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Abstract

In this thesis, we develop a quantitative 2D model describing the distribution
of the supercurrent density and density of states in SN-N-NS type Josephson
junctions. This model is based on the self-consistent solution of the quasi-
classical Usadel equations using the finite element method. We investigate
the influence of the proximity effect and the phase difference on the proper-
ties of the junction for various spatial dimensions and material parameters
of the S and N materials. We show that these results are consistent with
analytical solutions in the thin N layer limit and show logical behavior for
a large range of junction parameters. We extend our model to the case of
a junction with homogeneous in- and outflow current to investigate depair-
ing effects in the superconducting electrodes. Furthermore, we extend our
model to ferromagnetic junctions by including the effect of an exchange field,
showing spin separation of the density of states and the occurrence of a 0-π
transition. These results may assist in improving the design of nanoscale
Josephson junctions for use in superconducting digital circuits.

Keywords: Usadel equations, critical current, proximity effect, density of
states, ferromagnetism, finite element method
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Chapter 1

Introduction

1.1 Motivation

In recent years, the field of superconducting electronics has seen rapid devel-
opments. These developments are motivated by the high energy efficiency
and clock frequencies that superconducting electronic elements possess com-
pared to standard electronics [1,2]. These superconducting elements can have
widespread applications in electronics, for example as logic gates or memory
elements [3]. One of the important problems in superconducting electronics
is the downscaling of these elements. Superconducting elements are still rel-
atively large compared to their semiconducting counterparts, which makes
them impractical for many applications [4].

One of the main challenges in the scaling of superconducting electronics
is the design of Josephson junctions, which are nonlinear elements of super-
conducting circuits. Ideally, these junctions should have high enough critical
parameters such as Ic and the ICRN product (where Ic is the critical current
and RN is the resistance of the junction in the non-superconducting state),
and at the same time be scalable down to nanoscale sizes.

In the past decades, many different types of Josephson junctions have
been invented. Mostly, as combinations of superconductors (S), insulators
(I), normal non-superconducting metals (N), and other types of materi-
als. A common type of Josephson junction is the sandwich superconduc-
tor/insulator/superconductor (SIS) junction. These junctions possess high
critical currents, but are difficult to scale down, while ensuring the homo-
geneity of the junction required for large-scale production.

An alternative type of junction that can also sustain large currents is a
superconductor/normal metal/superconductor (SNS) junction. In practice,
these junctions, however, often have lower critical currents than SIS junctions
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due to the suppression of the superconductivity inside the electrodes by the
proximity effect. To remedy this problem junctions with a variable thick-
ness geometry are often considered, where the junction consists of layers of
different thicknesses. One of such junctions is the SN-N-NS junction, where
the normal metal is placed underneath the electrodes. This type of junction
seems promising for possessing high critical currents and good scalability [5].
Determining the exact properties of this type of junction is thus particularly
interesting.

Theoretically, Josephson junctions are often described by one-dimensional
models, constructed under specific assumptions on the junction geometry
and interface parameters. These models often provide insightful analytical
solutions, but are not suitable for all situations.

For junctions consisting of multiple layers, such as SN or SF type variable
thickness junctions, the junction geometry can be quite complex and the
interfaces between the layers cause complicated proximity coupling. These
types of junctions can often only be described by one-dimensional models in
a handful of limiting cases. For a more general analysis of these junctions,
higher-dimensional models are required.

In recent years, the interest in higher-dimensional models of supercon-
ducting junctions has increased [6–10]. Numerical solutions of these models
yield predictions of junction properties for non-trivial geometries and general
values of interface parameters. These solutions allow for a better comparison
with experiments than those of one-dimensional models. To our knowledge,
the properties of the SN-N-NS junction have not yet been investigated in two
dimensions. It is the goal of this thesis to do so.

1.2 Structure of the thesis

The structure of this thesis is as follows. In Chapter 2 we introduce the
basic physical principles describing Josephson junctions and derive the equa-
tions and boundary conditions that can be used to model these junctions. In
Chapter 3 we explain the basic principles of the finite element method, con-
sider the weak formulation of the equations describing the SN-N-NS junction,
and derive and illustrate the numerical discretization and iterative solution
methods that can be used in a numerical model. In Chapter 4 we model the
SN-N-NS Josephson junction and explore the distribution of supercurrents
and the density of states inside the junction based on 1D and 2D numerical
models. We compare our numerical results with analytical solutions derived
for one-dimensional models and extend our treatment to the case of a junc-
tion with homogeneous current inflow. In Chapter 5 we extend our model on
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the SN-N-NS junction to a ferromagnetic Josephson junction and investigate
the effect of an exchange field on the current density and density of states
inside the junction. In Chapter 6 we discuss our main findings, reflect on
our research and provide an outlook for future work. In appendix A we give
a more detailed derivation and description of the numerical methods we use
throughout this thesis.

1.3 Remarks on notation

Before the start of this thesis, we wish to make a few remarks on the notation.
In all equations the physical constants ~ and kb have been omitted to coincide
with the notation commonly used in literature. The reader should imagine
an ~ in front of all frequency variables (ω = ~ω) and a kb in front of all
temperature variables (T = kbT ).

Secondly, often in this report variables will be normalized to a dimension-
less form. After the introduction of a normalization all subsequent references
to a variable, except in figures, will refer to the normalized variable. Fur-
thermore, a full list of symbols used in this thesis can be found in appendix
B for clarity.

Lastly, we wish to clarify some mathematical notation. In this thesis we
will use ∇ and ∇· to denote the gradient and divergence operators. In cases
when these operators act on matrices, this operation is defined elementwise.

Furthermore, we use the notation
(
∇A
)2 ≡ ∇A · ∇A. Lastly we denote the

conjugate of a variable B by B∗.
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Chapter 2

Physical aspects

In this chapter we will introduce the basic physical principles underlying
the SN-N-NS Josephson junction. We begin with a brief introduction to
superconductivity and ferromagnetism and develop the theory of Green’s
functions for superconducting systems. Using these Green’s functions we
derive the Usadel equations and discuss appropriate boundary conditions to
model Josephson junctions. Lastly, we give three parametrizations of the
Usadel equations that are suitable for analytical and numerical solutions.

2.1 Superconductivity

In 1911 a remarkable discovery was made by Heike Kamerlingh Onnes. While
performing measurements on solid mercury he discovered that its resistance
would disappear once it was immersed in liquid helium of about 4.2 Kelvin
[11]. He immediately recognized the importance of his discovery and called
this new phenomenon the “superconductive state”. This new state of matter
turned out to display many other interesting phenomena such as the Meissner
effect [12], which is the expulsion of magnetic fields from the superconductor.

After this initial discovery considerably more research has been done on
these materials. Many theoretical models were constructed, including the
London equations in 1935 [13], the Ginzburg-Landau theory of superconduc-
tivity in 1950 [14], the BCS-theory in 1957 [15] and the Gorkov equations
in 1958 [16]. Experimentally, many different superconducting materials have
been discovered with critical temperatures ranging from 10−4 to 135 Kelvin
and superconductivity has found its way into a wide variety of applications.
Eight times already the Nobel prize in physics has been awarded for work
in the field of superconductivity and many more are likely to come in the
future.
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Figure 2.1: Depiction of the momentum space of a superconductor. kx and
ky denote directions in momentum space. The blue region indicates the
occupied states in a normal material. Two electrons with opposite spin and
momentum combine to form a Cooper pair.

2.1.1 BCS Theory

The groundwork of the field of superconductivity was laid by the microscopic
theory of Bardeen, Cooper, and Schrieffer (BCS) in 1957 [15]. They conjec-
tured that in some materials through the interaction with the atomic lattice,
two electrons with opposite spin and momentum can condense into a single
Cooper pair [17], as shown in Figure 2.1.

This process of condensation is temperature-dependent. Below a critical
temperature Tc it becomes energetically favorable for electrons to form these
Cooper pairs. Since Cooper pairs have zero total spin they are Bosons and
can thus all condense into the same ground state. Below the critical tem-
perature thus a sudden phase transition takes place when all Cooper pairs
condense into one state and the material becomes superconducting. One of
the key properties of such a condensate is that it remains phase-coherent over
long length scales and can be described by a superconducting phase ϕ.

Since it is energetically favorable to form Cooper pairs, the new super-
conducting ground state has a lower energy than the original ground state.
This means that a finite energy is needed to break the Cooper pairs up into
regular electrons. BCS superconductors are thus characterized by an energy
gap ∆ which separates the Cooper pairs and the normal electrons in energy.
The magnitude of the energy gap is quite small, which explains why super-
conductivity occurs only at very low temperatures. This energy gap is also
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Figure 2.2

responsible for the most famous property of superconductors: perfect con-
ductivity. Small currents do not provide enough energy to break the Cooper
pairs and therefore flow through the superconductor without any resistance.

The magnitude of this energy gap ∆ can be calculated self-consistently
at any temperature T :

ln
T

Tc
+ 2πT

∞∑
n=0

[ 1

εn
− 1√

ε2n + ∆2

]
= 0, (2.1)

where εn = (2n + 1)πT . This equation can be solved efficiently at every
temperature [18]. At low temperatures the energy gap has a value of

∆(T −→ 0) ≈ 1.76Tc, (2.2)

while near the critical temperature it goes to zero as

∆(T −→ Tc) ≈ 1.74
(

1− T

Tc

)1/2

. (2.3)

The full dependence of the energy gap on temperature is shown in Figure
2.2a.

Another interesting quantity to calculate for superconductors is the den-
sity of states (DOS) N(E), which describes the number of electronic states
per unit volume that can be occupied in a superconductor at energy E.

To derive the DOS, suppose that we want to add one electron to the
superconductor. Since it is a single electron its energy cannot be smaller
than the energy gap ∆ and can thus be written as

E =
√
ξ2 + ∆2. (2.4)
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Since the total number of states doesn’t change during a phase transition
from the normal to the superconducting state, the density of states should
satisfy

N(E)dE = N0(ξ)dξ. (2.5)

with N0 the density of states of the material in the normal state. For ener-
gies near the energy gap the normal density of states can be approximated
by its value at the Fermi energy EF , the energy of the highest occupied
state: N0(ξ) ≈ N0(EF ). The superconducting density of states can then be
calculated as

N(E)

N0

=
dξ

dE
=

E√
E2 −∆2

, E > ∆. (2.6)

For E < ∆ the density of states is zero because these states are occupied by
the Cooper pairs. The complete DOS is thus

N(E)

N0

= Re
[ E√

E2 −∆2

]
. (2.7)

This is the density of states of a bulk superconductor according to BCS
theory. The DOS is shown in Figure 2.2b. It contains two singularities at
the energies E = ±∆, which indicate the edges of the energy gap typical
for superconductors, and reduces to the normal density of states for large
energies.

2.1.2 Proximity effect

BCS theory describes a bulk superconductor without any interaction with its
environment. Interesting effects occur, however, when a superconductor is
put into contact with a normal metal. The Cooper pairs originating from the
superconductor can penetrate the normal metal and induce superconducting
effects. Simultaneously, this leakage of Cooper pairs into the normal metal
leads to a reduction of the superconductivity in the superconductor itself
as shown in Figure 2.3a. These two processes are, respectively, called the
proximity effect and the inverse proximity effect. These effects occur only
over small length scales in the normal and superconducting materials called
the coherence lengths ξN and ξS.

The mechanism behind the proximity effect is Andreev reflection [19]. An
electron in the normal metal incident at the interface with an energy below
the energy gap cannot enter the superconductor, since it needs an extra
available electron with opposite spin and momentum to form a Cooper pair.
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Figure 2.3

Instead, due to Andreev reflection it is reflected back as a hole with opposite
spin and momentum, while a Cooper pair is formed inside the superconductor
as shown in Figure 2.3b. This process regulates the in- and outflow of Cooper
pairs at the interface and is the origin of the proximity effect.

2.1.3 Josephson effect

One of the most interesting effects of superconductivity is the Josephson ef-
fect, first predicted theoretically by Brian Josephson in 1962 [20]. Josephson
predicted that when two superconductors are separated by a small barrier
made out of an insulating material, a small supercurrent Is can run through
the junction without requiring an applied voltage. The magnitude of this cur-
rent depends on the sine of the phase difference ϕ between the wavefunctions
of the two superconducting electrodes,

Is = Ic sin(ϕ). (2.8)

The maximally attainable current Ic is called the critical current. Equa-
tion (2.8) is called the DC-Josephson effect and defines the current-phase
relationship (CPR) of a junction.

The mechanism behind the Josephson effect is Andreev reflection. Con-
sider an electron in the weak link region between the superconductors moving
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Figure 2.4: Current flow through a Josephson junction via Andreev reflec-
tion. An electron (yellow) and hole (green) in the weak link region (WL) are
Andreev reflected at the boundaries with the superconductors (S) resulting
in the transfer of a Cooper pair (red) through the junction.

towards one of the boundaries. At the boundary it is Andreev reflected into
a hole with the transmission of a Cooper pair in the superconductor, this
hole is then subsequently reflected back into an electron at the other inter-
face, destroying a Cooper pair in the second superconductor, as depicted in
Figure 2.4. Each cycle of this process thus transfers Cooper pairs between
the superconductors resulting in a net supercurrent flow. Since the Andreev
reflection amplitudes depend on the phases of the superconductors the re-
sulting supercurrent will depend on the phase difference over the junction.

The Josephson effect does not only occur in junctions consisting of su-
perconducting electrodes separated by an insulating layer (SIS junctions) as
described by Josephson, but has also been observed in junctions containing
a separation layer consisting of a normal non-superconducting material (SNS
junctions), ferromagnetic materials (SFS junctions), junctions with some ge-
ometrical deformation in the center (SsS junctions) and many other junc-
tions consisting of multiple layers of these materials. In general junctions,
the current-phase relationship is not strictly sinusoidal, but takes on differ-
ent forms depending on the layer types, geometry, and temperature of the
junctions [21].
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Figure 2.5: Exchange field induced splitting of the energy bands for different
spins in a ferromagnet. From [22].

2.2 Ferromagnetism

Electrons carry not only a charge, but also a small magnetic moment, char-
acterized by their spin, which can have two values, spin up and spin down.
In normal metals the effect of spin can be neglected and both spin up and
spin down electrons can occupy states with the same energies.

Spin is however an important factor in a process called exchange interac-
tion. This process stems from the Pauli exclusion principle, which states that
two particles cannot share the exact same quantum mechanical state. This
implies that two electrons with equal spin cannot occupy the same orbital
state.

In a crystal, where the orbitals of the different atoms overlap, electrons
with equal spins thus tend to be further apart than electrons with opposite
spins, due to this exclusion principle. This larger separation reduces the
electrostatic energy between these electrons making the parallel orientation
of the spins energetically favorable compared to the antiparallel orientation.

Materials with large exchange interactions are called ferromagnetic ma-
terials. In these materials the electrons tend to align their spins. The energy
levels of the electrons with different spins are separated as shown in Figure
2.5. This separation between these energy levels is called the exchange energy
H.

2.3 Green’s functions

To find out the exact properties of a superconducting junction one needs to
solve the Schrödinger equation for the system, including all interaction and
potential terms for all particles in the junction. Because of the unimaginably
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large number of particles in such a junction this approach is feasible nei-
ther analytically nor numerically. A better approach is to resort to Green’s
functions.

For a quantum many-body system the Green’s function is defined as the
probability amplitude to find the system in its ground state at time t2 with
an extra particle at position r2 if at time t1 the system was in its ground
state with an extra particle added at position r1 [23]. Formally this Green’s
function is defined as

G(r1, r2, t1, t2) = −i
〈

Ψ0

∣∣∣T̂ [ψ̂(r2, t2)ψ̂†(r1, t1)
]∣∣∣Ψ0

〉
,

where Ψ0 denotes the ground state of the system, ψ̂ and ψ̂† are operators
that, respectively, annihilate and create a particle at a specific position and
time, the angle brackets define the inner product between two states and T̂ is
the time ordering operator, it ensures that the creation operator acts before
the annihilation operator. It is defined as

T̂
[
ψ̂(r2, t2)ψ̂†(r1, t1)

]
=

{
ψ̂(r2, t2)ψ̂†(r1, t1), t2 > t1,

−ψ̂†(r1, t1)ψ̂(r2, t2), t1 > t2.

Let
∣∣∣Ψ(ri, ti)

〉
denote the state of the system at position ri and time ti.The

function G is called a Green’s function because of the relation∣∣∣Ψ(r2, t2)
〉

=
〈
G(r1, r2, t1, t2)

∣∣∣Ψ(r1, t1)
〉
. (2.9)

This relation is very similar to that of the regular Green’s function considered
in the study of linear differential equations.

For superconducting systems the spins of the added and annihilated par-
ticles are important, since Cooper pairs consist of electrons with opposite
spin. In these systems the creation and annihilation operators must be ex-
tended to also include the spin degree of freedom: ψ̂† −→ ψ̂†↑,↓, ψ̂ −→ ψ̂↑,↓, which
respectively create and annihilate a particle with spin up or spin down.

Because the pairing between particles with opposite spin is so important
in superconductors, Gorkov [16] defined two different Green’s functions:

G1,2 = −i
〈
T̂
[
ψ̂2↑ψ̂

†
1↑
]〉
,

F1,2 = −i
〈
T̂
[
ψ̂2↑ψ̂1↓

]〉
.

Here we condensed the notation for the time and position indices to a single
index and left out the ground state symbol. The first function is the regular
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Green’s function for spin up particles, while the second function, also called
the anomalous Green’s function, acts on particles with opposite spins. These
two Green’s functions can be combined into a 2x2 matrix function in so-called
Nambu spin space [24] as

Ĝ1,2 = −i
〈
T̂
[
Ψ̂2Ψ̂†1

]〉
=

(
G1,2 F1,2

F †1,2 G†1,2

)
.

Here Ψ̂ =

(
ψ̂↑
ψ̂†↓

)
and Ψ̂† =

(
ψ̂†↑ ψ̂↓

)
are called the pseudo spinors. The

daggers above the Green’s functions indicate that the creation and annihila-
tion operators have been swapped. Gorkov derived that this matrix Green’s
function satisfies the equation of motion(

i ∂
∂t1

+
∇2

1

2m
+ µ ∆

−∆∗ −i ∂
∂t1

+
∇2

1

2m
+ µ

)
Ĝ1,2 = δ(1− 2), (2.10)

where i is the imaginary unit, m is the mass of an electron, µ is the chemical
potential and ∆ is the pair potential defined through the anomalous Green’s
function as

∆ = λ lim
2−→1

F1,2.

Here, λ is the electron-phonon coupling constant.
Often the Hamiltonian of the system is time-independent and the Green’s

functions only depend on the time difference t2− t1. In this setting it is more
convenient to switch to the Fourier transformed Green’s function

Ĝ(r1, r2, E) =
1

2π

∫
Ĝ(r1, r2, t2 − t1)eiE(t2−t1)d(t2 − t1).

2.3.1 Quasiclassical approximation

In principle, the Gorkov equations (2.10) can be solved directly to determine
the properties of superconducting systems, but in practice, these equations
are numerically intractable. The reason is that the Gorkov Green’s functions
often contain oscillations in |r1− r2| on length scales much smaller than the
typical length of a superconducting junction. For superconducting junctions
these oscillations are not significant and it is sufficient to look only at the
dependence of the Green’s functions on the center of mass coordinate r =
(r1 + r2)/2.
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In this regime Larkin and Ovchinnikov [25] and Eilenberger [26] derived
a quasiclassical version of the Fourier transformed Gorkov equations by in-
tegrating out the dependence of the Green’s functions on the difference co-
ordinate |r1 − r2|:

ĝ(r, k, E) =
i

π

1

(2π)3

∫ ∫
Ĝ1,2e

ik·(r1−r2)d(r1 − r2)dξ,

where ξ = |k|2
2m
− µ and E is the energy. The full Green’s function can be

written in matrix form as

ĝ =

(
g f
f † −g

)
.

This Green’s function satisfies the so-called Eilenberger equation

vF · ∇rĝ + [τ̂ 3E + i∆̂− i

τ
<ĝ>, ĝ] = 0. (2.11)

Here vF is the Fermi velocity, τ is the impurity scattering time, square brack-
ets denote the commutation operation and angular brackets denote averaging
over the angle k. The matrices τ̂ 3 and ∆̂ are defined as

τ̂ 3 =

(
1 0
0 −1

)
, ∆̂ =

(
0 ∆

∆∗ 0

)
.

The value of ∆ can be calculated from ĝ using the so-called self consistency
equation

∆ ln
T

Tc
− 2πT

∞∑
n=0

(∆

ωn
−<f>

)
= 0,

where the ωn = (2n+ 1)πT are the Matsubara frequencies. The Eilenberger
Green’s function ĝ satisfies the normalization condition

ĝ2 = 1.

2.4 Usadel equations

Whenever a superconducting material satisfies the so-called dirty limit con-
dition l � ξ, where l is the mean free path and ξ the superconducting
coherence length, the Eilenberger equation can be further simplified into the
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quasi-classical Usadel equation [27], which contains no angular dependence.
The Usadel equation is a 2x2 matrix equation for the matrix Ĝ(r, E):

−iD∇ ·
[
Ĝ∇Ĝ

]
+
[
τ̂ 3E + i∆̂, Ĝ

]
= 0. (2.12)

Here D is the diffusion constant of the material considered. For a thor-
ough derivation of the Usadel equation see for example [28,29]. The Green’s
function Ĝ satisfies the normalization condition

Ĝ2 = 1. (2.13)

Because of this normalization condition the matrix contains only two inde-
pendent components and can be written as

Ĝ =

(
G F1

F2 −G

)
, G2 + F1F2 = 1.

We can distinguish multiple types of Green’s functions depending on the
value of the energy E. On the one hand we have the retarded Green’s func-
tion ĜR(E, r) for real values of E, which describe the energy-dependent prop-
erties of a system in thermal equilibrium, and on the other hand there is the
thermal Green’s function ĜT (ωn, r) [30], which is defined only at the discrete
imaginary energies E = iωn.

This thermal Green’s function can be used to calculate the stationary
properties of a system. In general, the thermal Green’s functions are much
smoother than the retarded Green’s functions and will not contain any os-
cillations or singularities.

The retarded Green’s functions can be obtained from the thermal Green’s
functions by analytical continuation to real energies ω = −iE. For this reason
we will denote both Green’s functions by Ĝ. These Green’s functions can
be used to calculate different physical quantities; Using the thermal Green’s
function we can calculate the pair potential and the supercurrent density by
summing over all Matsubara frequencies:

∆ ln
Tc
T

= πT

∞∑
n=−∞

[∆

ωn
− F1(ωn, r)

]
, (2.14)

J(r) = − iπ

2ρNe
T

∞∑
n=−∞

Tr
[
τ̂ 3Ĝ(ωn, r)∇Ĝ(ωn, r)

]
. (2.15)

Here Tr denotes the trace operator, ρN is the resistivity of the material in
the normal state and e is the elementary unit of charge. Using the retarded
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Green’s functions the density of states can be calculated as

N(E, r) =
1

2
N0 Tr

[
τ̂ 3 Re

{
Ĝ(E, r)

}]
. (2.16)

Equations (2.12)-(2.14) together are commonly called the Usadel equations
since they must be solved self-consistently to obtain the Green’s functions.
In order to solve the Usadel equations and calculate all relevant physical
quantities the following procedure can be used

1. Solve equations (2.12)-(2.14) for the thermal Green’s functions and
determine ∆(r) and J(r).

2. Since ∆ does not depend on ω, we use the obtained value of ∆(r) to
solve the Usadel equations for the retarded Green’s functions at all real
energies E and calculate N(E, r).

For the numerical solution of the Usadel equations it is convenient to parametrize
the matrix Ĝ to provide a stable and convergent method. Different parametriza-
tions can be used for the retarded and the thermal Green’s functions.

2.4.1 Φ-parametrization

The thermal Green’s functions are defined only at the imaginary energies
E = iωn. In this case the off-diagonal components of the Green’s func-
tions are complex conjugates and the Green’s function Ĝ can be conveniently
parametrized using the so-called Φ-parametrization [21]:

Ĝ(ωn, r) =

 ωn√
ω2
n+|Φ|2

Φ√
ω2
n+|Φ|2

Φ∗√
ω2
n+|Φ|2

− ωn√
ω2
n+|Φ|2

 .

The function Φ(ωn, r) is in general a complex function. This parametriza-
tion automatically satisfies the normalization condition (2.13). Using this
parametrization, equation (2.12) splits into four equations:

2ωnΦG−D∇ ·
[
G2∇Φ

]
= 2ωn∆G, (2.17)

2ωnΦ∗G−D∇ ·
[
G2∇Φ∗

]
= 2ωn∆∗G, (2.18)

D∇ ·
[
G2(Φ∇Φ∗ − Φ∗∇Φ)

]
= 2ωnG(∆Φ∗ −∆∗Φ), (2.19)

D∇ ·
[
G2(Φ∗∇Φ− Φ∇Φ∗)

]
= 2ωnG(∆∗Φ−∆Φ∗), (2.20)
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withG = ωn√
ω2
n+|Φ|2

. For real values of ωn these equations are not independent.

Equation (2.18) is the conjugate of equation (2.17) and equations (2.19)
and (2.20) are linear combinations of these two equations. This means that
effectively one only needs to solve equation (2.17).

This equation must be supplemented by equation (2.14) to self-consistently
calculate ∆, which in this parametrization can be written as:

∆ ln

(
T

Tc

)
+ πT

∞∑
n=−∞

[∆

ωn
− Φ(ωn, r)√

ω2
n + |Φ|2

]
= 0. (2.21)

The supercurrent density inside the junction J(r) can be calculated as

J =
π

2eρN

∞∑
n=−∞

[
ω−2
n Im(G2

nΦ∗n∇Φn)
]
, (2.22)

with Gn = G(ωn),Φn = Φ(ωn). For a numerical implementation of these
equations it is convenient to write them in a dimensionless form. For this
purpose we introduce the coherence length ξ and the normalized temperature
t

ξ =

√
D

2πTc
, t =

T

Tc
,

and proceed to normalize the quantities Φn, ωn and ∆ by πTc and all lengths
by ξ. Now the normalized Usadel equations can be written as

ωnΦnGn −∇ ·
[
G2
n∇Φn

]
= ωn∆Gn, (2.23)

∆ ln(t) + t
∞∑

n=−∞

[∆

ωn
− Φ(ωn, r)√

ω2
n + |Φ|2

]
= 0. (2.24)

and the supercurrent through the junction can be calculated as

eRNIs
4πTc

= tl

∞∑
n=−∞

[
ω−2
n Im(G2

nΦ∗n∇Φn)
]
, (2.25)

where RN is the resistance of the junction in the normal state given by

RN =
ρNL

dW
, (2.26)

with L,W and d are respectively the length, width and thickness of the
junction. Is = JsdW is the supercurrent through the junction and l = L

ξ
.

In the Φ-parametrization the Usadel equations thus simplify into a single
equation. In Chapter 3 we will however see that this simplicity also comes
at a cost.
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2.4.2 θ, χ-parametrization

The retarded Green’s functions are defined for all real energies E. For real
energies the quantity G in equation (2.17) is not always real and equa-
tions (2.17)-(2.20) in general cannot be solved simultaneously. Another
choice of parametrization is thus needed. A convenient choice is the θ, χ-
parametrization [31], which parametrizes the Green’s function as

Ĝ =

(
cos θ eiχ sin θ

e−iχ sin θ − cos θ

)
.

Here θ and χ are complex functions that depend on the energy E and the
position. Using this parametrization the four components of the Usadel equa-
tion can be written as

D∇ ·
[

sin2 θ∇χ
]

= i sin θ(∆e−iχ −∆∗eiχ), (2.27)

D
[
−∇2θ + sin θ cos θ(∇χ)2 − i

(
(2− 2 sin2 θ)∇θ · ∇χ+ sin θ cos θ∇2χ

)]
= 2iE sin θ + 2∆ cos θe−iχ, (2.28)

D
[
−∇2θ + sin θ cos θ(∇χ)2 + i

(
(2− 2 sin2 θ)∇θ · ∇χ+ sin θ cos θ∇2χ

)]
= 2iE sin θ + 2∆∗ cos θeiχ, (2.29)

D∇ ·
[

sin2 θ∇χ
]

= i sin θ(∆e−iχ −∆∗eiχ). (2.30)

These four equations can be reduced to two independent equations when
summing equations (2.28) and (2.29):

D∇ ·
[

sin2 θ∇χ
]

= i sin θ(∆e−iχ −∆∗eiχ), (2.31)

D
[
−∇2θ + sin θ cos θ(∇χ)2

]
= 2iE sin θ + cos θ(∆e−iχ + ∆∗eiχ). (2.32)

After applying normalization these equations can be written as

∇ ·
[

sin2 θ∇χ
]

=
i

2
sin θ(∆e−iχ −∆∗eiχ

)
, (2.33)

−∇2θ + sin θ cos θ(∇χ)2 = iE sin θ +
1

2
cos θ(∆e−iχ + ∆∗eiχ). (2.34)

From the solution of these equations at an energy E the local density of
states normalized to N0 can be calculated as

N(E, r) = Re{cos(θ(E, r))}.

17



For strictly imaginary energies E = iω the Φ- and θ, χ-parametrizations are
related by the substitutions

θ = atan(|Φ|/ω), (2.35)

χ = −i ln

(
Φ

|Φ|

)
, (2.36)

Φ = ω tan θeiχ. (2.37)

2.4.3 Riccati parametrization

For real energy calculations for junctions with ferromagnetic layers the θ, χ-
parametrization is not stable enough. For stability it is better to resort to
the Riccati parametrization [32], in which the Usadel Green’s functions are
parametrized as

Ĝ =

(
(1 + αβ)N 2αN
−2βN −(1 + αβ)N

)
, (2.38)

where α and β are complex functions and N = (1−αβ)−1. This parametriza-
tion is in general more stable than the θ, χ-parametrization because for real
energies the functions α and β are bounded (|α|, |β| < 1), whereas θ and χ
are not necessarily.

Using the Riccati parametrization, the Usadel equations in (2.12) reduce
to two equations for α and β:

−∇2α− 2Nβ∇α · ∇α = iEα +
∆

2
− α2 ∆∗

2
, (2.39)

−∇2β − 2Nα∇β · ∇β = iEβ − ∆∗

2
+ β2 ∆

2
. (2.40)

2.4.4 Boundary conditions

The Usadel equations must be supplemented by suitable boundary condi-
tions before they can be solved uniquely. These boundary conditions should
reflect the physical situation. In this section we derive the boundary condi-
tions needed for the junctions that we will consider in this thesis.

Boundary with insulator: In a superconductor, Cooper pairs can form
and move around to create a supercurrent. These pairs can however not
exist in an insulator outside of the superconductor. There can thus not be
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any supercurrent flowing through a boundary separating the superconductor
and the insulator. From equation (2.25) it can be seen that this no-current
condition is satisfied by the condition

∇Φ · n = 0, (2.41)

where n is the outward normal vector of the boundary considered. Similarly,
in the θ, χ-parametrization we have the conditions

∇θ · n = 0, (2.42)

∇χ · n = 0. (2.43)

In the Riccati parametrization this boundary condition reduces to

∇α · n = 0, (2.44)

∇β · n = 0. (2.45)

Bulk superconductor: Far enough away from any phase gradients or other
suppressive effects a superconductor will approach its equilibrium bulk state
as described by BCS theory. In equilibrium there will be no current flowing
through the superconductor. By neglecting the gradient terms in (2.23) it is
clear that this bulk superconducting state is characterized by

Φ = ∆0e
iϕ. (2.46)

Here ∆0 and ϕ are respectively the absolute value and the phase of the pair
potential in the superconductor. Similarly in the θ, χ-parametrization we
have the conditions

cos θ =
E√

E2 −∆2
0

, (2.47)

χ = ϕ. (2.48)

In the Riccati parametrization the bulk solution is

α =
∆0e

iϕ

−iE +
√

∆2
0 − E2

, (2.49)

β =
−∆0e

−iϕ

−iE +
√

∆2
0 − E2

. (2.50)
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Boundary between two materials: At the boundary between two mate-
rials, which can be either two superconductor or two metals or a combination
of these, the boundary condition must ensure the continuity of the supercur-
rent flowing through this boundary. The correct boundary conditions for the
Usadel equations in this setting were derived in [33] to be

γBξ1Ĝ1∇Ĝ1 · n =
[
Ĝ1, Ĝ2

]
, (2.51)

γξ1Ĝ1∇Ĝ1 = ξ2Ĝ2∇Ĝ2. (2.52)

Here Ĝ1 and Ĝ2 are the matrix Green’s functions in material 1 and 2, respec-
tively, ξi is the coherence length in material i, and γB and γ are dimensionless
parameters denoting the effect of the interface and the proximity effect

γB =
RB

ρ1ξ1

, γ =
ρ2ξ2

ρ1ξ1

,

where RB is the interface resistance times area and ρi is the normal-state
resistivity of material i. In the Φ-parametrization these boundary conditions
can be written as

γBξ1G1∇Φ1 · n = G2(Φ2 − Φ1), (2.53)

γBξ2G2∇Φ2 · n = γG1(Φ1 − Φ2). (2.54)

In the θ, χ-parametrization the boundary conditions become

γBξ1 sin2 θ1∇χ1 · n = sin θ2 sin θ1 sin(χ2 − χ1), (2.55)

γBξ2 sin2 θ2∇χ2 · n = γ sin θ1 sin θ2 sin(χ1 − χ2), (2.56)

γBξ1∇θ1 · n = sin θ2 cos θ1 cos(χ2 − χ1)− cos θ2 sin θ1, (2.57)

γBξ2∇θ2 · n = γ
[

sin θ1 cos θ2 cos(χ1 − χ2)− cos θ1 sin θ2

]
. (2.58)

In the Riccati parametrization they are given by

γBξ1∇α1 · ~n = (α2 − α1)(1− α1β2)N2, (2.59)

γBξ1∇β1 · ~n = (β2 − β1)(1− β1α2)N2, (2.60)

γBξ2∇α2 · ~n = γ(α1 − α2)(1− α2β1)N1, (2.61)

γBξ2∇β2 · ~n = γ(β1 − β2)(1− β2α1)N1. (2.62)

The boundary conditions (2.41)-(2.45) can be derived from these expressions
in the limit γB −→∞.
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Chapter 3

Numerical Discretization of the
Usadel Equations

In this chapter, we introduce the numerical methods used to solve the Usadel
equations. We start by deriving the weak formulation of the Usadel equations
for an SN-N-NS junction in the Φ-parameterization. Subsequently, we apply
a finite element method with linear basis functions resulting in a system of
nonlinear algebraic equations. Furthermore, we introduce three fixed-point
methods that can be used to solve these nonlinear algebraic equations and
check the convergence of our numerical method.

3.1 Weak formulation

There are many different numerical methods for solving PDEs. In this thesis
we will consider the finite element method (FEM). The main reason why we
choose this method is that it adapts very easily to different geometries, which
is convenient when considering junctions with varying shapes. To illustrate
the ideas behind FEM and our numerical procedure we consider the Usadel
equations in the left superconducting electrode of an SN-N-NS junction as
depicted in Figure 3.1 in the Φ-parametrization:

ωnΦSGS − ξ2∇ ·
[
G2
S∇ΦS

]
= ωn∆GS in S1, (3.1)

Subject to:

∇ΦS · n = 0 on ΓI , (3.2)

ξγBGS∇ΦS · n = γGN(ΦN − ΦS) on ΓSN , (3.3)

ΦS = ∆0e
−iϕ/2 on Γ−. (3.4)
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Figure 3.1: Sketch of the SN-N-NS junction. Dark blue regions indicate
superconductors, the orange region denotes the non-superconducting metal,
grey denotes a dielectric substrate, and light blue denotes bulk superconduc-
tors. All boundaries that are not labeled are denoted by ΓI .

An explanation of the geometry of the SN-N-NS junction and the full Usadel
equations in this junction will be given in Chapter 4, the solution procedures
in other parametrizations are addressed in Appendix A.

For numerical purposes it is better to first rewrite our equations into a so-
called weak formulation that allows us to relax the smoothness requirements
and to seek a solution with only a first derivative in the space H1(S1).

The function space Hk(Ω) on a domain Ω is called a Sobolev space and
is defined as

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω), ∀|α| ≤ k},

with L2(Ω) the function space of square integrable functions over Ω, α =
(α1, . . . , αn) and

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαn

n

,

To obtain the weak formulation, the PDE is multiplied by an arbitrary
test function ηS ∈ H1

0 (S1), and integrated over the domain S1,

−ξ2

∫
S1

ηS∇ ·
[
G2
S(ΦS)∇ΦS

]
dS +

∫
S1

ηSωnΦSGS(ΦS)dS (3.5)

=

∫
S1

ηSωn∆GS(ΦS)dS. (3.6)
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Here H1
0 (S1) denotes the space of functions in H1(S1) that have zero trace

at Γ−.
This formulation still requires the existence of the second derivative of

the solution in the first term. To get rid of this second derivative, we employ
the divergence theorem on this term:

ξ2

∫
S1

G2
S∇ΦS · ∇ηSdS +

∫
S1

ωnGSΦSηSdS − ξ2

∫
Γ

ηSG
2
S∇ΦS · ndΓ (3.7)

=

∫
S1

ωn∆GSηSdS.

Here Γ denotes the full boundary of the domain S1. By applying bound-
ary conditions (3.2) and (3.3) and the properties of ηS, the resulting weak
formulation is: Find ΦS ∈ H1(S1) such that for all ηS ∈ H1

0 (S1)

ξ2

∫
S1

G2
S∇ΦS · ∇ηSdS +

∫
S1

ωnGSΦSηSdS +
ξγ

γB

∫
ΓSN

GSGNΦSηSdΓ (3.8)

=

∫
S1

ωn∆GSηSdS +
ξγ

γB

∫
ΓSN

GSGNΦNηSdΓ.

In the weak formulation two types of boundary are enforced in different
ways. At the boundary Γ− Dirichlet boundary conditions are imposed, which
require the test function ηS to be zero at this boundary, and are therefore
called essential boundary conditions. At the other boundaries, the boundary
conditions can be directly incorporated into the weak formulation and are
therefore called natural boundary conditions.

The weak formulation is equivalent to the original formulation if the so-
lution has sufficient regularity.

3.2 Elements and basis functions

The weak formulation is solved using a Galerkin finite element method. The
domain S1 is subdivided into elements K ∈ Th, with Th a tessellation of non-
overlapping elements covering S1. The solution is represented using basis
functions chosen from a finite element space Vh.

The definition of the finite element spaces Vh is a key choice in the finite
element method. These spaces depend on the elements used to tessellate the
domain. The index h of the space Vh denotes the size of these elements.

In this thesis, we will only consider triangular elements as shown in Fig-
ure 3.2. A function in the space Vh can then be defined element-wise as a
polynomial over each element. Since we require our finite element solution
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Figure 3.2: Subdivision of the domain of the SN-N-NS junction into trian-
gular elements. Red lines indicate the boundaries of the different materials.

to converge to a solution in the space H1(S1), the functions in Vh should be
continuous at the element boundaries.

Since each function space Vh has a finite dimension NS,h, it is spanned by
a finite basis φS,i, i = 1, 2, . . . , NS,h. The choice of this basis is not unique,
but a requirement is that the basis functions overlap as little as possible,
since this results in a sparse system of algebraic equations that can be solved
efficiently.

In this thesis, we will only consider linear two-dimensional Lagrangian
basis functions of the form

φi(x) = αi + βix+ γiy.

An example basis function is sketched in Figure 3.3. On a triangular element
with vertices x1,x2,x3 only three basis functions are nonzero. These can be
computed by solving the following system of linear equations [34]1 x1 y1

1 x2 y2

1 x3 y3

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 =

1 0 0
0 1 0
0 0 1

 . (3.9)

The function spaces Vh are thus defined as the spaces of continuous functions
which are linear on each element, hence:

Vh := {u ∈ C0(S1) : u|K = {linear polynomial ∀K ∈ Th}},

with C0 the space of continuous functions on S1.
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Figure 3.3: Sketch of a linear basis function on a triangular mesh.

3.3 Discretization

An approximate solution to the weak formulation (3.8) in the space Vh can
be found by expanding into a set of basis functions:

ΦS ≈ ΦSh
(r) =

NS,h∑
j=1

s1,jφS,j(r). (3.10)

Furthermore, the test function ηS was arbitrary and can thus be chosen equal
to the basis functions φS,i for i = 1, . . . , NS,h.

Using this basis expansion the weak formulation (3.8) reduces to a finite
set of algebraic equations for the coefficients s1,j,[

S1(s1) +M1(s1) +B1(s1)
]
s1 = f1(s1) + fB1(s1), (3.11)

with

S1i,j(s1) = ξ2

∫
S1

ω2
n

ω2
n + |

∑NS,h

k=1 s1,kφS,k|2
∇φS,i∇φS,jdS, (3.12)

M1i,j(s1) =

∫
S1

ω2
n√

ω2
n + |

∑NS,h

k=1 s1,kφS,k|2
φS,iφS,jdS, (3.13)

B1i,j(s1) =
ξγ

γB

∫
ΓSN

ω2
n√

ω2
n + |

∑NS,h

k=1 s1,kφS,k|2
√
ω2
n + |

∑NN,h

l=1 nlφN,l|2
φS,iφS,jdΓ,

(3.14)
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f1i(s1) =

∫
S1

∆ω2
n√

ω2
n + |

∑NS,h

k=1 s1,kφS,k|2
φS,idS, (3.15)

fB1i(s1) =
ξγ

γB

∫
ΓSN

ω2
n

∑NN,h

m=1 nmφN,m√
ω2
n + |

∑NS,h

k=1 s1,kφS,k|2
√
ω2
n + |

∑NN,h

l=1 nlφN,l|2
φS,idΓ,

(3.16)

These matrices and vectors can be calculated efficiently in MATLAB using
sparse matrix and vectorization techniques [35]. Since each basis function is
unity at a specific node in our mesh the essential boundary condition in (3.4)
can be straightforwardly implemented by fixing the coefficients of the basis
functions corresponding to the nodes on this boundary.

The system of equations (3.11) with coefficients (3.12)-(3.16) is nonlinear

and depends on the solution in the normal metal ΦN ≈
∑NNh

k=1 nkφN,k. To
solve the Usadel equations in the SN-N-NS junction this system thus needs
to be solved iteratively together with the system arising from the Usadel
equations in the normal layer and the other superconducting electrode. We
must therefore solve the following system

S(u)u = f(u), (3.17)

subject to the essential boundary conditions

s1,2 = ∆0e
∓iϕ/2 on Γ∓, (3.18)

with

S(u) = diag

 S1(u) +M1(u) +B1(u)
S2(u) +M2(u) +B2(u)
SN(u) +MN(u) +BN(u)

 ,

u =

s1

s2

n

 ,

f(u) =

f1(u) + fB1(u)
f2(u) + fB2(u)

fBN(u)

 .

Here the subscripts 1, 2 and N denote, respectively, the first and second
superconductor and the normal metal. This system of equations is nonlinear
and therefore needs to be solved iteratively using a fixed-point method, but
this can only be done after the integrals in S, u and f defined in (3.12)-(3.16)
have been evaluated numerically.
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3.4 Numerical integration

The integrals (3.12)-(3.16) in the finite element discretization cannot be com-
puted analytically and we therefore have to resort to numerical integration
techniques.

There are many types of numerical integration schemes available in litera-
ture. We use the Gaussian quadrature scheme, which has the advantage that
it is especially efficient for integrals of polynomial functions. The Gaussian
quadrature scheme approximates an integral over a domain Ω by a finite sum
of the integrand at a specific set of points xi with weights wi,∫

Ω

f(x)dΩ ≈ AΩ

2

n∑
i=1

wif(xi). (3.19)

Here AΩ denotes the area of the domain Ω.
For one-dimensional intervals the main power of Gaussian quadrature is

that it can be used to calculate integrals of polynomials up to degree 2(n−1)
exactly when at least n quadrature points are used. The exact weights and
quadrature points are determined by the quadrature rule used. We use the
Gauss-Legendre quadrature rule in 1D. The error of this quadrature rule is
given by [36]∫ b

a

f(x)dx− b− a
2

n∑
i=1

wif(xi) =
(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(η), (3.20)

for some η ∈ (a, b), where a and b are the endpoints of the interval of inte-
gration.

In two dimensions the weights and points depend on the geometry of the
integration domain Ω. For the triangular domains used in our calculations
symmetric quadrature rules have been established by Dunavant [37]. In our
code we use a 6 point quadrature rule, which is exact for polynomials up to
fourth order and provides sufficient accuracy for our calculations.

3.5 Fixed-point iteration

In the finite element method nonlinear PDEs will be discretized into nonlinear
systems of algebraic equations, which cannot be solved directly using basic
linear algebra techniques. They should instead be solved iteratively using a
fixed-point iteration. For a nonlinear system of equations of the form

S(u)u = f(u) (3.21)
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many different fixed-point techniques exist. The simplest method is the so-
called Picard method. Given the nonlinear system defined by (3.21) and an
initial guess u0 the Picard method is given by

Algorithm 1: Picard method

Input: Initial guess u(0), system S(u)u = f(u), tolerance tol
Output: Solution u up to the tolerance tol
Procedure:
k = 0;
Diff =∞;
while Diff > tol do

u(k+1) = S−1(u(k))f(u(k));

Diff =
∥∥u(k+1) − u(k)

∥∥
2
;

k = k + 1;

end

There exists a very simple sufficient condition for convergence using the Ba-
nach fixed-point theorem. It can be shown that the Picard iteration converges
linearly, meaning that the logarithm of the error of the approximation de-
creases linearly with the number of iterations.

Another frequently used fixed-point method is the Newton method. This
is technically a root finding method, but can be turned into a fixed-point
method by defining the function

h(u) = S(u)u− f(u).

The system of equations (3.21) can be solved by finding the roots of h using
the Newton method shown in Algorithm 2

Algorithm 2: Newton method

Input: Initial guess u(0), function h(u) = Su− f , tolerance tol
Output: Solution u up to the tolerance tol
Procedure:
k = 0;

while
∥∥h(u(k))

∥∥
2
> tol do

Ji,j = ∂hi(u
(k))

∂u
(k)
j

;

u(k+1) = u(k) − J−1h(u(k));
k = k + 1;

end
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By the Banach-fixed point theorem linear convergence can also be shown for
this method, but often even quadratic convergence can be achieved, which
can make this method preferable over the Picard method.

A disadvantage of the Newton method is that it requires an accurate ini-
tial guess to converge. If the initial choice is chosen to far from the correct
solution, subsequent iterations might jump over the solution and diverge [38].
To account for this problem the Newton method can be extended with a line
search method to determine how far the next iteration should lie from the
current iterative solution as in Algorithm 3

Algorithm 3: Newton method with line search

Input: Initial guess u(0), function h(u) = Su− f , tolerance tol
Output: Solution u up to the tolerance tol
Procedure:
k = 0;

while
∥∥h(u(k))

∥∥
2
>tol do

Ji,j = ∂hi(u
(k))

∂u
(k)
j

, pk = −J−1h;

α = 1;

ũ = u(k) + αpk;

while ‖h(ũ)‖2 > (1− 10−4α)
∥∥h(u(k))

∥∥
2

do
α = α/2;

ũ = u(k) + αpk;

end

u(k+1) = ũ;
k = k + 1;

end

The condition in the while loop is called the condition of sufficient decrease.
The coefficient 10−4 in front of the step size α is chosen to make this condition
as easy as possible to satisfy. We chose the value 10−4 following literature
[38,39].

In some cases both the Picard method and the Newton method will not
converge to the correct solution or the convergence is very slow. One reason
may be that the current iterate is so far from the correct solution that a step
in the computed descent direction only makes the approximation solution
worse. In this case it can help to mix the descent directions from multiple
previous iterations to balance out these errors. A frequently used accelera-
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tion method is the Anderson acceleration method [40], which is applied to
the Picard method, given by Algorithm 4

Algorithm 4: Anderson accelerated Picard method

Input: Initial guess u(0), m ≥ 1, fixed point function g(u),
tolerance tol

Output: Solution u up to the tolerance tol
Procedure:
c = 1;

u(1) = g(u(0));

Diff =
∥∥u(1) − u(0)

∥∥
2
;

k = 1;
while Diff > tol do

mk = min(m, c);

gk = g(u(k)), fk = gk − u(k);
Fk = (∆fk−mk

, . . . ,∆fk−1), where ∆fk−1 = fk − fk−1;
Gk = (∆gk−mk

, . . . ,∆gk−1), where ∆gk−1 = gk − gk−1;

γ(k) = arg min ‖fk − Fkγ‖2
2;

u(k+1) = gk −Gkγ
(k);

Diff =
∥∥u(k+1) − u(k)

∥∥
2
;

k = k + 1;
if mod(k,m) = 0 then

c = 1;
end
else

c = c+1;
end

end

The last six lines of the pseudo code perform a restart of the Anderson
acceleration, which has been shown to improve convergence [41].

For the system of equations (3.17) resulting from the Usadel equations on
the SN-N-NS bridge in the Φ-parametrization we can test the performance
of the different fixed-point methods. There is, however, one small problem;
the Newton method cannot be applied to this system. The reason is that the
matrix S contains terms proportional to the absolute value of the solution.
These terms are not differentiable over the complex numbers, prohibiting us
from calculating the Jacobian matrix needed in Algorithm 3.

To overcome this problem we split u into its real and imaginary part and
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write equation (3.17) as

Ŝ(û)û = f̂(û), (3.22)

with

û =

(
Re(u)
Im(u)

)
, f̂ =

(
Re(f)
Im(f)

)
, Ŝ =

(
Re(S) − Im(S)
Im(S) Re(S)

)
.

System (3.22) is holomorphic with respect to the real and imaginary parts
of u and the Newton method can readily be applied. The downside is that
we now have twice as many equations to solve. One could say that the
non-differentiability of equation (3.17) is the price you pay for using a one-
parameter parametrization.

A comparison of the performance of the different fixed-point methods
applied to the system in (3.17) shown in Figure 3.4.
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Figure 3.4: Rate of convergence of different fixed-point algorithms for solving
the system in (3.17).

It can be seen that all fixed-point methods converge to a approximate so-
lution. As predicted, the Picard iteration converges linearly, while the New-
ton method converges quadratically. The Anderson method does not seem
to improve the convergence of the Picard iteration, and even reduces the rate
of convergence. This makes sense given the fact that the Picard method has
no problem converging whatsoever. The Newton method is slightly slower
than the Picard method in terms of computation time because it induces a
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larger system of equations and requires a line search, which is computation-
ally more expensive. Therefore in the Φ-parametrization the Picard iteration
is our method of choice.

In Appendix A the fixed-point methods are compared for other parametriza-
tions of the Usadel equations and it is shown that in many cases the Picard
iteration does not converge at all and that a Newton method with line search
is required to solve the Usadel equations.

3.6 Convergence analysis

In order to solve the Usadel equations numerically we need to discretize the
PDE by introducing the finite element spaces Vh. This discretization induces
an error compared to the real solution of the Usadel equations, because on
each element the solution is approximated by linear polynomials. The inter-
polation error should in general decrease as h decreases i.e. by using a finer
mesh.

To obtain bounds on this error we need to define two length scales on a
triangular element K:

hK = Diameter of K := sup
x,y∈K

|x− y|,

ρK = Supremum of the diameters of the circles inscribed in K.

We call a mesh regular if for successive mesh refinements hK −→ 0 and there
exists a constant σ independent of K such that hK

ρK
≤ σ.

Furthermore, given a function v : K −→ R and the vertices (x1,x2,x3) of
K, let

ΠKv =
3∑
i=1

v(xi)φi

denote the interpolation operator on K. Furthermore we define the norm on
the Sobolev spaces

‖u‖Hk(Ω) =

( ∑
|α|≤k

∫
Ω

|Dαu|2dΩ

) 1
2

.

With these definitions in place, we can look at the error induced by the
Lagrangian basis functions. For these basis functions the following theorem
holds.

32



Theorem 1 (Interpolation error).

Let Th be a tessellation of the domain Ω such that all triangular elements
are regular, and let h be the maximum over all triangle diameters. Further-
more, let ΠK be the interpolation operators defined on the elements by first
order Lagrangian basis functions, then there exists a constant C independent
of the triangle shapes such that for all functions v ∈ H2(Ω),

‖v − ΠKv‖L2(Ω) ≤ Ch2 ‖v‖H2(Ω) .

Proof See for example [42].
The interpolation error gives an upper bound for the convergence rate that

can be expected for the finite element discretization. A theoretical bound for
the total error requires, however, also a bound for the discretization error,
but this analysis is beyond the scope of this thesis. We will only investigate
the convergence rate by comparing the numerical solutions with analytical
solutions.

For smooth solutions the L2-norm of the interpolation error induced by
the linear Lagrangian basis functions should decrease quadratically with the
mesh size. Before we can trust our numerical results we must verify that this
is indeed the case in our calculations.

As a verification we show in Figure 3.5 the dependence on the mesh
size of the numerically calculated L2-norm of the difference between Green’s
function ΦS in the right superconducting electrode of the junction and the
analytical solution

ΦS = ∆0e
iϕ/2

in the limit γ = 0. This norm appears to go to zero as the mesh size decreases.
From the slope it can clearly be seen that the convergence is indeed quadratic.
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Chapter 4

SN-N-NS Junction

In this chapter, we will apply our numerical methods to solve the Usadel
equations in the SN-N-NS junction and to calculate the dependence of the
current density and density of states on the junction parameters in one and
two dimensions. Furthermore, we will validate our results with analytical
solutions derived in the 1D limit. Lastly, we will extend our model to a
junction with homogeneous current in- and outflow to search for depairing
effects in the superconducting electrodes.

S
1

S
2

N

substrate

S'S'
- +

SN SN

x

y

s

L

d
S

d
N

Figure 4.1: Sketch of the SN-N-NS junction. The superconducting material
(dark blue) and normal metal (orange) are deposited on a dielectric substrate
(grey). Far away from the weak link region the superconducting materials go
over into thicker bulk superconducting electrodes of the same material (light
blue). The axis origin lies at the top center of the normal metal strip.
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4.1 Mathematical Model

We will consider the case of a Josephson junction consisting of layers of su-
perconductors (S) and normal metals (N) as shown in Figure 4.1. In this
junction two superconducting electrodes of lengths (L − s)/2 and thickness
dS are connected to each other by a small bridge of thickness dN and length
L made of a normal metal that suppresses the superconductivity of the elec-
trodes and induces the Josephson effect.

For metals and superconductors satisfying the dirty limit condition, the
properties of this junction at arbitrary temperature are described by the Us-
adel equations. In our model we consider only the S and N regions in Figure
4.1. The other materials enter the equations only through effective boundary
conditions; The boundary ΓSN denotes a boundary between the supercon-
ducting and normal materials, Γ± the boundaries where the superconductors
go over into their bulk state. The remaining part of the boundary, here
denoted by ΓI is modeled as a boundary with a perfect insulator.

The behavior in the normal metal can be described by using the Usadel
equations for superconducting materials with ∆ = 0. A complete description
of this junction in the Φ-parametrization is thus given by

PDEs :

ωnΦSGS − ξ2∇ ·
[
G2
S∇ΦS

]
= ωn∆GS in S, (4.1)

ωnΦNGN −∇ ·
[
G2
N∇ΦN

]
= 0 in N, (4.2)

Subject to:

∇Φ · n = 0 on ΓI , (4.3)

γBGN∇ΦN · n = GS(ΦS − ΦN) on ΓSN , (4.4)

γBξGS∇ΦS · n = γGN(ΦN − ΦS) on ΓSN , (4.5)

ΦS = ∆0e
±iϕ/2 on Γ±, (4.6)

Here ΦS, GS and ΦN , GN denote the Green’s functions in, respectively, the su-
perconducting and normal material. All lengths are normalized with respect
to the coherence length of the normal metal ξN and we use the dimensionless
parameters

ξ =
ξS
ξN
, γB =

RB

ρNξN
, γ =

ρSξS
ρNξN

.

∆0 and ϕ are, respectively, the BCS energy gap and the phase of the bulk
superconducting electrodes.
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In a similar fashion the junction can be described in the θ, χ-parametrization
by

PDE :

In S :

− ξ2∇2θS + ξ2 sin θS cos θS(∇χS)2 (4.7)

= iE sin θS +
1

2
cos θS

(
∆e−iχS + ∆∗eiχS

)
,

− ξ2∇ ·
[

sin2 θS∇χS
]

= − i
2

sin θS
(
∆e−iχS −∆∗eiχS

)
,

(4.8)

In N :

−∇2θN + sin θN cos θN(∇χN)2 = iE sin θN , (4.9)

−∇ ·
[

sin2 θN∇χN
]

= 0, (4.10)

Subject to :

On ΓI :

∇θ · n = 0, (4.11)

∇χ · n = 0, (4.12)

On ΓSN :

γBξ sin2 θS∇χS · n = γ sin θN sin θS sin(χN − χS),
(4.13)

γBξ∇θS · n = γ
[

sin θN cos θS cos(χN − χS) (4.14)

− cos θN sin θS
]
,

γB sin2 θN∇χN · n = sin θS sin θN sin(χS − χN),
(4.15)

γB∇θN · n =
[

sin θS cos θN cos(χS − χN) (4.16)

− cos θS sin θN
]
,

On Γ± :

cos θS =
E√

E2 −∆2
0

, (4.17)

χS = ±ϕ
2
. (4.18)
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4.2 1D model

Before we consider the full SN-N-NS junction we first consider a special case
in which the Usadel equations can be reduced to one-dimensional equations
in the N layer. This simplifies the model and allows for certain analytical
solutions. The results give a good starting point for the full 2D model.

4.2.1 Supercurrent

In Figure 4.1 the x-axis is taken to have its origin exactly at the center of
the bridge, while y = 0 corresponds to the top of the normal metal layer.

For symmetric SN interfaces the symmetry of equations (4.1)-(4.2) and
condition (4.6) allow us to consider only the right half (0 ≤ x ≤ L/2) of the
junction with the additional boundary conditions

∂

∂x
Re(ΦN) = 0 at x = 0, (4.19)

Im(ΦN) = 0 at x = 0. (4.20)

The analysis of the SN-N-NS junction was simplified in [5] in the case of
small bridge thickness dN � 1 and no inverse proximity effect γ ≈ 0. The
latter condition implies that the superconductivity in the S layers is not
suppressed by the presence of the normal bridge. and the Green’s function
ΦS is constant in the whole layer

ΦS = ∆0e
iϕ/2. (4.21)

Now the Usadel equations need only be solved in the normal layer. When
the normal layer thickness dN is sufficiently small, we can assume the func-
tions ΦN and GN to be independent of y in first approximation. Then by
integration of equation (4.2) in the y-direction and application of boundary
conditions (4.3) and (4.4) we obtain the following equations describing the
one-dimensional SN-N-NS junction:
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d

dx

[
G2
N

dΦN

dx

]
= ωnΦNGN for 0 ≤ x ≤ s/2,

γBM
GN

d

dx

(
G2
N

dΦN

dx

)
−
(
GS + ωnγBM

)
ΦN = −GSΦS for s/2 ≤ x ≤ L/2,

Subject to :

d

dx
Re(ΦN) = 0 at x = 0,

Im(ΦN) = 0 at x = 0,

d

dx
ΦN = 0 at x = L/2,

ΦS = ∆0e
iϕ/2.

Here γBM = γBdN . In general these equations cannot be solved analytically,
however, in [5] two limiting cases were found where an analytical solution is
possible.

Case 1:
√
γBM � s� 1

In this case the SN boundaries are very transparent and the suppression of
the superconductivity coming from the S electrode by the proximity effect in
the N layers is negligible. In the region s/2 ≤ x ≤ L/2, ΦN will differ only
slightly from ΦS. In this limit the solution is given by

ΦN = δ cos
ϕ

2
+ i

√
ω2
n + δ cos2

ϕ

2
tan

(
2

s
atan

[∆0 sin ϕ
2

Ω1

x
])
, (4.22)

with

Ω1 =

√
Ω2 + ∆2

0 cos2
ϕ

2
, Ω = ωn

(
1 + γBM

√
ω2
n + ∆2

0

)
, δ =

GS∆0

GS + γBMωn
.

The supercurrent through the junction in this limit is given by

eIsRN

2πTc
= t

∞∑
n=0

∆0 cos ϕ
2

Ω1

atan
(∆0 sin ϕ

2

Ω1

)
, (4.23)

In the limit of γBM −→ 0 this result reduces to the KO1 result derived by
Kulik and Omelyanchuk [43] for superconducting bridges.
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Case 2: s� γBM

1+γBM

In this case γBM is very large and the SN boundary is very opaque. In this
limit the solution is given by

ΦN =δ cos
ϕ

2
+ (4.24)

i

√
ω2
n + δ cos2

ϕ

2
tan
( √

2∆0 sin ϕ
2

√
γBM

√√
ω2
n + ∆2

0(
√

Ω2 + ∆2
0 + Ω1)

)
.

The supercurrent through the junction is then given by

eIsRN

2πTc
= t

∞∑
n=0

√
2∆2

0 sinϕ

Ω1

√
(
√

Ω2 + ∆2
0 + Ω1)

√
ω2
n + ∆2

0

. (4.25)

In between these limits the supercurrent has to be calculated numerically.
Figure 4.2 shows the critical current calculated numerically for a short SN-
N-NS junction satisfying the geometrical constraints for equations (4.23) and
(4.25) to be valid. From this figure it can be seen that by varying the interface
parameter γBM the critical current interpolates perfectly between these two
analytical expressions. At every temperature the critical current reaches its
maximal value at γBM = 0, when the SN boundary is fully transparent. For
more opaque boundaries the critical current decays to zero as 1/γBM .
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Figure 4.2: Critical current of a 1D SN-N-NS Josephson junction with dimen-
sions s = 0.3, L = 5 calculated numerically for different interface parameters
and temperatures. The dashed line indicates the analytical result by Kulik
and Omelyanchuk [43].
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For larger junction sizes these analytical solutions are not valid, but the
shape of the critical current curves stays roughly the same as shown in Figure
4.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T/T
c

0

0.1

0.2

0.3

0.4

0.5

0.6

e
I c

R
N

/2
T

c

10
-4

10
-2

1

3

BM

Figure 4.3: Critical current of a 1D SN-N-NS Josephson junction with di-
mensions s = 1, L = 5 calculated with a FEM model for different interface
parameters and temperatures.

The effect of the junction length s on the IcRN product is twofold. Firstly
it decreases the critical current density Jc because of spreading throughout
the junction, but at the same time it increases the junction resistance RN .
For transparent junctions this leads to a net decrease of the IcRN product,
while for more opaque boundaries it leads to a net increase.

4.2.2 Density of states

Next, we investigate the density of states inside the SN-N-NS junction. To
calculate the density of states of this junction we need to consider real values
of the energy E. For this purpose we need to consider the Usadel equations in
the θ, χ-parametrization (4.7)-(4.18). By applying the same approximations
(dN � 1, γ ≈ 0) to these equations as in the above section the SN-N-NS
junction can be described by the following one-dimensional equations
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0 ≤ x ≤ s/2 :

− d2θN
dx2

+ sin θN cos θN

(dχN
dx

)2

= iE sin θN , (4.26)

− d

dx

[
sin2 θN

dχN
dx

]
= 0, (4.27)

s/2 ≤ x ≤ L/2 :

− γBM
d2θN
dx2

+ γBM sin θN cos θN

(dχN
dx

)2

= γBM iE sin θN+

cos θN sin θS cos(χS − χN)− sin θN cos θS, (4.28)

− γBM
d

dx

[
sin θ2

N

dχN
dx

]
= sin θS sin θN sin(χS − χN), (4.29)

Subject to:

dθN
dx

= 0, χN = 0 at x = 0, (4.30)

dθN
dx

= 0,
dχN
dx

= 0 at x =
L

2
, (4.31)

cos θS =
E√

E2 −∆2
0

, χS = ϕ/2. (4.32)

Before we go to the numerical solution of these equations we first consider a
few cases analytically.

The normal solution

Equations (4.26)-(4.31) allow the simple constant solution

θN = kπ,

χN =

{
0 for 0 ≤ x ≤ s/2,

χS + π
2

+ lπ for s/2 ≤ x ≤ L/2.

In fact the solution of χN in the region 0 ≤ x ≤ s/2 is arbitrary as long
as it satisfies χN(0) = 0. The physical meaning of this solution becomes
clear when we look at the local density of states N(E, r) = cos(θN) = (−1)k.
For odd k this solution produces a negative density of states, which is non-
physical. This is a consequence of the parametrization, which results in an
infinite number of solutions. In general k must always be chosen zero, or
in other words θN must be restricted to the interval −π ≤ θN < π for a
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physical solution. This solution describes the normal material in its normal
non-superconducting state. Luckily there are more exotic solutions.

Case 1:
√
γBM � s� 1, ϕ = 0

It is clear that for ϕ = 0, χN has the simple solution χN = 0, which satisfies
all boundary conditions. In this case equations (4.26) and (4.28) reduce to

− d2θN
dx2

= iE sin θN for 0 ≤ x ≤ s/2, (4.33)

− γBM
d2θN
dx2

− γBM iE sin θN = sin(θS − θN) for s/2 ≤ x ≤ L/2. (4.34)

Now we consider the equations for θN in both regions separately.

0 ≤ x ≤ s/2 : The second derivative term in equation (4.33) scales as θN
s2

,
while the second term scales as θN . In the case s � 1 we can thus neglect
the second term and approximate the equation as

−d
2θN
dx2

= 0. (4.35)

Together with boundary condition (4.30) this yields the solution θN = C for
some constant C.

s/2 ≤ x ≤ L/2 : For γBM = 0 equation (4.34) yields the solution θN = θS.
Thus for small values of γBM we can try the ansatz θN = θS + δθ. Inserting
this into equation (4.34) gives

−γBM
d2δθ
dx2
− γBM iE sin(θS + δθ) = − sin(δθ). (4.36)

Now since θN is close to θS we can linearize this equation

γBM
d2δθ
dx2

+ γBM iE sin θS + γBM iE cos θSδθ = δθ. (4.37)

The general solution of this equation is given by

δθ =
iE sin θS

z
+ Ae

√
zx +Be−

√
zx, (4.38)

with

z =
1

γBM
− iE cos θS =

1

γBM
− E2√

∆2
0 − E2

. (4.39)
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The constants A and B can be found by enforcing the continuity of θN at
x = s/2 and boundary condition (4.31). Together these give

A = Be−
√
zL, (4.40)

B =
C − θS − iE sin θS/z

e
√
z( s

2
−L) + e−

√
z s
2

. (4.41)

To determine the constant C we note that at x = s/2 the solution θN must
satisfy both equations (4.26) and (4.28). The constant C must thus satisfy

−γBM iE sinC = sin(θS − C), (4.42)

which can be solved to give

C = arccos
( cos(θS)− γBM iE√

1− 2γBM iE cos(θS)− γ2
BME

2

)
. (4.43)

In first approximation the density of states in this limit is then given by

N(E, x) =



Re

{
−iE
(

1+γBM

√
∆2

0−E2
)[

∆2
0−E2

(
1+γBM

√
∆2

0−E2
)2]1/2

}
for 0 ≤ x ≤ s/2,

Re

{
cos
(
θS + γBM iE sin θS

1−γBM iE cos θS

+Ae
√
zx +Be−

√
zx
)}

for s/2 ≤ x ≤ L/2.

(4.44)

The DOS obtains its minimal value in the center of the junction 0 ≤ x ≤ s/2,
and then increases exponentially over the barrier towards a constant value
in the L-region under the superconductor. As γBM −→ 0 the solution will
converge to θN = θS and the density of states reduces to the BCS result.

Case 2: s� 1� √γBM , ϕ = 0

0 ≤ x ≤ s/2 : In this region equation (4.33) has the solution θN = C, with
C given by equation (4.43).

s/2 ≤ x ≤ L/2 : In the limit γBM −→ ∞ equation (4.34) has the constant
solution θN = 0. For large, but finite values of γBM it is reasonable to try
the ansatz θN = δθ. Inserting this into equation (4.34) gives

−γBM
d2δθ
dx2
− γBM iE sin(δθ) = sin(θS − δθ). (4.45)
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Linearizing this equation then gives

γBM
d2δθ
dx2

+ γBM iEδθ = − sin θS + δθ cos θS. (4.46)

This equation has the general solution

δθ =
sin θS

cos θS − γBM iE
+ Ae

√
zx +Be−

√
zx, (4.47)

with

z =
1

γBM
cos θS − iE. (4.48)

By enforcing the boundary conditions and continuity of the solution the
constants A and B can be determined as

A = Be−
√
zL, (4.49)

B =
C − sin θS

γBMz

e
√
z( s

2
−L) + e−

√
z s
2

. (4.50)

The density of states in this limit is then given by

N(E, x) =



Re

{
−iE
(

1+γBM

√
∆2

0−E2
)[

∆2
0−E2

(
1+γBM

√
∆2

0−E2
)2]1/2

}
for 0 ≤ x ≤ s/2,

Re

{
cos
(

sin θS
cos θS−γBM iE

+Ae
√
zx +Be−

√
zx
)}

for s/2 ≤ x ≤ L/2.

(4.51)

In the region 0 ≤ x ≤ s/2 the density of states is given by the same ex-
pression for both small and large values of γBM . This density of states has
two singularities. One at E = ∆0, which denotes the superconducting energy
gap and another one at E/∆0 = z0, with

z0 = −1

3
+

(β2 − 3)
1
2

3β

(
[1 + (A2 − 1)

1
2 ]

1
3 + [1− (A2 − 1)

1
2 ]

1
3

)
, (4.52)

A = β(18− β2)/(β2 − 3)
3
2 , (4.53)

β = γBM∆0. (4.54)
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Figure 4.4: Density of states in a 1D SN-N-NS junction with dimensions
s = 0.02, L = 20 and ϕ = 0, t = 0.5 calculated with a FEM model at x = 0
for different values of γBM .

To verify these analytical results we calculated the density of states in
the center of the junction numerically for different values of γBM as shown
in Figure 4.4. At γBM & 0.1 the peak in the DOS splits into two separate
peaks with the separation increasing for larger γBM . One peak remains at
the superconducting energy gap ∆, while the other shifts to lower energies.

Below this second peak the density of states vanishes, therefore this point
is called the subgap. The numerical results are in good agreement with equa-
tions (4.44) and (4.51). In this setting, for zero phase difference, our model
reduces to that of a SN -bilayer and the results agree with earlier results in
literature [44,45].

Case 3: γBM = 0, s� 1

In the presence of a nonzero phase difference, χN will not be zero anymore.
Instead both χN and θN will be a function of ϕ. In the case γBM = 0 the so-
lution of equations (4.28) and (4.29) in the region under the superconducting
electrodes takes on the simple form θN = θS, χN = χS.

In the limit of s � 1 the last term in equation (4.26) can be neglected
and an analytical solution is possible [46]:

θN = acos

(√
α2 + 1

α
cos[jEα(x− χ0)]

)
, (4.55)

χN = χ0 − atan
(
iα tan[jEα(x− χ0)]

)
. (4.56)
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The constants α, χ0 and jE are determined from the boundary conditions
and by enforcing continuity at x = s/2. In this limit they are

χ0 = 0, (4.57)

α =

√
E2 −∆2

0 cos2(ϕ/2)

∆0 cos(ϕ/2)
, (4.58)

jE =
2∆0 cos(ϕ/2)

s
√
E2 −∆2

0 cos2(ϕ/2)
acos

(√
E2 −∆2

0 cos2(ϕ/2)

E2 −∆2
0

)
. (4.59)

The density of states in this limit is then given by

N(E, x) =

{
Re
{√

α2+1
α

cos[jEαx]
}

for 0 ≤ x ≤ s/2,

Re
[

cos θS
]

for s/2 ≤ x ≤ L/2.
(4.60)

Now it becomes clear what the effect of the phase difference is on the density
of states. At x = s

2
the density of states reduces to the BCS value

N(E, s/2) = Re
[

cos θS
]

= Re
[ E√

E2 −∆2
0

]
,

while at the center of the bridge at x = 0 the density of states becomes

N(E, 0) = Re
[ E√

E2 −∆2
0 cos2(ϕ/2)

]
.

The presence of a phase difference thus leaves the energy gap at s/2 in-
tact, but reduces the energy gap in the center of the junction by a factor
of cos(ϕ/2), as seen in Figure 4.5. For zero phase difference the energy gap
reduces to the BCS gap, while at a phase difference of π the energy gap closes
completely.
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Figure 4.5: Density of states of a 1D SN-N-NS Josephson junction with
dimensions s = 0.1, L = 5 and γBM = 10−4, t = 0.5 calculated with a FEM
model at x = 0 for different values of ϕ.

General case: s� 1

For arbitrary values of γBM and ϕ both of the above described effects take
place. In the short junction limit s� 1 an analytical solution in the region
0 ≤ x ≤ s/2 can be found by using the general solution in (4.56) and applying
the boundary conditions and continuity conditions at x = s/2. The general
analytical solution is then given by

θN = acos

(√
α2 + 1

α
cos[jEα(x− χ0)]

)
, (4.61)

χN = χ0 − atan
(
iα tan[jEα(x− χ0)]

)
, (4.62)

with the constants

χ0 = 0, (4.63)

α =

√
Ẽ2 −∆2

0 cos2(ϕ/2)

∆0 cos(ϕ/2)
, (4.64)

jE =
2∆0 cos(ϕ/2)

s
√
Ẽ2 −∆2

0 cos2(ϕ/2)
acos

(√
Ẽ2 −∆2

0 cos2(ϕ/2)

Ẽ2 −∆2
0

)
, (4.65)

Ẽ = E
(

1 + γBM

√
∆2

0 − E2
)
. (4.66)
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This solution reduces to the results found previously in the limits ϕ = 0 and
γBM = 0, respectively. The density of states at s/2 still satisfies equation
(4.51), but at the center of the junction x = 0 it is now given by

N(E, 0) = Re

[
Ẽ√

Ẽ2 − ∆̃2
0

]
, (4.67)

with ∆̃0 = ∆0 cos(ϕ/2). An exact expression for the poles of the DOS is too
long to write down on this page, but it is worth noting that the singularity
at E = ∆0 that existed in the density of states at ϕ = 0 reduces to a local
maximum at nonzero phase differences.

Numerical results in this limit are shown in Figures 4.6 and 4.7 and are in
good agreement with this analytical solution. It can be seen that the density
of states at the junction center still contains one singularity that depends on
both γBM and ϕ and lies at energies lower than those given in (4.52). As
ϕ −→ π the singularity shifts to zero energy and the energy gap closes.
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Figure 4.6: Density of states in a 1D SN-N-NS junction with dimensions
s = 0.1, L = 5 and γBM = 0.3, t = 0.5 calculated with a FEM model at x = 0
for different values of ϕ.
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Figure 4.7: Density of states in a 1D SN-N-NS junction with dimensions
s = 0.1, L = 5 and ϕ = π/4, t = 0.5 calculated with a FEM model at x = 0
for different values of γBM .

Influence of bridge length

So far, all our results were derived in the limit s� 1. In this limit the density
of states contains up to two singularities of which the first one indicates the
edge of the subgap. For lager values of the bridge length the density of states
has to be calculated numerically. Increasing the bridge length distorts the
DOS as seen in Figure 4.8. It can be seen that the peak present at E = ∆0

remains at larger bridge lengths, but that the singularity at a lower energy
is smeared out, leading to a decrease of the magnitude of the energy gap.
Furthermore, a new peak appears in between the two old singularities. As
s increases the energy gap becomes smaller, eventually vanishing as s −→
∞. For larger s the spacing between the electrodes increases and fewer
Cooper pairs can penetrate up to the center of the normal metal, leading to
a reduction of the energy gap.
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Figure 4.8: Density of states in a 1D SN-N-NS junction with dimension
L = 20 and ϕ = 0.6, γBM = 0.3, t = 0.5, calculated with a FEM model at
x = 0 for different bridge lengths s.

4.3 2D model

4.3.1 Supercurrent

All the results obtained using the one-dimensional model were derived under
the following assumptions:

• The inverse proximity effect can be neglected (γ = 0) so inside the
S electrodes the Green’s functions take on their bulk value, not being
influenced by the proximity of the N layer.

• The normal layer thickness dN is small enough so that the Green’s
functions Φn are independent of y in the first approximation on dN .

To generalize the one-dimensional results the full equations (4.1)-(4.6) need
to be solved. To solve these equations a finite element method is implemented
making use of first order Lagrangian basis functions. Since the analytical so-
lution is discontinuous at the SN interface by virtue of equations (4.4) and
(4.5), the solution over these interfaces can not be approximated by continu-
ous basis functions. Instead, it must be calculated in each layer individually
and be matched by making use of these boundary conditions.

In two dimensions the Usadel equations need to be solved self-consistently.
In addition to equations (4.1)-(4.6) one also has to solve the self-consistency
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(a) (b)

Figure 4.9: Spatial distribution of the normalized current density in the
SN-N-NS junction. (a) depicts the x-component of the current density, (b)
depicts the y-component of the current density. Parameters used were ξ = 1,
γB = 1.5, γ = 1, t = 0.5, ϕ = π/2, s = 1, L = 5, dS = 2, dN = 0.2.

equation

∆ ln(t) + t
∞∑

n=−∞

[∆

ωn
− Φ(ωn, r)√

ω2
n + |Φ|2

]
= 0. (4.68)

This equation has to be solved iteratively and requires the solution of the
Usadel equation at all Matsubara frequencies during each iteration. The
procedure used for solving the self-consistency equation can be found in Ap-
pendix A.1.

In the full 2D case the current density can be calculated inside the com-
plete junction as shown in Figures 4.9a and 4.9b. It can be seen that the
current density is symmetric and varies strongly throughout the junction. It
is the highest inside the weak link region at the center of the normal metal.
It peaks at the edges of the weak link region due to the sharp angle be-
tween the ends of the superconductors and the normal metal strip. Inside
the superconductors the current density is much smaller than the density
inside the normal metal layer, even at high values of γ. By virtue of (2.52)
the y-component of the current density is continuous over the SN-interface,
ensuring continuity of the current component perpendicular to the interface.

The influence of the normal layer thickness dN and the proximity effect
parameter γ on the critical current is illustrated in Figures 4.10a and 4.10b.
It can be seen that the current density decreases monotonically, both as
a function of dN and of γ at every temperature. The influence of dN is

52



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T/T
c

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

e
I c

R
N

/2
 T

c

1D

0.2

0.4

0.8

1.6

d
N

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T/T
c

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

e
I c

R
N

/2
 T

c

1D

0.1

0.5

1

(b)

Figure 4.10: Normalized critical current in the SN-N-NS junction dependence
on temperature for various values of (a) the normal layer thickness dN for
γ = 0.1 (b) the proximity effect parameter γ for dN = 0.2. Dashed lines
indicate results obtained numerically using the one-dimensional model of [5].
Other parameters used were ξ = 1, γBM = 0.3, s = 1, L = 5, dS = 5.

stronger than that of γ. Figures 4.11a and 4.11b show the dependence of the
current density on dN and γ. The current density decreases approximately
exponentially, both with dN and γ. In the limit dN −→ 0, γ −→ 0 the one-
dimensional results in [5] are recovered.

4.3.2 Density of states

The influence of the normal metal thickness and the proximity effect on the
density of states in the junction can be investigated by using a 2D model.
For a full 2D calculation the energy gap ∆ needs to be known inside the
two superconducting layers. This can be calculated self-consistently in the
Φ-parametrization by solving equations (4.1)-(4.6) and (4.68). Using the
resulting value we proceed to solve equations (4.7)-(4.18). Using this method
the DOS can be calculated not only in the normal metal, but also in the
superconductors. An example of the distribution of the DOS inside the
junction is shown in Figure 4.12.
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Figure 4.11: Normalized critical current in the SN-N-NS junction dependence
on (a) the normal layer thickness dN for various values of γ (b) the proximity
effect parameter γ for various values of dN . Other parameters used were
ξ = 1, γBM = 0.3, t = 0.5, s = 1, L = 5 and dS = 5.

Figure 4.12: Normalized density of states distribution in the SN-N-NS junc-
tion at E = 0.9∆0, γB = 1.5, γ = 1, ϕ = 0 and t = 0.5.

Using this two-dimensional model we can investigate the effect of dN and
γ on the density of states at the center of the normal metal. These effects are
illustrated in Figures 4.13a and 4.13b. It can be seen that both increasing
dN and increasing γ results in a decrease of the subgap. An increase in the
normal layer thickness further separates the superconductors and the center
of the normal metal, causing fewer Cooper pairs to penetrate towards this
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point, which leads to a reduction of the subgap. Increasing γ suppresses
the number of Cooper pairs in the superconductors, which means that fewer
pairs can penetrate into the normal metal, thus reducing the subgap. The
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Figure 4.13: Normalized density of states at the center of a 2D SN-N-NS
junction dependence on energy at (a) various values of dN for γ = 0.1 (b)
various values of γ for dN = 0.2. Other parameters used were ξ = 1, γBM =
0.3, t = 0.5, s = 1, L = 5 and dS = 5. The dashed line indicates the density
of states calculated using a 1D model with the same parameters.

dependence of the density of states on the phase difference and energy at
the center of the normal metal is shown in Figure 4.14. For small phase
differences the two peaks in the density of states at E = ∆0 and E ≈ z0 are
clearly visible. Both peaks become increasingly more narrow as the phase
difference increases and vanish at a phase difference ϕ = π. The magnitude
of the subgap depends on the phase difference as well, having its maximum
at zero phase difference and closing completely at ϕ = π. Even though
γ = 1 and the short junction limit conditions are not satisfied, the shape of
the energy gap still resembles the limiting behavior of cos(ϕ/2) found in the
one-dimensional model.
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Figure 4.14: Normalized density of states at the center of the normal metal
strip in the SN-N-NS junction as a function of energy E and phase difference
ϕ. Other parameters are γB = 1.5, γ = 0.01, and t = 0.5, ξ = 1, s = 1, L =
3, dS = 5, dN = 0.2.

4.4 Current Injection

In the previous sections, the superconducting phase was fixed at the left
and right boundaries of the superconducting electrodes, where these go over
into thicker electrodes. These boundaries were positioned right above the
boundaries of the normal metal as shown in Figure 4.1. The normal metal
influences, however, the superconductor through the proximity effect and
might thus cause a nonuniform phase over this boundary. These boundary
conditions are thus only valid whenever the superconductors go over into
much thicker electrodes, which are unperturbed by the presence of the normal
metal. This situation can be realized when the junction encloses a SQUID
ring.

Another interesting situation to analyze is the case when a homogeneous
unidirectional supercurrent is sent through the junction. Such a supercurrent
in the x-direction can be sustained by a Green’s function in the form

Φ = ∆0e
ikx. (4.69)

This solution corresponds to a homogeneous supercurrent

eRNIs
2πTc

= tlk
∞∑
n=0

[
∆2

0

ω2
n + ∆2

0

]
. (4.70)
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From this expression, it becomes clear that the linear phase gradient k is
related to the magnitude of the supercurrent. In real junctions, equation
(4.69) is not a valid solution, because due to a process called depairing, a
large phase gradient will also suppress the supercurrent. This can best be
seen in the θ, χ-parametrization using equations (4.7) and (4.8). A large
phase gradient ∇χ will lead to a suppression of θ, thereby decreasing the
energy gap and the current density. The current density will thus attain
its maximum value at a finite phase gradient. This maximum value of the
current density is called the depairing current density.

To model the SN-N-NS junction with these current-injection boundary
conditions and determine the depairing current density we consider the geom-
etry shown in Figure 4.15 where the superconducting electrodes now extend
a length (L2−L)/2 beyond the normal metal to ensure that the homogeneous
in- and out-flowing current are not disturbed by the presence of the normal
metal.
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Figure 4.15: Sketch of the SN-N-NS junction. The superconducting material
(dark blue) and normal metal (orange) are deposited on a dielectric substrate
(grey). Far away from the weak link region, the superconducting materials
go over into thicker bulk superconductive electrodes of the same material
(light blue). The axis origin lies at the top center of the normal metal strip.

The implementation of the current inflow boundary condition (4.69) in
the finite element discretization cannot be done directly since this expression
sets different conditions on the absolute value of the Green’s function and on
its phase gradient, while only the total Green’s function Φ can be varied. One
way to work around this is to use the two-parameter θ, χ-parametrization and
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implement the current-injection boundary condition as

θ = atan

(
∆0

ωn

)
at Γ±, (4.71)

∇χ · n = k at Γ±. (4.72)

The main problem with this approach is that the self-consistency equation
(2.24) cannot always be solved to the required accuracy. It converges to
different values depending on the initial guesses chosen for χ. The reason for
this behavior is that all boundary conditions on χ are now Neumann type
boundary conditions, which causes problems determining the value of χ in
the junction.

If (L2−L)/2 is chosen large enough the ends of the superconductors feel
little suppression from the normal metal and the current injection can also be
modeled by the regular boundary condition (4.6). This boundary condition
enforces zero current in the direction parallel to the boundary, but for large
L2 the current perpendicular to the interface becomes homogeneous as well
and the Green’s functions gain a constant phase gradient perpendicular to
the boundary.

It is interesting to determine how the junction behaves under these current-
injection boundary conditions. An interesting quantity to determine is the
current-phase relationship shown in Figures 4.16a and 4.16b. The first figure
shows the current as a function of the phase applied over the junction, while
the second figure shows the dependence on the phase drop over the junction
with subtraction of the current-induced linear part

ϕ− kL2, (4.73)

where k is the linear phase gradient at the edge of the superconductors, which
can be determined from a self-consistent calculation. The presence of this
linear phase gradient, stemming from a constant current in the electrodes
skews the CPRs. The phase gradient seems to obtain its maximal value
around γ ≈ 5.

We wish to investigate whether this constant current in the electrodes
suppresses the energy gap due to depairing. For this purpose, we look at
the absolute value of the pair potential ∆ in the superconducting layer as a
function of position to try to see the effect of this current as shown in Figure
4.17.
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Figure 4.16: Dependence of the current-phase relationship of the SN-N-NS
junction on γ. (a) depicts the dependence of the current on the total junction
phase. (b) depicts the dependence of the current on the junction phase with
it’s linear part subtracted. Parameters used were ξ = 1, γBM = 0.3, t = 0.2,
s = 0.1, L = 5, L2 = 15, dS = 5, dN = 0.2.
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Figure 4.17: Position dependence of the pair potential ∆ in the superconduc-
tor, calculated for various values of γ. The dashed vertical line corresponds
to the edge of the normal metal.

The behavior of ∆ shows no sign of suppression due to depairing, it is
suppressed in the region above the normal metal and further away grows
exponentially towards its bulk value. No region with a reduced value of |∆|
is found in the superconductors. We believe that this is because the constant
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current in the electrodes is not large enough to cause significant suppression.
We tried different sets of parameters corresponding to the largest linear phase
gradients k, but for none of them we find any sign of depairing.
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Chapter 5

SF-F-FS junction

In this chapter, we extend our models for the SN-N-NS junction to the SF-F-
FS junction by including the effect of an exchange field. We derive analytical
solutions for the current density and the density of states in the 1D limit.
Furthermore, we calculate the current density and density of states inside
the junction numerically and show that the exchange field can lead to a
spin-dependent density of states and a 0-π transition accompanied by the
appearance of vortices in the superconductor.

5.1 Mathematical Model

The geometry of the SF-F-FS is identical to that of the SN-N-NS with the
normal metal replaced by a ferromagnetic material as sketched in Figure
5.1. This ferromagnetic material has an intrinsic exchange field H. In a
ferromagnet the Usadel equation in (2.12) for spin up/down orientations can
be written as

−iD∇ ·
[
Ĝ∇Ĝ

]
+
[
τ̂ 3(E ±H), Ĝ

]
= 0. (5.1)

For calculating stationary properties of the SN-N-NS junction we employed
the Φ-parametrization. This parametrization is, however, not valid for fer-
romagnetic materials where the effective Matsubara frequencies ω̃n = ωn +
iH are not strictly real. Instead we employ an altered version of the Φ-
parametrization [47]

Ĝ =

 ω̃n√
ω̃2
n+ΦωnΦ∗

−ωn

Φωn√
ω̃2
n+ΦωnΦ∗

−ωn
Φ∗

−ωn√
ω̃2
n+ΦωnΦ∗

−ωn

− ω̃n√
ω̃2
n+ΦωnΦ∗

−ωn

 . (5.2)
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Figure 5.1: Sketch of the SF-F-FS junction. The superconducting material
(dark blue) and ferromagnetic material (orange) are deposited on a dielectric
substrate (grey). Far away from the weak link region the superconducting
materials go over into thicker bulk superconducting electrodes of the same
material (light blue). The axis origin lies at the top center of the ferromag-
netic strip.

Here Φ∗−ωn
denotes the conjugate of the Green’s function Φ calculated for the

Matsubara frequency −ωn. This parametrization automatically satisfies the
normalization condition. In this parametrization the full Usadel equations
in the SF-F-FS junction can be written as

PDEs :

ωnΦSGS − ξ2∇ ·
[
G2
S∇ΦS

]
= ωn∆GS in S, (5.3)

ω̃nΦFGF −∇ ·
[
G2
F∇ΦF

]
= 0 in F, (5.4)

Subject to:

∇Φ · n = 0 on ΓI , (5.5)

γBGF

ω̃n
∇ΦF · n = GS(

ΦS

ωn
− ΦF

ω̃n
) on ΓSF , (5.6)

γBξGS

ωn
∇ΦS · n = γGF (

ΦF

ω̃n
− ΦS

ωn
) on ΓSF , (5.7)

ΦS = ∆0e
±iϕ/2 on Γ±, (5.8)
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where GF = ω̃n/
√
ω̃2
n + ΦF,ωnΦ∗F,−ωn

.

To calculate the energy-dependent properties of the SF-F-FS junction the
Usadel equations need to be solved for real values of E. For this purpose we
now do not use the θ, χ-parametrization, which is numerically not always
stable, but instead employ the Riccati parametrization. For the SF-F-FS
junction the Usadel equations in this parametrization are given by

PDE :

In S :

− ξ2∇2αS − ξ2NSβS(∇αS)2 = iEαS +
∆

2
− α2

S

∆∗

2
,

(5.9)

− ξ2∇2βS − ξ2NSαS(∇βS)2 = iEβS −
∆∗

2
+ β2

S

∆

2
,

(5.10)

In F :

−∇2αF −NFβF (∇αF )2 = i(E +H)αF , (5.11)

−∇2βF −NFαF (∇βF )2 = i(E +H)βF , (5.12)

BCs :

On ΓI :

∇α · n = 0, (5.13)

∇β · n = 0, (5.14)

On ΓSF :

γBξ∇αS · n = γ(αF − αS)(1− αSβF )NF , (5.15)

γBξ∇βS · n = γ(βF − βS)(1− βSαF )NF , (5.16)

γB∇αF · n = (αS − αF )(1− αFβS)NS, (5.17)

γB∇βF · n = (βS − βF )(1− βFαS)NS, (5.18)

On Γ± :

αS =
∆0e

±iϕ/2

−iE +
√

∆2
0 − E2

, (5.19)

βS =
−∆0e

∓iϕ/2

−iE +
√

∆2
0 − E2

(5.20)

63



5.2 1D model

In analogy with the SN-N-NS junction, the model of the SF-F-FS junction
can be reduced to a one-dimensional model in the limiting case γ ≈ 0, dF � 1.
In this case, the Green’s functions inside the superconductor are constant and
the equations need to be solved only in the ferromagnetic layer.

5.2.1 Supercurrent

The ferromagnetic layer breaks the symmetry of the junction and we can
thus not reduce the computations to the region x ≥ 0 by separating the real
and imaginary part of the solution. Instead the equations can be simplified
by defining

Φ+ =
1

2
(ΦF,ωn + Φ∗F,−ωn

), (5.21)

Φ− =
1

2
(ΦF,ωn − Φ∗F,−ωn

). (5.22)

These quantities are respectively symmetric and anti-symmetric over the
junction. By the assumptions on γ and dF the Usadel equations in the
F layer can be integrated in the y-direction and we obtain the following
equations describing the 1D SF-F-FS junction:
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d

dx

[
G2
F

dΦ+

dx

]
= ω̃nΦ+GF for 0 ≤ x ≤ s/2, (5.23)

d

dx

[
G2
F

dΦ−
dx

]
= ω̃nΦ−GF for 0 ≤ x ≤ s/2, (5.24)

ξ2
eff

d

dx

(
G2
F

dΦ+

dx

)
− Φ+ = −δ cos(ϕ/2) for s/2 ≤ x ≤ L/2, (5.25)

ξ2
eff

d

dx

(
G2
F

dΦ−
dx

)
− Φ− = −iδ sin(ϕ/2) for s/2 ≤ x ≤ L/2, (5.26)

Subject to :

d

dx
Φ+ = 0, Φ− = 0 at x = 0, (5.27)

d

dx
Φ+ = 0,

d

dx
Φ− = 0 at x = L/2, (5.28)

ξeff =

√
γBM

GF (GS + ω̃nγBM)

,

δ =
ω̃n∆0GS

ωn(GS + ω̃nγBM)
.

These equations can be solved analytically in specific cases in analogy with
the procedure in [5].

Case 1:
√
γBM � s� min(1, 1/

√
H)

In the short junction limit s � min(1, 1/
√
H) the non-gradient terms in

(5.23) and (5.24) can be neglected and an analytical solution to these equa-
tions can be found satisfying the conditions in (5.27):

Φ+ = C1, (5.29)

Φ− = i
√
ω̃2
n + Φ2

+ tan

(
2C2

s
x

)
. (5.30)

The coefficients C1 and C2 can by found by matching this solution with the
one in the region under the S electrodes. From equations (5.25) and (5.28)
it is clear that Φ+ has the constant solution

Φ+ = δ cos(ϕ/2). (5.31)

To find Φ− we try a solution in the form

Φ− = i
√
ω̃2
n + Φ2

+ tan(θ), (5.32)
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which results in the following equation for the functions θ:

γBM
√
ω2
n + ∆2

0

Ω1

d2θ

dx2
− sin θ = −

∆0 sin ϕ
2

Ω1

cos θ, (5.33)

with

Ω1 =

√
Ω2 + ∆2

0 cos2
ϕ

2
, (5.34)

Ω = ωn

(
1 +

ω̃n
ωn
γBM

√
ω2
n + ∆2

0

)
. (5.35)

From equation (5.33) it follows that the characteristic length scale of θ is

ζ =

(
γBM

√
ω2
n + ∆2

0

Ω1

)1/2

. (5.36)

Now, in the limit γBM << s the first term can be neglected and we obtain

C2 = atan

(
∆0 sin ϕ

2

Ω1

)
. (5.37)

Then the current density inside the junction can be calculated as

J =
iπT

2eρ

∑
ωn

G2
F

ω̃2
n

[
2Φ−

d

dx
Φ+ − 2Φ+

d

dx
Φ−

]
, (5.38)

which reduces to

eIsRN

2πTc
= t
∑
ωn

∆0 cos ϕ
2

Ω1

atan
(∆0 sin ϕ

2

Ω1

)
. (5.39)

In the limit H −→ 0 this reduces to the previously obtained result for the
SN-N-NS junction (4.23) and in the limit H −→ 0, γBM −→ 0 this reduces the
the KO1 result [43]. In the short junction limit the only difference between a
normal metal and a ferromagnetic bridge is thus the additional factor in the
definition of Ω. Since this solution is only valid for small values of γBM and H
it cannot be used to explore the full effect of the exchange field. Fortunately,
another analytical solution is possible for large values of γBM .

Case 2: s� min( γBM

1+γBM
, 1/
√
H), L− S � ζ
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In this limit, equations (5.29)-(5.33) are still valid. The only difference being
the constant C2. To determine this constant we consider the first integral of
(5.33)

γBM
√
ω2
n + ∆2

0

2Ω1

(dθ
dx

)2

+ cos θ − cos Θ =
∆0(sin Θ− sin θ) sin ϕ

2

Ω1

. (5.40)

Here Θ denotes the function θ at x = L/2. In the limit L − S � ζ this
approaches the value

Θ = atan

(
∆0 sin ϕ

2

Ω1

)
. (5.41)

A comparison of equations (5.30) and (5.33) at x = s/2 shows that the
constant C2 must satisfy

2η2
√
ω2
n + ∆2

0

Ω1

C2
2 + cosC2 − cos Θ =

∆0(sin Θ− sinC2) sin ϕ
2

Ω1

, (5.42)

with η =
√
γBM/s. For large values of γBM the constants C2 are small and

this equation can be reduced to

2η2
√
ω2
n + ∆2

0

Ω1

C2
2 + 1− cos Θ =

∆0(sin Θ) sin ϕ
2

Ω1

, (5.43)

which has the solution

C2 =
∆0 sin ϕ

2

η
√

2
√
ω2
n + ∆2

0

√√
Ω2 + ∆2 + Ω1

. (5.44)

The current density inside the junction in this limit is

eIsRN

2πTc
= t

∞∑
n=0

√
2∆2

0 sinϕ

Ω1

√
(
√

Ω2 + ∆2
0 + Ω1)

√
ω2
n + ∆2

0

. (5.45)

Using this analytical solution we can see the effect of the exchange field by
calculating the CPR of the junction as shown in Figure 5.2.

It can be seen that for small values of the exchange field the current-
phase relationship has a skewed shape, but by increasing the exchange field
the CPR deforms and ultimately changes sign to form a so-called π-junction.

The origin of this transition lies at phase jumps at the SF interfaces
[21, 47]. In a ferromagnet electrons with different spins have different ener-
gies. Ferromagnets thus try to break up Cooper pairs, since these consist of
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Figure 5.2: Dependence of the current-phase relationship in a short quasi
one-dimensional SF-F-FS junction on the exchange field H. Calculated using
(5.45) with parameters γBM = 2, s = 0.01, L = 5, t = 0.1.

electrons with opposite spin. As a result of this behavior, there is a phase
jump at the SF interface that depends on the magnitude of the exchange
field. For large enough exchange fields this phase jump reaches its maximum
value of π/2.

The SF-F-FS junction contains two SF interfaces. For a large enough
exchange field the total phase over the junction shifts by π resulting in a
change of the sign of the supercurrent.

The critical exchange field at which the sign of the current changes de-
pends strongly on the parameter γBM . Our analytical solutions are only valid
for small or large γBM . For intermediate values of γBM and larger junction
lengths s the one-dimensional Usadel equations need to be solved numeri-
cally. A result of this numerical calculation is shown in Figure 5.3, which
shows the dependence of the critical current of the SF-F-FS junction on the
exchange field H. The kink in the |Ic(H)| graphs occurs at the critical ex-
change field. This critical exchange field depends on the junction length s,
decreasing as s increases.
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Figure 5.3: Dependence of the critical current in a quasi one-dimensional
SF-F-FS junction on the junction length s. Dashed lines indicate the regions
with negative critical current. calculated with a FEM model with parameters
γBM = 1, t = 0.1, L = 5.

It can also be seen that the critical current does not cross zero but makes
a jump. This happens because the CPR is not purely sinusoidal but skewed.
At the critical temperature the sinusoidal part of the current goes to zero,
but the non sinusoidal part does not [48].

For experimentalists it is more convenient to look at the dependence of the
critical current on an experimentally variable property such as temperature.
This dependence is shown in Figure 5.4. For a large enough exchange field
the critical current changes sign as the temperature increases. This effect
has been measured to prove the existence of a π-junction [49].
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Figure 5.4: Dependence of the critical current in a quasi one-dimensional
SF-F-FS junction on temperature. Dashed lines indicate the regions with
negative critical current. calculated with a FEM model with parameters
γBM = 1, s = 0.5, L = 1.

To get a better idea of the location of the transition point we show the
dependence of the critical current on the exchange field and the interface
transparency in Figure 5.5. It can be seen that a 0-π transition can occur
both when increasing the exchange field and when increasing γBM .
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Figure 5.5: Dependence of the critical current of a one-dimensional SF-F-
FS junction on the exchange field and the interface transparency. Green
colors indicate negative critical currents. calculated with a FEM model with
parameters s = 0.3, L = 1, t = 0.5.

5.2.2 Density of states

The presence of an exchange field also has an influence on the density of states
inside the ferromagnetic layer. This density of states becomes spin-dependent
since the exchange field separates the energy levels of particles with different
spins. For a particular spin, the exchange field shifts the junction energy,
causing an asymmetry between the density of states at positive and negative
energies.

Before we give numerical results on the density of states we will first
derive an illustrative analytical solution. This can be most conveniently done
in the θ, χ-parametrization, using equations (4.26)-(4.31) and by replacing E
by E ±H in the ferromagnetic layer.

In the short junction limit (s � 1/
√
H) the solution at the center part

of the junction is given by [46]

θF = acos

(√
α2 + 1

α
cos[jEαx]

)
, (5.46)

χF = atan
(
iα tan[jEαx]

)
. (5.47)

The constants jE and α can be obtained by enforcing continuity of the solu-
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tion at x = s/2, which leads to the following equations:

sin θS sin θF sin(χS − χF ) = 0, (5.48)

i(E ±H)γBM sin θS + cos θF sin θS cos(χS − χF )− sin θF cos θS = 0. (5.49)

By solving these equations the constants jE and α can be determined to be

α =

√
Ẽ2 −∆2

0 cos2(ϕ/2)

∆0 cos(ϕ/2)
, (5.50)

jE =
2∆0 cos(ϕ/2)

s
√
Ẽ2 −∆2

0 cos2(ϕ/2)
acos

(√
Ẽ2 −∆2

0 cos2(ϕ/2)

Ẽ2 −∆2
0

)
, (5.51)

Ẽ = E + γBM(E ±H)
√

∆2
0 − E2. (5.52)

At the center of the junction (x = 0) the density of states is then given by

N(E, 0) = Re

[
Ẽ√

Ẽ2 − ∆̃2
0

]
. (5.53)

The density of states at the Fermi level is

N(0, 0) = Re

[
γBMH√

(γBMH)2 − 1

]
. (5.54)

For small values of the exchange field the density of states contains a gap
around the Fermi level, but ones the exchange field surpasses the value
H = 1/γBM this gap is completely filled. Further increasing the exchange
field reduces the density of states to its normal non-superconducting shape.
This formula for the density of states has also been derived for SFIFS type
junctions [47].

For numerical calculations of the density of states inside the SF-F-FS
junction it is the most convenient to use the Riccati parametrization of the
Usadel equations. In the one-dimensional limit these equations reduce to

|x| ≤ s/2 :

− d2αF
dx2

− 2NFβF

(dαF
dx

)2

= i(E +H)αF (5.55)

− d2βF
dx2

− 2NFαF

(dβF
dx

)2

= i(E +H)βF (5.56)
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s/2 ≤ |x| ≤ L/2 : (5.57)

− γBM
d2αF
dx2

− 2γBMNFβF

(dαF
dx

)2

= i(E +H)γBMαF

+ (αS − αF )(1− αFβS)NS (5.58)

− γBM
d2βF
dx2

− 2γBMNFαF

(dβF
dx

)2

= i(E +H)γBMβF

+ (βS − βF )(1− βFαS)NS (5.59)

Subject to:

d

dx
αF = 0,

d

dx
βF = 0 at |x| = L

2
, (5.60)

αS =
∆0e

iϕ

−iE +
√
|∆0|2 − E2

, (5.61)

βS =
−∆0e

−iϕ

−iE +
√
|∆0|2 − E2

. (5.62)

Using these equations the density of states can be calculated for each spin
projection. For one spin projection the energies are shifted upwards by the
exchange field (E −→ E+H), while for the other spin the energies are lowered
(E −→ E−H). The total density of states is the sum of the two spin resolved
densities. The results of an example calculation of these quantities are shown
in Figures 5.6a-5.6c.

For nonzero values of the exchange field the spin resolved density of states
loses its symmetry around E = 0. For spin up electrons the density of
states smears out at negative energies, lowering the subgap, while at positive
energies the density of states becomes sharper, increasing the subgap. For
spin down electrons the effect of the exchange field on the density of states
is exactly opposite. The total density of states remains symmetric. In the
presence of an exchange field the characteristic peak at E = ∆0 remains, but
decreases in height as the exchange field increases. The subgap decreases
with an increasing exchange field and has completely closed at H = 1.5.

The dependence of this energy gap on the exchange field is shown more
accurately in Figure 5.7. It can be seen that the energy gaps decreases linearly
with the exchange field. Furthermore, for large values of the exchange field
the density of states converges towards its value in the normal state and the
height of the characteristic peaks at E = ±∆0 diminishes.
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Figure 5.6: Density of states at the center of a one-dimensional SF-F-FS
junction for various values of the exchange field. (a) density of states for
spin-up electrons (b) density of states for spin-down electrons (c) total density
of states. calculated with a FEM model with parameters γBM = 0.3, ϕ =
0.6, s = 1, L = 5.
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Figure 5.7: Normalized density of states at the center of a one-dimensional
SF-F-FS junction as a function of the energy and the exchange field. calcu-
lated with a FEM model with parameters γBM = 0.3, ϕ = 0.6, s = 1, L = 5.

5.3 2D model

The above described one-dimensional model can be extended to two dimen-
sions to take into account the effect of the ferromagnetic layer thickness dF
and the proximity effect parameter γ and to investigate the behavior of cur-
rents inside the superconductors.

Close to the 0-π transition, the current distribution inside the SF-F-FS
junction is remarkably different from that of the SN-N-NS junction. This
current distribution is shown in Figures 5.8a and 5.8b. The current is mostly
located in the ferromagnetic material. In contrast to the non-ferromagnetic
case the current density is not highest in the region between the supercon-
ducting electrodes, but just outside this region under the electrodes. This
shift is accompanied by a vortex-like behavior of the current density in the
superconductor. These vortices occur when the exchange field in the ferro-
magnet is not strong enough to flip the direction of the current in the full
superconductor. The two opposite flows of currents in the superconductor
cause the vortices. For larger exchange fields the directions of the currents
in the superconductors become homogeneous and the vortices vanish.

This occurrence of vortices in the junction is a good example of behav-
ior that can only be described by a two-dimensional model. In the one-
dimensional model, the phases inside the superconductors are assumed con-
stant, while vortices can only appear in the presence of phase gradients.
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Figure 5.8: Current density inside an SF-F-FS junction. (a) depicts the ab-
solute value of the current, (b) depicts the direction field inside the junction.
calculated with parameters γBM = 1, γ = 0.1, t = 0.1, s = 0.5, L = 5, dF =
0.4, dS = 5, ξ = 1, ϕ = π/2, H = 1.12.

The dependence of the critical current on dF and γ is shown in Figures
5.9a and 5.9b. It can be seen that just as in the SN-N-NS junction the
critical current decreases with increasing dF and γ due to current spreading
and suppression of the superconductivity in the electrodes. Only near the
critical exchange field this does not hold. Furthermore, it can be seen that
the critical exchange field decreases significantly as dF increases, while it
only changes slightly when varying γ. In the limit dF −→ 0, γ −→ 0 the results
converge to the result obtained in the 1D model.
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Figure 5.9: Dependence of the critical current in an SF-F-FS junction on
(a) dF with γ = 0.1 fixed (b) γ with dF = 0.1 fixed. The dashed line
indicates the dependence obtained in the one-dimensional model. calculated
with parameters γBM = 1, t = 0.1, s = 0.5, L = 5, dS = 5.

77



Chapter 6

Conclusion and Outlook

6.1 Conclusion and Discussion

The goal of this thesis was to construct and implement a two-dimensional
model of the SN-N-NS Josephson junction and to calculate quantities of
interest such as the supercurrent density distribution and the density of states
throughout this junction.

We implemented a stable numerical scheme to solve the 1D and 2D Usadel
equations on the SN-N-NS junction using the Φ-parametrization and calcu-
lated the supercurrent densities. The numerical solutions correspond well
to analytical solutions in the 1D limit found in literature. The 2D model
allowed us to determine the distribution of the current density not only in-
side the normal metal but also inside the superconductors. This allowed us
to take into account the inverse proximity effect and to accurately calculate
current distributions inside the whole junction. Knowledge of these distri-
butions might aid experimentalists in the designing of new junctions with
desired properties.

Next, we extended our study of the SN-N-NS junction to real energies and
calculated the density of states. We derived analytical expressions for the
density of states in the one-dimensional limit, and implemented numerical
discretizations for the 1D and 2D junctions based on the θ, χ-parametrization.
The numerical results in 1D were consistent with the analytical solutions.
The two-dimensional model generalized these results and allowed the deter-
mination of the density of states in the complete junction for all junction
parameters and geometries.

In hindsight the θ, χ-parametrization was not the most convenient scheme
to use for these calculations. Due to the periodicity of the Green’s functions
in this parametrization it induced additional unphysical solutions, and due
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to the unboundedness of θ it was numerically not always stable, requiring a
global Newton method and an accurate initial guess for convergence. It is
worth noting that the stability of the scheme depends on the phase difference.
The scheme is stable for small phase differences, while it becomes less stable
as the phase difference approaches π. This makes this parametrization suit-
able for calculations in bilayers with zero phase difference, but not for Joseph-
son junctions. Other parametrizations, such as the Riccati parametrization
promise to be more stable for these junctions.

We also extended our model of the SN-N-NS junction to a junction with
current inflow boundary conditions. For this type of junction it is predicted
that a large enough current in the superconducting electrodes may cause
depairing effects and thereby decreases the pair potential. In our numerical
results we however did not observe this phenomenon. One reason for this
discrepancy might be that we did not choose optimal junction parameters
that maximize the current flowing in the superconductors and therefore the
depairing. In addition, in our model we fix the magnitudes of the Green’s
functions and the pair potential at the boundaries Γ± to their bulk value.
This might also be the reason of the regular exponential behavior of the pair
potential in the electrodes, rather than it having a reduced value.

Lastly, we considered the case of an SF-F-FS junction. We derived an-
alytical solution for the supercurrent density in the one-dimensional limit,
illustrating how the exchange field leads to a 0-π transition. We constructed
numerical schemes for the solving the full 1D and 2D model and applied it to
calculate current distributions inside the junction and showed that near the
transition point vortices can appear in the superconductors. We also imple-
mented a numerically stable 1D scheme based on the Riccati parametrization
to calculate the density of states and showed how an exchange field leads to a
decrease of the energy gap, and eventually an overall decrease of the density
of states. Unfortunately, due to time constraints we were not able to extend
this model to two dimensions.

6.2 Outlook

Even after one year of hard work we were not able to solve every problem we
wanted to tackle. Below we will discuss some interesting starting points and
suggestions for future research based on our work:

• θ, χ-parametrization vs Riccati parametrization To calculate the
density of states in the SN-N-NS junction we used the θ, χ-parametrization.
This parametrization proved very useful for deriving analytical solu-
tions, but not for numerical calculations due to instabilities. For cal-
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culations on the SF-F-FS junction we instead considered the Riccati
parametrization. This parametrization turned out to be much faster
and numerically more stable. We thus recommend using the Riccati
parametrization for future numerical research on solving the real energy
Usadel equations.

• Depairing in electrodes due to current-injection
In section 4.4 we investigated the case of homogeneous current-injection
into the SN-N-NS junction. We did, however, not observe any depair-
ing effects in this setting. We believe that this is either because of
sub-optimal parameter choices leading to small currents in the super-
conductor or because of the boundary conditions imposed on the super-
conductors. For future work we suggest that it should be investigated
what the optimal parameters are and whether other types of boundary
conditions which better model current inflow might be suitable in this
setting.

• Investigating the SF-F-FS junction
In Chapter 5, we investigated the SF-F-FS junction by including the
effect of an exchange field. Due to time constraints we did not manage
to fully treat this junction. In particular, it would be interesting to fur-
ther investigate the formation and behavior of vortices in the current
density near the critical exchange field and to implement a 2D numeri-
cal discretization based on the Riccati parametrization to calculate the
density of states inside the full junction and to investigate how this
distribution differs from that inside a SN-N-NS junction.

• Topological junctions
In our work we set up the machinery to solve the Usadel equations in
two dimensions. This machinery can be used to consider also other
types of junctions than the ones considered in this thesis. Recently,
versions of the Usadel equations for topological materials have been
derived [50,51]. These equations are very similar to the regular Usadel
equations except for their treatment of an exchange field. It might
thus be interesting to investigate the properties of junctions consisting
of topological and ferromagnetic materials based on our models. To
our knowledge this has not been attempted before.
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Appendix A

Numerical implementation
SN-N-NS Junction

In this appendix, we present the solution procedure for the self-consistency
equations. We will also discuss the derivation of the weak formulations and
resulting systems of algebraic equations obtained by applying the finite el-
ement method to the Usadel equations in the different parametrizations.
Additionally, we provide a convergence test of our fixed-point iterations to
validate our code.

The full code used to obtain all results in this thesis can be found online
at https://github.com/vbosboom/Usadel.

A.1 Self-consistency equation

For a complete description of a superconducting junction the Usadel equa-
tions need to be solved together with the self-consistency equation

∆ ln t+ 2t
∞∑
n=0

[∆

ωn
− Φ(ωn)√

ω2
n + |Φ|2

]
= 0. (A.1)

Solving this equation requires the solution Φ(ωn) of the Usadel equations at
all Matsubara frequencies 0 ≤ ωn <∞. For a numerical calculation, a finite
cutoff-frequency ωmax has to be chosen. A good criterion for this cutoff-
frequency is ωmax � ∆. In our code we choose ωmax = 5∆. This provides
sufficient accuracy for our calculations.

Since the solutions of the Usadel equations depend on ∆ and vice versa
these quantities have to be calculated in a coupled fashion. For this purpose
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Figure A.1: Convergence of the Anderson-Picard method for the self-
consistency equations using different acceleration coefficients m.

the self-consistency equation is rewritten into a different form:

∆ =
2t
∑∞

n=0
Φ(ωn)√
ω2+|Φ|2

ln t+ 2t
∑∞

n=0
1
ωn

. (A.2)

In this form the self-consistency equation can be solved using a fixed-point
method such as the Picard iteration. This method is very stable, but the
convergence is quite slow.

To improve convergence we applied Anderson’s acceleration method with
restarts to the self-consistency equation [40, 41, 52, 53]. This significantly
accelerates the convergence rate of the self-consistency equation as illustrated
in Figure A.1. Based on test calculations we chose the acceleration parameter
m = 5 as parameter during our computations. The iterative process was
continued until the pair potential converged within a tolerance of 10−5.

A.2 θ, χ-parametrization

A.2.1 Weak formulation and system of equations

Suppose we want to solve the Usadel equations in the θ, χ-parametrization
(4.7)-(4.18) on the SN-N-NS junction shown in Figure 4.1. To derive the
weak formulation and the resulting system of algebraic equations we follow
a similar approach as we did for the Φ-parametrization in Chapter 3. For
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the weak formulation we consider the equations in the S1 region as an exam-
ple:

PDE :

In S1 :

− ξ2∇2θS + ξ2 sin θS cos θS(∇χS)2 (A.3)

= iE sin θS +
1

2
cos θS

(
∆e−iχS + ∆∗eiχS

)
,

− ξ2∇ ·
[

sin2 θS∇χS
]

= − i
2

sin θS
(
∆e−iχS −∆∗eiχS

)
,

(A.4)

Subject to :

On ΓI :

∇θS · n = 0, (A.5)

∇χS · n = 0, (A.6)

On ΓSN :

γBξ sin2 θS∇χS · n = γ sin θN sin θS sin(χN − χS),
(A.7)

γBξ∇θS · n = γ
[

sin θN cos θS cos(χN − χS) (A.8)

− cos θN sin θS
]
,

On Γ− :

cos θS =
E√

E2 −∆2
0

, (A.9)

χS = −ϕ
2
. (A.10)

In the θ, χ-parametrization the Usadel equations transform into two coupled
partial differential equations. The weak formulation will thus consist of two
parts as well. Following the same approach as for the Φ-parametrization the
following weak formulation is obtained:

ξ2

∫
S

∇θS · ∇ηSdS =

∫
S

ηS
[
− ξ2 sin θS cos θS(∇χS)2

+ iE sin θS +
1

2
cos θS(∆e−iχS + ∆∗eiχS)

]
dS (A.11)

+
ξγ

γB

∫
ΓSN

ηS[sin θN cos θS cos(χN − χS)− cos θN sin θS]dΓ,
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and

ξ2

∫
S

sin2 θS∇χS · ∇ηSdS = − i
2

∫
S

sin θS(∆e−iχS −∆∗eiχS)dS

+
ξγ

γB

∫
ΓSN

ηS sin θN sin θS sin(χN − χS)dΓ. (A.12)

Similar weak formulations can be derived in the S2 and N regions. We
expand the solutions into the Lagrangian basis functions:

θS1 ≈ θ̃S1 =

nS1∑
j=1

θ1,jφS1,j, χS1 ≈ χ̃S1 =

nS1∑
j=1

χ1,jφS1,j,

θS2 ≈ θ̃S2 =

nS2∑
j=1

θ2,jφS2,j, χS2 ≈ χ̃S2 =

nS2∑
j=1

χ2,jφS2,j,

θN ≈ θ̃N =

nN∑
j=1

θN,jφN,j, χN ≈ χ̃N =

nN∑
j=1

χN,jφN,j.

Introducing these expansions into the weak formulation (A.11)-(A.12) yields
the following system of equations

S(u)u = f(u),

with

S(u) = diag


S1,1

S1,2(u)
S2,1

S2,2(u)
SN,1
sN,2(u)

 ,

u =


θ̃1

χ̃1

θ̃2

χ̃2

θ̃N
χ̃N

 ,

f(u) =


f1,1(u) + f1,2(u) + f1,3(u) + fB1,1(u)

f1,4(u) + fB1,2(u)
f2,1(u) + f2,2(u) + f2,3(u) + fB2,1(u)

f2,4(u) + fB2,2(u)
fN,1(u) + fN,2(u) + fBN,1(u)

fBN,2(u)

 ,
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with

S1,1i,j = ξ2

∫
S1

∇φS1,i · ∇φS1,jdS, (A.13)

S1,2i,j(u) = ξ2

∫
S1

sin2 θ̃S1∇φS1,i · ∇φS1,jdS, (A.14)

f1,1i(u) = −ξ2

∫
S1

sin θ̃S1 cos θ̃S1∇χ̃S1 · ∇χ̃S1φS1,idS, (A.15)

f1,2i(u) =

∫
S1

iE sin θ̃S1φS1,idS, (A.16)

f1,3i(u) =

∫
S1

1

2
cos θ̃S1

[
∆ exp(−iχ̃S1) + ∆∗ exp(iχ̃S1)

]
φS1,idS, (A.17)

f1,4i(u) =

∫
S1

1

2i
sin θ̃S1

[
∆ exp(−iχ̃S1)−∆∗ exp(iχ̃S1)

]
φS1,idS, (A.18)

fB1,1i(u) =
ξγ

γB

∫
ΓSN

[
sin θ̃N cos θ̃S1 cos

(
χ̃N − χ̃S1

)
− cos θ̃N sin θ̃S1

]
φS1,idΓ,

(A.19)

fB1,2i(u) =
ξγ

γB

∫
ΓSN

[
sin θ̃N sin θ̃S1 sin

(
χ̃N − χ̃S1

)
φS1,idS. (A.20)

The element matrices and vectors in the S2 and N layers are similar. Since
this weak formulation is differentiable with respect to θ and χ, both the
Newton method and the Picard method can readily be applied to solve this
system of equations.

A.2.2 Comparison of iterative solvers

In this section we compare the three different fixed-point algorithms we
developed to investigate which solver is the most convenient for the θ, χ-
parametrization. In Figure A.2 the convergence graphs of these fixed-point
methods are shown. The calculations were performed for a real value of the
energy E.

Both the Picard iteration and the Anderson accelerated Picard iteration
perform poorly. The reason is that the Usadel equation now contains singular
(or at least very large) solutions, which violate the contraction property that
is needed for the Picard iteration to converge. The Newton method with line
search performs as expected. In the last few iterations the convergence is
clearly quadratic. In the first few iterations this is not yet the case because
of the small step size that the line search algorithm gives.
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Figure A.2: Convergence graphs for different fixed-point methods applied to
the Usadel equations in the θ, χ-parametrization.

A.3 Riccati parametrization

A.3.1 Weak formulation and system of equations

In this section we consider the Usadel equations in the Riccati parametriza-
tion (5.9)-(5.20) on the SN-N-NS junction shown in Figure 4.1. To derive
the weak formulation we consider these equations in the S1 region:

PDE :

In S1 :

− ξ2∇2αS − ξ2NSβS(∇αS)2 = iEαS +
∆

2
− α2

S

∆∗

2
,

(A.21)

− ξ2∇2βS − ξ2NSαS(∇βS)2 = iEβS −
∆∗

2
+ β2

S

∆

2
,

(A.22)

BCs :

On ΓI :

∇αS · n = 0, (A.23)

∇βS · n = 0, (A.24)

91



On ΓSN :

γBξ∇αS · n = γ(αN − αS)(1− αSβN)NN , (A.25)

γBξ∇βS · n = γ(βN − βS)(1− βSαN)NN , (A.26)

On Γ− :

αS =
∆0e

−iϕ/2

−iE +
√

∆2
0 − E2

, (A.27)

βS =
−∆0e

iϕ/2

−iE +
√

∆2
0 − E2

(A.28)

Following the standard approach and by applying the natural boundary con-
ditions the weak formulation of the Usadel equations in the Riccati parametriza-
tion can be found to be

ξ2

∫
S1

∇αS · ∇ηSdS −
∫
S1

ηS
[
2NSβS(∇αS)2 + iEαS − α2

S

∆∗

2

]
dS (A.29)

+
ξγ

γB

∫
ΓSN

ηSαSNN

[
1− αSβN + αNβN

]
dΓ =

∫
S1

∆

2
ηSdS +

ξγ

γB

∫
ΓSN

NNαNηSdΓ,

and

ξ2

∫
S1

∇βS · ∇ηSdS −
∫
S1

ηS
[
2NSαS(∇βS)2 + iEβS + β2

S

∆

2

]
dS (A.30)

+
ξγ

γB

∫
ΓSN

ηSβSNN

[
1− βSαN + βNαN

]
dΓ = −

∫
S1

∆∗

2
ηSdS +

ξγ

γB

∫
ΓSN

NNβNηSdΓ.

Subsequently, the solutions can be expanded into the Lagrangian basis func-
tions

αS1 ≈ α̃S1 =

nS1∑
j=1

α1,jφS1,j, βS1 ≈ β̃S1 =

nS1∑
j=1

β1,jφS1,j,

αS2 ≈ α̃S2 =

nS2∑
j=1

α2,jφS2,j, βS2 ≈ β̃S2 =

nS2∑
j=1

β2,jφS2,j,

αN ≈ α̃N =

nN∑
j=1

αN,jφN,j, βN ≈ β̃N =

nN∑
j=1

βN,jφN,j.

Using these expansions the weak formulation for the complete junction can
be turned into the following system of equations

S(u)u = f(u),
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with

S(u) = diag


S1,1 + S1,2(u) + S1,3 + S1,4 +B1,1(u) +B1,2(u) +B1,3(u)
S1,5 + S1,6(u) + S1,7 + S1,8 +B1,4(u) +B1,5(u) +B1,6(u)
S2,1 + S2,2(u) + S2,3 + S2,4 +B2,1(u) +B2,2(u) +B2,3(u)
S2,5 + S2,6(u) + S2,7 + S2,8 +B2,4(u) +B2,5(u) +B2,6(u)
SN,1 + SN,2(u) + SN,3 +BN,1(u) +BN,2(u) +BN,3(u)
SN,5 + SN,6(u) + SN,7 +BN,4(u) +BN,5(u) +BN,6(u)



u =



α̃1

β̃1

α̃2

β̃2

α̃N
β̃N



f(u) =


f1,1 + fB1,1(u)
f1,2 + fB1,2(u)
f2,1 + fB2,1(u)
f2,2 + fB2,2(u)
fBN,1(u)
fBN,2(u)

 ,
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with

S1,1i,j = ξ2

∫
S1

∇φS1,i · ∇φS1,jdS, (A.31)

S1,2i,j(u) = −
∫
S1

2NS1 β̃S1∇α̃S1 · ∇φS1,jφS1,idS, (A.32)

S1,3i,j = −
∫
S1

iEφS1,iφS1,jdS, (A.33)

S1,4i,j =

∫
S1

α̃S1

∆∗

2
φS1,iφS1,jdS, (A.34)

B1,1i,j(u) =
ξγ

γB

∫
ΓSN

NNφS1,iφS1,jdΓ, (A.35)

B1,2i,j(u) = − ξγ
γB

∫
ΓSN

NN α̃S1 β̃NφS1,iφS1,jdΓ, (A.36)

B1,3i,j(u) =
ξγ

γB

∫
ΓSN

NN α̃N β̃NφS1,iφS1,jdΓ, (A.37)

f1,1i =

∫
S1

∆

2
φS1,idS, (A.38)

fB1,1i(u) =
ξγ

γB

∫
ΓSN

NN β̃NφS1,idΓ. (A.39)

The rest of the matrices and vectors can be obtained from (A.31)-(A.39) by
the substitutions α↔ β,∆ −→ −∆∗. The matrices and vectors in the S2 and
N layers are similar. The resulting system of equations can iteratively be
solved using a fixed-point method.

A.3.2 Comparison of iterative solvers

A comparison of the three fixed-point methods discussed in section 3.5 is
shown in Figure A.3. This figure shows that the Riccati parametrization is
much more stable than the θ, χ-parametrization, since now all three fixed-
point methods converge well. The Picard method converges linearly as pre-
dicted, but the convergence is quite slow. In this setting it is advantageous
to apply Anderson acceleration, which significantly increases the rate of con-
vergence. The fastest method both in the number and iterations and in the
overall computing time is, however, still the Newton method with line search,
although due to the line search algorithm it seems to only converge quadrat-
ically in the last two iterations when the iterates are already very close to
the real solution.
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In some cases, especially when the energy is close to the superconducting
energy gap, the Picard method does not converge. In general, the Newton
method with line search is the best performing method.
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Figure A.3: Convergence graphs for different fixed-point methods applied to
the Usadel equations in the Riccati parametrization.
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Appendix B

Glossary

B.1 List of symbols

Symbol Meaning Unit
D Diffusion constant m2/s
d Junction thickness m
e Elementary charge C
E Energy eV
EF Fermi energy eV
F Anomalous Green’s function -
G Regular Green’s function -
H Exchange field eV
Ic Critical current A
Is Supercurrent A
L Normal metal length m
N Density of states eV −1m−1 or eV −1m−2

RN Normal state resistance Ω
s Electrode spacing m
T Temperature K
Tc Critical temperature K
W Junction width m
α Riccati Green’s function -
β Riccati Green’s function -
Γ Domain boundary -
γ Proximity parameter -
γB Boundary transparency parameter -
∆ Energy gap eV
θ θ, χ Green’s function -
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ξ Coherence length m
ρ Normal state resistivity Ωm
Φ Φ Green’s function eV
ϕ Phase difference -
χ θ, χ Green’s function -
Ω Computational domain -
ωn Matsubara frequency -
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