of) @ from being updated. These conditions are in place to
prevent instabilities of the proposed feedforward system. From
the tracking error method stability proof in [15] can be learned
that, for the feedforward to be stable, I' must be positive. From
this follows that the product vFj, must also be positive. This
yields a constraint on when the parameter vector 6 is allowed
to update. In other words, if vF}, is negative, then the system
will not update. For a multi-body situation, this is implemented
per actuator DoF. If for the ¢’th DoF holds 7,;(k)¢; (k) < 0,
all parameters in the vector @ that affect that actuator DoF will
not consider that timestep in the update step in (40). In this,
T, 1s the force/torque exerted on the 7’th DoF by the operator
due to applying a force on the end-effector. A deadband is
implemented, which uses F,,, the average power-error over
the last NV sample:

{

The purpose of this addition is to prevent discretization errors,
sensor noise or small differences between the feedforward
model and the actual robot from causing 6 to drift for very low
power differences. It also prevents changes due to low power-
errors that the feedforward may not be able to correct for, such
as controllers with time-delay or errors. The last condition is
that if either of the detection rules from section II is violated,
the parameter vector will also not be updated.

0;(k —1)
eq. 40

if |Pavg| < Pdeadband
otherwise

0i(k) (46)



IV. EXPERIMENT SET-UP

To test the proposed frameworks in section II and III
simulations will be done. This section has the purpose of
supplying the relevant information.

A. Model used

The model used in these simulations will be a two degrees
of freedom robot. This model, seen in Fig. 6, is nonlinear

Ll

»

Fig. 6: Schematic representation of 2 Dof robot model

and can be used to investigate the effects of non-linearity as
well as the effect of attempting mass-reduction. Its equations
of motion can be found in section A of the appendix. The
equation of motion of the virtual model is given in (3), with
the virtual model being attached to the end-effector. ¥, is
given by:

Fi(t) = Kn(Xpef — Xp) + Dp(Vyey — vp),  (47)

where K, and D;, are the gains of the model of the operator,
X, and v, the position and velocity vectors of the end-effector
and X,y and ¥, the position and velocity of a reference
position.

The values for the spring damper model of the operator
was 1000 N/m stiffness and 1 Ns/m damping, respectively.
The stiffness was based on a report by Hoppner et al. [16],
who determined that no subject could reach this stiffness. The
damping value is not the maximum value that is possible for
an operator, which is measured by Miller et al. [17] to be 0.09
Nms/rad for a wrist joint, or approximately 19 Ns/m. It can
be seen in [8] that a larger amount of damping present in the
human model helps with getting passive mass-reduction. The
parameters used can be found in table L. It should be noted that
the robot-configuration-dependent maximum virtual velocity
used in section II has been simplified to v,,,, for all degrees
of freedom.

B. Discrete virtual system

To reduce computation time, the virtual system is imple-
mented as a discrete system, using forward Euler for both
velocity and position calculations. Its equations are as follows:

TABLE I: Parameter values of two DoF system

Parameter Value (unit)
My 5.0 (kg)

Ly 0.4 (m)

Mo 4.0 (kg)

Lo 0.3 (m)

Ky 50 (Nm s/rad)
K; 600 (Nm / rad)
By 0.2 (Nm s/rad)
Ry diag{3.0,3.0} (N s/m kg)
Ky 1000 (N/m)
Dy, 1.0 (Ns / m)
M, 0 0.1 (kg)

Umax 20 (m/s)

aq(k) = M(k)™' (Fp(k) = Bu(k)va(k — 1)), (48)
va(k) = va(k — 1) + aq(k)Ts, (49)
xq(k) = xq(k — 1) + va(k)Ts + ag(k)T2, (50)

with T the sample time.

C. Simulation setup

To illustrate both methods in sections II and III, both
are applied to the 2 DoF manipulator model as described
in section IV-A. In the first simulation, only the passivity
preserving framework of section II is used. In the second
simulation, the passivity preserving framework with adaptive
feedforward is used. The dynamics are simulated using the
ODE45 function provided by MATLAB 2020A, with the
default settings. The admittance controller is run at 3 kHz,
with the passivity-preserving functionality run at 150 Hz. The
admittance controller is implemented with one sample time
delay. The parameters of the passivity preserving method can
be found in table II.

For the simulation with both methods implemented, all
parameters of the passivity preserving method are the same as
the ones described in table II, with the exception of the mass-
loss constant, which for this simulation has been increased
to My, = 1 g. This will result in a maximum mass loss
rate of 0.15 kg / s. There are two modifications to the virtual

TABLE II: Parameter values for passivity preserving framework

Parameter Value (unit)
Mlo.vs 0.2 (g)
Pin 0 (J/s)
A 0.005 ()
¢ 050

n 050
m 3.33 (g)
7—;)1(1)[ 5'0 (J)
Tinin 0.5 ()
T(0) 2
Elim 02
Pr 00

Ty 10 (s)




TABLE III: Parameter values of adaptive feed-forward

Parameter Value (unit)
€ 0.025 ()

N 125 ()
Pdeadlmnd 0.5 (mW)

model in this simulation, which is that M, , is decreased to
10 g, and that M(0) = diag{2.2 kg, 2.2 kg}. The reason for
both changes will be discussed with the results. The following
feedforward model has been chosen as:

Fyp(k) = Lyda = [91 02] [‘j‘“(k)] (51)

03 Oa| |da2(k)

with Gg1(k) and Gg2(k) the desired accelerations of the
first and second actuator, found from the desired end-effector
motion. This yields the following vector V Fy:

Ga,1 (k)1
Ga,2(k)q1
Ga,1(k)d2
Ga,2(k)de
The parameters used in the feedforward model can be found

in table III. In both simulations, the operator moves the end-
effector around in a periodic manner:

V Py(k) = (52)

—0.007 + 0.05 sin(0.57t)

: 53
0.361 + 0.05 sin(rt) 3

Xref =
which creates a reference trajectory that resembles an infinity
symbol. Its center was chosen such that it was far away from
any singularity in the robot jacobian J(q).

V. RESULTS

The results of the simulation with only the passivity pre-
serving framework can be seen in Fig. 7 and 8. In section B it
is determined that the effective end-effector mass of the robot
is between 5.5 — 6.8 kg in one direction and 0.88 — 0.97 kg
on the other direction.

The results for the simulation with passivity preserving
framework and feedforward can be seen in Fig. 9, 10
and 11. The end-effector masses for this simulation are
similar to the previous one. This is to be expected, seeing
as the reference trajectory did not change between simulations.
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Fig. 7: Virtual mass M evolution over time. Initially. it increases
linearly to restore passivity. After this, it approaches an equilibrium.
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Fig. 8: Kinetic energy in virtual model H, and energy inserted by
operator E,, over time. Initial active behavior is due to too low
virtual mass. Kinetic energy H, plotted separately, showing kinetic
energy being limited by (32) in the first 10 seconds. Peaks in H,
after 40 seconds correspond to moments where (23) was violated.

VI. DISCUSSION AND CONCLUSION

A few things can be noted from the simulation with only the
passivity preserving framework. The first is that because the
robot is instantiated with a large amount of mass-reduction,
it immediately becomes active. However, passivity according
to (19) is restored and maintained after twenty seconds. The
second thing is that three minutes after initialization the virtual
mass has more or less settled on something that can be
considered an equilibrium, where the virtual mass changes at
most 75 grams, which with an average mass of 2.18 kg is
barely noticeable by an operator. It was in principle possible
the system could have been instantiated with a mass-increment
already present, e.g. with an AM(0) = diag{2kg, 2kg}, to
avoid the initial activity. However, it was chosen not to do
so to show all features in the proposed framework. It should
be noted that the initial activity could also be resolved more
quickly by making 7 larger, but that comes at the cost of
larger variations in the phase where the virtual mass has more
or less settled.

Fig. 9 shows virtual mass over time for the simulation with
passivity preserving framework and feedforward. In this, it can
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Fig. 9: virtual mass over time. Started with an offset to avoid initial
active behavior, decreased back to desired value after 100 seconds.
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Fig. 10: Kinetic energy in virtual model H, and energy inserted by
operator Ep,, over time. Initial active behavior is due too low virtual
mass. Kinetic energy H, plotted separately. Peaks in H, correspond
to moments where (23) was violated.

be seen that after 100 seconds, the virtual mass has reached
the desired value. The passivity preserving method did have
to add mass quite often, most likely because the rate at which
the feedforward adapts was not as high as the rate at which
virtual mass was lost. With the robots end-effector mass at
most being around 6.8 kg, see section B of the appendix, it
can be said that effectively a mass reduction of up to 680 is
reached, at the expense of some virtual damping.

As for the changes compared to the other simulation, the
reason for the increase in mass loss rate to M, = 1 g is
to investigate the speed with which large amounts of mass
reduction can be achieved. M, o was reduced to explore the
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Fig. 11: Values of 6 over time. Some fluctuations within the generally

asymptotic approach can be observed in all four graphs.

limits of the framework with adaptive feedforward. AM(0)
was instantiated at 2.2 kg to avoid the initial active behavior
seen in Fig. 8, using the equilibrium seen in Fig. 7.

A. Remarks

The arguably largest issue is that no proof of stability is
given in this report for the adaptive feedforward. The connec-
tion is made to an existing method based on tracking errors
[15]. However, the new proposed feedforward is different with
the time-varying nature of vFj, as well as the method of
implementation of the related constraint for a multi-actuator
system. Because of this, the claim cannot be made that the
proof of stability used for the existing method also works for
the proposed feedforward.

B. Conclusion

The presented framework for preserving passivity has in-
deed shown that it can preserve passivity in simulation. In this
framework, only the virtual model and by extent the virtual
velocity is modified, so in principle it should work with black
box robot control, where only velocity or position setpoints
are used, provided that the energy exchange between operator
and robot can be measured accurately. The proposed adaptive
feed-forward has shown to work as well for this simulation,
increasing the apparent admittance further. However, the au-
thor believes that its mathematical support should be expanded
further before applying it in a real setup or having it interact
with humans.

APPENDIX
A. Equations of motion for 2Dof Model

The two arms of the robot are modeled as point-masses
located at half of the length of their respective arms. Doing
so will ignore any effects caused by the rotational inertia,
however, the model will still have non-linearities. The model
of the robot is:

Tme(t) + J (@) Fu(t) = I.(q)§ + C(q, 9)q + Dq,

where T,,.(t) is the torque exerted by the motion controller,
J(q)TF,(t) is the torque exerted on the joints by the operator.
g, q and g are the angular position, velocity and acceleration
vectors, respectively. Before defining I(q), C(q,q) and D,
some intermediary variables must be declared:

(54)

o= M;(L1/2)* + Ma(L3 + (L2/2)?), (55)
B =MyL1Ls/2, (56)
§ = My(L2/2)?, (57)

with My, M, the mass of the first and second arm, respec-
tively. L; and Lo are the lengths of the first and second arm,
respectively. Now, I(q) can be defined:

I(q) = a + 28 cos(qo) d + B cos(gz)

= 58
d + B cos(ga) ) 58)



Also C(q,q) can be defined:

C(q,q) =

—Bsin(q2)g2  —Bsin(q2)(d1 + ¢=2)

59
Bsin(ga)de 0 o9

Lastly, D is the matrix representing the damping in the
system, chosen to be modeled as viscous damping on the
joints:

2B,,—B
D= " (60)
—Br, Br
The controller is a PI velocity controller:
Tme(t) = Kp(da — @) + Ki(aa — ), (61)

with K, K; the proportional and integral gains. q and q are
the angular position and velocity vectors of the robot. q4 and
qq are the desired angle and rotational speed vectors, which
are derived from the virtual model velocity v and the jacobian

J(q).

B. End effector operational mass

It is useful to know how much weight is felt when mov-
ing the end-effector. For this the eigenvalues of the matrix
J(q)~T1,J(q)~" can be used, I, the mass matrix of the robot.
Fig. 12 shows the eigenvalues of this matrix as a function of
time.

[1

[2

[3

[4

[5

1

—

=

1

[t}

eigenvalue 1 eigenvalue 2

M [kg]

100
Tls]

200 300

Tlsl

Fig. 12: Operational space mass of the end-effector.
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Chapter 3

Thesis discussion

This chapter has the purpose of discussing elements that have not been discussed in section VI or to
support claims that are made in the previous sections. It also goes into detail on the limitations of
the framework and on future work that could be done.

3.1 Effective mass of end-effector

In section VI, the claim is made that because some virtual mass equilibrium is reached, that virtual
mass is the effective mass felt on the end-effector. This section has the purpose of investigating
this claim. To do this, the data gathered in section V, specifically the end-effectors velocity and
acceleration and the forces exerted by the operator, is used to identify a linear mass-damper system
located on the end-effector.

For this, the following system is assumed to be identified:

M, 0
0 M,

D, 0

F(k) = My, (k) + Dy (k) = l 0 D

] %, (k) + ] %, (k). (62)

For the system-identification the linear least-square estimate is used of the function G(¢) = ¢80,

such that an estimate can be found: @ = ¢'G(¢) [7]. For one time instance k this can be written
for this situation as:

M,
G(¢):Fh(k):lfﬁp,a(c)(k> ip,a(c)(k) ) O(k) ) O(k)] el _ g1 (63)
Dy

Both G(¢) and ¢ need to be expanded with more rows to determine the estimate 0 to any
degree of accuracy. This requires the use of multiple time instances. This might somewhat break the
assumption in (62) that the parameters to be identified are time-invariant, as the virtual dynamics
are certainly time-varying. This means that the identified plant is the least-square estimate over
both the time samples used and the potentially time-varying plant variables. This means that there
is an error associated with this, mostly related to the time-variation of the virtual dynamics. To
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guarantee that the matrix ¢! and as a consequence ¢!, contains sufficient information, the parame-
ters in (62) are estimated over a one-second window, so using 3000 measurements. For this window,
it is estimated that for situations where the maximum amount of virtual mass (0.5 kg/s) is added
over this window, this error margin could be as high as 0.25 kg. For situations where the maximum
amount of mass is lost in this window, this may be 0.015 kg for the passivity preserver alone and
0.075 kg for the passivity preserver with adaptive feedforward.

The procedure described above is for one single set of estimated parameters. To obtain the dy-
namical properties of the estimated system over the entire duration of the experiment, the procedure
is repeated in different points of the simulation.

The identified plant for the first simulation can be found in Fig. 13. It can be seen that the
identified mass on both axes is slightly lower than the virtual mass, particularly during the steady-
state phase of the simulation. Something that gives some insight into the operation of the passivity
preserving framework can be seen in the right plot of Fig. 13. Where the identified damping on the
y-axis is only slightly lower than the virtual damping, the identified damping on the x-axis is oscil-
lating close to zero. This is an indication that the virtual damping on that axis is used to dissipate
the energy generated due to the difference in admittance between the virtual model and robot on
that axis. In doing so, that virtual damping is not felt by the operator on the end-effector, resulting
in almost no damping on the x-axis.

Identified mass of robot 10 i Identified damping of robot

25F *

M |
v

S

Figure 13: Left: identified M, and M, over time for the first simulation. Right: identified D, and D, over
time for the first simulation. In both, virtual parameters are given in green. Identified negative damping
is due to energy, generated by difference in mass between robot and virtual model, being returned to the
operator.

The identified plant for the simulation with adaptive feedforward can be seen in Fig. 14. From
this can be seen that the effective end-effector mass is almost similar to the virtual mass throughout
the entire simulation. Similar to Fig. 13, the virtual damping on the x-axis is much lower than
on the y-axis and oscillates around zeros, indicating that the passivity preserving framework again
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moves towards the lowest virtual mass for which it is still passive. However, now with the adaptive
feedforward adapting, over time virtual mass and effective end-effector mass on both axes converge
towards the desired 10 g, although on the x-axis the effective mass still varies slightly, at maximum
0.5 gram. This is behavior that is no longer being compensated for by the adaptive feedforward
because it falls within the deadband.
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Figure 14: Left: identified M, and M, over time for the first simulation. Right: identified D, and D, over
time for the first simulation. In both, virtual parameters are given in green.In both, virtual parameters are
given in green. Identified negative damping is due to energy, generated by difference in mass between robot
and virtual model, being returned to the operator.

It can be seen that at times in both simulations the identified damping is negative at times. It
was already explained that the virtual damping can be used to dissipate the energy generated by the
difference in admittance between robot and virtual model on that axis. At these points the virtual
damping is not sufficient to dissipate this energy, resulting in energy returned to the operator. This
is identified in the plant as negative damping. It can be seen that the passivity preserving framework
generally increases the virtual mass shortly after the virtual damping goes below zero. However,
there are also points where the identified damping goes below zero where the virtual mass does not
increase as a result. In other words, energy from the difference in mass between robot and virtual
mass on that axis is returned in a way that would violate the detection rules, had those been enforced
on that degree of freedom separately. However, it doesn’t, as more energy is dissipated at the same
time on the other axis, keeping the overall interaction passive. It is also because of this that the
kinetic energy H, in Fig. 8 is higher than anticipated based on the reference trajectory and the
virtual mass.

3.2 Remarks on parameters

With the number of parameters as used in the passivity preserving framework in section II, as well
as the few used in section III, it may be useful to reflect on these parameters, to clarify how some of
them were chosen and what potential trade-offs between parameters exist.
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A ¢ andn

The parameter ¢ determines how much of the energy dissipated by reducing the virtual mass is
stored in the energy tank. In this report, this is chosen 0.5 arbitrarily, mostly because the amount of
virtual damping used and sufficiently high virtual velocities guaranteed that the energy tank would
be filled regardless of the chosen ¢. It should be chosen higher when less virtual damping or lower
virtual velocities are used. The last remark regarding this mechanism is that in both this report and
the paper by Ferraguti et al. [6] there is an oversight in that it is possible to fill the energy tank
beyond T4z (10) does not take into account the current energy level of the tank, so it will always
add energy to the tank when the mass is reduced. The effect of this on the simulation in this report
was considered negligible, but it should be fixed regardless. As for 1, the choice here entirely depends
on design choices. It is possible to entirely rely on virtual damping and energy recovery from mass
reduction, in which case it can be set to zero. Another reason to do this is if sudden velocity changes
on the virtual model and via the motion-controller also on the real robot are considered completely
unacceptable. A reason to set it closer to one could be that the virtual damping or virtual velocities
do not generate enough energy to increase the virtual mass at a sufficient rate.

B m

This parameter is one of the upper limits that determine the maximum amount of virtual mass added
to each degree of freedom when one of the detection rules is violated. For the simulations in section
IV, this is set to 0.0033 kg, which could result in a maximum virtual mass increase rate of 0.50
kg/s. Again, this is a design choice, as setting it higher could help with e.g. fixing the initial active
behavior as seen in Fig. 8 or providing a quicker response to increases in stiffness of the operator.
However, setting it higher will also result in larger mass variations during the steady-state phase that
can be seen in Fig. 7, which may be felt by the operator.

C Umaa:

The simplification that the robot-configuration-dependent maximum virtual velocity could be set to
Umaz for all degrees of freedom was mainly because everything is done in simulation. The robot-
configuration-dependent maximum virtual velocity would normally be determined by hardware lim-
itations on the robot. For the used simulations this simplification turned out to not have too much
influence, as the limit for the mass increase in (16) in almost all cases was 7, not the energy-based
limit.

D Mjss vs. learning rate ¢ and N samples

The learning rate €, used in the feedforward, is one of the factors that determine the rate at which
the feedforward adapts. There is some relation between € and Mg, in that increasing Mj,ss without
increasing € as well may lead to more mass variations by the passivity preserving framework. This
could already be seen in Fig. 9, but it can be made more clear with another example, which can be
seen in section 4.1 in the appendix. In this, the learning rate € has been reduced to 0.01, where all
other parameters are kept as described in section IV. It can be seen that where the simulation in
section V converged in 100 seconds, the simulation in section 4.1 is still converging after 120 seconds.
In this case, an higher € is better, but it should be noted that ¢ has an upper limit, above which
convergence cannot be guaranteed. Alternatively, lowering N could be considered when increasing
M,ss, because it allows for more adaptations of the feedforward per second. The disadvantage of
this would be an increased susceptibility of the feedforward to sensor noise.
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E Frequency of passivity preserving framework

This frequency, set to 150 Hz for both simulations, determines how many times per second is checked
whether the detection rules are violated and the number of increases or decreases of the virtual mass.
This results in discrete moments in time where is checked whether passivity is preserved. In theory,
it is possible for the system to violate passivity for a very short time, but to be passive again at
the next passivity check. This is quite unlikely, but the change of this happening can be further
decreased by increasing the frequency. The second thing is that it is possible that the passivity is
lost shortly after a check on the passivity is performed, and that until the next check the system is
behaving actively. This is unavoidable due to the discrete nature of the controller, but the amount
of energy returned in that case can be minimized by increasing the frequency, thus decreasing the
sample-time. The only disadvantage of increasing the frequency is the extra computational costs.

3.3 Energy exchange estimation

Estimating the amount of energy exchanged between the operator and the robot is not trivial due to
the time-varying nature of both the force exerted by the operator and the position and velocity of
the end-effector, as well as the fact that the controller is implemented in discrete time. This section
has the purpose of showing a few different integration methods of estimating the energy exchanged,
as well as accounting for which one was chosen in the simulations.

Five different energy exchange estimation methods are considered in this section:

L By(k) = Ba(k — 1) + FL(R) (k) — x,(k — 1)

2. Ey(k) = Bao(k — 1) + Fy (k — 1)(xp(k) — xp(k — 1))
3. E3(k) = Es(k — 1) + FL(k)v,(k)Ts

4. Ey(k) = Eq(k — 1) + F (k)vp(k — 1)T's

5 Es(k) = Es(k— 1)+ FL(k — 1)v,(k)Ts

The approach used in this report was to pick one of the options from the list above and perform
the simulations as described in section IV. Then, using the data obtained, the exchanged energy is
calculated using each estimation method. While this is not entirely correct, seeing as the frameworks
presented in sections II and III will be influenced by the choice in estimation method, it is a check
whether the used estimation method is the best one to use. Best in this case means that it does
not overestimate the amount of energy exchanged while remaining accurate. If another estimation
method other than the one used calculates a lower amount of energy exchanged, the case can be
made that in reality less energy was exchanged. In the very worst case, that could lead to loss of
passivity in reality, while the controller thinks it is behaving passively.

As an example, the exchanged energy calculated from the data from the simulation with passivity
preserving functionality can be seen in Fig. 15. Three things must be noted from the results. The
first is that there is a 1.8 Joule between integration schemes by the end of the simulation, showing
that the choice in estimation method is not trivial. Secondly, methods F3 and F, are similar, which
is to be expected seeing as for very small Ty v(k) is similar to v(k — 1). However, most important
is that, even though FE; is the most conservative estimation method, the actual energy curve goes
below the used estimation method in the simulation. For reference, the actual energy is measured
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Ehr estimation by different integration methods
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Figure 15: Estimated energy exchanged between robot and operator with different integration schemes.
Used integration scheme FE; in this simulation is shown to be the most conservative estimate but still
overestimates the energy exchanged after 200 s.

is by adding it as an additional state in the dynamics. Although the claim still stands that the
overall interaction is strictly passive, it does indicate a potential problem and highlights the need
for a reliable and accurate exchange estimation. An alternative would have been to calculate the
estimated exchanged energy at every time-step using method FE; trough FEj5, and using the lowest
value calculated. This would per definition result in the most conservative estimate possible. The
reason it was not used in this report is that the energy exchanged was very similar to the estimate
by E1, so for computational reasons it was not used. Other more elaborate energy exchange estima-
tions could also have been used, such as the trapezoidal integration method suggested by Franken [8].

3.4 Limitations of proposed framework

The passivity preserving framework as shown in section II has shown to be able to make the inter-
action passive. However, although it does not require knowledge of the operator, the virtual mass is
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affected by the operator impedance. More specifically, for a linear spring-damper model representing
the operator, if the stiffness is high, the virtual mass is also high. As an example, reducing the stiff-
ness Kj to 500 N/m yielded an equilibrium of 1.25 kg for the same simulation without feedforward.
This would indicate that the achievable mass reduction by the framework is in part dependant on
the operator’s properties. Increasing the virtual damping will increase the achievable mass reduction
further, but may reduce the overall apparent admittance. This would be the case for example on the
y-axis in the simulation, seen in figure 13, where the virtual damping is felt by the operator on that
axis.

As already noted in section VI, no proof of stability is given for the adaptive feedforward. Al-
though the similarities are noted for a single degree of freedom example when comparing to an existing
method based on tracking errors [9], the assumptions used to compare the proposed feedforward to
this method mean the proof for stability cannot be immediately used. One additional reason for this
is the implementation of the constraint per actuator degree of freedom that 7, ;(k)¢;(k) > 0 must
hold. It may be an implementation that holds for the simulation with feedforward in section V, but
that does not mean that it holds for all systems with multiple degrees of freedom.

Something noted in section 3.1 is that enforcing strict passivity on the overall interaction has a
disadvantage in that it is possible to return energy to the operator on one axis that would violate
strict passivity. But as long as more energy is dissipated on another axis at the same time, the
overall interaction is passive. This behavior is made possible by the presence of (excessive) virtual
damping. This behavior may not be desirable, and the recommendation to solve this is to have
the detection rules function per virtual degree of freedom and corresponding end-effector degree of
freedom. This will increase the average virtual mass during the steady-state phase somewhat but
removes the disadvantage of limited active behavior.

Both the passivity preserving functionality and the adaptive feedforward have not been tested
on real systems with real humans, due to COVID19 and time restrictions. Although the simulations
were made as close as possible to a real-world scenario, not everything is accounted for. Examples
of this would be measurement quantization, noise on the sensors, imperfect actuators, non-linear
damping or post-sensor dynamics. Some of these could potentially affect the accuracy of the energy
estimation between operator and robot. It may be possible to account for quantization by taking it
into account when calculating the energy exchanged, such as in [10], sec. 2.2.1.

The passivity preserving functionality is not expected to be affected by high-frequent noise on
force sensors, seeing as the force is integrated at least once when calculating the exchanged energy or
the virtual velocity. The adaptive feed-forward will be more directly affected by noise on the sensors,
for instance via the calculated virtual model acceleration or via the estimated actuator velocities.
To a degree, the effect of this will be reduced because the adaptation step uses the average over N
measurements. Increasing N may help in dealing with noise, although that will reduce the rate at
which the system learns, due to having fewer feedforward adaptations per second.

The proposed framework has not been extensively tested with time-varying or non-linear human
models. Some simulations were performed where the human stiffness K} was increased during the
simulation, analogous to the operator grasping the device firmer. In other simulations, the human
damping Dj, was initially high and suddenly reduced significantly. During these simulations, the
framework without feedforward was able to maintain a passive interaction.
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3.5 Future work

All simulations in this report use a constant mass-to-damping ratio Ry. Effectively, this will add vari-
able damping to the system. Two things must be remarked about Rg. The first is that increasing Ry
has a positive influence on the rate at which the adaptive feedforward converges. This is possibly due
to the condition of the feedforward that vF} must be positive, which happens more often when there
is more damping present in the system. However, the second thing to note is that adding excessive
amounts of damping to the virtual system will lower the admittance of the overall system. It should
however be possible to reduce the mass-to-damping ratio Ry, e.g. once the virtual mass has reached
the desired value. Doing so would increase the apparent admittance of the system further. Some
simulations were performed to test this, and the results were positive, but due to time constraints, a
thorough analysis and implementation could not be done. In theory, it is also possible to disconnect
the virtual damping from the mass entirely. This would mean that the method in section II would
still operate as designed, but the virtual damping could be chosen to not be a function of time or
virtual mass. It is however not advised to set the virtual damping to zero, as the energy tank as
currently implemented depends on it to extract energy and it can be used to dissipate away energy
generated by active behavior.

It is expected that the feedforward model, (51), would not have been as useful in a scenario where
the reference trajectory contained a much larger part of the workspace. This is simply because for
the used reference trajectory, (53), the mass matrix of the robot I, does not change as much, so the
feedforward model could be fitted to a sufficient degree to this situation. In a scenario where much
more of the workspace of the robot is used, I, is expected to change much more, so a fit of the feed-
forward with only constants in the matrix /4 may not be sufficient for constant high mass-reduction,
resulting in virtual mass variations to keep the overall interaction passive. However, this feedforward
model used in the simulation is not the only one that can be used in this method. If more knowledge
is available on the system, that knowledge can be used to create a more fitting feed-forward model,
for instance by also compensating for the nonlinear dynamics, or by assuming non-linearity in the
mass-matrix.

When discussing multiple degrees of freedom, it is important to note that in the proposed feed-
forward, the power-error is a single number that the feedforward attempts to adapt for and drive to
zero. It may be beneficial to split this power-error up in power-errors per actuator degree of freedom.
This yields for the i’th actuator an equation of the form Pe,,; = 73 ;(k)(¢a,i(k) — ¢i(k)), and a corre-
sponding change to (40). Doing so would result in a more targeted and potentially quicker adaptation.

The energy tank component was copied in its entirety from Ferraguti et al. However, this method
has some drawbacks, such as that z should never become zero and that a time integration is involved.
It should, in theory, be possible to use different implementations of energy-tanks, such as the one
formulated by Franken et al. [11].

This implementation of the gradient descent method as described in this report is not the only
one that could be used. It should be possible to also use methods such as Momentum [12], to reduce
the number of fluctuations seen in Fig. 11, or Adam [13] where the learning rate is adapted based on
the first and second moment of the gradient. The latter could help with the rate at which the adap-
tive feed-forward learns, especially when in scenarios where some mass-reduction is already achieved
and the associated power-errors are smaller.
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The passivity preserving framework with adaptive feed-forward has also been applied in a few
simulations on a one-degree-of-freedom robot with internal compliance. Although not enough sim-
ulations were performed to make general statements as to if either would also work on compliant
robots, it can be said that some simulations were able to achieve some mass-reduction passively.
Some simulations with feed-forward present did even reach a mass reduction of ten, at the costs of
added virtual damping, which is lower than the theoretical limit derived by Colgate [14], who said
that the virtual mass cannot go lower than m,vy, with v being the division ratio of mass on both
sides of the compliance. A partial explanation for this is that the passivity preserving framework is
based on time-domain passivity, whereas Colgate’s limit is based on frequency domain passivity. An
example and further elaboration can be found in section 4.2.

3.6 Conclusion

The presented framework for preserving passivity has shown that it can restore and preserve passiv-
ity in simulation by modifying virtual mass. The virtual damping present allows for some reduction
in mass w.r.t. the actual end-effector mass on one axis but may have resulted in a lower apparent
admittance on the other axis. In this framework, only the virtual model and by extent the virtual
velocity is modified, so it should work with black box robot control in principle, where the desired
velocity or position is put in, provided that the energy exchange between operator and robot can be
measured accurately.

The proposed adaptive feed-forward as an addition to the passivity preserving framework has
shown to work as well for this simulation, increasing the apparent admittance further. However,
the author thinks that the mathematical support for this specific feedforward should be expanded
further before applying it in a real setup or having it interact with humans.
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Chapter 4

Thesis Appendix

4.1 Effect of lower learning rate ¢

This simulation is identical to the simulation with feedforward in section IV, with the exception of
a reduced learning rate € to 0.01.
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Figure 16: Effect of reduced e. Left: evolution of virtual mass over time. Right: Values in I over time.
Virtual mass has not reached desired value after 120s. Cause is a lower adaptation speed of the feedforward.

4.2 Simulation of 1DoF compliant robot

As already mentioned, some simulations were performed on a one DoF robot with internal compliance.
The situation is shown in Fig. 17. An added challenge in this is that estimating the energy exchanged
becomes more difficult, as the exact position of the end-effector is unknown. For the energy exchange
estimation between robot and operator the same estimation is used as in section IV, but with actuator
coordinates instead of end-effector coordinates:

Ehr(k) = Ehr(k - 1) + Fh(k)<xa(k) - xa(k - 1)) (64)
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At the same time the actual energy exchanged at the end-effector is also monitored, but this infor-
mation is not available to the controller:

Ehro(k) = Eppo(k — 1) + Fy (k) (2p(k) — 2p(k — 1)). (65)

The virtual model is a mass-damper system attached to the end-effector with constant mass-to-
damping ratio Ry = 2 N s/m kg. It is instantiated with the exact same virtual mass as actually
present in the system in total, which is 2 kg. The mass division within the robot is 50% , so
My, = My =1 kg. The admittance controller is run at one kilohertz, with the detection rules being
checked at 100 Hz. M, is set to one gram and FEj;, to 3 Joule.

Similar to the experiments in IV, the end-effector is dragged around. The reference trajectory
for this is:

z(k) = 0.5sin(0.37k/F's) — 0.3sin(0.57 sin(0.1247k/F's) 4+ 0.817k/F's), (66)

which is a periodic reference trajectory, one for which the period approximately 46.7 seconds,
so two periods fit within the simulation time, which is 100 seconds. The feedforward model is a
mass-feedforward: Fff = 0v4.

Mz —
Fn

"\
b

Figure 17: Situation of one DoF robot with internal compliance with internal stiffness K ompiiance and
internal damping D compliance

The effect of the internal stiffness and stiffness of the operator on the ability of the passivity
preserving framework will be shown. The damping of the operator will be fixed to 1 N s/m, and the
internal damping is chosen such that the internal resonance mode has a damping ratio of approx. 0.6.

The internal stiffness was varied between 300 and 800 N/m, while the internal compliance’s stiff-
ness is varied between 1 and 25 kN/m. In this simulation, the controller attempts to reduce the
virtual mass to 0.2 kg. If at any point it is determined via the actual energy exchanged between
robot and operator (Ejp,,) that strict passivity has been violated, and this is not detected by the
energy exchange of the controller (Ep,), the simulation is halted and flagged.

The results of this simulation can be found in Fig. 18. It can be seen that a significant portion
of the simulation has reached the desired virtual mass of 0.2 kg, which effectively means a mass
reduction of ten, at the cost of some damping. In this, we are just going to assume that the virtual
dynamics are the same as the dynamics displayed on the end-effector.

However, simply stating that the virtual dynamics have converged to the desired value is not

sufficient. It should also be verified that the actual exchanged energy does not violated strict passivity.
This can be seen in Fig. 19. There is a area that is similar to the portion in Fig. 18 which is colored
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Figure 18: Effect of operator stiffness and compliance stiffness on passivity preserver with feedforward.
Left: average virtual mass over last 20 seconds of simulation. Right: average feedforward parameter

blue, which means that strict passivity was not violated once during the simulation. There are a few
isolated simulations within this blue area for which passivity is not preserved. In these cases, it was
determined that for some unknown reason, the feedforward simply did not make any adaptations
and remained zero. This resulted in a situation where at some point strict passivity was violated.
Whether the passivity framework could restore passivity at that point could not be determined, as
the simulation was halted.
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