MASTER THESIS

Analyzing Fileless Malware for the
NET Framework through CLR
Profiling

Tom Leemreize

Faculty of Electrical Engineering, Mathematics and Computer Science
EXAMINATION COMMITTEE
dr.ing. E. Tews (Erik)

dr. A. Sperotto (Anna)
dr.ir. A. Continella (Andrea)

June 18th, 2021

UNIVERSITY OF TWENTE.

Abstract—TFileless malware is a currently ongoing threat, with
high success rates at bypassing detection methods and infecting
machines. Anti-malware solutions are continuously improving to
tackle this threat by introducing new detection mechanisms. One
of these mechanisms is the Antimalware Scan Interface, better
known as AMSI, which has been a significant improvement to
security in the .NET world. A new fileless malware technique
based on the Dynamic Language Runtime is however able to
bypass these new mechanisms, including AMSI. Therefore, a
new method to tackle this threat is required. As a response,
we propose a new method for analyzing fileless malware for
the .NET Framework based on CLR profiling. As our method
builds on top of the .NET profiling API, it is applicable to
any application written for the .NET Framework. Our method
has been successfully applied to current state-of-the-art malware
samples to both analyze the samples and create signatures for
their techniques. This in turn allows us to detect the usage of
these techniques in new, unknown samples. From our analysis
we discovered four distinct types of fileless malware techniques
that are currently being used in the wild. These four types of
techniques are reflection-based techniques, techniques statically
invoking unmanaged code, techniques dynamically invoking un-
managed code, and techniques utilizing an embedded interpreter.
Additionally, we also provide insights into the behaviour of these
techniques by comparing their characteristics in more detail.

Index Terms—Fileless malware, .NET Framework, Dynamic
analysis, CLR Profiling, Dynamic Language Runtime

I. INTRODUCTION

Malware, especially ransomware, is a currently ongoing
threat. Ransomware is a special form of malware, where
criminals encrypt files with a key. The target of the attack is
then blackmailed by the criminals to pay money in exchange
for this key. If the target does not pay the ransom, they will
be unable to decrypt the files. Ransomware is just one type
of malware, but many other types exist. Examples of malware
types are banking Trojans, keyloggers, and spyware, to name
a few.

Luckily, anti-malware solutions are usually able to tackle
this issue. Anti-malware solutions such as ESET NOD32 [21]],
AVG [6], and Avira [7]] can often detect malware before it can
be executed. As a response to this, malware developers have
started using new techniques as well. One of these techniques
is fileless malware. With fileless malware, the actual malicious
payload is never stored on the disk of the target. Because
of this, anti-malware solutions cannot scan the malicious
payload on disk and have to resort to other more complicated
methods, such as scanning the memory or scanning network
traffic. An example of fileless malware would be malware that
downloads a malicious payload from a remote server, and
executes it without writing the payload to disk. As fileless
malware is able to bypass anti-malware solutions, it is a very
effective technique for infecting machines. In a recent report,
the Ponemon Institute has shown that fileless malware attacks
are almost ten times more likely to succeed than traditional
malware attacks [41]]. Furthermore, a report by Malwarebytes
Labs also predicts that the future of malware will most likely
be fileless [26]. These reports show that fileless malware
is indeed a relevant threat, and should be tackled sooner
rather than later. Of course, anti-malware vendors are also

continuously improving to tackle emerging threats, such as
fileless malware. This cat-and-mouse game between malware
developers and anti-malware vendors will most likely never
end, as both parties keep evolving.

Recently, a new technique for fileless malware has popped
up which is able to circumvent the current state-of-the-art
detection methods [45]. When we refer to techniques for
fileless malware, we are to referring to the approach used to
achieve fileless behaviour. For the purposes of this research,
this is limited to standard .NET Framework API calls and
how these calls are utilized. An example of this would be a
fileless malware technique based on reflection, which uses the
NET reflection API to achieve fileless behaviour. In
an implementation of this technique can be seen. The imple-
mentation uses functions from the System.Reflection
namespace, which contains the .NET reflection APIL

1 /// <summary>
/// Loads a specified .NET assembly
executes the EntryPoint.

2

byte array and

3 /// </summary>

4 /// <param name="AssemblyBytes”>The .NET assembly byte
array.</param>

5 /// <param name="Args”>The arguments to pass to the
assembly ’s EntryPoint.</param>

6 public static void AssemblyExecute(byte[] AssemblyBytes
, Object[] Args = null)

7 4

8 if (Args == null)

9

10 Args = new Object[] { new string[] { } };

11

12 System . Reflection . Assembly assembly = System.

Reflection . Assembly.Load (AssemblyBytes) ;
13 assembly . EntryPoint.Invoke (null , Args);
14}

Fig. 1. Function in SharpSploit [[14] to load and execute a .NET assembly
in memory using reflection (static functions inlined for clarity)

The new technique, dubbed BYOI for Bring Your Own
Interpreter, uses a new feature added to the .NET Framework
in version 4.5. This feature, called the Dynamic Language
Runtime, allows scripting languages to be brought to the NET
Framework. An example of this is the IronPython project [2],
which brings the Python programming language to the .NET
Framework. By using this feature, a malicious payload can be
written in Python, while it is executed by a .NET Framework
application. The current detection measures fail to detect the
payload as malicious, as they have been made to detect
malicious .NET applications, and not Python scripts. One of
these detection methods is the Antimalware Scan Interface,
or AMSI, which Microsoft added to the NET Framework
in version 4.8 [38]. AMSI allows applications to interface
with anti-malware solutions. This means that an application
implementing AMSI can submit data to be scanned by an
anti-malware solution. As this is implemented in functions of
the .NET Framework API, it is not necessary for developers
to interface with AMSI themselves in .NET Framework appli-
cations. By adding AMSI to the .NET Framework, Microsoft
attempted to tackle the fileless malware threat for the .NET
Framework, as it is commonly utilized with this goal in mind.

The new technique utilizing the Dynamic Language Runtime
is however able to bypass AMSI. This is the case as the AMSI
integration in the .NET Framework is made to scan entire
.NET assemblies loaded through the reflection API, and not
interpreted scripts. Additionally, as the scripts are interpreted,
malware could decrypt and execute malicious payloads line
by line. This way, the decrypted payload in its entirety is
never present in memory, which can make detection even
more difficult. The individual lines could be scanned before
they are executed by the .NET runtime, however, the lines
by themselves will most likely not indicate any malicious
behaviour.

As we can see from previous reports and this new technique,
current solutions are not sufficient to tackle the fileless mal-
ware threat, specifically for the .NET Framework. Therefore,
we propose a new method for analyzing .NET Framework
applications. The proposed method focuses on identifying the
techniques used in a .NET Framework application. Current
methods, such as the anti-malware solutions mentioned earlier,
are targeted at specific samples. These methods detect malware
by checking whether the hash of the executable is the same
as a known malware sample. The method we propose in this
paper is a more generic approach, which allows techniques
used in fileless malware to be identified, such as the BYOI
technique. Additionally, there is currently no analysis method
that is capable of analyzing all .NET Framework application
formats, to the best of our knowledge. In we
explain the research questions this research aims to answer,
and the goals of our approach in more detail.

Our proposed analysis method is based on the profiling API
for .NET Framework applications. This in turn allows our
method to be applied to any .NET Framework application,
including PowerShell scripts. By utilizing the profiling API,
we are able to create a call tree of all the function calls made
by the application under analysis. As this call tree captures
all of the function calls made by the application, it captures
the entire behaviour of an application. By building signatures
on top of the output of the call tree, we can automatically
identify behaviour present in .NET Framework applications.
This also includes the presence of fileless malware techniques,
which are the primary targets of this research. As a result,
this research provides signatures for currently used fileless
malware techniques, allowing them to be identified in the
wild. In we show our analysis approach and the
creation of the signatures in more detail. The implementation
of our analysis method based on the profiling API is given in
[Section V1

By applying our tooling on several malware samples,
including state-of-the-art frameworks that have been found
used in the wild, we were able to identify several fileless
malware techniques for the .NET Framework. We classified
the identified techniques found into four categories, based on
their behaviour:

o Reflection-based techniques;

o Techniques statically invoking unmanaged code

(P/Invoke);

o Techniques dynamically invoking unmanaged code
(D/Invoke);
e Techniques utilizing an embedded interpreter.

Each of these categories captures distinct behaviour found
in the samples we analyzed. In we compare
these categories in more detail, and we show their unique
characteristics.

In summary, in this research we both propose a completely
new analysis method for .NET Framework applications and
apply this new method to tackle the threat of fileless malware.
We successfully used our method to analyze five different
post-exploitation frameworks, covering samples written in two
different .NET programming languages. Furthermore, we also
showed the applicability of our method to other .NET Frame-
work languages by analyzing an application written in the C#,
F#, and Visual Basic programming languages. Our analysis
method was able to achieve the goals and requirements we
had set, and is a valuable addition to malware research for the
.NET Framework. Additionally, we showed that our method
was successfully able to identify fileless malware techniques
in samples from current state-of-the-art malware frameworks.
As a result, we also present a list of the fileless malware
techniques we encountered being used in the samples in our
dataset. We then compared these techniques in more detail to
find out exactly how they differ from each other, and what the
advantages and disadvantages of these techniques are. This
information will in turn be used to improve current detection
methods for the .NET Framework.

II. BACKGROUND

In this section, we explain the necessary background in-
formation on which the research is built. First, we give a
short introduction of the .NET Framework and its components,
after which we cover the Dynamic Language Runtime in more
detail. Next, we discuss PowerShell and the features that make
it relevant in the context of fileless malware. Lastly, we cover
fileless malware itself and the currently available detection
techniques for fileless malware for the .NET Framework.

A. .NET Framework

The .NET Framework was initially released by Microsoft
in June 2000 as a competitor to the Java 2 Enterprise Edition
(J2EE) of Sun Microsystems [23|]. The .NET Framework
provides programmers with a wide library of features, allowing
developers to significantly speed up their development. Similar
to the Java Virtual Machine, the .NET Framework is platform
agnostic. Additionally, the .NET Framework is included by
default on Windows systems since Windows XP Service Pack
2 [43]. The .NET Framework consists of two primary com-
ponents, namely the Common Language Runtime (CLR) and
the Framework Class Library. The Framework Class Library
provides programmers with a set of functions to be used in
their own codebases [30]. An overview of the architecture can
be found in

The CLR is at the core of the framework, and functions as
a layer between the Common Intermediate Language (CIL), to

C#
code
C# Visual
compiler compiler Basic
compiler

Common Intermediate
Language (CIL)

Common Language
Runtime (CLR)

Machine code

|||| A“ ||||| (A“ l|||| |

10100101101011101001

Fig. 2. Overview of the .NET Framework architecture

which languages targeting the NET Framework are compiled,
and native machine instructions. The CLR can be compared to
the Java runtime, which provides similar functionality for Java
bytecode. The runtime is what allows programmers to use any
programming language targeting the .NET Framework, while
still being able to take full advantage of the features of the
CLR, as the runtime is language-neutral and utilizes the CIL
23]

These components integrate together as follows. When a
developer writes an application in a language that supports
the .NET Framework, such as C#, the code is compiled to
the CIL. This compiled code is then stored in an assembly
format, such as .dil or .exe [36]. When these assemblies are
executed, the CLR takes the CIL instructions and compiles
them to native machines instructions. This ensures that the
assembly can run on any system for which there is a runtime.
Unlike the Java Virtual Machine, the CLR does not function as
an interpreter. The CIL code is always just-in-time compiled
to native instructions [47]).

B. Dynamic Language Runtime

The Dynamic Language Runtime (DLR) builds on-top of
the Common Language Runtime and provides support for
dynamic languages to the .NET Framework [28]. The most
notable usage of the DLR is the IronPython project, which
brings the Python programming language to the .NET Frame-
work [2]]. Aside from enabling dynamic languages to be ported
to the .NET Framework, the DLR also allows the dynamic
languages to make use of all the features and libraries of the
.NET Framework. This means that a scripting language, like
Python, can be used to access the entire .NET API. Another
added benefit is that the dynamic features are also accessible
in C# with the use of the dynamic keyword.

The DLR enables tasks that would normally be done at
compile time to be executed at runtime. An example of this
are dynamic types. Dynamic types are types which are not yet
implemented at compile time, but will get implemented during
runtime. This can be useful when parsing values from external
sources, such as an HTML document. Instead of having to
use functions such as html.getProperty ("body") to
access the body of an HTML document, it would be possible
to simply implement this dynamically and access it using
html.body [28]. This can make code much simpler to com-
prehend and use, especially in long chains involving multiple
get and set operations. This dynamic behaviour also applies to
methods, allowing methods to be implemented during runtime.
As these methods are not present in the executable itself,
the DLR can therefore allow developers to execute code in
memory, without having to recompile. While this can speed
up development significantly, it also creates a new surface for
potential abuse by nefarious actors. This abuse is explored in
Section II-E.

C. PowerShell

PowerShell is a command-line shell and scripting language
originally released by Microsoft with the purpose of task
automation and configuration management [37]. With this
purpose in mind, PowerShell is generally not blacklisted on
systems as it is used by system administrators for configuration
and automation. Furthermore, PowerShell is also pre-installed
on all Windows systems since Windows 7 and Windows
Server 2008 R2 [25]. PowerShell is built on top of the NET
Framework and therefore also allows full integration with
assemblies written for the .NET Framework, in addition to
non-.NET PE binaries (such as .exe and .dll files). These two
properties make PowerShell an interesting tool for attackers,
as it is both powerful and widely available.

Additionally, PowerShell scripts allow users to execute
entire scripts and executables completely in memory, without
having to drop a file on the hard drive of a system. While
useful for benign users to allow quick execution of scripts,
malicious users can abuse this feature to reduce the amount
of traces left behind. This bypasses file-based anti-malware
techniques, as there are no files that can be analyzed since
everything is done in memory [23].

D. .NET Malware

The introduction of PowerShell and the .NET Framework
has made life easier for benign developers, however nefarious
developers took note and have also started using these tools.
Research performed by Kaspersky Labs has shown that unique
.NET malware detections have grown by 1600% between 2009
and 2015 [42]. In 2009 the detections were less than a million,
yet in 2015 the number of detections is closer to 15 million.
This growth confirms that nefarious malware developers have
been catching on onto the usefulness of the .NET Framework
as well. Additionally, in 2018, 2019 and 2020 the Emotet
trojan has been one of the top five threats for Windows [26]].
Emotet utilizes PowerShell to download and execute other

malicious payloads [17], [48]], showing the effectiveness of
utilizing the .NET Framework.

The malicious uses of the .NET Framework come in many
forms, ranging from ransomware to spy campaigns of govern-
ments [43]]. Pontiroli and Martinez [43|] took several kinds of
.NET malware and showed their workings. In their analysis it
can be seen that NET malware can achieve the same feats
as classical platform specific malware. CoinVault, a .NET
ransomware variant, utilizes the functions included with the
Framework Class Library to encrypt the files of a target with
relative ease. Functions to determine whether the malware
was ran within a virtualized environment can also be found.
Additionally, the malware also uses a technique dubbed as
RunPE. With RunPE, the payload of the malware is loaded by
a legitimate process in memory. This means that the malicious
payload never touches the disk. Malware using these properties
are so called “fileless malware”, and will be described in more
detail in the next section.

Similar things can be achieved with PowerShell scripts, as
PowerShell also fully integrates with the .NET Framework.
PowerShell also allows the malicious payloads to be encoded,
which defeats many of the built-in security features by Mi-
crosoft [43]]. Similar to RunPE, the real power of PowerShell
however lies in its capabilities to execute malware in memory.
The next section will cover this in more detail and give
examples of famous PowerShell frameworks.

E. Fileless Malware

The dynamic nature of PowerShell, which allows the in-
memory execution of scripts and assemblies, has led to a new
era of malware, namely the one of fileless malware. As the
name implies, fileless malware is a variant of malware where
everything is done in memory and the malicious payload never
“touches” the hard drive.

According to Baldin [J], fileless malware can typically
be split up into four categories: documents, scripts, code in
memory, and “living off the land”-techniques. Fileless attacks
using documents embed malicious scripts, such as a macro
in the popular Microsoft Word software, in order to infect
the machine. It should be noted that this variant is not truly
fileless, as the document is present on the system. It is,
however, still considered fileless due to the use of embedded
scripts. The next category is that of scripts, which are typically
executed through a browser. This variant can however also
not be considered truly fileless, as modern browsers cache
downloaded scripts on the disk in order to lower load times
for users.

The next two categories are more interesting from the
perspective of an attacker as the malicious payload only
exists in memory. The first of these two categories uses
another wrapper executable to execute the malicious payload
in memory. The malicious payload can be embedded in the
wrapper executable as encrypted shellcode, or downloaded
from a remote server. In this scenario the wrapper loads the
payload into memory and executes it, therefore never dropping
the actual malicious payload on disk. This makes malware

detection much harder as there is no malicious file of which
the signature can be checked for a known malware match. The
last category, “living off the land”-techniques, are the most
interesting when considering the .NET Framework. This type
of fileless malware utilizes legitimate processes for malicious
purposes. This is similar to the last category, except the
wrapper executable is a legitimate process instead. PowerShell
is a commonly used target for these attacks, for the reasons
mentioned in it is rarely blacklisted and pre-
installed on most systems. Additionally, PowerShell will be
less likely to raise suspicion when seen running on a system
compared to an unknown executable. This makes these types
of malware much harder to detect, as the processes running
the code appear to be legitimate.

An example of a framework using the “living off the land”-
technique for PowerShell is PowerSploit [5]. PowerSploit
contains several scripts, of which some could be considered
fileless malware. An example of such a script is the Invoke-
ReflectivePEInjection script, which enables an attacker to load
and execute a PE binary reflectively, which means that the
binary is executed without having been written to the disk,
from the PowerShell process.

Other projects, such as PSAttack [22] take the “living off
the land”-approach a step further. PSAttack combines several
modules, one of which being PowerSploit, and builds on top of
it. PSAttack uses obfuscated and encrypted payloads, which
are decrypted in-memory. Therefore, aside from being a le-
gitimate process, the decrypted malicious payloads also never
touch the disk. This makes it significantly harder for anti-
malware programs to detect the payloads, as these programs
would not be able to detect whether the payloads are malicious
in the first place.

As mentioned earlier, the Dynamic Language Runtime has
also been a target for nefarious actors. These actors have real-
ized the potential of the DLR for fileless malware. An example
of the abuse of the DLR is the SILENTTRINITY project
[12]. The SILENTTRINITY project is a post-exploitation
framework which uses the DLR to allow attackers to use
scripting languages to execute tasks, as opposed to having
to compile C# code to achieve the same results. This gives
attackers much more flexibility when writing their payload.
Another major advantage of this is that by embedding the
interpreter of the scripting language into the initial C# payload,
AMSI only scans the interpreter and not the malicious script.
This happens because AMSI only scans assemblies loaded
through reflection, which is not the case when interpreting
the script. In short, this technique allows for an entirely new
format of fileless malware for the .NET Framework.

F. Detection Techniques

As fileless malware, and malware in general, is not new
in the world of cyber-security, detection techniques to detect
these kinds of attacks have already been developed for the
.NET Framework. Microsoft has added their own features to
Windows to protect against the misuse of PowerShell, and

has also added extra logging features to aid in the detection
of these attacks.

1) Antimalware Scan Interface (AMSI): One of the most
significant additions by Microsoft has been the addition of
the Antimalware Scan Interface, more commonly known as
AMSI. AMSI allows any application to interface with an anti-
malware product. This means that any application can submit
files, memory, streams, URLs, IPs and more to be checked
for malicious contents [39]. Additionally, any anti-malware
vendor can integrate with AMSI to provide a scanning engine
for malware.

AMSI is tightly integrated into several components of
Windows itself, with the most important being PowerShell,
Windows Script Host, VBScript and Office macros. For this
research the integration with PowerShell is the most interesting
of these components, as it attempts to tackle the fileless mal-
ware problem. Microsoft has also added AMSI scanning for all
loaded assemblies in the .NET Framework in .NET version 4.8
[38]]. This includes assemblies loaded from memory, indicating
that Microsoft is also actively tackling fileless malware on this
front.

As mentioned earlier, PowerShell scripts can be encrypted
and obfuscated. By doing this, malware developers can avoid
typical static anti-malware solutions which compare signatures
or the contents of files to known malicious samples. AMSI
can however tackle this issue by analyzing the samples after
they have been deobfuscated and decrypted, but right before
they are compiled and executed [44]. As AMSI integrates
with Windows Defender by default, it can provide protection
against fileless malware attacks out of the box.

By using the DLR it is however possible to bypass AMSI
[L1]. This is exactly what SILENTTRINITY does by embed-
ding an interpreter, as was mentioned in the previous section.
This shows that while AMSI is step in the right direction, it is
still not sufficient to effectively detect fileless malware attacks.

2) Event Tracing for Windows (ETW): Another addition
made by Microsoft is Event Tracing for Windows, a tracing
facility that enables applications to log events [27]. These
events can then be monitored in real-time or be written to
a log file. Windows supplies many event providers by default,
but the most relevant in the context of fileless malware is the
built-in logging to PowerShell.

Since PowerShell version 5, all code executed within Pow-
erShell can be logged [35]. This applies to any application
using the PowerShell engine, so not just the PowerShell shell
[4]]. This provides additional ways of analyzing PowerShell
scripts for malicious contents, which can be used in detection
techniques.

It should be noted that PowerShell itself also has a means
of emitting events when suspicious scripts are executed. These
events could also aid in the detection of fileless malware,
as they indicate when a script executes functions commonly
associated with fileless malware. These suspicious functions
include those used for dynamic assembly building, Win32 API

calls, and PowerShell obfuscation techniquesﬂ These events
could therefore also be used to detect fileless malware for
PowerShell.

The major downside of the script block logging PowerShell
provides is that obfuscation of the script persists to the logs
[10]. Collberg and Thomborson define obfuscation as a way
to achieve security through obscurity [15]. They describe
obfuscation as the transformation of a program into another
program, where the obscurity is maximized. The behaviour of
the program should be preserved during these transformations.
Obfuscation can make it incredibly difficult to figure out
the functionality of a script. Furthermore, removing layers of
obfuscation is extremely time consuming when done manually.
Programmatically removing obfuscation is also infeasible, as
there are simply too many ways in PowerShell to achieve
the same functionality. Methods used for obfuscation can
be combined as well, resulting in even more obfuscation
layers that have to be removed. This detection technique is
therefore not sufficient to detect malicious PowerShell scripts,
as obfuscation is a common occurrence in PowerShell.

While the detection techniques added to Windows can help
defend against most forms of malware, they are not foolproof.
Fileless malware utilizing the DLR is undetected by any of the
detection techniques mentioned. For this reason, we developed
a new method capable of analyzing and potentially detecting
this variant. In we describe our method, using the
profiling API of the CLR, in more detail.

III. MOTIVATION

In this section, we explain the motivation behind this
research and the goals we want to achieve with this research.
First, we explain the problems this research addresses and
the relevancy of these problems. Then, we list the research
questions formulated to solve the mentioned problems. Lastly,
we discuss the goals and requirements that the answers to the
research questions should adhere to.

A. Problem Statement

As we showed in [Section I| and [Section II-E| the on-going
cat-and-mouse game between malware developers and anti-
malware vendors has led to malware becoming more and more
sophisticated. One of the results of this arms race has been the
development of fileless malware. Fileless malware can be an
incredibly powerful tool when trying to circumvent detection
by anti-malware vendors, as there are no malicious files that
can be scanned.

In a report by the Ponemon Institute [41], they show that
fileless attacks are on the rise. The reports shows that 29% of
the attacks in 2017 were fileless, which is an increase of almost
50% compared to the year before. Additionally, the report also
claims that fileless attacks are almost ten times more likely to
succeed than attacks utilizing files. In fact, their survey shows

Uhttps://github.com/PowerShell/PowerShell/blob/
79121b41de0de9b2{68a19balfdefOb98t3tb1cb/src/System.Management.
Automation/engine/runtime/CompiledScriptBlock.cs#1.1546-L1829

https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs#L1546-L1829
https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs#L1546-L1829
https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs#L1546-L1829

that 42% of the companies surveyed have had their data or
infrastructure compromised due to fileless malware attacks.

In another report by Malwarebytes Labs, they too state that
the future of malware will most likely be fileless [24]. The
report by Malwarebytes Labs also mentions that PowerShell
has been used in successful attacks in the past years, such as
the infamous Emotet trojan. Additionally, in the report they
mention that the traditional approach of only analyzing files
on disk is simply not sufficient anymore.

As we can see from these reports, fileless malware attacks
are getting increasingly more popular due to their success
rates, especially the attacks based on PowerShell. Therefore,
the primary goal of this research is to study the current fileless
malware techniques for the .NET Framework, which includes
PowerShell. In this research, we consider a fileless malware
technique to be the approach used to achieve fileless behaviour.
An example of this would be a fileless malware technique
based on reflection, which uses the .NET reflection API to
achieve fileless behaviour. Literature review has pointed out
that current research studying fileless malware for the .NET
Framework is mostly targeted at PowerShell scripts. However,
the .NET Framework is much broader than just PowerShell
scripts, meaning there are many more attack vectors to be stud-
ied. With this research, we want to extend current research by
studying fileless malware across the entire .NET Framework.
Furthermore, we specifically target a new technique for fileless
malware for the .NET Framework, based on the Dynamic
Language Runtime. Utilization of the Dynamic Language
Runtime for malicious purposes is a fairly new development
and is currently still unresearched. The result of this research
will therefore be a more complete picture of the currently
available attack vectors for fileless malware for the .NET
Framework.

In order to achieve this, we analyze fileless malware variants
across the entire .NET Framework. Malware for the .NET
Framework can however come in many forms, due to the
different formats that can run on the Common Language
Runtime. As we mentioned, PowerShell is one example of
this, but regular .NET executable files also run on top of the
Common Language Runtime. To the best of our knowledge,
there currently is no method that makes it possible to analyze
samples across the entire spectrum of the .NET Framework.
In other words, there is no solution that can both analyze
PowerShell scripts and regular Windows .NET executables.
Therefore, a method that makes it possible to analyze these
formats is required to study fileless malware for the .NET
Framework. Aside from analyzing samples and creating an
overview of the current techniques, we also want to know
how these techniques differ. We therefore need to analyze the
behaviour of these samples to create a list of characteristics
for the different fileless malware techniques. This list of char-
acteristics will allow for the identification of the techniques
we discovered, and allow us to compare the techniques. This
comparison can then show us the similarities and differences
between the discovered techniques.

In short, this research aims to both create an overview

and analyze the current fileless malware techniques for the
.NET Framework. Special attention will be paid to the fileless
malware technique based on the Dynamic Language Runtime,
as this variant is able to bypass current state-of-the-art de-
tection methods, as we mentioned in The result
of the analysis process will be a list of characteristics that
allow for the identification of the different fileless malware
techniques. Additionally, these characteristics also show how
the techniques differ from each other. This information can
then be used to create a better understanding of the current
threats and allow for the development of better detection
mechanisms.

B. Research Questions

The primary objective of this research is to study the
current fileless malware techniques for the .NET Framework.
Additionally, we pay special attention to the new fileless
malware technique based on the Dynamic Language Runtime,
as it is able to bypass current state-of-the-art detection methods
such as AMSI.

We formulated several research questions in order to achieve
these objectives. The answers to these research questions
will lead to gaining a better understanding of the workings
of fileless malware for the .NET Framework. The research
questions this research aims to answer are as follows:

1) How can different NET Framework applications be
compared, regardless of their programming language?

2) What are the current fileless malware techniques for the
.NET Framework?

3) What are the characteristics of fileless malware tech-
niques using the Dynamic Language Runtime?

a) What are the differences and similarities between
fileless malware techniques using the Dynamic
Language Runtime and other kinds of fileless mal-
ware techniques for the .NET Framework?

We formulated these research questions in order to gain
insight into fileless malware for the .NET Framework.

The goal of the first research question is to find a method
that allows different .NET Framework applications to be
compared. Applications written for the .NET Framework can
come in many forms, such as PowerShell scripts and exe-
cutables written in C#. As the research is focused on fileless
malware for the .NET Framework, it is required to be able
to compare these formats. The result of having a method that
can do this will be a common ground for comparing .NET
Framework applications. This in turn allows us to analyze
the applications and create signatures that can be applied to
any .NET Framework application. These signatures will be
required to identify the used techniques and to answer the
other research questions.

The second research question is aimed at uncovering the
current and researched techniques for fileless malware for the
.NET Framework. This will indicate the current state of the
fileless malware landscape for the .NET Framework. Addition-
ally, this will result in other fileless malware techniques that

we can compare to fileless malware techniques utilizing the
DLR. Together with the next research question, this would then
allow for us to show the similarities and differences between
this new technique and other techniques. This will in turn
give researchers and security specialists a clear image of how
the new technique differs from existing techniques and how it
could be detected.

The next research question, together with its sub-question,
should point out unique characteristics of malware using the
new technique. The characteristics of the malware are features
that allow it to be distinguished from other pieces of malware
and benign software. These characteristics can for example be
found through the analysis of ETW traces, or .NET API calls
made by the malware. After this information is known for
fileless malware techniques for the DLR, the differences and
similarities between types of fileless malware for the .NET
Framework can be analyzed. We formulated this research
question to analyze these differences and similarities.

In summary, the answers to these research questions will
give a good indicator on the current state of the fileless
malware landscape for the .NET Framework. In addition to
showing what the current fileless malware techniques are, we
also study their characteristics by analyzing them in more de-
tail. This will in turn show whether the current techniques are
comparable to the new technique utilizing the DLR, therefore
showing the risks of the new forms of fileless malware as

well. In [Section V] we explain the approach to answering
these research questions in more detail.

C. Goals & Requirements

In order to compare .NET Framework applications, a
method that captures the behaviour of a .NET Framework
application is required. The output format of this method
should be the same, regardless of the application it was applied
to. For the purposes of this research, this means that for
both PowerShell scripts and .NET Framework executables the
output format of this method should be the same. Additionally,
the output of the method should also be deterministic whenever
possible. This means that when the method is applied to an
executable multiple times, the output should be the same every
time. In cases where the executable utilizes randomness to
call functions, it is however not possible for the output to
be fully deterministic. This should however not influence the
results of this research, as the core calls that make the fileless
functionality possible should still be present in the output.
The method should also not rely on the availability of the
source code of the application, as this is often not available
for malware.

Another major requirement is that it should be possible
to parse the output programmatically. In practice this means
that the output should be either text based, or a structured
binary format. An image displaying the behaviour of the
application would therefore not be sufficient, as it would be
non-trivial to parse programmatically. A structured format will
also allow YARA rules to be written to the identify malicious
techniques used. YARA rules allow researchers to specify a

description of malware, which can then be used for automated
classification [51]. With this, a signature could be written
for a specific characteristic of a technique. This signature
could then be applied across all .NET Framework applications,
including those based on the DLR. This would then quickly
show whether two applications are utilising similar techniques.
Additionally, as the YARA rules capture the characteristics of
the techniques, the rules can be compared to show differences
between the techniques.

IV. APPROACH

In this section, we explain our approach to answer the afore-
mentioned research questions. The approach is split into four
phases: profiling, analysis, signature creation, and comparison.
The profiling phase takes a malware sample as input, while
the other phases take the output of the previous phase as
input. The output of the final phase is a list of techniques
that share similar characteristics and techniques that do not,
including those characteristics. A global overview diagram of
the approach can be found in

In the first phase, profiling, we collect a list of all the calls
performed by the malware sample in the form of a tree. In
this call tree, each node corresponds to a function call. Each
branch from parent to child indicates a function call from
the parent function to the child function. When combined,
these calls provide insights into the behaviour of the malware
sample. This call tree provides the basis on which we perform
the analysis and from which we create signatures. Next, we
continue to the analysis phase. We analyze the call tree to find
the calls that the sample uses to load and execute the payloads
in memory. The combination of these calls are what we
define as the fileless malware technique. By analyzing source
code, when available, or reverse engineering the malicious
sample, we can isolate calls belonging to specific techniques.
These calls are then used in the next phase, which is the
signature creation process. As the scope has been reduced
significantly, we can now analyze the calls belonging to fileless
malware techniques in more detail. For each technique, we
first identify the calls that are absolutely necessary. After this,
we make signatures for those techniques using the absolutely
necessary calls. As a result, these signatures are now able to
effectively identify these techniques. By limiting the signatures
to necessary calls specific to the techniques, we can increase
the accuracy of our signature. The very last step of this process
is to compare the signatures for the different techniques.

The result of this process allows us to achieve our goals
of showing the currently available fileless malware techniques
and pointing out the differences and similarities between them.
The remainder of this section explains in detail how the steps
for each phase are executed.

A. Profiling

The first step in understanding how a .NET Framework
malware sample functions, is to profile the malware sample.
By running the sample under the profiler, we make a high-level
overview of the functionality of the sample. The sample is

Signature

{}

Y o . \4
CLR > Call Tree > Identify core |, c Apply signature
: : calls 5 2 across samples
L 1 g g
v i‘ v g = v
g -8
Profiler DLL Contextualize Qreate 3 % § Identify .
calls signature 8 So characteristics
[
£ 5°
© ©
Y Y Y S 5 Y
Find int ti Verif ? ? C
' ind interestin eri ompare
Profiler Server 9 . Y pare
calls signature characteristics
Profiling Phase Analysis Phase Signature Creation Phase Comparison Phase

Fig. 3. Overview of our malware analysis approach

profiled with the profiler described in to gain insight
into the functionality of the sample. The result of running the
sample under the profiler is that every call made by the sample
is logged. This list of calls is then used for further analysis.

Additionally, code obfuscation techniques will also not
affect analysis this way. Obfuscation can make the application
harder to reverse engineer, but the functionality will remain
the same. As functionality remains the same, the .NET calls
to achieve the functionality still have to be present in the
application. Therefore, calls hidden through obfuscation are
also included in the call log created by the profiler.

To profile samples, we first need to configure the CLR
to connect to the profiler DLL when the CLR starts. This
is done by setting the appropriate environment variables:
COR_ENABLE_PROFILING, COR_PROFILER_PATH, and
COR_PROFILER. The first variable indicates that a profiler
should be used, while the last two allow the CLR to locate the
profiler files. The result of this is that the profiler is attached
to any .NET process that is started. This includes any other
.NET process started by the sample that is being analyzed.
It is possible for an application to detect the presence of a
profiler by checking the environment variable, and adjust its
behaviour. In case this happens, we should be able to see this
process in the call log, and either circumvent it by modifying
the sample, or decide to exclude the sample. As this is a new
approach to analyzing malware, however, we do not expect
to see these checks in currently available malware samples. It
should be mentioned that the profiler DLL does not process the
calls, but sends them to a separate server component instead.
This server component keeps track of all the calls made by
the sample, and writes them to a file. Splitting the profiler into
separate parts is done for performance purposes, and described

in [Section V] in more detail.

Now that the profiler has been configured successfully,
we execute the malicious sample. As the CLR executing the
sample is instructed to use the profiler, all calls made by the
sample are sent to the profiler. In turn, the profiler logs all
function calls made by the sample and stores these in a tree-
like structure. This structure was chosen as it allows us to
represent all functions, and the runtime calling relationships
between these functions in a text format. In we
describe the structure of the call tree in more detail. An
example of the tree-like structure can be seen in This
figure shows Covenant [13]], a post-exploitation framework,
preparing to load Mimikatz into memory. Mimikatz is a
tool that implements several methods to retrieve Windows
credentials from a system, and is often included in post-
exploitation frameworks [20].

This structure shows which calls lead to which other calls,
providing more information about the control flow of the
sample. Furthermore, the time taken for each function to
execute is also stored. This information is then combined by
the profiler, creating a complete picture of the execution of
the sample. Whenever the sample connects to the profiler, the
lifetime of the profiled process is tracked. When all profiled
processes are terminated, the profiler stops logging and stores
the saved calls. The logs can now be analyzed, allowing for
the comparison between different samples.

The profiler provides a common ground for .NET malware
comparison, independent of techniques used. This means that
the profiling step is the same for every .NET Framework
application, including PowerShell scripts. The next step is to
analyze the collected call log for malicious techniques.

0.00% 0.349ms 1 calls Task.Execute
0.00% 0.349ms 1 calls SharpSploit.Credentials.Mimikatz..cctor
0.00% 0.349ms 1 calls SharpSploit.Credentials.Mimikatz.Command

.00%
.00%
.00%
.00%
.00%
.00%
.00%

[cloRoNoNoNoNo]

[clcoloNoooNooNooNo o)

(<]
(=]
o°

[cXo)
oo}
o°

&

.00%

0.

0.
.00%
.00%
.00%
.00%
.21%
.21%
.25%
.04%
.04%
.04%
.04%
.00%

0

0
0
0.
0
0

349ms
.349ms
.349ms
349ms
.349ms
.349ms
349ms

.349ms
.349ms
.349ms

.349ms

1
1
1
1
1
1

1

1

calls
calls
calls
calls
calls
calls
calls

calls
calls
calls
calls
calls

System.Reflection.Assembly.GetExecutingAssembly
System.Reflection.RuntimeAssembly.GetManifestResourceNames
SharpSploit.Misc.Utilities..cctor
SharpSploit.Misc.Utilities.GetEmbeddedResourceBytes
SharpSploit.Misc.Utilities.ReadFully

Kernel32..cctor

SharpSploit.Execution.PE.Load

0.349ms 1 calls SharpSploit.Execution.PE..ctor

1.746ms 5 calls SharpSploit.Execution.PE.get_Is32BitHeader

8.032ms 23 calls System.Runtime.InteropServices.Marshal.PtrToStructure
0.349ms 1 calls System.Runtime.InteropServices.Marshal.SizeOf

933.093ms 2672 calls System.Runtime.InteropServices.Marshal.ReadInt16
929.252ms 2661 calls System.Runtime.InteropServices.Marshal.ReadInt64
1106.658ms 3169 calls System.Runtime.InteropServices.Marshal.WriteInt64
197.313ms 565 calls System.Runtime.InteropServices.Marshal.ReadInt32
187.185ms 536 calls System.Runtime.InteropServices.Marshal.PtrToStringAnsi
187.185ms 536 calls System.String.Equals

177.407ms 508 calls System.StubHelpers.CSTRMarshaler.ConvertToNative
0.349ms 1 calls System.Runtime.InteropServices.Marshal.GetDelegateForFunctionPointer

SharpSploit.Execution.PE.GetFunctionExport
System.Runtime.InteropServices.Marshal.GetDelegateForFunctionPointer
System.Runtime.InteropServices.Marshal.StringToHGlobalUni
System.Threading.Thread..ctor

System.Threading.Thread.SetStartHelper

[cloNoNoNoNo)

0 1
0 1
.00% 0.349ms 1
0 1
0 1

.00% 0.349ms 1 calls

System.Threading.Thread.Start

Fig. 4. Profiler output example of Covenant starting a Mimikatz task

B. Analysis

The result of the profiling phase is a tree-like structure
of all calls made by the malware sample. In the analysis
phase, we analyze the call tree and extract the calls that
are relevant for the techniques used by the sample. For the
purposes of this research, we are specifically interested in
the calls related to fileless malware. These are the calls that
load an assembly reflectively, or get a function pointer that
is then executed. In order to find these calls, we first need to
consider the functionality of the malware sample. By taking
the functionality of the sample into account, we can find out in
which context the calls in the tree are used. In samples where
source code is available, we analyze the source code to give
clues on the functionality. When source code is not available,
knowledge of the malware sample can be used instead. For
example, a malware sample with the intention of stealing
passwords might contain functions with “password” in their
names.

An example of this is the Covenant output shown in
IFigure 4] in which we can find several references to Mimikatz
[20]. In order to create this output log, we started a Mimikatz
task in Covenant, so searching for references to Mimikatz can
give us an indication of where to start looking in the log. In
this example, it indeed points us towards the section in which
Mimikatz gets loaded into memory and executed. If we had not

1 /// <summary>

2 /// Loads a PE with a specified byte array. (Requires

Admin)
3 /1] ##(xCurrently broken. Works for Mimikatz, but not
arbitrary PEsx)

4 /1] </summary>

5 /// <param name="PEBytes’></param>

6 /// <returns>PE</returns>

7 public static PE Load(byte[] PEBytes)
8

9

PE pe = new PE(PEBytes);
10 if (pe.Is32BitHeader)
1
12 [..]1 // Code omitted for brevity
13
14 // Call dllmain
15 threadStart = IntPtrAdd(codebase,

AddressOfEntryPoint);

16 main dllmain = (main)Marshal.
GetDelegateForFunctionPointer (threadStart ,
typeof (main));

17 dllmain (codebase, 1, IntPtr.Zero);
18 /! Console. WriteLine (" Thread Complete”);
19 return pe;
20 }
Fig. 5. Start and end of SharpSploit source code to load the Mimikatz

executable [14]]

PE into memory. After looking up the relevant function in the
source code of SharpSploit, we can indeed see that this is the
case. An excerpt of the function in SharpSploit is shown in

searched for Mimikatz and instead looked through the output and in this function we can find the same calls as

manually, we would have to look through all of the 4000 lines
of the output. Instead, by bringing the calls into context we
are able to reduce the amount of calls to consider for signature
creation significantly.

As the code for SharpSploit, the library used by Covenant to
execute Mimikatz, is open source, we can compare our profiler
output to the source code. In the call tree seen in[Figure 4] we
can see calls to PE. Load. The name of this function strongly
indicates that it might contain the functionality for loading a

were present in our profiler output. This example shows how
we can use the functions present in our profiler output and the
source code to find the relevant calls for a fileless malware
technique.

Now that the relevant calls for a technique in the malware
sample are known, we can create the signatures for the
technique. This is the next step of the process, where we
convert the calls into a signature capable of detecting the
technique.

C. Signature Creation

The next phase is the signature creation phase. The pre-
vious phase provided a list of calls belonging to a specific
technique used in the malware sample. During the signature
creation phase, we analyze the list of calls to find the calls
absolutely necessary to perform the technique. The absolutely
necessary calls are the ones that cannot be easily removed or
replaced to achieve the functionality of the technique. When
these necessary function calls are not present or replaced, we
consider it a different technique.

An example of this is when invoking a method using
reflection, the Runt imeMethodInfo.Invoke function is
called. This function is the lowest level call involved when
calling a method using reflection. Therefore, this function
call should always be present when calling functions us-
ing reflection. Another example can be found in the source
code for SharpSploit, which can be seen in At
the end of the function, a call to create a delegate using
GetDelegateForFunctionPointer can be seen, after
which the delegate is called. When a technique mixes un-
managed and managed code, this function is necessary to
call an unmanaged function from managed code. As the
technique used in SharpSploit does not involve a call to
RuntimeMethodInfo.Invoke, we consider it a different
technique from a technique that does use this call.

Identifying these calls requires an understanding of the
.NET Framework API and the techniques used, and can differ
per sample analyzed. As the calls are all present in the standard
.NET Framework API, we can look up the official documenta-
tion for these functions. The documentation will then indicate
whether these functions are relevant in the context of fileless
malware. This can for example be a function that makes it
possible to load or execute data in memory. If more calls are
selected than necessary, a small change in the implementation
of the technique would cause the signature not to match. On
the other hand, a signature that matches a very small amount of
calls might result in false positives. Therefore, it is important
to carefully select the calls used in the signature.

After we have created the signature, we verify it on the
sample it was created from. If the signature correctly matched
on the sample, the rule has been written correctly without
syntax errors. In order to verify that the rule was not too
specific, the sample needs to be executed under the profiler
again. This results in another call log for the same application.
This new call log can however have some slight changes, due
to randomness in the application or due to other options being
chosen by the user. To verify the signature, we match it on this
new call log as well. If the signature matches, the signature
is correct and can be used to identify the technique. In case
the signature does not match, the calls used to create it should
be reconsidered. Additionally, in order to verify whether the
signature does not lead to false positives, we match it on
call logs from other samples as well. This should not result
in matches unless the two samples utilize the same fileless
malware technique. If the signature matches on other samples

10

that utilize different techniques, the signature should be made
more specific by adding additional calls.

After we have performed this process for all the samples
and multiple signatures are available, we can compare the
signatures. This comparison will show differences between the
techniques, and is the next and final phase of the approach
taken.

D. Comparison

One of the goals of this research is to uncover whether
there are differences between techniques that use the DLR
and those that do not. Applying the signatures will partly show
the differences between techniques, as signatures for samples
using similar techniques should theoretically match on both
of the samples. In case they do not, we investigate what the
differences are between the samples causing the signature not
to match. In order to do this, we compare the signatures that
were made during the previous phase in more detail. As was
mentioned in the previous phase, the signatures are made to
capture the essence of the technique. Therefore, they provide
an excellent way to compare the techniques to each other.

The functionality of fileless malware techniques can be
broken down into roughly two stages:

1) Loading the malware into memory
2) Executing the malware

In order the find similarities and differences between the
different kinds of malware, both of these stages are compared
separately. For similarities in the first stage, we check how the
different samples load the malicious payload into memory. We
then sort this into categories for each loading technique. The
categories are based on the NET Framework API calls used
to implement the technique. For example, if two techniques
use different reflection calls to load a payload into memory,
we consider them both part of techniques that use “reflective
based loading”. This process depends on the samples that were
analyzed, and therefore there is no predefined set of categories.
The sorting into categories is done to compensate for small
differences in the implementation of different techniques. It
might occur that two samples implement the same technique,
but in a slightly different fashion, or using different calls that
perform the same actions. Sorting into categories therefore
prevents us from labeling each implementation of a technique
as a distinct new technique.

The comparison process for the execution stage is similar. It
should be noted that the technique used for loading malware
into memory usually goes hand in hand with the technique
used to execute it. A malware sample that uses unmanaged
code to load the payload into memory, will most likely also
use unmanaged code to execute it. Nevertheless, as this might
not always be the case we perform the same steps for the
execution stage as the loading stage.

These steps provide us with a list of techniques that share
similar characteristics, and techniques that do not. This in turn
also shows the difference in characteristics between the DLR-
based techniques and other techniques.

After we have executed all of these phases, the information
required to answer our research questions is available.

V. IMPLEMENTATION

As was mentioned in we developed a profiler to
log the function calls of .NET applications. Before developing

the profiler, we considered several other methods capable of
comparing .NET applications, each with their own advantages
and disadvantages. In this section, we discuss the implemen-
tation of the profiler in more detail and briefly go over the
alternatives we considered.

A. GroboTrace

The developed profiler builds on top of GroboTrace [1].
We initially used the commercially available tool dotTrac
which is also a .NET profiler. While dotTrace provides the
necessary functionality, it stores its logs in a proprietary
format, which made us unable to easily write signatures for the
output. Therefore, we looked for an open-source alternative
that provided similar functionality, which in turn led us to
GroboTrace. The choice for a profiler was made as it can
capture all calls made to the .NET CLR, which is precisely
what is required to analyze the behaviour of an application.
This includes calls from functions defined in the application
and in the Framework Class Library, which means every
managed call is captured. The .NET CLR is also the highest
level layer shared by different .NET applications, making this
an ideal place to capture the calls, as the output will be in the
same format for every .NET application.

GroboTrace was initially used as-is to provide the necessary
functionality. GroboTrace works by injecting callbacks into
the functions as they are being compiled by the just-in-time
compiler of the CLR. Additionally, it also injects the logger
itself into the profiled application. While this is acceptable
when profiling benign applications of which the behaviour can
be controlled, it is not for malware. Malware might terminate
unexpectedly or terminate non-graciously. GroboTrace would
not be aware of this and be unable to save the logs before
being terminated. Furthermore, GroboTrace also only injects
its callbacks into functions outside of the Framework Class
Library. This in turn means that calls to .NET Framework
API functions will not be logged, making us unable to create
signatures based on these functions. This is most likely done
because the callbacks depend on functions in the Framework
Class Library, which have to be JIT-compiled before they can
be used. The JIT-compilation can however only finish after
the callbacks have been injected. This would therefore result
in a cyclic dependency when trying to inject callbacks into
functions of the Framework Class Library. This again is not
an issue when profiling the behaviour of a benign application,
where the interest is generally in functions defined in the
application itself. For the use case of this research this however
does not work.

Instead of injecting callbacks like GroboTrace does, the
FunctionEnter, FunctionLeave, and FunctionTailcall callbacks

Zhttps://www.jetbrains.com/profiler/

11

Profiled process

Program
(provided by

profiler user) Profiler user

interface
(provided by

CLR profiler author)

|
ICorProfilerCallback

ICorProfilerinfo

A

IPC mechanism
(for example, log
file, named pipe)

Profiler DLL
(provided by
profiler author)

>

Fig. 6. Overview of how the application, profiler, and the interface (server)
components interact [33]

of the profiling API were used. These callbacks allow us
to monitor every function that is executed, and give us the
required information to build the call tree. The downside of
this is that these callbacks have to be implemented in C++,
while GroboTrace was written in C#. This slightly increases
the complexity of the tooling used as there are now two
separate components implemented in different languages.

In order the tackle the issue of unexpected shutdowns, a
separate server application to aggregate the calls has been
developed as well. This application uses the output formatting
of GroboTrace to produce the output logs. When the profiled
application terminates, the server can still continue running
and save the logs to disk. This allows the captured calls to be
stored, no matter what happens to the profiled application.

As the functionality of the profiler has now been split into
two separate instances, some form of communication between
the applications is required. This is also what Microsoft rec-
ommends in their documentation, as can be seen in
By separating the profiler into the profiler implementation and
the log aggregator, the performance impact on the profiled
application can be reduced. The calls are sent over a named
pipe from the profiler to the server, which then adds the calls
to the call tree.

The results of this process is a profiler which outputs every
call made by a .NET application. This output can then be
analyzed in order to extract the used techniques and to develop
signatures for these techniques. A sample of the profiler output
can be seen in In the sample it can be seen exactly
which calls are involved in adding an entry to a hashtable
in C#. Additionally, the sample also shows the structure of
the call tree, where a call made by another function increases
the depth. In the sample, the Insert function calls the
InitHash function, which then calls three other functions
itself.

It should be noted that calls in the profiler log are ag-
gregated. This means that calling functions A, A, B, Ain

https://www.jetbrains.com/profiler/

that order will show up in the logs as 3 calls to A, 1
call to B. Some calls can appear in the logs hundreds of
thousands of times, and storing these separately would increase
the file-size from a few megabytes to potentially terabytes.
This means that some detail is lost, but for the purposes of this
research this is still sufficient as the function names themselves
are what the signatures are based on.

Aside from the profiling implementation, we also briefly
considered manually reverse engineering the malware samples.
.NET Framework executables can be decompiled to C# code,
which allows us to inspect their behaviour. The decompiler
might however simplify or alter the output to make under-
standing easier, or be unable to decompile some functions at
all. This could therefore influence our results, as we would like
the behaviour to be the exact same as when the executable
is executed on a machine. Furthermore, code obfuscation is
very common in applications to hide what the executable does
or to protect its code. In malware samples, code obfuscation
is sometimes also used to avoid detection by anti-malware
solutions. In case obfuscation is used, it would significantly
increase the time it takes to analyze a file, depending on the
level of obfuscation used. Additionally, we want to be able to
analyze PowerShell scripts as well, as they are also part of the
.NET Framework. These scripts are however written in a very
different format from other .NET Framework executables, and
we would therefore have to manually compare these formats.
Manual comparison quickly becomes infeasible when there is
a lot of malware to be compared, usually involving some kind
of obfuscation. Additionally, one of the requirements of the
tooling mentioned in was that the output of the
tooling should be the same regardless of which application
it was executed on. Due to these major disadvantages, we
decided to instead opt for a more general approach, which led
us to the profiler.

In addition to the profiler, we also developed tooling that
allows YARA rules to be applied to the profiler output.
The choice for signatures in the form of YARA rules was
made as YARA is a very popular pattern matching tool for
malware. This allows other developers to easily write rules
for our tooling, and allows existing signatures to be applied
to our output with minimal changes. YARA rules, however,
do not take into account the context in which the pattern
occurs when searching for matches. This means that YARA
can match function calls across different threads within the
process, which could result in false positives. As the order and
context in which the calls are used matter when attempting to
write signatures for specific behaviour, we developed a Python
wrapper script to make this possible. The Python wrapper
script works by looking for a string called Sstart in the
YARA rule, and searches the call tree starting from instances
of that call. When the scope closes, the YARA rule is applied
to all calls that occurred from the $start call to the end of
the scope. This means that the YARA rule is now being applied
to individual scopes, instead of the entire file. As a result, the
Python script allows us to utilize the popular YARA format on
our output logs, regardless of YARA not being context aware.

12

0.00% 0.061ms 1 calls System.Collections.Hashtable.Add
0.00% 0.061ms 1 calls System.Collections.Hashtable.Insert
0.00% 0.061ms 1 calls System.Collections.Hashtable.InitHash
0.00% 0.061ms 1 calls System.Collections.Hashtable.GetHash
0.00% 0.061ms 1 calls System.Collections.CompatibleComparer.GetHashCode
0.00% 0.061ms 1 calls System.String.GetHashCode
0.00% 0.061ms 1 calls Boo.Lang.Parser.BooLexer.Initialize

Fig. 7. Excerpt of the profiler log, showing the calls made when adding an
entry to a C# Hashtable

B. Profiler performance

Initially the profiler performance was quite poor. An ap-
plication which would take seconds to execute under normal
circumstances could take over 2 hours to execute while being
profiled. As this is not acceptable, the profiler had to be
profiled in order to find out where potential performance
improvements could be made.

1) Caching function names: Whenever a call was made in
the application, the profiler would send a packet to the server.
The packet would contain the ID and name of the function, the
name of the module, the thread ID in which it was executed,
and whether the function started or ended. Every time this
occurred, the profiler would use the profiling API to request
the function metadata to obtain all of this information. It turns
out that this is a very time consuming action, and not necessary
to be performed every time. Instead, a mapping from function
ID to metadata was kept. The first time a function is called,
its metadata is stored in a map. Every consecutive call would
then look up the metadata in this map instead of using the API
functions. While this increased the performance by over 75%
(the application used for testing went from a runtime of 2 hours
to 30 minutes), there was still room for more improvements.

2) Adding "map” packets: The metadata and IDs of func-
tions in the .NET Framework API stay the same during the
entire runtime of the application. Therefore, it is not necessary
to send all of the metadata every time a function is called.
Instead, only the first time a function is called its metadata is
sent to the server using a MAP packet. The server will then
keep track of the metadata for each function ID instead. Addi-
tionally, while implementing this performance improvement a
better method of retrieving the function metadata was found.
This method uses a different profiler API call, resulting in
fewer calls made in total. These two additions brought down
the runtime of the application by another 50% (the runtime
went from 30 minutes to 15 minutes).

3) Adding a packet buffer: While looking for the most
time consuming operations in the profiler, it was found out
that almost half of the remaining time spent per call was in
the communication between server and client. A new packet
was created and sent for every call made, which results in
many WriteFile calls being made to send this data over the
named pipe. These calls were very time consuming compared
to the rest of the calls in the profiler. Therefore, a buffer was
made to allow multiple packets to be sent at once. Instead
of sending every packet separately, the packets are appended
to the buffer. Once the buffer exceeds a preconfigured size,
the data of the buffer is sent to the server using a single
WriteFile call, after which the buffer is emptied. This per-

formance improvement increased the performance by another
50% (the runtime went from 15 minutes to 7 minutes).

All of these performance improvements brought the runtime
of the profiled application down significantly. While the pro-
filer still has an impact on the runtime of the application, it is
fast enough to provide results for the analysis of this research.

The source code of the profiler has been made available on
GitHutP| under the MIT License.

VI. EVALUATION

In this section, we present the results that we achieved
by utilizing our profiler on fileless malware, using the steps
described in Following these steps, we created
several signatures to identify the fileless malware techniques
used in the analyzed samples. First, we describe the dataset we
used and the setup in which we performed the experiments.
Next, we evaluate our profiler and discuss the signatures that
were created, after which we compare the signatures in more
detail. During the comparison, we divide the signatures into
distinct categories, based on the behaviour of the calls in the
signatures. These categories in turn show which techniques
for fileless malware for the .NET Framework we discovered
during our analysis. After this distinction between techniques
is made, we compare the behaviour of these techniques to
uncover their similarities and differences. Special attention is
paid to the DLR-based fileless malware technique in order
to uncover exactly what separates it from existing techniques
from an analysis standpoint.

A. Dataset & Experimental Setup

We profiled the samples on a virtual machine running
Windows 10 in VirtualBox. Microsoft .NET Framework 4.8
was installed in order to run the profiler, server, and malware
samples. As some of the frameworks used also have depen-
dencies of their own, these were installed as well during the
setup process of these frameworks.

Before going into the analysis process, we first describe our
dataset and setup in more detail. We analyzed the following
samples:

o Covenant v0.6

o SharpSploit v1.6

o Cobalt Strike v4.2

o SILENTTRINITY v0.4.6
e SILENTTRINITY v0.1.0

The samples listed are post-exploitation frameworks for
the .NET Framework. These frameworks were selected as
they are among the most well known frameworks and have
been found used in malware. Additionally, these frameworks
utilize fileless malware techniques themselves. By analyzing
these frameworks and creating signatures for their techniques,
we established a baseline of the current fileless malware
techniques. The sample we analyzed that utilizes the DLR was
SILENTTRINITY [12]. Two versions of SILENTTRINITY
were analyzed as they both embed an interpreter in a different

3https://github.com/oplosthee/dotnet- profiler

13

way. The older version, 0.1.0, utilizes the DLR to achieve
this, while the most recent version, 0.4.6, uses a different
technique instead. As SILENTTRINITY is a post-exploitation
framework, adding other post-exploitation frameworks to the
dataset allowed us to compare both DLR and non-DLR frame-
works. This was done to create a better comparison between
the different fileless malware techniques. These frameworks
can be considered the state-of-the-art for NET malware, and
malware developers often use scripts from these frameworks
(16]], (18]I, [19], [46].

In order to analyze the techniques utilized by the frame-
works, a stager for these frameworks had to be generated first.
As the process of setting up the frameworks varies wildly, we
describe this process individually for each framework. After
this setup process, the dataset consisted entirely of files that
could be executed and profiled directly.

Sample Configuration

1) Covenant: The first malware sample that we analyzed
was the stager of the Covenant framework. As Covenant is an
entire command and control framework, it requires the user
to set up a server first. The author of Covenant has provided
an in-depth installation and setup guide that can be followed
to setup Covenant without any difficulty. The version that we
selected for this research is the dotnet core version, which
requires the user to simply clone the Covenant repository and
execute the dotnet run command. After this, the user can
navigate to the website shown in the dialog, and start using
Covenant.

In order to create the Covenant stager (called launcher in
Covenant), the user has to create a new listener first. This can
be done by navigating to the listeners tab and creating a new
listener with the default configuration. Next, the stager can be
generated. For this research, we created a stager of type binary,
as this generates a .NET Framework binary, which is the target
of this research. When generating the stager it is important
to set the DotNetVersion option to Net40, as this is what the
profiler works with. When using the Nez35 version, the profiler
will not be able to profile the binary and no logs will be
captured. After this, the user will be given an executable file
that can be used for analysis in the profiler.

2) SharpSploit: SharpSploit is a post-exploitation library,
and technically not a framework like Covenant and Cobalt
Strike. This means that another application can utilize the
functionality provided by SharpSploit. One of these appli-
cations is in fact Covenant, which was developed by the
same developer as SharpSploit. Many of the tasks that can
be executed by the Covenant stager are provided by Sharp-
Sploit. Therefore, the configuration process of SharpSploit is
the same as that of Covenant. The only difference is that
in order to use SharpSploit functionality, a task utilizing
SharpSploit has to be selected in Covenant. For this research,
we selected the Mimikatz, Rubeus, PowerShell and
AssemblyReflect tasks. As SharpSploit is an open-source
project, the source code of the techniques it implements can

https://github.com/oplosthee/dotnet-profiler

be found onlinef!] In cases where a technique was not used
by a Covenant task, we created its signature from the source
code instead.

3) Cobalt Strike: The next malware sample that required
configuration was Cobalt Strike. Cobalt Strike functions sim-
ilarly to Covenant, but primarily focuses on unmanaged exe-
cutables instead. It is however possible to generate a Power-
Shell and C# payload in Cobalt Strike, which is what we did
for this research. We set up the Cobalt Strike teamserver on a
Windows 10 virtual machine, using the Windows Subsystem
for Linux. Next, we generated the stagers by selecting the
Payload Generator under the Packages entry of the Attacks
menu. The user is also prompted in the payload generator
to create a listener if they have not done so already. For the
listener we used the default settings, which results in an HTTP
Beacon listener.

As the output formats, PowerShell, PowerShell command,
and C# were selected. When inspecting the files however, it
can be seen that the C# output merely results in a byte array
containing shellcode. It is left to the user to actually load
this shellcode into memory and execute it, which is what the
primary interest for this research is. Therefore, no analysis
could be performed on the shellcode. SharpSploit however
does contain techniques to execute shellcode, so some methods
to achieve this will still be considered for this research.
The PowerShell command output behaves the same as the
PowerShell output, but encoded into a single command instead
of a script. For the analysis and signature creation phases we
only considered the PowerShell output, as this contained the
code for loading the malware into memory.

4) SILENTTRINITY: The last sample that required con-
figuration was SILENTTRINITY. As was mentioned earlier,
SILENTTRINITY is a post-exploitation framework, just like
Cobalt Strike and Covenant. Therefore, it also requires the
user to setup a server and generate a stager. To set up
SILENTTRINITY v0.4.6, we followed the “Installing from
Source” instructions that can be found on the wiki on GitHub.
At the time of writing, there were some errors present in
the code that made us unable to compile SILENTTRINITY
from the master branch. A fork by a different userE] that fixes
these errors was used instead. These fixes do not change the
behaviour of SILENTTRINITY in any way, and therefore also
do not influence the results. After having compiled the fork,
the instructions on setting up a server and client on the wiki
can be followed. The configuration process for version 0.1.0
is the exact same, but the 1legacy branch was used instead
of the master branch.

After starting the server and connecting a client to it,
we could generate the stagers used for analysis. Similar to
Covenant and Cobalt Strike, we had to create a listener first.
In order to do this, we entered the 1isteners command,
followed by the use http command to setup an HTTP
listener. This listener was then started by using the start

4https://github.com/cobbr/SharpSploit/tree/master/SharpSploit/Execution
Shttps://github.com/d-sec-net/SILENTTRINITY

14

Fig. 8. Overview of the stagers available in SILENTTRINITY

command. Depending on the system, it might be necessary to
use a port higher than 1024 using the set Port command.

The next step was to generate the actual stager used for
analysis. The stager configuration section can be accessed by
entering the stagers command. SILENTTRINITY has mul-
tiple ways of staging the malware on a device. An overview of
all of the stagers provided by SILENTTRINITY can be seen
in

For this research, we used the exe, powershell, and
powershell stageless options. Unlike the other op-
tions, these stagers work out of the box and do not rely on
another process to start them. We selected the stagers using the
use command, and then generated the actual samples using
the generate http command. The result of this is that the
stagers will be saved to the directory of SILENTTRINITY,
allowing us to analyze them using the profiler.

In order to execute an interpreted payload on the system
and capture DLR related calls, we executed a built-in pay-
load of SILENTTRINITY using the stager. We selected the
boo/msgbox and ipy/msgbox modules as they are small
modules, and create recognizable calls in the profiler output
as the stager itself does not use message boxes. Therefore,
the calls in the profiler log which open message boxes would
allow us to pinpoint where the execution of the payload
occurs in the log. The modules were selected by entering
the modules command, followed by the use boo/msgbox
or use ipy/msgbox command. The modules were then
executed using the run command.

Profiler Configuration

Aside from the malware samples, the profiler and server
have to be configured as well. Setting up the profiler is
a fairly straightforward process. As the profiler is based
on GroboTrace, the instructions for setting up GroboTrace
apply. These instructions can be found in the readme file for
GroboTrace.

The server requires no additional configuration and can be
used right out of the box. Output logs generated by the profiler
are stored in the same directory as the server executable itself.
It should be noted that the logs are stored as Log.txt, and
will overwrite previous logs if they are present in the directory.

As is mentioned in the readme for GroboTrace, the name
of the process that should be profiled needs to be entered in
the GroboTrace configuration file. In case the user wants to

https://github.com/cobbr/SharpSploit/tree/master/SharpSploit/Execution
https://github.com/d-sec-net/SILENTTRINITY

analyze a PowerShell script, powershell.exe should be
added to this file. The profiler will then attach itself to any
instance of PowerShell starting after this entry was added.
Next, in order to profile a PowerShell script, the server should
be started by simply running the executable. Then, when
a PowerShell process starts, the profiler will automatically
connect to the server and the logging process will start. After
the PowerShell process terminates, the server will store the
logs in the aforementioned Log.txt file.

The next step is to collect the logs, after which we can
analyze them to find out which calls contribute to the fileless
behaviour.

B. Profiling

One of the goals of this research was to develop a method
that allows for different .NET applications to be compared,
regardless of their programming language. As we showed in
we achieved this goal with the development of our
profiler. We successfully applied the profiler to the samples
in our dataset, which include both executables written in C#
and PowerShell scripts. For all of these instances, the profiler
correctly produced an output log containing the call tree of
the sample under analysis. In order to verify that our method
is indeed applicable to any .NET Framework application, we
applied it to the languages officially supported by Microsoft.
This includes the C#, F#, and Visual Basic programming
languages [3]. We wrote a simple program that writes a list
of numbers to the console in all three languages and profiled
the executables. The resulting logs were all very similar, with
some minor changes between the three languages. The startup
procedure was the same for all three samples, and can be seen

in [Figure 9

0.000ms 1 calls System.AppDomain.SetupDomain

0.000ms 1 calls System.AppDomain.InitializeCompatibilityFlags

0.000ms 1 calls System.CompatibilitySwitches.InitializeSwitches

000ms 1 calls System.AppDomain.InitializeDomainSecurity

000ms 1 calls System.AppDomain.TurnOnBindingRedirects

000ms 1 calls Microsoft.Win32.SafeHandles.SafePEFileHandle..ctor

000ms 1 calls System.Security.Policy.PEFileEvidenceFactory.CreateSecurityIdentity
000ms 1 calls System.Security.Policy.AssemblyEvidenceFactory.UpgradeSecurityIdentity

0.
0
0
0.
0.
0.
0.
0.
0. 000ms 1 calls System.AppDomain.SetTargetFrameworkName

0
0
0
0
0
0

Fig. 9. The startup procedure shared across samples in different languages

The calls that follow the startup procedure involve functions
to enumerate the list in both Visual Basic and F#, but have
most likely been optimized out in C#, as only a WriteLine
call is present. The profiler logs for the execution of our
program in C#, F#, and Visual Basic can be found in[Figure 10}
[Figure 11} and [Figure 12| respectively.

0.00% 0.000ms 1 calls CSharpSample.Program.Main
0.00% 0.001ms 5 calls System.Console.WritelLine

Fig. 10. The execution of the test sample in C#

As can be seen in the output logs, our method was suc-
cessfully able to profile samples in multiple languages for the
.NET Framework. This makes sense, as all .NET languages
compile to the Common Intermediate Language, which is then
executed by the Common Language Runtime. As our profiler

15

0.00% 0.000ms 1 calls Program.main
0.00% 0.000ms 1 calls Microsoft.FSharp.Collections
0.00% 0.000ms 1 calls Microsoft.FSharp.Collections
0.00% 0.001ms 5 calls Microsoft.FSharp.Collections
0.00% 0.001ms 6 calls Microsoft.FSharp.Collections
0.00% 0.001ms 5 calls Microsoft.FSharp.Collections
0.00% 0.001ms 5 calls System.Console.WriteLine

‘1..cctor
‘l.get_Empty

*1.Cons
“1.get_TailOrNull
“1.get_HeadOrDefault

.FSharpList
.FSharpList
.FSharpList
.FSharpList
.FSharpList

Fig. 11. The execution of the test sample in F#

0.00% 0.000ms 1 calls VBSample.Modulel.Main
0.00% 0.000ms 1 calls System.Collections.Generic.List'1..ctor
0.00% 0.000ms 1 calls System.Collections.Generic.List 1.GetEnumerator
0.00% 0.001ms 6 calls Enumerator.MoveNext
0.00% 0.001ms 5 calls Enumerator.get Current
0.00% 0.001ms 5 calls System.Console.WritelLine
0.00% 0.000ms 1 calls Enumerator.MoveNextRare
0.00% 0.000ms 1 calls Enumerator.Dispose

Fig. 12. The execution of the test sample in Visual Basic

uses the profiling API of the Common Language Runtime,
we can therefore profile any application that compiles to the
Common Intermediate Language. The output logs are also all
in the same call tree format, making it possible to compare the
different logs to each other. These experiments in turn show
that our profiler was indeed an answer to our first research
question: how can different .NET Framework applications be
compared, regardless of their programming language?

We additionally specified two requirements that the method
had to adhere to, namely being deterministic and producing a
programmatically parsable output. Both of these requirements
have been fulfilled and tested during the signature creation
phase of our approach. In order to verify our signatures, we
ran the malware samples under the profiler an additional time,
producing a new output log. In all tested cases, the signature
matched on both the output log it was created from, and
the new output log used for verification. This shows us that
the profiler did indeed produce a deterministic log, making it
usable for this research. Furthermore, the fact that we were
able to write signatures for the output and apply these using
YARA show that the output is also indeed programmatically
parsable.

C. Analysis & Signatures

The second research question this research aimed to answer
was: what are the current fileless malware techniques for the
.NET Framework? In order to answer this research question,
we applied our profiler to the dataset, following the steps
described in After having used the profiler to
collect call logs for the samples in the dataset and having
analyzed the relevant calls belonging to each technique, we
created signatures in the form of YARA rules for the tech-
niques. The signatures each belong to a specific technique,
therefore also showing us what the current techniques are, and
thus answering our second research question. Additionally, as
these signatures capture the characteristics of each technique,
they allow for an excellent way to compare the different
techniques. This in turn also allows us to answer our third and
final research question, which is to analyze the differences and
similarities between fileless malware techniques.

With the exception of SharpSploit, every sample in the
dataset has one unique signature. SharpSploit, however, has

multiple signatures, as SharpSploit is a post-exploitation li-
brary. SharpSploit implements multiple fileless malware tech-
niques, and allows developers to use these techniques in their
own malware. As was mentioned earlier in this section, we
used several Covenant tasks that implement these techniques
to create multiple call logs for SharpSploit. As a result of
this process, SharpSploit has multiple signatures belonging to
the different techniques. All of the signatures have been made
available on GitHub%

In order to answer our second research question, we ex-
amined the signatures in more detail to understand the .NET
API calls used to implement the techniques. This was done
to group techniques using similar calls together, allowing us
to create an overview of distinct techniques. This overview
will in turn show us the current fileless malware techniques
for the .NET Framework. When comparing the signatures,
a clear distinction can be seen between techniques that use
unmanaged code and those that do not. Unmanaged code is
code that is not executed by the .NET runtime, and is therefore
also not profiled by the profiler. While this does mean we do
not have full insight into the behaviour of the technique, we
can still see how the unmanaged code is called in the call
logs. As even these techniques still use some managed code,
signatures could still be written for them.

The techniques we found that did not use unmanaged
code were all based around reflection, with the exception
of the sample utilizing the DLR. Reflection in programming
refers to the ability of a program to inspect and modify
itself, which in the context of fileless malware allows the
program to add new, malicious code to the application [34].
In the .NET Framework, this is mostly achieved through
the System.Reflection namespace. The basis of this
technique is the Assembly.Load function, which loads an
application into the memory of the application that calls it,
given the contents of the new application in bytes. The bytes
can be downloaded from a remote source and the bytes can
exist entirely in memory, making this function applicable for
fileless malware. This technique can be found used in both
Covenant and SharpSploit. The signature that we made for
this technique for the two samples can be found in

While SharpSploit has several implementations of this
technique, they all involve the same two core func-
tion calls: Assembly.Load to load the payload, and
RuntimeMethodInfo.Invoke to execute it. These calls
can be seen in as well, as the strings $start
and $x4. An alternative implementation of SharpSploit of
this technique switches out the GetMethod calls for a
get_EntryPoint call. The get_EntryPoint call sim-
ply returns the entry point of the application as a method,
similar to what GetMethod would do. The difference is
that GetMethod allows the user to specify the method
by name. Another alternative implementation that is present
both in SharpSploit and Covenant is prefixed by a call
to the System.Convert .FromBase64String function.

Shttps://github.com/oplosthee/profiler-rules

ule SharpSploit_AssemblyExecute_Parameters

{

16

1
2
3 strings :
4 $start = "System.Reflection.Assembly.Load"
5
6 // Loaded assembly is executed on the same thread (
singular and plural):
7 $xa2 = "System.Reflection.Assembly.GetType"
8 $xb2 = "System.Reflection.Assembly.GetTypes"
9 $xa3 = "System.Type.GetMethod"
10 $xb3 = "System.Type.GetMethods"
11 $x4 = "System.Reflection.RuntimeMethodInfo.Invoke"
12
13 // Loaded assembly is executed on a new thread:
14 // This does not occur in SharpSploit, Covenant
however can do this.
15 $y2 = "System.Threading.Thread..ctor"
16
17 condition :
18 all of ($s=*) // Assembly.Load
19 and
20 (
21 (
22 (
23 all of ($xa=x) // Singular methods
24 or
25 all of ($xbx) // Plural methods
26)
27 and
28 $x4 // The invoke in combination with singular
OR plural methods
29)
30 or
31 all of ($y=*) // New thread creation after Load
32)
3}
Fig. 13. YARA rule created for the detection of reflection-based techniques

As the name implies, this decodes a base64 encoded string,
which would contain the malicious payload in the case of
fileless malware. The payload is then loaded in the same way
as shown in the signature. The base64 encoding is done to
obfuscate the payload of malware, making it slightly harder to
detect when static analysis is used to detect specific structures
in the payload. Another advantage of using base64 encoding
is that it can make it easier to transfer the payload, as the
payload can be represented as text instead of a binary file
after encoding. While this fileless malware technique can work
when the payloads are undetected by anti-malware solutions,
it is not perfect. As was mentioned in AMSI
scans all loaded assembles since .NET 4.8. This includes
assemblies loaded through the Assembly.Load call we saw
being used in these techniques. This technique for fileless
malware is therefore theoretically as easily detectable as it
would be without using fileless malware techniques, as the
payload is scanned for malware either way.

Surprisingly, we also discovered usages of reflection in the
SILENTTRINITY sample. Unlike the instructions included
with SILENTTRINITY indicate, the most recent version does
in fact not use the .NET DLR. This version of SILENTTRIN-
ITY does still embed an interpreter, but it embeds the Boo
programming language instead of IronPython [45]. Boo is a
language for the .NET Framework, using a Python-like syntax
instead of C# [9]. The Boo interpreter was released before the
DLR was available, and therefore does not use this component,

https://github.com/oplosthee/profiler-rules

unlike IronPython. Older versions of SILENTTRINITY do
include IronPython, which meant that we also had to test an
older version of the malware. This older version did indeed
use the .NET DLR, which we determined from the presence
of calls in the Microsoft.Scripting namespace. The
newer sample we analyzed instead uses reflection in the
form of dynamic methods to load and execute the payloads.
Dynamic methods allow developers to compile and execute
methods at runtime [29]], which is done for the Boo payload
in SILENTTRINITY. This behaviour can be seen in
The embedded interpreter first processes the payload, similarly
to a compiler, resulting in a dynamic assembly. The processing
of the payload was omitted from the signature, as it includes
thousands of calls for lexing, parsing and code generation
functionality, while we are only interested in the resulting
assembly. This assembly is then invoked and the dynamic
method is called, resulting in the payload being executed. In
the next section, where we compare the techniques in more
detail, the differences between the DLR-interpreter and the
non-DLR-interpreter are covered in more detail.

rule SilentTrinity_BooRuntime

1
2 {
3 strings:
4 $start = "Boo.Lang.Compiler.CompilerContext.
get_GeneratedAssembly"
5 $s1 = "Boo.Lang.Runtime.RuntimeServices.Invoke"
6 $s2 = "System.Reflection.Emit.DynamicResolver"
7
8 condition :
9 all of them
10 }
Fig. 14. YARA rule created for the detection of the Boo runtime in
SILENTTRINITY

On the other hand we found fileless malware techniques
utilizing unmanaged code as opposed to the reflection
calls seen in the managed techniques. While our profiler
was not able to profile the unmanaged functions that were
executed, we still had some insight into the managed
part of these techniques. These techniques often involve
marshaling, which is the process of converting types
between their managed and unmanaged variants. An
example of this would be an int64_t in native code
being converted to a long in a managed language
like C#. This process can also occur when unmanaged
functions are called from managed code. In this case,
the System.Runtime.InteropServices.Marshal
.GetDelegateForFunctionPointer function is called
by the managed code. In other cases, where the unmanaged
code is called through unmanaged functions, we unfortunately
cannot see this process in the call logs. The inability to track
unmanaged functions is a shortcoming of the profiler, and is
addressed in Nevertheless, in the unmanaged
fileless malware techniques where the marshaling calls are
present, signatures can still be made using these calls. This
was the case for a technique used in SharpSploit, for which
we created a signature. This signature can be found in

17

rule SharpSploit_ShellCode
{

1

2

3 strings:

4 $start = "System.Runtime.InteropServices.
GCHandle.Alloc"

5 $s1 = "System.Runtime.InteropServices.GCHandle.
AddrOfPinnedObject"

6 $s2 = "System.Runtime.InteropServices.Marshal.
Copy"

7 $s3 = "System.Runtime.InteropServices.Marshal.
GetDelegateForFunctionPointer"

8

9 condition:

10 all of ($s=*)

n }

Fig. 15. YARA rule created for the detection of P/Invoke-based techniques

This signature detects shellcode being copied to memory,
which is then executed. When comparing the signature to
the code of SharpSploit on GitHulﬂ, it can be seen that the
Kernel32.VirtualProtect call is not present in the
signature. This is correct, as the VirtualProtect function
is an unmanaged function, and therefore not present in the
profiler output.

The .NET Framework feature that makes this possible
is called Platform Invoke (P/Invoke) [32]. P/Invoke allows
managed applications to call into unmanaged libraries, such as
kernel32.dl1l, where the VirtualProtect function is
defined. By adding the D11Import ("kernel32.d11")
attribute to a managed method with the same signature, the
runtime knows it has to load the specified DLL and that the
function is defined there. Calling this method will then in turn
call the unmanaged function. We also found another technique
capable of achieving this behaviour implemented in Sharp-
Sploit. This technique is called Dynamic Invocation by the
SharpSploit developers, or D/Invoke for short. D/Invoke allows
for the same fileless malware possibilities as P/Invoke, but
does not require the [D11Import] attribute like P/Invoke
does. Therefore, the DLLs and functions are also not present
in the metadata of the .NET assembly, avoiding suspicious
function calls when statically analyzing the application [49].
We thus consider these two techniques as separate techniques,
even though they appear similar from their behaviour.

Now that we have compared the signatures in more detail,
we can make an overview of the current fileless malware
techniques for the .NET Framework and answer our second
research question. We divide the behaviour seen in the sig-
natures into distinct categories, each representing a fileless
malware technique. The result of this will be a list of the
current fileless malware techniques for the .NET Framework,
after which we discuss their similarities and differences in
more detail.

TABLE I
TYPES OF TECHNIQUES IMPLEMENTED BY EACH ANALYZED SAMPLE

Sample

Technique

Covenant (stager)

Reflection-based

SharpSploit (PE loading)

P/Invoke-based

SharpSploit (ShellCode)

P/Invoke-based

SharpSploit (.NET Assembly)

Reflection-based

SharpSploit (Generic)

D/Invoke-based

SharpSploit (Injection)

D/Invoke-based

Cobalt Strike

D/Invoke—base(ﬂ

SILENTTRINITY v0.1.0 (PowerShell)

Embedded interpreter

SILENTTRINITY v0.4.6 (Executable)

Embedded interpreter

SILENTTRINITY v0.4.6 (PowerShell)

Embedded interpreter

SILENTTRINITY v0.4.6 (PowerShell (Stageless))

Embedded interpreter

D. Fileless Malware Techniques

Now that we have analyzed the samples and identified
their fileless techniques, we can answer our second research
question: what are the current fileless malware techniques
for the .NET Framework? In the overview in four
distinct types of techniques can be seen: reflection-based,
P/Invoke-based, D/Invoke-based, and a technique using an
embedded interpreter. These types of techniques are what we
discovered in our dataset, and therefore the kinds of fileless
malware techniques for the .NET Framework we discov-
ered, answering the second research question. This distinction
between techniques was based on the functions that were
used to implement the functionality, which we discussed in
the previous subsection. The reflection-based techniques, for
example, utilize functions from the System.Reflection
namespace to load assemblies into memory and execute them.
However, the signatures for these techniques do not necessarily
have to be the exact same. An example of this would be
the signatures for Covenant and the .NET assembly loading
function of SharpSploit. Covenant has the ability to start the
loaded assembly in another thread, while SharpSploit starts
it on the same thread as the one that loaded the assembly
into memory. This in turn results in slightly different profiler
outputs between the two samples. In this section, we discuss
the different techniques we encountered in more detail, in-
cluding their differences and similarities. This in turn allows
us to answer our third and final research question, which is
to identify the differences and similarities in characteristics
between the technique based on the DLR, and the other types
of fileless malware techniques.

1) Reflection-based Techniques: The group of reflection-
based techniques is the first group of techniques we en-
countered during analysis. The techniques in this group pri-
marily utilize reflection, like was seen in SharpSploit and
Covenant in the previous section. More specific, they all use
the Assembly . Load function call, which loads an assembly
into the same environment as the assembly that called the
function. As a result of this, we can also see the calls made
by the loaded assembly in our profiler logs.

Thttps://github.com/cobbr/SharpSploit/blob/
eb58caaba734de9b18450dab493b41d5a9b5464e/SharpSploit/Execution/
ShellCode.cs

18

Most commonly, the Assembly.Load (Byte[]) variant
of the function call is used. This function call lets the user
load an application in the form of a byte array. This in turn
means that the assembly does not have to be present on
the system of the user, as the entire assembly is given as
the argument. This is commonly used in malware, such as
Covenant and SharpSploit, by making the malware download
an assembly as bytes, which can then be loaded through
the Assembly.Load function. After having loaded the
assembly, it is possible to execute the functions defined in
the assembly. The function which is to be executed has to
be retrieved first, after which it can be invoked using the
MethodInfo.Invoke function. It is possible to select any
function defined in the assembly by manually specifying the
name of the function in the GetMethod function. In case no
function is specified, the entrypoint of the assembly is invoked.

The advantage of using this technique is that it is extremely
simple for a developer to set up, as it simply involves two func-
tion calls to filelessly load and start the malware. Furthermore,
these reflective calls are also commonly used in benign .NET
Framework applications. Therefore, the presence of these calls
does not directly indicate malicious behaviour. The biggest
downside of this technique is that AMSI scanning has been
added to all assemblies loaded through Assembly.Load
in .NET Framework 4.8 [38|]. This means that in case the
malicious payload is detected by anti-malware solutions, the
runtime will detect and stop the malware from being loaded.
Depending on the anti-malware solution used, this also means
that the execution of the malicious payload is now logged.
As fileless malware techniques are commonly used to stay
undetected, the addition of AMSI scanning is a significant
downgrade to the effectiveness of this technique.

2) P/Invoke-based Techniques: The next group of tech-
niques we encountered were techniques using Platform In-
voke, or P/Invoke for short. P/Invoke allows users to access
functions defined in unmanaged libraries [32]. This technique
is present in the .NET Framework by default, similar to the
reflection-based techniques. By itself, P/Invoke does not allow
developers to load malicious payloads into memory, but the

8The approach is similar to the SharpSploit technique, however different
methods are used to achieve it.

https://github.com/cobbr/SharpSploit/blob/eb58caaba734de9b18450dab493b41d5a9b5464e/SharpSploit/Execution/ShellCode.cs
https://github.com/cobbr/SharpSploit/blob/eb58caaba734de9b18450dab493b41d5a9b5464e/SharpSploit/Execution/ShellCode.cs
https://github.com/cobbr/SharpSploit/blob/eb58caaba734de9b18450dab493b41d5a9b5464e/SharpSploit/Execution/ShellCode.cs

unmanaged functions that can be accessed through it can allow
this.

As we showed during the analysis, this technique requires
developers to add a [D11Import] attribute to a function in
their managed code. The example from the SharpSploit sample
we showed earlier calls the VirtualProtect function by
adding the attribute to a managed function with the same
signature as the VirtualProtect function. The techniques
that utilize this functionality therefore combine managed code
with unmanaged code in order to stay undetected. As our
profiler only has insight into the managed calls, it means that
we cannot see these unmanaged calls in the profiler logs.

An example of how this technique can be utilized to load
a malicious payload into memory can be seen in SharpSploit.
SharpSploit has the option to execute unmanaged shellcode
in memory, using the P/Invoke technique. We have created
a signature for this technique from the SharpSploit output
logs, which can be seen in First, SharpSploit allo-
cates memory for the shellcode using the GCHandle.Alloc
function. Then, using the Marshal.Copy function, it copies
the shellcode to the location of the memory that was al-
located earlier. Until this point, only managed functions
have been used, which show up in the logs of our pro-
filer. The allocated memory is however not executable by
default, but the VirtualProtect function makes it pos-
sible to change the permissions of the allocated memory.
The VirtualProtect function is then called using P/In-
voke to mark the allocated memory as executable. The
only step left is to execute the shellcode in memory us-
ing the Marshal.GetDelegateForFunctionPointer
function. This function is commonly seen in fileless malware
techniques utilizing unmanaged code, such as P/Invoke. The
function converts the pointer for the memory address that was
allocated earlier to a delegate, allowing it to be executed from
managed code. As we can see, putting this all together makes
it possible to both load and execute a malicious payload in
memory.

By combining both managed and unmanaged code, the
P/Invoke-based techniques are able to avoid analysis with
our tooling to a certain level. The unmanaged calls do not
show up in the logs of our profiler, meaning we do not
know which unmanaged functions were called. The marshaling
functions do however show up, as they are managed functions
themselves. The signatures we made to detect these techniques
were therefore based on these marshaling calls, and still
allowed us to detect these techniques regardless. Combining
both managed and unmanaged code is what makes these
techniques powerful, as targeted detection no longer works.
Detection methods that specifically look at unmanaged code
would be unable to detect malware in the managed code,
and vice versa. This is also what we encountered during the
analysis with our tooling.

The downside of this technique is however the requirement
of the [D1lImport] attributes, which give away which
functions are being called when applying static analysis. The
binaries that are imported by the attribute are present in

19

the metadata of the application, specifically the ModuleRef
table. When the application is loaded, the required DLLs are
loaded into memory as well. This includes the DLLs specified
with the [D11Import] attribute. This does however open up
the opportunity for users to hook these functions. Hooking is
the process of intercepting a function call by replacing it with
a different function call. For SharpSploit, this means that the
VirtualProtect function can be hooked by a detection
platform, replacing it with a different function. This function
could then be used to detect whether what is passed into
VirtualProtect is malicious or not. This shows that while
the P/Invoke-based techniques have the strong advantage of
utilizing unmanaged code, this advantage comes with its own
drawbacks.

3) D/Invoke-based Techniques: The third group of tech-
niques we encountered were based on dynamically invoking
unmanaged code. As the name of this category implies, this
group of techniques behaves similar to the P/Invoke-based
techniques in the sense that it allows developers to call
unmanaged code. However, the D/Invoke-based techniques
do not utilize the [D1lImport] attribute that P/Invoke
utilizes. Instead, the DLLs and the functions are resolved
dynamically during runtime. This way there is no indication of
the unmanaged functions that are called when applying static
analysis to samples using D/Invoke.

In order to dynamically resolve a function, the ad-
dress of the function is obtained from the export ad-
dress table of the library. This table contains all the func-
tions that the library exports, together with their addresses
[31]. It is possible to retrieve this information given the
base address of where the library was loaded, which is
what D/Invoke does. After having retrieved the function
pointer, it is possible to execute the function by execut-
ing the Marshal.GetDelegateForFunctionPointer
function, followed by the invocation of the resulting delegate.
This function is also used in SharpSploit and Cobalt Strike to
execute shellcode. It should be noted that retrieving the func-
tions from the export address table only works when the library
has already been loaded by the application. In case the devel-
oper wants to call a function defined in kernel32.d11,
such as the VirtualProtect function we saw earlier, it
has to be loaded first. This would usually be done through
the LoadLibrary function, but as this is an unmanaged
function from an unloaded library, P/Invoke would be required
to call it. Instead, the authors of D/Invoke cleverly utilize
the LdrLoadD1ll function from the ntdll.dll library
[49]. This library is loaded into every process on Windows,
and therefore will also be loaded in our .NET Framework
application. From this library the LdrLoadD11 function is
then called using the address in the export table, similar to
how other unmanaged functions would be executed. Using
this process, it is possible to call unmanaged code from
managed code, without using the [D1lImport] attribute
like P/Invoke.

When analyzing a sample utilizing a D/Invoke-based tech-
nique with our profiler, we are only able to see the marshalling

calls, similar to P/Invoke-based techniques. Therefore, our sig-
natures are also based on these calls. In order to find the export
address of a library function, many marshalling calls have to
be made as unmanaged code cannot be used. This process can
be seen in the source code of the D/Invoke implementation of
SharpSploit [50]]. This information would make it possible to
distinguish between P/Invoke and D/Invoke-based techniques
when examining our profiler output.

In a blog post by the authors of D/Invoke, they mention that
there are other methods to detect the usage of the technique.
For example, ETW logs will be generated when loading DLLs
with D/Invoke using the technique mentioned earlier. This
makes it possible for anti-malware vendors to monitor these
logs and detect the usage of D/Invoke-based techniques. The
authors came up with methods to avoid this to a certain
extent, one of which being manually mapping the libraries into
memory. When manually mapping the library into memory,
the LdrLoadD11 call is not used. Instead, the library is read
manually from the disk or from a byte array into the memory
of the process. This makes the technique even more fileless
than it already is, as the byte array can exist purely in memory.
Additionally, this also makes anti-malware vendors unable to
hook functions in the library. The manual mapping of libraries
does however result in more possibilities of detection for our
profiler as there are now more managed calls used by the
D/Invoke technique.

4) Techniques using an Embedded Interpreter: The fourth
and final technique we encountered were techniques utiliz-
ing an embedded interpreter. These techniques are also the
techniques utilizing the Dynamic Language Runtime, which
is what this research is specifically targeted at. The analysis
of these techniques will therefore also allow us to answer the
third research question: what are the characteristics of fileless
malware techniques using the Dynamic Language Runtime?
As was mentioned in the description of the dataset, two
versions of SILENTTRINITY were analyzed, both including
an embedded interpreter. The most recent sample, version
0.4.6, does not utilize the DLR while the older sample, version
0.1.0, does. Other than giving us insight into fileless malware
utilizing the DLR, these two samples also make for a much
better comparison of DLR-based techniques and non-DLR-
based techniques. As the samples behave in the same way to
the user, most of the differences in the profiler output will be
due to the usage of the DLR in the older version.

On a high level, these techniques work by embedding an
interpreter made for the .NET Framework into the application.
By doing this, it is possible to write a malicious payload
as a script for the language of the interpreter and have the
interpreter execute the payload. This can be very convenient
for malware developers, as they can write a script and send
it to the infected machine for execution, without having to
compile anything. This is comparable to a PowerShell script,
where you can simply run the script as-is from the PowerShell
command line. Furthermore, it is possible for the interpreted
script to only exist in memory, hence it is part of this research.

While these techniques are able to bypass detection methods

20

such as AMSI, as we mentioned in the actual
implementation is fairly straightforward. The Boo compiler
is available as a library that any developer can simply add
to their .NET Framework project, which is also done in
SILENTTRINITY. Then, the API functions of the compiler
can be used to compile the Boo source code in memory, and
execute it. This process is similar for IronPython, which is
used in the older version of SILENTTRINITY. It should be
noted that a Boo compiler is used, as opposed to an interpreter.
This is due to the differences between DLR and non-DLR
fileless malware, which we explain in more detail later in
this section. For the developer this is transparent, as both
approaches take a script as input and execute it. Until this
point, both of the approaches to embedded interpreters appear
to function in the exact same way. The implementation of the
interpreters is however where the differences between the DLR
and non-DLR variants are.

When profiling a sample of the newer version of
SILENTTRINITY, which does not utilize the DLR, we
can clearly see the steps taken by the Boo com-
piler. First, the input source is parsed. This is visible
in the profiler output in the form of calls from the
Boo.Lang.Parser, Boo.Lang.Compiler.Ast and
antlr namespaces. ANTLR is a popular parser generator
[40], which can create a parser for a language given the
grammar for that language. This confirms that the Boo payload
is indeed being compiled on the spot by SILENTTRINITY.
A part of this process can be seen in the profiler output in

Figure 16

0.061ms 1 calls Boo.Lang.Parser.BooParsingStep.Run
0.061ms 1 calls Boo.Lang.Parser.BooParsingStep.ParseModule
0.061ms 1 calls Boo.Lang.Parser.BooParser.CreateParser
0.061ms 1 calls Boo.Lang.Parser.BooParserBase.start
0.061ms 1 calls Boo.Lang.Parser.BooParserBase.parse _module
1.029ms 17 calls antlr.LLkParser.LA

Fig. 16. Excerpt of the profiler output showing the Boo compilation process

After the compilation has finished, we are presented with the
logs on which the signature in[Figure 14]is based. The presence
of a compiler however indicates that the payload is actually
not interpreted, unlike the author claims. As we can see in
the profiler output in and from the compiler calls
mentioned earlier, the payload is compiled and then invoked in
its entirety. This profiler output belongs to the boo/msgbox

payload, of which the source code can be seen in

0.061ms 1 calls Boo.Lang.Runtime.RuntimeServices.Invoke
0.061ms 1 calls FlyZGLmT70Module.Main
0.061ms 1 calls System.Windows.Forms.MessageBox.Show
0.091ms 1 calls System.Console.WritelLine

Fig. 17. Profiler output showing the boo/msgbox task being executed by
SILENTTRINITY (runtime percentages omitted for brevity)

The non-DLR version of SILENTTRINITY, and therefore
Boo, instead uses dynamic methods to achieve its fileless
behaviour. As was mentioned earlier, dynamic methods allow
developers to compile and execute methods at runtime [29].

import System.Windows.Forms as WinForms

public static def Main():
WinForms . MessageBox . Show ("WINDOW_TEXT", "WINDOW\
_TITLE")

print ’Popped’

Fig. 18. The source code of the boo/msgbox of SILENTTRINITY

This is exactly what the Boo compiler does, as opposed to
utilizing the DLR functionality.

This however brings us to the main difference between
the two versions of SILENTTRINITY, and consequently the
usage of the DLR for fileless malware. The first and most
recognizable characteristic of the sample utilizing the DLR is
the presence of the Microsoft.Scripting namespace.
This namespace is a part of the DLR, and will therefore
only be present in executables utilizing the DLR. Other than
the namespaces used, we can also see the behaviour of the
IronPython interpreter in our profiler logs. This is another
characteristic of the DLR, as interpreting a dynamic language
would not be possible without it, which was the case with the
Boo compiler. Instead of compiling the payload first and then
executing it, the payload is interpreted line by line. This means
that unlike the newer SILENTTRINITY sample, the log output
is completely different from what can be seen in
When executing the ipy/msgbox payload, which can be
seen in we can clearly see the differences between
the two SILENTTRINITY versions. Instead of the function
calls being in the same scope, they are completely separated
from each other. The call to the MessageBox . Show function
in the profiler logs can be seen in As can be seen,
the function call is surrounded by DLR-specific calls made by
the IronPython interpreter. In a different scope, hundreds of
lines removed in the output from the first function call, we

can see the print call, as shown in

import clr
clr. AddReference ("System.Windows.Forms")
import System.Windows.Forms as WinForms

woE W —

WinForms . MessageBox . Show (str ("WINDOW_TEXT") ,
WINDOW_TITLE"))

str("

print ’Popped’

Fig. 19. The source code of the ipy/msgbox of SILENTTRINITY

0.00% 0.107ms 1 calls Microsoft.Scripting.Interpreter.Interpreter.Run
0.314ms 3 calls Microsoft.Scripting.Interpreter.BranchInstruction.Run
0.107ms 1 calls Microsoft.Scripting.Interpreter.FuncCallInstruction'3.Run

0.107ms 1 calls System.Windows.Forms.MessageBox.Show

Fig. 20. Profiler output showing the WinForms.MessageBox.Show part
of the ipy/msgbox task being executed by SILENTTRINITY (runtime
percentages omitted for brevity)

It can be seen that both of the function calls are surrounded
by DLR-specific calls made by the interpreter. This is the

21

0.107ms 1 calls Microsoft.Scripting.Interpreter.ActionCallInstruction®2.Run
0.107ms 1 calls IronPython.Runtime.Operations.PythonOps.Print

Fig. 21. Profiler output showing the print part of the ipy/msgbox
task being executed by SILENTTRINITY (runtime percentages omitted for
brevity)

most significant difference in characteristics between the DLR
variant and the non-DLR variant of SILENTTRINITY. Addi-
tionally, this also makes it much harder to reverse engineer the
functionality of the payload, as the contents of the payload
are not grouped together. While it would be possible to
apply differential analysis on the profiler logs to filter out
the interpreter related calls, obfuscation techniques could be
used to counter this. These differences also show us what
the characteristics are of fileless malware techniques utilizing
the Dynamic Language Runtime, answering our third research
question. Additionally, the comparison with the non-DLR
variant allowed us to answer the sub-question of this research
question as well, which was to determine the differences and
similarities between DLR and non-DLR based fileless malware
techniques.

As we have shown, of the two samples using an embedded
interpreter, only the sample utilizing the DLR truly has
an embedded interpreter. When compared to the other
techniques, this technique is most similar to the reflection-
based techniques, as both only involve managed code.
This is especially true for the Boo variant, as the calls
to generate the dynamic methods are also included in the
System.Reflection namespace. Other than using purely
managed code, the actual implementation of the IronPython
variant is completely different from the Boo variant or any of
the other techniques we have seen.

In conclusion, we encountered four types of fileless malware
techniques for the .NET Framework. With this list of tech-
niques we were able to answer our second research question,
which was targeted at finding out the current techniques
for fileless malware for the .NET Framework. Each of the
techniques we encountered produced a distinct output when
analyzed using the profiler we developed for this research.
The types of fileless malware can be split into roughly two
groups: the techniques that utilize unmanaged code, and those
that do not.

The two types of techniques that utilized unmanaged code
were the P/Invoke and D/Invoke-based fileless malware tech-
niques. These techniques both called unmanaged code, making
our managed profiler unable to get insight into the functions
that were called. The methods they used to achieve this were
however different for both techniques. As we showed, the
samples utilizing the P/Invoke-based technique left a clear
indication of the unmanaged functions that were used in the
assembly metadata. On the other hand, static analysis on
samples utilizing the D/Invoke-based technique did not show
any indication of which unmanaged functions were called. On
the managed side, which our profiler was able to analyze,
the techniques however appeared to behave the same. Both

techniques utilized managed marshaling functions to convert
types between managed and unmanaged variants, allowing
us to build signatures for the techniques. Additionally, the
P/Invoke-based technique also opened up the possibility of
function hooking, which the D/Invoke-based technique pre-
vents by dynamically loading libraries.

The other two types of techniques, those that utilize man-
aged code, were the techniques utilizing reflection and em-
bedded interpreters. These techniques involved no unmanaged
code at all, allowing us to get insight into the full functionality
of the technique using our profiler logs. The reflection-based
fileless malware technique utilized built-in functions to the
NET Framework, similar to the P/Invoke-based technique.
This in turn also makes it susceptible to detection, as AMSI
monitors the built-in functions used for reflection. This is not
the case with the other techniques, which are much harder
to detect. As we showed, depending on the implementation of
the embedded interpreter, this technique also utilizes reflection.
Therefore, these two techniques can be considered very similar
from an analysis standpoint. This however changes when the
Dynamic Language Runtime is utilized for embedding the
interpreter. When using the DLR, the entire output of our
profiler looks unlike that of any of the other samples. Instead,
an actual interpreter built on top of the DLR is used to interpret
the payload. This is also visible in our logs, as calls from the
payload are surrounded in multiple lines of interpreter related
calls. This in turn makes it much harder to analyze using
our profiler, as it becomes harder to find the calls belonging
to the payload. Additionally, the DLR-based fileless malware
technique utilises calls from the Microsoft.Scripting
namespace. This namespace is not present in the other profiler
logs, as it is specific to the DLR. Other than the behaviour
visible in the profiler logs, this namespace could be used
to detect usage of the DLR. This information also answers
our third and final research question, which was to find
the characteristics of fileless malware techniques using the
DLR, and how it differs from other kinds of fileless malware
techniques for the .NET Framework.

VII. LIMITATIONS

While performing our analysis, we noticed several limita-
tions of our approach to analyzing .NET executables. First
and foremost, the most significant limitation of our tooling
was the inability to profile unmanaged code. As we found out
during our research, two out of four types of techniques we
discovered utilized unmanaged code. Due to this limitation, we
were unable to determine which unmanaged functions were
called by these techniques. The profiling API for the .NET
Framework provides minimal support for profiling unmanaged
code, and instead instructs developers to write their own
methods to achieve this. Given the time constraints for this
research and the fact that this issue surfaced during analysis,
we were unable to develop a solution for this. It is however
possible to track the transition from managed to unmanaged
code using the profiling API, which could partly fill this gap.

22

In case P/Invoke is used, static analysis of the binary could
also point out which functions are called during this transition.

A second limitation of our profiler was the inability to log
the arguments to functions. While this is not necessary to
determine the techniques that were used, it would allow for
more in-depth analysis of the samples. For example, in case a
D/Invoke-based technique is utilized, argument logging could
point out which unmanaged functions are called. This is due
to the fact that the D/Invoke technique has managed wrappers
around the functions that find the addresses of unmanaged
functions, which take the name of the DLL and hash of the
function name as arguments. This information could in turn
still enable us to determine which unmanaged functions were
called. Therefore, this would also partly overcome the first
limitation we mentioned, for this specific technique. Another
benefit of argument logging would be the ability to dump
the malicious payload to disk in some cases. When reflection
is used, the arguments to Reflection.Load contain the
assembly that the developer wants to load. Argument logging
would enable us to log this argument, and therefore the
malicious payload. While not a major limitation, the added
benefits of fixing this limitation could lead to new insights
and analysis opportunities.

Next, fileless techniques could have been missed due to
the limited dataset used for this research. While the samples
we analyzed belonged to the most popular post-exploitation
frameworks for the .NET Framework, there might be samples
in the wild that utilize currently unknown techniques. The
application of our tooling on a larger scale could allow for
these techniques to be identified, if they exist. This could
be achieved through larger datasets from websites such as
VirusTotal, in order to gain a larger amount of samples to
analyze.

Lastly, while it did not occur during our analysis, it is
possible for applications to detect the presence of the profiler
and adjust their behaviour. As the environment variables that
have to be set for the CLR to use to profiler can be accessed by
any application, malware can access these variables as well. In
case malware detects that the CLR is indeed instructed to use
a profiler, it could avoid performing any malicious behaviour,
which would therefore not be profiled. However, the check
for the environment variables would be present in our call
log, allowing us to detect this behaviour. Examining the logs
could in turn show us how the sample detects the profiler, and
make it possible for us to work around this check or remove
it from the sample. Another option to avoid analysis would be
for the malware sample to profile itself. A process can only
be profiled by one profiler at a time, which would make us
unable to analyze the sample in this case. A possible solution
to tackle this limitation would be to modify the sample to
either initialize our profiler, or not to initialize a profiler at
all.

VIII. FUTURE WORK

As we discussed in the previous section, there are some
limitations to this research that could be addressed in future

research. We believe there are two potential research topics
for future work, which build on top of the tooling developed
for this research. These subjects both address the limitations
of this research, as well as contribute valuable findings by
themselves.

The first subject is directly linked to one of the limitations
that was mentioned in the previous section, namely the size
of the dataset. As the amount of samples that were analyzed
for this research was limited, future work could be done to
address this. Other fileless techniques might exist that we
did not encounter in our dataset. This could be achieved by
applying the tooling we developed to larger datasets, such
as the VirusTotal academic database, or samples acquired
through other sources. The contribution of this research to the
academic world would be an even greater understanding of the
currently available fileless malware techniques. Additionally,
the resulting signatures could also lead to new ways to detect
and prevent fileless malware.

Another subject which would be a valuable continuation of
the work done in this research would be to utilize the methods
we developed for malware detection. Instead of having a server
component that simply stores to logs for later analysis like was
done in this research, automated scanning could be added to
the profiler itself. This would make it possible to scan for
fileless malware threats and stop them as they occur. In order
to achieve this, the signatures we developed would need to be
applied on the calls as they are being made. This work could
in addition also be extended with the automated extraction of
malicious payloads, as we described in the previous section.
This future research would be the next step in tackling the
fileless malware issue.

IX. CONCLUSION

The goal of this research was to develop a method to
tackle the currently ongoing fileless malware threat for the
.NET Framework. We established that current state-of-the-art
detection methods, such as AMSI, are insufficient at detecting
the newest forms of fileless malware. Special attention was
paid to a new fileless malware technique, which utilizes
the Dynamic Language Runtime to dynamically interpret a
malicious payload. In order to achieve our goal, we proposed
a more generic approach to malware analysis and detection
for the NET Framework. Traditional anti-malware solutions
target specific samples and strains by matching the hash of
the sample against a list of known bad samples. Instead, our
proposed method dynamically collects all the calls made by
the application and detects fileless malware techniques in these
calls.

We achieved this by developing a profiler to log the function
calls of .NET Framework applications. This profiler is able
to capture function calls for any .NET Framework language,
which we verified by testing it on samples written in C#,
F#, and Visual Basic. In turn, the profiler outputs a call
tree containing all calls made by the application. This call
tree captures the entire behaviour of the application, and
allows us to compare the trees of different applications. As

23

a result, this enables us to compare the trees of new samples
to known malicious samples, in order to detect whether these
new samples also contain similar malicious behaviour.

Next, after developing the required tooling, we were able to
analyze the call trees to uncover the current fileless malware
techniques for the .NET Framework, which was the second
goal of this research. To achieve this, we analyzed the call trees
produced by our tooling for the presence of fileless malware
techniques for five different post-exploitation frameworks.
After having identified the fileless malware techniques in the
frameworks, we wrote YARA signatures for these techniques
that can be applied to the output of our tooling. This then
automatically pointed out whether a specific fileless malware
technique was present in a profiled sample. As a result of this
process, we were able to identify four distinct types of fileless
malware techniques in our dataset:

« Reflection-based techniques

« P/Invoke-based techniques

« D/Invoke-based techniques

o Techniques utilizing an embedded interpreter

These techniques all utilize different .NET Framework API
calls in order to achieve their fileless behaviour.

The third and final goal of this research was to compare
these techniques in more detail, in order to understand the
differences and similarities in their characteristics. As our
signatures allow for the identification of these techniques and
capture the calls that make these techniques possible, we
were able to achieve this goal by comparing the signatures.
This pointed out that both the reflection-based techniques and
those utilizing an embedded interpreter use purely managed
code, while the other two techniques include unmanaged,
native code as well. Furthermore, while the D/Invoke-based
technique works similarly to the P/Invoke-based technique,
it avoids suspicious signatures by dynamically invoking na-
tive functions. This in turn makes this technique harder to
be detected by intrusion detection systems, as there are no
suspicious native API calls. The P/Invoke-based technique, on
the other hand, utilizes standard .NET Framework features that
allow native code to be called, and therefore also clearly shows
this when statically analyzing the binary. This is similar to the
reflection-based technique for managed code, as this technique
utilizes the reflection API of the .NET Framework to load
assemblies into memory, which AMSI is able to detect.

Additionally, as we are particularly interested in the tech-
nique based on the DLR, we compared the techniques utilizing
an embedded interpreter in more detail, as one of these
techniques utilized the DLR. This pointed out that the DLR
technique indeed interprets a malicious payload, making it
much harder to determine what is being executed compared
to the other techniques. This is the case as the execution of
every line of the payload is wrapped in interpreter related calls
in our output, compared to the execution calls being in the
same scope for the other techniques. Furthermore, the DLR
technique made heavy use of the Microsoft.Scripting
namespace, which contains the DLR related API calls. The
presence of this namespace could in turn be used to detect

this technique, and differential analysis could be used to filter
out the calls belonging to this namespace and the interpreter.

There were however some limitations to our research, as the
dataset we used to create signatures was limited. The result
of this could be that there are fileless malware techniques for
the .NET Framework which were not present in our dataset.
Future research should be done to tackle this issue, and apply
our tooling to a larger dataset. Additionally, there are two
other improvements that could be made to the profiler to
increase its effectiveness. The first of these improvements
is the support for argument logging, which would make it
possible to automatically capture the malicious payloads for
some techniques and scan them. This improvement would also
allow us to more effectively detect the usage of the D/Invoke-
based techniques, as it uses arguments to specify which native
function should be called. The other significant improvement
that could be made is to the performance of the profiler. It is
currently not possible to apply signatures in real-time while
running the profiler. Real-time application of signatures would
make it possible to incorporate the profiler into anti-malware
solutions or intrusion detection systems.

We believe that our tooling is capable of becoming an
outstanding tool at tackling the fileless malware threat for the
.NET Framework. In this research, we applied our tooling to a
limited dataset to show its capabilities and effectiveness. This
showed that even with the current limitations, our tooling was
able to detect threats that are capable of bypassing AMSI,
which is one of the current state-of-the-art malware detection
methods.

ACKNOWLEDGMENTS

I would like to show my gratitude to my supervisors,
Andrea, Anna, Erik and Robert for their continuous support
during this project, as well as always being available to answer
my questions and giving me incredibly valuable feedback to
work with.

Next, I would like to thank my family for being supportive
throughout my studies.

Finally, I would like to thank my friends for the fun
moments we had throughout our studies, and hopefully more
to come.

REFERENCES

GitHub - skbkontur/GroboTrace: Lightweight NET performance pro-
filer. Accessed: 2020-11-19.

IronPython. https://web.archive.org/web/20200505112458/https://github.
com/IronLanguages/ironpython2, Accessed: 2020-05-25.

NET programming languages C#, F#, and Visual Basic.
http://web.archive.org/web/20210426135437/https://dotnet.microsoft.
com/languages. Accessed: 2021-04-26.

PowerShell loves the Blue Team. https://web.archive.org/
web/20200614142705/https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/, Accessed: 2020-06-11.
PowerShellMafia/PowerSploit. https://web.archive.org/web/
20200526155643/https://github.com/PowerShellMafia/PowerSploit.
Accessed: 2020-05-26.

AVG. AVG 2021 — FREE Antivirus & TuneUp for PC, Mac,
Android. http://web.archive.org/web/20210610224301/https://www.avg.
com/en-us/homepagel Accessed: 2021-06-13.

24

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

Avira. Download Security Software for Windows, Mac, Android & i0S
— Avira Antivirus. http://web.archive.org/web/20210611113922/https:
/Iwww.avira.com/. Accessed: 2021-06-13.

A. Baldin. Best practices for fighting the fileless threat. 2019(9):13-15.
R. Barreto de Oliveira. The Boo Programming Language.
https://web.archive.org/web/20090206045607/http://boo.codehaus.
org/BooManifesto.pdf. Accessed: 2021-03-28.

D. Bohannon and L. Holmes. Revoke-obfuscation: PowerShell obfus-
cation detection using science. Black Hat USA 2017.

byt3bl33d3r. Byt3bl33d3r/OffensiveDLR. https://web.archive.org/web/

202012052201 16/https://github.com/byt3bl33d3r/OffensiveDLR/. Ac-
cessed: 2020-12-05.
byt3bl133d3r. Byt3b133d3r/SILENTTRINITY. https://web.

archive.org/web/20200309082014/https://github.com/byt3bl33d3r/
SILENTTRINITY! Accessed: 2020-05-25.

R. Cobb. Cobbr/Covenant. https://web.archive.org/web/
20201126113917/https://github.com/cobbr/Covenant/, Accessed:
2020-12-09.

R. Cobb. Cobbr/SharpSploit. https://github.com/cobbr/SharpSploit/blob/
manual-map/SharpSploit/Execution/PE.cs#L.90. Accessed: 2021-04-15.
C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and
obfuscation - tools for software protection. 28(8):735-746. Conference
Name: IEEE Transactions on Software Engineering.

Cybereason Nocturnus. New Ursnif Variant Targets
Japan Packed with New Features. https://web.archive.
org/web/20201209154908/https://www.cybereason.com/blog/
new-ursnif-variant-targets- japan- packed- with-new-features. Accessed:
2020-12-09.

Cybersecurity & Infrastructure Security Agency. Emotet Malware —
CISA. |https://us-cert.cisa.gov/ncas/alerts/aa20-280a. Accessed: 2021-
04-08.

Cynet. Ransomware Attacks in Belgium - Analysis &
Protection. https://web.archive.org/web/20201209160137/
https://www.cynet.com/attack-techniques-hands-on/

ransomware-attacks-in-belgium-analysis-protection/. Accessed:
2020-12-09.

A. Dahan. Operation Cobalt Kitty: A large-scale APT
in Asia carried out by the OceanLotus Group. https:

/Iweb.archive.org/web/20201123135040/https://www.cybereason.com/
blog/operation-cobalt-kitty-apt. Accessed: 2020-12-09.

B. Delpy. GitHub - gentilkiwi/mimikatz: A little tool to play with
Windows security. http://web.archive.org/web/20210407210015/https:
//github.com/gentilkiwi/mimikatz, Accessed: 2021-04-07.

ESET. ESET NOD32 Antivirus. http://web.archive.org/web/
20210613213546/https://www.eset.com/us/home/antivirus/. Accessed:
2021-06-13.

J. Haight. Jaredhaight/PSAttack. https://web.archive.org/web/
2020052616111 1/https://github.com/jaredhaight/PSAttack, Accessed:
2020-05-26.
J. Heasman.
2004(4):6-1.
A. Kujawa. Under the Radar — The Future of Undetected Malware. http:
/Iweb.archive.org/web/20210409195738/https://resources.malwarebytes.
com/files/2018/12/Malwarebytes- Labs- Under-The-Radar- US.pdf.

Z. Li, Q. A. Chen, C. Xiong, Y. Chen, T. Zhu, and H. Yang. Effective
and Light-Weight Deobfuscation and Semantic-Aware Attack Detection
for PowerShell Scripts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS *19, pages
1831-1847. Association for Computing Machinery.
Malwarebytes Labs. 2020 State of Malware
http://web.archive.org/web/20201122120501/https://resources.
malwarebytes.com/files/2020/02/2020_State- of-Malware-Report- 1.pdf.
Accessed: 2021-04-08.

Microsoft. About Event Tracing - Win32 apps.
/Iweb.archive.org/web/20201111190634/https://docs.microsoft.com/
en-us/windows/win32/etw/about-event-tracing. Accessed: 2021-04-16.
Microsoft. Dynamic Language Runtime Overview.
https://web.archive.org/web/20200424112116/https://docs.
microsoft.com/en-us/dotnet/framework/reflection-and-codedom/
dynamic-language-runtime-overview. Accessed: 2020-05-25.
Microsoft. DynamicMethod Class | Microsoft Docs. https:
/Iweb.archive.org/web/20210406192932/https://docs.microsoft.com/
en-us/dotnet/api/system.reflection.emit.dynamicmethod?view=net-5.0.
Accessed: 2021-04-06.

Migrating to the .NET platform: An introduction.

Report.

http:

https://web.archive.org/web/20200505112458/https://github.com/IronLanguages/ironpython2
https://web.archive.org/web/20200505112458/https://github.com/IronLanguages/ironpython2
http://web.archive.org/web/20210426135437/https://dotnet.microsoft.com/languages
http://web.archive.org/web/20210426135437/https://dotnet.microsoft.com/languages
https://web.archive.org/web/20200614142705/https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://web.archive.org/web/20200614142705/https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://web.archive.org/web/20200614142705/https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://web.archive.org/web/20200526155643/https://github.com/PowerShellMafia/PowerSploit
https://web.archive.org/web/20200526155643/https://github.com/PowerShellMafia/PowerSploit
http://web.archive.org/web/20210610224301/https://www.avg.com/en-us/homepage
http://web.archive.org/web/20210610224301/https://www.avg.com/en-us/homepage
http://web.archive.org/web/20210611113922/https://www.avira.com/
http://web.archive.org/web/20210611113922/https://www.avira.com/
https://web.archive.org/web/20090206045607/http://boo.codehaus.org/BooManifesto.pdf
https://web.archive.org/web/20090206045607/http://boo.codehaus.org/BooManifesto.pdf
https://web.archive.org/web/20201205220116/https://github.com/byt3bl33d3r/OffensiveDLR/
https://web.archive.org/web/20201205220116/https://github.com/byt3bl33d3r/OffensiveDLR/
https://web.archive.org/web/20200309082014/https://github.com/byt3bl33d3r/SILENTTRINITY
https://web.archive.org/web/20200309082014/https://github.com/byt3bl33d3r/SILENTTRINITY
https://web.archive.org/web/20200309082014/https://github.com/byt3bl33d3r/SILENTTRINITY
https://web.archive.org/web/20201126113917/https://github.com/cobbr/Covenant/
https://web.archive.org/web/20201126113917/https://github.com/cobbr/Covenant/
https://github.com/cobbr/SharpSploit/blob/manual-map/SharpSploit/Execution/PE.cs#L90
https://github.com/cobbr/SharpSploit/blob/manual-map/SharpSploit/Execution/PE.cs#L90
https://web.archive.org/web/20201209154908/https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features
https://web.archive.org/web/20201209154908/https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features
https://web.archive.org/web/20201209154908/https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features
https://us-cert.cisa.gov/ncas/alerts/aa20-280a
https://web.archive.org/web/20201209160137/https://www.cynet.com/attack-techniques-hands-on/ransomware-attacks-in-belgium-analysis-protection/
https://web.archive.org/web/20201209160137/https://www.cynet.com/attack-techniques-hands-on/ransomware-attacks-in-belgium-analysis-protection/
https://web.archive.org/web/20201209160137/https://www.cynet.com/attack-techniques-hands-on/ransomware-attacks-in-belgium-analysis-protection/
https://web.archive.org/web/20201123135040/https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://web.archive.org/web/20201123135040/https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://web.archive.org/web/20201123135040/https://www.cybereason.com/blog/operation-cobalt-kitty-apt
http://web.archive.org/web/20210407210015/https://github.com/gentilkiwi/mimikatz
http://web.archive.org/web/20210407210015/https://github.com/gentilkiwi/mimikatz
http://web.archive.org/web/20210613213546/https://www.eset.com/us/home/antivirus/
http://web.archive.org/web/20210613213546/https://www.eset.com/us/home/antivirus/
https://web.archive.org/web/20200526161111/https://github.com/jaredhaight/PSAttack
https://web.archive.org/web/20200526161111/https://github.com/jaredhaight/PSAttack
http://web.archive.org/web/20210409195738/https://resources.malwarebytes.com/files/2018/12/Malwarebytes-Labs-Under-The-Radar-US.pdf
http://web.archive.org/web/20210409195738/https://resources.malwarebytes.com/files/2018/12/Malwarebytes-Labs-Under-The-Radar-US.pdf
http://web.archive.org/web/20210409195738/https://resources.malwarebytes.com/files/2018/12/Malwarebytes-Labs-Under-The-Radar-US.pdf
http://web.archive.org/web/20201122120501/https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report-1.pdf
http://web.archive.org/web/20201122120501/https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report-1.pdf
http://web.archive.org/web/20201111190634/https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
http://web.archive.org/web/20201111190634/https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
http://web.archive.org/web/20201111190634/https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://web.archive.org/web/20200424112116/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://web.archive.org/web/20200424112116/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://web.archive.org/web/20200424112116/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://web.archive.org/web/20210406192932/https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.dynamicmethod?view=net-5.0
https://web.archive.org/web/20210406192932/https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.dynamicmethod?view=net-5.0
https://web.archive.org/web/20210406192932/https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.dynamicmethod?view=net-5.0

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[40]

[47]

[48]

[49]

[50]

[51]

Microsoft. Overview of the .NET Framework. https:
/Iweb.archive.org/web/20200517160525/https://docs.microsoft.com/
en-us/dotnet/framework/get- started/overview. Accessed: 2020-05-25.
Microsoft. PE Format - Win32 apps | Microsoft Docs.
http://web.archive.org/web/20210406133422/https://docs.microsoft.
com/en-us/windows/win32/debug/pe-format. Accessed: 2021-04-06.
Microsoft. Platform Invoke (P/Invoke) | Microsoft Docs.
http://web.archive.org/web/20210402114959/https://docs.microsoft.
com/en-us/dotnet/standard/native-interop/pinvoke. Accessed: 2021-04-
02.

Microsoft. Profiling overview. https://web.archive.org/web/
20201215234000/https://docs.microsoft.com/en-us/dotnet/framework/
unmanaged-api/profiling/profiling-overview. Accessed: 2021-02-01.
Microsoft. Reflection in .NET | Microsoft Docs. http:
/Iweb.archive.org/web/20201112042249/https://docs.microsoft.com/
en-us/dotnet/framework/reflection-and-codedom/reflection. Accessed:
2021-03-25.

Microsoft. Script Tracing and Logging - PowerShell.
http://web.archive.org/web/202010122048 10/https://docs.microsoft.
com/en-us/powershell/scripting/windows- powershell/wmf/whats-new/
script-logging?view=powershell-7. Accessed: 2021-04-16.

Microsoft. ~ What is .NET Framework? A software development
framework. https://web.archive.org/web/20200728143948/https://dotnet.
microsoft.com/learn/dotnet/what-is-dotnet-framework. Accessed: 2020-
07-28.

Microsoft. What is PowerShell? - PowerShell. https:
/Iweb.archive.org/web/20200526142151/https://docs.microsoft.com/
en-us/powershell/scripting/overview ?view=powershell- 7. Accessed:
2020-05-26.

Microsoft. ~ What’s new in .NET Framework | Microsoft Docs.
https://web.archive.org/web/20210402102452/https://docs.microsoft.
com/en-us/dotnet/framework/whats-new/#common-language-runtime,
Accessed: 2021-04-02.

Microsoft. ~ Antimalware Scan Interface (AMSI) - Win32 apps.
https://web.archive.org/web/20200529130536/https://docs.microsoft.
com/en-us/windows/win32/amsi/antimalware- scan-interface- portal,

Apr. 2019. Accessed: 2020-05-29.

T. Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd
edition.

Ponemon Institute. The 2017 State of Endpoint Security
Risk. http://web.archive.org/web/20201207003 159/https:
/lcdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/
2017-ponemon-report-key-findings.pdf. Accessed: 2021-04-09.

S. Pontiroli and R. Martinez. The rise of .NET and Powershell mal-
ware. https://web.archive.org/web/20200802233816/https://securelist.
com/the-rise-of-net-and-powershell-malware/72417/. Accessed: 2020-
08-03.

S. M. Pontiroli and F. R. Martinez. THE TAO OF .NET AND
POWERSHELL MALWARE ANALYSIS. page 26.

A. Rousseau. Hijacking .NET to defend PowerShell. page 13.

M. Salvati. Red Teamer’s Cookbook: BYOI (Bring
Your Own Interpreter). https://web.archive.org/
web/20200321090539/https://www.blackhillsinfosec.com/
red-teamers-cookbook-byoi-bring- your-own-interpreter/. Accessed:
2020-04-10.

Sophos. Information on Attack Tool Detection. https://support.
sophos.com/support/s/article/KB-000039774?language=en_US. Ac-
cessed: 2020-12-09.

I. Stevenson. .NET core architecture. 14(5):24-27.

V. Thakur. Malware analysis: Decoding Emotet, part 2. |http:
/Iweb.archive.org/web/20210408115359/https://blog.malwarebytes.com/
threat-analysis/2018/06/malware-analysis-decoding-emotet-part- 2/,
Accessed: 2021-04-08.

TheWover. Emulating Covert Operations - Dynamic Invocation (Avoid-
ing PInvoke & API Hooks) — The Wover — Red Teaming, .NET, and
random computing topics. http://web.archive.org/web/20210326154643/
https://thewover.github.io/Dynamic-Invoke/. Accessed: 2021-03-26.
TheWover. TheWover/DInvoke. https://github.com/TheWover/DInvoke/
blob/ee256ba5a56cd45e813eb9eb007205090538d55d/DInvoke/
DInvoke/Dynamiclnvoke/Generic.cs#L.255. Accessed: 2021-04-06.
VirusTotal. YARA - The pattern matching swiss knife for mal-
ware researchers. |https://web.archive.org/web/20201210130549/https:
/Ivirustotal.github.io/yara/. Accessed: 2020-12-10.

25

https://web.archive.org/web/20200517160525/https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://web.archive.org/web/20200517160525/https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://web.archive.org/web/20200517160525/https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
http://web.archive.org/web/20210406133422/https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://web.archive.org/web/20210406133422/https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://web.archive.org/web/20210402114959/https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
http://web.archive.org/web/20210402114959/https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://web.archive.org/web/20201215234000/https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://web.archive.org/web/20201215234000/https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://web.archive.org/web/20201215234000/https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
http://web.archive.org/web/20201112042249/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
http://web.archive.org/web/20201112042249/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
http://web.archive.org/web/20201112042249/https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
http://web.archive.org/web/20201012204810/https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging?view=powershell-7
http://web.archive.org/web/20201012204810/https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging?view=powershell-7
http://web.archive.org/web/20201012204810/https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging?view=powershell-7
https://web.archive.org/web/20200728143948/https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework
https://web.archive.org/web/20200728143948/https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework
https://web.archive.org/web/20200526142151/https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://web.archive.org/web/20200526142151/https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://web.archive.org/web/20200526142151/https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7
https://web.archive.org/web/20210402102452/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/#common-language-runtime
https://web.archive.org/web/20210402102452/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/#common-language-runtime
https://web.archive.org/web/20200529130536/https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://web.archive.org/web/20200529130536/https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
http://web.archive.org/web/20201207003159/https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
http://web.archive.org/web/20201207003159/https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
http://web.archive.org/web/20201207003159/https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
https://web.archive.org/web/20200802233816/https://securelist.com/the-rise-of-net-and-powershell-malware/72417/
https://web.archive.org/web/20200802233816/https://securelist.com/the-rise-of-net-and-powershell-malware/72417/
https://web.archive.org/web/20200321090539/https://www.blackhillsinfosec.com/red-teamers-cookbook-byoi-bring-your-own-interpreter/
https://web.archive.org/web/20200321090539/https://www.blackhillsinfosec.com/red-teamers-cookbook-byoi-bring-your-own-interpreter/
https://web.archive.org/web/20200321090539/https://www.blackhillsinfosec.com/red-teamers-cookbook-byoi-bring-your-own-interpreter/
https://support.sophos.com/support/s/article/KB-000039774?language=en_US
https://support.sophos.com/support/s/article/KB-000039774?language=en_US
http://web.archive.org/web/20210408115359/https://blog.malwarebytes.com/threat-analysis/2018/06/malware-analysis-decoding-emotet-part-2/
http://web.archive.org/web/20210408115359/https://blog.malwarebytes.com/threat-analysis/2018/06/malware-analysis-decoding-emotet-part-2/
http://web.archive.org/web/20210408115359/https://blog.malwarebytes.com/threat-analysis/2018/06/malware-analysis-decoding-emotet-part-2/
http://web.archive.org/web/20210326154643/https://thewover.github.io/Dynamic-Invoke/
http://web.archive.org/web/20210326154643/https://thewover.github.io/Dynamic-Invoke/
https://github.com/TheWover/DInvoke/blob/ee256ba5a56cd45e813eb9eb007205090538d55d/DInvoke/DInvoke/DynamicInvoke/Generic.cs#L255
https://github.com/TheWover/DInvoke/blob/ee256ba5a56cd45e813eb9eb007205090538d55d/DInvoke/DInvoke/DynamicInvoke/Generic.cs#L255
https://github.com/TheWover/DInvoke/blob/ee256ba5a56cd45e813eb9eb007205090538d55d/DInvoke/DInvoke/DynamicInvoke/Generic.cs#L255
https://web.archive.org/web/20201210130549/https://virustotal.github.io/yara/
https://web.archive.org/web/20201210130549/https://virustotal.github.io/yara/

	Cover
	Contents
	Introduction
	Background
	.NET Framework
	Dynamic Language Runtime
	PowerShell
	.NET Malware
	Fileless Malware
	Detection Techniques
	Antimalware Scan Interface (AMSI)
	Event Tracing for Windows (ETW)

	Motivation
	Problem Statement
	Research Questions
	Goals & Requirements

	Approach
	Profiling
	Analysis
	Signature Creation
	Comparison

	Implementation
	GroboTrace
	Profiler performance
	Caching function names
	Adding "map" packets
	Adding a packet buffer

	Evaluation
	Dataset & Experimental Setup
	Covenant
	SharpSploit
	Cobalt Strike
	SILENTTRINITY

	Profiling
	Analysis & Signatures
	Fileless Malware Techniques
	Reflection-based Techniques
	P/Invoke-based Techniques
	D/Invoke-based Techniques
	Techniques using an Embedded Interpreter

	Limitations
	Future Work
	Conclusion
	References

