
Industrial Engineering & Management

Master’s Thesis

Adopting Reinforcement Learning in
Operational Spare Part Management

Visualizing the Black Box of Decision-Making

Author:

Joris Petter

January 22, 2021

A thesis submitted in fulfillment of the requirements for
the degree of Master of Science in the field of:
Production & Logistic Management

Supply Chain & Transport Management

Department of Industrial Engineering & Business Information Systems,
University Of Twente

Adopting Reinforcement Learning in Operational
Spare Part Management

Visualizing the Black Box of Decision-Making

Author
Joris Petter
s1570692
January 22, 2021

Educational Institution
University Of Twente
Drienerlolaan 5
7522 NB Enschede
The Netherlands

Host Organization
Public version

All confidential information is
removed from this thesis.

Supervisors
Internal Supervisors
dr. E. Topan
dr. ir. M.R.K. Mes

External Supervisor
ir. K. Alizadeh

Independent Aerospace Company

Faculty of Behavioural, Management
and Social Sciences (BMS)
Dep. Industrial Engineering and
Business Information Systems (IEBIS)

I

Page II.

Acknowledgments

This Master’s thesis represents the last phase of my time as a student at the University of
Twente. My time as a student in Enschede was not always without a struggle. Therefore,
finishing my studies in these strange times fits the list nicely. Nevertheless, because of my
student house, year club, (study-) friends, and family, I had a fantastic time as a student here.
So, by submitting this thesis, a new phase begins.

First of all, I would like to thank Engin Topan and Martijn Mes from the University of Twente for
their supervision and guidance during my thesis. With their feedback, input, and very interesting
and challenging discussions, I was able to bring this research to the level as is.

Secondly, I would like to thank Kaveh Alizadeh as my external supervisor. Unfortunately, there
was not a possibility to discuss the matter often in real-life. Nevertheless, despite all difficulties
within the aerospace branch, the weekly online meetings helped me a lot. Because of the support,
I stayed motivated until the end.

Last but certainly not least, I want to thank my friends, girlfriend, and family who helped and
supported me during my thesis, both in real life and virtually.

I hope you enjoy reading this thesis!

Joris Petter
Utrecht

January 2021

III

Page IV.

Management Summary

As an independent aerospace service provider, Independent Aerospace Company (IAC) provides
service programs for contracted customers. With a spare part pool of approximately 7.500
components, the IAC aims to keep all aircraft in the air. The Component Maintenance &
Availability (CMA) program guarantees unlimited access to high-quality components such that
downtime can be avoided at competitive costs. The CMA-program consists of a closed-loop
inventory network, where components can move due to three events; demand (from the IAC
to operator), unserviceable returns (from operator to repair shop), and returning repairs (from
repair shop to the IAC).

To monitor real-time performance of the CMA-program, the IAC uses a Service Control
Tower (SCT). The SCT gives an alert in the case a stock-out is likely to occur, which are
tend to be solved by the Operational Planning Professionals (OPP) while taking two KPIs into
account: costs and SLAs. However, currently, the IAC does not use an operational decision
support system; the decisions are made based on the gut feeling and preference of the OPP.
Therefore, an inadequate assessment of costs in the decision-making process is used for the
decisions. Furthermore, in the current performance, we see that approximately 35% of all orders
are delivered late to the customer. The currently investigated decision support systems by the
IAC cannot incorporate the stochasticity and exceptions of scenarios sufficiently. The goal is
to combine the stochasticity of scenarios and the KPIs to find the optimal decision-making.
Therefore, the IAC is interested in the potential of artificial intelligence since it can add human
reasoning to algorithms.

Furthermore, considering that strong conjunction between operational and tactical plan-
ning can lead to higher service levels and a better insight into costs, the IAC is interested in
visualizing its black box of decision-making. This imaginary box contains all relationships be-
tween operational- and tactical planning decisions. The company’s desire lies in obtaining more
information, insight into the impact of operational decisions on long-term yield, and a visual
and measurable decision-making process, including all possible stochasticity during the decision-
making process. Therefore, a planning and learning algorithm, such as reinforcement learning,
is preferred for this research. Based on this knowledge, the following objective is set for this
research:

‘In what way and to what extent can a reinforcement learning algorithm improve operational
decision-making while incorporating long-term yields?’

To find the best solution approach for the IAC’s purpose, an extensive literature study is
performed to define the potential of artificial intelligence in Decision Support Systems (DSS).
This study concludes that automated decision-making approaches are compelling for optimizing
yield and creating operational control. Although SCTs and Reinforcement Learning (RL) are not
studied jointly in the domain of service logistics, implementation of smart learning algorithms in
digital control towers can support the transition towards a more effective and efficient logistics
network. We see that the algorithms can make decent trade-offs between the improvement of

V

Page VI.

long-term decision-making and reducing short-term maintenance costs. Nevertheless, literature
states that a decision support system should not entirely replace professional judgment.

For the sake of simplicity, we modeled the problem instance by a relatively simplistic ap-
proach. Nonetheless, this approach is still representative of the the IAC’s situation. We used a
Stochastic Dynamic Programming (SDP) framework in our modeling approach since this incor-
porates time-dependent decisions in a finite horizon. Here, we define the inventory position at
a given time as the state. Within each time period, we make a decision: do nothing, expedite,
or buy. Combinations of interventions are also possible. Based on the decision, we move to
the next stage and receive a direct reward. Stochasticity in demand, returning repairs, and
returning components from customers are considered within the updating procedure.

In solving the SDP model, we use three different solution approaches. The first solution
approach of the SDP is an exact approach by backward recursion. The solutions found by
the exact approach are used as a guideline and reference for the performance of the other two
solution approaches. This approach is only applicable to relatively small problem instances,
such as our current proposed problem. Second, we use a short-sighted (greedy) heuristic. The
heuristic is greedy because it always chooses the intervention with the highest direct reward
while ignoring the cost-to-go function. The final solution approach is the Dyna-Q algorithm,
which includes both model-based as model-free aspects. Here, easy implementation, strong, and
quick performance show added value for our research. Both the swiftness of implementation and
the strength and speed of performance show added value for our research.

To determine the performance of the algorithms, we first learn the policies of the backward
recursion and Dyna-Q. Then, we will evaluate all models in a simulation with pseudorandom
numbers. For a sensitivity analysis, we perform the experiments with a preference for tacti-
cal level, operational level, and the equilibrium point between operational and tactical level.
The first mentioned scenario is also the IAC’s current way of working. Combining these three
experiments creates insight into the relationship between operational and tactical levels.

For the initial scenario, we use a tactical preference in decision making. We see that the
greedy and Dyna-Q approaches perform on aggregate comparable. It goes without saying that
the exact solution by backward recursion gives the best value for the expected costs. In situations
that seem simple, the Dyna-Q algorithm uses a conservative approach by using more expensive
actions but having fewer backorders. However, the difference between greedy and Dyna-Q is in
this scenario not significant.

Second, we test the operational preference in decision making. Again, we see that the
backward recursion presents the optimal solution for this case. Further, we see that the greedy
heuristic applies the same behavior as in the previous experiment; it does nothing as long as
possible. Ignoring the cost-to-go function causes this behavior. The Dyna-Q algorithm shows
in this experiment a significant improvement compared to the greedy heuristic.

Finally, we investigate the performance at an equilibrium point. To shift the impact of
decisions from tactical to operational, we changed the turnover rate’s value. Therefore, we
divided this difference into ten steps in order to find the best suiting point. Contrary to the other
experiments, we see that the greedy algorithm performs poorly in this scenario, which means
that the greedy algorithm finds it hard to decide between tactical and operational decisions.
Nonetheless, we see in this scenario that Dyna-Q is performing comparable as the exact solution
in most situations. Still, we see a slightly higher cost for the Dyna-Q algorithm, but the RL
algorithm has fewer backorders than the exact solution.

Overall, we see the great potential and benefit for challenging situations in decision-making.
We see that a heavy computational algorithm as reinforcement learning is not beneficial for
straightforward cases compared to a simple heuristic. Obviously, if the problem size is applicable

Page VII.

for solving the problem exactly, we highly recommend this. Nonetheless, we recommend to
further explore the potential and benefits of reinforcement learning in this application.

In conclusion, we can summarize our results as follows:

Aggregate cost and backorder evaluation results of three solving methods in three scenarios

Exact Greedy Dyna-Q
Preference Cost EBO Cost EBO Cost EBO
Tactical 49.674,99 1.01934 73.964,67 2.11055 72.713,82 0.41588
Operational 81.234,29 0,27511 129.816,66 0,75386 118.789,64 0,30912
Equilibrium 70.685,31 0.35177 153.811,09 1.54363 92.401,19 0.30035

The solving approach, as used in this research, is suitable for small problem instances.
In case we are interested in solving, e.g., multi-item multi-echelon instances, state- and action
space will increase. Using a nonstationary Value Function Approximation (VFA) or Deep Neural
Networks (DNN) might suffice for these problems. In case the amount of data becomes even
larger, approximating the optimal solution by combining sub-optimal policies requires lots of
computational power. Therefore, advanced methods are required for solving these problem
instances.

After solving the scalability issue for an actual problem instance, it is exciting to determine
the possibilities of implementing an alert generation tool and the DSS into a Digital Twin (DT).
The IAC can benefit from this because the Digital Twin brings ERP data and, for example,
strategic insights in order processing together. In other words, the visibility leads to better
insight and control in cost behavior of interventions. This can help understand and monitor the
supply chain’s behavior by continuous improvement. Therefore, the relationship between the
operational and tactical level becomes clearer.

In conclusion, a reinforcement learning algorithm can benefit operational decision-making by
creating insight into the operational planning horizon’s expected costs. Because of the adaptive
learning abilities of planning and learning algorithms, stochasticity in demand, returning repairs,
and returning customer components can be processed without performance loss. Although the
current experimental setting was relatively small, we see great potential in the application of
reinforcement learning in service control towers. Therefore, we recommend researching the
possibilities of solving more complex problem instances. We expect that by implementing a
similar DSS, the black box of decision-making becomes more transparent.

Page VIII.

Table of Contents

Acknowledgments III

Management Summary V

List of Figures XIII

List of Tables XV

List of Abbreviations XVII

1 Introduction 1
1.1 The Company . 1

1.1.1 Component Maintenance & Availability Programs 1
1.1.2 Summarizing the CMA-program . 4

1.2 Research Introduction . 4
1.3 Assignment Description . 5

1.3.1 Aim of our Research . 5
1.3.2 Scope of our Research . 5
1.3.3 Research Questions . 6

1.4 Research Methodology . 7

2 Current System Analysis 9
2.1 The Supply Chain Network . 9
2.2 Alert Generation . 10
2.3 Interventions . 12

2.3.1 Do Nothing . 12
2.3.2 Discard or Store . 12
2.3.3 Lateral Transshipment . 13
2.3.4 Interchangeable Parts . 13
2.3.5 Prioritizing & Expediting . 14
2.3.6 Cannibalization . 14
2.3.7 Expedited Shipment . 14
2.3.8 External Sourcing . 14
2.3.9 Combining Interventions . 15

2.4 Key Performance Indicators . 15
2.5 Decision-making . 16

2.5.1 Tacit Knowledge in Decision-Making . 16
2.5.2 Relationship Between Alerts and Interventions 17

2.6 Aggregate System Performance . 18
2.6.1 KPI Output Measures . 18

IX

Page X.

2.6.2 Impact of Decision-making and KPIs on System Level 19
2.6.3 Performance Visualized . 19
2.6.4 Potential Performance . 20

2.7 Content of Data . 20
2.7.1 Key Findings in Data . 20
2.7.2 In Summary . 23

2.8 Conclusion . 24

3 Literature Review 25
3.1 Service Control Tower . 25

3.1.1 Layers of Service Control Tower . 25
3.2 Interventions on Operational Level . 26

3.2.1 Comparison of Interventions . 26
3.3 Decision Processes . 28

3.3.1 Relation Between Operational and Tactical Decisions 28
3.3.2 Defining the Potential of Artificial Intelligence 29
3.3.3 Artificial Intelligence in Operational Decision-Making for Spare Parts . . 33
3.3.4 Challenges in Planning and Learning Algorithms 33
3.3.5 Decision Processes In Short . 34

3.4 Reinforcement Learning . 34
3.4.1 General Introduction . 34
3.4.2 Finite Markov Decision Processes in Reinforcement Learning 36
3.4.3 Bellman’s equation . 37
3.4.4 Extensions to the Markov Decision Processes 38
3.4.5 Learning Dimensions of RL . 38

3.5 Solving Methods for a Reinforcement Learning Model 39
3.5.1 Approximate Dynamic Programming . 40
3.5.2 TD-Control Methods . 40
3.5.3 Dyna-Q . 41
3.5.4 Deep Q-Networks . 41
3.5.5 Actor-Critics . 42
3.5.6 Proximal Policy Optimization . 42

3.6 Conclusion . 43

4 Solution Design 45
4.1 Stochastic Dynamic Problem Framework . 45

4.1.1 State . 45
4.1.2 Decision . 46
4.1.3 Reward . 46
4.1.4 Transition Functions . 48
4.1.5 Transition Probabilities . 49
4.1.6 Future Addition of Interventions . 50

4.2 Exact Solution Approach . 51
4.2.1 Backward Recursion . 51
4.2.2 Optimal Policy & Computational Efficiency 52
4.2.3 Solving Stochastic Dynamic Programming in Short 52

4.3 Heuristic Approach . 53
4.3.1 Heuristic of Choice . 53
4.3.2 Heuristic Design . 54

4.4 Planning and Learning Solution Approach . 54
4.4.1 Structure of Dyna-Q . 55
4.4.2 Strengths of Dyna-Q . 56

Page XI.

4.4.3 Dyna-Q Applied . 57
4.4.4 Dyna-Q in Summary . 58

4.5 Conclusion . 58

5 Experimental Results, Analysis, and Optimization 59
5.1 Assumptions and Parameter Tuning . 59

5.1.1 Experimental Assumptions . 59
5.1.2 Initialization and Parameter Tuning . 60

5.2 Learning . 62
5.2.1 Backward Recursion . 62
5.2.2 Dyna-Q . 64

5.3 Evaluating . 64
5.3.1 The IAC’s Initial Setting . 64
5.3.2 Low Tactical Impact . 65
5.3.3 Equilibrium Point . 65
5.3.4 Results and Analysis . 65

5.4 Conclusion . 70

6 Implementation 71
6.1 Scalability . 71

6.1.1 Increasing State- and Action Space . 71
6.1.2 Learning with Big Data . 72

6.2 Digital Twin . 72
6.2.1 General Introduction . 72
6.2.2 Functionality of the Twin . 72
6.2.3 Digital Twin Applied to the Independent Aerospace Company 73

6.3 Conclusion . 74

7 Conclusions, Discussion, and Recommendations 75
7.1 Conclusion . 75
7.2 Discussion . 76
7.3 Recommendations . 77

References 79

Appendix A Interview Operational Planners 89

Appendix B Model Data 93

Appendix C Extensive Literature 97

Appendix D Algorithm Flowcharts 105

Appendix E Python Code - Import Data 109

Appendix F Python Code - Algorithms 115

Appendix G Results - Learn 125

Page XII.

List of Figures

1.1 CMA-programs . 3
1.2 The eight phases of the Research Cycle . 8

2.1 Multi-echelon network of the Independent Aerospace Company 9
2.2 Flowchart of alert generation and prioritizing . 11
2.3 Motivation for decision-making . 18
2.4 The percentage of exchanges (a) and orders arriving late (b) over the past 13 years 19
2.5 Histogram of return turnaround times in days, cut off at 100 days 22

3.1 Positioning of AI, ML, and DL (Dhande, 2020) 34
3.2 Main branches of ML (Ray, 2020) . 35
3.3 Reinforcement learning overview (Sutton & Barto, 2018) 36
3.4 Back-up diagrams for Bellman Expectation Equations (Sutton & Barto, 2018) . . 38

4.1 Example back-up diagram with St = 2 . 50
4.2 Structure of the SDP algorithm . 53
4.3 Structure of greedy heuristic . 54
4.4 Relationships of planning, learning, and acting (Sutton & Barto, 2018) 55
4.5 The inventory problem expressed as a maze . 56
4.6 Structure of the Dyna-Q algorithm . 57

5.1 Learning curves in original scenario of (a) epsilon and (b) planning steps 61
5.2 Optimal decision ratio per day, for Itotal = 3 . 63
5.3 Learning of Q-values over episodes for the IAC’s initial setting 64
5.4 Costs per episode in initial scenario . 65
5.5 Costs per episode in scenario with low tactical impact 67
5.6 Costs per episode in equilibrium point . 69

6.1 Visualization of Digital Twin concept applied to problem statement 73

XIII

Page XIV.

List of Tables

2.1 Price information for component PN1 ($) . 20

3.1 Comparison of different decision-making methods following the literature 30

4.1 Regular and expedited repairs combined with demand transition probabilities . . 50

5.1 Count and percentage of decisions in the total state space per start inventory . . 63
5.2 Cost performance of three solving methods in initial scenario ($) 66
5.3 Percentage action behavior of three solving methods in initial scenario 66
5.4 Expected backorders of three solving methods in initial scenario 66
5.5 Cost performance of three solving methods in scenario with low tactical impact ($) 67
5.6 Percentage action behavior of three solving methods in scenario with low tactical

impact . 67
5.7 Expected backorders of three solving methods in scenario with low tactical impact 68
5.8 Percentage actions per preference step . 68
5.9 Cost performance of three solving methods in equilibrium point ($) 69
5.10 Percentage action behavior of three solving methods in equilibrium point 69
5.11 Expected backorders of three solving methods in equilibrium point 70

XV

Page XVI.

List of Abbreviations

A2C Synchronous Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

AC Actor-Critic

ADP Approximate Dynamic Programming

AI Artificial Intelligence

AOG Aircraft on Ground

CMA Component Maintenance & Availability

CMRO Component Maintenance Repair & Overhaul

DL Deep Learning

DNN Deep Neural Network

Double DQN Double Deep Q-Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSS Decision Support System

DT Digital Twin

DTSC Digital Twin Supply Chain

EBO Expected Backorder

EP Exchange Program

Fmv Fair Market Value

IAC Independent Aerospace Company

IID Independent and Identically Distributed

IoT Internet of Things

IP Inventory Position

IPC Illustrated Part Catalog

MAB Multi-Armed Bandit

MDP Markov Decision Process

XVII

Page XVIII.

ML Machine Learning

MRO Maintenance Repair and Overhaul

OEM Original Equipment Manufacturer

OH On-hand

OPP Operational Planning Professional

PPO Proximal Policy Optimization

RL Reinforcement Learning

SCT Service Control Tower

SDP Stochastic Dynamic Programming

SLA Service Level Agreement

SU Serviceable Unit

TAT Turnaround Time

TD Temporal Difference

TRPO Trust Region Policy Optimization

UU Unserviceable Unit

VFA Value Function Approximation

1 | Introduction

This Master’s thesis includes a research for an Independent Aerospace Company (IAC). The
company offers services to regional, commercial, and military aircraft. With Component Main-
tenance & Availability (CMA) programs, Maintenance Repair and Overhaul (MRO) components,
and defense-programs is IAC aiming for excellence. This first chapter will further explain the
company structure, the content of CMA-programs, and the associated challenges. As a result of
the challenges raised by the IAC, this chapter presents the research approach and methodology.

1.1 The Company

This information is removed from the
public version of this Master’s thesis

1.1.1 Component Maintenance & Availability Programs

The CMA-program of the Independent Aerospace Company (IAC) provides repairs, spare parts,
and reliability management for contracted customers. Through different service contracts, cus-
tomers have unlimited access to approximately 7.500 components in a so-called pool of spare
parts. These components are necessary to keep the aircraft in the air. To provide a good service,
the program provides the following three points for the customer: guaranteed availability, avoid
downtime, and predictable costs.

The customer has great benefits from the CMA-program since all parts come from a single
source. The customer only has one point of contact, and that is the IAC. Besides the advantage
that there is one integrated service provider, other advantages are prices and delivery times.

1

Page 2.

By using long-term contracts and risk-sharing frameworks, such as cost per hour or flight hour
contracts, the costs are known to the operator in advance and are therefore predictable. The
long-term contracts are beneficial to the customer in delivery since there is an integrated service
provider network. Because Schiphol is easily accessible from all over the world, combined with
the IAC’s years of experience and strong inventory models, the company can serve customers
within 24 hours. Besides shipping from Schiphol, where the central pool is located, the IAC has
satellite hubs to assist. These are located in LaGrange and Singapore. By using the multiple
locations on different continents, the IAC creates a global footprint. This leads to an increase
in availability since the company is from all locations nearby the customer.

To make the CMA-program, and thereby the spare part pool, successful, the IAC tries to keep
the turnaround time (TAT) as low as possible. The TAT is measured as the time elapsed between
the moment that the malfunctioning component is removed from the aircraft until the moment
that the component is repaired and is ready to be stored as spare unit (Kilpi & Vepsäläinen,
2004). The exchange process can be described as a loop, whereby the company and the operator
exchange a serviceable and unserviceable component. The mentioned moment of submission of
the TAT is when the unserviceable component is returned from the customer to the repair shop
of the IAC. Although the exchange process’s completion time is the moment that the component
can be used in the spare pool, the moment is not fixed. This is because the completion time
is dependent on the service type chosen by the customer. Each service type has a different
completion moment. The CMA-program can be divided into three different service elements:
exchange, maintenance, and lease services. These three types of service contracts are explained
briefly and visually supported in Figure 1.1. The regular product streams are visualized with
solid lines, optional product streams with dashed lines and communication streams with dotted
lines.

Exchange Services

The first element of the program is the Exchange Service. Within this service program, cus-
tomer demand (dotted line) will trigger the exchange process’s start. In case of a malfunctioning
component, the customer can order a new, functioning component. The customer request of a
Serviceable Unit (SU), is met from the spare part pool. Next, the customer sends the malfunc-
tioning component, an Unserviceable Unit (UU), to the IAC’s repair shop. The IAC expects
all customers to be sophisticated in sending the UU back in time, such that the company has
sufficient supplies to preserve the high service levels for all customers operating in the CMA-
program. This applies for all different elements of the CMA-program. The repair shop will
restore the UU and transfer the part back to the pool whenever it is serviceable again. All
movements of components are visualized with a full line in Figure 1.1a.

Maintenance Services

The second CMA-program is the Maintenance Service. With this service contract, the customer
decides not to use the spare part pool initially. With this type of contract, the customer sends
a UU to the repair shop whenever it is malfunctioning. There, it will be repaired and shipped
back to the customer as SU. As mentioned, this process should be fulfilled within the contractual
agreed TAT. However, in some cases, the repair time exceeds the agreed turnaround time or, in
the worst case, cannot be repaired. When this happens, the customer receives a serviceable unit
from the general spare part pool. Subsequently, the IAC uses the repaired component for the
replenishment of the pool. This flow is visualized in Figure 1.1b. Note that when the operator
gets a SU from the pool (dashed line), the regular shipment from the repair shop to the customer
(solid line) will expire.

Page 3.

(a) Exchange Services (b) Maintenance Services

(c) Lease Services

Figure 1.1: CMA-programs

Lease Services

The last commonly used service contract is the Lease Service. Specific components are essential
to have quick access to for a customer. If such component malfunctions, this ensures that the
aircraft can no longer fly. The Aircraft on Ground (AOG) status is an expensive situation for
the operator; therefore, they want to prevent this from happening. For this reason, customers
can decide to use a lease service. The customer can place a spare part from the pool in their
own on-site stock. With this lease stock, the customer can take a SU directly from the on-site
stock and install it in their aircraft in case a part is down. The customer does not have to wait
until the new SU is delivered since it is already on-hand. The customer sends a request for a
replenishment (dotted line) of their on-site lease stock to the IAC and sends the UU back to the
repair shop. From the repair shop, the repaired part will go back into the pool. This process is
visualized in Figure 1.1c.

Page 4.

1.1.2 Summarizing the CMA-program

The three types of service programs, as discussed above, ensure that the downtime will be min-
imized for the customer. Either when the customer receives the parts from the central pool,
an on-site stock, or from the repair shop, the IAC endeavors to provide unlimited access to
serviceable and high-quality components. To assure that the repair time does not exceed the
contractual agreed TAT, both the IAC and customer must deliver the components in time. Fur-
thermore, since there is one integrated service provider, the costs are predictable at competitive
rates. The controlled costs are complied with by risk-sharing frameworks. In addition, the pro-
cess requires enhanced logistics and innovative maintenance to succeed. In this way, the IAC
ensures to cater to the customer and maintain the main pillars: guaranteed availability, avoid
Downtime, and predictable costs.

Currently, the IAC works with two operational planners. In Chapter 2, we will further
explain the current situation. These operational planners ensure that the parts are available
and that the service levels can remain high, as agreed. This is done by using a Service Control
Tower (SCT). The SCT provides real-time insight into the performance of the CMA-programs.
A further explanation of the operation and application of SCTs will be given in Section 3.1.

1.2 Research Introduction

The IAC states that the current way of working is not creating difficulties or obstacles. However,
the company asks for knowledge regarding the connection between operational and tactical
planning in service control towers. The need concerns management-, process- (such as alert
generation), and decision levels. This request for knowledge originates from the research of
Topan, Eruguz, Ma, van der Heijden, and Dekker (2020). This study reviews the possibilities
of the operational spare parts in a service control tower setting. Since a strong conjunction
between operational and tactical planning can lead to higher service levels, it is interesting to
review further possibilities of decision-making in service control towers (Topan et al., 2020).

The IAC would like to explore the potential possibilities of Artificial Intelligence (AI) for
operational planning. Therefore, my company supervisor started a Ph.D. program to close the
knowledge gap. For this program, the possibilities of incorporating artificial intelligence in a
service control tower setting is investigated. The research involves AI since it can add human
reasoning to algorithms. Through the interaction with the environment, the AI algorithms can
incorporate the exceptions better than other decision support systems. Furthermore, combining
planning and learning models shows strong potential in decision processes. With relatively
limited data, AI is capable of adapting through progressive learning.

This Master’s thesis will carry out contributory research to Ph.D. research. The analysis
related to alert management, the preliminary step of this thesis, is carried out by another
University of Twente student. He investigates a proactive monitoring tool on the alert generation
from the service control tower, supported by Machine Learning. The research concerning the
alert generation will, therefore, be out of scope of this thesis.

Tactical planners predict the inventory models in advance for the parts of the CMA-programs.
However, an unforeseen deviation may arise in day-to-day planning. In this case, the control
tower generates an alert. When such an alert is generated, an intervention must take place
on the operational level. These interventions are, for example, buying a component or doing
nothing at all. The operational planners are responsible for determining which intervention is
most suitable for the given states. The intervention is partially supported by data but mostly
based on intuition or gut feeling. Furthermore, the consequences of the decisions are unknown
in the current situation.

Page 5.

In short, due to a knowledge gap concerning the relationship and interaction of the opera-
tional and tactical planning, this thesis reviews the possibilities of decision-support. By involving
artificial intelligence algorithms in the decision-making process, operational interventions can be
supported while incorporating and considering the decision-making process’s stochasticity.

1.3 Assignment Description

The previous section briefly explained the current way of working for the operational planning
professionals at the company. In this section, we will define the corresponding core problem.
Because the entire problem has a broad scope, we limit this thesis’s scope to create a valuable
contribution for the IAC. A research question and five sub-questions support the scope of our
research.

1.3.1 Aim of our Research

As described, in the current state, the decision-making concerning the interventions is mostly
based on intuition. Therefore, there is no insight into the consequences or the impact of the
interventions for the long-term. The aim of this thesis, and hence the core problem that we
address, is:

‘The Independent Aerospace Company does not use an operational decision support system,
causing that the impact of the decision-making on costs, such as backorder and holding costs,
cannot be determined adequately.’

1.3.2 Scope of our Research

To solve the mentioned problem, we will look at the input-output relationship of the planning
processes. Tactical planning presents the expected long-term necessary stock levels. Due to
fluctuations, deviations, and uncertainty, the predicted stocks change over time. To absorb
these changes, the IAC carries out interventions at the operational level. Here, tactical planning
is used as input for decision support. The output of operational decisions could subsequently
improve tactical planning if a permanent change needs to occur.

Nonetheless, the relationship between operational and tactical planning is unknown if there
exists any. This means that the feedback relationship exists in a black box. The black box
element is defined in the literature as a system where a visual element enters an imaginary box,
from where different observable outputs can emerge. However, the black box approaches lack
transparency, i.e., the reasoning and support of decision-making are not clear.

The black box contains all uncertainty related to the decision-making, making it challenging
to fit a subsequent decision support system to provide reliable advice. Visualizing the black box
creates insight into the interaction between tactical and operational planning, which can likewise
improve tactical planning. Nevertheless, because the CMA-program works with a closed-loop
environment, where components do not leave the spare part loop easily, having a positive impact
on the tactical level by operational decisions is difficult. Therefore, we will use the tactical level
as a guideline in operational decision-making.

Most of the time, in operational decision-making, tactical levels are taken into account
while making decisions. However, this is slightly different for inventory management because,
in a stable environment, the inventory decreases over time by demand. Therefore, operational
decisions do not have an enormous direct impact on tactical planning levels. Within the closed
loop, all decisions have a direct impact on the inventory position. Therefore, we will only
research the impact on operational decision-making, supported by rewards in the long-term for

Page 6.

this research. The investigated tools should advise in decision-making for spare parts of the
CMA-program of the IAC.

The company indicates that they want to determine the potential of planning and learning al-
gorithms in a service control tower setting. We focus mainly on planning and learning algorithms,
or Reinforcement Learning (RL), because these algorithms can learn optimal decision-making
for sequential decision problems. The algorithm learns optimal rewards for different situations
within these problems, and it can learn the corresponding policy. Therefore, this research will
investigate the opportunities for these models for the given problem. Nonetheless, to validate
the reinforcement learning algorithm’s potential and strength, other solving approaches will be
reviewed as well.

Additionally, to the research of the planning and learning algorithm, this thesis will determine
the potential of implementing the algorithm in a Digital Twin (DT). A Digital Twin is a realistic
model of the real system, which can support simulation, optimization, and control (Cronrath,
Aderiani, & Lennartson, 2019). The system can also perform decision-making for different
actions by accessing their own behavior in interaction with the environment. Furthermore, it
allows a faster adaption, implementation, and improvement of operations (Rosen, Von Wichert,
Lo, & Bettenhausen, 2015).

1.3.3 Research Questions

The research problem states that there is a desire for more knowledge and insight into the impact
of the operational decisions on the long-term yield. The IAC wants to make the decision-making
measurable and visual, supported by data. Additionally, because of the stochasticity in the
decision-making process (due to, e.g., exceptions or variation in demand lead times), the IAC
wants to determine the computational power of reinforcement learning. Therefore, the main
question that we will answer is:

‘In what way and to what extent can a reinforcement learning algorithm improve operational
decision-making while incorporating long-term yields?’

In order to answer the main research question, we defined five sub-questions that will provide
partial answers. The substantiation of all questions is provided to give a clear overview of the
intention and approach.

The first topic that we will address is the description of the current state of inventory
planning and decision-making. In Chapter 2 we provide more information about the current
working methods, performance, and decision priorities. This will give a better insight into the
current deficiencies and required capabilities for our model. We translate this into the first
sub-question.

1. Which tools, instruments, or methods does the Independent Aerospace Company use for
operational decision-making, and what are the corresponding performances of these tech-
niques?

Next, we will further discuss the interventions that emerge from Chapter 2. We will inves-
tigate the overlapping interventions that both the IAC and the literature use. To improve the
IAC’s performance, we look into alternative decision-making approaches found for comparable
interventions in the literature. The second sub-question will provide an answer to this matter.
We will address this question in Chapter 3.

2. What are overlapping interventions of current operational decision-making within the IAC
and literature, and what are possible additions for the IAC?

Additionally, in Chapter 3, we look for the different algorithms that the literature uses in

Page 7.

reinforcement learning. As far as we know, there is not much literature available concerning
reinforcement learning in inventory control or service control towers. Therefore, we compare
decision-making in different environments to determine the added value of reinforcement learning
compared with other algorithms. Based on the comparison, we choose an algorithm that can
help us create a planning and learning model for our purpose. The algorithm should be suitable
for the inventory control problem, with all stochasticity included. Furthermore, the algorithm
should be applicable as a decision support system. Therefore, the third sub-question is:

3. Which planning and learning algorithms are used in reinforcement learning according to
the literature and which are applicable for the IAC’s purposes?

To examine the decision support system’s performance and quality in different scenarios,
we model the decision support system in three ways: an exact solution approach, a simple
heuristic, and a reinforcement learning model. The exact and heuristical approaches function
as benchmarks for the reinforcement learning algorithm. The reinforcement learning model,
used in the Proof of Concept, is chosen based on the literature review. From the desire for this
information, the fourth sub-question arose. In Chapter 4, we discuss the model design for our
solution, followed by the experiments, performance, and statistical findings in Chapter 5.

4. How can we use reinforcement learning for the IAC’s purpose, and what performance can
we expect from this algorithm compared to an exact- and heuristic solution approach in
terms of cost-benefit and inventory policy?

Finally, since the decision support system is only designed (Chapter 4) and tested (Chapter 5)
with a Proof of Concept, we will also describe the possibilities of implementing the system in
a realistic data-set environment by encountering the possible scalability issues. Implementing
the decision-support system in a Digital Twin can be useful in this situation. A Digital Twin
can help create insight and improve decision-making in spare part management in the service
control tower. Therefore, we review the possibilities of implementing the found reinforcement
learning models into a Digital Twin. Chapter 6 explains the possibilities by answering the last
sub-question.

5. How can we implement the decision support system in a realistic and larger decision-
making process, using a Digital Twin?

1.4 Research Methodology

Earlier in this chapter, we described that we want to investigate a shortcoming in knowledge.
We refer to this type of problem as a knowledge problem. This type of problem can be solved by
conducting research. In case of an action problem, changing or improving the situation can solve
the problem. We use the research cycle to structurally solve a knowledge problem (Heerkens &
van Winden, 2012; Cooper & Schindler, 2011). This cycle consists of eight steps and is shown
in Figure 1.2. Since the first three phases of the research cycle have already been clarified in
this chapter, they do not need further explanation. However, to give a more in-depth view of
the research cycle, the last five phases of the cycle will be explained next.

First, we will look at the research design. This research aims to gain more information about
using an operational decision support system in a service control tower for spare part logistics.
We will obtain this information by conducting an extensive literature study. We will define the
basic concept, different learning dimensions, and different reinforcement learning algorithms to
measure the application and the influence of each of these algorithms. Furthermore, we will
translate the most suitable model for our problem definition and operationalize the required
variables. We include the abstract variables that are, for example, responsible for the degree of
preference. In this way, we can create insight into the impact in both the short and long-term.

Page 8.

Figure 1.2: The eight phases of the Research Cycle

For the reinforcement learning model, we have to define a framework with all different states,
rewards, and the corresponding environment. Since these are not all given as standard variables,
we have to make sure that, e.g., all rewards are measurable in the environment and suitable for
the algorithm.

The measurements of the study will then have to be tested for reliability and validity. Re-
liability will be examined by comparing the operational decision support system with outcomes
of the exact and heuristic solution approach. We also test validity. We do this in two areas:
internal and external validity. Internal validity must be guaranteed by, for example, preventing
self-selection. Since this research is relevant for the Ph.D. research, application for the IAC, and
also for other follow-up studies with this point of interest, the external validity is covered.

Finally, from the processed experiments with the three different approaches, we can conclude
the main question. The conclusion will be based on the experiments with the decision support
system, where the comparison of the different algorithms is vital. Within this comparison, we
look at which of the selected algorithms can provide the best advice for the IAC’s purposes. The
conclusion we draw in this thesis applies to the IAC’s situation and should provide a complete
answer to our research question.

In summary, the research cycle is a solving approach for situations where knowledge is
necessary. As described in the literature, the knowledge problem is a description of the research
population, the variables, and (if necessary) the relations that need to be reviewed (Heerkens
& van Winden, 2012). The research cycle is not about changing situations but understanding.
The knowledge problems often come from an action problem, which lacks information about,
e.g., solving the problem. By going through all eight steps of the cycle, we create a structured
research approach to obtain the desired information.

2 | Current System Analysis

This chapter provides a clear view of the current situation at the Independent Aerospace Com-
pany (IAC). First, in Section 2.1, we briefly introduce the IAC’s supply chain network. Next,
in Section 2.2, we discuss the alert generation. Since another Master’s thesis already studies
alert generation, we will not review this topic in depth. We use this section for introduction
purposes only. Next, we review the current interventions that the operational planning profes-
sionals use in Section 2.3. Subsequently, we will review the current decision-making process in
Section 2.5 to describe the considerations in the decision-making process. Section 2.6 discusses
the operational intervention control’s current and potential performance. Finally, we discuss the
data set provided by the IAC in Section 2.7. We obtained this chapter’s information through
an interview with the operational planning professionals. The interview questions can be found
in Appendix A. With this chapter’s knowledge, we can answer the first sub-question.

2.1 The Supply Chain Network

The IAC currently works with a two-echelon network, schematically visualized in Figure 2.1.
In this multi-echelon network, the central warehouse is located in Hoofddorp. Additionally, the
regular local warehouses are located in Singapore and LaGrange. The operators of the CMA-
program receive their components from both the central warehouse as the local warehouses. The
delivery from these warehouses is a proactive procedure. Between LaGrange and Singapore,
lateral transshipments can be used (blue dashed arrow). Besides the active delivery, the IAC
uses other operators’ lease stock as an emergency option (red arrow). This action is reactive.

Figure 2.1: Multi-echelon network of the Independent Aerospace Company

9

Page 10.

Additionally to the local warehouses, the IAC uses a quarantine warehouse and a commercial
warehouse. The quarantine warehouse stores components that are not ready for direct use. I.e.,
the component can have an expired license or can be malfunctioning. The IAC proactively stores
components in the quarantine warehouse for future use. The quarantine warehouse is, there-
fore, part of the CMA-program. The IAC uses the components from the quarantine warehouse
partially or while they are still intact. We will explain the IAC’s partial use of components in
Section 2.3.6. The commercial warehouse is an independent warehouse targeting the commer-
cial market. Since the IAC has no Service Level obligations to customers on the commercial
market, the IAC can use the commercial warehouse components to fulfill the demand of the
CMA-program. We will further explain the use of the quarantine and commercial warehouse in
Section 2.3.2 and 2.3.3.

2.2 Alert Generation
As described earlier, this thesis leaves the alert generation out of scope. Nonetheless, to create
a clear view of the chronological processes, we briefly explain how the alerts are generated, in
which situations these occur, and what the nature of the alert situations are.

The operational planning professionals, from now on referred to as OPP, receive an alert
whenever a situation occurs that requires attention. Alerts occur in situations that the system
expects interference is necessary to successfully continue the process. The alert generation
can occur everywhere in the CMA-program cycles, as described in Section 1.1.1. The required
intervention for the alert is dependent on the alert’s nature. For example, in the Exchange Service
contract loop, an alert can arise when a customer order arrives and there is no stock available.
Other, with the Maintenance Service, the alert-process starts when the malfunctioning part
arrives at the repair shop. Note that the described alert points are for explanatory use only.
In the real situation, all steps in the processes can generate an alert with the corresponding
interventions. The ERP system generates alerts. Besides the different origins and starting points
of the alerts, there are different circumstances for which the alerts occur. From interviews with
the OPPs, we conclude that there are three main situations in which the ERP system or OPP
notices an alert.

The first alert situation is direct backorders. This alert has the most significant impact on
the performance of the CMA-program. A backorder can be defined as an order for a component
that cannot be fulfilled due to lack of availability (Sherbrooke, 2004). The customer still requires
the component, so the IAC needs to meet the customers’ demand. Due to the significant impact,
there is little time to respond and the OPPs should undertake immediate action. A consequence
of the limited time is that the related costs of interventions in this alert situation are usually
high. Often the only options in this situation are procuring or leasing the part from other
suppliers.

Secondly the high Turnaround Time. As the first chapter describes, both the IAC and cus-
tomer should be sophisticated in delivering parts within the agreed time intervals. Nonetheless,
the TAT can deviate at two different places in the CMA-loop: the repair shop and the customer
return. In case the TAT at the repair shop is too high, the OPPs will not receive a direct
alert. While reviewing other problems, the high TAT becomes visible for the OPPs. With, e.g.,
prioritizing or expediting repairs, this alert can be corrected. In case the customer returns the
component later than agreed, the pool runs with fewer components. Therefore, the probability
of a backorder to occur grows.

Finally, an alert occurs when there is no stock on-hand. The alert for this situation is not
generated by the ERP system but is reported by a tactical planning tool. This alert does not
directly impact the performance of the CMA-program, as direct backorders. However, there is
a high probability that a direct backorder occurs soon. Therefore, a quick response is necessary.

Page 11.

Figure 2.2: Flowchart of alert generation and prioritizing

The OPPs indicate that commonly two direct backorder alerts occur in a week. However,
due to COVID, there are fewer alerts since the demand is lower for components. In addition
to the mentioned alerts, a priority list is generated. The priority list reflects the current status
of the supply chain. The list helps the OPPs in taking proactive interventions to reduce the
likelihood of backorders soon. The list is generated by a business ruling that the OPPs run
themselves. Since both OPPs can run the priority tool whenever they want, there is no fixed
refresh rate for the priority lists.

The generated alert lists are prioritized based on a fixed business ruling. With the given
priority list, the OPPs will work on the alerts from prio 1 to prio 4. The business ruling is
visualized in the flowchart in Figure 2.2. The first step of the business ruling is to determine
whether there has been a backorder for the component in the last year. When a backorder has
occurred, the ruling is more conservative such that this can be prevented. I.e., if the IAC is
performing well during the year on a component that generates an alert, there is no need for a
high priority. However, if a customer’s request is missed within the last year, the alert receives
a higher alert to prevent this from happening again. In case a backorder has occurred, the alert
will be a prio 1 or prio 2. Since the business ruling is both the same after the backorder step,
we will only explain the steps for the first two priorities.

Secondly, the system determines if there is stock on-hand. In case there is no stock on-hand,
and the inventory position is nonzero, the ruling determines if the stock is in transit. In transit
stock means that there is stock in the pipeline which is not available for use. The component can
be in repair or can be a core unit at the operator. Since this stock is not free for use, the alert
receives a prio 1. However, it is also possible that alerts receive no prio. This happens when the
planned inventory position is equal to zero or if the planned inventory position is larger than
zero and the stock is not in transit.

If the on-hand stock is not equal to zero in the other flow, the ruling determines again if
the inventory position is nonzero. If the planned inventory position is equal to zero, the alert
will receive no prio. Otherwise, the ruling determines if the on-hand stock (OH) divided by the
inventory position (IP) is less than 0.30. Meaning that if less than 30% of the total inventory
position is on-hand stock, the alert receives a prio 2. As well as if 30% or more is on-hand stock,
the alert receives no prio.

Page 12.

The situations, as described above in the flowchart, apply to all inventory problems. The
alerts arise to prevent backorders from occurring. Nonetheless, some alerts occur in case, e.g.,
a repair takes longer than expected, or the operator did not return the component yet. The
mentioned components are not available for use and are, therefore, in transit. This leads to
a larger TAT than expected. The final scenario we discuss is the backorder from the outside.
The scenario can occur when the commercial warehouse has demand for a component and has
no stock available. In case this happens, the OPPs can decide to analyze it as a loss of sales
case. I.e., using a component from the CMA-program to fulfill the demand or lose the sales and,
therefore, profit.

Altogether, alerts are generated in several different situations. This happens when the
planning system expects that a component cannot move through the CMA-process without
interference. We described three main situations for which an alert can occur; direct backorders,
high Turnaround Times, and no stock on-hand. These three situations can occur in different
scenarios. Via a given business ruling is for each alert, the priority is determined. Additionally,
based on the business ruling priorities, can the OPP work the priority list top-down.

2.3 Interventions

The possible interventions that the operational planning professionals (OPP) can take depend
on the alert situation. This section review the different interventions that the IAC uses. Besides
the individual interventions, there is also a possibility for combining multiple interventions. We
will discuss the interventions, the execution, and in which situations the interventions are used.
Below, we explained the interventions in a similar order as the checking preference by the OPPs.

2.3.1 Do Nothing

When an alert arises, the planners will first consider whether an action is needed or if regular
transhipments are possible. The OPPs check the accuracy of the alerts. It is possible that,
for example, the customer desk oversees a component in one of the IAC’s warehouses, leading
to a false alert. Therefore, by doing nothing, the IAC can still fulfill the customer’s demand.
Nevertheless, in certain situations, when the alert is correct, OPPs still decide to do nothing.
An example of do nothing is when the component is not crucial for the operator, and the planner
expects that the component will return soon.

2.3.2 Discard or Store

This intervention occurs when an alert arises at the end of the loop, the repair shop. In case
an unserviceable component comes to the repair shop, the OPPs have to decide whether to
repair the component or not. Additionally, the OPP can discard the component or store the
component in another warehouse. Three different options are discussed next.

Discard

The first option is to discard the product. In case there is, for example, an overshoot in compo-
nents, or the repair costs are too high, the OPPs can decide to discard the component. Often
this is an expensive action since the components still have a book value. Therefore, this is not
the most desirable option in most situations.

Quarantine Warehouse

The quarantine warehouse is a storage location where items are stored that are currently not
operational due to, for example, expired licenses or malfunctioning parts. There might emerge a

Page 13.

surplus of components in the regular CMA-warehouse due to, e.g., changes in demand. Because
all components in the CMA-warehouse need an examination occasionally to prevent the shelf
life from terminating, regularly checking the components from the surplus causes unnecessary
costs. Therefore, placing components in the quarantine warehouse is a cost-effective measure.

Commercial Warehouse

Finally, relocating the component to the commercial warehouse. In case the repair of a com-
ponent is not too expensive, the OPP can decide to repair. However, if an overshoot of a
component in the CMA-warehouse occurs, a relocation to the commercial warehouse is possible.
From there, the component is still useful to the commercial department of the IAC.

2.3.3 Lateral Transshipment

The next option that is discussed is the lateral transshipment. The OPPs can relocate a func-
tioning component from one to another location. From the interview we conclude that there
are three different options to relocate the components from. As discussed in the first chapter,
comes the regular CMA stock from the pool. Besides the pool, components from the commercial
warehouse, quarantine warehouse, and the lease stock from other operators are used.

Commercial Warehouse

First of all, we will discuss the commercial warehouse. The IAC has two separate warehouses for
the commercial exchanges and the CMA exchanges. Since the IAC must deliver the components
in time to the CMA operators, the IAC can choose to use a commercial warehouse component
to fulfill the demand. When the CMA pool is recovered from the backorder, the component can
move back to the commercial warehouse.

Lease Stock from other Operators

The second transshipment option that the IAC uses is temporarily relocating the lease stock
from other operators. In case the IAC has no available components, and the repair combined
with returning to the customer takes too long, the planners can choose to ask another operator
that has a lease stock to make their components available. This intervention is only useful when
an operator has a lease stock near the operator with a malfunctioning component.

Quarantine Warehouse

Finally, the OPPs use the components in the quarantine warehouse for relocation. The quar-
antine warehouse stores components with an invalid license or that are not repaired but still
useful. The process of relocating components towards the quarantine warehouse is discussed
in Section 2.3.2. However, the process can also be the other way around. In case a backorder
occurs, the OPPs can decide to restore a component from the quarantine warehouse. With this,
the quarantine warehouse’s components are pulled into the CMA-pool again.

2.3.4 Interchangeable Parts

Some components are interchangeable with each other. Interchangeable components are com-
ponents that are, for practical purposes, identical (Curley, 2016). I.e., the components are
not one-on-one the same; the components are an older version of the part number, or the
configuration-settings are slightly different. The interchangeability can be a one-way or a two-
way interchangeability. The operator obtains an Illustrated Part Catalog (IPC) from the OEM.
Since part-numbers can change due to modifications, the IPC describes which part-numbers can
be installed into an airplane.

Page 14.

Furthermore, the IPC indicates the relationships between different part-numbers. When
two components have two-way interchangeability, it means that the operator can accept both
components for repair. For the IAC, it does not matter which component is on stock, making
it easy in inventory planning. However, in one-way interchangeability, there is a limitation in
which part-number can be installed. Because there is, e.g., a significant technical difference in
the product, whereby one-product is better than the other, the operator is restricted to use one
product. The one-way interchangeability gives the IAC complexity in inventory management
as well. The IAC can decide in this situation only to keep the high standard product on stock,
such that the availability remains high.

2.3.5 Prioritizing & Expediting

The repair loop can also benefit from performing an intervention. As soon as an alert arises for
a component currently in the repair shop, the component can be prioritized such it is ready the
same day. Besides prioritizing a repair, OPPs can ask the repair shop to expedite the repair.
Both alternatives occur regularly for internal repairs. External shops are usually not willing to
perform these interventions.

The location of the internal repair is of great importance here. Due to the difference be-
tween, e.g., Hoofddorp and LaGrange, alerts that arrive in Hoofddorp in the morning cannot
be processed immediately. Since OPPs have to wait until the shop opens in the morning in the
US, lots of time is lost.

2.3.6 Cannibalization

Cannibalization is a frequently used intervention with internal repairs. The IAC uses partial
components from the quarantine warehouse to repair an UU. This is a quick, circular, and cheap
possibility of restoring the malfunctioning components since the repair reuses parts without
procuring new parts. External shops are often not willing to perform this intervention for
economic reasons. External shops want to make money on the materials, and by performing the
cannibalization, this is restricted. Furthermore, this disturbs the repair process of the external
shop.

2.3.7 Expedited Shipment

In case an operator uses the Exchange or Lease Services, as described in Section 1.1.1, and no
stock is available, the OPPs can use an expedited shipment. With this intervention, a component
currently in the repair shop will be sent directly towards the customer instead of first going back
to the spare part pool. With this action, transportation and handling time can be reduced.

2.3.8 External Sourcing

As explained in Section 2.2, there are situations where corrective interventions are necessary.
With corrective interventions, a quick response is required. There are two emergency responses
that the OPPs use whereby a component from an external source is used.

Vendor Exchange

The first option is to perform a vendor exchange. With a vendor exchange, the CMA-program
leases a component from another vendor until the backorder is solved. This is an expensive
option since the IAC pays exchange fees for the lease and pays for a quick repair.

Page 15.

Procure New Components

Another expensive emergency solution is buying a new component. When a vendor exchange
has to be entered into several times a year for a particular component, it is cheaper to buy a
new component. However, when the new component is bought in a backorder situation, there is
not much time for negotiating for a fair price. The OPPs want to try to prevent this situation
from happening by updating the tactical planning regularly.

2.3.9 Combining Interventions

The OPPs indicate that several interventions are also combined during an alert’s processing.
This is done for numerous reasons. First, more interventions are used simultaneously to increase
the chances of success. Exploring the different options gives the highest chance of success of
the intervention. Furthermore, interventions can also be combined so that costs can be kept
as low as possible. For example, when a vendor exchange is used, the IAC has to pay high
exchange fees as long as the vendor exchange takes place. Therefore, the OPP will try to speed
up the repair (expediting). This combination aims to keep the costs of external sourcing as low
as possible and continue working with the IAC’s components. Another situation could be that
external sourcing of unserviceable units occurs such that cannibalization can occur.

2.4 Key Performance Indicators

During the decision-making regarding the interventions, the OPP take two important Key Per-
formance Indicators (KPI) into account. The KPIs concern the costs and Service Level Agree-
ments (SLA). Currently, the costs performance indicator does not include a direct threshold.
For the IAC’s purpose, we express the SLA in four different applications; customer, product,
transaction, or work-scope level. The SLAs are customized for each customer. For example, in
Forward Exchange contracts, the IAC serves the customer within 24 hours, and for transaction-
level, the due date is on a fixed TAT.

For the Service Levels for availability, the OPPs use a tactical planning tool. Within this
tool, optimal stock levels are determined following a Poisson distribution, such that the Item
Service Levels are higher than 93%. Since the stock levels are discrete values, the calculated
Service Levels are often close to 100%. The aim for the System Service Level is to keep it higher
than 96%, but since the Item Service Levels are close to 100%, System Service Level is also
close to 98%. To decrease the System Service Level, the IAC uses a greedy approach. The IAC
lowers the most expensive components’ inventory levels until the Item Service Levels of the most
expensive items are minimal 50%. This greedy approach is performed one item at a time until
the System Service Level is 96%.

The final SLA, concerning the work-scope, is related to the amount of work that needs to be
done. We can translate the SLAs to the transaction level, so to the due date, to fulfill customer
demands. The SLAs can be carried out from the contract or outside contract. Within the
contract, the SLA gives a requested due date from the customer. Outside contract, the IAC
uses the SLA as a promise date.

Since the IAC is a service provider, the main motive should be to achieve the agreed service
levels. In case of a maintenance program, this refers to throughput times, for availability pro-
grams to the availability of components. However, motives for both OPPs are different. The first
planning professional indicated that he looks at the lowest possible costs that keep the service
levels above the agreed thresholds in the decision-making process. In contrast, the other OPP
indicates that his decisions are motivated by availability-thought. His decision-making motive
is to deliver to the customer in time to prevent downtime, no matter at what cost.

Page 16.

To summarize, the aim of the CMA-program is to guarantee availability, reduce downtime
and predictable costs. To fulfill these aims, the OPPs take the KPIs costs and SLAs into account.
Needless to say, the costs of interventions should be as low as possible to make the predictable
costs more profitable for the IAC. The SLAs, in four different branches, are responsible for
reducing the downtime and guaranteeing the customer’s availability. The motive in the decision-
making process for both OPPs is, however, contradicting.

2.5 Decision-making

As described in the previous sections, there are several options in interventions for the given alert
situations. Considerations and motivations for decision-making, derived from the interview, are
explained in this section. Furthermore, the connection between the alerts and interventions is
reviewed to determine the challenges in this process.

2.5.1 Tacit Knowledge in Decision-Making

Although the interventions are related to the alert’s nature, there is no fixed decision pattern
for the OPPs. The motives of the OPPs in decision making is based on tacit knowledge. Many
decisions are made from a gut feeling to pursue the mentioned KPIs. However, there are reasons
and considerations for choosing a suitable intervention during an alert. The OPPs indicate that
the two most important moments when an alert can occur are; as soon as a product comes in
for repair and in the situation that there is no stock on-hand.

In both of the mentioned cases, the planners evaluate if the stock computed by the tactical
planning is still correct after an operational intervention is performed. The OPPs evaluate this
to determine whether tactical planning is incorrect or just a one-off case occurred. In case
tactical planning is incorrect, an action should follow. By proactively solving problems, the
OPPs try to prevent extreme measures.

No stock available

The first step that the OPPs take is to determine whether there is a component available in
another warehouse. Since the part is in possession, it is often the simplest solution to move
it from one location to another. Furthermore, because the OPPs indicate that the tactical
planning tool is leading, stocks calculated by the tool should be sufficient. Therefore, provide
the exchange rates a good insight per component whether the shortage occurs more often or if
it is a one-off situation. In the most unfortunate situation, a vendor exchange is often used as a
sourcing option for a particular component. If so, they will consider buying the part from other
suppliers.

Repair cost evaluation

In case of a repair, other considerations are taken into account for finding the best solution. As
soon as a part arrives at the repair shop, a repair quote could be provided first. This repair quote
is necessary because not all operators are explicit in composing the reason for removal. With
the new repair quote, the OPPs can see the expected repair costs for the specific component.
Moreover, the reason for removal is an essential indicator for the OPPs. Based on the repair
quote, the OPPs make a Make-or-Buy decision. Since there is also a third option, discard, an
explanation will be given of all three decision-options. An example supports each option.

Make As mentioned, the repair quote is considered before deciding whether to repair it
or not. From the ERP system, the average repair costs can be derived. The average costs from

Page 17.

the ERP system are compared with the expected costs from the repair quote. When the repair
quote is lower than the average costs, the component is always repaired. In case the expected
costs are higher than the average costs, the OPPs will sift through the repair quote to decide to
repair or not. Now, the buy and discard option are compared with restoring the component.

An example of the repair decision is for operators that fly in volcanic areas. Thence, these
operators usually have more often malfunctioning components. There are components that, for
example, operate on a scheduled maintenance interval of 10.000 flying hours. This means that
the component must be checked after the scheduled interval. However, due to the operator’s
use, it can also happen that the component no longer works properly after 4.000 flight hours.
For such components, OPPs should consider restoration of the component as described by the
component’s OEM.

Buy First, the repair option is determined. A new part can (almost) never be purchased
at repair costs. However, due to forces from the market, prices change. With the trading
department’s help, the OPPs can monitor how prices are behaving closely. In case the repair costs
are too high, the OPP can consider buying a new component from the market. Nevertheless,
the OPP should take inventory and holding costs into account while making the buy decision.

As well as in the stock out situation, the planners evaluate the exchange rates. According
to the OPP, 80% of the failures come from the same piece part in a component; the exchange
rates provide a good indicator of whether a component should be repaired or replaced. In case
the same part number repeatedly malfunctions, buying a new part might be a better decision
in the long-run.

Discard Finally, we discuss the discard option. In case there is a substitute component
available for the UU, which means there is a buy option or an overshoot in commercial or
quarantine warehouse, the OPP can decide to discard the UU. This is interesting to keep costs
low. In addition to the repair costs and the procurement price, book values must also be
considered while making this decision. Some components still have a very high book value,
which makes depreciating a worse option. For example, depreciating a component with a book
value of $500.000 is discarding that value.

2.5.2 Relationship Between Alerts and Interventions

Although the OPPs have certain routines to come up with an intervention, the direct consequence
from the alert and intervention is unknown. The decision-making is done based on a gut feeling
and experience. However, the OPPs indicate that this feeling and experience can be passed on
to others. Since the possible interventions are dependent on the alert’s nature, there should be
a consequence of the intervention that can be operationalized. This can be defined as a hidden
layer in the decision-making process.

To clarify the hidden layer of the decision-making process, a schematic representation is given
in Figure 2.3. For this example, we work with two different alert scenarios, denoted as scenario
one and scenario two. Furthermore, we work with five different possible interventions for the
alerts, denoted as a, b, c, d, e. As visualized in the figure, for each alert scenario, their effective
interventions are given. However, interventions can also be effective for multiple purposes. Given
an alert and an intervention, there is a motivation or consequence, which should support the
decision-making. Currently, this motivation is located in the gray area, whereby the motivation
should be driven by the financial and service levels KPIs. This motivation is carried by the
experience and the implicit knowledge or expertise of the OPPs.

Page 18.

Figure 2.3: Motivation for decision-making

2.6 Aggregate System Performance

In this section, we will discuss the current performance of the decision-making of the IAC. This
includes the quality of decisions, the current impact of the decisions on the long-term, and
finally, the decision-making’s potential performance based on the earlier mentioned KPIs.

2.6.1 KPI Output Measures

As mentioned in the previous section, the intervention’s output depends on the implicit knowl-
edge of the OPP, the hidden layer. Given the KPIs that the IAC uses, availability and costs,
the decision should be based on these two points. Nevertheless, the quality is difficult to de-
termine for the Operational Planning Professional (OPP). Although the quality is difficult to
make measurable, both OPPs state that they make the best, and therefore right, decisions in
their conscience.

Since the IAC is a service provider, the main focus should be on servicing the customer on
the same day. This variable is relatively easy to measure for the OPPs. The OPPs have access
to the current service levels, making it possible to predict the expected duration of interventions
decently. Furthermore, if a company aims for a service level of 100%, the stock levels are
enormous.

These high stock levels cannot be justified financially. Therefore, interventions should be
taken with care to ensure sound financial decisions. As mentioned earlier, multiple different
financial aspects (e.g., book value, market price, and repair costs) are considered during the
decision-making process. Nevertheless, a decision’s financial quality is currently difficult to
determine for the OPPs. For example, the quality of a make-or-buy decision, as discussed in
Section 2.5.1, is estimated with the expected repair quote. The actual quality of the decision
can be determined from the end quote. The planners state that these end quotes are not used
very often since these are available a long time after. Nevertheless, the end quote indicates the
performance and can be taken into account during the next decisions as feedback.

Because decision-making is challenging to determine currently, it is also challenging to com-
pare the different interventions. This benefits in finding the optimal solution in intervening. In
this case, the optimal solution providing high service levels towards the customer, subject to the
financial impact caused by the intervention, is minimal.

Page 19.

2.6.2 Impact of Decision-making and KPIs on System Level

The decision concerning the intervention has consequences in both the short- and long-term,
applying to both availability and costs. The OPPs indicate in the interview that all moving
parts in the CMA-loop are taken into account while making a decision. The thought behind
this is to ensure availability for all components regardless of the decision that is made now.
While determining the availability of components, it is already difficult to predict the long-term
impact. However, for the costs, it is even a more significant challenge. Because what seems to
be, financially, the best decision now can be a wrong decision in the long-term. For example, in
a scenario where the OPPs have to decide to repair a landing gear or a heat exchanger, given a
limited budget. Assuming the heat exchanger’s repair in this situation is four times as expensive
as the landing gear, repairing the landing gear is the cheaper option in the short-term. However,
if the landing gear’s demand rate is only once a year, and the heat exchanger has a demand rate
of once a month, repairing the landing gear is not the best option. Given the consideration of
the long-term availability, the financial considerations should support the decision. Combining
these two factors leads to the optimal solution.

2.6.3 Performance Visualized

The CMA-program started in 1995 and has grown a lot since. In Figure 2.4 we visualized
the Turnaround Time performance and the direct backorders over the past 13 years. From
Figure 2.4a we conclude that the number of performance exchanges in the past 13 years compared
to the total number of exchanges increased a lot. The percentage of performance exchanges is
currently around 40%, which indicates that in almost 40% of the time, the repair shops cannot
meet the agreed TAT. The IAC must react to this by returning components from the spare part
pool to the customer.

Besides the performance exchange, Figure 2.4b shows us the percentage of orders that is
arrived late at the customer. The OPPs indicate that the IAC considers an order delivered
when the component leaves the spare part pool or the repair shop. Therefore, each late delivery
situation is considered as a backorder. In the figure, it can be seen that the performance increased
a lot. Nevertheless, the performance of orders delivered late over the past 13 years lies around
35%.

(a) (b)

Figure 2.4: The percentage of exchanges (a) and orders arriving late (b) over the past 13 years

Page 20.

2.6.4 Potential Performance

The potential performance of the decision-making was discussed as well during the interview.
This part of the questionnaire includes the use of computer models or algorithms. The OPPs
indicate in the interview that, despite decisions being made well in their conscience, the use
of a decision support system can be helpful. Some decisions are more complicated to make.
Therefore, the OPP puts the problem temporarily aside to think about it for a while. A computer
model can help in making a faster and substantiated decision. However, both OPPs indicate
that they cannot accurately imagine how artificial intelligence can include all learning process
exceptions. Therefore learning from external feedback is essential to include in an algorithm for
this purpose. As the system shows that it can make logical decisions and shows potential in the
learning process, confidence grows likewise.

2.7 Content of Data

For the Proof of Concept, the IAC provided an MS Excel overview of the data, which contains
560 different part numbers. We know the annual removal rates, transaction data, turnover rates,
and market value data for each of these components. This section briefly explains the data’s
content and how the data set is useful for our problem instance.

2.7.1 Key Findings in Data

The datasheets contain all information from 2006 until 2020. Nevertheless, we will only use
the data of all components until 2019. We do this for two reasons; we cut off at the end of
2019 such we can plan within a "known" model, and due to COVID-19, the year 2020 is not
entirely representative for learning and testing purposes. Within the Proof of Concept we start
with a single item approach. For the sake of confidentiality and simplicity, we will refer to
this component from now on as PN1. Next, costs, demand and turnover rates, and repair
probabilities are explained.

Acquisition Costs

The first data that we will discuss is the market values. Here, prices of the components are given,
based on the current state. I.e., for each component, prices are given for a, e.g., serviceable,
overhaul, and new condition. Additional to the state differentiation in price, there is also a price
differentiation. For each given state of the component, the fair market value (Fmv), highest
price in the last quarter (HighFmv), lowest price last quarter (LowFmv), maximum price all-
time (Max), minimum price all-time (Min), and the average payed price (Mean) are given. These
prices are based on different price points in the past.

For PN1 we find two conditions on the market, namely serviceable and overhaul components.
The costs for the serviceable components are slightly cheaper than the costs of the overhaul
components. The difference is approximately 10% on the fair market value. The algorithm in
Appendix E.1 gives the code for filling the cost table. From this cost table, the program can
randomly pick an available price. Prices for PN1 are denoted in Table 2.1.

Table 2.1: Price information for component PN1 ($)

Condition Fmv HighFmv LowFmv Max Mean Min Recent Date
Serviceable This information is removed from the public
Overhaul version of this Master’s thesis

Page 21.

Intervention Costs

Earlier in this chapter, we discussed multiple different interventions. In our Proof of Concept
we will only use three of these interventions: do nothing, expedite, and external sourcing. Recall
that all interventions can be combined. For the first intervention, do nothing, costs are zero since
we follow the regular replenishment cycle and nothing changes in the regular transhipments.

The costs of expediting repairs bring some uncertainty. The uncertainty of costs is because
not every time an OPP expedites a repair, there are costs. It is easy for the repair shop to
prioritize a repair in some cases without making extra costs. However, on the other side, it is
also possible that overtime is necessary for finishing a repair (man-hour costs). To realistically
simulate the uncertainty in expedite costs, we will randomly select an expedite fee in the interval
[0, XXX]. The upper bound for this interval is given by the IAC. Maximum costs $XXX is
assumable because it is three times the fixed man-hour cost.

Third, we will discuss the costs of external sourcing or buying components from other ven-
dors. Based on the prices, given in Table 2.1, we determine the external sourcing costs. Because
of market fluctuation, prices can be anywhere in the given range. Therefore, we will randomly
sample from the given prices of the conditions serviceable and overhaul. Although other con-
ditions are possible, the price of a new component usually is so high that it is not interesting.
Furthermore, the market for used components is getting saturated. Therefore, we assume there
always is a secondhand component available.

Repair Probability
In the data set, we find the repair shop turnaround time in days. The data is presented as
discrete points in time because the IAC is only interested in the returning day. For the model
to determine how many components will return during a day, we will first have to define the
probability function of the repairs’ lead time. During the lead time of the repairs, the probability
of finishing a repair on a particular day increases each day. We can determine the probability
of a repair returning within the interval until that day from the calculated distribution.

To predict the repair TAT’s behavior, we fit a probability distribution over the repair TATs.
In this way, it is possible to predict the return date of the repair shop’s component. Statistical
analysis is performed on the available repair shop turnaround times to determine the correct
probability distribution. The summary statistics are given in the table included in the histogram.
Figure 2.5 represents the distribution of the return turnaround times. The corrupt data, caused
by administrative errors, are given in the data set with repair TAT of -1 or 0, although a repair
TAT of 0 is possible. However, because the likelihood of a repair TAT of 0 days is minimal, we
excluded this from the observed data. Note that the figure only visualizes the frequency until
100 days. In Appendix B the full histogram is given.

Based on a probability plot analysis and a goodness-of-fit test for a Normal- and Lognormal
distribution, we conclude that the repair turnaround times follow a Lognormal distribution.
All steps of the statistical analysis are presented in Appendix B. Additionally, the Python
pseudo-code, corresponding to the preprocessing of the repair data, is presented in Appendix
E.3.

Now that the repairs’ probability function is established, we can calculate the probabilities of
repairs returning. As found so far, the cumulative Lognormal distribution gives us the probability
that the component returns on the current day, or earlier: P(X ≤ t). To define the probability
that a repair will return on a day given that the component did not return yet, we use the
conditional probability, where:

• R1, R2, R3: The component returns before (1), during (2) or after (3) day t,
• Q1, Q2, Q3: The period before (1), during (2) or after (3) day t is known.

Page 22.

Figure 2.5: Histogram of return turnaround times in days, cut off at 100 days

Based on Bayes’ theorem we can determine the probability that the component returns
during day t (R2), given the fact we know the component did not return inQ1. The mathematical
expression is given in Equation 2.1.

P(R2|Q1) = P(Q1|R2)P(R2)
P(Q1|R1)P(R1) + P(Q1|R2)P(R2) + P(Q1|R3)P(R3) (2.1)

Besides the already explained regular return of repairs, we can also express the expedited
return of repairs. Because there is no direct data available on the probabilities of expediting a
repair’s success rate, we approximate the probability of success as the union of events A (regular
return) and B (expedited return) with equal probabilities:

P(A ∪B) = P(A) + P(B)− P(A ∩B)

Determining the Inventory Position

With the data set, we define the base stock level, from now on referred to as tactical level.
As mentioned in Section 2.4, we determine the tactical levels following a Poisson distribution
such that the service level is approximately 95%. Next, we use the inverse Poisson function to
calculate the corresponding level, with the average demand during the lead time λ = DrD∗TAT .
The elaboration of the Python code is presented in Appendix E.3. Since the Poisson distribution
is a discrete distribution, the returned level is rounded down to give the system a more realistic
and more challenging scenario. With parameters p = 0.95 and λ = 0.054 ∗ 22, we find a tactical
level of two components.

Demand and Turnover Rates

We need a discrete distribution for the demand data, with non-negative IID random variables.
Therefore, we use the Poisson distribution. The Poisson distribution is characterized as a distri-
bution that is applicable for determining the number of events that occur in an interval of time

Page 23.

when the events occur, or several items demanded from an inventory at a constant rate, λ (Law,
2015). From the available data set, we calculate the average annual demand λyear = 20.429.
From this, we conclude that the daily demand rate λday = 0.056. We can predict the demand
probabilities upfront by determining the demand during the lead time L. The probability equa-
tion applied gives for the first day (L = 1) a probability of 0.9456 that no demand (x = 0)
occurs, and a probability of 0.212 that there have been precisely a demand of one (x = 1) within
five days (L = 5).

Comparable with the demand rate, the turnover data is given for all years from 2006 until
2019. Over this period, we calculate the average turnovers per year. We can calculate an average
turnover of 19.357 per year. In other words, the part number moves on average 19.357 times
per year. To define the turnover rate per year for one component, we divide the total turnovers
by the total inventory position. Finally, to calculate the expected period before a movement
occurs, we divide one by the turnover for one component. In this way, the rate is expressed in
years.

In our case, the average turnovers that occur during a year is 19.357. In the previous section,
we calculated the inventory position to be three components. Therefore, we can say that each
component moves on average 6.452 times per year. The expected turnover rate for component
PN1 is approximately 0.155 year. Contrary to the demand rate, the turnover rate is a constant
that can be used directly without input for a probability distribution. The pseudo-code of the
turnover rate and demand rate are given in Appendix E.2 and E.3, respectively.

2.7.2 In Summary

The data provided by the company consists of acquisition, demand, transaction, and turnover
data. This data is used to implement the model, code provided in Appendix E. First, the
acquisition data consists of a table with different costs in different conditions. The Fair Market
Value (Fmv) gives a good representation of the current market value. Therefore, we calculate
the average Fmv to define the acquisition costs for penalties.

Second, the intervention costs can be expressed for all three interventions. The do nothing
intervention gives us no extra costs, the expediting intervention gives us a cost within the interval
[0, 450], and external sourcing gives us a price randomly selected from Table 2.1.

Next, to determine the probabilities of a repair returning to the inventory pool, we fitted
a distribution on the repair turnaround times first. Based on a Kolmogorov-Smirnov Test,
we conclude not to reject the null hypothesis, assuming that the repair probabilities follow
a Lognormal distribution. With the given distribution and Bayes’ theorem, we calculate the
probability of a repair returning at a given day.

Fourth, we calculate the tactical level. The tactical inventory level is determined by cal-
culating the inverse Poisson distribution with parameters p = 0.95 and λ = 0.054 ∗ 22. This
returns a value of 2 components.

Finally, we discussed the demand and turnover rates. We conclude that the demand follows a
Poisson distribution with λday = 0.054. By integrating the lead time in the probability function,
we can predict the demand during the planning period. The turnover data gives the average
number of movements during a year for all components combined. By dividing all components’
movements by the number of components, we calculate the average movements per component
per year. From this, we derive a turnover rate of 0.155 year.

Page 24.

2.8 Conclusion
This chapter describes the supply chain network, the current working method, and the planning
methods, based on the interviews with the Operational Planning Professionals (OPP). Finally,
the content of the IAC’s data is presented.

Current Situation The CMA-programs work in a multi-echelon supply chain network. In
this network, the actions of the OPPs originate by the alert generation. An alert is generated
when the system expects that interference of the OPPs is necessary to prevent backorders soon.
This can be be both proactive or reactive. There are multiple different scenarios for which an
alert occurs. Besides the alerts, the OPPs receive a priority list given by a business ruling.
Based on the alerts, the OPP decides which intervention suits best for the given alert. To
determine the best option, both OPPs indicate that they use gut feeling or experience in making
decisions. There are no tools, instruments, or methods included in making the best possible
decision. Therefore, we can conclude that the motivation for decision-making thrives on implicit
knowledge.

Tacit Knowledge The reason why the OPPs are making decisions without any tools, instru-
ments, or methods is because currently there are no supporting models that support operational
decisions while taking the long-run (tactical planning) into account for both financial and service
level agreement field. These two indicators are representative of the performance of the CMA-
program. Contradicting is that the OPPs both prioritize another KPI as motivation. Besides
the difficulty in making decisions for the OPPs, it is also complicated to measure the programs’
current performance without a supporting model. Therefore, the IAC benefits a lot from a deci-
sion support system, which connects the short-term decisions on the system level. Furthermore,
the OPPs indicate that a planning and learning algorithm, such as reinforcement learning, can
contribute to this process as long as it includes feedback from the outside and shows learning
potential.

Content of Data From the data set provided by the IAC, we obtain the different values for
the acquisition, intervention, and penalty costs, the repair probabilities, the stock levels, and
the demand and turnover rates. The Python-code, corresponding to importing the MS Excel
file data, is presented in Appendix E.

3 | Literature Review

In this chapter, we provide an answer to the second and third sub-question. First, we will briefly
describe the structure and different interventions within a service control tower (Section 3.1).
Subsequently, we compare the IAC’s current interventions with the literature to determine pos-
sible additions (Section 3.2). Next, we review different decision support systems from literature
to support our decision for reinforcement learning. Additionally, we will review the challenges
and possibilities of planning and learning within our scope (Section 3.3). To better understand
the positioning, concept, and elaboration of reinforcement learning, we give a clear review within
the next section (Section 3.4). Finally, we will present different solving methods applicable to
our problem statement supported by literature (Section 3.5).

3.1 Service Control Tower
The current economy pushes companies towards excellence, where strong supply chains are vital.
This excellence implies aiming for balance, increasing demand visibility, and isolated high costs.
To create real-time visibility, companies use the Supply Chain Control Tower (Blanchard, 2011).
The supply chain control tower is a central hub that monitors, manages, and controls supply
chain data to advise for taking action or making an intervention. It uses real-time data, which
supports short- and long-term decision-making. Besides, they provide real-time visibility and
collaborative information sharing. These control towers’ capabilities provide the opportunity to
closely monitor all service developments of the supply chain (Accenture, 2015; Deloitte, 2019).
It is a system that executes corrective and preventive action in real-time, taking the resource,
contention, and deviation constraints into account (Trzuskawska-Grzesińska, 2017). Because of
the service purposes, it is also called a Service Control Tower (SCT).

Creating visibility into the supply chain can create a competitive advantage. However, there
are also multiple challenges in the design, development, and implementation phase of the SCTs
(Yan, Tan, Koh, Tan, & Zhang, 2012). Companies use the SCT as a potential source of revenue.
Integrating the entire supply chain into the SCT helps live up to the standards (Trzuskawska-
Grzesińska, 2017).

3.1.1 Layers of Service Control Tower

The SCT consists of five different layers (Shou-Wen, Ying, & Yang-Hua, 2013). These layers
build up the control tower, bottom-up:

• Supply chain business layer: This layer is located at the bottom of the SCT. It includes,
e.g., the manufacturers and service providers and is mainly focusing on transportation,
warehousing, and information services.

• Information perception layer: The second layer uses real-time data sensing to collect
the information in the control tower. This sensing comes from three groups; Application,
Internet, and Perception.

25

Page 26.

• Information operation control layer: This layer can be divided into two layers; the
Information storage, and the Information control. This layer contains real-time informa-
tion about the supply chain. “It is an information pool to make all information collected
together.”. These two parts together have the core control function of the SCT.

• Information service platform layer: This is the layer that dynamically stores and
updates all information about the visualization and quality. Furthermore, it can be used
for real-time monitoring and support. Hence, this layer can be divided into an application-,
service-, and environment layer.

• Information manpower layer: Finally, the top layer of the SCTs. This is also called
the decision-making center. This part is monitoring the quality of supply-chain products.
This can provide management control to three different levels; strategic, tactical, and
operational.

The scope of this research will focus mainly on operational decision-making. From Shou-
Wen et al. (2013) and Blanchard (2011) can be concluded that operational decision-management
focuses on transportation management, inventory tracking and exception management on a
day-to-day basis. In other literature can be found that the operational level decisions occur
on item-level. Operational decisions influence short-term performance, are based on real-time
information from the SCT, and cannot influence the strategic and tactical decisions in short-term
(Topan et al., 2020). Following Zijm (2000) the operational decisions in material coordination
are focused on the purchase and procurement management in a company, while the tactical
decisions focus on the inventory management and materials planning.

3.2 Interventions on Operational Level
As mentioned, the SCT provides alerts for intervening in the supply chain. These alerts are tar-
geting both tactical- and operational-decisions. The operational interventions influence all three
levels of management control. On the operational level, this includes transportation, inventory
tracking, and exception management (van Doesburg, 2011). In this section, we will define the
operational interventions given by the literature. We compare the reviewed interventions with
the interventions in use by the IAC to find possible additions.

3.2.1 Comparison of Interventions
Topan et al. (2020) did an extensive research on the interventions, also called event management,
within spare parts. Since no other interventions were found in the literature, we assume these
interventions to be the most important set. The paper mentions that we can categorize the
interventions into five groups. These five different interventions can be categorized into two
classes; reactive and proactive interventions. The reactive interventions are there to speed up
the recovery of a failed system. The proactive interventions take place to reduce downtime
risk. The different groups following Topan et al. (2020) are Stock Reallocation, Expediting,
Cannibalization, Dynamic capacity allocation and lot sizing, and Joint ordering. The mentioned
five groups of interventions consist of specific aspects or situations for the group. We treat each of
these groups individually to compare the literature with the interventions of the IAC. Section 2.3
describes the motives for carrying out an intervention.

Stock Reallocation

First, we review the intervention stock reallocation. This intervention can be used for balancing
stock over different echelons or for backorder clearing. The paper distinguishes four different
aspects of stock reallocation; After-repair, Reallocation of returned components, Dynamic inven-
tory rationing, and Reallocation of parts reserved for preventive maintenance.

Page 27.

The after-repair reallocation is the main activity of the IAC. When a component is repaired,
it will subsequently go towards the spare part pool such that the IAC can fulfill demand. The
dynamic inventory rationing is described as the Make-or-Buy decision, described in Section 2.3.2.
The OPP can choose to repair the component directly or store the component in the commercial-
or quarantine warehouse. This intervention happens at the end of the CMA-cycle. Finally, there
is the reallocation of preventive maintenance components. With this intervention, commercial-
and quarantine warehouse are used again for components. However, in this case, the intervention
at the start of the CMA-cycle.

Within the group stock reallocation is the intervention reallocation of returned components
not discussed yet, and therefore not used by the IAC. Additionally, this intervention is not
relevant since the parts in the CMA-program will only return if the component is malfunction-
ing. Therefore, there is no use in further investigating the possibilities for these interventions
for the company’s use. However, reallocating of returned serviceable components is a critical
intervention for the IAC.

Expediting

The second intervention group is expediting. We define this group as a time-shortening inter-
vention, which can be used in two different scenarios; in case the order has not been started
yet, or when the order has been started. In case the order has not been started yet, the plan-
ning professional has several options. The planning professional can use emergency shipments
(faster transportation mode to resupply local warehouses), lateral transshipments (using ware-
houses from the same echelon), increased capacity (e.g., outsourcing or using overtime), or
non-preemptive prioritizing in repairs.

For the case that the order has already been started, the planning professional can undertake
the following interventions; rerouting, expediting a delivery in the pipeline, preemptive priority
prioritizing repairs (e.g., changing sequence of repair jobs), or expediting a new buy.

For the group expediting, many different interventions are possible for the IAC. First of all,
emergency shipment is an option. The shipments from the lease stock from other operations
are used as emergency shipments by the IAC. Another option for emergency shipments is the
vendor exchange. This exchange represents a form of temporary external sourcing. For this
intervention, the IAC uses other vendors temporarily for solving a backorder on short notice.
The IAC uses the leasing concept, such as the CMA-program, for its own purposes.

Following the literature, an inventory pooling can be seen as a method of utilizing economics
of scale (Kilpi & Vepsäläinen, 2004). Furthermore, the paper recommends that even big airlines
should include an inventory pooling (make-or-buy) decision. Although it brings extra costs for
leasing components, lower inventory levels are needed. Nevertheless, a vendor-exchange is a
combination of economic and relational interactions, where trust is the core source for a fair
price and treatment (Zahedi, Bansal, & Ische, 2010).

Besides the emergency shipments, lateral transshipments are used as well. The lateral trans-
shipments are also discussed in Figure 2.1. Further, the IAC uses prioritizing and expediting
for preemptive and non-preemptive prioritizing and increased capacity events. Finally, expedit-
ing deliveries and expediting new buys are used, mentioned as expedited shipping and external
sourcing, respectively.

The IAC’s option rerouting is not used since the company has a delivery guarantee of 24
hours most of the time. Within 24 hours, there is almost always a possibility to ship a component
from Schiphol towards the operator. Furthermore, there are no separate routes for the operators.
This intervention is, therefore, not interesting for the IAC’s purposes.

Page 28.

Cannibalization

In case immediate replenishments are not available, cannibalization can be a helpful interven-
tion. The IAC uses this intervention in case a component is in repair. To make the component
serviceable again, the repair shop uses a piece-part from another component. The other com-
ponent is not non-operating and may be unserviceable on other piece-parts. The number of
possible policies is large, and therefore challenging to make a decision (Khalifa, Hottenstein, &
Aggarwal, 1977). This intervention is a very often used action. As described in Section 2.3.6,
cannibalization is a quick, circular, and cheap option for restoring the component.

Dynamic Capacity Allocation and Lot Sizing

This intervention determines the number of components reactively being repaired when there is
finite repair capacity or proactively in a flexible capacity. The OPP dynamically allocates short-
term constrained capacity to multiple product classes in multiple periods (Barut & Sridharan,
2005). The IAC uses the repair capacity allocation in Make-or-Buy decisions. However, the IAC
does not use lot sizing as an intervention.

Joint Ordering

With the joint ordering intervention, the planning professional can decide to save transportation
costs and order multiple components simultaneously. This intervention is performed, sometimes,
by the IAC. Since the tactical planning model determines the desired stock levels in advance,
the planning professionals can use a joint ordering for lowering the costs of procurement. In
the case of a direct backorder, there is not enough time to negotiate about a fair price or a
combination of components. For this situation, we cannot use this intervention.

Do Nothing

The final option, also supported by literature, is by not taking an intervention. In case a part is
less critical, or a regular replenishment is expected to arrive soon, it might be interesting to do
nothing. In the case of the IAC, it is also dependent on the customer, whether this is a viable
option.

Lacking Intervention

Within the current section, we reviewed both literature’s and the IAC’s interventions. Based on
our knowledge from Section 2.3, we conclude that the reviewed literature does not cover inter-
vention Interchangeable Components. However, since interchangeability is strictly a preventive
action, we can formulate this action as an inventory policy. In Appendix C.1, we discuss this
intervention and the use in more depth. We recommend further research on this intervention.

3.3 Decision Processes

In this section is the gap in the literature discussed concerning the relationship between op-
erational and tactical decision-making. Furthermore, we describe the potential of artificial in-
telligence, additionally with the lack of available research knowledge of artificial intelligence in
operational decisions.

3.3.1 Relation Between Operational and Tactical Decisions

The literature provides multiple studies concerning operational planning, given the tactical
planning or vice versa. However, the relationship or communication between operational and

Page 29.

tactical planning has not been reviewed earlier for decision-making in spare part management.
Several articles (such as Stadtler (2009) and Hu, Boylan, Chen, and Labib (2018)) provide a
framework of the relationship of operational and tactical decision-making. Nevertheless, these
articles describe the planning in practice and not the integration, as mentioned in (Topan et
al., 2020). Additionally, the article of Topan et al. (2020) mentions that the literature on spare
parts planning is scarce in integrating operational and tactical planning. Therefore, we can
conclude that there is a gap in the literature concerning this topic. The unknown relationship
between operational and tactical planning causes a boundary for the planning professionals since
decisions in one level can have implications in another level (Tuner, 2003). We referred to that
boundary earlier as the black box. Integrating operational and tactical planning can help clarify
the relationship and communication.

3.3.2 Defining the Potential of Artificial Intelligence

Each of the earlier mentioned interventions functions as a decision for the incoming alerts since
a decision is a commitment to action (Boddy & Paton, 2011). The decision process is a way
to decide given a set of possible actions (Murtaugh & Gladwin, 1980; Boddy & Paton, 2011).
These decisions are often made under uncertainty. Here, the level of uncertainty correlates with
the difficulty of decision-making (Ra, 1991). The decision process on the operational level is
highly dynamic and must quickly adapt to changes (Mätäsniemi, 2008).

At the different decision stages, each decision should be made to satisfy the given constraints
(Rossi, 2013). The constraints can be random (stochastic), or properties are well known (de-
terministic). Since the researched process is random, we will dive into the stochastic decision
processes. The stochastic decision process can also be seen as a two-goal optimization problem.
This optimization problem is related to both the expected performance, as risk management
(Jokinen, Konkarikoski, Pulkkinen, & Ritala, 2009). Furthermore, Jokinen et al. (2009) con-
clude that the Operational Decision Support System (DSS) must be developed to match the
structure of a stochastic decision problem. A developed DSS creates competitive advantage and
understanding in the connection between information and decisions (Cooper & Schindler, 2011).

Boddy and Paton (2011) add that there are four types of decision making-models: rational
models; administrative, incremental, and intuitional models; political models; and garbage-can
models. Our research will include rational models. We base these models on economic motiva-
tions, aim for preset goals, and is rational and logical in assigning values and setting preferences.
An automated decision-making tool supports rational decision-making using artificial intelligence
or decision support systems. These models are applicable when aiming to optimize yield or for
operational control (Davenport & Harris, 2005).

In the past couple of years, multiple new decision support systems have been developed. More
often, systems with an interactive function are available, making it easier for the operational
planner to make decisions (Nadj, Maedche, & Schieder, 2020). We compare different literature
studies to substantiate our decision for the use of artificial intelligence. In Table 3.1, the methods
and key findings are listed.

Page 30.

Table 3.1: Comparison of different decision-making methods following the literature

Used Method Type of Problem Key Findings
1 Mixed-Integer

Linear Programming
(MILP)
Amaro and
Barbosa-Póvoa
(2009)

The research includes a multi-
period planning model for sup-
ply chain operational decisions
on supply, production, trans-
portation, and distribution at
the actual period. Further-
more, the model considers the
uncertainty on products’ de-
mand and prices.

The case study’s conclusion
was promising, but as stated
in the article: improvements
should be further explored.
Due to the complex nature of
the models, the performance
level needs a revision. This in-
cludes a comprehensive study
on, e.g., price uncertainty and
longer horizons.

2 Optimal Control
and Stochastic
Programming
Cheng et al. (2004)

A capacity planning and
production-inventory control
approach, to compare two
different approaches of com-
putation perspective. The
authors compare scenario-
based stochastic programming
and simulation-based opti-
mization. Both models handle
a class of problem as a multi-
objective decision process
under uncertainty.

A simulation-based approach
is the most efficient solving
method, although the stochas-
tic programming solutions were
slightly better. The simula-
tion can be used especially well
for multiple scenario problems.
Large solution spaces may take
much computational power and
takes much time.

3 Simulation-based
optimization
H. Ding et al. (2008)

The authors use a simulation-
based multi-objective optimiza-
tion approach. They take a
random demand for the so-
lution model, different cus-
tomer behavior, different prod-
uct prices, and different trans-
portation links into account.
The model processes the men-
tioned scenarios as discrete-
events.

The simulation model used
(MOGA) seems to be an exten-
sion of the current optimization
approaches. However, with this
method, optimality cannot be
guaranteed. The current re-
search only highlighted a sim-
plified model. For a large scale
model, no further information
is available.

4 Discrete-time
Markov Decision
Process (MDP)
García-Alvarado et
al. (2015)

As far as known, the study
was one of the first inven-
tory system taking recovery
and environment into consid-
eration with a finite-horizon.
The problem is formulated as
a stochastic dynamic problem,
with the carbon management
decisions that are necessary at
each time interval. Further-
more, to solve the MDP, dy-
namic programming is used.

The numerical example shows
that the model leads to a sig-
nificant reduction in carbon
footprints, based on the mod-
els’ decisions. Besides, the
model can meet demand, min-
imize costs, and comply with
environmental policies. How-
ever, with dynamic program-
ming, only small instances can
be solved; therefore, a genetic
algorithm is provided.

Continued on next page

Page 31.

Table 3.1 – continued from previous page
Used Method Type of Problem Key Findings
5 Random Access

Refinement
Horsch and Poole
(2013)

The policy is focused on
decision-making under un-
certainty because of all the
different types of multi-stage
influence diagrams. This
method uses a random access
ordering, while dynamic pro-
gramming uses a sequential
method.

The model works well for multi-
stage decision problems. The
decision making copes well with
uncertainty. Moreover, the
authors conclude that the re-
finement approach is closely
related to Machine Learning
(ML) besides a greedy ap-
proach or Q-learning.

6 Mixed-Integer
Linear Programming
(MILP)
Do Prado and Qiao
(2019)

Here, we review short-term
decision-making for short-term
demand response. The math-
ematical model tends to max-
imize profit over time, over
different scenarios. In total
576 different scenarios are com-
puted, and with the objec-
tive function, the weighted sum
over the profit is calculated.

The model show results for
short-term decision-making.
Results increased compared
with the initial situation.
Although only applicable for
the short-term.

7 Mixed-Integer
Linear Programming
(MILP) embedded
in a dynamic
procedure
Galasso et al. (2008)

The dynamic planning process
supports short-term planning
processes. Therefore, the de-
cision space is defined as a
MILP, allowing simulating par-
ticular uncertainty and risk as-
sessment.

The model can give managers
opportunities to visualize cus-
tomers’ behavior and support-
ing decision-making. Neverthe-
less, this model needs to be ex-
tended for implementing mul-
tiple risk assessments, such as
demand probabilities and other
statistical data.

8 Mixed-Integer
Linear Programming
(MILP)
Elmaraghy and
Majety (2008)

The authors use an integra-
tion of the model for purchas-
ing, manufacturing, and logis-
tics. Here, a mixed-integer
multi-criteria model can sup-
port operational decisions.

The model does not incorpo-
rate stochasticity in the param-
eter settings. Although all sce-
narios can be made company-
specific, forecasting, and fast-
moving trends are hard to in-
corporate in MILP models.

9 Reinforcement
Learning (RL)
Nanduri and
Kazemzadeh (2012)

The article discusses a model
that measures the economic im-
pact and makes operational de-
cisions supported by the im-
pact.

The RL as proposed shows
great potential following the
authors; however, the comput-
ing time for the given exper-
iments is still relatively high.
Hence, further research on
model optimization should be
done. Besides, continuous-time
modeling is proposed for fur-
ther investigation.

Continued on next page

Page 32.

Table 3.1 – continued from previous page
Used Method Type of Problem Key Findings
10 Deep Reinforcement

Learning (DRL)
Vanvuchelen et al.
(2020)

Deep Reinforcement Learning
is used to show the applicabil-
ity on an SCT, while compared
to two other heuristics. It is
applied to an inventory prob-
lem with a trucker. Proximal
Policy Optimization is used to
solve the problem.

Standard heuristics as periodic
review minimum order quan-
tity and dynamic order-up-to
heuristics are outperformed by
the RL algorithm. Further-
more, the article concludes that
smart learning algorithms are
highly promising for Control
Tower settings.

11 Machine Learning
with statistical
implementation1

Dargam et al. (2020)

The problem includes a water
demand problem. The opera-
tional decisions concern the de-
salination of plants.

The used model is very ap-
plicable in realistic situations.
The accuracy of the operational
decisions increased a lot since
working with the model. Be-
sides, risk mitigation and sys-
tem performance increased.

12 Reinforcement
Learning (RL)
Mes and van
Heeswijk (2020)

Addresses a case study where a
logistics service provider is sim-
ulated in a serious game where
human- and automated plan-
ning decisions are compared.
The decision-making concerns
day-to-day decisions of contain-
ers that need to be assigned to
barges, trucks, and trains.

The RL method outperforms
students and heuristics. How-
ever, logistic professionals come
very close to the RL per-
formance. Both human ex-
pertise as algorithmic develop-
ments is necessary for contin-
uously improving the decision-
making following.

The table shows that over the years, several support systems have been reviewed that re-
late to decision-making. However, studies related to SCTs are limited. Algorithms, such as
reinforcement learning, can provide insight for logistic networks, thereby creating a foundation
for more collaborative shipping in a Physical Internet with relatively little computational power
(Vanvuchelen et al., 2020; Cheng et al., 2004). Due to limited available sources, this research
has further oriented itself in addition to DSSs in service control towers. From Table 3.1, we
conclude that the literature uses several methods in solving such a problem, whereby various
authors, such as Nanduri and Kazemzadeh (2012), refer to the application and the great po-
tential of reinforcement learning in decision-making. Moreover, in a MILP model, as described
by, e.g., Elmaraghy and Majety (2008) and Amaro and Barbosa-Póvoa (2009), it is hard to
incorporate a longer planning horizon and uncertainty in the models. Although Galasso et al.
(2008) created a model that can incorporate uncertainty, the model still requires data such as
scenario probabilities, which are hard to determine.

In summary, an automated decision-making approach, such as an AI algorithm, is a powerful
tool for optimizing yield and creating operational control. Since a decision is a commitment to
action, we want to determine the best way to commit to an intervention. The optimized decision-
making model helps us in committing to actions. Table 3.1 compares different decision-making
solving methods for mainly supply chain and inventory problems. We conclude from the table
that reinforcement learning outperforms the majority of other algorithms. Furthermore, from
the comparison, we conclude that incorporating stochasticity is difficult for models such as
MILP. In contrast, the abilities of reinforcement learning suit our problem well.

1The paper does not mention which ML algorithm is used

Page 33.

3.3.3 Artificial Intelligence in Operational Decision-Making for Spare Parts

Currently, the service control tower and reinforcement learning are not used together in the
literature studies. Research points out that especially possible configurations and future in
SCTs is in a knowledge gap (Trzuskawska-Grzesińska, 2017). As mentioned earlier, in Table 3.1,
implementation of smart learning algorithms in digital control towers can support the transition
towards more collaborative shipping in Physical Internet (Vanvuchelen et al., 2020). Following
the literature, planning and learning algorithms show significant improvement, and potential
for multi-echelon supply chain networks (Kara & Dogan, 2018; L. Wang, Zeng, Zhang, Huang,
& Bao, 2006). However, L. Wang et al. (2006) states that the downside of using planning and
learning algorithms is that the quantity of data used in the models is limited. Therefore, the
model should not entirely replace professional judgment. Nevertheless, algorithms can make
decent trade-offs between high-quality, uncensored data concerning the improvement of long-
term decision-making and reducing short-term maintenance costs (Abdul-Malak, Kharoufeh, &
Maillart, 2019).

3.3.4 Challenges in Planning and Learning Algorithms

In modeling and solving planning and learning algorithms, we encounter multiple challenges.
First of all, a commonly discussed challenge is an intensive numerical calculation of the solution
set. The literature states that when the action space is a vector, an enumeration is the only
option for solving the problem (Powell, 2009; Nozhati, Sarkale, Ellingwood, K.P. Chong, &
Mahmoud, 2019). Richard Bellman first mentions this problem as the Curse of Dimensionality
(Bellman, 1957). A solution might be creating an approximate value function set (Nozhati et
al., 2019) or value and policy networks (Silver et al., 2016). However, the chosen policy effects
the performance of the algorithm (Powell, 2009). Often, it is not easy choosing the right policy
because we can only observe the environment partially in many real-world scenarios. Therefore,
the model should incorporate all historical data as well in order to determine the best action
(Silver, 2015).

Additionally, for every process, the algorithm needs to learn the actions and rewards from
scratch. For an Atari game or an algorithm such as AlphaGo, exploring is harmless (Silver et
al., 2016). Nonetheless, in a real-world situation, this is not always possible. Although lots of
reinforcement learning techniques work effectively on small problems, only a few techniques apply
to large problems since it is challenging to solve arbitrary problems in the general case (Kaelbling,
Littman, & Moore, 1996). For small problems, Kaelbling et al. (1996) advises creating leverage
to the learning process by bias; we can solve more complex problems. Shaping, imitation, and
local reinforcement signals are examples for including bias. Contrary, Schmidhuber (2015) states
that most problems are large problems, and only a few are small. Solving these large problems
might be difficult since current neural networks try to work with all nodes possible. The method
offered by Schmidhuber (2015) is part of the blueprints for a universal reinforcement learning
method that can solve unlimited problem depth that is time-optimal in various theoretical senses,
even beyond Deep Learning methods.

Finally, besides the mentioned challenges, perhaps the best-known challenge is the exploration-
exploitation dilemma. This dilemma occurs in every problem setting of reinforcement learning
(Kaelbling et al., 1996; Berger-Tal, Nathan, Meron, & Saltz, 2014). The goal of the reinforce-
ment learning algorithm is to determine the optimal solution. When the algorithm uses a pure
exploration, the agents learn a lot about the whole solution space without converging towards
an optimal solution (Yogeswaran & Ponnambalam, 2012; Mes, 2019). While on the contrary,
with a strict exploiting policy, the algorithm will most likely get stuck in a local optimum (Mes,
2019; Berger-Tal et al., 2014). With, e.g., ε-greedy, Boltzmann Distribution, or OR techniques
such as Simulated Annealing can be used to deal with this kind of problem (Yogeswaran &

Page 34.

Ponnambalam, 2012). The Boltzmann Distribution also called softmax, outperforms all other
strategies, although it is slightly more challenging to implement than the ε-greedy approach
(Tijsma, Drugan, & Wiering, 2016).

3.3.5 Decision Processes In Short
Currently, the service control tower and reinforcement learning are not used together in the
literature studies. Research points out that especially possible configurations and future in
SCTs is in a knowledge gap (Trzuskawska-Grzesińska, 2017). As mentioned earlier, in Table 3.1,
implementation of smart learning algorithms in digital control towers can support the transition
towards more collaborative shipping in Physical Internet (Vanvuchelen et al., 2020). Following
the literature, planning and learning algorithms show significant improvement, and potential for
multi-echelon supply chain networks (Kara & Dogan, 2018).

From other literature, we conclude that reinforcement learning algorithms show potential
in supply chain networks, despite the limited quantity of data used in the models. Therefore,
the model should not entirely replace professional judgment. For a correct implementation of
planning and learning algorithms, we must consider the three significant challenges: the Curse
of Dimensionality, solving effectiveness, and exploration-exploitation dilemma.

3.4 Reinforcement Learning

Within this section, we give a brief introduction to artificial intelligence and, in particular,
to the positioning, Markov Decision Processes, Bellman equations, and learning dimensions of
reinforcement learning.

3.4.1 General Introduction

Reinforcement learning is a subset of Machine Learning without requiring a human touch for
learning (Hosokawa, Kato, & Nakano, 2014). Since ML can be seen as a subset of AI, we briefly
explain both concepts. Additionally, we briefly explain the lowest level of AI: Deep Learning.

Artificial Intelligence (AI)

As mentioned, reinforcement learning is a subset of Machine Learning, which is a subset of
artificial intelligence (Figure 3.1). Before we explain RL further, we will clarify the overarching
concept of artificial intelligence first. AI is the concept of computers or machines that mimic
cognitive functions associated with human behavior. Examples are learning, problem-solving,
and image recognition (Russell & Norvig, 2010). Our scope of AI lies within intelligence by, e.g.,
making decisions and having the capacity for logic. However, giving a proper definition of AI is
challenging. Because the designer programs the agent’s decision-making, there are discussions

Figure 3.1: Positioning of AI, ML, and DL (Dhande, 2020)

Page 35.

about the concept of AI (Pomerol, 1997). Therefore, AI can be in everything (Bertsekas, 2019).
For the sake of simplicity, the definition of AI is assumed to be intelligent behavior performed
by a computer using logic, if-then rules, decision trees, and Machine Learning (Mes, 2019).

Machine Learning (ML)

Machine Learning can be seen as a subset of artificial intelligence. It is an application of AI
which can learn automatically and improve from experience. ML includes statistical techniques
that enable machines to improve without being explicitly programmed. The program can learn,
with minimal human interaction (Faggella, 2020). There are three main branches within ML;
Reinforcement Learning (RL), Supervised Learning, and Unsupervised Learning; these are vi-
sualized in Figure 3.2. Alternative branches are left out of scope.

Reinforcement Learning RL is the next level of ML. It can be defined as part of prescriptive
analytics. The algorithm, or agent, is predicting what will happen and why it will happen to
provide recommendations regarding actions that will take advantage of the predictions. The goal
of RL is to maximize the notion of cumulative rewards by learning in taking actions. Examples
are real-time decision processes, Robot Navigation, and Game AI (e.g., AlphaGo by DeepMind
(2019)).

Supervised Learning This is a form of predictive analytics. The agent is task-driven by,
e.g., regression classification or ranking. The agent is taught and trained using correctly labeled
data, such as a problem- and solution set. Examples are weather forecasting and population
growth prediction when using regression or image classification and identity fraud detection for
classification problems.

Unsupervised Learning Like supervised learning, unsupervised learning is a form of predic-
tive analytics. Since the agent does not use a solution-set or outcome, this type of agent is called
data-driven. The algorithm itself will find patterns by clustering or dimensionality reduction.
Examples are customer segmentation and big data visualization.

Deep Learning

The deepest layer of AI is Deep Learning. This layer can train itself to perform tasks, like speech
and image recognition, by exposing multilayered neural networks to vast amounts of data.

Figure 3.2: Main branches of ML (Ray, 2020)

Page 36.

3.4.2 Finite Markov Decision Processes in Reinforcement Learning

In reinforcement learning, a Markov Decision Process (MDP) describes the problem to resolve.
An MDP is a classical formalization of sequential decision-making which consist of an agent,
and an environment (Sutton & Barto, 2018; Szepesvári, 2010). We can define the agent as
the decision-maker and the environment as its interaction space. The agent and environment
interact continuously by selecting actions and responding to the actions with new situations. In
case of a discrete-time setting, at each time step t, where t = 0, 1, 2, · · ·, T −2, T −1, T , the agent
sees a representation of the environments state, denoted as St ∈ S (Heidrich-Meisner, Lauer,
Igel, & Riedmiller, 2007). Based on the state that the agent is in, it selects an action, At ∈ A(s).
Due to this action, the agent receives a reward corresponding to the undertaken action going
from one state to the next in the next time step, Rt+1 ∈ R. The environment will go to the
next state, St+1.

Figure 3.3: Reinforcement learning overview (Sutton & Barto, 2018)

Essential in providing theoretical guarantees about reinforcement learning algorithms is the
Markov Property (Buşoniu, De Schutter, & Babuška, 2010). A process is Markov if the process
describes a memoryless property, i.e., the future is independent of the past given the present
(Z. Ding, Huang, Yuan, & Dong, 2020; Silver, 2015). We can mathematically express this as:

P(St+1|St) = P(St+1|S1 · · · St)

The equation tells us that the next state, given the current state, is equal to the next state given
the complete history. Therefore, once a state is known, all history can be thrown away. The
current state is, in this case, sufficient statistically for the future. This property holds for every
time step t and for the complete state-space (Z. Ding et al., 2020).

The environment determines the next state with a certain probability. This probability
is dependent on the preceding state and action. These probabilities are only applicable for a
random Markov process, where the next state is determined by probability (Silver, 2015; Sutton
& Barto, 2018). The state transition probabilities can be defined in a matrix P.

Pass′
.= P(St = s′|St−1 = s,At−1 = a) (3.1)

Since the MDP holds for a finite decision process, we can say that:∑
St+1∈S

p(St+1|St, At) = 1, ∀St ∈ S, At ∈ A(s) (3.2)

Additional to the Markov Process, discussed so far, a reinforcement learning algorithm in-
cludes rewards. The Markov Reward Process is a Markov Chain with values. The return can be
defined as the return, Gt, is the total discounted reward for a time-step t, where T represents
the terminating state (including the possibility that T =∞) (Silver, 2015).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
T∑

k=t+1
γk−t−1Rk (3.3)

Page 37.

In this formula, γ functions as a discount factor. For γ holds γ ∈ [0, 1]. The discount factor
is a parameter that helps to determine the present value for future rewards, also known as cost-
to-go function. Therefore, a reward received now is worth more than a reward k time steps away
(Sutton & Barto, 2018). Furthermore, discounting the reward function prevents the MDP from
infinite returns in cyclic Markov processes in case T = ∞. It is mathematically convenient to
discount, and uncertainties about the future are mitigated (Silver, 2015).

The objective function for an MDP is to choose a function, v(s), that typically maximizes
the expected discounted sum over an infinite horizon given a specific state. We can decompose
the value function into two parts; the immediate reward and discounted value of successor states.

3.4.3 Bellman’s equation

To determine which policy is optimal, we use value functions. Bellman’s optimality equation
breaks the optimization problem into a sequence of simpler sub-problems, following Bellman’s
principle of optimality (Kirk, 2004; Bertsekas, 2017). We can determine the optimal expected
sum by finding a suiting policy. Deterministic policies, π : S → A, represent an action that
at any time t ≥ 0 the actions π(St) is selected in state St (Heidrich-Meisner et al., 2007;
Szepesvári, 2010). There are state value functions, v(St) and action value functions, q(St, At),
in reinforcement learning. The state value function can be defined as the state’s value while
following a policy (Sutton & Barto, 2018). It represents the expected return when starting
in state St and acting following policy π. Subsequently, we can decompose the state-value
function, vπ(St) into immediate reward plus a discounted value of the successor state as given
in Equation 3.4.

v(s) = E [Rt+1 + γv(St+1)|St = s] (3.4)

The second value function is the action value function. This value function gives the value of
an action in some state when following a policy. I.e., the expected reward, given an action in the
given state of the agent while following a policy. The action-value function can be decomposed
equally to the state-value function in two parts; immediate reward and the discounted value of
successor states:

qπ(St, At) = Eπ [Rt+1 + γqπ(St+1, At+1)|St = s,At = a] (3.5)

Now, we can determine determine the quality of a specific state (Figure 3.4a) or the quality
of an action, bringing us to a next state (Figure 3.4b). When both diagrams are combined, we
end up in a recursion where v and q are expressed in terms of itself, Figure 3.4c and 3.4d. In
this situation, we can solve the Markov Decision Process by performing a two-step look-ahead.

Problem owners often do not care about a random policy, which follows actions by change.
The goal of the MDP is to find the best path through the system, i.e., to find the optimal
way to solve the problem. We use the optimal value function to solve the problem. From,
e.g., Sutton and Barto (2018), we can derive the optimal value functions. The optimal value
functions are recursively related by the Bellman optimality equations. As visualized in Figure 3.4
the optimality equations can be derived identically (Sutton & Barto, 2018; Szepesvári, 2010;
Bellman, 1957). Leading to the Bellman’s Optimality Equations for v∗ and q∗ in Equation 3.6.

v∗(St) = max
a
Ras |+ γ

∑
s′∈S
Pass′v∗(St+1) (3.6a)

q∗(St, At) = Ras + γ
∑
s′∈S
Pass′ max

a′
q∗(St+1, At+1) (3.6b)

Page 38.

(a) Single vπ (b) Single qπ

(c) Double vπ (d) Double qπ

Figure 3.4: Back-up diagrams for Bellman Expectation Equations (Sutton & Barto, 2018)

3.4.4 Extensions to the Markov Decision Processes

To create a good overview of all possibilities, branches, and extensions of the Markov Decision, we
explore the average reward value function and the partially observable Markov Decision Problem.
These extensions are very commonly used for reinforcement learning purposes. However, since
these extensions do not apply to our content, both algorithms are briefly explained in Appendix
C.2.

3.4.5 Learning Dimensions of RL

To determine which algorithm we use to solve the problem, we need to identify the learning
dimensions of RL. The dimensions reviewed below help us choosing an applicable algorithm for
our problem.

Model-Free or Model-Based

The first option that we will discuss is the model-based and model-free approach. In reinforce-
ment learning, a model is defined as the ensemble of acquired, environmental knowledge (Zhang
& Yu, 2020). For example, in an MDP, the transition model and reward function together
define the model (Sutton & Barto, 2018). Model-free RL is applicable for situations where the
agent does not know the model or where the decision trees are too complex to evaluate (Huys,
Cruickshank, & Seriès, 2014). With model-free RL, the algorithm learns by updating every
iteration to predict or estimate the best value. By sampling from the world, an approximated
expectation can be found for this application. In the case of model-based RL, the transitions
and rewards are expressed in terms of the Bellman equations (3.6). The models can work with
a given model or learn a model. If the model is already known, the agent can use the model
without interaction with the environment.

Page 39.

On-policy or Off-policy

Next, we look at on- or off-policy models. As described earlier, an algorithm can follow a
particular policy to determine what actions the agent takes to get from state s to s’. If the agent
can learn the policy values followed so far, including the exploration steps, we call this on-policy
(Mes, 2019). Also, on-policy algorithms try to improve the policy values that make decisions
(Sutton & Barto, 2018). To get here, the agent must interact with the environment (Zhang &
Yu, 2020).

The other option is an off-policy algorithm. For off-policy algorithms, the agent does not
use the policy’s actions to determine the action values. Furthermore, Sutton and Barto (2018)
say that an off-policy evaluates or improves a different policy from what is known to generate
data. Finally, the agent does not have to interact with the environment himself. Experiencing
other agents who interact can already significantly improve the policy (Zhang & Yu, 2020).

Real-world or Simulator

Real-world (online) models are addressing future state problems by presenting the data se-
quentially instead of knowing all data on forehand. Often, online learning algorithms tend to
minimize regret (Z. Ding et al., 2020). Dynamics of the real world are taken into account with
the online algorithms (Croonenborghs, Ramon, Blockeel, & Bruynooghe, 2007).

In contrast, offline learning acts like a simulator (Mes, 2019). The offline learning methods
are more about static data sets, and the aim is to learn the modified dynamics through collected
training data. If a neural network acts the same as modified dynamics through offline training,
online learning methods are not necessary (Jin, Pipe, & Winfield, 1997).

Passive or Active Learning

In a passive learning environment, the agent’s policy is already given. The policy is fixed, so
the agent is told what to do (Russell & Norvig, 2010). With passive learning algorithms, the
agents learn the expected utility Uπ(s). The utility can be calculated by direct utility estimation,
adaptive dynamic programming, and temporal difference learning (Russell & Norvig, 2010; Sutton
& Barto, 2018).

Contrary, with active learning, the agent needs to decide what to do. There are no fixed
policies, and therefore the goal is to determine the optimal policy (Mes, 2019). For active learn-
ing, lots of algorithms are known as well: Approximate Dynamic Programming with exploration,
and Q-learning is most common in active learning (Russell & Norvig, 2010).

3.5 Solving Methods for a Reinforcement Learning Model

In this section, we will determine the power of different reinforcement learning models for our
purpose. To define the applicable algorithms, we used, e.g., Sutton and Barto (2018), Szepesvári
(2010), and Z. Ding et al. (2020). This section explains for six algorithms why these are func-
tional, what the differences are between the algorithms, and what possible challenges are for the
algorithm in our purpose. Because we are only using one of the algorithms for our experimental
design, we will briefly explain the algorithms. In Appendix C.3, a more detailed explanation of
the different algorithms is given.

In Section 3.4.5, we discussed the difference between model-free and model-based algorithms.
For the IAC’s application, a model-free algorithm is preferred because it generates a real ex-
perience and is not dependent on a given model, which might change over time. Nevertheless,
because the model-free approach does not include the rich history of data and is very time

Page 40.

consuming, we will also review a model-based algorithm (Approximate Dynamic Programming)
and a hybrid (Dyna-Q).

3.5.1 Approximate Dynamic Programming

An often used algorithm is Approximate Dynamic Programming (ADP). This algorithm is suit-
able for problems with a high dimensionality (Mes & Perez Rivera, 2017). ADP is sequential
decision-making under uncertainty, where the updating function ensures that not a full enumer-
ation is necessary, as is with the regular Dynamic Programming. Since problem spaces can grow
far beyond the computational power, the ADP algorithm combined with Operations Research,
can help overcome this problem (Powell, 2010). For the smaller problem instances, which are in
our interest, an ADP can already be beneficial in the learning process of making better decisions
over time (Powell, 2009).

Besides routing problems, storage and inventory pooling problems are solved with ADP (Mes
& Perez Rivera, 2017; Nascimento & Powell, 2013; Simao & Powell, 2009). The paper of Simao
and Powell (2009) works on an aircraft manufacturer who responds to random demand. The
manufacturer repairs malfunctioning components, which can re-enter the system after comple-
tion of the repair. The paper presents the problem of determining the inventory levels at each
warehouse. Since this research shows similarities with our problem statement, we will take the
ADP into account as a possible algorithm. Appendix C.3.1 explains the exact algorithm steps
for this solution approach.

Implementing the Approximate Dynamic Programming algorithm brings some challenges.
The first challenge that we will address is the exploration vs. exploitation dilemma. Since
we discussed this challenge before (Section 3.3.4), we will not go much in-depth again. To
avoid getting stuck in a local optimum, the agent must make a trade-off between exploring and
exploiting (Powell, 2009). Additionally, to this challenge, the decision-maker has to consider
to make the algorithm on-policy or off-policy, i.e., does the agent needs to update the value
functions using the results of the exploration (on) or do we perform an off-policy control (Mes,
2019). For example, (Ryzhov & Powell, 2011) tends to resolve the dilemma using a Bayesian
Active Learning approach.

Another challenge is the step size. While updating the VFA, an α must be determined. The
α, or step size, determines how important each new update is for the VFA. We can do this by,
e.g., constant, variable, harmonic, polynomial, or McClain’s formula for step size (Mes, 2019).
It is difficult to determine which step size is best for each problem (Powell, 2009).

3.5.2 TD-Control Methods

Q-Learning is an off-policy Temporal Difference (TD) control method. TD control algorithms
learn through every step that the agent takes. Since the TD algorithms learn on experience
instead of through available known steps, TD algorithms are model-free. The TD methods
update the estimates by bootstrapping, learning a guess from a guess (Sutton & Barto, 2018).
Because Q-Learning is an off-policy method, it does not follow a policy to find the next action.
The method chooses the next action in an ε-greedy manner. Q-Learning is further explained
in Appendix C.3.2. Another form of TD-Learning is SARSA, which is an on-policy TD control
method. SARSA aims to find the Q-values given a policy π with all state-action pairs. In
general, TD control methods are applicable for finite and relatively small states, and action
spaces (Szepesvári, 2010). By interacting with the environment, the agent can earn rewards and
improve.

Due to the interdependence of decisions and scenarios, it may be challenging to determine
which states have or had the most effect on the outcome. A weight parameter contributes

Page 41.

partially to the prediction (Isbell, 1992). Furthermore, the TD-algorithm is designed to learn
and predict an outcome. The algorithms method of providing feedback can be inaccurate (Isbell,
1992). Finally, for non-linear networks, the algorithm has shown that it may not converge
towards the optimal solution (Tesauro, 1992).

3.5.3 Dyna-Q

In online planning, during the decision-making process, the interaction may change the envi-
ronment due to uncertainty or randomness of the environment (Sutton & Barto, 2018; Zhang,
Huang, & Zhang, 2020). Due to the change in the environment, the interaction in planning can
change. The Dyna-Q algorithm is useful to learn within the interaction (Sutton & Barto, 2018).
As mentioned, this algorithm is a hybrid between model-free and model-based algorithms. The
advantages of both model-free and model-based algorithms are integrated into this single ar-
chitecture. Within the algorithm, a Q-table is generated to instruct the agent. This table is
learned and updated for each step of action in the environment (Zhang et al., 2020). With
this process, the Dyna-Q includes planning, acting, model-learning, and direct reinforcement
learning continuously (Sutton & Barto, 2018). The algorithm is given in Appendix C.3.3.

Dyna-Q is currently mostly used in, e.g., financial decision-making since the real and his-
torical data can be combined. Furthermore, the algorithm is efficient in robotic manipulation
and control. In robotics, Dyna-Q is used to capture the shown movements and interpret it
and translate it to the several degrees-of-freedom (Skoglund, Palm, & Duckett, 2005). For the
interpretation of inventory control of spare parts, we could not find any literature. However,
the robotic manipulation and task-completion dialogue may fit well with the inventory problem
since the algorithm communicates well outside the environment and can simultaneously speed
up the learning process (Ou, Chang, & Chakraborty, 2020; Peng et al., 2018). Variations on the
algorithm, such as Dyna-Q+, where an exploration bonus is included to encourage exploration,
might be useful for finding a good fit (Sutton & Barto, 2018).

Nevertheless, due to the structure of the model-based algorithm, there are challenges in this
algorithm. The learning performance of the model affects the policy learning results. I.e., in case
the environment is non-stationary (dynamic), the algorithm does not work well (Kim, Kwon, &
Baek, 2008; Zhang & Yu, 2020). Due to the uncertainty of the system dynamics, performance
may be volatile in the control domain. Therefore, the design of efficient learning mechanisms
might be interesting (Xu, Zhang, & Liu, 2009). Additionally, the algorithm for planning only
a simple lookup table without in-depth knowledge is used. The Q-ADP algorithm of Ou et al.
(2020) helps finding a near-optimal policy for improving system production (Ou et al., 2020).

3.5.4 Deep Q-Networks

In a previous subsection, we discussed the Q-Learning algorithm. Since the convergence of Q-
Learning can be unstable, Deep Q-Networks DQN can be considered (Tesauro, 1992; Huang,
2020). DQN combines Q-Learning with Deep Neural Network (DNN), to address the instability
issue and to create a more efficient and better performing algorithm (Mnih et al., 2013). DQN
shows that the agents can achieve high performance without using a different problem-specific
feature sets (Sutton & Barto, 2018). In Appendix C.3.4, we will discuss the algorithm and
functionalities more in detail.

DQN algorithms are, like many other algorithms, tested on Atari video games. Besides the
games, e.g., inventory optimization problems, use the algorithm. In The Beer Game, a multi-
agent cooperative supply chain problem, the DQN algorithm can obtain near-optimal solutions
and does not require knowledge of the demand probability distribution; it uses historical data
(Oroojlooyjadid, Nazari, Snyder, & Takác, 2017). However, such an algorithm’s computational

Page 42.

time is relatively high since there is only one learn-able agent. Additionally to this paper,
DQN can be used for predicting the spare part demand of fast-moving parts. The algorithm
outperforms the current model in more than 50% of the components (Henkelmann, 2018).

The DQN algorithm has shown some great improvements compared to the Q-Learning algo-
rithm. However, DQN shows that it suffers from substantial overestimations is certain situations
(Van Hasselt, Guez, & Silver, 2015). The overestimations can be caused by the fact that the
objective function Yi contains a max operator. Because the Q-value is noisy, the optimal value
can be overestimated (Huang, 2020). To overcome this problem, Van Hasselt et al. (2015) and
Mnih et al. (2013) provide a Double Deep Q-Network (Double DQN), which decorrelates the
noise and evaluates the networks in different stages. In the paper of Huang (2020), we can find
more extensions for the DQN algorithms, which might be interesting for further research.

3.5.5 Actor-Critics

Actor-Critic (AC) is a modern approach for reinforcement learning algorithms. As explained
earlier, there are two main types of RL methods: value-based and policy-based. The Actor-
Critics is located on the edge of both streams (Z. Ding et al., 2020). The Actor takes as input
the state and returns the best action as output. Subsequently, the Critic evaluates the action
and returns feedback on how good the action was and how it should adjust (Sutton & Barto,
2018; Szepesvári, 2010). In this case, the Actor is learning the policy (policy-based), while
the Critic evaluates the value function (value-based). Additionally to AC, we can include the
Advantage function (A2C). The advantage function gives the value of how good an action is,
compared to other actions, given a state. To make the A2C model more powerful, we can use
the Asynchronous Advantage Actor-Critic (A3C). The A3C consists of multiple independent
agents, each in an own parallel environment (Mnih et al., 2016). Therefore, the algorithm can
operate more robust, faster, and achieve higher scores (Z. Wang et al., 2016). The algorithm for
A3C is given in Appendix C.3.5

Literature points out that the use of A2C or A3C in multi-echelon networks for inventory
management is able to handle the multi-objective reward (Sultana et al., 2020). The experiments’
results come close to reality, where it can optimize performances in the long-run. The A3C shows
in literature studies to outperform multiple heuristics and other algorithms. Not only in the
Atari games the Actor-Critic performs well, but in multi-echelon inventory management with
lost sales or backorders as well (Gijsbrechts, Boute, Van Mieghem, & Zhang, 2019).

Despite the promising results of the A2C or A3C algorithms, there are still some flaws.
Currently, there are no specialized policies that lead the algorithm to an optimum. Therefore
lots of parameter tuning is necessary to create a realistic environment (Gijsbrechts et al., 2019).
Additionally, by a deterministic policy behavior, the Actor cannot learn the non-preferable
policies (Szepesvári, 2010). By including stochasticity or randomness in decision-making, this is
easier to learn. In a small action-space, the Critic can use, for example, an approximate action-
value function. An ε-greedy or Boltzmann exploration approach is recommended for solving the
problem. Finally, Sultana et al. (2020) point out that Actor-Critic algorithms are not further
developed or tested for varying lead times in replenishments. Further research should create
insight into the performance of the algorithms with this additional restriction.

3.5.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an algorithm within the policy gradient methods for
reinforcement learning. PPO alternates between sampling data and interaction with the envi-
ronment, and it is suitable for high-dimensional control problems (Heess et al., 2017). Although,
the algorithm is derived form Trust Region Policy Optimization (TRPO), PPO is better scal-

Page 43.

able than TRPO, and still very data efficient, robust, and reliable (Schulman, Filip, Dhariwal,
Radford, & Klimov, 2017). We will briefly explain the PPO algorithm in Appendix C.3.6. For
further explanation about TRPO see (Z. Ding et al., 2020), (Heess et al., 2017), or (Schulman,
Levine, Moritz, Jordan, & Abbeel, 2015).

PPO can be seen as an approximate version of TRPO, which is more convenient to apply
for large-scale settings (Heess et al., 2017). For the algorithm steps of PPO, see Appendix
C.3.6. The PPO algorithm has proven to be effective in optimal control for inventory problems
(Meisheri, Baniwal, Sultana, Khadilkar, & Ravindran, 2020). Also, within the control tower
setting, the PPO algorithm tested and proved itself to be useful (Vanvuchelen et al., 2020).
Since PPO is relatively easy to implement (compared to TRPO) and it provides robust and
reliable results, is PPO a promising algorithm for our purpose.

Currently, in the literature, multiple flaws are found concerning PPO. Although it is data-
efficient and more comfortable to implement than TRPO, the performance of PPO can be
unstable (Y. Wang, He, & Tan, 2019). The performance is dependent on the effectiveness of the
exploratory policy search and can be caused by lousy initialization (Y. Wang, He, Tan, & Gan,
2019). Appendix C.3.6 presents several methods to overcome these flaws.

3.6 Conclusion
Very little information concerning reinforcement learning in a service control tower setting for
spare parts is known. Therefore, we tried to create a better overview of the different aspects
following the existing literature. This chapter creates insight into interventions and decision
support, basic reinforcement learning concepts, and several different reinforcement learning al-
gorithms.

Interventions and Decision Process A service control tower is a central hub which mon-
itors, manages, and controls supply chain data (Accenture, 2015; Deloitte, 2019). The SCT
creates insight into the streams and can therefore create a competitive advantage. Furthermore,
it generates alerts, to which the company can respond. This process influences transporta-
tion, inventory tracking, and exception management (van Doesburg, 2011). We reviewed the
most common interventions stated in the literature and compared these with the interventions
currently performed by the IAC (Topan et al., 2020). Here, we found out that currently, one
intervention that the IAC uses is not stated before in the literature as a backorder prevention
cause. The intervention, interchangeable components, is commonly used in manufacturing and
pharmaceutical industries. Although the IAC uses it as an intervention for backorder prevention,
we can use it as a preventive inventory policy.

Further, in this chapter, we compared 12 papers concerning the potential of artificial intel-
ligence in decision-making. We compared AI models with, e.g., Mixed-Integer Linear Program-
ming (MILP) and stochastic programming methods. In decision-making, using AI, models tend
to optimize yield for operational control (Davenport & Harris, 2005). From this comparison,
we can conclude that planning and learning algorithms, such as reinforcement learning, have a
great potential in operational decision-making for inventory and spare part problems, mentioned
by, e.g., L. Wang et al. (2006) and Abdul-Malak et al. (2019).

Although there is immense potential, there are also some challenges in planning and learning
algorithms. The first challenge discussed is the Curse of Dimensionality (Bellman, 1957). Due
to the large state space, solving can be a very intensive calculation. The literature offers different
solutions to overcome this problem. For example, using value and policy networks (Silver et al.,
2016), or approximate value function sets (Nozhati et al., 2019). The second challenge concerns
the effectiveness of the solving algorithms of reinforcement learning. Following the literature, it

Page 44.

is difficult to solve arbitrary problems in the general case (Kaelbling et al., 1996). Including bias
can help in the learning process. Larger problems are often only solvable with neural networks.
With an optimal method, unlimited problem depth can be solved (Schmidhuber, 2015). The
final challenge we discussed is the exploration-exploitation dilemma. Different approaches, such
as ε-greedy, can help us to find a near-optimal solution without getting stuck in a local optimum
too early (Yogeswaran & Ponnambalam, 2012).

Reinforcement Learning We can define reinforcement learning as subset of machine learn-
ing, which is again a subset of artificial intelligence. The literature describes two basic formula-
tions of reinforcement learning problems; the Multi-Armed Bandit problem and Markov Decision
Processes Framework. Because our problem is suitable for MDP, we will leave the MAB out
of scope. The MDP is a classical formalization of sequential decision-making problems, which
posses the Markov property. This means that the future is independent of the past given the
present. An MDP is formulated as follows; at each time step t, the agent sees a representation
of the environment St. Based on the observation, the agent determines an action At. With this
action, the agent will receive a reward Rt+1 and the agent moves with transition probability
P(St+1|St, At) to a new representation of the environment St+1. The decisions over time lead to
the discounted reward function denoted in Equation 3.3. The main objective of the MDP is to
maximize the expected discounted reward function given a state St and find the corresponding
actions. These value functions also known as the Bellman equations, consist of a state- and an
action-value function. Naturally, finding the optimal state-value function leads directly towards
finding the optimal action-value function, and vice versa.

Solving Method Finally, we discussed six different RL methods for solving MDPs; Approxi-
mate Dynamic Programming, TD-Control, Deep Q-Networks, Dyna-Q, Actor-Critics, and Prox-
imal Policy Optimization. From the literature, we found the applications and potential of the
different algorithms. We conclude that the Dyna-Q algorithm seems most powerful for our
purpose from the six algorithms, although no other literature is found in our scope. Dyna-Q
works both with model-based as model-free algorithm, whereby easy implementation, strong,
and quick performance show added value for our research. Additionally, Dyna-Q starts im-
proving very fast following the literature. Besides the Dyna-Q algorithm, the A3C and PPO
algorithms show excellent potential for our purpose. However, because both algorithms are a
deep learning approach, and the implementation of the algorithms is far more complicated than
the Dyna-Q algorithm, we will not continue this research with these algorithms. Nevertheless,
because literature concerning A3C and PPO show potential for our purpose, we recommend
exploring the possibilities of A3C and PPO in future research.

4 | Solution Design

This chapter describes the solution design for the Component Maintenance & Availability (CMA)
problem. For the solution approach, we first formulate the decision-making framework based
on the stochastic dynamic programming framework. Section 4.1 describes the framework in
decisions, states, rewards, and transition probabilities. In order to test and validate the planning
and learning algorithm, we create an initial situation. By designing an exact solution approach
in Section 4.2, we can determine the true optimal value. Next, a we discuss a heuristic solution
approach in Section 4.3, which functions as the counteragent and benchmark of the planning
and learning solution approach, discussed in Section 4.4. We review the design and properties
of all three models in the mentioned sections.

4.1 Stochastic Dynamic Problem Framework

So far, the problem definition has been kept fairly strict and simple, where decisions are in-
dependent of time. From this point of view, an infinite MDP would suffice for this problem.
However, we know that practice does not behave this way. Therefore, we need a method that
solves the optimal policy problem for each day, e.g., used by García-Alvarado et al. (2015) in
Table 3.1. In this section, we present the elements of the SDP applied to our problem statement.
We discuss the states (Section 4.1.1), decisions (Section 4.1.2), reward functions (Section 4.1.3),
transition functions (Section 4.1.4), and transition probabilities (Section 4.1.5).

4.1.1 State

From the data analysis in Section 2.7, we know several component characteristics, such as costs
and the base stock level (tactical level). Within the SDP Framework, we make a decision based
on the current inventory position while minimizing the costs and backorders. Here, we use the
following interpretation. We define It,n as the inventory position at the end of time period t ∈ T
for component n ∈ N . Here, we assume that a time period t represents one day and the finite
planning horizon is denoted as T . Since the inventory position must be an integer number, we
denote the state as It,n ∈ Z. The inventory position, represents the stock over the complete
CMA-loop. We present the inventory position in Equation 4.1b. The inventory position includes
the deterministic integer variables current on-hand stock (soh,t,n), current stock in repair shop
(srepair,t,n), current stock at operator sites (scustomer,t,n).

St = [It,n]∀n∈N (4.1a)

s.t.

It,n = soh,t,n + srepair,t,n + scustomer,t,n (4.1b)

All variables ∈ Z

45

Page 46.

4.1.2 Decision

The agent makes decisions in a finite planning horizon at each time period t for a component
number n. Additionally, without loss of generality, we assume that the decisions are made for
a single location model because, in reality, most transactions are performed from the central
warehouse. With this assumption, there is hardly any deviation from reality. Therefore, it is
not trivial to add multiple echelons or locations in decision-making. This decision represents
the intervention which is carried out by the OPP. For now, we start with three different in-
terventions: do nothing, expediting, and external sourcing. As mentioned, the interventions
can be combined. Additional restrictions to decision-making are: a limit to buy a maximum of
three new components (Equation 4.2b), and only components in the repair shop srepair,t,n can
be expedited (Equation 4.2c). Due to the buying restriction, we can limit our total combined
interventions to eight. Note that doing nothing means regulating inventory via regular tranship-
ments, as explained in Section 2.3.1. The natural decision variable xt,n,f defines the quantity of
components at time t, of component n ∈ N , in intervention f = {0, 1, 2}.

xt = [xt,n,f]∀n∈N,f∈F (4.2a)

s.t.

xt,n,expedite ≤ srepair,t,n (4.2b)
T∑
t=1

xt,n,buy ≤ 3 (4.2c)

xt,n,f ∈ N, ∀t, n, f

At each time t, the agent can decide the number of expedited repairs and bought components
from external sources. We can denote the decisions as vector xt. Each of the decisions impacts
the change in the transition of states and can be used simultaneously. E.g., the OPP can decide
to expedite a repair and buy a new component from external sources to quickly and successfully
absorb the incoming demand. Since there are many components available on the market that
can be delivered quickly, we assume that the lead time L is equal to zero time periods. For
expediting the repairs, we assume no lead time (L = 0) because expediting leads to a prioritized
and accelerated repair in the current time period t. The agent’s objective is to make decisions to
minimize the total backorder-, holding- and intervention costs over the given planning horizon.

4.1.3 Reward

For this instance, the rewards are the costs that the agent makes in the decision-making. The
direct reward function is given by:

C(St, xt,n,f) =
{
BO(soh,t,n) +∑F

f=0En,fxt,n,f , if t < T,∀n
BO(soh,t,n) +∑F

f=0En,fxt,n,f + L(It,n), if t = T, ∀n
(4.3a)

s.t.

BO(soh,t,n) =
{

0.5Qn|soh,t,n|agnun, if soh,t,n < 0, ∀n
0, otherwise

(4.3b)

L(IT,n) =


Qn(IT,n − Itactical)2, if (IT,n > Itactical|IT,n 6= I1,n), ∀n
0.5Qn(Itactical − IT,n)2un if IT,n < Itactical, ∀n
0, otherwise

(4.3c)

Page 47.

The cost function (Equation 4.3a) includes three parts: backorder, intervention and termi-
nal state costs. During the planning horizon, the cost function includes only backorder and
intervention costs. To incorporate the long-term, and thereby tactical planning, we include the
future holding or shortage costs in the terminal time step.

The first expense we discuss is the backorder costs, as noted in Equation 4.3b. This thesis
defines backorders as the situation that the on-hand inventory in period t cannot directly satisfy
the demand of period t; it is below zero. The backorder cost function penalizes the agent worth
half of the acquisition costs, multiplied by the turnover rate un, to incorporate the time between
movements for the component. By including this rate, we differentiate between fast and slow
movers and therefore penalize them more realistically. Additionally, the cost function includes a
multiplication with an exponentially growing penalty rate agn . For each time that a backorder
occurs, the value of gn increases by one, with a as a constant. In this way, it is less interesting
to ignore backorders for a long time period. In other words, due to this growth, it becomes more
and more attractive to close the backorder by buying a component.

Next, the intervention costs En,f are dependent on each intervention. The intervention costs
can be, e.g., costs for repair man-hours or exchange fees that the company needs to pay for
external sourcing such as order costs (O(xt,n,f)). Equation 4.4 explains the formation of the
order costs. In case there are new bought components, xt,n,buy > 0, the order costs consists of
the fixed costs, K and the acquisition costs Q(xt,n,buy). The acquisition costs are dependent on
the quantity and the type of component. If xt,n,buy = 0, the order costs are zero.

O(xt,n,buy) =
{
K +Q(xt,n,buy), if xt,n,buy > 0
0, if xt,n,buy = 0

(4.4)

Finally, we explain the terminal costs, as discussed in Equation 4.3c. As the name suggests,
these costs only occur in the terminal state. As earlier, this research’s scope is to improve
decision-making on the operational level with the tactical level as a guideline. Therefore, the
terminal costs consist of two different parts: holding costs if the terminal inventory exceeds the
tactical inventory, and shortage costs if the terminal inventory is less than the tactical inventory.
Naturally, when no holding or backorders occur, there are no terminal state costs.

The calculation for holding costs, as shown, is based on the regular computation of the
holding costs. The IAC’s estimate for the holding costs per component per year is 15% of
the acquisition costs per item on stock. Because 15% is on a yearly basis, the penalty for
keeping stock is negligible for a short period, such as a single day within the planning horizon.
Because we perform the current analysis for a closed-loop environment, where components can
not quickly leave the loop, we take the holding costs for an extended period. Note that we only
pay holding costs when the ending inventory differs from the tactical planning or the starting
inventory. Additionally, we penalize holding costs more heavily when diverging further from the
tactical planning or the starting inventory by multiplying the inventory’s squared difference by
the acquisition costs.

The shortage costs are calculated similarly to the backorder costs, excluding the exponential
penalty rate gn. We penalize the shortage because we calculate tactical inventory levels such
that the Expected Backorder (EBO) is minimized. Therefore, not meeting the tactical inventory
levels in the current planning horizon increases the probability of backorders in the next planning
horizon. The difference between tactical and total inventory levels gives the direct shortage,
leading to potential backorders. In case the difference increases the shortage costs, and urge in
solving the shortage increase. Because the seriousness of the future backorder is dependent on
the expected time for a component will move, we include the turnover rate un.

Page 48.

In this research, we aim to find the policy that minimizes the costs over the planning horizon.
The policy that presents the corresponding optimal value function can be represented in the
Bellman optimality equations, as denoted in Equation 4.5 and 4.6. In the first equation, the
state value function is expressed in terms of minimizing the action value function as expressed
in the second equation.

V π∗
t (St) = min

xt

(
Qπ
∗
t (St, xt)

)
(4.5)

Qπ
∗
t (St, xt) = C(St, xt) +

∑
s′∈S

P(St+1 = s′|St, xt) min
xt+1

Qπ
∗
t (s′, xt+1) (4.6)

4.1.4 Transition Functions

Besides the deterministic variables, the inventory position changes each time period t due to the
stochastic variables: returning repairs Zrepair, returning components from customers Zcustomer,
and demandD. Realizations of the stochastic variables are denoted by zrepair,t,n, zcustomer,t,n and
dt,n, respectively. Probability distributions for the stochastic variables are given in Section 2.7.
Each time period, the system updates the inventory model due to the decisions made in the
corresponding time period. The updating of the stock levels on-hand, at the repair shop, and
the customer are explained in Equation 4.7a to 4.7c, respectively. For example in Equation 4.7a,
the stock on hand in the next time period (soh,t+1,n) is equal to the current on-hand stock (soh,t,n)
plus the repairs (zrepair,t,n) and new buys (xt,n,buy) in this t, minus the demand of the current t
(dt,n). The updating of the other two equations works similarly.

soh,t+1,n = soh,t,n + zrepair,t,n + xt,n,buy − dt,n (4.7a)

srepair,t+1,n = srepair,t,n + zcustomer,t,n − zrepair,t,n (4.7b)

scustomer,t+1,n = scustomer,t,n + dt,n − zcustomer,t,n (4.7c)

Because we are assuming our model to work with discrete time periods, we must define the
sequence of the events happening at each time period t (Topan, Tan, van Houtum, & Dekker,
2018):

1. The current state location is determined on given inventory positions from the previous
time period t.

2. Demand (dt,n) and the returns from customers (zcustomer,t,n) for the current time period
is known.

3. For decision xt,n,f , the direct expected costs are calculated. The objective cost function
considers the optimal decisions to prevent backorder, holding, and intervention costs.

4. Based on the decision, the number of returns from repair are realized zrepair,t,n.
5. The current state inventory positions for on-hand (soh,t,n), repair shop (srepair,t,n), and

customer (scustomer,t,n) are updated given the previous state with update procedures 4.7a
- 4.7c. Corresponding holding-, backorder-, and intervention costs are payed.

To define the interaction between the three states, we give an example. Recall the CMA-
program layout of the exchange services, visualized in Figure 1.1a. State variable soh represents
the number of components in the pool, scustomer the components at the operator, and srepair
in the repair shop. When demand occurs, a component will move from soh to scustomer. If a
component malfunctions, then the UU goes from scustomer to srepair. The final movement within
this figure and states is the movement of a SU from srepair to soh after repair.

Page 49.

4.1.5 Transition Probabilities

The transition probabilities are dependent on different elements. By the diagrams’ principle,
discussed in Section 3.4.3, we move from one state to another with a given probability. In our
case, the transition probabilities are dependent on the number of components returning from
repair (Zrepair) and the demand (D). We leave the return from customers Zcustomer out of scope
for this probability because within the currently used planning horizon, these do not impact
the number of components in the repair shop srepair,t,n. With the probability distribution,
corresponding to the return from repair and demand rate, the expected inventory position St+1
can be calculated. By multiplying the probabilities of zrepair,t,n and dt,n, we can determine
the transition probabilities for the given time period. These probabilities are dependent on the
component.

P(St+1 − St = K|xt, St) =
∞∑
L=0

P(zrepair,t,n = L|xt, St)P(dt,n = L−K|xt, St) (4.8)

The state difference is denoted as K partially expressed by the number of repairs L, with
K ∈ Z and L ∈ N. Naturally, this leads to a state transition St+1 = St + K. This equation
holds for both regular and expedited repairs. For the current scenario we assume that we can
expedite all or repairs or nothing. Therefore, in case we expedite, we assume a union of events
with regular repairs and expedited repairs. The mathematical definition of the returns of repairs
is given in Equation 4.9a. To ensure we take the correct probability, we included the binary
variable C in the probability function. This variable is equal to zero if we decide not to expedite,
and one otherwise caused by Equation 4.9b. Here, BigM is a random large number.

P(zrepair,t,n = X) = CP(Zreg = X) + (1− C)P(Zreg = X) ∪ P(Zexp = X) (4.9a)

where:

(1− C) ≤ xt,n,expediteBigM (4.9b)

BigM = 10.000 (4.9c)

C is binary, and X ∈ N (4.9d)

To clarify the theory about transition probabilities, we use Figure 4.1. We assume soh,t,n = 2,
and srepair,t,n = 3. Now, the agent can decide whether to do nothing, expedite, or buy a
component. For this example we assume that Zreturn,t,n ∼ B(n, p), Dt,n ∼ Pois(λ). The
parameters included in the example are n = srepair,t,n = 3, pr = 0.1, pe = 0.15 and λ = 0.5 for
the Binomial and Poisson distribution, respectively. Note that Binomial probability is defined
for a regular pr and expedited pe situation. With the given parameters, we can limit the range
for inventory change to a reasonable possibilities for the inventory on t + 1. Probabilities for
demand, combined with both normal and expedited repairs are given in Table 4.1.

The table represents the possible additions or subtractions from the inventory position during
a time period t, i.e., these are the probabilities that current on-hand stock soh,t,n increases or
decreases with X components to the stock in the next time period soh,t+1,n. As can be found
in the table, the probability that the inventory position decreases with 3 or 4 is very little in
both situations. An example to clarify reading the table, the probability that the inventory is
equal to 3 in the next time period (soh,t+1,n = 3) is equal to the probability that the on-hand
stock grows with 1 is 0.1557 or 0.4755, for respectively regular and expedited repairs. The
corresponding backup diagram is visualized in Figure 4.1. Since we assume that a new buy
component arrives at t+ 1, the probabilities for change in inventory are equal to the do nothing
scenario for soh,t,n+xt,n,buy. For the example back-up diagram, no combinations are considered.

Page 50.

Figure 4.1: Example back-up diagram with St = 2

4.1.6 Future Addition of Interventions

In the current decision-making model three interventions are included: Do Nothing, Expedite
and External Sourcing. For future use, we recommend implementing more interventions in
the model. Obviously, besides incorporating the future additions in the state formulation and
transition probabilities, the future additions should be implemented in the decision space and
reward functions. Interventions which can be added are explained in Section 2.3. We will briefly
explain the implementation for two of these interventions, namely emergency shipments, and
cannibalization.

First of all, we review the implementation of emergency shipments. This intervention is a
deterministic intervention, comparable with external sourcing. We assume this intervention to
be deterministic because the number of components available for emergency shipments is known
for each time period. Therefore, if there are components available, we can decide how many
components to use for an emergency shipment. Because the emergency shipment does not change
the inventory position, only the decision space will change. The transition probabilities will also
not change because no stochasticity is involved in the decision-making concerning emergency
shipments.

Contrary to emergency shipments, we treat cannibalization as a stochastic intervention.
As explained in Section 2.3, with this intervention, the repair shop tries to speed up a repair
by using components of unserviceable components to make one serviceable again. When the
OPP carries out this intervention, the number of repairs returning increases because the repair
can happen faster than in the typical case. However, there is a probability that the repair
shop does not finish that day, or there may be no component available for cannibalization.
Therefore, transition probabilities are necessary to express the probability of success of returning
components correctly.

Table 4.1: Regular and expedited repairs combined with demand transition probabilities

K P(St+1 − St = K|xexp,t = 0, St) P(St+1 − St = K|xexp,t > 0, St)
3 0.0006 0.0020
2 0.0167 0.0358
1 0.1557 0.2149
0 0.5179 0.4755
-1 0.2398 0.2116
-2 0.0584 0.0508
-3 0.0096 0.0083
-4 0.0012 0.0010

Page 51.

4.2 Exact Solution Approach

The problem, as approached now, is relatively small. Therefore, it is possible to solve the problem
with an exact approach. For this exact approach, we use a Stochastic Dynamic Programming
(SDP) method. This section will first explain the characteristics of dynamic programming.
Further, we discuss the optimal path and the efficiency of dynamic programming.

4.2.1 Backward Recursion

Richard Bellman initially found Stochastic Dynamic Programming to model and solve decision-
making problems under uncertainty (Bellman, 1957). Comparable with Deterministic Dynamic
Programming, SDP is a framework which can be solved to optimality by working backward from
the end of the problem towards the beginning, also known as backward recursion (Bertsekas,
2017). Besides the backward recursion, a forward recursion can also be used (Bertsekas, 2017).
With a forward recursion, only the states that are necessary for the given state are calculated.
However, since backward recursion gives a better scope of the value functions, we will continue
with the backward recursion.

Typically, for problems with finite planning horizons, SDP can be sufficient. Infinite MDPs,
on the other hand, are commonly easily to approach with, e.g., a Linear Programming approach
to define the steady state. Consequently, the goal of the MDP is often to provide a long-term
solution, whereas the SDP provides a solution for the given finite horizon. Therefore, the SDP
represents a particular class of the infinite Markov Decision Process, where underlying stochastic
processes are stationary that features the Markov property.

Winston (2004) characterizes dynamic programming by five points. We determine the ap-
plicability of dynamic programming for our problem by comparing our problem with the DP
problem’s characteristics. First of all, the problem can be divided into stages where decisions
are required at each stage. I.e., at each time step, a decision is required to move towards the
next state.

Second, each state has given properties that are needed to make an optimal decision. These
properties, for example, contain information about the inventory position. Note that these
properties do not include information about previously visited states. The optimal decision is
purely based on the properties known about the current state.

Third, the chosen decision is responsible for transforming the current state towards the next
state. Although the consequences of the decisions seem clear, this third characteristic needs
a little more explanation. For both the deterministic as the stochastic dynamic programming
problem, the consequences differ. In the case of Deterministic Dynamic Programming, we know
the next state directly from the given action. With stochastic dynamic programming, an action
only determines the probability distributions for transitioning from one to another state.

The fourth point Winston addresses is state independency. In other words, the optimal
decision for the current state is independent of the previously chosen decisions and visited
states. As mentioned in Section 3.4.2, the future is independent of the past given the present
(Z. Ding et al., 2020; Silver, 2015).

Finally, the problem can be divided into sub-problems. Therefore, there must exist a recur-
sion that relates all costs or rewards of all time steps t, t+ 1, t+ 2, · · ·, T − 1, T . The recursion
formula formalizes the backward procedure. This characteristic is in line with Bellman’s principle
of optimality, as discussed in Section 3.4.3. The recursion formula is mathematically expressed
in Equation 4.10 (Bertsekas, 2017).

Page 52.

Vt(St) = min
xt∈Xt

{
E(Rt|St, xt) + α

∑
St+1

P(St+1|St, xt)Vt+1(St+1)
}

(4.10)

In this formula, Vt(St) denotes the maximum expected reward that can be obtained during
states t, t+1, · · ·, T , given the current state St. The recursion function consists of two parts: the
expected reward now given current state and action (St, xt), and the future expected rewards.
In short, we can say that the recursion function determines which action xt maximizes the sum
of the current reward and cost-to-go function for the given state.

The expected reward in state t is calculated by a given reward function for the given action
xt. We calculate the cost-to-go function to determine the potential of particular actions in the
given state. We can calculate this by multiplying the transition probability from St to St+1
defined by the action with the maximum expected reward for the next time step (Vt+1). The
transition probabilities should add up to one since each decision leads to a state at t+1. Included
in the cost-to-go function is the discount factor α ∈ [0, 1]. The discount factor represents the
importance of future rewards in comparison with current rewards. When the alpha is lower,
future rewards are less important.

All in all, the MDP described in Section 4.1 fulfills all five characteristics as described above;
so, we can define the Markov Decision Process as a Stochastic Dynamic Programming problem.
Since our goal is to find the solution for the finite plan horizon, we can determine the steady-state
of the SDP.

4.2.2 Optimal Policy & Computational Efficiency

So far, the optimal expected reward is calculated for the given state St. To determine the
optimal decision strategy, we determine which actions will return each separate state’s best
reward. Note that the use of dynamic programming is way more efficient than enumerating over
all possible options since we are not determining all combinations of policies (Winston, 2004).
Although dynamic programming can be quite efficient for some problems, it does not apply to
large problems. Because the number of states grows exponentially with the number of state
variables, it is difficult to generate an exact solution (Sutton & Barto, 2018). We have earlier
referred to this problem as the Curse of Dimensionality.

At first, we describe the problem as a small state space problem. Therefore, modeling the
problem as an SDP and solving it with a backward recursion still generates optimal results.
We use the exact solution of the SDP to compare the quality of both simulation approaches’
decision-making. As mentioned, an SDP approach works best for relatively small state space
instances. When different components are calculated simultaneously in future research, the state
space will increase, which is time consuming to enumerate the different options. It is assumable
that the exact method is not able to solve the problem instance anymore.

4.2.3 Solving Stochastic Dynamic Programming in Short

In conclusion, backward recursion can be used for the exact approach of decision-making prob-
lems under uncertainty. The backward recursion algorithm is effective on problems that can be
characterized as described in this section. To generate a better overview of backward recursion,
Figure 4.2 visualizes the algorithm’s steps. Additionally to the flowchart, Appendix F gives the
corresponding Python pseudo-code for the SDP.

Page 53.

Figure 4.2: Structure of the SDP algorithm

4.3 Heuristic Approach

The second model we dive into is the heuristic solution. The heuristic-based solution aims to
determine the planning and learning algorithm’s performance quality and provide an alternative
solution approach. This alternative can be for the Dyna-Q if the heuristic performs better than
the planning and learning algorithm. Additionally, the heuristic is an alternative for the SDP
if the state space increases too much for the dynamic programming approach. This section
explains the chosen heuristic, the motivation of the heuristic, and the heuristic design.

4.3.1 Heuristic of Choice

For the heuristic approach, we use an approximation in the value space while ignoring the
cost-to-go function. In each time period t, the agent chooses the action which gives the best
direct reward. We use a myopic policy algorithm simulation for the first step approximation,
referred to as a greedy algorithm. Greedy algorithms are commonly used for Operations Research
neighboring solutions (Black, 2005). Since the greedy algorithm does not consider all branches of
alternatives, the greedy approach is often a quick heuristic and easy to implement. Nonetheless,
since the heuristic always chooses the action which returns the best direct reward, the chance
of getting stuck in a local optimum is large. The greedy heuristic will always avoid decisions
where direct costs are included, unless there is no other option.

Page 54.

Figure 4.3: Structure of greedy heuristic

Currently, the IAC’s operational decisions tend to maximize the expectation of the direct
reward. This approach corresponds with our defined greedy algorithm. Although the greedy
approach is not necessarily the optimal approach for this problem, the simple heuristic functions
as a good benchmark for the planning and learning algorithm’s outcome. Therefore, we suggest
future research to experiment with different heuristics, such as simulated annealing, to determine
the heuristics potential.

4.3.2 Heuristic Design
The greedy decision-making is shown in a flowchart in Figure 4.3. With this heuristic we try
every possible action to find which action gives the best direct reward. Then, with this action, we
move to the next state. To evaluate the performance of this heuristic, we use a simulation. The
simulation functions as an imitation of reality by iterating the planning horizon over multiple
episodes. Although the greedy heuristic does not consider future rewards, we simulate 14 days
to provide appropriate comparable environment behavior. In this way, we can compare the
heuristic and RL algorithm most fair. The Python-code is presented in Appendix F.

In short, the greedy algorithm performs the action which gives the best reward for the
current state. In other words, the greedy algorithm will do nothing unless there is no other
option. To evaluate the performance of this algorithm, we use a simulator which mimics 14 days
of the planning horizon for a fair comparison with the RL algorithm.

4.4 Planning and Learning Solution Approach
For well understanding of the Dyna-Q algorithm, we will review the structure (Section 4.4.1)
and the strengths (Section 4.4.2) of the algorithm. From the earlier given algorithm, we present
in Section 4.4.3 the general overview. Combined, this will support the decision for working with
the Dyna-Q algorithm.

Page 55.

4.4.1 Structure of Dyna-Q

In Section 3.4.5, we reviewed the difference between model-free and model-based algorithms,
and additionally, the hybrid algorithm Dyna-Q. To provide a better overview of the Dyna-Q
algorithm, we dive further into this algorithm’s structure. This will help us understand the
programming steps that follow. Note that the algorithm is already discussed in Appendix
C.3.3. As the literature describes, the learning model always consists of two parts: a reward
and transition component (Silver, 2015). This model describes how the agent understands
the environment. When parsing the algorithm, as discussed in Algorithm 3, we find that the
algorithm consists of a model-free algorithm, Q-Learning, and the model-based part, the Dyna
structure (Sutton, 1990).

Figure 4.4 displays the relationship between the experience, model, and value or policies.
Each arrow shows a relationship of influence and presumed improvement. The relationships
represent the behavior of the Dyna-Q algorithm. We read this as follows: the agent follows a
given value or policy function and acts to it. Next, based on the observation (or experience),
the agent learns by direct reinforcement learning. For direct reinforcement learning, we use
Q-Learning. Besides direct learning, the agent creates a second model based on the observations
so far. Based on this known model, the agent makes decisions for already visited states to get
closer to that state’s true value (planning). Therefore, the Q-table is updated both with direct
RL and planning steps for a faster converging solution.

When we translate this to the algorithm given in Algorithm 3, the Q-Learning and the Dyna
component can be explained as follows. The Dyna-Q algorithm first initializes both the Q-table
and the ModelM(S,A). Next, steps a to d give the normal path of the Q-Learning algorithm.
These steps contain (a) the definition of the current state S, (b) determining an action A, (c)
the observation of the reward R and the next state S′ given the action A, and (d) the updating
procedure of the Q-table.

To improve the learning pace of the process, we translate the model-free knowledge to a
model-based algorithm. For this model, we know the states and the actions. However, we
assume that the model learns rewards and transition probabilities during the process. We can
train the model using a Table Lookup Model, Linear Expectation Model, or Linear Gaussian
Model. Because the Table Lookup Model provides reasonable solutions following the literature
(e.g., Silver (2015)), and it is easy to implement, we use this model for further implementation.
We explain this method next.

Figure 4.4: Relationships of planning, learning, and acting (Sutton & Barto, 2018)

Page 56.

The transition probabilities for the model are expressed as Pη[s, a, s′], which represents the
probability that given a state and action, the agent moves to another state. We count how often
the transition from state St = s to St+1 = s′ occurs during the Q-Learning algorithm. Each
time the transition happens the count variable Pcη[s, a, s′], is incremented by one. The transition
probability observed so far is then calculated as noted in Equation 4.11. During each episode
of the learning algorithm, the model update happens. Consequently, the algorithm chooses a
state and an action based on the determined probabilities resulting from the model update.
Obviously, in the random state and action determination, states, and actions that are visited or
used more often have a higher probability of being chosen.

Besides the probabilities, we calculate the reward function for the model. We can denote
Rη[s, a] as the expected reward for a given state St = s and action At = a. The value of
the expected reward is calculated in Equation 4.12. The equation consists of the learning rate
α and the reward value of the Q-Learning algorithm for state-action pair R[s, a]. We include
(1 − α)R[s, a] to smooth the updating process. Furthermore, we add the direct reward R(s, a)
to fully update the model reward function.

Pη[s, a, s′] =
Pcη[s, a, s′]∑
i Pcη[s, a, i]

(4.11)

Rη[s, a] = (1− α)R[s, a] + αR(s, a) (4.12)

In the planning section of the algorithm, we define the planning steps, n. The planning
steps define the number of times that we run the Dyna-architecture. Sutton (1990) shows that
higher planning steps show faster-converging opportunities. In each planning step, we choose a
random St = s, with a random action At = a. From these experiments, we determine St+1 = s′,
R, and the Q-values as discussed. After the n planning steps, we return to the beginning of
the algorithm. Important to note is that a Dyna-Q algorithm with n = 0 is the basic form of
Q-Learning.

4.4.2 Strengths of Dyna-Q

Literature, as found, often discusses the Dyna architecture for maze problems. The agent can
choose whether he wants to go up, down, left, or right within the maze. The power of the
Dyna architecture here is that with each step in the algorithm, the learning steps will update
the state’s Q-value. Therefore, the Q-values likely improve and get closer to the true value. As

Figure 4.5: The inventory problem expressed as a maze

Page 57.

well as in a stationary situation, Dyna can find a suitable solution for a changing environment.
Within the changing environment, Dyna-Q+, as described by Sutton and Barto (2018), can be
a powerful method. However, the Dyna-Q+ algorithm is very computational intensive which is
not attractive for large state spaces. We explain this method in Appendix C.3.3.

Figure 4.5 represents the inventory problem as a maze problem. In our situation, we will
always start at t = 1, where the starting state is known. Due to variations in the stochastic
variables, such as demand and repairs, different states are unavailable at t + 1. These are dis-
played as gray squares and represent the obstacles of the maze. While choosing an intervention,
the agent moves one step in time and moves up or down depending on the action. This maze
aims to reach the terminal state, which is each state at time T .

4.4.3 Dyna-Q Applied

The structure of the Dyna-Q algorithm is visualized in Figure 4.6. The algorithm, as denoted
in Algorithm 3, is directly translated into the flowchart. Similar to the other modeling ap-
proaches, we present the corresponding Python pseudo-code in Appendix F.2.2, with additional
code structures as cost-function and the class definition of the inventory environment. Earlier,
we discussed that the Dyna-Q algorithm is model-free. To imitate the real-world, we use a sim-
ulation model where we can test the Dyna-Q’s performance. we test it with different planning
steps in the experiment setting, including n = 0 to find the basic Q-Learning performance.

Figure 4.6: Structure of the Dyna-Q algorithm

Page 58.

4.4.4 Dyna-Q in Summary

In summary, Figure 4.4 shows that we can apply direct reinforcement learning and model learning
to plan and learn policies and value functions with the agent’s experience. Therefore, Dyna-Q
is a combination of: direct reinforcement learning from real-world experiences, updating of an
internal model by the observed tuples, and simulating the experiences by using a model (Sutton
& Barto, 2018; Silver, 2015). While building the model for our problem statement, we use the
following structure; Initialize all variables, iterate Q-Learning step for the time horizon, Define
Model M(S,A), Simulate M(S,A) n times. The Dyna-Q algorithm is strong in the learning
capacity through the planning step. This helps to converge faster towards an acceptable solution.

4.5 Conclusion
The goal of this chapter is to help to answer the fourth sub-question. To create an overview
of our problem statement’s solution design, we explained the model approach in this chap-
ter. We discussed the applied stochastic dynamic programming framework and three solution
approaches.

Stochastic Dynamic Programming Framework In this chapter we discussed the outline
of the SDP related to our problem in Section 4.1. The SDP consists of decision, state, reward,
and transition probabilities. The dynamic problem can be defined in the following characteris-
tics. The decision variable xt,n,f defines which intervention f is carried out at time step t for
component n, displayed in Equation 4.2. Next, we defined the state-space of the MDP. The state
can be defined as the inventory position, It,n, at time t, for component n. The inventory position
is dependent of the current stock, soh,t,n, components in repair, srepair,t,n, components at the
customer, scustomer,t,n, and new buys, xt,n,buy, of a component n on time t. The relationship is
noted in Equation 4.7.

The reward function is given in Equation 4.3. This equation includes backorder costs
BO(soh,t,n), intervention costs En,f , and holding and shortage costs L(Ieffective,t,n). In this
way, the agent is forced to make the trade-off between preventing a backorder and keep the
holding costs for the long-term as low as possible. Our model connects the short-term decisions
with long-term outcomes by validating the stock levels with the tactical level. Since our goal is
not to overrule tactical decisions but optimize decision-making on the operational level, we pe-
nalize both way deviations. Finally, we determined the transition probabilities in Equation 4.8.
The probabilities are dependent on the stochastic variables repair Zreturn,t,n and demand Dt,n.

Solution Approach For the solution approach, we discussed three different methods: back-
ward recursion, Greedy Algorithm, and Dyna-Q algorithm. The state-, decision-, and action-
space are all three relatively small. Therefore, we are still able to solve the problem exactly.
The SDP works following the recursion formula (Equation 4.10) and given the structure from
the flowchart in Figure 4.2 and pseudo-code of Appendix F.2.1. When state-, decision-, and
action-space grow, the complete environment will grow. Due to the Curse of Dimensionality it
will be very time consuming to solve the problem with an exact solving method. Therefore, a
heuristic or planning and learning approach is necessary.

For the validity of the algorithm, we compare the quality of the Dyna-Q algorithm with
decision-making following a greedy heuristic. With the simulation, we create a big data set
where statistical analysis can discover trends or correlations. Finally, the model design of the
Dyna-Q algorithm is reviewed. Appendix F.2.2 shows the structure of the Pseudo-code applied
in Python. In conclusion, the exact solution of the backward recursion can be compared with
the alternative models (Greedy and Dyna-Q) to test the quality of the alternatives.

5 | Experimental Results, Analysis,
and Optimization

This chapter analyzes and presents the results of the three different solution approaches, as
discussed in Chapter 4. In Section 5.1, we discuss our assumptions and parameter tuning for
implementing three solving methods to our problem statement. Next, we will briefly discuss the
policy learning for the backward recursion and Dyna-Q algorithm, in Section 5.2. Finally, we
present our results of the backward recursion, greedy algorithm, and Dyna-Q algorithm within
different experimental settings in Section 5.3.

5.1 Assumptions and Parameter Tuning
Within this first section, we will briefly introduce and substantiate our assumptions for the
experimental setting. Additionally, we will also explain the expected impact for each of the
assumptions and which model each assumption applies most. Then, we discuss parameter tuning
for our experimental setting.

5.1.1 Experimental Assumptions

The assumptions we discuss next, concern the following topics: base stock level, state space,
pseudorandom numbers, and the starting state. These assumptions apply to all three solution
approaches both in learning and evaluating.

Base Stock Level Our first assumption concerns the base stock level (or tactical level) during
the experiments. In Section 2.7.1, we calculated this value as the current tactical level of The
IAC. Therefore, for simplicity and to stay close to the real setting, we assume tactical level
Itactical = 2 for all training and evaluation experiments.

State Space To be able to compare the state space properly, we have to frame it accordingly
for all solution approaches. Therefore, we will use the following intervals for the state tuple
(soh,t, srepair,t, scustomer,t, t): soh,t ∈ [−3, 3], srepair,t ∈ [0, 1], scustomer,t ∈ [0, 5], and t ∈ [1, 14].
With the limitation of maximum five components in the loop, and therefore five start inventory
positions, we have a total of 65× 5× 14 = 5.880 possible states.

Pseudorandom Numbers Third, we discuss the randomness in the different model ap-
proaches. In our objective to find a suitable policy for the spare part intervention problem,
we try to evaluate and compare the models as well as possible. Therefore, we use pseudoran-
dom numbers to reproduce an exactly corresponding experimental setting for each of the three
different modeling approaches. We do this by fixing the random number seed in Python. As
a result of this, demand, returns from repairs, and returns from customers behave exactly the
same in each experiment.

59

Page 60.

Starting State Next, we discuss our approach to the starting states of each episode. For each
experiment, we fix the stock on-hand soh,t, in repair srepair,t and at the customer scustomer,t.
We will use starting states with some challenges involved for the experiments, i.e., we start in
a state with already two backorders. We expect that the decision support system is obliged to
use one or more interventions.

Backorder Counter As mentioned in Section 4.1.3, for the SDP we assume the backorders
penalty to increase over time. Recall Equation 4.3b, where agn represents the backorder counter
for each state. Because we cannot easily count the backorders in a backward manner, we
use another equation for the exact solution approach. Here, we use the following procedure:
agn = 1.1t. Since the probability of a backorder occurring is larger at the end of the time
horizon, we use a penalty dependent on time. For the greedy heuristic and Dyna-Q we will use
agn = 1.15gn , where gn counts the days that backorders are open. Since the SDP wants to reach
the lowest cost position, including the cost-to-go function in decisions, it is not likely that the
system will ignore backorders for a long time period.

Discount Factor The final assumption we make concerns the discount factor α for the back-
ward recursion and γ in the Dyna-Q algorithm. Recall that the discount factor represents
the importance of future rewards in comparison with current rewards. The higher alpha, the
more important the future rewards are. Since we are interested in the long-term impact of the
decisions, a high discount factor is required. For this reason, we assume α = γ = 1.

5.1.2 Initialization and Parameter Tuning

The parameter tuning helps us in defining the environment for the experimental setup. Besides
the assumptions mentioned previously, the backward recursion does not require parameter tuning
for learning the optimal policy. Therefore, we discuss parameter tuning for Dyna-Q within
the scope of learning. Next, we discuss the parameter tuning for an evaluation approach by
simulation applicable for all three methods.

Learning

For the first initialization to update all state-action pairs of the Q-table, we use the greedy
algorithm. Recall the Q-update function to be as noted in Equation 5.1. With this initialization,
we try to find a well-performing ε first. To find the value of ε, we run the model 35.000 episodes
with α = 0.3 and γ = 1 for five different values of epsilon: ε = 0, ε = 0.1, ε = 0.3 ε = 0.5
ε = 0.7. The learning rate α is set to 0.3, such that the newfound value does not impact the
Q-value too much. The used γ is equal to one because we do not want to include discounted
cost-to-go values in decision-making. To ensure a decay in epsilon, and therefore exploit more
and more, we use an epsilon decay value εdecay = 0.9995. The results of the different values for
the first experimental setting of ε are visualized in Figure 5.1a. Learning curves of the other
experiments are presented in Appendix G. We choose an epsilon that shows decent learning for
each experiment while including an acceptable part of exploring. Therefore, we conclude the
following epsilon values: ε = 0.3 for the high tactical preference, ε = 0.7 for the high operational
preference, and ε = 0.5 for the equilibrium point.

Q(S,A)← Q(S,A) + α
[
R+ γmin

a
Q(S′, a)−Q(S,A)

]
(5.1)

Next, to define the planning steps n, we use ε = 0.3, εdecay = 0.9995, α = 0.3 and γ = 1 for a
total of 35.000 episodes for the first experiment. With the greedy values as initialization input,
we determine the episode values for n = 0, n = 10, and n = 20. Figure 5.1b presents the course

Page 61.

of episode costs. From the figure, we conclude that the performances of all three approaches
are comparable for this instance. As discussed in Section 4.4, Dyna-Q’s strength is to converge
faster with the planning steps incorporated. Therefore, we will proceed with the experimental
setting n = 20.

In short, for the experiments, we found a value of ε = 0.3, ε = 0.7, and ε = 0.5, respectively.
With εdecay = 0.9995, the epsilon will decay each episode, such that we will exploit more and
more. The learning rate α is set to 0.3 such that the newfound value does not impact the Q-value
too much. Although we find that the model converges after approximately 15.000 episodes, we
will use 35.000 episodes to learn all possible states properly. To find fast converging learning,
we use n = 20 planning steps.

(a) Tuning ε with n = 0

(b) Tuning n with ε = 0.3

Figure 5.1: Learning curves in original scenario of (a) epsilon and (b) planning steps

Page 62.

Evaluating

We evaluate all policies derived from the backward recursion, greedy heuristic, and Dyna-Q by
a simulation model. As mentioned, we use a pseudorandom number generator with a common
seed for demand and repair. The start states are fixed for the experiments. From Law (2015),
we can derive the formula of calculating the number of replications for the experiment, denoted
in Equation 5.2.

n∗ = min
{
i ≥ n :

ti−1,1−α/2
√
S2
n/i

|X̄n|
≤ γ

1 + γ

}
(5.2)

With this equation, we can express the number of replications required to obtain a given
relative error γ. Further ti−1,α/2 represents the t-distribution, and X̄n and S2

n are the sample
mean and variance. We run the following settings for the greedy heuristic to determine the
number of replications of the evaluation: α = 0.05, γ = 0.025 and n = 25.000, we find a value
of n∗ ≥ 11.535. Since the calculated value of n∗ is a minimum amount of repetitions required,
we conclude to use 15.000 repetitions for our evaluation. Recall that we will learn the policies
of the backward recursion and Dyna-Q preliminary, so we cannot change the policies during the
evaluation.

5.2 Learning

Before evaluating and comparing the quality of the different policies given by the different
algorithms, we first have to learn the (optimal) policy. Learning applies to backward recursion
and Dyna-Q only, which we will discuss in this section. The greedy heuristic does not learn since
it is a short-sighted heuristic. Therefore, the greedy algorithm is excluded from this section.

5.2.1 Backward Recursion

With the backward recursion, we start calculating at t = T . We work backward from the end of
the planning horizon, calculating at each state in each time period the expected first step costs,
including the approximate cost-to-go function. The states, for which the backward recursion is
calculated, exist of the tuple (soh, srepair, scustomer). Recall the formula used to solve the SDP,
is as follows:

Vt(St) = min
xt∈Xt

{
E(Rt|St, xt) + α

∑
St+1

P(St+1|St, xt)Vt+1(St+1)
}

(5.3)

Solving the SDP with a backward recursion usually is sufficient since the SDP calculates
the expectation exactly without sampling it. However, because the backorder counter in the
exact solution and the simulation function differs, there might be a mismatch in the optimal
policy. For consistency of policy performance, we use the policy from the exact solution within
an evaluation step.

Within the evaluation simulation, we run episodes with different start states. Naturally, the
start states are given within the range of the state space. Because our cost function penalizes
the terminal state dependent on the start state, we solve the SDP for Itotal = 0, Itotal = 1,
Itotal = 2, Itotal = 3, and Itotal = 4. Note that we do not take backorders into account for the
total stock, and solving Itotal = 5 is not relevant because it is an absorbing state. Therefore,
solving these five problem instances is sufficient.

Page 63.

Table 5.1: Count and percentage of decisions in the total state space per start inventory

Itotal = 0 Itotal = 1 Itotal = 2 Itotal = 3 Itotal = 4
Action Count % Count % Count % Count % Count %
Do Nothing 399 85 618 73 618 73 587 69 530 63
Expedite 0 0 130 15 130 15 120 14 96 11
Buy 1 40 9 43 5 43 5 57 7 94 11
Buy 2 25 5 26 3 26 3 32 4 54 6
Buy 3 4 1 4 0 4 0 10 1 22 3
Exp Buy 1 0 0 21 2 21 2 30 4 38 4
Exp Buy 2 0 0 3 0 3 0 9 1 11 1
Exp Buy 3 0 0 0 0 0 0 0 0 0 0

Figure 5.2: Optimal decision ratio per day, for Itotal = 3

We present the complete policy tables per starting inventory in Appendix G.1. Table 5.1
gives the count and percentage of how often an intervention is optimal. Here, we see that at,
e.g., Itotal = 0, we do nothing for 85% of the time. We see that the only time we perform another
action is when we have backorders, and the stock at the operators is less than the tactical level.
For Itotal = 1 and Itotal = 2, we see a slight shift in policy behavior. Still, for the vast majority
of the decision points, we do nothing. However, now we include expediting since there might be
a component in the repair shop. We still see the extreme measures occurring in most backorder
cases with an inventory position lower than the tactical level.

The policy behavior moves even further towards extreme measures for Itotal = 3 and Itotal =
4. Note that this is caused because we cannot move down in the inventory position during
this experimental setting. Therefore, states lower than the starting state cannot be reached.
Nevertheless, because of the tactical penalty, the SDP advises more extreme measures if we
move further from these lower states.

Additionally, in Figure 5.2, we see the expression of different preferred actions per day. As
well as the episode results, we see a majority of the optimal decisions to be do nothing, followed
by expediting. We see that expediting is not optimal on the first day because the probability of
a repair returning the first day is already high. Nonetheless, if the part did not return on day
1, we start expediting the next day.

Page 64.

5.2.2 Dyna-Q

For the learning process of Dyna-Q, we use the preset parameters; ε = 0.3, εdecay = 0.9995,
α = 0.3, and γ = 1. Using a simulator, we can learn the policy for the current settings. We run
the simulator 35.000 episodes and n = 20, where pseudorandom numbers determine demand
and repairs.

Figure 5.3: Learning of Q-values over episodes for the IAC’s initial setting

Figure 5.3 shows us the Dyna-Q learning curve with the IAC’s initial cost setting. Here, we
present the actual learning curve and its moving average. We see a volatile result because of the
changing start states and the low probability of an event occurring. We store the results of the
learning simulation in a Q-table, such we can use them in our evaluation.

5.3 Evaluating
Within this section, we discuss the evaluation and comparison of the simulation model. We
evaluate and discuss three different scenarios: the IAC’s initial situation, low tactical impact,
and the equilibrium point. We will explain the different scenarios and their purpose first. Next,
we evaluate the numerical results of the simulation. The learning steps, discussed in Section 5.2,
are repeated for the other two scenarios.

5.3.1 The IAC’s Initial Setting

In Chapter 4 we presented the solution approach for our stochastic dynamic programming frame-
work. Here, we defined our states, decisions, costs, transition functions and transition probabili-
ties. The values used for this setting are derived from the desire, requirements, and data of the
IAC, as discussed in Section 2.7.1.

Within this setting, we can find in the cost function (Equation 4.3) that the terminal state
costs currently have an immense impact on the total costs. In, e.g., backorder costs, we included
the turnover rate un but not in the terminal state costs. From our data analysis, we conclude
that this value is approximately un = 0.155. So, the weight of our terminal state cost is 6.45
times higher than all other costs. Therefore, we conclude that operational interventions have
little to no impact and will be ignored for this reason.

Page 65.

5.3.2 Low Tactical Impact
To determine the impact of operational decisions, we lower tactical limitations by using a
turnover rate un = 1. Due to the significantly increased impact of operational interventions, we
expect that tactical guidelines will be overruled most of the time.

The higher operational impact is best suitable for open inventory systems, where the inven-
tory disappears when customer demand occurs. Although this is not the IAC’s way of working
in the CMA-loop, we can determine the differences in decisions due to the shifting focus.

5.3.3 Equilibrium Point
The CMA-program works with a closed inventory loop. Therefore, it is not desirable for the IAC
to work with a strategy, as discussed in the second point. In case operational decisions overrule
all other limitations, inventory will increase tremendously. However, if tactical limitations have
too much weight in decision-making, a decision support system is unnecessary. Therefore, we will
define the equilibrium point of the tactical and operational levels. The optimal decision-making
should include a balanced approach.

5.3.4 Results and Analysis
We will compare the three solving methods for each scenario individually. We will do this, by
comparing and evaluating each scenario on cost behavior, actions, and backorders.

Initial Scenario

The first scenario we look into is the IAC’s original setting. This scenario includes a high tactical
preference in decision-making. Cost, decision, and backorder results are denoted in Tables 5.2,
5.3, and 5.4, respectively. Additionally, we visualized the cost distribution of all three solution
approaches in Figure 5.4. For this scenario, we see that the backward recursion performs better
than the other two methods. Further, we see that the Dyna-Q solutions are relatively close to
the optimal solution values for the first two start states. Only in the start state (-2, 1, 1), we
see greedy and Dyna-Q performing comparable. Because we have one component in the repair
shop, the decision-making is more straight-forward, leading to better predictable costs. For the
final two experiments, we see that the greedy heuristic performs better than Dyna-Q. At the
same time, we can find that Dyna-Q performs more actions and is, therefore, more conservative.

Figure 5.4: Costs per episode in initial scenario

Page 66.

Table 5.2: Cost performance of three solving methods in initial scenario ($)

Exact Greedy Dyna-Q
Start state Mean Median Mean Median Mean Median
(-2, 0, 0) 28.142,38 23.626,00 79.401,45 75.678,59 44.204,84 33.876,44
(-2, 0, 1) 38.474,38 31.853,75 77.281,31 73.621,91 58.285,25 36.935,40
(-2, 1, 1) 29.498,98 22.497,00 49.361,40 42.373,78 49.626,46 24.980,44
(-2, 0, 2) 66.559,47 59.281,54 78.336,44 74.993,03 95.759,03 111.157,75
(-2, 0, 3) 85.699,73 81.783,35 85.442,75 81.783,35 115.693,53 103.005,40

Table 5.3: Percentage action behavior of three solving methods in initial scenario

Exact Greedy Dyna-Q
Action 0 1 2a 2b 3 0 1 2a 2b 3 0 1 2a 2b 3
DN 91 92 91 92 100 100 100 99 100 100 88 80 87 88 88
Exp 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
B1 1 0 8 8 0 0 0 0 0 0 5 20 12 4 4
B2 8 8 0 0 0 0 0 0 0 0 7 0 0 7 8
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
EB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.4: Expected backorders of three solving methods in initial scenario

Exact Greedy Dyna-Q
(-2, 0, 0) 0,37793 2,28458 0,34077
(-2, 0, 1) 0,49755 2,28288 0,29193
(-2, 1, 1) 0,51419 1,41953 0,40696
(-2, 0, 2) 1,41684 2,28288 0,54185
(-2, 0, 3) 2,29020 2,28288 0,49789

Low Tactical Impact

For the low tactical impact, we conclude that by lowering the tactical planning costs’ impact,
the system includes more different interventions in the planning period. The optimal solution
recommends now in situations where backorders occur to buy a new component, i.e., backorder
costs’ impact increases. This new cost distribution is visualized in Figure 5.5. Contrary to the
backward reduction, we see that the greedy heuristic applies the same behavior as in the previous
experiment; it does nothing as long as possible. Ignoring the cost-to-go function causes this
behavior. The Dyna-Q algorithm shows in this experiment a significant improvement compared
to the greedy heuristic and performs close to the optimal solution. Again, in the last two
experiments, we see a better performance in costs of the greedy algorithm but also more EBOs
than Dyna-Q. All results of the different solving methods are numerically supported in Tables
5.5, 5.6, and 5.7.

Page 67.

Figure 5.5: Costs per episode in scenario with low tactical impact

Table 5.5: Cost performance of three solving methods in scenario with low tactical impact ($)

Exact Greedy Dyna-Q
Start state Mean Median Mean Median Mean Median
(-2, 0, 0) 38.790,20 34.187,02 84.719,44 75.942,11 46.542,19 38.092,00
(-2, 0, 1) 57.731,13 41.084,02 105.578,40 94.252,05 63.662,39 38.223,1
(-2, 1, 1) 48.199,40 28.633,58 75.626,95 66.654,69 66.407,42732 31.396,905
(-2, 0, 2) 95.085,44 65.395,10 147.043,69 132.536,855 163.970,43 131.743,11
(-2, 0, 3) 166.365,27 108.598,10 236.114,84 169.201,27 253.365,74 191.880,42

Table 5.6: Percentage action behavior of three solving methods in scenario with low tactical
impact

Exact Greedy Dyna-Q
Action 0 1 2a 2b 3 0 1 2a 2b 3 0 1 2a 2b 3
DN 88 88 88 89 92 84 85 87 86 88 91 87 85 72 48
Exp 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
B1 5 4 4 3 0 6 6 6 6 5 1 5 12 15 43
B2 8 8 0 8 8 2 2 1 2 2 0 8 3 10 2
B3 0 0 0 0 0 0 0 0 0 0 8 0 0 3 8
EB1 0 0 8 0 0 5 5 5 4 3 0 0 0 0 0
EB2 0 0 0 0 0 2 2 0 2 1 0 0 0 0 0
EB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 68.

Table 5.7: Expected backorders of three solving methods in scenario with low tactical impact

Exact Greedy Dyna-Q
(-2, 0, 0) 0,19741 0,73581 0,16207
(-2, 0, 1) 0,20979 0,74224 0,21235
(-2, 1, 1) 0,21020 0,47649 0,22048
(-2, 0, 2) 0,26060 0,78731 0,37043
(-2, 0, 3) 0,49755 1,02743 0,58030

Equilibrium

In the previous two experiments, we saw the impact of a tactical and operational preference in
decision-making; the tactical preference makes operational decisions unnecessary and vice versa.
Therefore, we are interested in the equilibrium point of tactical and operational decision-making
to include the best of both. To shift the impact of decisions from tactical to operational, we
changed the turnover rate’s value. Therefore, we divided this difference into ten steps in order
to find the best suiting point. By solving the backward recursion for each of these points, we
find the results presented in Table 5.8. We are interested in the point where we find a decent
balance between tactical and operational decisions. We think point four is best suitable for this
purpose.

Table 5.8: Percentage actions per preference step

TP 1 2 3 4 5 6 7 8 9 10 OP
Do Nothing 73 67 66 63 61 58 57 56 55 53 53 52
Expedite 15 16 15 15 14 13 13 12 11 11 11 11
Buy 1 5 7 7 8 9 10 10 11 12 12 13 13
Buy 2 3 4 4 5 6 6 7 7 7 8 8 8
Buy 3 0 1 2 2 3 3 4 4 4 4 4 4
ExpBuy1 2 4 4 5 6 6 7 7 7 7 7 7
ExpBuy2 0 1 2 2 3 3 4 4 4 4 4 4
ExpBuy3 0 0 0 0 0 0 0 0 0 0 0 0

Naturally, for the final experiment within the equilibrium point, we see again the exact
solution outperforming the other two solution approaches. Also, for this experiment, the spread
of the distribution is relatively small. Contrary to the other experiments, we see that the greedy
algorithm performs poorly in this scenario; the greedy algorithm finds it hard to decide between
tactical and operational levels. Therefore, both costs and backorders are high in this scenario.
Dyna-Q, on the other hand, performs in this scenario very well. The results that Dyna-Q shows
are in most situations relatively close to the optimal solution while having similar or even better
EBO. Reinforcement learning shows its potential and applicability very well in this scenario.

Page 69.

Figure 5.6: Costs per episode in equilibrium point

Table 5.9: Cost performance of three solving methods in equilibrium point ($)

Exact Greedy Dyna-Q
Start state Mean Median Mean Median Mean Median
(-2, 0, 0) 49.497,21 34.502,20 125.424,21 118.324,97 50.678,68 42.795,07
(-2, 0, 1) 49.494,70 35.703,08 144.346,13 133.716,01 83.593,17 66.445,00
(-2, 1, 1) 40.375,23 24.102,32 99.926,92 81.365,86 49.603,38 27.692,25
(-2, 0, 2) 84.040,00 61.992,69 178.627,19 172.258,98 121.774,90 110.530,00
(-2, 0, 3) 130.019,43 105.195,69 220.730,98 204.156,47 156.355,81 125.796,69

Table 5.10: Percentage action behavior of three solving methods in equilibrium point

Exact Greedy Dyna-Q
Action 0 1 2a 2b 3 0 1 2a 2b 3 0 1 2a 2b 3
DN 88 90 90 92 92 85 85 88 86 88 91 82 87 89 73
Exp 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
B1 4 2 2 0 0 6 6 5 6 5 2 10 5 1 27
B2 8 8 0 8 8 2 2 1 2 2 1 8 0 2 0
B3 0 0 0 0 0 0 0 0 0 0 7 0 0 8 0
EB1 0 0 8 0 0 4 4 4 4 4 0 0 8 0 0
EB2 0 0 0 0 0 2 2 1 2 1 0 0 0 0 0
EB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 70.

Table 5.11: Expected backorders of three solving methods in equilibrium point

Exact Greedy Dyna-Q
(-2, 0, 0) 0.22229 1.64631 0.31488
(-2, 0, 1) 0.28702 1.64680 0.18311
(-2, 1, 1) 0.28954 0.99805 0.21333
(-2, 0, 2) 0.46247 1.65723 0.21782
(-2, 0, 3) 0.49755 1.76978 0.57264

5.4 Conclusion
In this chapter, we discussed the initialization, learning, and evaluation of our problem instance
with three different solution approaches. In this way, we find the final answer on the fourth
sub-question.

Learning Before evaluating the performance of the solution approaches, we learn the optimal
policy of the backward recursion and the policy of the Dyna-Q algorithm. For the optimal policy,
we see that, on average, 73% of the time, we do nothing in the scenario where tactical input
has high importance. We see that the percentage of doing nothing decreased to 52% of the time
for the operational preference. To learn the Dyna-Q policy, we use parameters: α = 0.3, γ = 1,
and n = 20 for 35.000 episodes. Furthermore, we use an εdecay = 0.9995 for ε = 0.3 for the first,
ε = 0.7 for the second, and ε = 0.5 for the third experiment.

Evaluating We run the solution approaches for three different scenarios; tactical preference,
operational preference, and the equilibrium point. By comparing these three preferences, we
create good insight into the relationship between the layers of decision-making. Naturally, the
exact solution gives the optimal solution for all three scenarios. Further, we see that Dyna-Q
performs better than the greedy algorithm when the starting inventory is lower than the tactical
level in the first two scenarios. When the starting inventory is equal or higher than the tactical
level, the greedy performs comparably. Nevertheless, in the equilibrium point, we see that the
performance of Dyna-Q is close to optimal in all cases. Here, the greedy algorithm cannot find
the right decision, suiting both operational and tactical decision-making.

In conclusion, for straightforward cases, heavy computational algorithms as reinforcement
learning are not useful. We see a simple (greedy) algorithm performs comparable or better with
the Dyna-Q algorithm in the states where buying leads to a high penalty. Both for tactical
and operational preference, we see that when the starting state is higher than the tactical level,
Dyna-Q starts performing worse. However, when combining the two worlds of operational and
tactical decision-making, Dyna-Q outperforms a simple heuristic in every case. Therefore, by
creating a decision-making environment where both operational and tactical levels are essential,
the IAC can create higher availability with reasonable costs.

6 | Implementation

In the previous chapters, we discussed the solution design and results of a single item decision-
making process. Because the Independent Aerospace Company (IAC) aims to use the decision
support system for multiple items simultaneously, depending on the alert generation, we discuss
the possibilities of implementing the proposed decision-making system. First, we will discuss
the possibility of using a more complex problem and how to cope with scalability in Section 6.1.
Additionally, this chapter discusses the possibilities and strengths of implementing the DSS in
a Digital Twin in Section 6.2. With the information obtained from this chapter, we can answer
the fifth and last sub-question of this research.

6.1 Scalability

The current problem instance, as solved in Chapter 5, works with a relatively small problem
instance. Although this first step with a single item approach might already be valuable for the
IAC, the aim is to include a more complex instance in future use. Therefore, we will discuss
the possible pitfalls of scaling the problem instance and how to overcome this problem. We will
consecutively discuss the scalability in the number of state and action spaces and the possibility
of reinforcement learning with big data. Although there can be many other scalability types,
we think these two types are the most relevant for the IAC’s purpose.

6.1.1 Increasing State- and Action Space

Currently, we are using a tabular solving method. In many real-world problems, the state- and
action spaces are enormous. For these instances, a tabular solving method is a very inefficient
way of computing the solution. So, with an increasing state- or action space, the aim is to use an
approach based on each state’s features. Therefore, we make an estimation, also called a function
approximation. The function approximation methods expect to receive examples of the desired
input-output behavior of the function they are trying to approximate (Sutton & Barto, 2018;
Varshavskaya, Kaelbling, & Rus, 2006). There are many different function approximators; the
most common approximation functions are linear, neural networks, and decision trees (Z. Ding
et al., 2020).

Nonetheless, from Sutton and Barto (2018), we conclude that not all approximators are
suitable for all different reinforcement learning instances. This is because we encourage the RL
system to learn online by interacting with the environment. Therefore, methods that support
nonstationarity in the decision-making are best suitable for reinforcement learning.

Finally, Z. Ding et al. (2020) conclude that a way to leverage high-dimensional spaces’
scalability is by using Deep Reinforcement Learning (DRL). For some problem instances, only
a function approximation might not be sufficient to overcome the scalability issue. By including
Deep Neural Network (DNN), the learning algorithm can solve a larger problem instance. This
network develops features internally that help in learning and generalizing complex problems.

71

Page 72.

6.1.2 Learning with Big Data

So far, we have discussed multiple large instance cases, e.g., AlphaGo (DeepMind, 2019). Z. Ding
et al. (2020) finds that DeepMind solves the DRL methods in a population-based training frame-
work and advanced network structures. Within these approximate value-based methods, there
is sample complexity that guarantees the approximate policy will get close to the optimal policy
when there is lots of data by combining different sub-optimal policies. However, the correspond-
ing computational time for a given problem is very inefficient. Techniques such as Imitation
Learning and Hierarchical Reinforcement Learning strategies are often required for big-data
instances (for further reading, see (Z. Ding et al., 2020)).

6.2 Digital Twin

This section reviews functionality and utility of a DSS within a Digital Twin environment for
the IAC. We will first provide a general introduction about Digital Twins since there is no
unambiguous definition covering every field. In other words, Digital Twin can mean different
things for different people with different interests, expertises, and capabilities. Next, we will
give the functionality of a Digital Twin, supported by the literature. Based on the reviewed
literature and definitions from practice, we give our interpretation, which we will use in this
thesis when referred to Digital Twin. We combine the knowledge to discover how the concept
of Digital Twin can benefit the IAC.

6.2.1 General Introduction

As mentioned in Section 1.3.2, the Digital Twin (DT) is a realistic model of the system, used for
simulation, optimization, and control (Cronrath et al., 2019). A Digital Twin is the ability to
take a virtual representation of the elements and dynamics of how an Internet of Things (IoT)
device operates, works, and lives throughout its life cycle (O’Connor, 2017). Therefore, it has
to understand all of its dynamics. The Digital Twin learns from reality, use and design (Grieves
& Vickers, 2017).

Currently, Digital Twins are often used for prototyping, factory layouts, and manufacturing
simulations. As stated in the literature, the Twin’s purpose is to support decision-making
by understanding, learning, and reasoning for decision-makers (Popkov, 2019). Furthermore,
the Twin should analyze its validity in different cases to improve its effectiveness (Marmolejo-
Saucedo, 2020). In the application of supply chains, the DT learns to understand and monitor
the supply chain’s behavior, predict non-regular situations, and plan actions. Additionally, as in
our problem statement, a control tower approach benefits from service and inventory reduction.
The reduction is due to the Digital Twin Supply Chain (DTSC) explores the potential beyond
the (current) equipment and factory boundaries (Srai, Settanni, Tsolakis, & Aulakh, 2019; Park,
Son, & Noh, 2020).

Altogether, a Digital Twin is the virtual representation or simulation of a real-world en-
vironment. The Twin helps to improve the effectiveness of processes by understanding the
dynamics and elements of the virtual-environment. Furthermore, the DTSC determines what
decision-making is required for different scenario inputs (alerts), which is beneficial to service
and inventory levels.

6.2.2 Functionality of the Twin

A Digital Twin is based on an accurate simulation model. However, there are some criteria that
a Digital Twin requires. First of all, the Digital Twin of the Supply Chain should be able to
collect and analyze the supply chain interaction (e.g., changes in demand) and enable predictions

Page 73.

of financial flows and scenario testing (Popkov, 2019; Barykin, Bochkarev, Kalinina, & Yadykin,
2020). By synchronizing the information between virtual- and physical worlds, lead times can be
reduced significantly (Y. Wang, Wang, & Liu, 2020). Additionally, from this paper, we conclude
that the dynamic and comprehensive data collection improves the forecast accuracy. The virtual
models allow us to develop action plans and tackle detrimental situations.

Nonetheless, not only providing virtual data is essential for a Digital Twin. The Twin should
additionally learn from reality input, and feedback from use (Grieves & Vickers, 2017). Finally,
Popkov (2019) states that we can integrate a Supply Chain Digital Twin into a service control
tower, such we can directly improve the Information manpower layer, as discussed in Section 3.1.

6.2.3 Digital Twin Applied to the Independent Aerospace Company
As mentioned in the section’s introduction, Digital Twins’ definition differs in each field and per
person. Based on the literature, current practice, and functionality, we define our understanding
of the concept of Digital Twins. In this thesis, the term Digital Twin will describe a virtual repre-
sentation or simulation model of a real-world entity or system that uses real-time data to predict
the dynamics. Furthermore, the Twin includes understanding, learning, and reasoning within
a two-way interaction between the real and virtual worlds to pursue continuous improvement.
We explain the two-way interaction in the IAC’s interest further in this subsection.

The virtual environment should behave and react comparably with the real world to create a
feasible test-environment, i.e., realistic scenarios should be simulated to advise optimal decision-
making. As discussed, the Twin should learn directly from the inputs, as well as from the
feedback from use. For the IAC’s objective, we use the Internet of Things (IoT) to align the
real and virtual worlds. Additionally, the virtual model within the DT can change both in real-
time as during the operation. Therefore, a DT consists of connected products, using the IoT
and digital threads (Madni, Madni, & Lucero, 2019). These digital threads provide connectivity
throughout the system’s lifecycle within the physical to the Digital Twin’s updating process. The
connectivity within a DTSC leads to a better synchronization of virtual- and physical worlds,
where lead times and forecasts can be improved significantly.

For the IAC’s objective, the reinforcement learning environment represents the virtual world
of the DT. In this way, the impact of the situations (or alerts) on operational decision-making can
be validated due to the virtual world that shows the interventions’ impact, allowing continuous
improvement. The alignment between virtual- and real-world should be checked with tactical
planning decision-making due to the operational decisions. Potential adjustments and feedback
can be provided to the Digital Twin for improvement. For clarification, we use Figure 6.1.
This figure shows that the alert generation tool processes the data from the real world. Based
on the alert priorities, the DSS provides information about the alert’s optimal intervention.
Subsequently, the real environment provides the DSS with feedback on the impact of the decision
on tactical level, such that the real- and virtual worlds will learn and improve.

Figure 6.1: Visualization of Digital Twin concept applied to problem statement

Page 74.

A recent case study shows a different potential of using Digital Twins within the aerospace
industry (Lutters & Damgrave, 2019). The purpose of the Digital Twin of this research is to
identify and track and trace components. Combining the components’ status and the inventory
information, both the alerts and the decision-making can provide a more preventive approach.
Following Lutters and Damgrave (2019) the ERP data and strategic insights on order processing
and portfolio selection comes together.

In conclusion, a DT can be suitable for the IAC’s use since visibility leads to better in-
sight and control in cost behavior of interventions. This can help understand and monitor the
supply chain’s behavior by continuous improvement. With the alert generation and Decision
Support System (DSS), we can construct a virtual-environment that supports decision-making
and therefore learns from reality.

6.3 Conclusion
This chapter aims to review the possibility of implementing the DSS in a more extensive process
while using a Digital Twin. Therefore, we reviewed the possible scalability issues and the
requirements for a Digital Twin.

Scalability This chapter has discussed two major scalability issues for larger problem in-
stances: an increasing state- and action space, and big data. In case the state- and action space
will increase, a tabular solving method will not be efficient enough anymore. By Value Function
Approximation (VFA), we can overcome this problem. Be aware that only methods that support
nonstationarity are suitable for RL. For problem instances where VFA is not sufficient, Deep
Reinforcement Learning can help developing learning and generalization features.

Naturally, by including more data in the problem instance, solving can be more problem-
atic. Approximating the optimal solution by combining sub-optimal policies requires lots of
computational power. Therefore, more advanced methods as Imitation Learning are required.
We did not review the applicability for the IAC’s purpose within this thesis, and therefore we
recommend it for future research.

Digital Twins The virtual representation or simulation of the real-world environment helps
in improving the effectiveness of procedures. The interaction between large data-sets of the
environment and information about the real-world lead to an improvement of planning and
management (Söderberg, Wärmefjord, Carlson, & Lindkvist, 2017; Uhlemann, Lehmann, &
Steinhilper, 2017). The Digital Twin requires a two-way interaction consisting of three compo-
nents: the real-world input towards the Twin, output, or processed data from the Twin, and
the feedback from the environment on the output. As the Digital Twin aims for continuous
improvement, the Twin learns from reality and use.

We conclude that the IAC’s alert generation model can function well in processing input
from the physical world. The model included in this research’s scope can be responsible for the
intervention or action management’s output. We conclude that the desired model can be very
functional within the Digital Twin interaction for the IAC. However, for the Twin’s validity,
we need feedback from tactical planning to create a properly functioning Digital Twin with
the aimed model. Additionally, we see an immense potential of a DT in collaboration with
AI. A combination of the two can lead to preventive decision-making and health monitoring of
operational planning. Therefore, we advise to research and validate the feedback relationship
and AI in further research.

7 | Conclusions, Discussion, and
Recommendations

This final chapter includes the conclusion, discussion, and recommendations of this research for
Independent Aerospace Company (IAC). In Section 7.1 we provide a conclusion for this research,
followed by a discussion in Section 7.2. Finally, in Section 7.3, the recommendations for our
findings and future research are given.

7.1 Conclusion

The objective of this research is defined as follows:

‘In what way and to what extent can a reinforcement learning algorithm improve operational
decision-making while incorporating long-term yields?’

To create insight into the supply chain, current decision-making process, and performance, we
identify the current situation of the IAC. Based on an interview with the Operational Planning
Professionals (OPP), we conclude that currently decisions are made based on gut-feeling. Since
the OPPs do not use any measurement tools, we cannot express the current performance well.
However, we find a need for a Decision Support System (DSS) to create better insight into the
impact of decision-making.

Subsequently, in the literature, we find no additional interventions that are suitable in prac-
tice for the IAC. Also, the use of reinforcement learning algorithms in a Service Control Tower
(SCT) of spare part management is not available in the literature. Nonetheless, to define AI’s
potential, we review different approaches of DSS in the literature. Because of the immense
potential of AI in decision support systems, we reviewed six different reinforcement learning al-
gorithms. Based on the simplicity of implementation, promising results in the literature, and the
applicability of small instance problems, we conclude that Dyna-Q shows the largest potential
to our experimental setting.

To analyze the Dyna-Q performance, we compared this algorithm with an exact solving
method of a stochastic dynamic programming framework and a greedy heuristic. We solve the
SDP with a backward recursion to find the optimal solution. This exact solving method works
for small instances, such as our problem. In case the problem instance grows, an exact approach
is no longer possible due to the Curse of Dimensionality. We use the exact approach in this
setting as the initial scenario value. Next, we compare the SDP with a greedy heuristic. This
heuristic always chooses the optimal action for the current state while ignoring the cost-to-go
function. After learning the policy by Dyna-Q, we evaluate all three solution approaches by a
simulation.

75

Page 76.

To test the three presented algorithms properly, we create three scenarios where we prefer
tactical, operational, or an equilibrium in decisions. As expected, we see that the backward
recursion performs best for all three scenarios. Further, we see that the greedy heuristic does
not undertake much action because it ignores the cost-to-go function. In other words, the greedy
algorithm does nothing unless it has to. This decision-strategy works for straight-forward cases,
but not when we start with more backorders. We see Dyna-Q performing better in the more
challenging scenarios than the greedy algorithm. However, in the straight-forward cases in
operational and tactical preference, we see that Dyna-Q uses a more conservative approach;
costs are higher, but backorders are way lower. Finally, we see that Dyna-Q outperforms the
greedy heuristic in all situations for the equilibrium point and even performs close to optimal.
The greedy algorithm shows in this scenario that it has difficulties deciding correctly. Therefore,
we conclude that reinforcement learning can be of great benefit for decision-making in challenging
scenarios. Furthermore, by moving the importance of decisions to an equilibrium point, we see
a delicate balance between costs and backorders.

The solving approach, as used in this research, is suitable for small problem instances. The
IAC’s purpose is to use the DSS for multi-item problem instances. Therefore, some scalability
issues can occur. In case the state- and action space will increase, a tabular solving method
will not be efficient enough. Using a nonstationary Value Function Approximation (VFA) or
Deep Neural Network (DNN), we can overcome this problem. The second scalability issue that
we reviewed is learning with big data. Approximating the optimal solution by combining sub-
optimal policies requires lots of computational power. Therefore, advanced methods, such as
imitation learning or hierarchical reinforcement learning, are required for solving these problem
instances.

Implementing the DSS combined with an alert generation tool in a Digital Twin brings
ERP data and, e.g., strategic insights on order processing together. Within the Twin, two-
way interaction between the real and virtual worlds is crucial for aligning the two worlds and
therefore enabling continuous improvement. This can help understand and monitor the supply
chain’s behavior, clarifying the relationship between the operational and tactical level.

In conclusion, a reinforcement learning algorithm, such as Dyna-Q, can benefit operational
decision-making by creating insight into the operational planning horizon’s expected costs. Fur-
thermore, because of the adaptive learning abilities of planning and learning algorithms, stochas-
ticity in demand, returning repairs, and returning customer components can be processed with-
out performance loss. By including an equilibrium point between tactical and operational lim-
itations in the decision-making process, reinforcement learning can be very beneficial for both
costs and availability.

7.2 Discussion

Within this research, we made multiple assumptions for the simplicity of the model. Therefore,
we will discuss the assumptions and limitations of the current research approach.

The first point of discussion is our assumption for time-based decision-making. For modeling
simplicity, we have chosen to make decisions during a planning period of 14 days. Although the
planning horizon is representative for the actual decision-making process, the results are very
volatile. In other words, the expected episode costs can be zero, while the costs in other episodes
are approximately $10.000. The small probability of demand occurring causes this effect within
the current experimental design. Since the episodes without any event are not very interesting
for the DSS, the algorithm’s full potential might not be used. By using way longer episodes of,
e.g., five years, we can overcome this problem. Another suitable approach in these situations is
event-based. However, this method gives a troublesome modeling approach because the state

Page 77.

behavior is challenging to model in a changing time interval scenario. Therefore, we assumed
the time-based approach to be sufficient.

Second, in order to define the decision space of the SDP, we assumed that lead times for the
decisions were zero time periods. This means that the consequences of a decision are directly
visible. There might be a longer lead time than zero time periods, or even a stochastic lead
time in the real planning scenario. We expect a slightly more conservative approach in decision-
making in such scenarios.

Although we modeled our state-space relatively strict and straightforward, we see that Dyna-
Q is having difficulties solving the problem instance. Currently, we solved the SDP framework
for a single starting state separately with decent results. However, when combining all possible
states into one learning model, we saw that Dyna-Q has some converging issues. Even in a
simulation with 500.000 episodes of learning, we could not get comparable results with the
greedy heuristic. Literature states that the fact that both approaches contribute to the same
value function estimate causes this problem. Therefore, the model-free process can slow down the
learning process. Additionally, in sizeable stochastic problem instances, the model’s observations
might be insufficient, leading to an incorrect and computational inefficient policy computation
(Sutton & Barto, 2018; Z. Ding et al., 2020).

The next assumption concerns the backorder counter. For the backward recursion and
simulation models we used a different backorder counter, because it is difficult to express a
backorder counter in a backward recursion. This difference leads to a wrong estimate of the
exact value computed by the backward recursion. Therefore, our evaluation simulation with the
optimal policy gives a better representation of the direct quality of all methods. Nonetheless,
when the initial estimate is wrong, the policy from the backward recursion might not be optimal.
Note that the backorder counter is a simple assumption which might not be representative for
the IAC’s desire or behavior.

The final assumption we discuss concerns the boundaries of the state space. For reasons
of simplicity, we made assumptions to keep the state space relatively small. However, we see
some odd behavior in the states located at the edges of the state space due to the boundary
assumptions. For example, the SDP does nothing when located at the maximum backorder
state, because no extra backorders can occur. For the approximation of the true value of these
states, it is better to enlarge the state space. Nonetheless, the states included in the sensitivity
analysis are unlikely to change due to the small probability of transitioning towards one of the
boundary states.

7.3 Recommendations

Within this final section, we will review our recommendations concerning operational decision-
making. We recommend the following points for future research:

• Event-Based Decision-Making: As mentioned in the discussion, we expect the learning
abilities for the reinforcement learning algorithm to improve when using an event-based
decision-making approach instead of a time-based. Furthermore, the event-based approach
will also cause the results to be less deviating from the mean.

• Long Run Evaluation: In our current solving approach, we try to find the optimal
decision for each particular day while incorporating future states and decisions. Here, to
properly include long term costs, we determine tactical impact by an analytical approach.
We can determine the long-term relationship by creating a long-term simulation over, e.g.,
five years. Because our exact and Dyna-Q approaches learn the best decisions for time
period t onward, we can say that the policy learned for t = 1 includes the whole planning

Page 78.

horizon. Therefore, we can use the policy of t = 1 for each independent day in the long-
term simulation. As a result, the tactical costs, now analytically included in the cost
function, can be approached by a simulation.

• Closed Loop Inventory Planning: In the current literature, there are multiple sources
available concerning decision support systems for spare part management. However, none
of these sources include a (semi-) closed loop, meaning that the current literature ap-
proaches all assume that the on-hand stock will never return to the inventory pool. For a
service provider with a spare part pooling system, such as the IAC, the decision-making
differs from an open system. Further research should provide a better insight into the
effect of the returning components from customers to decision-making. Note that in the
current experimental setting we assumed the probability of components returning from
the customer to be zero. In future research the expected customer returns should be
incorporated, dependent of the planning horizon.

• Multi-Echelon: Without loss of generality, we assumed that a single-echelon approach
would be sufficient for the IAC’s purpose. However, by including more echelon levels the
model can be generalized. Therefore, the decision support system would be applicable to
more different company structures. This means that the DSS would significantly impact
the current gap in the literature.

• Solution Approaches: We used a greedy algorithm as a benchmark for the RL algorithm
for the current solution approach. As expected, the greedy algorithm did not perform well
in all scenarios. Therefore, we recommend testing more advanced heuristics. Although
the greedy heuristic is not suitable for this purpose, other non-learning heuristics might
be sufficient as well. Naturally, testing on larger state and action spaces is preferable.
Further, we recommend testing the performance on larger state- and action spaces for
the planning and learning algorithms. Therefore, using function approximation or deep
neural networks is suggested. Based on the reviewed papers in the literature study, we
expect the most potential for the IAC’s purpose in Actor-Critic (AC) methods. From
Schulman (2016) we find that AC-methods are located in the intersection of policy and
value based methods; we learn both policy and value function. Especially A3C shows
strong results for large problems while being a computationally efficient solving method.
Another alternative for the IAC’s purpose is Proximal Policy Optimization (PPO). This
algorithm has proven to be effective in optimal control for inventory and service control
tower problems (Meisheri et al., 2020; Vanvuchelen et al., 2020). Furthermore, PPO is
relatively simple to implement and it provides robust and reliable results

• Incorporating Tactical Planning: Within this research, we are investigating opera-
tional decision-making while incorporating the tactical level as a guideline. As mentioned,
we do not find DSSs that incorporate tactical decisions in the closed-loop spare part man-
agement from the current literature. However, within this research, we propose a first
interaction between operational and tactical decisions. For further research, we recom-
mend investigating the possibilities of including the reversed interaction of operational
and tactical decisions in a decision support system. With this two-way interaction, both
operational and tactical planning can improve.

• Reinforcement Learning in Service Control Tower Settings: Our final recommen-
dation is to further investigate the potential of reinforcement learning within a Service
Control Tower (SCT) environment. Based on the current literature study, we encountered
one paper concerning a joint replenishment problem using PPO (Vanvuchelen et al., 2020).
The paper concludes and emphasizes the potential of (deep) reinforcement learning algo-
rithms for SCT settings. Including a reinforcement learning algorithm into the SCT leads
to a more effective and efficient logistics network.

References

Abdul-Malak, D. T., Kharoufeh, J. P., & Maillart, L. M. (2019). Maintaining systems with
heterogeneous spare parts. Naval Research Logistics, 66 (6), 485–501.

Accenture. (2015). Creating a supply chain control tower in the high-tech industry. Retrieved
from https://www.accenture.com/{_}acnmedia/Accenture/Conversion-Assets/
DotCom/Documents/Global/PDF/Industries{_}19/Accenture-Supply-Chain-Control
-Tower.pdf

Amaro, A. C., & Barbosa-Póvoa, A. P. (2009). The effect of uncertainty on the optimal
closed-loop supply chain planning under different partnerships structure. Computers and
Chemical Engineering, 33 (12), 2144–2158. doi: 10.1016/j.compchemeng.2009.06.003

Åström, K. J. (1965). Optimal control of markov processes with incomplete state information i.
Journal of Mathematical Analysis and Applications, 10 , 174–205. Retrieved from https://
lup.lub.lu.se/search/ws/files/5323668/8867085.pdf doi: 10.1016/0022-247X(65)
90154-X

Barut, M., & Sridharan, V. (2005). Revenue Management in Order-Driven Production Systems.
Decision Sciences, 36 (2), 6.

Barykin, S. Y., Bochkarev, A. A., Kalinina, O. V., & Yadykin, V. K. (2020). Concept for a supply
chain digital twin. International Journal of Mathematical, Engineering and Management
Sciences, 5 , 1498–1515. Retrieved from https://doi.org/10.33889/IJMEMS.2020.5.6
.111

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.
Berger-Tal, O., Nathan, J., Meron, E., & Saltz, D. (2014). The exploration-exploitation dilemma:

a multidisciplinary framework. PloS one, 9 (4), e95693.
Bertsekas, D. P. (2017). Dynamic programming and optimal control (Fourth ed.). Athena

Scientific.
Bertsekas, D. P. (2019). Reinforcement learning and optimal control (First ed.). Athena Scientific

2019.
Black, P. E. (2005, February 2). Greedy algorithm. Retrieved from https://www.nist.gov/

dads/HTML/greedyalgo.html
Blanchard, D. (2011). Supply Chain Management: Best Practices (Second ed.). New Jersey:

John Wiley & Sons, Inc. doi: 10.1093/acprof:oso/9780195138108.003.0010
Boddy, D., & Paton, S. (2011). Management: An Introduction (Fifth ed.). Pearson Education

Limited.
Buşoniu, L., De Schutter, B., & Babuška, R. (2010). Approximate dynamic programming and

reinforcement learning. In R. Babuška & F. C. A. Groen (Eds.), Interactive collaborative
information systems (pp. 3–44). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from https://doi.org/10.1007/978-3-642-11688-9_1 doi: 10.1007/978-3-642-11688
-9_1

Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004). A comparison of optimal control
and stochastic programming from a formulation and computation perspective. Computers
and Chemical Engineering, 29 (1), 149–164. doi: 10.1016/j.compchemeng.2004.07.030

79

https://www.accenture.com/{_}acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries{_}19/Accenture-Supply-Chain-Control-Tower.pdf
https://www.accenture.com/{_}acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries{_}19/Accenture-Supply-Chain-Control-Tower.pdf
https://www.accenture.com/{_}acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries{_}19/Accenture-Supply-Chain-Control-Tower.pdf
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://doi.org/10.33889/IJMEMS.2020.5.6.111
https://doi.org/10.33889/IJMEMS.2020.5.6.111
https://www.nist.gov/dads/HTML/greedyalgo.html
https://www.nist.gov/dads/HTML/greedyalgo.html
https://doi.org/10.1007/978-3-642-11688-9_1

Page 80.

Cooper, D. R., & Schindler, P. S. (2011). Business Research Methods (Eleventh ed.). McGraw-
Hill Education.

Cronrath, C., Aderiani, A. R., & Lennartson, B. (2019). Enhancing digital twins through
reinforcement learning. In 2019 ieee 15th international conference on automation science
and engineering (case) (p. 293-298).

Croonenborghs, T., Ramon, J., Blockeel, H., & Bruynooghe, M. (2007). Online learning and
exploiting relational models in reinforcement learning. In Proceedings of the 20th inter-
national joint conference on artifical intelligence (p. 726–731). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Curley, R. (2016, June 17). Interchangeable parts.
https://www.britannica.com/technology/interchangeable-parts. Encyclopaedia Bri-
tannica inc.

Dargam, F., Perz, E., Bergmann, S., Rodionova, E., Sousa, P., Souza, F. A. A., . . . Bonachela,
P. Z. (2020). Supporting operational decisions on desalination plants from process mod-
elling and simulation to monitoring and automated control with machine learning. In
J. M. Moreno-Jiménez, I. Linden, F. Dargam, & U. Jayawickrama (Eds.), Decision sup-
port systems x: Cognitive decision support systems and technologies (Sixth ed., pp. 150 –
164). Zaragoza, Spain: Springer International Publishing. doi: https://doi.org/10.1007/
978-3-030-46224-6

Davenport, T. H., & Harris, J. G. (2005). Automated decision making comes of age. MIT Sloan
Management Review, 46 (4), 83–89.

DeepMind. (2019, June 18). Alphago. Retrieved from https://www.deepmind.com/research/
case-studies/alphago-the-story-so-far

Deloitte. (2019). Supply Chain Control Tower: The information link for Operations across the
Live Enterprise. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/
de/Documents/operations/10-19-supply-chain-control-tower.pdf

Dhande, M. (2020). What is the difference between ai, machine learning and deep learn-
ing. Retrieved from https://www.geospatialworld.net/blogs/difference-between
-ai%EF%BB%BF-machine-learning-and-deep-learning/ ([Online; accessed September
15, 2020])

Ding, H., Benyoucef, L., & Xiaolan, X. (2008). Simulation-based evolutionary multi-objective
optimisation approach for integrated decision-making in supplier selection. International
Journal of Computer Applications in Technology, 31 (3-4), 144–157. doi: 10.1504/IJCAT
.2008.018153

Ding, Z., Huang, Y., Yuan, H., & Dong, H. (2020). Introduction to Reinforcement Learning. In
H. Dong, Z. Ding, & S. Zhang (Eds.), Deep reinforcement learning: Fundamentals, research
and applications (pp. 47–123). Singapore: Springer Singapore. Retrieved from https://
doi.org/10.1007/978-981-15-4095-0{_}2 doi: 10.1007/978-981-15-4095-0_2

Do Prado, J. C., & Qiao, W. (2019). A Stochastic Decision-Making MOdel for an Electricity
Retailer With Intermittent Renewable Energy and Short-Term Demand Response. IEEE
Transactions on Smart Grid, 10 (3), 2581–2592. doi: 10.1109/TSG.2018.2805326

Elmaraghy, H. A., & Majety, R. (2008). Integrated supply chain design using multi-criteria
optimization. International Journal of Advanced Manufacturing Technology, 37 (3-4), 371–
399. doi: 10.1007/s00170-007-0974-3

Faggella, D. (2020, February 26). What is machine learning? Emerj. Retrieved from https://
emerj.com/ai-glossary-terms/what-is-machine-learning/

Galasso, F., Mercé, C., & Grabot, B. (2008). Decision Support for Supply Chain Planning Under
Uncertainty. International Journal of Systems Science, 39 (7), 667–675. doi: 10.1080/
00207720802090765

García-Alvarado, M., Paquet, M., & Chaabane, A. (2015). On inventory control of product re-
covery systems subject to environmental mechanisms. International Journal of Production

https://www.deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.deepmind.com/research/case-studies/alphago-the-story-so-far
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/operations/10-19-supply-chain-control-tower.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/operations/10-19-supply-chain-control-tower.pdf
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-machine-learning-and-deep-learning/
https://doi.org/10.1007/978-981-15-4095-0{_}2
https://doi.org/10.1007/978-981-15-4095-0{_}2
https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://emerj.com/ai-glossary-terms/what-is-machine-learning/

Page 81.

Economics, 165 , 132–144. doi: 10.1016/j.ijpe.2015.01.009
Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., & Zhang, D. (2019). Can deep reinforcement

learning improve inventory management? performance on dual sourcing, lost sales and
multi-echelon problems. Performance on Dual Sourcing, Lost Sales and Multi-Echelon
Problems (July 29, 2019).

Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems. In Transdisciplinary perspectives on complex systems (pp.
85–113). Springer.

Heerkens, J. M., & van Winden, A. (2012). Geen probleem: Een aanpak voor alle bedrijfskundige
vragen en mysteries. Business School Nederland.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., . . . Silver, D. (2017). Emer-
gence of locomotion behaviours in rich environments. CoRR, abs/1707.02286 . Retrieved
from http://arxiv.org/abs/1707.02286

Heidrich-Meisner, V., Lauer, M., Igel, C., & Riedmiller, M. (2007). Reinforcement Learning
in a Nutshell. ESANN 2007 Proceedings - 15th European Symposium on Artificial Neural
Networks, 277–288.

Henkelmann, R. (2018). A deep learning based approach for automotive spare part demand fore-
casting (Unpublished master’s thesis). Otto-von-Guericke Universität Magdeburg, Magde-
burg.

Horsch, M. C., & Poole, D. L. (2013). An anytime algorithm for decision making under uncer-
tainty. CoRR, abs/1301.7384 . Retrieved from http://arxiv.org/abs/1301.7384

Hosokawa, S., Kato, J., & Nakano, K. (2014). A reward allocation method for reinforcement
learning in stabilizing control tasks. Artif Life Robotics, 109–114. doi: 10.1007/s10015-014
-0146-0

Hu, Q., Boylan, J. E., Chen, H., & Labib, A. (2018). OR in spare parts management: A review.
European Journal of Operations Research, 266 , 395–414.

Huang, Y. (2020). Deep Q-Networks. In H. Dong, Z. Ding, & S. Zhang (Eds.), Deep re-
inforcement learning: Fundamentals, research and applications (pp. 135–160). Singapore:
Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-4095-0{_}2
doi: 10.1007/978-981-15-4095-0_2

Huys, Q. J. M., Cruickshank, A., & Seriès, P. (2014). Encyclopedia of Computational Neuro-
science. Encyclopedia of Computational Neuroscience, 1–10. doi: 10.1007/978-1-4614-7320
-6_674-1

Isbell, C. L. (1992). Explorations of the practical issues of learning prediction-control tasks
using temporal difference learning methods (Unpublished master’s thesis). Massachusetts
Institue of Technology, Cambridge, MA.

Jin, Y., Pipe, T., & Winfield, A. (1997). Stable manipulator trajectory control using neural
networks. In O. Omidvar & P. van der Smagt (Eds.), Neural systems for robotics (p. 117 -
151). Boston: Academic Press. doi: https://doi.org/10.1016/B978-0-08-092509-7.50009-9

Jokinen, H., Konkarikoski, K., Pulkkinen, P., & Ritala, R. (2009). Operations’ decision making
under uncertainty: Case studies on papermaking. Mathematical and Computer Modelling
of Dynamical Systems, 15 (5), 435–452. doi: 10.1080/13873950903375429

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence(101), 99–134.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research(4), 237–285.

Kara, A., & Dogan, I. (2018). Reinforcement learning approaches for specifying ordering policies
of perishable inventory systems. Expert Systems with Applications, 91 , 150–158.

Khalifa, D., Hottenstein, M., & Aggarwal, S. (1977). Cannibalization Policies for Multistate
Systems. Operations Research, 25 (6), 1032–1039.

http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1301.7384
https://doi.org/10.1007/978-981-15-4095-0{_}2

Page 82.

Kilpi, J., & Vepsäläinen, A. P. (2004). Pooling of Spare Components Between Airlines. Journal
of Air Transport Management, 10 , 137 – 146. doi: 10.1016/j.jairtraman.2003.09.001

Kim, C. O., Kwon, I.-H., & Baek, J.-G. (2008). Asynchronous action-reward learning for
nonstationary serial supply chain inventory control. Applied Intelligence, 28 (1), 1–16.

Kirk, D. E. (2004). Optimal control theory: An introduction (13th ed.). Dover Publications,
Inc.

Kristensen, J. T., & Burelli, P. (2020). Strategies for using proximal policy optimization in
mobile puzzle games. (To be published in 2020 Foundations of Digital Games conference)
doi: 10.1145/3402942.3402944

Law, A. M. (2015). Simulation modeling and analysis (Fifth ed.). McGraw-Hill Education.
Lutters, E., & Damgrave, R. (2019). The development of pilot production environments based

on digital twins and virtual dashboards. Procedia CIRP, 84 , 94–99.
Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging digital twin technology in

model-based systems engineering. Systems, 7 (1), 7.
Marmolejo-Saucedo, J. A. (2020). Design and development of digital twins: a case study in

supply chains. Mobile Networks and Applications, 1.
Mätäsniemi, T. (2008). Operational decision making in the process industry: Multidisciplinary

approach (A. Repo, Ed.). Helsinki: VTT Research Notes.
Meisheri, H., Baniwal, V., Sultana, N. N., Khadilkar, H., & Ravindran, B. (2020). Using

reinforcement learning for a large variable-dimensional inventory management problem.
Mes, M. (2019, May 7). Operations Research Techniques 2: Stochastic Optimization & Learning

[Slides]. University of Twente. Retrieved from https://canvas.utwente.nl/courses/
3143/pages/lecture-slides?module_item_id=80322 (Slides are not publicly available)

Mes, M., & Perez Rivera, A. (2017, March 11). Approximate dynamic programming by practical
examples. In R. Boucherie & N. van Dijk (Eds.), Markov decision processes in practice
(pp. 63–101). Springer. doi: 10.1007/978-3-319-47766-4_3

Mes, M., & van Heeswijk, W. (2020). Comparison of manual and automated decision-making
with a logistics serious game. (Working paper: Submitted to ICCL2020)

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In International conference
on machine learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Ried-
miller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

Murtaugh, M., & Gladwin, H. (1980). A hierarchical decision-process model for forecasting
automobile type-choice. Transportation Research, Part A: General, 14 A(5-6), 337–347.
doi: 10.1016/0191-2607(80)90053-9

Nadj, M., Maedche, A., & Schieder, C. (2020). The effect of interactive analytical dashboard
features on situation awareness and task performance. Decision Support Systems(August
2019). doi: 10.1016/j.dss.2020.113322

Nanduri, V., & Kazemzadeh, N. (2012). Economic impact assessment and operational decision
making in emission and transmission constrained electricity markets. Applied Energy, 96 ,
212–221. Retrieved from http://dx.doi.org/10.1016/j.apenergy.2011.12.012 doi:
10.1016/j.apenergy.2011.12.012

Nascimento, J., & Powell, W. B. (2013). An optimal approximate dynamic programming algo-
rithm for concave, scalar storage problems with vector-valued controls. In Ieee transactions
on automatic control (Vol. 58, pp. 2995–3010). IEEE.

Nozhati, S., Sarkale, Y., Ellingwood, B., K.P. Chong, E., & Mahmoud, H. (2019). Near-optimal
planning using approximate dynamic programming to enhance post-hazard community
resilience management. Reliability Engineering & System Safety, 181 , 116 - 126. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0951832018305180 doi:

https://canvas.utwente.nl/courses/3143/pages/lecture-slides?module_item_id=80322
https://canvas.utwente.nl/courses/3143/pages/lecture-slides?module_item_id=80322
http://dx.doi.org/10.1016/j.apenergy.2011.12.012
http://www.sciencedirect.com/science/article/pii/S0951832018305180

Page 83.

https://doi.org/10.1016/j.ress.2018.09.011
O’Connor, C. (2017, February 16). Introduction to Digital Twin: Simple but detailed [Slides].

Munich, Germany: IBM Internet of Things. Retrieved from https://www.slideshare
.net/IBMIoT/ibm-watson-internet-of-things-introducing-digital-twin

Oroojlooyjadid, A., Nazari, M. R., Snyder, L. V., & Takác, M. (2017). A deep q-network for
the beer game with partial information. CoRR, abs/1708.05924 .

Ou, X., Chang, Q., & Chakraborty, N. (2020). A method integrating q-learning with ap-
proximate dynamic programming for gantry work cell scheduling. IEEE Transactions on
Automation Science and Engineering.

Park, K. T., Son, Y. H., & Noh, S. D. (2020). The architectural framework of a cyber phys-
ical logistics system for digital-twin-based supply chain control. International Journal of
Production Research, 1–22.

Peng, B., Li, X., Gao, J., Liu, J., Wong, K.-F., & Su, S.-Y. (2018). Deep dyna-q: Integrating
planning for task-completion dialogue policy learning. arXiv preprint arXiv:1801.06176 .

Pomerol, J.-C. (1997). Artificial Intelligence and Human Decision Making. European Journal
of Operational Research, 99 (1), 3–25. Retrieved from https://doi.org/10.1016/S0377
-2217(96)00378-5 doi: 10.1016/j.compind.2020.103239

Popkov, T. (2019). Design Your Supply Chain: Run with Digital Twin [WEBINAR]. anyLo-
gistix: supply chain software. Retrieved from https://www.anylogistix.com/upload/
pdf/suply-chain-digital-twin-and-control-tower-webinar.pdf

Powell, W. B. (2009). What you should know about approximate dynamic programming. Naval
Research Logistics, 56 , 239–249. doi: 10.1002/nav.20347

Powell, W. B. (2010). Merging ai and or to solve high-dimensional stochastic optimization
problems using approximate dynamic programming. INFORMS Journal on Computing,
22 , 2–17.

Ra, J. W. (1991). Hierarchical Decision Process. In Proceedings of the 1991 portland international
conference on management of engineering and technology - picmet ’91 (pp. 595–599).
Portland, OR, United States: IEEE,Piscataway, NJ, United States.

Ray, T. (2020). Best masters programs in data science and big data analytics in europe – part
1. Retrieved from https://www.stoodnt.com/blog/best-masters-programs-in-data
-science-big-data-analytics-in-europe-part-1/ ([Online; accessed September 15,
2020])

Rosen, R., Von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About the importance of
autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48 (3),
567–572. Retrieved from http://dx.doi.org/10.1016/j.ifacol.2015.06.141 doi:
10.1016/j.ifacol.2015.06.141

Rossi, R. (2013). On service level measures in stochastic inventory control. In Ifac proceedings
volumes (ifac-papersonline) (Vol. 46, pp. 1991–1996). Saint Petersburg: IFAC. Retrieved
from http://dx.doi.org/10.3182/20130619-3-RU-3018.00295 doi: 10.3182/20130619
-3-RU-3018.00295

Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (Third ed.). Prentice
Hall.

Ryzhov, I. O., & Powell, W. B. (2011). Bayesian active learning with basis functions. In 2011 ieee
symposium on adaptive dynamic programming and reinforcement learning (adprl) (p. 143-
150).

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61 ,
85–117.

Schulman, J. (2016). Optimizing expectations: From deep reinforcement learning to stochastic
computation graphs (Unpublished doctoral dissertation). UC Berkeley.

Schulman, J., Filip, W., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347 . Retrieved from http://arxiv.org/

https://www.slideshare.net/IBMIoT/ibm-watson-internet-of-things-introducing-digital-twin
https://www.slideshare.net/IBMIoT/ibm-watson-internet-of-things-introducing-digital-twin
https://doi.org/10.1016/S0377-2217(96)00378-5
https://doi.org/10.1016/S0377-2217(96)00378-5
https://www.anylogistix.com/upload/pdf/suply-chain-digital-twin-and-control-tower-webinar.pdf
https://www.anylogistix.com/upload/pdf/suply-chain-digital-twin-and-control-tower-webinar.pdf
https://www.stoodnt.com/blog/best-masters-programs-in-data-science-big-data-analytics-in-europe-part-1/
https://www.stoodnt.com/blog/best-masters-programs-in-data-science-big-data-analytics-in-europe-part-1/
http://dx.doi.org/10.1016/j.ifacol.2015.06.141
http://dx.doi.org/10.3182/20130619-3-RU-3018.00295
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Page 84.

abs/1707.06347
Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust region policy

optimization. CoRR, abs/1502.05477 .
Sharad, S., Nitin, D., Styavan, D., Mitul, C., & Shrivastava, S. (2011). Interchangeability

of Multisource Pharmaceutical Product: A Review. International Research Journal of
Pharmacy, 6 (2), 1–10.

Sherbrooke, C. C. (2004). Optimal Inventory Modeling of Systems (Second ed.; F. S. Hillier,
Ed.). Boston: Kluwer Academic Publishers.

Shou-Wen, J., Ying, T., & Yang-Hua, G. (2013). Study on Supply Chain Information Con-
trol Tower System. Information Technology Journal, 12 (24), 8488–8493. Retrieved
from https://scialert.net/abstract/?doi=itj.2013.8488.8493 doi: 10.3923/itj
.2013.8488.8493

Silver, D. (2015). Advanced Topics: Reinforcement Learning [Slides]. University College London.
Retrieved from https://www.davidsilver.uk/teaching/

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van Den Driessche, G., . . . Hassabis,
D. (2016). Mastering the game of go with deep neural networks and tree search. Nature,
529 (7587), 484-489. doi: 10.1038/nature16961

Simao, H., & Powell, W. B. (2009). Approximate dynamic programming for management of
high-value spare parts. Journal of Manufacturing Technology, 20 , 147–160. doi: 10.1108/
17410380910929592

Skoglund, A., Palm, R., & Duckett, T. (2005). Towards a supervised dyna-q application on a
robotic manipulator. Advances in Artificial Intelligence in Sweden, 148–153.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable markov
processes over a finite horizon. Operations Research, 21 (5), 1071-1088.

Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017). Toward a digital twin for
real-time geometry assurance in individualized production. CIRP Annals, 66 (1), 137–140.

Srai, J., Settanni, E., Tsolakis, N., & Aulakh, P. (2019, September). Supply chain digital twins:
Opportunities and challenges beyond the hype. In (pp. 1–6). Cambridge, United Kingdom.
doi: 10.17863/CAM.45897

Stadtler, H. (2009). A framework for collaborative planning and state-of-the-art. In H. Gün-
ther, Meyr, & Herbert (Eds.), Supply chain planning: Quantitative decision support and
advanced planning solutions (pp. 3–28). Springer. doi: 10.1007/978-3-540-93775-3

Sultana, N. N., Meisheri, H., Baniwal, V., Nath, S., Ravindran, B., & Khadilkar, H. (2020).
Reinforcement learning for multi-product multi-node inventory management in supply
chains. arXiv preprint arXiv:2006.04037 .

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Machine learning proceedings 1990 (pp. 216–
224). Elsevier.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (Second ed.).
Cambridge: The MIT Press.

Szepesvári, C. (2010). Algorithms for Reinforcement Learning (R. J. Brachman & T. Dietterich,
Eds.). Morgan & Claypool Publishers.

Tadepalli, P. (2010). Average-reward reinforcement learning. In C. Sammut & G. I. Webb
(Eds.), Encyclopedia of machine learning (pp. 64–68). Boston, MA: Springer US. Retrieved
from https://doi.org/10.1007/978-0-387-30164-8_49 doi: 10.1007/978-0-387-30164
-8_49

Tesauro, G. (1992, May 01). Practical issues in temporal difference learning. Machine Learning,
8 (3), 257-277. doi: 10.1007/BF00992697

Tijsma, A. D., Drugan, M. M., & Wiering, M. A. (2016). Comparing exploration strategies for
q-learning in random stochastic mazes. In 2016 ieee symposium series on computational
intelligence (ssci) (pp. 1–8).

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://scialert.net/abstract/?doi=itj.2013.8488.8493
https://www.davidsilver.uk/teaching/
https://doi.org/10.1007/978-0-387-30164-8_49

Page 85.

Topan, E., Eruguz, A. S., Ma, W., van der Heijden, M. C., & Dekker, R. (2020). A review
of operational spare parts service logistics in service control towers. European Journal of
Operational Research, 282 (2), 401–414. doi: 10.1016/j.ejor.2019.03.026

Topan, E., Tan, T., van Houtum, G.-J., & Dekker, R. (2018). Using imperfect advance demand
information in lost-sales inventory systems with the option of returning inventory. IISE
Transactions, 50 (3), 246–264.

Trzuskawska-Grzesińska, A. (2017). Control towers in supply chain management– past and
future. Journal of Economics and Management, 27 (1), 114–133. doi: 10.22367/jem.2017
.27.07

Tuner, B. (2003). Infromation operations in strategic, operational, and tactical levels of war: A
balanced systematic approach (Unpublished master’s thesis). Naval Postgraduate School,
Monterey, California.

Uhlemann, T. H.-J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the
cyber-physical production system for industry 4.0. Procedia Cirp, 61 , 335–340.

van Doesburg, R. (2011). Global Supply Cahin Control Towers. London: Capgemini.
Van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double

q-learning. arXiv preprint arXiv:1509.06461 .
Vanvuchelen, N., Gijsbrechts, J., & Boute, R. (2020). Use of Proximal Policy Optimization for

the Joint Replenishment Problem. Computers in Industry, 119 , 103239. doi: 10.1016/
j.compind.2020.103239

Varshavskaya, P., Kaelbling, L. P., & Rus, D. (2006). On scalability issues in reinforcement
learning for self-reconfiguring modular robots. In Robitcs: Science and systems workshop
on self-reconfigurable modular robots, philadelphia.

Wang, L., Zeng, Y., Zhang, J., Huang, W., & Bao, Y. (2006). The Criticality of Spare Parts Eval-
uating Model Using Artificial Neural Network Approach. In V. N. Alexandrov, G. D. van
Albada, P. M. A. Sloot, & J. Dongarra (Eds.), Computational science – iccs 2006 (Vol.
3991, pp. 728–735). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wang, Y., He, H., & Tan, X. (2019). Truly proximal policy optimization. CoRR,
abs/1903.07940 .

Wang, Y., He, H., Tan, X., & Gan, Y. (2019). Trust region-guided proximal policy optimization.
CoRR.

Wang, Y., Wang, X., & Liu, A. (2020). Digital twin-driven supply chain planning. Procedia
CIRP, 93 , 198–203.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2016).
Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224 .

Winston, W. L. (2004). Operations research: Applications and algorithms (Fourth ed.;
J. B. Goldberg, Ed.). Brooks/Cole Cengage Learning.

Xu, J., Zhang, J., & Liu, Y. (2009). An adaptive inventory control for a supply chain. In 2009
chinese control and decision conference (pp. 5714–5719).

Yan, W. J., Tan, P. S., Koh, N. W., Tan, Y. Q., & Zhang, A. N. (2012). Towards better supply
chain visibility - The design and implementation of a supply chain system S-ConTrol to
support an operational HQ in Singapore. IEEE International Conference on Industrial
Engineering and Engineering Management, 971–975. doi: 10.1109/IEEM.2012.6837885

Yogeswaran, M., & Ponnambalam, S. (2012). Reinforcement learning: exploration–exploitation
dilemma in multi-agent foraging task. Opsearch, 49 (3), 223–236.

Zahedi, F. M., Bansal, G., & Ische, J. (2010, October 23). Succes factors in cooperative
online marketplaces: Trust as the social capital and value generator in vendors-exchange
relationships. Journal of Organizational Computing and Electronic Commerce, 4 (20),
295–327. doi: 10.1080/10919392.2010.516626

Zhang, H., Huang, R., & Zhang, S. (2020). Integrating Learning and Planning. In H. Dong,
Z. Ding, & S. Zhang (Eds.), Deep reinforcement learning: Fundamentals, research and

Page 86.

applications (pp. 307–316). Singapore: Springer Singapore. Retrieved from https://
doi.org/10.1007/978-981-15-4095-0{_}2 doi: 10.1007/978-981-15-4095-0_2

Zhang, H., & Yu, T. (2020). Taxonomy of Reinforcement Learning Algorithms. In H. Dong,
Z. Ding, & S. Zhang (Eds.), Deep reinforcement learning: Fundamentals, research and
applications (pp. 125–133). Singapore: Springer Singapore. Retrieved from https://
doi.org/10.1007/978-981-15-4095-0{_}3 doi: 10.1007/978-981-15-4095-0_3

Zijm, W. H. (2000). Towards intelligent manufacturing planning and control systems. OR
Spektrum, 22 (3), 313–345. doi: 10.1007/s002919900032

https://doi.org/10.1007/978-981-15-4095-0{_}2
https://doi.org/10.1007/978-981-15-4095-0{_}2
https://doi.org/10.1007/978-981-15-4095-0{_}3
https://doi.org/10.1007/978-981-15-4095-0{_}3

Appendices

87

A | Interview Operational Planners

1. Hoe vaak is het nodig om een operationele interventie uit te voeren? (per dag/week)

2. Op welke manier komt een alert tot stand?

(a) Zijn de alerts altijd correct?

(b) Controleer je de juistheid van de alerts?

3. Zijn de interventies vooral reactief of proactief?

4. Zijn er alerts die een vaste interventie behoren?

(a) Zo ja, welke beslissing hoort bij welke situatie?

i. Stock out

ii. Reparatie

iii. Anders, namelijk...

(b) Zo nee, waarom wijken beslissingen af?

i. Door gevoel?

ii. Ervaring?

5. Waarop baseer jij beslissingen voor interventies? [Nooit – Zelden – Soms – Vaak – Heel
vaak]

(a) Intuïtie / ervaring

(b) Vaste procedures

(c) Beslismodellen (welke?)

(d) KPI’s

(e) Anders, namelijk...

6. Welke indicatoren neem jij in acht in de besluitvorming van een operationele interventie?

(a) Beschikbaarheid van onderdelen (Service Level Agreements)

(b) Kosten

(c) Anders, namelijk...

7. In welke situaties zou je elk van onderstaande interventies uitvoeren, en waarom?
(Voorbeeld: Cannibalization - in house reparatie - kosten drukken)

89

Page 90.

(a) Stock reallocation

(b) Do nothing

(c) Expediting

(d) Emergency shipments

(e) Cannibalization

(f) Anders, namelijk...

8. Welke van deze interventies gebruik je het meest?

9. Zijn er ook situaties denkbaar waar twee of meerdere interventies plaats vinden voor één
alert? (Voorbeeld: Cannibalization en Emergency shipment voor één kapotte APU)

(a) Zo ja, welke combinaties komen vaak voor?

(b) Welke interventies zijn absoluut niet te combineren?

10. Welke gegevens krijg je vanuit een alert om tot een besluit te komen?

(a) Zijn deze gegevens voldoende?

i. Ja

ii. Nee

iii. Soms

(b) Welke gegevens mis je om tot een goed besluit te komen?

(c) Worden de gegevens op een prettige manier verstrekt?

i. Zo niet, waarom niet?

ii. Hoe zou het beter kunnen?

11. Hoe bepaal of meet je de kwaliteit van je beslissing ... en welke tools gebruik je hiervoor?

(a) ...op het moment van de beslissing...?

(b) ...achteraf...?

i. Zijn er beslissingen die je achteraf gezien anders zou maken? (Onderbouw met
voorbeeld)

ii. Welke informatie heb je achteraf gezien wel, die je op het moment van beslissen
niet hebt?

iii. Gebruik je de kennis die je achteraf terug gekoppeld krijgt van een beslissing
tijdens het maken van een nieuwe beslissing?

iv. In welke mate is het persoonlijke verbeterproces onderdeel van ervaring, kennis
of intuïtie?

v. Is deze ervaring, kennis en intuïtie over te dragen aan een ander persoon? Licht
toe.

(c) Zijn er ook situaties waarin je de kwaliteit van een beslissing helemaal niet bepaalt?

i. Waarom niet en welke situaties zijn dit?

12. Hoe zou je de huidige prestatie/kwaliteit van de beslissingen beoordelen op schaal van 1
tot 10?

Page 91.

(a) Kun je de score onderbouwen met een aantal voorbeelden?

13. Hoe ver in de toekomst kijk je naar de gevolgen die een beslissing kan hebben? Scoor dit
op [Nooit – Zelden – Soms – Vaak – Heel vaak]

(a) Alleen naar de alerts die er nu/vandaag zijn

(b) Naar de verwachte alerts die alleen komende week binnen gaan komen

(c) Naar de verwachte alerts die binnen de komende x maanden binnen gaan komen

(d) De gehele CMA loop door om te kijken wat er kan komen

14. Hoe beïnvloed een korte termijn beslissing (de interventie) de lange termijn (dus bijvoor-
beeld de voorraad modellen) op het gebied van ...?

(a) ...communicatie met tactische planners (voorraad modellen)

(b) ...verbeteringen op voorraad modellen

(c) ...samenwerking op algemeen vlak

(d) ...kwaliteit van tactische output

(e) ...andere vlakken

15. Hoeveel vertrouwen heb je in algoritmes of computer modellen bij het maken van vergelijkbare
beslissingen? (Score 1-10)

(a) Waarom denk je dat?

(b) Wat denk je dat een algoritme mist?

(c) Welke beslissingen zou je algoritmes wel toevertrouwen?

(d) Welke factoren hebben invloed op het vertrouwen? Schaal [Geen - Weinig - Gemiddeld
- Veel - Heel veel]

i. Ervaring

ii. Vooroordeel

iii. Onbekendheid met modellen

iv. Anders, namelijk...

Page 92.

B | Model Data

B.1 Data Content

Table B.1: Price information for component PN1 ($)

Condition Fmv HighFmv LowFmv Max Mean Min Recent Date
Serviceable This information is removed from the public
Overhaul version of this Master’s thesis

Table B.2: Demand data per year

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
This information is removed from the public version of this Master’s thesis

Table B.3: Turn rates per year

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
This information is removed from the public version of this Master’s thesis

B.2 Statistical Analysis Repair Turnaround Times

Based on the histogram, we are testing two probability distributions; the Normal- and Lognormal
Distribution. We visually determine how representative the fitted distributions are following
probability plots, P-P plot, and Q-Q plot, respectively. Additionally, we use a goodness-of-fit
test to formally assess whether the observations are Independent and Identically Distributed
(IID) from a particular distribution. Note that we can say the observations to be Lognormal if
and only if the natural logarithm of the observations fit a Normal distribution.

The probability plots are a visual measurement of a comparison of estimating a distribution
function. A probability-probability (P-P) plot represents the probability of the observed values
versus the probability function of the compared distribution. The closer the probabilities of
the observed values to the distribution are, the closer the P-P plot will be to an approximately
linear function. The quantile-quantile (Q-Q) plot gives the graph of the qi-quantile of a fitted
distribution, with i = 1, 2, ..., n for n observations. For more information about deriving the
probability plots, see (Law, 2015).

Figure B.2 represents the P-P plots of the Normal and Lognormal distributions. Here,
we conclude that the Normal distribution (Figure B.2a) is not close to a linear relationship.
Therefore, it is not likely that the observed data fit a Normal distribution. When looking at the

93

Page 94.

Figure B.1: Full histogram of return turnaround times in days

Lognormal distribution (Figure B.2b), we find that the observed probabilities lay close to the
linear relationship.

Within the Q-Q plot, we created quantiles with size 0.05, which gives a total of 19 quantiles.
For each of these quantiles, the ordinate q values are determined and plotted against each other.
Both results are given in Figure B.3 Results of the Normal Q-Q plot is visualized in Figure B.3a.
Like the P-P plot, the Q-Q plot of the Normal distribution is far from the linear relationship
line and, as shown in Figure B.3b, the Lognormal distribution is close to the linear relationship.
For this reason, we expect the observed data to be Lognormally distributed.

Finally, we performed a goodness-of-fit test. We started with the chi-square test. Following
Law (2015) is the chi-square hypothesis test a more formal comparison of a histogram with a
fitted density function. For this test, we must first divide the fitted distribution into k adjacent
intervals [a0, a1), ..., [ak−1, ak). A representative way of calculating is k = (xmax − xmin)/

√
N ,

where xmax and xmin represent the max and min observation and N is the sample size. Next,
the χ2-value can be calculated by Equation B.1. Here, nj gives the number of observations in
the jth interval, and Ej gives the uniform distributed expected observations in the jth interval.

χ2 =
k∑
j=1

nj − Ej
Ej

(B.1)

We reject the hypothesisH0 if χ2 > χ2
k−1,1−α, the critical point of the chi-square distribution.

Within our data setting we have k = 22 with α = 0.05. This gives us χ2
21,0.95 = 32.67. For the

Normal distribution, we found a chi-value of χ2 = 528, and for the Lognormal distribution, we
found a value of χ2 = 62. Since both chi-values exceed the critical value, we have to reject the
null hypothesis H0.

In some cases, the null hypothesis may be rejected when it is actually true, Type I error.
Therefore, we tested the data with the Kolmogorov-Smirnov (K-S) Test. This type of testing does
not require grouping of data, which might cause loss of information in interval specification. To
define the K-S statistic, we have to define the maximum vertical distance between the functions

Page 95.

(a) Normal distribution (b) Lognormal distribution

Figure B.2: P-P plots of repair turnaround times for Normal and Lognormal distribution

(a) Normal distribution (b) Lognormal distribution

Figure B.3: Q-Q plots of repair turnaround times for Normal and Lognormal distribution

Page 96.

Fn(x) and F̂ (x). Mathematically, we express this as denoted in Equation B.2 (Law, 2015).
Obviously, the smaller the value of Dn, the better the fit of the distribution.

Dn = sup
x
{|Fn(x)− F̂ (x)|} (B.2)

We can test the null hypothesis by Equation B.3. If the given equation is true, we can reject
H0. In this equation, c1−α represents the critical value which should be exceeded for rejecting
H0. For α = 0.05, we know c0.95 = 1.358 (Law, 2015). For the Normal distribution we find a
test-statistic Dn = 0.2078. This gives us the following equation 4.934 > 1.358, from which we
can conclude that we reject the null hypothesis. For the Lognormal distribution Dn = 0.0519,
which gives 1.122 ≯ 1.358. Therefore, we do not reject the null hypothesis H0.

(√
N + 0.12 + 0.11√

N

)
Dn > c1−α (B.3)

C | Extensive Literature

C.1 Interchangeable Components
Within the literature review, in Chapter 3, we discussed several different interventions. We
found that the intervention Interchangeable Components is not used in literature as preventive
intervention from the reviewed literature.

As described in Section 2.3.4 the IAC uses interchangeability of components to prevent
backorders from occurring. Interchangeability of components is a long-used concept in man-
ufacturing. Interchangeable components were used for weaponry initially, but currently, the
automotive and pharmaceutical industries use this intervention often. The literature points
out that an interchangeable approach causes fewer delays, lower costs, and higher access to
pharmaceuticals (Sharad, Nitin, Styavan, Mitul, & Shrivastava, 2011). From a manufacturing
perspective, interchangeability permits the components to be replaced or assembled without
additional treatment. From the design, technology, and operation of machine point of view, this
has excellent benefits (Curley, 2016). Besides the mentioned advantages, interchangeability can
be very helpful in spare-part models and inventory modeling.

C.2 Extensions to the Markov Decision Process
Within this section, we will briefly introduce the Average Reward Value Function and the Par-
tially Observable Markov Decision Process.

C.2.1 Average Reward Value Function

With the Average Reward Reinforcement Learning (ARL), the algorithms optimize the average
reward per time step. The average reward value function determines for any policy π the average
reward ρπ. This average reward is independent of the start state (Silver, 2015).

ρπ = lim
T→∞

1
T
E
[
T∑
t=1

Rt

]

Multiple episodic domains have natural termination conditions, such as the ending of a
game. For other scenarios, there might not be a termination state. For problems where no fixed
termination state is available, ARL is very functional (Tadepalli, 2010). In a given case, we can
use the average reward Bellman equation instead of the regular Bellman equations (Bertsekas,
2019).

ṽπ(s) = Eπ

[
(Rt+1 − ρπ) +

∞∑
k=1

(Rt+k+1 − ρπ)|St = s

]
= Eπ[(Rt+1 − ρπ) + ṽπ(St+1)|St = s]

97

Page 98.

C.2.2 Partially Observable Markov Decision Process

Markov models can also include hidden states. Specific models are called Partially Observable
Markov Decision Process (POMDP). The states are not fully represented by the observation
for the agent (Åström, 1965; Z. Ding et al., 2020). Additionally to the MDP tuple, a finite set
of observations (O) and an observation function are used (Z) (Silver, 2015). The observation
function is defined as follows:

Zas′o = P[Ot+1 = o|St+1 = s′, At = a]

The POMDP is a distribution over the latent states, given the history. The history (Ht) can
be denoted as a sequence of actions, observations and rewards; Ht = A0, O1, R1, · · ·, At−1, Ot, Rt.
The distribution given the history is also called the belief state (b(h)) (Silver, 2015; Sutton &
Barto, 2018).

b(h) = P[St = si|Ht], ∀i ∈ {1, 2, · · ·, d}

However, since the environment is partially unknown, finding an acceptable policy is com-
plicated. Randomness allows the agent in this situation to choose different actions in differ-
ent locations. This prevents the agent from getting stuck in local optima and therefore loops
(Kaelbling, Littman, & Cassandra, 1998; Smallwood & Sondik, 1973). In a POMDP, the agent
makes an observation based on the action and resulting state, with the same goal; maximizing
the discounted rewards. Kaelbling et al. (1998) describes an algorithm to solve the POMDP.
Since our problem can be defined as a regular MDP, we will not dive further into this algorithm.

C.3 Solving Algorithms of Reinforcement Learning

This section presents the algorithms of Approximate Dynamic Programming (Section C.3.1),
TD-Control (Section C.3.2), Dyna-Q (Section C.3.3), Deep Q-Networks (Section C.3.4), Actor-
Critics (Section C.3.5), and Proximal Policy Optimization (Section C.3.6). Each algorithm is
provided with a brief explanation.

C.3.1 Approximate Dynamic Programming

The Approximate Dynamic Programming algorithm consists of four main steps. All steps are
shown in Algorithm 1 (Mes & Perez Rivera, 2017). The optimality function of the ADP is given
by Equation C.1. We will briefly explain the algorithm, step by step next.

V̄ n
t (St) = max

xt∈Xt
(Ct(St, xt) + γE{V̄ x,n

t+1 (St+1|Sxt)} (C.1)

The first step of the ADP algorithm is the initialization step. This step consists of an initial
approximation of the value function for all time periods and an initialization for individual start
values.

Next, in Step 1. of the algorithm, a sample path is chosen. In each iteration n, the sample
path ωn ∈ Ω is determined. Wt(ωn) is denoted the realized sample-path at time t. The sample
path represents the stochasticity within the process which occurs during the episode (Mes &
Perez Rivera, 2017).

For the computation step, step 2, the ADP will determine the best possible action, update
the value function, and determine the next state. The algorithm will perform this step repeatedly
for all t ∈ T . The algorithm performs steps 1 and 2 for N episodes before it returns the optimal
value function V̄ N

t (St)x,n.

Page 99.

Algorithm 1 Approximate Dynamic Programming
Step 0. Initialization

(a) Choose an initial approximation V̄ 0
t ∀t ∈ T

(b) Set the iteration counter n = 1, and set the maximum number of
iterations N .

(c) Set the initial state to S1
0

Step 1. Choose a sample path ωn

Step 2. Do for t = 0, · · ·, T

(a) Solve: v̂nt = maxxt∈Xt
(
Ct(St, xt) + γV̄ n−1

t

(
SM,x(St, xT)

))
Let xnt be the best decision and let Sxt = SM,x(St, xt)

(b) Update the value function: V̄ n
t−1(Sxt−1) = (1− α)V̄ n−1

t−1 (Sxt−1) + αv̂nt
(c) Compute new pre-decision state: St+1 = SM

(
St, x

n
t ,Wt+1(ωn)

)
Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions V̄ N
t (St)x,n∀t ∈ T , St ∈ S

C.3.2 TD-Control Method

The algorithm we will further explain is Q-Learning. We keep track of a Q-table Q(s, a) for
the regular Q-Learning. So, before starting the Q-Learning algorithm, we initialize the table
with preferable values. We will execute the algorithm for N episodes. At the beginning of each
episode, we will initialize the current state to the start state S0.

Next, we will perform the following steps repeatedly until the agent visits the terminal state.
First, the agent selects an action. Following the book of Sutton and Barto (2018) the action,
A(St) is given by an ε-greedy approach over Q-values by the policy. By this action, the agent
will receive a reward Rt+1 and move to the next state St+1.

With this observation, we update the Q-table following Equation C.2. By iterating over
steps and episodes, our knowledge of the environment will increase. In the update-function, α
represents the discount factor and γ the learning rate. Here, the discount factor gives the weight
of including current observation, and the learning rate determines the weight of future rewards
for the current observation.

Q(S,A)← Q(S,A) + α
[
R+ γmin

a
Q(S′, a)−Q(S,A)

]
(C.2)

Q-Learning does not require a model of the environment for the reward and next state
probability distributions. By interacting with the environment, the agent can earn rewards and
improve. The goal of Q-Learning is to determine the best policy that maximizes the Q-value.
The mentioned steps are presented in Algorithm 2.

Page 100.

Algorithm 2 Q-Learning
Initialize Q(s, a),∀s ∈ S, a ∈ A(s)
Do for N episodes:

(a) S ← current (non-terminal) state
(b) A← ε-greedy(S,Q)
(c) Execute action A; Observe resultant reward R, Get next state S′
(d) Q(S,A)← Q(S,A) + α

[
R+ γmaxaQ(S′, a)−Q(S,A)

]

C.3.3 Dyna-Q

The Dyna-Q algorithm, presented in Algorithm 3 (Sutton & Barto, 2018; Zhang et al., 2020),
is based on the Q-Learning algorithm. We see from the algorithm structure that steps (a) until
(d) of the Dyna-Q algorithm are the Q-Learning algorithm steps.

Further, in step (e), we will update a model. This model consists of all observations so
far. We gather all experience tuples, and we use this as an assumption of the deterministic
environment (Sutton & Barto, 2018). With this model, we can use a Model-Based approach
within a Model-Free environment. By iterating over this created model for n times, we rapidly
create more state-action pairs observations. Note that within the Model-Based approach, we
only look at earlier observed actions and states. Updating the Q-table based on the Model-
Approach helps converging faster to the optimal solution.

If we want to implement the algorithm within a changing environment, Sutton and Barto
(2018) recommends using the Dyna-Q+ algorithm. This algorithm encourages behavior that
tests long-untried actions; we give the agent a bonus reward on simulated experiences involving
these actions. The extra reward for exploration is defined as R+ κ

√
τ . In this reward function,

κ is a small number, and τ represents the time steps that we did not try the transition. For
further elaboration, see (Sutton & Barto, 2018, Section 8.3).

Algorithm 3 Dyna-Q
Initialize Q(s, a) and Model(s, a) ∀s ∈ Sand a ∈ A(s)
Do forever:

(a) S ← current (non-terminal) state
(b) A← ε-greedy(S,Q)
(c) Execute action A; Observe resultant reward R, Get next state S′
(d) Q(S,A)← Q(S,A) + α

[
R+ γmaxaQ(S′, a)−Q(S,A)

]
(e) Model(S,A)← R,S′

(f) Repeat n times:
S ← random previously observed state
A← random action previously taken in S
R, S′ ←Model(S,A) random action previously taken in S
Q(S,A)← Q(S,A) + α

[
R+ γmaxaQ(S′, a)−Q(S,A)

]
C.3.4 Deep Q-Networks

As mentioned in Section 3.5, Deep Q-Network (DQN) is an elaborate version of Q-Learning. The
first step of improvement concerns the replay buffer. For each time step t, the algorithm stores
the experience (St, At, Rt, St+1) in this replay buffer. Secondly, DQN uses a target network which
is used to generate the Q-Learning targets (Huang, 2020). Furthermore, It is difficult to use
arbitrary history lengths as input for the Neural Network. Therefore, DQN works with a history
function φ. This function combines the four most recent frames of history and uses this as input
for the Neural Network (Huang, 2020). These history frames are represented by the last four

Page 101.

states from the replay buffer. With an ε-greedy approach, the algorithm determines the next
action, based on the Q-values (Mnih et al., 2013). The algorithm is presented in Algorithm 4,
with the goal to maximize Yj .

With DQN we will train the network based on the Q-Learning function. Again, similar to the
Q-Learning algorithm, we will determine the action by an ε−greedy approach. After executing
At, we observe the reward and the image of the next state. With this tuple observation, we can
preprocess the equivalent to the state s, which is φ. Based on the neural network’s parameters
θ, we define the network’s loss function as the Squared Error between target Q-value and the
Q-value output from the network.

Algorithm 4 DQN
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with parameter θ̂ ← θ
Do for N episodes:

Initialize sequence S0 = S and preprocessed sequence φ0 = φ(S0)
Do for T steps:
A← ε-greedy(S,Q)
Execute action A; Observe resultant reward R, Get next state S′
St+1 ← St, At, S

′ and preprocess φt+1 = φ(St+1)
Store transition (φt, At, Rt, φt+1) in D
Sampel random minibatch of transitions (φj , Aj , Rj , φj+1) from D
if episode terminates at step j + 1 then:
Yj = Rj

else:
Yj = Rj + γmaxa′ Q̂

(
φj+1, a

′; θ̂
)

Perform a gradient descent step on
(
Yj −Q(φj , aj ; θ)

)2
with respect to θ

Reset Q̂ = Q after every C steps

C.3.5 Actor-Critics

The Actor-Critic (AC) method is located in the intersection of policy and value based methods;
we learn both policy and value function. Here, AC uses an actor (learn policy) and critic (learn
value) (Z. Ding et al., 2020). The general algorithm of actor-critic is that we run a policy π and
collect the corresponding St, At, Rt, St+1. Unlike DQN, Actor-Critics learn the St, At, Rt, St+1 in
each step (Z. Ding et al., 2020). Then, we estimate the Q-value (advantage) by bootstrapping.
Based on the advantage, we can calculate both policy function J(θ) and value function JV πθ

ψ
(ψ).

Within these updating functions, we use θ and ψ as parameters of the policy and value functions.

Additionally to regular actor-critics, we can use Synchronous Advantage Actor-Critic (A2C)
which focusses on parallel training of different workers. These workers all contain an own actor
and critic and communicate to a master node via a coordinator (Z. Ding et al., 2020). In a
A2C setup, the workers are only responsible for the interaction with the environment. Updating
happens in the master node. In other words, the worker runs the policy, estimates the advantage,
calculates policy and value function, and returns these function values. The master updates the
parameters θ and ψ after all workers are finished.

As described in Section 3.5, the critic needs to estimate the value of the current policy of
the actor. Since this is a value prediction problem, an algorithm such as SARSA, Q-learning,
or TD(λ) is useful (Szepesvári, 2010). The paper of Szepesvári (2010) further explains that an

Page 102.

actor can be implemented in two ways: by moving the current policy towards the greedy policy
or perform gradient ascent. This results in Algorithm 5, from (Z. Ding et al., 2020). Within
the algorithm of A3C the coordinator is removed, compared to A2C. As a result, the master
nodes can update whenever the worker is finished with the gradient computation which leads to
a better computational efficiency. The algorithm of A3C is presented in Algorithm 5.

Algorithm 5 A3C
Master:
Hyperparameters: step size ηψ and ηθ, current policy πθ, value function V πθ

ψ

Input: gradients gψ, gθ
ψ = ψ − ηψgψ; θ = θ + ηθgθ
Return (V πθ

ψ ,πθ)
Worker:
Hyperparameters: reward discount for factor γ, the length of trajectory L
Input: value function V πθ

ψ , policy πθ
(gθ, gψ) = (0, 0)
for k = 1, 2, · · ·,K do

(θ, ψ) =Master(gθ, gψ)
Run policy πθ for L time steps, collection {St, At, Rt, St+1}
Estimate advantages Ât = Rt + γV πθ

ψ (St+1)− V πθ
ψ (St)

J(θ) = ∑
t log πθ(AT |St)Ât

JV πθ
ψ

(ψ) = ∑
t Â

2
t

(gψ, gθ) =
(
∇JV πθ

ψ
(ψ),∇J(θ)

)
end for

C.3.6 Proximal Policy Optimization

The value function (V θ) from the TRPO algorithm is replaced with a learned value function
approximation (Vφ(s)) (Schulman et al., 2017). The algorithm uses iterations of a fixed length
over the time window. In the iterations, the algorithm maximizes directly over the expected
sum of rewards, C.3. Where τ represents the state-action trajectory τ = (s0, a0, s1, · · ·), θ
(the gradient decent) is the parameter of the stochastic policy, and ρ represents the system
dynamics by ρθ(τ) = p(so)π(a0|s0)p(s1|s0, a0) · ·· (Heess et al., 2017; Z. Ding et al., 2020). In
the optimization function (JPPO(θ)) we find the regularization coefficient λ:

JPPO(θ) =
T∑
t=1

πθ(at|st)
πold(at|st)

Ât − λKL[πold|πθ] (C.3)

The λ is dependent on πθ and recovers the same optimizer as a constant. The KL-divergence
constraint will determine whether the λ should be enlarged or reduced (Z. Ding et al., 2020).
The KL parameter represents the desired change in the policy per iteration, supported by scaling
term α > 1 (Heess et al., 2017). The scaling term adjust the KL-regularization coefficient if the
policy falls outside the given interval [βlowKLtarget, βhighKLtarget].

With an enhanced PPO method, which is trust region-based with rollback, Y. Wang, He,
Tan, and Gan (2019) propose an approach for improving PPO on both stability and sample
efficiency. Alternatively, resetting the agent’s environment can also ensure a more stable and
better-enhanced training (Kristensen & Burelli, 2020). Nonetheless, these challenges are mostly
common for problems with a very large state-space.

Page 103.

The PPO algorithm has proven to be effective in optimal control for inventory problems
(Meisheri et al., 2020). Also in the control tower setting is the PPO algorithm tested and
proved itself to be useful (Vanvuchelen et al., 2020). Since PPO is relatively easy to implement
(compared to TRPO) and it provides robust and reliable results, is PPO a promising algorithm
for our purpose. Algorithm 6 shows the different steps, derived from (Heess et al., 2017).

Algorithm 6 Proximal Policy Optimization
for i ∈ {1, 2, · · ·, N} do

Run policy πθ for T time steps, collecting {st, at, rt}
Estimate advantages Ât = ∑

t′>t γ
t′−trt′ − Vφ(st)

πold ← πθ
for j ∈ {1, 2, · · ·,M} do
JPPO(θ) = ∑T

t=1
πθ(at|st)
πold(at|st)Ât − λKL[πold|πθ]

Update θ by a gradient method with respect to JPPO(θ)
end for
for j ∈ {1, · · ·, B} do
LBL(φ) = −∑T

t=1
(∑

t′>t γ
t′−trt′ − Vφ(st)

)
Update φ by a gradient method with respect to LBL(φ)

end for
if KL[πold|πθ] > βhighKLtarget then
λ← αλ

else if KL[πold|πθ] < βlowKLtarget
λ← λ

α
end if

end for

Currently, in the literature multiple flaws are found concerning Proximal Policy Optimiza-
tion. Although PPO is a data efficient and easier to implement algorithm as TRPO, the per-
formance of PPO can be unstable (Y. Wang, He, & Tan, 2019). The performance is dependent
on the effectiveness of the exploratory policy search, and can be caused by bad initialization
(Y. Wang, He, Tan, & Gan, 2019). With an enhanced PPO method, which is trust region
based with rollback, Y. Wang, He, Tan, and Gan (2019) propose an approach for improving
PPO on both stability and sample efficiency. Alternatively, resetting the environment for the
agent can also ensure a more stable and better enhanced training (Kristensen & Burelli, 2020).
Nonetheless, these challenges are mostly common for problems with a very large state-space.

Page 104.

D | Algorithm Flowcharts

Figure D.1: Structure of the SDP algorithm

105

Page 106.

Figure D.2: Structure of the Simulation with Greedy Heuristic

Page 107.

Figure D.3: Structure of the Dyna-Q algorithm

Page 108.

E | Python Code - Import Data

E.1 Acquisition Costs
1 def LoadAC ():
2 global ACost , CostTable
3 summ = 0.0
4 ws = wb[’Acquisition ’]
5 last_row = ws. max_row
6 ### DETERMINE COST TABLE ###
7 arr_row = 0
8 for row in range(last_row):
9 if ws.cell(row=row +1, column =1).value == ’PN1 ’:

10 for col in range (7):
11 CostTable [arr_row ,col] = ws.cell(row=row +1, column =col +2).value
12 arr_row += 1
13 for row in range(arr_row):
14 summ += CostTable [row , 1]
15 ACost = summ / arr_row

E.2 Turnover Rate
1 def LoadToR ():
2 global turnover
3 summ = 0.0
4 TTest = False
5 years = 0
6 prod_row = 0
7 ws = wb[’TurnoverRate ’]
8 last_row = ws. max_row
9 last_col = ws. max_column

10 ### CALCULATE MEAN TURNOVER RATE ###
11 for row in range(last_row):
12 if ws.cell(row=row + 1, column =1).value == ’PN1 ’:
13 prod_row = row + 1
14 elif row == last_row - 1:
15 sys.exit("Sorry , this part number is not found in the data base!")
16 for col in range(last_col - 1):
17 turnrate = ws.cell(row=prod_row , column =col + 2).value
18 if ws.cell(row =2, column =col + 2).value == 2020:
19 break
20 elif not (turnrate == "") or not (turnrate == 0):
21 TTest = True
22 summ = summ + turnrate
23 years += 1
24 elif TTest:
25 years += 1
26 turnover = summ / years

109

Page 110.

E.3 Demand & Repair

1 def LoadDemandRepair ():
2 global observ_data , r_mean , r_exp , r_sigma , invloc , TotalTAT , MATAT , MDrD ,

Tactical , DrD , repairs , customer , poolinv , leadprob , start_tact , repairdate
3 col_PN = 1
4 col_TAT = 1
5 r_exp = 0
6 summ = 0
7

8 ws = wb[’Transaction_Data ’]
9 last_row = ws. max_row

10 last_col = ws. max_column
11 ### COLUMN DEFINITION ###
12 for col in range(last_col):
13 if ws.cell(row =1, column =col + 1).value == ’PARTNUMBER ’:
14 col_PN = col + 1
15 elif ws.cell(row =1, column =col + 1).value == ’Shop_TAT ’:
16 col_TAT = col + 1
17 elif ws.cell(row =1, column =col + 1).value == ’LINE_ADDED ’:
18 col_add = col + 1
19 elif ws.cell(row =1, column =col + 1).value == ’EXCH_TYPE ’:
20 col_type = col + 1
21

22 elif ws.cell(row =1, column =col + 1).value == ’EXCH_TYPE ’:
23 col_type = col + 1
24 elif ws.cell(row =1, column =col + 1).value == ’CORE_RCVD ’:
25 col_rcvd = col + 1
26 elif ws.cell(row =1, column =col + 1).value == ’STOCK_UPDATED ’:
27 col_stock = col + 1
28 elif ws.cell(row =1, column =col + 1).value == ’DELIVERED ’:
29 col_del = col + 1
30

31 ### REPAIR PROBABILITY ###
32 for row in range(last_row):
33 if ws.cell(row=row + 1, column = col_PN).value == ’PN1 ’:
34 observ_data . append (ws.cell(row=row + 1, column = col_TAT).value)
35 r_mean = np.mean(np.log(observ_data))
36 r_sigma = np.std(np.log(observ_data))
37 for t in range (200):
38 leadprob . append (lognorm .cdf(x=t + 1, s=r_sigma , scale=np.exp(r_mean)))
39

40 ### DETERMINE DEMAND DAY IN MOVING AVERAGE ###
41 for row in range(last_row):
42 if ((ws.cell(row=row + 1, column = col_type).value == ’Forward ’ or
43 ws.cell(row=row + 1, column = col_type).value == ’Shop ’) and
44 ws.cell(row=row + 1, column = col_add).value <= datetime . datetime

(2020 , 1, 20)):
45 # MOVING DEMAND
46 LINEADD = ws.cell(row=row + 1, column = col_add).value
47 REPTAT = ws.cell(row=row + 1, column = col_TAT).value
48 TotalTAT [LINEADD] = REPTAT
49 # MOVING INVENTORY LOCATIONS
50 invloc [LINEADD] = {} # Used in stock levels
51 Sort_TAT = sorted (TotalTAT .items (), key= lambda x: x[0], reverse =False)
52 FirstDate = Sort_TAT [0][0]
53

54 for i in range(len(Sort_TAT)):
55 if (FirstDate + datetime . timedelta (days =365)) <= Sort_TAT [i][0]:
56 BeginAvg = i - 1
57 break
58 for i in range(len(Sort_TAT)):
59 summ += Sort_TAT [i][1]

Page 111.

60 TATHand = math.ceil ((summ / (i + 1)) + 4)
61 if i >= BeginAvg :
62 MATAT. append (TATHand)
63 deltaday = Sort_TAT [i][0] - FirstDate
64 movingd = round ((i + 1) / deltaday .days , 3)
65 MDrD. append (movingd)
66 Tactical [Sort_TAT [i][0]] = math.floor(InvPois (movingd * TATHand ,

0.95))
67 DrD = MDrD [-1]
68

69 ### DETERMINE STOCK LEVELS DURING MOVING TIME PERIOD ###
70 listdaterepairs = {}
71 for index in range (len(Sort_TAT)):
72 InR = 0
73 AtC = 0
74 daterepair = []
75 dt = Sort_TAT [index][0]
76 for row in range (last_row - 1):
77 RCVD = ws.cell(row=row + 2, column = col_rcvd).value
78 STOCK = ws.cell(row=row + 2, column = col_stock).value
79 DELIVER = ws.cell(row=row + 2, column = col_del).value
80 TYPE = ws.cell(row=row + 2, column = col_type).value
81 if (dt >= DELIVER) and (dt <= STOCK):
82 if TYPE == ’Forward ’:
83 if dt < RCVD:
84 AtC += 1
85 else:
86 InR += 1
87 daterepair . append (DELIVER)
88 elif TYPE == ’Shop ’:
89 InR += 1
90 daterepair . append (DELIVER)
91 listdaterepairs [dt] = daterepair
92 repairs . append (InR)
93 customer . append (AtC)
94 if index >= BeginAvg :
95 for tac in range(len(Tactical)):
96 if dt == list(Tactical .keys ())[tac]:
97 pool = max(InR + AtC , list(Tactical . values ())[tac])
98 poolinv . append (pool)
99 invloc [dt] = (InR , AtC)

100 start_tact = list(Tactical . values ())[-1]
101 for i in range(len(list(listdaterepairs . values ())[-1])):
102 dinrepair = math.floor ((datetime . datetime (2020 , 1, 20) - list(

listdaterepairs . values ())[-1][i]). total_seconds () / (24 * 60 * 60))
103 repairdate . append (dinrepair)

E.4 Grid Definition
1 def DetMaxGrid ():
2 global MaxBO , MaxInv , Tactical , repairs , customer , start_rep , start_oh ,

start_cust
3 ### MAXGRID DEFINITION - BACKORDERS AND INVENTORY ###
4 for k in range (10):
5 if poisson .pmf(k, T * DrD) < 0.01:
6 MaxBO = k - 1
7 break
8 MaxInv = max(math.floor (1.5 * start_tact), 2)
9 start_cust = customer [-1]

10 start_rep = repairs [-1]
11 start_oh = max(start_tact - start_cust - start_rep , 0)

Page 112.

E.5 Transition Probability Table

1 def ProbabilityTable ():
2 global demp , repp , expp , extab , SDP_repp , SDP_expp
3 tabular = np.zeros ((start_rep , T))
4 tabuexp = np.zeros ((start_rep , T))
5 repp = np.zeros ((start_rep , T))
6 expp = np.zeros ((start_rep , T))
7 MH_rep = np.zeros ((start_rep , T))
8 MH_exp = np.zeros ((start_rep , T))
9

10 ### DEMAND PROBABILITY ###
11 for k in range(MaxBO + 1):
12 demp. append (poisson .pmf(k, DrD))
13

14 ### REPAIR PROBABILITY ###
15 for rep in range(start_rep):
16 TiR = repairdate [rep]
17 for t in range (T):
18 repp[rep , t] = leadprob [t + TiR]
19 MH_rep [rep , t] = 0.5 * repp[rep , t] / (0.5 * repp[rep , t] + (1 -

repp[rep , t]))
20 expp[rep , t] = 2 * repp[rep , t] - repp[rep , t] ** 2
21 MH_exp [rep , t] = 0.5 * expp[rep , t] / (0.5 * expp[rep , t] + (1 -

expp[rep , t]))
22

23 if start_rep < 0:
24 sys.exit(f" System can ’t run for stock level in repair shop of: {

start_rep }.")
25 elif start_rep == 0:
26 SDP_repp = np.full(T, 1)
27 SDP_expp = np.full(T, 1)
28 elif start_rep == 1:
29 SDP_repp = np.zeros ((start_rep + 1, T))
30 SDP_expp = np.zeros ((start_rep + 1, T))
31 for t in range (T):
32 SDP_repp [0, t] = 1 - MH_rep [0, t]
33 SDP_repp [1, t] = MH_rep [0, t]
34 SDP_expp [0, t] = 1 - MH_exp [0, t]
35 SDP_expp [1, t] = MH_exp [0, t]
36 elif start_rep > 1:
37 hulparr = list(product ([0, 1], repeat = start_rep))
38 sumarr = np.sum(hulparr , axis =1)
39 SDP_repp = np.zeros ((start_rep + 1, T))
40 SDP_expp = np.zeros ((start_rep + 1, T))
41 for t in range (T):
42 for row in range(len(hulparr)):
43 rv = 1
44 ev = 1
45 for col in range (len(hulparr [0])):
46 if hulparr [row][col] == 0:
47 rv *= (1 - MH_rep [col , t])
48 ev *= (1 - MH_exp [col , t])
49 elif hulparr [row][col] == 1:
50 rv *= MH_rep [col , t]
51 ev *= MH_exp [col , t]
52 SDP_repp [sumarr [row], t] += rv
53 SDP_expp [sumarr [row], t] += ev

Page 113.

E.6 General Import
1 def ImportAllData (): # Load all data
2 start_time = time.time ()
3 LoadAC ()
4 LoadToR ()
5 LoadDemandRepair ()
6 DetMaxGrid ()
7 ProbabilityTable ()
8 t = round(time.time () - start_time , 5)
9 print(f" Import complete in {t} seconds ")

10 wb.close ()

Page 114.

F | Python Code - Algorithms

F.1 General Functions

F.1.1 Reward
1 def detReward (action):
2 ### REWARD FUNCTION ###
3 i_oh , i_rep , i_cust , t = nxt_state
4 global bo_count , I_total , update_t
5 cbuy = 0
6

7 ### INTERVENTION COSTS ###
8 if (action == ’Expedite ’) or (action == ’ExpBuy1 ’) or (action == ’ExpBuy2 ’)

or (action == ’ExpBuy3 ’):
9 if Sim:

10 expfee = round (random . uniform (0, 450) , 2)
11 else:
12 expfee = (450 + 0) / 2
13 else:
14 expfee = 0
15 K = 150
16 if (action == ’Buy1 ’) or (action == ’ExpBuy1 ’):
17 loop = 1
18 elif (action == ’Buy2 ’) or (action == ’ExpBuy2 ’):
19 loop = 2
20 elif (action == ’Buy3 ’) or (action == ’ExpBuy3 ’):
21 loop = 3
22 else:
23 loop = 0
24 K = 0
25 for _ in range(loop):
26 if Sim:
27 row = np. random . randint (0, 1)
28 col = np. random . randint (1, 6)
29 cbuy += CostTable [row , col]
30 else:
31 cbuy += ACost
32 if action == ’Do Nothing ’:
33 cbuy = 0
34 expfee = 0
35 K = 0
36

37 c_int = cbuy + expfee + K
38

39 ### BACKORDER CALCULATION ###
40 if i_oh < 0:
41 if t > update_t and COUNTING :
42 bo_count *= 1.15
43 update_t = t
44 c_bo = 0.5 * bo_count * ACost * abs(i_oh) * ToR

115

Page 116.

45 else:
46 c_bo = 0
47

48 ### TERMINAL COST CALCULATION ###
49 if t == THORIZON :
50 I_total = max(i_oh , 0) + i_rep + i_cust
51 if (I_total > I_tactical) and not (I_total == max (0, start_oh) +

start_rep + start_cust):
52 c_term = ACost * (I_total - I_tactical) ** 2
53 elif I_total < I_tactical :
54 c_term = 0.5 * ACost * (I_tactical - I_total) ** 2 * ToR
55 elif (I_total == I_tactical or I_total == start_oh + start_rep +

start_cust) and i_oh < 0:
56 c_term = 0.5 * ACost * (abs(i_oh)) * ToR
57 else:
58 c_term = 0
59 else:
60 c_term = 0
61

62 ### TOTAL COSTS ###
63 total_cost = c_bo + c_int + c_term
64 return round(total_cost , 2)

F.1.2 Next Position
1 def nxtPosition (action , Z_rr , Z_er , Z_customer , Demand):
2 ### NEXTPOSITION FOR SIMULATION AND DYNA -Q ###
3 global I_total , agent_state
4 i_oh , i_rep , i_cust , t = agent_state
5 a = ACTIONS [action]
6 buy = 0
7 Z_repair = Z_rr
8

9 if a == ’Expedite ’:
10 Z_repair = Z_er
11 elif a == ’Buy1 ’:
12 buy = 1
13 elif a == ’Buy2 ’:
14 buy = 2
15 elif a == ’Buy3 ’:
16 buy = 3
17

18 elif a == ’ExpBuy1 ’:
19 Z_repair = Z_er # New probability for repair
20 buy = 1
21 elif a == ’ExpBuy2 ’:
22 Z_repair = Z_er # New probability for repair
23 buy = 2
24 elif a == ’ExpBuy3 ’:
25 Z_repair = Z_er # New probability for repair
26 buy = 3
27 else: # equal to "Do Nothing "
28 pass
29

30 ### BOUNDARIES ###
31 usedbuy = buy
32 if i_oh + Z_repair - Demand > maxinventory :
33 usedrep = 0
34 else:
35 usedrep = Z_repair
36

37 if max (0, i_oh) + i_rep + i_cust + usedbuy > GridMax and usedbuy > 0:
38 usedbuy = max (0, GridMax - i_cust - i_rep - max (0, i_oh))

Page 117.

39 if max (0, i_oh) + usedbuy + usedrep > maxinventory :
40 usedbuy = max (0, maxinventory - max (0, i_oh) - usedrep)
41

42 if i_oh + usedrep + usedbuy - Demand >= 0:
43 useddem = Demand
44 if i_oh < 0:
45 custdem = Demand + min(abs(i_oh), usedbuy + usedrep)
46 else:
47 custdem = Demand
48 if usedbuy > Demand - i_oh - usedrep and i_cust + custdem == GridMax :
49 usedbuy = useddem - i_oh - usedrep
50 elif i_oh + i_rep + i_cust + usedbuy > GridMax :
51 usedbuy = GridMax - (i_oh + i_rep + i_cust)
52 elif i_oh + usedrep + usedbuy - Demand < 0:
53 custdem = max(i_oh , 0) + usedrep + usedbuy
54 if i_cust + custdem > GridMax :
55 useddem = i_oh + usedrep + usedbuy
56 elif i_oh + usedrep + usedbuy - Demand < -maxbackorders :
57 useddem = maxbackorders + i_oh + usedrep + usedbuy
58 else:
59 useddem = Demand
60

61 I_total = i_oh + i_rep + i_cust + buy
62 i_oh = i_oh + usedrep - useddem + usedbuy
63 i_rep = i_rep - usedrep
64 i_cust = i_cust + custdem
65

66 return i_oh , i_rep , i_cust , t + 1

F.1.3 Initialization
1 def __init__ ():
2 global START_STATE , Q_values , BR_values , nxt_state , agent_state , bo_count ,

COUNTING
3 START_STATE = (start_oh , start_rep , start_cust , 0)
4 random .seed (5)
5 np. random .seed (5)
6 COUNTING = False
7 repair_in_shop = start_rep
8 if start_q_table is None:
9 for cus in range (GridMax + 1):

10 if cus == GridMax :
11 repair_in_shop = 0
12 for curr_rep in range(repair_in_shop + 1):
13 RInv = [i for i in range ((- maxbackorders), min(maxinventory + 1,

GridMax - curr_rep - cus + 1))]
14 for inv in RInv:
15 for tijd in range (THORIZON):
16 Q_values [inv , curr_rep , cus , tijd] = {}
17 for a in ACTIONS :
18 if curr_rep == 0 and (
19 a == ’Expedite ’ or a == ’ExpBuy1 ’ or a == ’

ExpBuy2 ’ or a == ’ExpBuy3 ’):
20 dirRew = 99999999999
21 else:
22 nxt_state = nxtPosition (ACTIONS .index(a), 0, 0,

0, 0)
23 dirRew = detReward (a)
24 Q_values [inv , curr_rep , cus , tijd][a] = dirRew
25 else:
26 with open(start_q_table , "rb") as f:
27 Q_values = pickle .load(f)
28

Page 118.

29 if start_br_table is not None:
30 with open(start_br_table , "rb") as f:
31 BR_values = pickle .load(f)

F.1.4 Choose Action
1 def chooseAction (epsilon =0.1):
2 ### DETERMINE ACTION E- GREEDY ###
3 mx_nxt_reward = 9999999999
4

5 if np. random . uniform (0, 1) <= epsilon :
6 action = np. random . choice (ACTIONS)
7 else:
8 cur_pos = agent_state
9 if len(set(val for dic in Q_values for val in Q_values [cur_pos]. values ()

)) == 1:
10 action = np. random . choice (ACTIONS)
11 else:
12 for a in ACTIONS :
13 nxt_reward = Q_values [cur_pos][a]
14 if nxt_reward <= mx_nxt_reward :
15 action = a
16 mx_nxt_reward = nxt_reward
17 if agent_state [1] == 0:
18 if action == " Expedite ":
19 action = "Do Nothing "
20 elif action == " ExpBuy1 ":
21 action = "Buy1"
22 elif action == " ExpBuy2 ":
23 action = "Buy2"
24 elif action == " ExpBuy3 ":
25 action = "Buy3"
26

27 return action

F.2 Learning

F.2.1 Backward Recursion
1 def LearnSDP ():
2 ### CALCULATE STOCHASTIC DYNAMIC PROGRAMMING SOLUTION ###
3 global agent_state , nxt_state , bo_count , COUNTING , Sim , SDP_p , SDP_e
4 # INITIALIZE SDP ARRAYS
5 DP_values = {}
6 DP_actions = {}
7 DP_backorders = {}
8 repair_in_shop = start_rep
9

10 for cus in range(GridMax + 1):
11 if cus == GridMax :
12 repair_in_shop = 0
13 for curr_rep in range(repair_in_shop + 1):
14 RInv = [i for i in range ((- maxbackorders), min(maxinventory + 1,

GridMax - curr_rep - cus + 1))]
15 for inv in RInv:
16 DP_values [inv , curr_rep , cus] = {}
17 DP_actions [inv , curr_rep , cus] = {}
18 DP_backorders [inv , curr_rep , cus] = {}
19 for t in range (THORIZON):
20 DP_values [inv , curr_rep , cus][t] = 0
21 DP_actions [inv , curr_rep , cus][t] = 0

Page 119.

22 DP_backorders [inv , curr_rep , cus][t] = 0
23

24 # INITIALIZE OTHER SETTINGS FOR SDP
25 COUNTING = False
26 Sim = False
27 bc = 1.1
28 bo_count = bc ** THORIZON
29

30 # CALCULATE TERMINAL STATE
31 xlrow = 2
32 repair_in_shop = start_rep
33 for cus in range(GridMax + 1):
34 if cus == GridMax :
35 repair_in_shop = 0
36 for curr_rep in range(repair_in_shop + 1):
37 RInv = [i for i in range ((- maxbackorders), min(maxinventory + 1,

GridMax - curr_rep - cus + 1))]
38 for inv in RInv:
39 nxt_state = (inv , curr_rep , cus , THORIZON)
40 DP_values [inv , curr_rep , cus][THORIZON - 1] = detReward (ACTIONS

[0])
41 DP_actions [inv , curr_rep , cus][THORIZON - 1] = 0
42 DP_backorders [inv , curr_rep , cus][THORIZON - 1] = abs(min (0, inv

))
43

44 # CALCULATE OTHER TIME PERIODS WITH BACKWARD RECURSION
45 for tijd in range(THORIZON - 1):
46 t = THORIZON - tijd - 2
47 bo_count = bc ** t #np.sqrt(t + 1)
48 xlrow = 2
49 repair_in_shop = start_rep
50 for curr_cus in range(GridMax + 1):
51 if curr_cus == GridMax :
52 repair_in_shop = 0
53 for curr_rep in range(repair_in_shop + 1):
54 RInv = [i for i in range ((- maxbackorders), min(maxinventory + 1,

GridMax - curr_rep - curr_cus + 1))]
55 for curr_inv in RInv:
56 best_opt_sf = 10000000
57 best_action = 0
58 for a in range(len(ACTIONS)):
59 agent_state = (curr_inv , curr_rep , curr_cus , t)
60 sum_nxt_state = 0
61 bo_nxt_state = 0
62 exp_reward = 0
63 if a == 2 or a == 5:
64 buy = 1
65 elif a == 3 or a == 6:
66 buy = 2
67 elif a == 4 or a == 7:
68 buy = 3
69 else:
70 buy = 0
71 if a == 0 or a == 2 or a == 3 or a == 4: # if not

expedite
72 rep_tab = SDP_p
73 else:
74 rep_tab = SDP_e
75

76 for dem in range(maxbackorders + 1):
77 for rep in range (curr_rep + 1):
78 usedbuy = buy
79 if curr_inv + rep - dem > maxinventory :

Page 120.

80 usedrep = 0
81 else:
82 usedrep = rep
83 ### HIER STOND DE BUY CODE
84 if max (0, curr_inv) + curr_rep + curr_cus +

usedbuy > GridMax and usedbuy > 0:
85 usedbuy = max (0, GridMax - curr_cus -

curr_rep - max (0, curr_inv))
86 if max (0, curr_inv) + usedbuy + usedrep >

maxinventory :
87 usedbuy = max (0, maxinventory - max (0,

curr_inv) - usedrep)
88

89 if curr_inv + usedrep + usedbuy - dem >= 0:
90 useddem = dem
91 if curr_inv < 0:
92 custdem = dem + min(abs(curr_inv),

usedbuy + usedrep)
93 else:
94 custdem = dem
95 if usedbuy > dem - curr_inv - usedrep and

curr_cus + custdem == GridMax :
96 usedbuy = useddem - curr_inv - usedrep
97 elif curr_inv + curr_rep + curr_cus +

usedbuy > GridMax :
98 usedbuy = GridMax - (curr_inv + curr_rep

+ curr_cus)
99 elif curr_inv + usedrep + usedbuy - dem < 0:

100 custdem = max(curr_inv , 0) + usedrep +
usedbuy

101 if curr_cus + custdem > GridMax :
102 useddem = curr_inv + usedrep + usedbuy
103 elif curr_inv + usedrep + usedbuy - dem < -

maxbackorders :
104 useddem = maxbackorders + curr_inv +

usedrep + usedbuy
105 else:
106 useddem = dem
107

108 nxt_inv = curr_inv + usedrep - useddem + usedbuy
109 nxt_rep = curr_rep - usedrep
110 nxt_cust = curr_cus + custdem
111 if curr_rep == 0:
112 use_trans = dem_probs [dem]
113 else:
114 use_trans = rep_tab [rep , t] * dem_probs [dem]
115

116 nxt_state = (nxt_inv , nxt_rep , nxt_cust , t + 1)
117 exp_reward += use_trans * detReward (ACTIONS [a])
118 sum_nxt_state += use_trans * DP_values [nxt_inv ,

nxt_rep , nxt_cust][t + 1]
119 bo_nxt_state += use_trans * DP_backorders [

nxt_inv , nxt_rep , nxt_cust][t + 1]
120

121 action_value = exp_reward + alpha * sum_nxt_state
122

123 if best_opt_sf >= action_value :
124 best_opt_sf = action_value
125 best_action = a
126 best_bo = bo_nxt_state
127

128 DP_values [curr_inv , curr_rep , curr_cus][t] = best_opt_sf
129 DP_actions [curr_inv , curr_rep , curr_cus][t] = best_action

Page 121.

130 DP_backorders [curr_inv , curr_rep , curr_cus][t] = best_bo

F.2.2 Dyna-Q
1 def PlayDynaQ (n_steps =0, TotalEpisodes =1000 , eps =1, LR =0.1 , DISCOUNT =1, EP_DECAY

=1):
2 global agent_state , costs_per_episode , nxt_state , bo_count , update_t ,

COUNTING , Sim
3 __init__ ()
4 COUNTING = True
5 Sim = True
6 start_eps = eps
7 costs_per_episode = []
8

9 for ep in range(TotalEpisodes):
10 #if ep == 12000:
11 # eps = 0.5
12 agent_state = START_STATE
13 ep_cost = 0
14 bo_count = 1
15 update_t = 0
16 repcmpt = []
17 for sr in range (start_rep):
18 repcmpt . append (sr)
19 for t in range (THORIZON):
20 if t < THORIZON - 1:
21 D_rand = np. random . poisson (DrD)
22 Z_rr = 0
23 Z_er = 0
24 n_ret = []
25 e_ret = []
26 for rep in repcmpt :
27 rnd = np. random . uniform (0, 1)
28 if rnd <= rep_probs [rep , t]:
29 Z_rr += 1
30 n_ret. append (rep)
31 if rnd <= exprep_probs [rep , t]:
32 Z_er += 1
33 e_ret. append (rep)
34 Z_cust = np. random . binomial (agent_state [2], p_customer)
35 action = chooseAction (epsilon =eps)
36 best_a = ACTIONS .index(action)
37 if best_a == 1 or best_a == 5 or best_a == 6 or best_a == 7: #

If best action is expedite , pop expedite list
38 for p in range(len(e_ret)):
39 repcmpt .pop(p)
40 else:
41 for p in range(len(n_ret)):
42 repcmpt .pop(p)
43 nxt_state = nxtPosition (ACTIONS .index(action), Z_rr , Z_er ,

Z_cust , D_rand)
44 reward = detReward (action)
45 ep_cost += reward

Page 122.

46

47 Q_values [agent_state][action] += LR * (
48 reward + DISCOUNT * np.min(list(Q_values [nxt_state].

values ())) - Q_values [agent_state][action])
49

50 agent_state = nxt_state
51 else:
52 action = ACTIONS [0]
53 nxt_state = agent_state [0], agent_state [1], agent_state [2],

agent_state [3] + 1
54 state_actions . append ((agent_state , action))
55 reward = detReward (action)
56 ep_cost += reward
57

58 Q_values [agent_state][action] += LR * (reward - Q_values [
agent_state][action])

59

60 ### MODEL PREDICTION ###
61 if agent_state not in model.keys ():
62 model[agent_state] = {}
63 model[agent_state][action] = (reward , nxt_state)
64

65 ### DYNA ARCHITECTURE ###
66 for _ in range(n_steps):
67 rand_idx = np. random . choice (range(len(model.keys ())))
68 _state = list(model)[rand_idx]
69 rand_idx = np. random . choice (range(len(model[_state]. keys ())))
70 _action = list(model[_state])[rand_idx]
71

72 _reward , _nxtState = model[_state][_action]
73

74 Q_values [_state][_action] += LR * (_reward + DISCOUNT * np.min(
list(Q_values [_nxtState]. values ())) -

75 Q_values [_state][_action])
76

77 eps *= EP_DECAY
78 costs_per_episode . append (ep_cost)

F.3 Evaluating
1 def EvaluSim (TotalEpisodes =0, Method =""):
2 global agent_state , bo_count , update_t , nxt_state , Sim , COUNTING ,

costs_per_episode
3 __init__ ()
4 Sim = True
5 COUNTING = True
6

7 Evaluation = Method
8 wb = xl. load_workbook (filename =" Evalu_SIM .xlsx")
9 ws1 = wb[’SIM -C’] # Cost Data

10 ws2 = wb[’SIM -D’] # Action Data
11 ws3 = wb[’SIM -B’] # Backorder Data
12 costs_per_episode = []
13 for ep in range(TotalEpisodes):
14 agent_state = (start_oh , start_rep , start_cust , 0)
15 ep_cost = 0
16 bo_count = 1
17 update_t = 0
18 repcmpt = []
19 for sr in range (start_rep):
20 repcmpt . append (sr)
21 for t in range (THORIZON):

Page 123.

22 best_r = 10000000000
23 best_a = 0
24 D_rand = np. random . poisson (DrD)
25 Z_rr = 0
26 Z_er = 0
27 n_ret = []
28 e_ret = []
29 for rep in repcmpt :
30 rnd = np. random . uniform (0, 1)
31 if rnd <= rep_probs [rep , t]:
32 Z_rr += 1
33 n_ret. append (rep)
34 if rnd <= exprep_probs [rep , t]:
35 Z_er += 1
36 e_ret. append (rep)
37 Z_cust = np. random . binomial (agent_state [2], p_customer)
38

39 if Evaluation == "Exact":
40 best_a = BR_values [start_ip][agent_state]
41 nxt_state = nxtPosition (best_a , Z_rr , Z_er , Z_cust , D_rand)
42 best_r = detReward (ACTIONS [best_a])
43 best_loc = nxt_state
44 elif Evaluation == " Greedy ":
45 for a in range (len(ACTIONS)):
46 nxt_state = nxtPosition (a, Z_rr , Z_er , Z_cust , D_rand)
47 curr_reward = detReward (ACTIONS [a])
48 if curr_reward <= best_r :
49 best_r = curr_reward
50 best_a = a
51 best_loc = nxt_state
52 elif Evaluation == "Dyna -Q":
53 action = chooseAction (epsilon =0)
54 best_a = ACTIONS .index(action)
55 nxt_state = nxtPosition (ACTIONS .index(action), Z_rr , Z_er ,

Z_cust , D_rand)
56 best_r = detReward (action)
57 best_loc = nxt_state
58

59 if best_a == 1 or best_a == 5 or best_a == 6 or best_a == 7: # If
best action is expedite , pop expedite list

60 for p in range (len(e_ret)):
61 repcmpt .pop(p)
62 else:
63 for p in range (len(n_ret)):
64 repcmpt .pop(p)
65

66 agent_state = best_loc
67 ep_cost += best_r
68 costs_per_episode . append (ep_cost)

Page 124.

G | Results - Learn

G.1 Backward Recursion

Table G.1: Translation table from interventions to abbreviations

Action Do Nothing Expedite Buy1 Buy2 Buy3 ExpBuy1 ExpBuy2 ExpBuy3
Abbr. dn exp b1 b2 b3 eb1 eb2 eb3

Table G.2: Optimal decisions for backward recursion with Itotal = 0

oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-3 0 0 b2 b2 b2 b2 b1 b1 b1 b1 b1 b1 exp dn dn dn
-2 0 0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
-1 0 0 exp exp exp exp exp exp exp exp exp exp exp dn dn dn
0 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 1 b1 b1 b1 b1 exp exp exp exp dn dn dn dn dn dn
-2 0 1 b1 b1 b1 b1 exp exp exp exp exp exp dn dn dn dn
-1 0 1 exp exp exp exp exp exp exp exp exp exp exp dn dn dn
0 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 2 exp exp exp dn dn dn dn dn dn dn dn dn dn dn
-1 0 2 exp exp exp exp dn dn dn dn dn dn dn dn dn dn
0 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Continued on next page

125

Page 126.

Table G.2 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Table G.3: Optimal decisions for backward recursion with Itotal = 1

oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3 0 0 b3 b3 b3 b3 b2 b2 b2 b2 b2 b2 b1 dn dn dn
-2 0 0 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn
-1 0 0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 0 b2 eb2 eb2 eb2 eb1 eb1 eb1 eb1 eb1 eb1 exp exp exp dn
-2 1 0 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-1 1 0 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 1 b2 b2 b2 b2 b1 b1 b1 b1 dn dn dn dn dn dn
-2 0 1 b2 b2 b2 b2 b1 b1 b1 b1 b1 b1 dn dn dn dn
-1 0 1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 1 b1 eb1 eb1 dn dn dn dn dn exp exp exp exp exp dn
-2 1 1 b1 eb1 eb1 eb1 exp exp exp exp exp exp exp exp exp dn
-1 1 1 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 2 b1 b1 b1 dn dn dn dn dn dn dn dn dn dn dn
-1 0 2 b1 b1 b1 b1 dn dn dn dn dn dn dn dn dn dn
0 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 2 dn dn dn dn dn dn dn dn exp exp exp exp exp dn

Continued on next page

Page 127.

Table G.3 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-2 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 3 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 4 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Table G.4: Optimal decisions for backward recursion with Itotal = 2

oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3 0 0 b3 b3 b3 b3 b2 b2 b2 b2 b2 b2 b1 dn dn dn
-2 0 0 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn
-1 0 0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 0 b2 eb2 eb2 eb2 eb1 eb1 eb1 eb1 eb1 eb1 exp exp exp dn
-2 1 0 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-1 1 0 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Continued on next page

Page 128.

Table G.4 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-3 0 1 b2 b2 b2 b2 b1 b1 b1 b1 dn dn dn dn dn dn
-2 0 1 b2 b2 b2 b2 b1 b1 b1 b1 b1 b1 dn dn dn dn
-1 0 1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 1 b1 eb1 eb1 dn dn dn dn dn exp exp exp exp exp dn
-2 1 1 b1 eb1 eb1 eb1 exp exp exp exp exp exp exp exp exp dn
-1 1 1 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 2 b1 b1 b1 dn dn dn dn dn dn dn dn dn dn dn
-1 0 2 b1 b1 b1 b1 dn dn dn dn dn dn dn dn dn dn
0 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 2 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 3 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 4 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Continued on next page

Page 129.

Table G.4 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Table G.5: Optimal decisions for backward recursion with Itotal = 3

oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3 0 0 b3 b3 b3 b3 b3 b3 b3 b3 b3 b3 b1 dn dn dn
-2 0 0 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn
-1 0 0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 0 b2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 exp exp exp dn
-2 1 0 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-1 1 0 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 1 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn dn
-2 0 1 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn dn
-1 0 1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 1 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-2 1 1 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-1 1 1 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 2 dn b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn dn
-2 0 2 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
-1 0 2 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 2 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 2 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Continued on next page

Page 130.

Table G.5 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-3 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 3 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 4 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Table G.6: Optimal decisions for backward recursion with Itotal = 4

oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3 0 0 b3 b3 b3 b3 b3 b3 b2 b2 b2 b2 b1 dn dn dn
-2 0 0 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn
-1 0 0 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 0 b2 b2 b2 b2 b2 eb2 eb1 eb1 eb1 eb1 exp exp exp dn
-2 1 0 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 exp exp dn
-1 1 0 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 0 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 1 b3 b3 b3 b3 b3 b3 b3 b3 b3 b3 dn dn dn dn
-2 0 1 b3 b3 b3 b3 b3 b3 b1 b1 b1 b1 dn dn dn dn
-1 0 1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn dn dn
0 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Continued on next page

Page 131.

Table G.6 – continued from previous page
oh rep cust 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 1 b2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 eb2 exp exp dn
-2 1 1 b2 b2 b2 b2 b2 b2 exp exp exp exp exp exp exp dn
-1 1 1 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 1 1 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn dn
-2 0 2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 dn dn dn
-1 0 2 b2 b2 b2 b2 b2 b2 dn dn dn dn dn dn dn dn
0 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
3 0 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 2 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 dn
-2 1 2 b1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 eb1 dn
-1 1 2 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn
0 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 1 2 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 3 dn b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn
-2 0 3 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn
-1 0 3 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn
0 0 3 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 dn
1 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
2 0 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 3 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 3 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 1 3 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
1 0 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 1 4 dn dn dn dn dn dn dn dn exp exp exp exp exp dn
-2 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
-1 1 4 dn exp exp exp exp exp exp exp exp exp exp exp exp dn
0 1 4 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-3 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-2 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
-1 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn
0 0 5 dn dn dn dn dn dn dn dn dn dn dn dn dn dn

Page 132.

G.2 Dyna-Q

Figure G.1: Moving average of initialization of epsilon with n = 0 in original scenario

Figure G.2: Moving average of initialization of epsilon with n = 0 in original scenario

	Acknowledgments
	Management Summary
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Company
	Research Introduction
	Assignment Description
	Research Methodology

	Current System Analysis
	The Supply Chain Network
	Alert Generation
	Interventions
	Key Performance Indicators
	Decision-making
	Aggregate System Performance
	Content of Data
	Conclusion

	Literature Review
	Service Control Tower
	Interventions on Operational Level
	Decision Processes
	Reinforcement Learning
	Solving Methods for a Reinforcement Learning Model
	Conclusion

	Solution Design
	Stochastic Dynamic Problem Framework
	Exact Solution Approach
	Heuristic Approach
	Planning and Learning Solution Approach
	Conclusion

	Experimental Results, Analysis, and Optimization
	Assumptions and Parameter Tuning
	Learning
	Evaluating
	Conclusion

	Implementation
	Scalability
	Digital Twin
	Conclusion

	Conclusions, Discussion, and Recommendations
	Conclusion
	Discussion
	Recommendations

	References
	Appendix Interview Operational Planners
	Appendix Model Data
	Data Content
	Statistical Analysis Repair Turnaround Times

	Appendix Extensive Literature
	Interchangeable Components
	Extensions to the Markov Decision Process
	Solving Algorithms of Reinforcement Learning

	Appendix Algorithm Flowcharts
	Appendix Python Code - Import Data
	Acquisition Costs
	Turnover Rate
	Demand & Repair
	Grid Definition
	Transition Probability Table
	General Import

	Appendix Python Code - Algorithms
	General Functions
	Learning
	Evaluating

	Appendix Results - Learn
	Backward Recursion
	Dyna-Q

