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I. PREFACE

Dear reader,

I am writing this preface with both a smile on my face and tears in my eyes. For six years, I have enjoyed being a
student, having made friends for life and creating a home for myself in Enschede. This report confirms the end of
what has been an amazing and life-changing time.

Since July 2020, I have been working on my thesis, of which you have the result in front of you. This research was
my perfect ending of a fun and educational Master’s education. My knowledge of biomechanics, signal analysis and
data science was used directly into brand-new modelling frameworks. I was also very fortunate to have been able to
conduct subject measurements for my own dataset, despite of having to deal with the COVID-19 measures. It was very
pleasant and educational and I was lucky to be able to employ my social skills in my thesis research as well!

My thesis was carried out within the MyLeg project at Roessingh Research and Development (RRD). I am grateful that
I got to be part of the MyLeg team. Everyone was kind, interested in each other’s work and really helpful. I always
felt like an equal member of the team and liked that I had an important role within the project. I want to thank Erik,
Robert, Eline and also Kaz, Sibren and Ali for the fun weekly meetings and their contributions to my thesis. Special
thanks go out to Erik; your practical view on my research was much appreciated. Engineers (or almost-engineers) tend
to get lost in technical details and sometimes need to be reminded about the actual application. I also want a special
shout-out to Robert. Not only did you guide me through my thesis research, but you also prepared me for the big
scary world after. I feel like I have grown more confident about my knowledge and skills and this is much thanks to
you!

Furthermore, I want to thank Jaap and Guillaume for their input and supervision during my thesis. I really appreciate
your enthusiasm for my project, which added to my own motivation to conduct my research. Your feedback has
definitely taken the quality of my thesis to the next level.

I believe that I would not have been able to finish my thesis the way I did now, if I did not have the amazing support
of my family. And not only the “Zondag” family, but also the “BIEM!” family: my amazing roommates. You all
forced me (with love) to sometimes let go of my work and take time for myself. I want to thank my friends as well.
Your advice, love and kindness helped me endure all the highs and lows that were thrown my way.

I wish you all a pleasant reading of the report I am so very proud of!

Marijke Zondag
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II. SAMENVATTING
1Proportionele aansturing met behulp van oppervlakte elektromyografie (sEMG) biedt meer intuı̈tieve aansturing van
een transfemorale prothese. sEMG is echter een signaal met ruis en kan variëren over tijd. De vraag welke aanpak het
meest geschikt is voor het aansturen van de prothese over meerdere dagen moet daarom beantwoord worden. In dit
onderzoek zijn drie verschillende modellen om het knie-moment te voorspellen onderzocht. Het eerste model, machine
learning (ML), bevatte een convolutional neural network (CNN) welke sEMG direct vertaalde naar het knie-moment.
Het tweede model gebruikte een neuromusculoskeletal model (NMS) welke sEMG, spier-pees lengtes en moment armen
als invoer gebruikte om het knie-moment te berekenen. Het derde model (Hybrid) gebruikte een CNN om sEMG te
vertalen naar specifieke activaties van spier-pees eenheden, die samen met spier-pees lengtes en moment armen in NMS-
componenten werden gebruikt om het knie-moment te berekenen. Metingen over meerdere dagen werden uitgevoerd
op negen gezonde proefpersonen welke niet-gewichtsdragende activiteiten uitvoerden. Uit de resultaten blijkt dat ML
het beste presteert in het algemeen en op elke dag (NRMSE 10.1%±5.1%). Het Hybride model (NRMSE 13.4%±5.2%)
presteerde beter dan NMS (NRMSE 15.5%±7.0%). Alle modellen hadden enkel significante verschillen in prestatie
tussen de eerste dag en alle andere dagen. Deze resultaten laten de meerwaarde van machine learning zien in het
aansturen van een transfemorale prothese.

1English summary is provided as an abstract on page 6.
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sEMG to Knee Torque mapping using (Hybrid)
Neuromusculoskeletal Modelling and Machine Learning

Marijke Zondag BSc.

Abstract— Proportional control using surface
electromyography (sEMG) enables more intuitive control of
a transfemoral prosthesis. However, sEMG is a noisy signal
which can vary over time, giving rise to the question what
approach is most suitable for multi-day control. In this
study we investigated three different modelling frameworks
to estimate knee torque. The first model, machine learning
(ML), contained a convolutional neural network (CNN)
which mapped sEMG to knee torque directly. The second
employed a neuromusculoskeletal model (NMS) which used
sEMG, muscle tendon unit lengths and moment arms as
input to compute knee torque. The third model (Hybrid)
used a CNN to map sEMG to specific muscle tendon
unit activations, which were used together with muscle
tendon unit lengths and moment arms in NMS components
to compute knee torque. Multi-day measurements were
conducted on nine able-bodied participants who performed
non-weight bearing activities. Results show that ML had
the best performance in general and on each day (NRMSE
10.1%±5.1%). The Hybrid model (NRMSE 13.4%±5.2%)
was able to outperform NMS (NRMSE 15.5%±7.0%).
All models had only significant performance differences
between the first day and all other days. These results show
the added value of machine learning in the control of a
transfemoral prosthesis.

III. INTRODUCTION
Limb loss is amongst the most physically and physiologic-
ally traumatizing events, leaving people less mobile and
at risk for loss of independence [1]. In the Netherlands
alone, the incidence rate of major lower limb amputations
is approximately 7.7 per 100,000 person-years [2], [3].
Over the past few decades, several transfemoral prostheses
have been developed that can be fitted to an amputee to
regain mobility and independence during activities of daily
living [4]. However, the existing solutions each have their
own limitations.

The use of passive prostheses, which are not capable
of generating net power, is limited by the amputee’s
strength and positional awareness [5], [6]. Furthermore,
tasks like climbing stairs require generation of additional
energy at the knee joint, which a passive prosthesis
cannot do. Active (powered) prostheses can overcome
some of these limitations [7]. The most common strategies
in active prostheses are gait mode (activity) recognition
in combination with low-level impedance control [7].
Activity recognition provides intuitive control of the active
prosthesis. However, wrongly recognized activities can
cause the amputee to fall, or for example not being able
to climb stairs.

The EU Horizon 2020 Research and Innovation Project
MyLeg aims to develop a new generation of powered
transfemoral prosthetic legs [8]. Voluntary proportional
(direct) control outside of pre-defined control schemes

is not yet commercially available in a lower limb pros-
thesis to our knowledge. Direct control is desired since it
provides more intuitive control for the user. Furthermore,
it can be beneficial to apply direct control within a discrete
state, for example to assist in sit-to-stand transitions,
to reposition the prosthesis whilst in sitting-state, or to
simply control the speed of a motion. Voluntary control
can be realised by detection of movement onset and the
mapping of the muscle characteristics to the corresponding
joint torques. These joint torques will then serve as the
control signal for the prosthesis. Movement onset can
be detected by measuring muscle activity using elec-
tromyography (EMG), up to 138 ms in advance when
the prosthesis leads [9]. Since the MyLeg project aims to
employ myoelectric sensors in the prostheses, the lower
limb joint dynamics can be predicted using EMG signals
of the lower limb musculature.

Two methods exist that predict joint torque from sEMG
and kinematics: machine learning (ML) and neuromuscu-
loskeletal modelling (NMS), which will be explained in
more detail.

A. Machine Learning
Multiple studies use some version of a neural network
with fair performance for the prediction of knee angles in
able-bodied subjects [10], [11], [12], [13], [14]. Shallow
neural networks require features from data as input, which
have to be determined by the researcher first. Saranya
et al. for example used the root mean square values
of eight EMG channels as feature input of their neural
network [12]. Huang et al. proposed a deep-recurrent
neural network for prediction of knee joint angles in real-
time [10]. The model used sEMG signals together with
IMU data from different activities and showed a mean
squared error of 8.60°. Gautam et al. used a Long-term
Recurrent Convolution Network to classify movements
and predict their corresponding knee joint angles, based
on sEMG [11]. They reported an average mean absolute
error of 8.1% in the knee angle prediction of healthy
subjects. Saranya et al. [12] developed a (back propaga-
tion) neural network to estimate knee range of motion,
using sEMG signals as input. A mean squared error
of 0.146±0.197°and 0.098±0.129°were found for knee
flexion and extension respectively. Zhang et al. developed
an artificial neural network for the prediction of ankle joint
torque from sEMG [15]. RMSE values ranging within
0.01 and 0.1 Nm/kg were found for ankle plantar- and
dorsiflexion.

All these studies indicate that machine learning is a
valuable tool in predicting knee torque and/or angle.
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However, current machine learning decoders might pro-
duce unrealistic estimates (outside of the physiological
plausible space) in conditions they are not trained in [16].
Next to this, these methods highly rely on correct elec-
trode placement and are thus sensitive to changes in
conditions. Training data is also usually limited relative
to the complexity of the models, which makes it difficult
to obtain a satisfactory generalization performance [17].
The robustness to EMG electrode placement, differences
in EMG signals (quality) and activity performance is
thus questionable and needs to be evaluated on more
data. With shallow neural networks, features have to be
determined by the researcher, making it semi-subjective
what features are relevant. A deep-learning method, such
as a convolutional neural network (CNN), determines for
itself what features of the input are relevant [18], [19].
It makes use of weight sharing, so that the number of
parameters that needs training is reduced, resulting in
improved generalization, robustness and less sensitivity
to overfitting [18], [19]. Using a CNN instead of a
shallow neural network gives rise to the possibility of a
closer estimate of the relation between sEMG and joint
torque.

B. Neuromusculoskeletal modelling
A neuromusculoskeletal model (NMS model) consists
out of multiple components that model the underlying
process of biomechanical movement. It uses sEMG and
muscle characteristics from a musculoskeletal model to
predict specific muscle tendon unit (MTU) activations
with corresponding forces and resulting joint torques.
NMS modelling was designed to gain insight in this
underlying process to characterize movement function and
how it alters with pathology [20].

An NMS model can provide system robustness since
any joint moment estimate must always exist within the
musculoskeletal model operational space and be therefore
physiologically plausible [16]. Another benefit of using an
NMS model is that it provides insight in the underlying
process of biomechanical movement, whereas ML does
not. Several studies exist that employ an NMS model
to predict joint torque [16], [17], [20], [21], [22], [23],
[24].

Sartori et al. [16] have succeeded in controlling a wrist-
hand prosthesis by real-time neuromusculoskeletal mod-
elling. Joint torque was predicted, using sEMG and pros-
thesis angles as input, and translated into low-level control
of the prosthesis. They executed a virtual reaching test
in which subjects always reached targets using linear
trajectories, thereby successfully actuating a single DOF
at a time with high precision. Path similarity was always
accomplished with R2 > 0.98 across all targets and
subjects. Durandau et al. [21] were able to predict lower
limb exoskeleton support torque, using sEMG and joint
angles as input. The root mean squared error (RMSE)
for the knee joint control, inside exoskeleton conditions,
were 4.06±2.55°for low gain and 4.58±2.61°for high gain,
with correlation coefficients of 0.90±0.16 and 0.92±0.07
respectively. Wang et al. [17] proposed a neuromusculo-

skeletal model with an adaptive learning method (Gaus-
sian process regression) to learn undetermined model
parameters. The RMSE value for flexion and extension of
the knee joint was 1.14 Nm on the validation trial. Zhang
et al. [15] used an NMS model to predict ankle joint torque
with RMSEs ranging from 0.04 to 0.18 Nm/kg for ankle
plantar- and dorsiflexion.

However, to our knowledge, no system that uses an NMS
model exists that is commercially available. This may be
because there is no compelling product yet. Technology
is needed that is unified, simple to use, robust, fast and
accessible [17], [25]. The NMS modelling workflow can
be complex and difficult to work with. Furthermore, the
mapping of sEMG to muscle tendon unit activation is
based on models that are difficult to validate because
activations cannot be measured directly. Another model
might capture the relation between sEMG and MTU
activation better. Robustness of NMS models has to be
tested to a greater extent; on multiple subjects and on
multiple days.

C. Hybrid modelling

Since both ML and NMS models show several short-
comings, the question arises if combining these two
methods into a hybrid version will provide better joint
torque predictions. Saxby et al. proposed several ideas
to support neuromusculoskeletal modelling with machine
learning [25]. Machine learning can decrease computa-
tional demands in physics-based modelling. It can be used
for feature extraction from measures of muscle activation
and to synthesize missing data.

Cimolato et al. developed a machine learning driven NMS
model to predict lower limb joint torque from sEMG and
IMU data [26]. The model is used for the control of a
lower limb prosthesis during regular gait. They used a
Gaussian Mixture Regressor to generate a complete set of
sEMG signals, starting from the supposed residual subset
of available sEMGs. These sEMG signals were then used
as input for a calibrated NMS model to predict joint
torque, with an average normalized root mean squared
error (NRMSE) of 24.0%± 11%.

Xu et al. developed an sEMG-based elbow joint torque
estimation strategy using a Hill-Type Muscle Model and
a neural network [27]. The neural network was used to
estimate muscle activation which was used as input for
the Hill-Type model. System identification from sEMG
signals was used to estimate the elbow angle. The average
RMSE over trials is 1.45 Nm. Only one subject was used
and three trials were conducted on the same day.

These studies show promising results. However, no study
has been done that evaluates the implementation of a
hybrid model during non-weight bearing activities of the
lower limb. Non-weight bearing means that the subject
does not carry its own weight like it does in standing and
walking. Furthermore, robustness of such a hybrid model
must be evaluated.
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D. Contribution
The main goal of this study was to find the most suit-
able model to predict knee torque from sEMG, to be
used for multi-day control of a transfemoral prosthesis
in non-weight bearing situations. To our knowledge, a
convolutional neural network was not used before for
this purpose. Furthermore, a Hybrid model as proposed
in this study was not developed and implemented before
or compared with both a stand-alone machine learning
and neuromusculoskeletal model. Robustness of all three
models to time-varying conditions such as EMG electrode
placement, signal quality and performance of executing
activities, was not evaluated before on multiple days. This
study provides this evaluation by means of significant
performance differences between days, using data from
multi-day measurements. It also showed what model per-
formed best when trained/calibrated on the first day of the
measurements and tested on the remaining days. With the
intended use in mind, this study gives practical knowledge
about what model performs best over time in predicting
knee torque in non-weight bearing situations.

IV. METHODS
Three different modelling frameworks were designed to
predict knee torque using sEMG as input: a machine learn-
ing model (ML) a neuromusculoskeletal model (NMS),
and a combination of ML and NMS modelling (Hybrid).
This methods section is divided into 8 parts: data collec-
tion and pre-processing, the design of the ML, NMS and
Hybrid models and lastly the data evaluation, statistical
analysis and used software.

A. Data collection
Data were collected at the Roessingh Research & De-
velopment (RRD), in Enschede the Netherlands. Nine
able-bodied subjects (sex: three male, six female, age:
23.8±2.4 years, length: 172.8±6.0 cm, weight 70.8±9.3
kg) were included in this dataset. Prior to the measure-
ments, ethical approval was obtained (Medical research
Ethics Committees United, Nieuwegein) and all subjects
gave their informed consent. Each subject participated
in four measurements: three were conducted on three
subsequent days and the last measurement was four days
later. The subjects were measured during the same time
slot on each day. Each measurement included the same
activities. The subjects were asked to perform a Maximal
Voluntary Contraction (MVC) to find EMG normalisation
values. These MVCs were acquired by executing several
motions in which the subject exerted “maximal” force
against manual resistance applied by the researcher. The
exact execution is explained in Appendix I-A.

Next, the subjects were asked to perform a circuit of activ-
ities, including level-ground walking, stair ascent/descent,
ramp ascent/descent, sit-stand motions and non-weight
bearing (NWB) activities on a stool. The NWB activit-
ies were used in this thesis and thus further elaborated
on.

The subject had to sit on a stool and lift one leg off the
ground using hip flexion (knee approximately 90 degrees),

Fig. IV.1: Non-weight bearing setup: subject is seated on
a stool with one foot slightly lifted off the ground.

as can be seen in Figure IV.1. Then, the subject had to
fully extend its knee whilst keeping its foot perpendicular
to its lower leg. After, the subject performed maximal
plantarflexion of the ankle, followed by maximal dor-
siflexion. The knee was then brought back to a knee angle
of approximately 90 degrees. Then, only knee extension
and flexion needed to be performed. Lastly, only ankle
plantar- and dorsiflexion needed to be performed whilst
keeping the knee angle at 90 degrees. After, the foot was
set down on the ground and the routine was repeated with
the other leg.

The circuit in which this routine was included, was
performed twenty times. Then, the routine was slightly
changed for another twenty circuits: the subject had to
first perform ankle plantar- and dorsiflexion, then the
combination of both knee and ankle, and finish off with
only knee extension and flexion.

Bipolar EMG was recorded from eight muscles on both
legs: rectus femoris (RF), vastus lateralis (VL), biceps
femoris (BF), semitendinosus (ST), gluteus maximus
(Gmax), adductor magnus (AM), gastrocnemius medialis
(GM) and tibialis anterior (TA). All EMG electrodes were
placed according to SENIAM guidelines [28]. The data
was acquired using the Cometa Wave electrodes at a
sampling frequency of 2000 Hz. Only the RF, VL, BF
and ST were included for this study since the intended
application is for a transfemoral prosthesis, and these
muscles extend over the knee.

Kinematics were determined using eight IMUs (Xsens
Link, Enschede, The Netherlands), placed on the sternum,
pelvis and bilaterally on the thigh, shank and foot of the
subject. Data was recorded with a sampling frequency
of 240 Hz. Joint angles were reconstructed from Xsens
MVN software. Only knee joint angles in the sagittal plane
were used in this study. EMG and kinematics were time
synchronized and resampled to 1000Hz.
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B. Data pre-processing
The data pre-processing pipeline is visualized in Ap-
pendix I-B, Figure I.1.

The smoothed rectified envelope (SRE) of the raw EMG
data was obtained by high-pass filtering at 20 Hz, rec-
tifying and low-pass filtering at 6Hz. All filters were
zero-lag 2nd order butterworth filters. The SREs were
normalized by values obtained from the MVCs. The SREs
were windowed with a window size of 128 ms and a
sampling period of 16 ms to prepare the input data for the
ML model. This window has a computationally efficient
size and allows for the detection of movement onset using
EMG [9]. The overlap of 112 ms between windows allows
for a smooth prediction. The SRE values in the window
were used to generate an image of size (128,N), in which
N is the number of EMG channels. This image was used
as input for the ML model.

Torque reference data was obtained using OpenSim 4.1,
an open source software kit to develop musculoskeletal
models and make dynamic simulations [29]. First, the
OpenSim lower extremity and torso model Gait2392 [30]
was scaled using subject body measures to create a
subject-specific model. Joint angles obtained with Xsens
were analyzed with this model and used in the Inverse
Dynamics tool to obtain knee joint torque. Torque offset
was accounted for when the subject was seated with a
foot on the ground, since no ground reaction forces were
measured. Next, the torque was low-pass filtered using
a 2nd order zero-lag butterworth filter with a cutoff fre-
quency of 1Hz. The resulting knee joint torque was used
to train and calibrate the developed models in this study.
Muscle moment arms and muscle tendon unit lengths of
the MTUs were extracted from Gait2392 as well. These
parameters were used in the NMS and Hybrid models, as
will be explained in section IV-D.

The reference torque and muscle analyses also had to be
windowed to be used as reference and/or input in the ML
and Hybrid models. The same window size and sampling
period were used to match with the SREs. The average
torque, MTU length and moment arm values of each
window were used in the ML and Hybrid models.

C. ML model
The first data pipeline contained a machine learning
model, consisting out of a CNN which maps the windowed
SREs to knee joint torque. The pipeline is visualized in
Appendix I-B, Figure I.2.

The CNN extracts local features from input images, us-
ing a convolutional layer with a local receptive field. It
then uses layers with certain activation functions to map
these features to the desired output. A Long Short Term
Memory (LSTM) layer can be added to the CNN. An
LSTM is an artificial recurrent neural network architec-
ture [12], which has internal mechanisms that can regulate
the flow of information and learn which data in a sequence
is important to keep or discard.

For this study, no fixed CNN architecture was used.
Bayesian optimization (50 runs) determined the model

architecture that minimized the loss (mean squared error)
between predicted and reference torque for all subjects
on a training set of the first measurement day. The used
hyperparameters and corresponding search space were: the
number of convolutional layers {1,2,3}, the number of
filters in the convolutional layer {16, 32, 64, 128}, the
kernel size {3,5,7}, the number of LSTM layers {0,1},
the number of LSTM units {uniform space from 20 to
60, stepsize = 1}, the number of dense layers {1,2,3}and
the number of neurons in the dense layer {uniform space
from 10 to 501, stepsize = 1}.

The number of filters in a convolutional layer defines the
number of windows in the convolution and the kernel size
defines the size of these windows. The number of LSTM
units defines the dimensionality of the output space of this
LSTM layer. Next to the dense output layer, additional
dense layers can be added if no LSTM layer is applied.
A densely connected layer provides learning features
from all the combinations of the features of the previous
layer [31]. Initial investigations showed that combining
LSTM and additional dense layers resulted in bad torque
estimates, therefore only one of both hyperparameters was
used per hyperparameter space.

Adam was used as optimizer with a learning rate of 0.01.
Rectified linear units were used as activation functions
for the convolutional and additional dense layers. A linear
activation function was used for the final dense layer. The
model weights were trained for each subject on training
data of the first measurement day, making the model
subject-specific. The windowed SREs were used as input
for this model, the output was knee joint torque. The
output was low-pass filtered with a second order zero-lag
low-pass filter and a cut-off frequency of 1 Hz to obtain
a smooth prediction.

D. NMS model
The second data pipeline used a neuromusculoskeletal
model (NMS model) which maps sEMG to knee
torque. The pipeline is visualized in Appendix I-B, Fig-
ure I.3.

The NMS model consists of three components:

1) The neural activation component (Figure I.3 B1)
converts sEMGs into Muscle Tendon Unit (MTU)-
specific activation using a second order muscle twitch
model (eq. IV.1) and a non-linear transfer function
(eq. IV.2) [16], [21]:

uj(t) = αej(t−d)−β1uj(t−1)−β2uj(t−2) (IV.1)

aj(t) =
eAuj(t) − 1

eA − 1
(IV.2)

in which uj(t) is the neural activation, ej(t) the
SRE, α the muscle gain coefficient, β1 and β2 the
recursive coefficients, d the electromechanical delay
(15 ms), aj(t) the muscle activation, A the nonlinear
shape factor and j the muscle index [32]. Paramet-
ers to be optimized in calibration for each muscle
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are α, β1, β2, A, which are bound by the following
constraints:

c1 ∈ [−0.99, 0.99]
c2 ∈ [−0.99, 0.99]
A ∈ [−2.99,−0.01]
β1 = c1 + c2

β2 = c1 · c2
α = 1 + β1 + β2

2) The MTU dynamics component (Figure I.3 B3)
translates the MTU activation (aj) from the neural
activation component and MTU lengths (lmt) from
OpenSim’s muscle analysis into MTU force by em-
ploying a Hill-type muscle model.

First, muscle characteristics were extracted for each
muscle using OpenSim’s Gait2392 model. These
characteristics are the maximal isometric force
(Fmax0 ), the optimal fiber length (lopt0 ), the penna-
tion angle at optimal fiber length (α0), the tendon
slack length (lslack) and the maximal contraction
velocity of the muscle fiber (vm).

Two parameters of each muscle were made subject-
specific. The maximal isometric force (Fmax0

) was
multiplied by the muscle strength coefficient (cf )
(eq. IV.3) and the tendon slack length (lslack)
was multiplied by the tendon slack coefficient (cs)
(eq. IV.4). cs and cf were optimized during calibra-
tion.

F̃max0
= Fmax0

· cf (IV.3)

l̃slack = lslack · cs (IV.4)

The MTU lengths (lmt) from OpenSim’s muscle
analysis and tendon slack length were normalized by
the optimal fiber length (lopt0 ) (eq. IV.5 & eq. IV.6).

l̃mt = lmt/lopt0 (IV.5)
˜̃
lslack = l̃slack/lopt0 (IV.6)

Since these parameters were normalized, all other
parameters computed using these parameters were
normalized as well and are indicated with a tilde.

The tendon force (F̃t) was computed using the penna-
tion angle (α̃) (eq. IV.7), tendon length (l̃t) (eq. IV.8)
and tendon strain (ε̃t) (eq. IV.9). ε̃t was used in the
pre-defined tendon force-strain relationship [33] to
compute F̃t.

α̃ = arcsin(sin(α0)/ ˜lm) (IV.7)

l̃t = l̃mt − l̃m · cos(α̃) (IV.8)

ε̃t = (l̃t − ˜̃
lslack)/

˜̃
lslack (IV.9)

The fiber force (F̃fiber) (eq. IV.13) consists out
of several parts. The active fiber force (F̃a) was
calculated with eq. IV.11. γ is the shape factor for
the parabolian active force-length relationship, which
was set to 0.6 in this work [34]. ˜lm is the muscle
fiber length and c is the muscle activation based

optimal fiber length coefficient scaling coefficient
(eq. IV.10) [35]. aj(t) is the muscle activation.

c = 0.15 · (1− aj) + 1 (IV.10)

F̃a =

{
0 F̃a ≤ 0

(−1/(γ2) · (( ˜lm/c− 1)2) + 1) F̃a > 0

(IV.11)

The velocity component of the fiber force (F̃v) was
computed using the force-velocity relationship [33].
The fiber velocity ṽf had to be calculated using
eq. IV.12, in which l̃mold

is the previous muscle
fiber length, dt the timescale and vmax the maximal
contraction velocity of the muscle fiber.

ṽf = ( ˜lm − l̃mold
)/(dt · vmax) (IV.12)

dm, the parallel muscle damping factor set to 0.1
in this work, was multiplied with ṽf to account
for muscle damping. The total fiber force F̃fiber

was calculated using eq. IV.13. F̃fiber was scaled
back from normalization using the maximal isometric
force Fmax0

(eq. IV.14).

F̃fiber = (F̃a · F̃v · aj + dm · ṽf ) · cos(α̃) (IV.13)

Fm = F̃fiber · Fmax0
(IV.14)

The muscle fiber length (l̃m) was computed by min-
imizing the difference between the tendon force and
the fiber force, since these should be the same. This
minimisation was done using sequential least squares
programming, with bounds of 0 and l̃mt.

3) The joint mechanics component (Figure I.3 B4)
combines MTU forces Fm from the MTU dynam-
ics component and MTU moment arms rm from
OpenSim’s muscle analysis to compute the joint
torque using eq. IV.15.

τ =
∑
m

Fm · rm (IV.15)

The subject-specific NMS model needed to be calibrated.
Bayesian optimization (400 runs) was used to adapt model
parameters to minimize the error between pyceinms
output torque and reference torque [32]. More runs were
required compared to ML because this hyper optimization
determines the subject-specific parameters within a large
hyperparameter search-space compared to the general (not
subject-specific) model architecture parameters of ML.
The SREs, MTU moment arms and MTU lengths were
used as input for the calibrated model. The output of the
model was knee torque, which was low-pass filtered the
same way as ML.

E. Hybrid model
The third data pipeline contained a hybrid model which
consists out of parts of both the ML and NMS model. The
pipeline is visualized in Appendix I-B, Figure I.4. A CNN
was used to replace the neural activation component of the
NMS model, described by eq. IV.1 and eq. IV.2. The CNN
model architecture was built from the hyperparameters
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found by the optimized ML model. The activation of
the last dense layer of the ML model was changed from
a linear to a softmax function, to limit the four output
activations between zero and one. The tendon slack length
coefficients and muscle strength coefficients that were
optimized in the NMS model for each subject were used
for the Hybrid as well. Together with the trained CNN
weights, these parameters made the Hybrid model subject-
specific.

Windowed SREs were used as input and mapped onto
specific MTU activations by the CNN. These predicted
activations were used as input for the remaining NMS
model, described by eq. IV.12-IV.14. Windowed MTU
lengths and moment arms were used in this remaining
NMS model as well. The output of the model was knee
torque, which was low-pass filtered the same way as ML
and NMS.

F. Data evaluation

For each leg from each subject, three different models
were trained. A fixed train/test split of 80/20% was made
on data from the first measurement day. All models were
trained and validated on the training set (80%), in which
a shuffled train/validate split of 80/20% was made. All
models were tested on the test set (20%) and all data from
remaining measurement days. This separation in data was
made for the intended application: it would be ideal to
train a model on just one day and to have it perform
well on every other day. With this method, robustness
of all models against varying circumstances could be
tested.

The performance metric used for this study was the
normalized root mean squared error (NRMSE (%)), calcu-
lated by eq. IV.16. x̂ denotes the predicted datapoint, with
x as reference, N equals the total number of datapoints
of which t indicates one specific datapoint. max(xt)
and min(xt) are the highest respectively lowest torque
reference value of all trials of one leg and are used to
normalize the data.

NRMSE(%) =

√
1
N

∑N
t=0(x̂t − xt)2

max(xt)−min(xt)
· 100% (IV.16)

Robustness was indicated by not-significant differences at
the 0.05 significance level, in mean NRMSE values on
different measurement days.

G. Statistical Analysis

To analyze the performance of the models, NRMSEs of
all legs, of all trials from separate days were computed
with each model. A Mixed Model analysis with Šidák
correction was used to determine significance (α = 0.05)
between the general performance of each model compared
to one another and the performance of each model over
time, compared by time and by model. A log transforma-
tion was performed on the NRMSE values to get normally
distributed data.

H. Software
All models were built in Python 3.7.7 [36]. The ma-
chine learning components were built using Tensor-
flow 2.4.0 [37] and hyperparameter optimization was
done using Optuna 2.2.0 [38]. The Mixed Model ana-
lysis was performed using IBM SPSS Statistics Version
26.0 [39].

V. RESULTS
In this section, the optimized CNN architecture and per-
formance of all three models are explained. Figure V.1
reports the knee torque predictions of one subject’s leg, for
each model and each day separately. Mean and standard
deviation (SD) NRMSE values of all subjects of all trials
are visualised in Figure V.2, for each model and each day
separately as well. The performance of all three models
is divided into three parts, as shown in Figure V.2. The
first is the performance of all models in general, in which
the average NRMSE of all trials from all days per model
was computed. The second is the model performance over
time, in which average NRMSE values per day are shown
for each model. The last is the model comparison per day,
in which average NRMSE values per model on a certain
day are shown for each day.

A. ML hyperparameters
The final optimized model architecture has the following
hyperparameters: 2 convolutional layers with 16 respect-
ively 32 filters and kernel sizes of 5, one LSTM layer
with 25 LSTM units and one final dense layer with linear
activation.

B. General model comparison
The model comparison is shown in Figure V.2a. ML has
the lowest overall mean NRMSE (10.1±5.1%) compared
with Hybrid (13.4±5.2%) and NMS (15.5±7.0%). Signific-
ant differences (p<0.0001) were found for the difference
between ML and NMS (5.4%) and between ML and
Hybrid (3.3%). The difference between NMS and Hybrid
(2.1%) was significant as well (p=0.042).

C. Model performance over time
The model performance over time is shown in Figure V.2b.
The overall lowest mean NRMSE was found for ML on
day 1 (5.9±1.8%). ML showed the highest mean NRMSE
on day 3 (11.3±4.9%). Day 2 and 7 mean NRMSE values
were 9.7±5.2% respectively 10.3±5.0%. For Hybrid, the
lowest mean NRMSE was found on day 1 (9.2±2.9%) and
the highest on day 3 (14.9±5.2%). Day 2 and 7 had mean
NRMSE values of 12.5±5.1% respectively 13.6±5.1%.
NMS had the highest overall mean NRMSE, found on
day 3 (16.8±8.0%). The lowest mean NRMSE value of
the NMS model was found on day 1 (11.1±3.2%). Day 2
and 7 mean NRMSE values were 14.6±6.3% respectively
16.2±6.8%.

Significant differences between day 1 (fixed effect) and
other days were found (p=0.006), for both Hybrid and
ML (p<0.0001), and NMS as well (p=0.011). For ML,
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Fig. V.1: Example of model performances on one subject’s leg during one trial for each day.

Fig. V.2: Normalized Root Mean Squared Errors (NRMSEs) mean+SD by model and day. a) shows the overall
performance differences per model, b) the performance of each model investigated over days and c) the performance of
each model on a day compared to other models. Significant differences between specific models or days are indicated
with significance values. Significance levels of (p<0.0001) are indicated with an asterisk.



13

these differences are approximately 3.8% (day 2 - day
1), 4.4% (day 3 - day 1) and 5.4% (day 7 - day 1),
with p<0.0001 for all. For NMS, significant differences
were found between day 1 and day 3 (5.7%, p=0.007) and
between day 1 and day 7 (5.1%, p=0.035). For Hybrid,
significant differences were found between day 1 and 2
(3.3%, p=0.009), day 1 and 3 (5.7%, p<0.0001) and day
1 and 7 (4.4%, p=0.024).

D. Model comparison per day
The model comparison per day is shown in Figure V.2c.
Significant differences between ML (fixed effect) and both
NMS and Hybrid were found (p<0.0001). On day 1, the
difference between ML and NMS was 5.2% (p<0.0001)
and between ML and Hybrid 3.3% (p=0.001). The sig-
nificant difference on day 2 between ML and Hybrid
was 2.8% (p=0.038) and between ML and NMS 3.9%
(p<0.0001). On day 3, significant differences were 5.5%
between ML and NMS (p=0.001) and 3.6% between
ML and Hybrid (p=0.039). Day 7 had significant dif-
ferences between ML and NMS (5.9%, p<0.0001) and
between ML and Hybrid (3.3%, p=0.024). No significant
differences were found between NMS and Hybrid on all
days.

VI. DISCUSSION
The main goal of this study was to find the most suitable
model to predict knee torque from sEMG, to be used
for multi-day control of a transfemoral prosthesis in non-
weight bearing situations. Three different models were
developed and validated on both legs of nine able-bodied
subjects, using multi-day measurements. The ML model
had the overall lowest prediction error (10.1±5.1%) and
performed significantly better than NMS and Hybrid on all
days. This model has the most potential of being used in a
transfemoral prosthesis for direct control purposes.

To the best of our knowledge, our convolutional neural
network was the first of its kind able to successfully
predict knee torque from sEMG input data. We also
successfully combined a convolutional neural network,
and a simplified Hill-type muscle model to create a
hybrid model. This hybrid model was able to outperform
NMS.

Results showed that ML had the best overall perform-
ance and only significant between-days differences when
compared with the first measurement day. This indicates
that the model shows robustness within day 2, 3 and 7,
which is not completely in line with expectations from
related work. Convolutional neural networks are known
to have robustness issues [40], [41], [42]. For example, if
electrodes are placed differently on day 2 and MVC values
differ from other days, the sEMG envelope images that
are created can differ too much from day 1 for the CNN
to make a good prediction. This explains the significant
differences between day 1 and all other measurement days.
However, our findings (Figure V.2b) show no significant
differences between day 2, 3 or 7, which contradicts
literature. Our model is capable of performing within a
range associated with robustness. A possible explanation

is that the variance in sEMG envelopes, and thus the input
data for the CNN, within a subject is small enough to
be handled by the CNN. Another explanation is that the
CNN used in this study predicts a continuous value which
is low-pass filtered to smooth any outliers, improving the
NRMSE and robustness.

Furthermore, related work suggested that a black-box ma-
chine learning method could predict torque values outside
of a physiologically plausible space [16]. We were able
to develop a machine learning model with low-pass filter,
which was able to predict torques within a surprisingly
small range of the reference value.

NMS had the worst overall performance and largest stand-
ard deviation, indicating largest between-subject differ-
ences. Significant differences in performance over time
were found, comparable to ML (Figure V.2b). No sig-
nificant differences were found within day 2, 3 and 7,
indicating robustness on these days. This is not exactly in
line with expectations obtained from literature; it was ex-
pected that robustness was shown on every measurement
day [16], [20]. However, related work showed the model’s
ability to predict torque in untrained activities, thereby
proving its robustness by their definition [20]. Our defin-
ition of robustness is different since it refers to time and
not the model’s ability to predict untrained activities. To
our knowledge, little related work investigated robustness
over time. Just one study calibrated the NMS model on
one day and tested the model the day after, but did not
test for between-days variance [16].

It is technically possible to optimize all muscular para-
meters in an NMS that describe the subject, although
this would lead to an exponential increase in computa-
tional cost. Therefore, only the described parameters in
section IV-D were optimized. A simplified NMS, without
the passive force component, was used because it resulted
in much better results than with the inclusion of the
passive force (as shown in Appendix I-C). Furthermore,
the activities performed in this study find the physiological
boundaries of the knee angle and thus of the muscle
parameters, which might cause this model to perform less
compared to findings in literature.

Hybrid performed on average compared to ML and NMS.
Similar robustness behaviour was found compared to
NMS and ML: robustness was found within day 2, 3
and 7 (Figure V.2b). This can be explained by the fact
that Hybrid and ML both make use of a CNN, of which
its robustness was explained before. The Hybrid model
outperforms NMS (Figure V.2a and V.2c). A possible
explanation is that the muscle activation computed by
the CNN is more accurate than the muscle activation
calculated by the activation component of the NMS model.
The Hybrid model thus uses the best features of both
ML and NMS: the CNN is used to find a better relation
between sEMG and MTU activation, and the NMS com-
ponents provide information about the underlying process
of biomechanical movement.

The choice to combine NRMSEs of all legs of all subject
together was made to make a general comparison between
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ML, NMS and Hybrid and to account for possible faulty
optimizations of individual models. This makes it possible
to choose one type of model to be employed for this
purpose by the transfemoral prosthesis.

It should be taken into account that OpenSim’s inverse
dynamics torque is a prediction on itself as well and might
be biased. Nonetheless, it is used by other studies as a
reference as well [15], [20], [23], [43], [44], [45]. Other
methods to test performance use external measurement
devices such as an exoskeleton [21], torque or angular
sensor [46], [47] or a prosthesis [16], which could not
be used for this study. Therefore, this study uses this
prediction as reference. Since no ground reaction forces
were measured, the inverse dynamics tool created an offset
by assuming that the feet are lifted in the air when they
are actually placed on the ground. An assumption was
made that when the feet were on the ground, the torque
was approximately zero since no movement was present
in the knee.

Furthermore, anisotropic rescaling was used to create
a subject specific model from gait 2392 in OpenSim.
All rescaling methods depend strongly on modelling as-
sumptions and cannot fully take subject-specific muscu-
loskeletal geometry into account [48]. Scaling choices
can affect the estimated moment arms and muscle tendon
lengths because of differences in muscle-tendon attach-
ment sites. However, similar methods are used by related
work [20], [21], [43]. Therefore, this method was also
employed in this study.

Compared to related work, our study shows similar or
better results. Cimolato et al. [26] found an average
NRMSE of 24.0% with their Hybrid model. This study’s
Hybrid performed better, with an average NRMSE of
13.4%. Xu et al.[27] found an average RMSE of 1.447 Nm
with their hybrid approach. This study’s hybrid model has
an average RMSE of approximately 1.34, using a torque
scaling factor of 10 Nm as average. This study’s hybrid
thus results in better estimates.

A direct comparison for ML and NMS with literature
however, is difficult in terms of performance metrics and
purposes. For example, Zhang et al. [15] used ML and
NMS in the prediction of ankle torque with RMSEs in
terms of Nm/kg. For ML, our average RMSE would be
approximately 0.014 Nm/kg, for NMS 0.022 Nm/kg and
Hybrid 0.019 Nm/kg, using an average torque scaling
factor of 10 Nm and average weight of 70.8 kg. The
ANN from Zhang et al. performed in a range of 0.01 - 0.1
Nm/kg. The findings of all models of this study are in their
lower range. The NMS from Zhang et al. performed in a
range of 0.04 - 0.18 Nm/kg, whereas all models presented
in this study showed better performance. Zhang et al. [15]
also found that the NMS model predicted ankle torques
better in general than the ANN, which was not in line with
the findings of this study. However, they also found that
the ANN predicted ankle torques better than the NMS
model when trained on a large and varied set of trials.
These findings suggest that the NMS model is more robust
than the ANN for activities it is not trained in, but also

that the ANN can outperform the NMS model when these
activities are included in the training data. The latter is in
line with the findings of this study. Other related work use
joint angles as reference which are not normalized, and
can therefore not be compared to normalized joint torque
directly.

The findings of this study are promising for the use in a
transfemoral prosthesis. ML proves to be the best of three
models to be used for this purpose. However, future work
remains to investigate if this finding extends to an online
application with amputees as well.

The input of the CNNs were windowed to obtain sEMG
images, which would introduce a real-time delay of the
window size (128ms) + sampling period (16 ms). Output
was filtered by a second order low-pass filter with a cut-off
frequency of 1Hz, which would cause an additional real-
time delay of 1 sample (16 ms), resulting in a total delay
of 160 ms. Therefore, with the intended use in mind, it is
essential to test performance of these models in real-time,
using first a real-time simulation and second an actual
transfemoral prosthesis. Limitations of this study are that
the influence of the maximum voluntary contractions
(MVCs) on the sEMG data and model performance has
not been investigated, and the models are only tested on
able-bodied subject data. The MVC that was performed
for this study cannot be done by a transfemoral amputee.
An extension of this study should include EMGs of
amputees and the use of different MVCs and how they
affect the model performances.

Future work will also investigate the translation of the
predicted knee torque to a corresponding (prosthesis) joint
angle. This will give rise to the possibility of using joint
angles as reference, which are not based on a prediction
like inverse dynamics. Lastly, no model was found to be
robust over all days. Future work should encompass ex-
tending the calibration of the models, and thus the training
data, to multiple days. This will provide knowledge about
how many re-calibrations are required to improve model
performance and robustness.

VII. CONCLUSION
This study provides new insight into what modelling
framework performs best in predicting knee torque from
sEMG data during non-weight bearing activities. Three
models (machine learning, neuromusculoskeletal and a
hybrid combination of both) were designed and tested
on multi-day measurements to gain knowledge about the
robustness of each model to time-varying parameters. Res-
ults show that the machine learning model performed best
compared to the other models (NRMSE 10.1%±5.1%) and
that the hybrid model (NRMSE 13.4%±5.2%) was able
to outperform the neuromusculoskeletal model (NRMSE
15.5%±7.0%). All models showed only significant dif-
ferences in performance between the first day and all
other days, a promising finding for the robustness of
each model. These results contribute to the development
of a direct control scheme for a transfemoral prosthesis
by providing a clear comparison of all three modelling
frameworks.
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APPENDIX

A. MVCs
Eight muscles needed to have normalized sEMGs and thus had to be activated via maximum voluntary contractions
(MVC). The rectus femoris (RF) and vastus lateralis (VL) are one muscle group (knee extension) and the biceps femoris
(BF) and semitendinosus (ST) are another muscle group (knee flexion). Furthermore, the gluteus maximus (Gmax),
adductor magnus (AM), tibialis anterior (TA) and gastrocnemius medialis (GM) are activated separately.

The MVC method was inspired by the method described in Rutherford et al. [49]. The subject was standing upright,
using a wall or pole for balance and was asked to perform the following exercises, for a duration of five seconds:

• RF-VL: Subject flexes its hip and knee to approximately 90 degrees. The researcher places its hands on the
anterior side of the lower leg, just above the ankle, and applies resistance. The subject tries to extend its knee and
thus (maximally) push away the hands of the researcher, whilst keeping the upper leg in the same position.

• BF-ST: The same initial setup as RF-VL. The researcher places its hand on the posterior side of lower leg, just
above the ankle, and applies resistance. The subject tries to flex its knee whilst keeping the upper leg in the same
position.

• AM: Subject lifts one foot off the ground. The knee is fully extended and the researcher places its hands just
above the knee, on the medial side of the leg. The subject tries to pull its leg medially to the other leg whilst the
researcher exerts lateral resistance.

• Gmax: Subject lifts one foot off the ground and keeps its knee fully extended. The researcher places its hands just
below the knee, on the anterior side of the lower leg. The subject performs hip extension against the resistance.
Next, the researcher places its hands on the posterior side of the lower leg. The subject performs hip flexion
against the resistance.

• TA: Subject flexes its hip and knee to approximately 90 degrees. The researcher places its hands on top of the
toes. Subject performs dorsiflexion.

• GM: Subject flexes its hip and knee to approximately 90 degrees. The researcher places its hands under the toes.
Subject performs plantarflexion.
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B. Pipeline visualisation
The data pre-processing pipeline is visualised in figure I.1. The three different modelling pipelines are visualised in
figure I.2,I.3 and I.4.

Fig. I.1: Data pre-processing pipeline. Surface EMG (sEMG, blue circle with arrows) was measured, as well as
joint kinematics (orange circle with arrow). The joint kinematics and body measures were used to scale the generic
OpenSim Gait2392 model to match the subjects dimensions. Using this model, the muscle properties (Muscle props)
were extracted. The Inverse Dynamics (ID) tool was used to calculate the reference torque (green box). During muscle
analysis (MA), muscle tendon unit (MTU) lengths and moment arms were computed (yellow box). All data was time
synchronised. sEMG data was filtered to create smooth rectified envelopes (SREs). All data was also windowed to be
used in the ML and Hybrid pipelines. Regular (not-windowed) data was used in the NMS pipeline.

Fig. I.2: Machine learning (ML) pipeline to map sEMG to knee joint torque. The blue arrows correspond with the
SREs and the green arrows with the torque from the data pre-processing pipeline. Hyper optimisation was used on data
of all subjects to find the best model architecture as explained in section IV-C. The best architecture is saved and used
for training and testing. Model weights are trained on training data of the subjects by minimising the loss between
predicted and reference torque τ . The model is validated on part of the training data before the model is tested. The
final model uses SREs as input to predict the knee joint torque, which is compared to the reference torque. The outputs
of the pipeline are the performance of the model (NRMSE) and the predicted torque.
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Fig. I.3: Neuromusculoskeletal (NMS) pipeline to map sEMG and muscle parameters to knee joint torque. The blue
arrows correspond with the SREs, yellow arrows with the muscle tendon unit (MTU) lengths and moment arms, orange
arrows with the muscle properties and the green arrows with the reference torque from the data pre-processing pipeline.
During training, hyperoptimization was used to compute activation parameters, tendon slack-length and muscle strength
coefficients (red arrows), by minimizing the loss between predicted and reference torque. The best parameters are saved
and used to test the model. The neural activation component (3.1) takes SREs as input and computes MTU specific
activations. These activations are used, together with the muscle properties and MTU lengths as input for the MTU
dynamics component (3.2). This component calculates the MTU specific force, which is used as input, together with
the MTU moment arms, for the joint mechanics component (3.3). The latter predicts the knee joint torque which is
compared to the reference torque. The outputs of the pipeline are the performance of the model (NRMSE) and the
predicted torque.

Fig. I.4: Hybrid pipeline to map sEMG and muscle parameters to knee joint torque. The blue arrows correspond
with the SREs, yellow arrows with the MTU lengths and moment arms, orange arrows with the muscle properties
and the green arrows with the reference torque from the data pre-processing pipeline. The optimized parameters from
ML and NMS are used in this pipeline. During the training phase, the model weights of the CNN are trained by
minimizing the loss between predicted and reference torque. The CNN (4.1) takes SREs as input and predicts MTU
specific activations. These activations are used together with MTU lengths and muscle properties as inputs for the
MTU dynamics component (4.2). This component predicts MTU force, which is used together with the MTU moment
arm as input for the joint Mechanics component (4.3). The latter predicts the knee joint torque which is compared to
the reference torque. The outputs of the pipeline are the performance of the model (NRMSE) and the predicted torque.
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C. CEINMS vs. pyceinms
A comparison was made between CEINMS and the NMS model used in this study (pyceinms), both trained on 1
trial of 1 leg and tested on another trial of the same leg.

Figure I.5 shows the torque prediction from both CEINMS and pyceinms on the test trial. The result is completely off
and even reversed. Therefore, more insight was required in the underlying process. For CEINMS, this was visualized
in Figure I.6 and I.7. As can be seen, the activation of the extensors (rectus femoris and vastus lateralis) matches
with the reference torque (Figure I.6). The generated force however, does not match with the activation, resulting in
the faulty torque prediction. This particular finding was found also in pyceinms and indicated faulty passive force
predictions as shown in Figure I.8. However, this finding could not be checked in CEINMS on the short-term since this
was not provided as output in default settings. The fiberlength computed by CEINMS was according to our predictions
(Figure I.7). It shortens for the extensors during knee extension, thereby generating force, and lengthens for the flexors
(biceps femoris and semitendinosus) at the same time. We therefore expect that the problem is indeed the passive
force for CEINMS as well. Since these predictions were completely off, it was decided to exclude the passive force
component in the NMS model used for this study. Results of the same trial using such a simplified model are shown
in Figure I.9.

Furthermore, pyceinms makes use of optimization methods during calibration of the model. The choice of using
Bayesian optimization over simulated annealing, as used in CEINMS, was because it is an efficient optimizer for
complex objective functions.

Fig. I.5: Torque prediction of test trial using CEINMS and pyceinms.
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Fig. I.6: Activation vs. force, as determined by CEINMS.

Fig. I.7: Activation vs. fiber length, as determined by CEINMS.
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Fig. I.8: Activation vs. passive force using pyceinms

Fig. I.9: Torque prediction of test trial using pyceinms without the passive force component.
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D. Reflection report
In this report, I will give more insight to the work behind my article. I enjoyed the research I was able to perform; it was
a tough assignment which asked for a lot of flexibility in my planning, but at the end I am proud of the result.

COVID-19
Since my thesis was carried out from July 2020 to March 2021, I had to deal with the corona measures. Working from
home was luckily already established at RRD and I adapted myself quite well to this situation. However, to carry out
our measurements, we had to adapt our measurement protocol. Instead of preparing a subject with two researchers,
we had to prepare with just one. This took a lot more time, but it also forced me to being able to handle all anatomy
and hardware by myself.

CEINMS C++
During the first months of my thesis, I investigated the possibility of using the OpenSim Toolbox CEINMS for my
NMS model. I have spend approximately 2 months in figuring out the C++ source code, what XML files had to be
used and how I could create these using python. I was able to run this toolbox from python. However, it was extremely
slow and I had little insight in what happened in the code during execution. Robert and I therefore decided to take the
functionality of CEINMS and use it for a python version: pyceinms. I helped Robert with my knowledge of the C++
code and together we established pyceinms which I used in my pipelines. I also compared CEINMS with pyceinms
in the short period between my greenlight and colloquium.

OpenSim
OpenSim had to be used in my python pipelines to create subject specific models, extract muscle characteristics and
parameters, and creating torque reference data. Therefore, I had to figure out the API of OpenSim and its functions
in order to scale the OpenSim Gait2392 model, activate the inverse dynamics tool and muscle analysis tool, using
python.

Measurements
We first did three pilots in July, of which I used data to practice and build my initial pipelines. For our actual
measurements, we had to order a setup with a stair and ramp. Our schedule had to be flexible in order to fit the corona
measures and the delivery of this setup. We were able to start carrying out our measurements at the end of October.
However, due to hardware problems, we had to exclude some subjects and change our schedule. Therefore, the last
measurements were executed at the beginning of February. This asked for some flexibility in my own planning, but
with help from Robert, we formed a plan so that I could still include all subjects without creating a work load that
was too high at the end of my thesis.

We performed 40 measurements in total: 10 subjects, over 4 days. One measurement (including the preparation of the
subject and disconnecting the subject from the hardware) took approximately 2.5 hours. Therefore we have measured
over 100 hours, without taking the set-up and clean-up into account.

Labels
All of our data (approximately 40 hours of data) had to be given labels in order to extract certain activities. I took
on the responsibility of labeling all data. One subject took 7.5 hours to label. I thus spent approximately 75 hours to
label all our data.

Tensors
Combining the ML and NMS model turned out to be much more difficult than I had expected. ML models use
Tensors, a type of algabraic objects. The NMS model consists out of regular equations. Basically, these two models
use a different language and can thus not be combined as easily as I thought. Unfortunately, there was no information
available about combining such complex equations as from pyceinms with a machine learning model. This was both
interesting, since it has not been done before, as it was frustrating since it brought me yet another problem to solve.
At last, we found a solution called gradient tape, a function from Tensorflow. Training the CNN required Tensorflows
tf.GradientTape to be used, with parts of the NMS model translated into Tensors. This way, the gradient of the
loss function could be followed and applied in training the CNN.

Torque offset
My initial analysis of the results of 4 subjects indicated something went wrong with the torque reference data. OpenSim
had an offset when the subject was seated on the stool with a foot on the ground since we don’t measure ground reaction
forces and OpenSim thus thought that the foot was ”hanging” in the air. I thought I solved this by applying a mask
which could identify movement based on the gradient of the torque. Unfortunately, this method did not work as well
for every trial on every subject. Therefore, the reference data was faulty. We have solved this problem by creating
a mask not based on torque, but on the heel marker data since this could detect when the foot was lifted from the
ground. We then came across the problem that OpenSim’s pelvis orientation was faulty. We have fixed this by fixating
the pelvis orientation. This discovery delayed the start-up from my pipelines by approximately 1.5 weeks but it did
give more insight in what to encounter when using OpenSim without measuring ground reaction forces.
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