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Management Summary 

In this research, we investigate how Zwolle can anticipate proactively on the expected growth of 

electric vehicle (EV) users in its municipality. Since Zwolle currently has no empirical data on EV 

charging, it does not have any reliable insights to anticipate on the required public charging 

infrastructure. As a solution, ElaadNL created a prognosis chart. In this prognosis chart, ElaadNL 

calculated the required number of public charging points (CPs) in each neighborhood in Zwolle, 

for three prognosis years: 2025, 2030 and 2035. However, since their underlaying methods for 

calculating these numbers are not publicly available, Zwolle cannot validate these numbers.  

To provide insights about the required number of public CPs in Zwolle, we developed a simulation 

model for Dutch municipalities, for two purposes. The first purpose is to determine the required 

number of CPs in a neighborhood and the peak number of public CPs charging simultaneously in 

a neighborhood. This is done with a simulation model, in which charging sessions are simulated 

for three categories of EV users in a neighborhood (i.e., residents without a home CP, visitors, and 

commuters).  

The second purpose is to measure the number of required CPs in a neighborhood in three 

alternative scenarios. In the first scenario, the effect of placing a smaller or larger number of CPs 

on the peak CP shortages is measured. In the second and third scenario, the effect of a cap on the 

parked time and a cap on the idle time (parked time after charging is finished) on the required 

number of CPs is measured. 

Methods 

For each charging session in the developed simulation, several values were drawn from data. The 

time between two EV arrivals at a CP, the parked time at a CP, and the power demand during a 

charging session were drawn from empirical data distributions. The charging time was determined 

by dividing the drawn power demand over the mean charging power of a CP. This mean charging 

power of a CP was based on an assumption by Zwolle. The number of weekly charging sessions 

per EV were drawn from a normal distribution, with parameters estimated from literature. The 

number of expected EVs per neighborhood were taken over from the ElaadNL prognosis chart. 
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From the dataset generated by our simulation, the required number of CPs were determined by 

using a method that was proposed by the municipality of Utrecht. In this method, the mean number 

of occupied CPs during the busiest hour in a week (week peak hour) in a neighborhood is measured 

over 4 weeks of data. Utrecht defines the required number of CPs by the smallest value for which 

during the week peak hour on average 3 CPs remain unoccupied. 

Results 

Because there was no empirical data available on Zwolle, the required number of CPs from our 

simulation approach was compared with the prognosed number of CPs by ElaadNL. In this 

comparison we observed that our approach tends to predict a larger number of CPs than ElaadNL 

in neighborhoods with less EVs. On the contrary, in neighborhoods with a larger number of EVs, 

our approach tends to predict a smaller number of CPs than ElaadNL. Since our approach 

determines the required number of CPs based on the stochastic peak occupancy and smaller 

populations tend to be more volatile for stochastic peaks, these differences were expected. Using 

stochastic peaks as a basis to determine the required number of CPs can indicate a better reflection 

of real-world scenarios, compared to the method used by ElaadNL.  

From the results, three conclusions were drawn. First, the effect of using excess capacity of private 

CPs at work locations for public charging on the required number of public CPs was estimated. 

This effect can decrease the total required number of CPs by about one fourth. 

Second, in case of a shortage of CPs, the queued number of EVs increased exponentially. This 

exponential shortage becomes apparent during the peak hours when less than 95% of CPs are 

placed in a neighborhood. In case of excess CPs, the excesses CP capacity increased linearly. From 

this we conclude that Zwolle should avert capacity shortages over capacity excesses.  

Third, a cap on the parked time or the idle time decreased the required number of CPs in a 

simulated neighborhood by up to 47% and 61% respectively. Of these two, a cap on the parked 

time is already used in regular parking, making it easiest to implement. However, a too short cap 

on the parking time led to the ending of sessions before the charging process had finished. This 

limited its potential for decreasing the required CPs in a neighborhood. In case of a cap on the idle 

time, this effect did not occur. However, for a maximum idle time a more advanced system is 

required to inform the EV user when the EV finished charging.  
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Recommendations 

We have three recommendations for implementation. First, Zwolle should anticipate for at least 

95% of the calculated required CPs for each neighborhood in the years 2025, 2030 and 2035, to 

prevent the shortages described in this thesis.  

Second, Zwolle should look at the feasibility of implementing two legislative instruments that can 

decrease the required number of CPs, namely a cap on the idle time and the usage of excess 

capacity of private CPs at work locations by residents and visitors.  

Third, Zwolle should stay alert for technological developments on the EV market. One way to 

anticipate on the effect of these developments on the required number of public CPs is by updating 

the probability distributions in our simulation model, when newer (more recent) data becomes 

available. 

We have two recommendations for further research. First, this research proposed a method to 

determine the required number of CPs in a neighborhood. However, determining where in the 

neighborhood these CPs should be situated was beyond the scope of this research. This is a relevant 

problem for Zwolle on which further research is recommended. 

Second, our method to determine the required number of CPs in a neighborhood also calculated 

the peak number of CPs charging. However, determining if this demand would be problematic for 

the current power grid required more research that was also beyond the scope of this research. This 

is a relevant problem on which further research is recommended after the previous recommended 

research is finished.  
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1. Introduction 

In correspondence to the Paris climate agreement, the Dutch government aims to decrease the 

emissions of greenhouse gasses with 49% by 2030 and to 95-100% by 2035 (RIVM, 2021). To 

achieve this, the Dutch National Institute for Public Health and Environment (RIVM) regards the 

adoption of electric vehicles (EVs) as an important focus to transition to a more sustainable form 

of mobility. Since the use of EVs requires the availability of charging points (CPs) in 

neighborhoods, the transition from regular vehicles to EVs requires a revamp of the parking 

infrastructure in the Netherlands. Even though most municipalities have started the adoption of 

CPs in their neighborhoods, the current growth of new CPs is too slow for the growing demand. 

In almost 40% of the neighborhoods in the Netherlands, CP shortages occur during the occupancy 

peak hours (Enpuls, 2020). 

The municipality of Zwolle recognizes the shortage of CPs but does not know how to anticipate 

proactively on the increasing CP demand. In this research, we investigate how Zwolle can 

anticipate on the growing adoption of EVs by citizens in the municipality.  

This chapter discusses the objectives of the research and the outline of this thesis. Section 1.1 

describes the context on the municipality of Zwolle with regards to EV charging and describes the 

motivations for this research in more detail. Section 1.2 identifies the problems that Zwolle faces 

when ensuring sufficient EV charging capacity and describes the problems regarded in this thesis. 

From this, the research goals are formulated in Section 1.3 that are used to formulate the research 

questions. 

 Context description 

This section describes the relevant context on EV charging in Zwolle. Section 1.1.1 describes the 

most important characteristics of Zwolle and the current situation of the EV charging infrastructure 

in Zwolle. Section 1.1.2 introduces the research motivation. 
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1.1.1 EV charging in of Zwolle 

The municipality of Zwolle is the capital of the 

province Overijssel, the Netherlands. With a total 

population of about 130,000 citizens (CBS, 2020), 

Zwolle is the 19th largest city in the Netherlands. 

Since the placing of the first public CP in 2011, 

Zwolle noted an increasing growth of the number 

of applications for new CPs since 2018.  

In the current situation, the municipality of Zwolle 

has about 210 publicly available CPs for EVs 

available (Figure 1.1), of which 50 are situated in 

public parking garages and 160 in the residential 

areas (Arcgis, 2021).  

Zwolle currently does not anticipate proactively on new CPs and places its new CPs as a result of 

a filed application by a citizen (Zwolle, 2021). A citizen of Zwolle can freely apply for a new CP 

when they can prove buying or leasing an EV that cannot be charged at their own residence, or at 

a publicly available CP within a radius of 250 meters from their residence. After an application is 

approved, a location is selected and an objection procedure is started. If no residents object, the 

CP is placed at the selected location. In the current situation, in case of no objections, the 

procedural time from the first application to the placing of a CP as set by Zwolle should be 26 

weeks.  

In practice however, this procedural time often takes longer. In the media, several complaints can 

be found with regards to the currently existing procedure. In a response to a research by Stentor, a 

regional newspaper, tens of responders complained about the long procedure time before a new 

CP was realized (Stentor, 2020). The increased procedural time is partly caused by the objections 

of neighboring residents during the objection phase of the procedure. An important objection is 

that the adding of CP limits the number of available parking spots for regular cars, which are 

already perceived as scarcely available in some neighborhoods. 

  

 
Figure 1.1: Publicly available CPs in Zwolle (Arcgis, 2021) 
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1.1.2 Research motivation 

As a result of the Dutch climate goals, the number of EVs in the Netherlands is expected to grow 

at an increasing rate (RVO, 2020). Therefore, the municipality of Zwolle wants to anticipate on a 

strong increase of demand for public charging capacity by EVs in the near future. To do so, Zwolle 

wants to decrease the procedural time of the current application procedure for public CPs, whilst 

also anticipating on demand for public CPs proactively. Zwolle requires insights in the expected 

number of required public CPs. In the realization of new CPs, Zwolle acknowledges that it must 

take several factors into account. The two most important factors that are regarded by Zwolle, are 

the required capacity from already existing parking spots and the increased demand of power on 

the power grid. From a recent study, we expect the latter to be the most important bottleneck. This 

study indicated that parts of the low voltage grid may in its current state not be suitable to handle 

the increased demand for power for the charging of the expected number of EVs in the future 

(Hoogsteen, Molderink, Smit, Hurink, & Kootstra, 2017). 

 Problem identification 

This section identifies the problems that Zwolle faces to proactively anticipate on the required 

number of public CPs in the future. To identify and describe the core problems, the problems and 

their mutual relations are structured in the problem cluster that is shown in Figure 1.2. The problem 

cluster starts with the discrepancy between the desired situation and the current situation, as 

perceived by the problem owner (Heerkens & Winden, 2012, pp. 22-23). In case of the 

municipality of Zwolle, we formulate this problem as “insufficient knowledge to fulfill the 

required charging capacity effectively”. 

The main reason why Zwolle cannot plan effectively for the required charging capacity, is that 

Zwolle currently has no insights in where and when new CPs are required. Therefore, Zwolle 

cannot plan for future scenarios, without which Zwolle has no means to estimate if the power grid 

offers sufficient capacity in its current state to fulfill the future demand, or if improvements to the 

power grid are required. If the latter is the case, this should be anticipated such that alterations to 

the power grid can be made in time. Even though municipalities are not responsible for bottlenecks 

in (and alterations to) the power grid, these bottlenecks strongly influence the availability of CPs.  

The difficulties of planning for new CPs are caused by two problems. The first problem is that 

Zwolle currently does not use any key performance indicators (KPIs) to measure the utilization of 
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CPs. Consequently, Zwolle cannot effectively determine when the capacity of a CP is fully utilized 

and therefore cannot decide when extra CPs in a neighborhood may be required. The second 

problem is that currently no numbers on the expected increase in EVs in Zwolle and their 

corresponding demand for charging capacity, are present. Hence, the installation of new CPs is not 

planned proactively, but is purely application driven. This means that the process of installing a 

new station is only initiated after a citizen applies for one.  

 

Based on the problem analysis and the problem cluster in Figure 1.2, two core problems are 

identified (demarked in Figure 1.2 by yellow squares), namely: 

1.) The KPIs on the utilization of CPs are unknown to Zwolle (Problem 1.1). 

2.) No insights in the future developments of the demand for charging capacity are available to 

Zwolle (Problem 2.1).  

The second core problem was recently addressed by the release of a national prognosis chart 

(ElaadNL, 2020) by ElaadNL. ElaadNL is a knowledge and innovation center, that is an authority 

in the field of smart charging in the Netherlands. The chart offers a prognosis for the number of 

residents with an EV and the required number of CPs for neighborhoods in the Netherlands in the 

years 2025, 2030 and 2035. The prognosis chart can offer a solution for the second core problem 

(Problem 2.1) and the two subsequent problems in the problem cluster (as depicted by the dotted 

square in Figure 1.2). However, the method of calculating the number of CPs in the prognosis 

chart are not publicly available. Therefore, Zwolle does not know how to estimate the required 

number of CPs (Problem 3) for the prognosed number of EVs (Problem 2.1).  

 

Figure 1.2: Problem cluster on the EV charging infrastructure in the municipality of Zwolle 
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As an alternative, we propose a simulation approach for calculating the required number of CPs. 

This model combines the EV quantities per neighborhood of the prognosis chart (Problem 2.1) and 

the KPI on the utilization of CPs (Problem 1.1). With this simulation approach, insights can be 

provided in the required number of CPs for a prognosed number of EV. By simulating the charging 

sessions of the prognosed number of EVs, the peak number of occupied CPs in a neighborhood 

can be estimated, for which the method is discussed in Section 2.2. By also calculating the peak 

number of EVs that charge simultaneously in our simulation, insights can be provided for the 

remaining problem, namely: 

3.) Zwolle is not able to timely determine where the power grid may be a bottleneck for new public 

CPs (Problem 4.1). 

 Research design 

This section describes the setup of the research. Section 1.3.1 formulates the research objectives.  

Section 1.3.2 formulates the research questions related to those research objectives. This section 

also serves as an outline for the thesis. 

1.3.1 Research objectives 

Two research objectives are identified from the problem identification in Section 1.2, namely: 

1.) To describe the context and the relevant KPIs required to predict the required number of CPs 

in a neighborhood. 

First, we require KPIs to measure when a CP is fully utilized to predict the required number of 

CPs in a neighborhood. This is done by describing a KPI that is used in other cities where the 

adaption of CPs is at a more advanced stage. The most frequently used KPI to measure the required 

number of CPs in a neighborhood was drawn up by the municipality of Utrecht. In this method, 

the number of required CPs are calculated based on the peak occupancy of existing CPs in a week. 

This method is explained in more detail in Section 2.2. Furthermore, we require insights in the 

expected growth of EVs in Zwolle. This information is obtained from the prognosis chart by 

ElaadNL and the corresponding documentation. The information on EV growth in this prognosis 

chart is discussed in more detail in Section 2.3. 

2.) To create a method for predicting the number of required public CPs in Zwolle proactively. 
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Second, we want to develop an approach to predict the required number of CPs in a neighborhood. 

The main reason why Zwolle does not use the predictions by ElaadNL, is the lack of transparency 

in how ElaadNL determined the number of CPs in a neighborhood. The proposed approach must 

provide more insights to how we predict the number of CPs, compared to the prognosis chart by 

ElaadNL. The approach should also be able to provide insights in the peak capacity required from 

the power grid, in a neighborhood.  

To develop an approach to predict the required number of CPs, the relevant literature is discussed 

in Chapter 3, that is used to develop a model in Chapter 4. This model must be able to simulate the 

charging sessions of a predicted number of EVs in a neighborhood. This is done by simulating 

their arrivals and lengths of stay (LOS) over a simulation time. The simulation model is used for 

two purposes in Chapter 5. First, to predict the required number of CPs from the simulated charging 

sessions, by using the KPI from the first research goal. Second, to show the effect of legislative 

instruments. This is done by experimenting with alternative numbers of CPs and caps on the length 

of stay, to predict their effect on the required number of CPs in a neighborhood. 

1.3.2 Research questions 

To meet the goals of Section 1.3.1, we require an answer to the following main question: 

“How can we model the charging sessions that take place in a neighborhood, to predict 

the required number of public CPs in that neighborhood?” 

To answer this question, several research questions are formulated and the approach on each 

research question is briefly addressed. Each of these research questions is covered in one chapter. 

Chapter 2 discusses the context on EV charging that is relevant in this research. To do this, the 

context on the EV charging process is discussed. Furthermore, a KPI is discussed that is used by 

other municipalities to determine the required number of CPs in a neighborhood. Lastly, this 

chapter describes the EV growth in Zwolle, by using the ElaadNL prognosis chart. This chapter 

answers the following research questions: 

1.) What is the relevant context on EV charging? 

a. What is the general context on EV charging? 

b. How can we define the number of required public CPs?  

c. What is the expected development of the EV charging demand in Zwolle? 
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Chapter 3 describes the relevant literature to our research problem. It discusses the most important 

approaches used to model the arrivals and charging sessions of EVs at CPs by doing a systematic 

literature study. This chapter answers the following research questions: 

2.) What can we learn from the literature on modelling the occupancy of CPs over time? 

a. Which modelling approaches are used on EV charging in literature? 

b. Which modelling approach is best suited for our research problem? 

Chapter 4 describes our model of a public charging infrastructure in a neighborhood, by using the 

best fitting approach from the literature study of Chapter 3. This chapter discusses the 

characteristics and distributions that are necessary for our modelling approach and explains the 

assumptions made for the missing information. This chapter answers the following research 

questions: 

3.) How can we simulate for the required number of CPs in a neighborhood?? 

a. Which relevant distributions and characteristics can we extract from the available data? 

b. How can we use the approaches from literature in our model? 

c. Which assumptions need to be made as a substitute for missing information? 

Chapter 5 uses the model described in Chapter 4 for three purposes. First, to determine the required 

number of CPs in a neighborhood. Second, to look at the peak values of EVs that charge 

simultaneously, to indicate the required capacity from the power grid. Third, to experiment with 

the effect of legislative instruments on the required number of CPs in a neighborhood. This chapter 

answers the following research questions: 

4.) What conclusions can we draw from the results? 

a. How does our simulation approach perform, compared to the predictions by ElaadNL? 

b. How sensitive is our simulation approach to the assumptions in our model? 

c. What is the effect of alternative scenarios on the performance of our simulated setup? 

Chapter 6 draws the most important conclusions, discusses our work and its limitations, and 

present our recommendations for future research. 
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2. Context analysis 

This chapter concerns the relevant context for this thesis. Section 2.1 describes the general context 

on EV charging. Section 2.2 introduces a method proposed by the municipality of Utrecht to 

determine the required number of public CPs in a municipal area. This method is later used in 

Chapter 4, as the basis of the calculations for the required number of CPs in our simulation model. 

Section 2.3 introduces the prognosis charts by ElaadNL and discusses the expected EV growth in 

Zwolle. The outcomes from the prognosis chart are used in the experiments in Chapter 5. Section 

2.4 concludes this chapter by answering the first set of research questions: 

1.) What is the relevant context on EV charging? 

a. What is the general context on EV charging? 

b. How can we define the number of required public CPs?  

c. What is the expected development of the EV charging demand in Zwolle? 

 Context on EV charging 

This section provides a better view on the context on EV charging. Section 2.1.1 describes the 

charging process as it is regarded in this thesis. Section 2.1.2 discusses the different characteristics 

of EV users, which are necessary to understand when analyzing the data in Chapter 4. To do this, 

the EV users are described by three categories, namely “residents”, “guests and visitors” and 

“commuters” for which the different characteristics of each group are described. Section 2.1.3 

describes the different types of chargers, by discussing the differences between public- and private 

CPs and their unique characteristics.  

2.1.1 Description of the charging process 

The charging process of a single EV can be described as the straightforward process of an arrival 

at a CP, a charging session, and a departure from a CP. In this research, we regard a neighborhood 

as an area in which many of these processes take place over a day. To make sure a charging process 

can take place when an EV arrives, a sufficient number of CPs should be available in a 

neighborhood. To describe the EV charging infrastructure in a neighborhood, we think of a 

neighborhood as a large parking area with N CPs evenly spread over that area. Before the start of 

a charging session, an EV arrives in a neighborhood, as is visualized in Figure 2.1. If the EV driver 

finds an unoccupied CP, the EV starts its charging session at that CP. If the EV driver cannot find 
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an unoccupied CP, the charging session is postponed until a parking spot becomes available. This 

is shown as “overflow” in Figure 2.1. When the charging session ends, the EV leaves the CP to 

either a regular parking spot or an alternative destination.  

 

Two main factors are regarded that influence the required number of public CPs in a neighborhood. 

The first factor is the population size of EV users in the neighborhood that require a public CP, 

which is discussed in detail in Section 2.1.2.  

The second factor is the length of stay (LOS) at a CP, which can be described by two parallel 

processes, namely the charging time and the parking time. The charging time is the time between 

the moment an EV is connected to a CP and the moment an EV stops charging. The parked time 

is the time between the EV arrival and EV departure. The difference between the charging time 

and parked time can be regarded as “idle time”, defined as the time in which an EV “blocks” a CP 

whilst not charging. The two parallel processes and the idle time are visualized in Figure 2.2. 

 

 
Figure 2.1: Graphical representation of the EV arrival and departure process in a neighborhood with N CPs 

 

Figure 2.2: Graphical representation of the charging- and parked times, during a charging session 
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Both the mean charging time and the mean parked time can be influenced by the municipality, to 

influence the required number of CPs. The charging time can be influenced by the realized 

charging power of the CPs. The idle time can be influenced with a cap on the parked time. Chapter 

5 experiments with the charging power and the use of a cap on the parked time, to determine their 

effect on the required number of CPs in a neighborhood. 

2.1.2 Types of EV users 

To understand the EV population in a neighborhood, EV users can be divided over subpopulations 

based on their charging behavior and needs. Three categories of EV users are identified based on 

literature, namely “residents”, “visitors” and “commuters”. In this section, these groups are 

described by their characteristics. These groups are used in our modelling approach in Chapter 4. 

Residents 

Residing EV users (residents) are citizens who own or lease an EV and use a CP near to their 

home. Residents should always use a private CP at home when their place of residence includes a 

private parking location, such as a driveway, carport or car shed. If this is not the case, a resident 

is dependent on a public CP. A public CP for residents must be reasonably close to their home. In 

literature, this distance varies between 100-250 meters. In case of Zwolle, the maximum distance 

of 250 meters is used (Zwolle, 2021).  

Visitors 

Visiting EV users, or visitors, are non-citizens who use a CP for a single or limited and infrequent 

use. Examples of visitors are houseguests, customers, or (day-) tourists. Visitors may charge at the 

private CPs at the private parking facilities of the visited party. If these are unavailable, a visitor 

is also designated to a public CP. 

Commuters 

Commuting EV users, or commuters, are generally non-citizens of the municipality who frequently 

use a CP in the area near or at their work location. Examples of commuters that drive EVs are 

mainly business workers, where the percentage of employees who drive an EV depends on the 

sector that they work in (NewMotion, 2021). Commuters can typically charge at a private CP at 
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the parking facilities at their office or working area. If these are unavailable, a commuter is 

designated to a public CP.  

2.1.3 Types of CPs 

Two different types of chargers can be distinguished, namely private- and public chargers. 

Technologically, these chargers are similar, but the difference between these chargers is the usage 

that they are intended for. This section explains the differences between public and private 

chargers, why we mainly focus on public chargers, and why we regard the privately owned work 

CPs as an opportunity.  

Private chargers 

Two types of privately owned chargers are discussed, namely CPs at home- and at work locations. 

Home chargers 

Home chargers are privately owned CPs by a citizen of the municipality. In principle, these CPs 

are not used by other citizens and serve no public purpose. However, owners of such chargers do 

not demand space of a public CP either. In the case of Zwolle, anyone with the spatial resources 

to charge an EV on their own property must provide for their own charging facility and cannot 

apply for a public CP. In this thesis, home CPs are regarded as unable to serve a public purpose. 

Home CPs and their required capacity from the power grid, are therefore left out of our simulation 

model, in Chapter 4. 

Work chargers 

Work chargers are privately owned CPs by a private or public organization, with the purpose to 

charge the EVs of their employees. The presence of such CPs at an office or workplace depends 

on the decision making of an individual organization and factors such as the availability of own 

parking facilities, job types, percentage of commuters employed and the average commuting 

distance (Refa, 2019). In principle, work CPs are privately owned and cannot be used by residents. 

However, the excess capacity after worktime and during weekends could be utilized by visitors or 

residents and may offer a strategic opportunity to the municipality in ensuring the public 

availability of CPs. We therefore incorporate these CPs in our simulation model, in Chapter 4. 
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Public chargers 

Two types of public chargers are discussed, namely CPs on public chargers and CPs on charging 

clusters (freely translated from the Dutch term “laadpleinen”). In the remainder of this thesis, both 

are regarded as “Public CPs” used by residents without a private CP and by visitors and tourists. 

Public chargers 

Public chargers are typically owned by an operating company and can be found in the public 

domain. Typically, a regular public charging station has two CPs, located at two adjacent public 

parking spots. Public CPs are a public commodity, facilitated by the municipality for public use. 

Therefore, it usually does not matter if the user is a resident without a home CP, a commuter 

without a work CP, or a visitor. The parking spots that are adjacent to a charger are reserved for 

EVs, meaning regular cars risk a fine when parking at a location that is dedicated for EVs. This 

also means that an EV is only allowed to be positioned at such a parking spot for charging. In 

Zwolle, an EV should leave the CP when the EV battery is full, to utilize a CP as well as possible. 

However, this is not always complied with, resulting in the “idle time” described in Section 2.1. 

The costs for public charging consist of at least an electricity rate, but additional parking fees might 

apply. In Zwolle, only an electricity rate is charged (Allego, 2020).  

Charging clusters 

A charging cluster is a single charger station with more than two CPs, jointly connected to one 

connection on the power grid (NKL, 2019). When deciding between a CP and a charging cluster, 

two main tradeoffs must be considered. First, a charging cluster centralizes multiple CPs into a 

single parking lot, compared to multiple regular CPs that are placed at different parking locations 

over a larger area. This means that the average distance from a random home to the nearest CP 

will be larger compared to a decentralized alternative. However, a centralized option will have a 

higher expected availability compared to that of a regular charger, due to the concentration of a 

larger number of CPs at a single location. Second, with a charging cluster it is easier to moderate 

the available power capacity and distribute it more efficiently over the connected CPs, since all 

CPs in a cluster are jointly connected to the power grid. Moderating the available power capacity 

can lower the peak load on the power grid. However, this will also result in variable charging 

speeds, leading to a less predictable charging time compared to a regular CP.  
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 Defining the required number of public CPs 

Section 2.1.3 discussed the difference between public and private CPs. Since Zwolle is responsible 

for the availability of public CPs, this research focusses on this CP type. This section describes a 

method in which the peak occupancy rate of public CPs is measured as a KPI to determine the 

required number of public CPs in a neighborhood. This method was proposed by the municipality 

of Utrecht and is used by municipalities where the implementation of EV CPs is at a more 

advanced stage (M. Kok, personal communication, 2020). 

Utrecht measures the utilization of CPs by the peak occupancy rate Rn,W in a neighborhood n, 

during week number W. To calculate this, the mean occupancy rate during each week hour t is 

determined by dividing the total occupancy (the time an EV is connected to a CP Ton,t,w (in 

minutes) and the total time a CP is defective  Tdn,t,w (in minutes) over all CPs in the neighborhood) 

over the total potential charging time (number of CPs Cn,w in the neighborhood multiplied by sixty 

minutes). Then, the average value for each hour over the last 4 weeks is taken to include (yet limit) 

the effect of incidental peaks. The maximum average value of all week hours is taken as the peak 

occupancy rate for a neighborhood. The peak occupancy rate Rn,W for a neighborhood is calculated 

with Equation 2.1. 

Rn,W = max
t∈{1,2,…,168}

(

 ∑

(
Ton,t,w + Tdn,t,w
Cn,w ∙ 60

)

4

W

w=W−3
)

  (2.1) 

Where: 

Rn,W  is the peak occupancy rate for neighborhood n, in week number W,  

Ton,t,w is the total connected time (in minutes) over all CPs, in neighborhood n, on week 

hour t, in week number w, 

Tdn,t,w  is the total downtime (in minutes) over all CPs, in neighborhood n, on week hour 

t, in week number w, 

Cn,w is the number of CPs situated in neighborhood n, in week number w.  
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When the peak occupancy rate in a neighborhood surpasses a certain upper limit, Utrecht assumes 

a shortage in that neighborhood and new CPs should be added to bring the occupancy rate under 

that upper limit. Utrecht defined this upper limit for the peak occupancy rate in a neighborhood 

through two approaches. In the first approach, the upper limit Ln,W is calculated by the peak 

occupancy rate Rn,W. The upper limit equals the number of CPs in a neighborhood that should be 

in the neighborhood to have on average at least 3 free CPs during the peak hour. In other words: 

the upper limit to the peak occupancy rate Ln,W equals the peak occupancy rate Rn,W for which the 

peak unoccupancy rate (1 − Rn,W), multiplied by the total number of CPs, is equal to or larger 

than 3. The upper limit value to the peak occupancy rate is calculated by Equation 2.2. 

Ln,W = max
Cn,w∈{Z≥}

(Rn,W | (1 − Rn,W) ∙ Cn,w ≥ 3) (2.2) 

Where: 

Ln,W  is the upper limit to the peak occupancy rate for neighborhood n, in week number 

W, 

Cn,w and Rn,W are the same as for 2.1.  

In the second approach, Utrecht has defined 7 intervals for the number of CPs in a neighborhood, 

as shown in Table 2.1. Utrecht has specified an upper limit to the peak occupancy rate for each 

interval. The intervals of CPs are chosen such that each number of CPs in an interval, multiplied 

by their shared peak unoccupancy rate, have a value close to 3 free CPs.  

 

  

Table 2.1: Maximum allowed occupancy rate, for a number of charging points in a neighborhood, in Utrecht (Utrecht, 2020). 

Number of charging points situated in the 
neighborhood (Cn) 

Upper limit (Ln, W) to the peak occupancy 
rate (Rn, W) 

Up to 6 charging points 50% 
7 - 10 charging points 60% 

11 - 15 charging points 70% 
16 - 20 charging points 80% 
21 - 35 charging points 85% 
36 - 60 charging points 90% 
Over 60 charging points 95% 
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In this second approach, each number of CPs in an interval share the same upper limit, whereas in 

the first approach, a new upper limit value is calculated when the number of CPs changed. When 

comparing the two approaches, the first is more precise but the second may be simpler in practice. 

In our simulation model in Chapter 4 and 5 we prefer precision and use the first approach. 

As discussed, Utrecht determined that on peak hours, on average at least 3 CPs in a neighborhood 

must remain unoccupied. This value results from a subjective tradeoff by Utrecht between costs 

and peak occupancy. The peak occupancy rate of a CP decreases as the number of neighboring 

CPs increase. A decreased peak occupancy rate leads to an increased availability for EV drivers. 

However, an increased number of CPs leads to an increase of the fixed operating costs. Therefore, 

the “right” peak occupancy of a CP is subjective and a tradeoff between the fixed operating costs 

and the availability must be made by the municipality. This tradeoff is beyond the scope of this 

research. However, Chapter 5 looks at the effect of a deliberate peak shortage (or excess) of CPs 

in a neighborhood, on the number of EVs that must wait for a CP during the peak hour. 

In conclusion: the required number public CPs in a neighborhood can be determined by the mean 

number of occupied CPs during the peak hour. If there are on average less than 3 CPs available 

during this peak hour, new CPs should be placed in that neighborhood until this criterion is met. 

 EV user development in Zwolle 

Sections 2.1 and 2.2 discussed the context of EV charging and how to calculate the required 

number of CPs. This section provides insights in the expected population growth of EV users in 

Zwolle. This is done by describing the prognosis chart that was introduced in Chapter 1. This 

prognosis chart is developed by ElaadNL, a knowledge and innovation center that is specialized 

in the field of smart charging in the Netherlands. To help municipalities in preparing for the 

expected growth of EVs in their municipality, ElaadNL publishes an annually updated prognosis 

chart for the total required number of CPs in the years 2025, 2030 and 2035. This section discusses 

the most relevant outcomes from the prognosis chart for Zwolle, that was published in 2020. 
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The municipality of Zwolle can be divided into a historical city center, surrounded by a total of 

sixteen other residential areas, as shown in Figure 2.3. Each residential area consists of several zip 

code neighborhoods. These neighborhoods are used as the basis of the prognosis chart of ElaadNL 

(ElaadNL, 2020). Figure 2.4 shows a picture of the municipality of Zwolle, as show in the 

prognosis chart for 2025. In this figure, a color was assigned to each of the neighborhoods, 

corresponding to the total number of prognosed CPs that are required in the prognosed year. For 

each of these neighborhoods in each prognosed year, the number of EV users and the number of 

each different CP type are estimated.  

The method to determine these numbers is not publicly available and therefore unknown to us. 

However, from an early publication on which the prognosis chart is based (Montfort, Visser, Poel, 

& Hoed, 2016), it can be concluded that these numbers are the result from a multiple regression-

analysis on a number of variables. An overview of the variables used is not publicly available, but 

from Montfort, Visser, Poel & Hoed we know they include demographic characteristics, such as 

the average income and age distribution of a neighborhood and data obtained from private 

research, e.g., the analysis of aerial photos for the number of private driveways and public parking 

availability. 

 

Figure 2.3: Seventeen residential areas in Zwolle 

(Zwolle, Wijken in Zwolle, 2020) 

 

 

Figure 2.4: Visualization of EV intensity per neighborhood in the 

prognosis chart for Zwolle for 2025 (ElaadNL, 2020) 
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Since ElaadNL does not show how their prognosed values are calculated, or offer options for 

different scenarios of legislative instruments, Zwolle is missing too much context to use these 

prognosed CPs as a basis plan for the required CPs in their municipality. However, due to the 

reputation of ElaadNL, we assume these predictions to be sufficiently reliable to be used to validate 

our simulation approach in Chapter 5, despite us being unable to verify them.  

Prognosed growth by ElaadNL 

When regarding the findings from the prognosis chart for Zwolle, the total expected number of 

CPs will increase, as is visualized in Figure 2.5. Based on the calculations by ElaadNL, Zwolle 

requires a CP increase from almost 4,000 CPs up to the year 2025 to over 7,500 CPs in 2030 and 

almost 14,000 CPs in 2035. These numbers consist of private CPs at home (27-28%), public CPs 

(31-32%) and private CPs at work (40-41%), corresponding to the three CP types discussed in 

Section 2.1.3. The total overview of the prognosed numbers for Zwolle per neighborhood can be 

found in Appendix A (ElaadNL, 2019).  

  

 
Figure 2.5: Visualization of the expected increase of required public CPs in Zwolle from 2025 to 2030 and 2035 (ElaadNL, 

2020) 
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 Conclusions 

This chapter answered the first set of research questions, namely: 

1.) What is the relevant context on EV charging? 

a. What is the general context on EV charging? 

b. How can we define the number of required public CPs?  

c. What is the expected development of the EV charging demand in Zwolle? 

To answer to sub question a, we looked at three things. First, a charging process of an EV can be 

described as two parallel processes, namely a charging time and a parked time. The difference 

between the two processes can be regarded as an idle parked time. In the parking process, two 

factors influence the number of required CPs in a neighborhood, namely the idle parked time (time 

an EV occupies a CP after charging has finished) and the charging power.  

Second, charging sessions can be divided over three categories of EV users, namely residents, 

visitors, and commuters. These categories are helpful to account for the difference between EV 

owners, in their behavior of charging and their charging needs.  

Third, Zwolle is not responsible for private CPs at home and cannot utilize these CPs for public 

use. However, the availability of public CPs is the responsibility of Zwolle. Therefore, we focus 

solely on the public CPs in this research. The private CPs at work locations are also included, to 

determine the effect of utilizing the excess capacity of these CPs on the required number of public 

CPs in a neighborhood. 

To answer sub question b, we discussed the method of the municipality of Utrecht, which is used 

to calculate the required number of CPs from empirical charging data. In this method, the number 

of CPs in a neighborhood is chosen such that in the peak occupancy hour in a neighborhood, on 

average 3 CPs are still available.  

To answer sub question c, we looked at the prognosis charts from ElaadNL for the municipality of 

Zwolle. We compared the expected number of CPs, required at the years 2025, 2030 and 2035, 

and saw that the total expected number of CPs are expected to increase from almost 4,000 points 

in 2025 to over 7,500 points in 2030 and almost 14,000 points in 2035. From these, 31-32% CPs 

are required in the public domain and therefore should be facilitated by the municipality of Zwolle. 
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3. Literature review 

This chapter introduces the relevant literary context on modelling the occupancy of CPs over time. 

In this literature review, two different modelling methods in literature are discussed, that can be 

used to model the occupancy of CPs over time. These methods are mathematical modelling 

approaches and simulation modelling approaches. Section 3.1 describes two examples of 

mathematical modelling approaches, namely the Markov Chain model in Section 3.1.1 and the 

Queueing theory model in Section 3.1.2. Section 3.2 describes the simulation modelling approach. 

Section 3.3 concludes this chapter by answering the second set of research questions: 

2.) What can we learn from the literature on modelling the occupancy of CPs over time? 

a. Which modelling approaches on EV charging are used in literature? 

b. Which modelling approach is best suited for our research problem? 

 Mathematical modelling approach 

This section describes two mathematical modelling approaches that are used in literature. The 

Markov chain model and the Queuing model are discussed in Section 3.1.1 and 3.1.2 respectively. 

3.1.1 Markov chain model 

The first modelling approach for the occupancy of CPs in literature uses a continuous-time Markov 

chain. This approach is based on a method by which the parking lot capacity of a regular parking 

lot can be calculated (Caliskan, Barthels, Scheuermann, & Mauve, 2007). Kumar & Udaykumar 

describe that the charging process of an EV can be regarded as the sequence of an arrival, a 

processing time, and a departure. In their approach, they assume that arrivals and departures of 

EVs are mutually independent (Kumar & Udaykumar, 2015) (Kumar & Udaykumar, 2016). We 

must note that Kumar & Udaykumar do not divide the processing time into a charging time and an 

idle parked time, which is necessary to determine the peak number of CPs charging or to 

experiment with the effect of the idle time on the required number of CPs in a neighborhood.  

From data on EV charging behavior, an average probability for an arrival and an average 

probability for a departure of a single EV can be derived. With these probabilities, Kumar & 

Udaykumar form a Markov chain-based model as depicted in Figure 3.1.  
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In this Markov chain the state Xn of the parking lot is equal to the number of EVs X that are 

charging at time n. In this method, n is the time slot that equals the time to transmit a single EV. 

The state changes depending on the occurring event in a timeslot: Xn+1 = Xn − 1 if a departure 

takes place, Xn+1 = Xn + 1 if an arrival takes place and Xn+1 = Xn if both an arrival and departure 

take place or if nothing happened, for n ∈ {0, 1, . . , N − 1}. The transitions between two states are 

depicted by curved arrows in Figure 3.1. These transitions are dependent on probabilities a and b, 

where a is the probability of an EV arrival and b is the probability of an EV departure. The 

probabilities a and b are mutually independent and independent of state Xn.The probability pi,j is 

the probability to transition from state i to state j. This probability is dependent on probabilities a 

and b, as is shown in Equation 3.1. 

pi,j = 

{
 
 
 
 

 
 
 
 

p1 = a ∙ (1 − b),

p2 = (1 − a) ∙ b,

p3 = a ∙ b + (1 − a) ∙ (1 − b),

a,

1 − a,

0,

 

j = i + 1, i = 1, 2, … ;

j = i − 1, i = 1,2, … ;

j = i, i = 1,2, … ;

i = 0, j = 1 ;

i = 0, j = 0 ;

otherwise

 (3.1) 

 

From these transition probabilities, the stationary distributions are derived by calculating the 

probability Pn that a certain state Xnoccurs for each n, by Equation 3.2 and 3.3. 

Po = (1 +
a

p2
∙

p2
p2 − p1

)
−1

 (3.2) 

Pn =
a

p2
∙ (
p1
p2
)
n−1

∙ P0 (3.3) 

From the stationary distributions, Kumar & Udaykumar derive the expected (or, on average 

observed) number of EVs E[X] on the parking lot by the steady state distribution of Equation 3.4. 

 
Figure 3.1: Visualization of the Markov chain-based model, as described by Kumar & Udaykumar (2016) 
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E[X] = ∑n ∙ Pn

∞

n=0

 (3.4) 

From the continuous-time Markov chain-based model presented Kumar & Udaykumar, we can 

derive a method to determine the right number of CPs, to meet a given availability rate (a certain 

percentage of time the demand can be fulfilled). In this method, the required number of CPs C, 

equals the smallest value N for which the sum of the stationary probabilities from Po to PN equals 

(or is larger than) the lower limit of the availability rate A, as shown by Equation 3.5. 

C = min (N|∑Pn

N

n=0

≥  A) (3.5) 

Where: 

C is the required number of CPs, 

A is the lower limit value of the availability rate. 

3.1.2 Queueing theory model 

The second mathematical modelling approach found in literature was proposed by Bae & 

Kwasinski (2012). They use queueing theory to forecast the charging demand to determine the 

number of required CPs based on a desired occupancy rate. In this method, a M/M/s queueing 

model is used. The first M in M/M/s indicates that the arrivals of EVs at the charging location have 

a Poisson distribution with a mean arrival rate value of z(yi, t), at charging location yi, at time t. 

The second M in M/M/s indicates that the charging times of the EVs are exponentially distributed 

and mutually independent. To determine the completed sessions in an interval, Bae & Kwasinksi 

use the mean rate by which charging sessions are completed (charging completion rate). The 

charging completion rate per minute μ0 is calculated by dividing the average charging power of a 

CP Pav (in kW) over the average recharged capacity of a vehicle socav (in kWh), as is shown in 

Equation 3.6. To make sure the completion rate is translated from hours to minutes, this fraction 

is multiplied by a proportional constant k1 (
1

60
 to translate hours to minutes).  

μ0(t) = k1 ∙
pav
socav

 (3.6) 

The s in M/M/s indicates the number of identical CPs that are located at the charging location. In 

case of s occupied CPs, the system follows a single first-in-first-out (FIFO) queueing rule. For the 

system, the occupancy rate ρ at time t is calculated by dividing the mean arrival rate (z(yi, t)) over 
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the total discharge rate (number of CPs s multiplied by the charging completion rate μ0(t)), as is 

shown in Equation 3.7. 

ρ =
z(yi, t)

s ∙ μ0(t)
 (3.7) 

The M/M/s system is stable if the occupancy rate of the total CP infrastructure in a neighborhood 

ρ is smaller than 1. Therefore, the required number of CPs to have a stable charging infrastructure 

at time t equals the smallest value s for which ρ is smaller than 1.  

 Simulation modeling approach 

Both mathematical approaches have two shortcomings that make them not suitable for determining 

the required number of CPs by the method of Utrecht, as described in Section 2.2. First, these 

mathematical approaches calculate a steady state at a time t. In contrast, the method of Utrecht 

uses the occupancy peak, that is caused by the randomness of EV arrivals and the charging times. 

Second, both methods are not well suited to incorporate the continuously changing arrival and 

departure probabilities over the time.  

As an alternative to mathematical approaches, most papers use a simulation method to assess the 

charging behavior. In this method, a series of EV charging sessions are simulated by drawing event 

data (e.g., arrival times, charging times and departure times) from empirical distributions. This 

section is structured by three topics. Section 3.2.1 describes the literature on the distribution of 

charging sessions over time. Section 3.2.2 describes the literature on the length of stay (LOS) at 

CPs. Section 3.2.3 describes the literature on the weekly returns. 

3.2.1 Distributions of the start of charging sessions over time 

One of the first simulation models on EV arrivals proposes a normal distribution for the arrival 

probability of an EV (Cao et al., 2012). In the data analysis of Cao et al., 90% of the charging 

sessions started between 13:00 and 23:00 hours, with a peak at 18:00 hours, as shown in Figure 

3.2.  
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Li, Zhang & Wang (2018) state that the arrival intensity of EVs is indeed dependent on the time t, 

but that the arrivals at time t can be approximated by a Poisson process. Li et al. calculate the EV 

arrival probability P(X = k) according to Equation 3.8 (Li, Zhang, & Wang, 2018). In this 

equation, P(X = k) is the probability that k arrivals occur at time t and λ(t) is the expected arrival 

intensity at time t. 

P(X = k) =
λ(t)k

k!
∙ e−λ, k = 0,1, … , N (3.8) 

Predictors of demand load patterns 

Arias, Bae & Sungwoo (2016) propose that event patterns have an influence on the intensities of 

traffic and therefore on the charging intensities over time. In a data analysis, Arias, Bae & 

Sungwoo assess the traffic volume of cars over the day, assuming a direct relation between the 

intensity of regular cars and the intensity of EVs. In their analysis, the data is divided over four 

day-types. The intensities are shown in Figure 3.3 a-d, for a; event days (festivals and conferences), 

b; regular weekdays, c; holidays, d; Sundays (Arias, Bae, & Sungwoo, 2016).  

 
Figure 3.2: Distribution curve of the charging starting times of EV charging over the day, as proposed by Cao et al. (2012). 
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For day-type a, c, and d it is assumed that an EV is always charged at (or near) the home of the EV 

driver. For day-type b however, Arias, Bae & Sungwoo observe two distinct peaks (between 8:00 

and 9:00 and at 19:00 hours). From the assumption that a charging session starts after traveling, 

Arias, Bae & Sungwoo conclude that on these days, 50% of the charging sessions must occur at a 

work location in the daytime and 50% of the charging sessions at (or near) the home in the evening. 

Xing et al. (2019) show in an analysis of the load distribution of EV charging demand that not only 

the time and day-type, but also the different characteristics of urban areas affect the charging 

behavior of EV owners. For this analysis, the used data is divided over four areal categories and 

three day-type categories. The four areal categories are residential areas, commercial areas, 

industrial areas, and public service areas, which are shown in Figure 3.4 a-d, respectively. The 

number of charged vehicles in these four areal categories are 416, 328, 298 and 229, respectively. 

Each areal category shows the demand load pattern for the three day types, namely weekdays, 

weekend days and holidays.  

 

Figure 3.3: Four clusters of cars on different day-types, namely a; event days (festivals and conferences), b; regular weekdays, 

c; holidays, d; Sundays, on data from 1/1/2014-31/12/2014 by Arias & Bae (2016) 
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From the analysis of the demand load patterns, three observations are made. First, residential areas 

have the lowest demand load, even though they have the highest number of charging EVs (Figure 

3.4 a). This is because only low voltage charging facilities (3.5 kW) were available in these areas. 

Second, in industrial areas where EVs are mostly owned by commuters, a lower charging intensity 

on holidays is observed (Xing et al., 2019). Meanwhile the commercial areas and public service 

areas, where EVs are mostly for trips and entertainment, have a higher intensity on weekends and 

holidays than on weekdays. Third, the peaks of the charging intensity in residential areas are two 

hours later on holidays and weekend days, compared to workdays.  

 

Charging intensities over the day 

Most categorizations of EV charging behavior in literature are based on geographical 

characteristics. Shepero and Munkhammar (2018) present a different approach, where the EV 

charging sessions are divided over three distinct charging profiles that closely correspond to the 

profiles used in Chapter 2, namely “work”, “home” and “other”. By using these three categories, 

three distinct loading profiles can be identified, as is shown in Figure 3.5. In this figure, the arrival 

intensities over the day, for the three different groups are shown (Shepero & Munkhammar, 2018).  

 

Figure 3.4: Distribution patterns of demand load of different data types in four functional areas by Xing et al (2019) 
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3.2.2 Determining the length of a charging session 

Cao et al. (2012) introduced a method to determine the LOS by use of the charging time, where 

the charging time is calculated from the discharged battery capacity of a vehicle. Cao et al. assumed 

that the vehicle’s initial state of charge (SOC) at arrival is commonly between 20% and 80%, with 

an average value of 50% and a standard deviation of 30%. However, multiple methods to 

determine the SOC of an EV have been proposed in literature. Li et al. (2018) state that the SOC 

can always be assumed to be lower dan 80%. Xie et al. (2018), assume that the initial SOC is 

somewhere between 15%-30% and that SOC after charging is distributed evenly between 80%-

90%. In their turn, Xing et al. (2019) state that the SOC at the end of charging follows a normal 

distribution with a mean of 85% and a standard deviation of 3%. 

Drawing a SOC from a fitted distribution 

In most cases however, when empirical data is available, the SOC is drawn from a fitted 

distribution. According to multiple studies (Cao et al., 2012) (Dong et al., 2016), this initial SOC 

has a Gaussian probability density function f(s, μ, σ), as shown in Equation 3.9. In this density 

function, s is the initial SOC, μ is the mean initial SOC and σ is the standard deviation of the initial 

SOC. 

f(s, μ, σ) =
1

√2 ∙ π ∙ σ2
∙ e
−
(s−μ)2

2σ2  (3.9) 

 
Figure 3.5: Load profiles for three categories on an average day, charged with 3.7 kW, by Shepero & Munkhammar (2018) 
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Arias, Bae & Sungwoo (2016) observe that regular weekdays have two distinct peaks in the traffic 

intensity over a day, namely one at the work- and one at the home location. Based on this 

observation, they assume two charging periods. Therefore, they propose an alternative density 

function of the SOC of EVs on working days (Monday-Friday). The new density function for the 

SOC on these working days is shown in Equation 3.10. In this equation, pw is the fraction of EVs 

that are charged at work during the daytime and ps is the fraction of EVs that are charged at home 

during the evening. Furthermore, s is the initial SOC, μw and μh are the mean initial SOC at work 

and home respectively, and σh and σh are the standard deviations of the initial SOC at work and 

home, respectively (Arias, Bae, & Sungwoo, 2016). 

F(s, μw, σw, μh, σh) =
pw

√2 ∙ π ∙ σw2
∙ e
−
(s−μw)

2

2σw
2

+
ph

√2 ∙ π ∙ σh
2

∙ e
−
(s−μh)

2

2σh
2

 (3.10) 

From a data-analysis study, Arias, Bae & Sungwoo assume that pw = 0.5 and ph = 0.5, meaning 

that on a weekday, half of EV drivers charge their EV at work and the other half at home. 

Calculating a SOC based on vehicle characteristics and driving distance 

As an alternative approach, the SOC of an EV can be calculated from the energy consumption of 

a vehicle by the distance traveled between two charging sessions. Fiori, Ahn & Rakhba (2016) 

present an approach for which a set of variables that influence the energy consumption of an EV 

are used to predict its SOC (Fiori, Ahn, & Rakha, 2016). A similar method was later developed by 

Xing et al. (2019), who developed a dynamic power consumption models on different grades of 

road qualities. Since these methods use more detail than required for Zwolle, an in-depth review 

of these models is beyond the scope of this research. A simpler method to predict the SOC from 

the driving behavior is used by Amini, Kargarian & Karabasoglu (2016), where the daily driven 

distance MD is drawn from the lognormal distribution shown in Equation 3.11. The parameters μM 

and σM in Equation 3.11 are calculated in Equation 3.12 from the mean μMD and standard deviation 

σMD of the daily driven distance as determined from empirical data. In Equation 3.12, RVr is a 

standard normal random variable (Amani, Kargarian, & Karabasoglu, 2016). 

MD = eμm+σm∙RVr (3.11) 



28 
 

{
 
 
 

 
 
 
μm = ln

(

 
μmd
2

√μmd
2 + σmd

2

)

 

σm = √ln(1 +
σmd
2

μmd
2 ) 

 (3.12) 

From Equation 3.11, the expected EV energy demand Êd can be calculated by multiplying the 

daily driven distance MD by the average energy consumption per unit traveled Em, as is shown in 

Equation 3.13.  

Êd = MD ∙ Em (3.13) 

A drawback from this method is that it assumes a new charging session on each day, which is not 

in line with reality.  

Translating the SOC to the charging time 

From the initial SOC, the charging time can be calculated using a method proposed by Xie et al. 

(2018). This method is shown in Equation 3.14, where the charging time tc is the charged capacity 

(the percentual difference of the SOC before and after charging (SoCf − SoCi), multiplied by the 

battery capacity Cap), over the realized charging power (charging efficiency rate ηc, multiplied by 

the charging power pc) (Xie et al., 2018). 

tc =
(SoCf − SoCi) ∙ Cap

ηc ∙ pc
 (3.14) 

Relation between the EV arrival time and length of stay 

The length of stay (LOS) cannot be assumed to be homogenously distributed over time 

(Sadeghianpourhamami et al., 2018). Sadeghianpourhamami et al. describe the relation between 

the arrival times and departure times over the day, as is shown in Figure 3.5. The charging sessions 

in this figure are grouped into three categories, based on the characteristics of those charging 

sessions.  
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The category “park to charge” (in green) is the largest group and covers 62.9% of the data. These 

sessions have an average LOS of 2 hours and 28 minutes, of which 48 minutes are idle time. The 

“park to charge” group has charging sessions with a LOS that is closest to the charging time. 

Sadeghianpourhamami et al. hypothesize that EVs in this group park purely for the purpose of 

charging. The sessions in this category are scattered throughout the day. 

The category “charge near home” (in red) covers 9,3% of the data. In this category, charging 

sessions typically start in the afternoon and evening, stay connected over the nighttime and end 

the next morning between 4:00-12:00, regardless of the start time. Therefore, 

Sadeghianpourhamami et al. hypothesize that those sessions start on arrival at home, after work 

and stop before departing for work. Sessions in this category have an average LOS of 13 hours 

and 24 minutes, of which 10 hours are idle time and tend to end later during weekends compared 

to weekdays. The latter observation can be explained by a later leaving time in weekends.  

The category “charge near work” (in blue) covers 27,8% of the data. In this category, most sessions 

typically start between 5:00-12:00 and end between 12:00 and 18:00, regardless of the start time. 

These sessions have an average LOS of 8 hours and 42 minutes, of which 5 hours and 30 minutes 

are idle time. Therefore, Sadeghianpourhamami et al. conclude that these are cars that are left to 

charge during work hours.  

 
Figure 3.5: EV arrival and departure times per session by Sadeghianpourhamami et al. (2018) 
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3.2.3 Weekly returns 

Venegaz, Perez & Petit (2019) show the correlation between the battery capacity and the weekly 

number of charging sessions of an EV in Figure 3.6, which results from a data analysis of French 

mobility data. From this figure, two conclusions can be drawn. First, no more than 7 sessions per 

week take place for any of the battery types. Second, a larger battery capacity results in a smaller 

number of charging sessions (Venegas, Petit, & Perez, 2019).  

 

Alternatively, Refa & Hubbers (2019) use a set of charging data to determine the charging 

frequency of Dutch EVs. In the analysis, the charging frequency of EV owners is defined by the 

average number of charging sessions per week (Refa & Hubbers, 2019). From the results shown 

in Figure 3.7, Refa & Hubbers conclude that an EV has on average 4 charging sessions per week, 

with a standarddeviation  of 2 charging sessions.  

 

 
Figure 3.6: Distribution of the number of charging sessions per week of French EVs with a specific battery size by Venegas, 

Perez & Petit (2019) 
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Figure 3.7: Distribution of charging frequencies of Dutch EVs by Refa & Hubbers (2019) 
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 Conclusions 

This chapter answered the second set of research questions, namely: 

2.) What can we learn from the literature on modelling the occupancy of CPs over time? 

a. Which modelling approaches on EV charging are used in literature? 

b. Which modelling approach is best suited for our research problem? 

To answer these questions, we described three methods to model EV charging from literature. The 

first two methods were mathematical modelling approaches used in the specific context of EV 

charging, namely Markov chains and queuing theory. The third method used is the simulation 

approach. To show how often the different approaches are used in literature, an overview of the 

papers that were discussed is shown in Table 3.1.  

When analyzing the methods used in literature, both mathematical modelling options are not well 

suited to incorporate the continuously changing arrival and departure probabilities over time. 

Furthermore, both mathematical approaches calculated a steady state at a time t, whereas the 

method of Utrecht (as described in Section 2.2) uses the peak occupancy rate that is caused by the 

randomness of EV arrivals and the charging times. In contrast to the mathematical approaches, the 

three main processes regarded in Section 2.1.1 (arrival, charging time and LOS) can be modelled 

well with a simulation approach. Since we can apply the method of Utrecht on simulated data of 

these three processes, we consider simulation as the most appropriate modelling approach for our 

research.  
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 Table 3.1: Overview of the most relevant papers used and their relation to the three approaches. 
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4. Simulation approach 

This chapter describes our simulation approach on EV charging sessions in a neighborhood. 

Section 4.1 introduces our simulation approach. Section 4.2 discusses the required information for 

our simulation model and discusses the required data. Section 4.3 describes the process structure 

in our simulation approach. Section 4.4 describes the methods used for calculating the results in 

our simulation approach. Section 4.5 explains the alterations to our simulation approach for two 

experimental options. Section 4.6 concludes this chapter by answering the third set of research 

questions: 

3.) How can we simulate for the required number of CPs in a neighborhood? 

a. Which relevant distributions and characteristics can we extract from the available data? 

b. How can we use the approaches from literature in our model? 

c. Which assumptions need to be made as a substitute for missing information? 

 Introducing the modelling approach 

This section describes the objectives of our modelling approach and introduces how our simulation 

can model the charging infrastructure of Zwolle.  

This simulation has three objectives. First and most importantly, to predict the required number of 

CPs and the peak number of CPs charging in a neighborhood for a prognosed year. In total three 

prognosed years are regarded, namely 2025, 2030 and 2035, in conformance with Section 2.3. The 

number of CPs in a neighborhood is predicted according to the method by Utrecht, as described in 

Section 2.2. 

Second, to simulate the shortage when there are less CPs in a neighborhood than required. This 

shortage is measured by the peak queue length over the simulation duration in a neighborhood 

with a given number of CPs.  

Third, to determine the effect of a decreased idle time on the required number of CPs in a 

neighborhood. Section 2.1.1 explained how a decrease of the average idle time decreases the 

required number of CPs in a neighborhood. Two measures are used to decrease the idle time, 

namely a cap on the parked time and a cap on the idle time. To determine the effect of these 

measures, the number of CPs are predicted in a scenario with one of the two measures applied and 

are compared with the predicted number of CPs without a decreased idle time.  
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Chapter 3 concluded that the EV charging process in a neighborhood can be modelled most 

adequately with a simulation model. For all three objectives formulated in this section, the same 

simulation approach is used. However, additional functions are used for the second and third 

objective, which are described in Section 4.5. Furthermore, a simulation run is performed for each 

of the three EV categories introduced in Section 2.1.2 (residents, visitors, and commuters). In each 

simulation run, charging sessions are simulated over a simulated timespan. Each charging session 

is simulated by the four events that were described in Section 2.1.1, namely an arrival at a CP, a 

charging duration, a parked duration, and a departure from a CP.  

 Used data in our modelling approach 

This section introduces the data and information used in our simulation model in two steps. Section 

4.2.1 covers the required information to determine the number of charging sessions in a simulation 

session. Section 4.2.2 covers the data on the different events during a simulation session. 

4.2.1 Determining the number of charging sessions in a simulation session 

To determine the number of charging sessions in a simulation session, three characteristics are 

used. The first is the timespan that is simulated, indicating the number of weeks of charging data 

that is generated. The second is the number of EVs in each of the three categories in the simulated 

neighborhood. The third is the average number of weekly sessions of a single EV in each category.  

Simulated timespan 

In conformance with the method of Utrecht, 4 weeks are used as the simulated timespan. As 

described in Section 2.2, the municipality of Utrecht defines its required number of CPs by the 

peak hour of EV charging in a week. To determine this peak hour, Utrecht calculates the average 

CP occupancy per week hour over 4 weeks of empirical data.  

Number of EVs in a neighborhood 

The number of EVs in each of the three categories of EV users per prognosed year by ElaadNL 

are used as the number of EVs in a simulated neighborhood. An overview of these numbers per 

neighborhood can be found in Appendix A. 
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Average number of weekly sessions of an EV in each category 

The average number of charging sessions per week μi for an EV in a category i requires several 

assumptions, since there is no data available to us on these weekly returns. For the EV category 

“visitors”, we assume that their visit is an isolated event and therefore also require a single isolated 

charging session. From the literature study in Chapter 3, two details are known about the number 

of charging sessions per week for the EV category “resident” and “work”. First, Refa & Hubbers 

(2019) showed that an EV has on average 4 weekly charging sessions, with a standard deviation 

of 2 sessions. Second, Arias, Bae & Sungwoo (2016) discussed that half the sessions on workdays 

(Monday-Friday) can be assumed to take place on CPs near work and the other half on CPs near 

home. From these two assumptions, the mean number of charging sessions for residents and 

commuters in a neighborhood are defined by the following procedure: For a neighborhood, the 

population mean of the weekly sessions for EVs in a category is drawn from a normal distribution. 

Subsequently, the population mean of the weekly sessions is multiplied with the fraction of the 

sessions that take place in that neighborhood. The average number of weekly sessions per EV 

category are shown in Table 4.1.  

 

4.2.2 Required data on the simulated events 

To simulate a charging session, data distributions are used on each event. Since no empirical data 

from Zwolle is available, data distributions from ElaadNL are used (ElaadNL, 2020). These data 

distributions are drawn from a large dataset of charging sessions between 2018-2020. The 

following distributions are used for each simulated event: 

• Arrival at a CP: For the arrival at a CP, two probability distributions are used. First, the 

distributions of the total weekly sessions over weekdays. Second, the distribution of EV 

arrivals over the day. 

• Charging duration: For the charging duration, a probability distribution on the charged 

energy (in kWh) in a charging session is used. The charging duration is determined by 

dividing the charged kWh over the mean realized charging power of a CP. 

Table 4.1: Estimated average number of weekly sessions per EV in a category i. 

𝑖 Residents Visitors Commuters 

𝜇𝑖 
9

14
∙ 𝑁 (4,

2

√𝑛𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠
) 

1 5

14
∙ 𝑁 (4,

2

√𝑛𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠
) 
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• Parked duration: For the parked duration, a probability distribution on the connected time 

to a CP is used.  

• Departure from a CP: The departure time is determined by adding the parked duration to 

the arrival at a CP.  

The remainder of this section describes each of the used distributions in more detail. 

Arrivals per weekday 

The first distribution set used for EV arrivals is the distributions of the total weekly sessions over 

weekdays. Figure 4.1 shows the boxplots for the fraction of the weekly arrivals per day, for the 

three EV categories. This figure shows that in these distributions, no commuter arrivals take place 

on weekend days. For the resident and visitor charging sessions, fewer sessions take place on 

weekend days compared to workdays.  

 

Arrivals per 15 minutes over a day 

The second and third distribution sets used for EV arrivals are the distributions of EV arrivals over 

the day, namely one for weekdays (Monday-Friday) and one for weekends (Saturday-Sunday). 

Figure 4.2a-b shows the arrival probabilities per 15 minutes of the three EV categories, on 

weekdays and weekends, respectively. For weekdays, we observe that resident sessions have their 

peak in the late afternoon and the beginning of the evening, whereas commuter sessions have their 

peak in the morning. Visitor EVs have their arrivals more evenly distributed over the daytime, 

 

Figure 4.1: Distribution of charging sessions per day, per location type, as acquired from ElaadNL (2020) 
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with two small peaks that correspond to those of resident- and commuter sessions. The weekday 

distributions observed in Figure 4.2a roughly correspond to the general distributions described in 

Section 3.2.1. For the weekends, a different distribution can be observed where resident and visitor 

charging sessions have their peak over the daytime and no commuter sessions take place.  

 

 

Energy demand per charging event 

The distribution set used to describe the EV charging duration is the energy demand per charging 

event, from which the charging duration can be calculated. The cumulative distribution function 

(CDF) plot of the energy demand per charging session (in kWh) for each of the three EV categories 

are shown in Figure 4.3. The distribution of the energy demand of visitor- and commuter charging 

sessions appear to be distributed similarly, whereas the energy demand of resident charging 

sessions is much higher. The energy demand of charging sessions in the resident, visitor and 

commuter category are on average 24.1 kWh, 12.3 kWh and 12.7 kWh, respectively.  

 
Figure 4.2a: Distribution of the start of charging sessions per EV type, over the day for weekdays, as acquired from ElaadNL 

(2020) 
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Figure 4.2b: Distribution of the start of charging sessions per EV type, over the day for weekend days, as acquired from 

ElaadNL (2020) 
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Charging power of a CP 

To determine the charging duration from the energy demand, the average charging power of a CP 

is required. For this simulation, the average charging power of a public CP is estimated by Zwolle 

at 11 kW/h (M. Corée, personal communication, 2021).  

Connection times 

The parked duration of an EV equals the length of the connection time and is determined for each 

category of EV users. The CDF plot of the connection durations for the three EV categories are 

shown in Figure 4.4. In this figure, we can observe that 90% of commuter charging sessions take 

less than 10 hours and that 30% of resident charging sessions take less than 10 hours. These two 

observations correspond to the assumptions made by Sadeghianpourhamami, Refa, Strobbe & 

Develder (2018) in Section 3.2.2, stating that resident charging sessions take the longest and 

typically go overnight, whereas commuter session durations typically correspond to generic 

working times. This is also confirmed by the average connection durations, which for the resident, 

visitor and commuter categories take on average 12.0 hours, 8.1 hours, and 6.6 hours, respectively. 

 

 

Figure 4.3: CDF for the energy demand of a charging session, as acquired from ElaadNL (2020) 
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Figure 4.4: CDF for the connection duration of a charging session, as acquired from ElaadNL (2020) 

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
o

n
n

ec
ti

o
n

 d
u

ra
ti

o
n

 
(h

o
u

rs
)

Cumulative probability

Resident

Visitor

Commuter



39 
 

 Simulation structure 

This section describes the main structure of our simulation approach. Our simulation approach 

always performs a separate iteration for each of the EV categories. Each of these three iterations 

follows the same simulation structure that is visualized in Figure 4.5.  

 

The first step for each simulation iteration is to calculate the expected number of the total arrivals 

per week for the current category. To calculate this value, the expected number of EVs E[ni] in 

the current category i is multiplied with the expected average charging sessions per EV per week 

in the current category μi, as shown in Equation 4.1.  

E[si] = E[ni] ∙ μi (4.1) 

Where: 

si is the number of weekly charging sessions in category I, 

ni is the number of EVs in category i,  

μi is the mean number of weekly charging sessions per EV in category i. 

When the expected number of sessions per week is determined, the simulation iteration of the 

current EV category starts. This is done by drawing a waiting time until an EV arrival is created, 

for which the method is described in Section 4.3.1. When an EV is created, it follows the charging 

trajectory that is described in Section 4.3.2 and a new waiting time is drawn before a new EV is 

created. This process continues until the simulated time has finished. Subsequently, the process is 

repeated for the next EV category. Once all categories are simulated, the simulation ends. 

 

Figure 4.5: Visualization of the main simulation structure in our CP occupancy simulation approach 
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4.3.1 Method for determining the interarrival time 

This section describes the structure of the procedure to determine the interarrival time. This method 

is visualized in the main simulation structure of Figure 4.5, by the box “Draw waiting time until 

the next arrival” and is called upon at the start of a simulation session and after each time an EV 

is generated. This method uses the data distributions on the arrivals per weekday (Figure 4.1) and 

the charging events over the day (Figures 4.2 and 4.3) discussed in Section 4.2.2. The structure of 

this method is visualized in Figure 4.6.  

 

When called upon, the method starts by determining the current time in the simulation. From this 

current time, the current day ({Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, 

Sunday}) and the current day quarter ({0, 1, …, 47}, corresponding to a 15-minute time interval 

{00:00-00:15, 00:15-00:30, …, 23:45-00:00}) are determined. This current day and current day 

quarter serve as indices to draw from the data distributions described in Section 4.2.2. With these 

two values, the current arrival intensity λi,d,q is calculated by multiplying the expected weekly 

sessions E[si] (calculated by equation 4.1) with the mean fraction of sessions during the current 

weekday pi,d (drawn from the distribution in Figure 4.1) and the fraction of sessions during the 

current day quarter (drawn from the distribution in Figure 4.2), as shown in Equation 4.2. 

λi,d,q = E[si] ∙ pi,d ∙ pi,d,q (4.2) 

 

 

Figure 4.6: Visualization of the method for determining the interarrival time in our CP occupancy simulation approach. 
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Where: 

λi,d,q is the arrival intensity for category i, at day d, at quarter number q, 

pi,d is the average fraction of arrivals for category i, at day d, 

pi,d,q is the average fraction of arrivals for category i, at day d, at quarter number q,  

E[si] is the same as in 4.1. 

When the current arrival intensity is calculated, an interarrival time can be drawn. As described in 

Section 3.2.1, Li, Zhang & Wang (2018) showed that the arrivals of EVs can be approximated as 

a Poisson process, meaning that the interarrival time between two EV arrivals follows an 

exponential distribution. The interarrival time is therefore drawn from the probability density 

function shown in Equation 4.3, with the arrival intensity λi,d,q calculated in the previous step. 

f(x) = λi,d,q ∙ e
−λi,d,q∙x, x > 0 (4.3) 

After an interarrival time is drawn, it is checked if the interarrival time ends in the current quarter. 

If this is the case, the drawn interarrival time is the actual waiting time before a new EV is created. 

If this is not the case, we must assume that the arrival intensity and therefore the probability density 

function, changes in the next quarter. However, since the exponential distribution is a memoryless 

probability distribution, the distribution of the waiting time does not depend on the passed waiting 

time. Therefore, we can instead wait until the current quarter is over and when the current quarter 

has passed, ignore the remaining waiting time, return to the beginning of the procedure and draw 

a new interarrival time with the arrival intensity for that new quarter. This process is repeated, until 

an inter arrival time is drawn that ends in the current quarter. Once the interarrival time ends in 

that current quarter, the procedure finishes and either a new EV is generated or the current 

experiment ends. 

4.3.2 Charging trajectory of a generated EV 

This section describes the structure of the charging trajectory of an EV in our simulation. This 

trajectory is visualized in the main simulation structure of Figure 4.5, by the box “charging 

trajectory for current EV” and is called upon each time an EV is generated in the main simulation 

structure. This trajectory uses the data distributions on the energy demand and the connection times 

discussed in Section 4.2.2. The structure of this trajectory is visualized in Figure 4.7.  
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At the start of this process, the connection time (from the distribution in Figure 4.4) and the energy 

demand (from the distribution in Figure 4.3) for an EV are drawn, in which we assume that this 

connection time is equal to the parked time.  

From the drawn energy demand, the charging time is calculated. This is done by rewriting the 

method by Xie et al. (2018) in Section 3.2.2 into Equation 4.4. In this equation, the charging time 

of the n-th EV tEVn
charging

 equals the drawn energy demand dEVn
charging

 over the realized charging 

power (charging efficiency rate ηc multiplied by the charging power pc) 

tEVn
charging

=
dEVn
charging

ηc ∙ pc
 (4.4) 

With the value for the connection time tEVn
connected and the calculated value for the charging time 

tEVn
charging

, the idle time tEVn
idle  is calculated by Equation 4.5, assuming the process in Section 2.1.1. 

tEVn
idle = tEVn

connected − tEVn
charging

 (4.5) 

 

Figure 4.7: Visualization of the EV charging trajectory in our CP occupancy simulation approach. 
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When drawing the value for the connection time and the energergy demand for an EV, we must 

ensure that the calculated charging time, as determined from the drawn energy demand, does not 

exceed the connection time. However, we cannot simply redraw the connection time when the 

calculated charging time turns out to exceed the drawn connection time, since then the connection 

times in our simulation will no longer correspond to the empirical distributions. To make sure that 

the distributions in our model correspond to the empirical distributions from ElaadNL, whilst 

ensuring that the charging time does not exceed the connection time, we make the assumption that 

the distributions are strictly paired. This means that we assume that a value from the x-th percentile 

of one distribution, corresponds with a value from the x-th percentile of the other distribution. To 

incorporate this in our model, an integer value x is drawn from an uniform distribution between 0 

and 100. This value x serves as an index value, for which the corresponding x-th percentile are 

selected from both the CDF of the connection time and the CDF of the energy demand. 

After the charging time and idle time are initialized, it is checked if a CP is available. If this is the 

case, the current EV occupies that CP. If this is not the case, in reality the EV will come back after 

a short time to check if a CP has freed up. In our simulation, this is approximated by letting the 

EV enter a first-in-first-out (FIFO) queue. Once another EV finishes its charging session, the first 

EV in the queue immediately enters that CP. Therefore, there are never any free CPs in our model 

during peak hours with undercapacity. This is an optimal situation that is not likely to occur in the 

real world. In a real-world scenario, we expect a small ratio of unoccupied CPs during these peak 

hours. However, since we do not have the data to incorporate this effect in our simulation model, 

any inclusion of this in the simulation solely rely on assumptions, making the model more complex 

and not necessarily more reliable.  

When an EV occupies a CP, the charging sessions starts and the charging-start time is logged. 

Immediately after, charging starts for the calculated charging time duration tEVn
charging

. When the 

calculated charging time duration finishes, the charging-finished time is logged and the EV moves 

to an idle state, for the calculated idle time duration tEVn
idle . When the idle time duration finishes, the 

EV finishes its charging session, departs from the system and the departure time is logged. 
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 Calculating the simulation results 

This section describes how the results from our simulation approach are calculated and explains 

the chosen warmup period and the chosen number of replications for each experiment.  

Required number of CPs 

First the method for determining the required number of CPs and the corresponding peak number 

of CPs charging in a neighborhood are explained. To calculate the required number of public CPs 

in a neighborhood, the simulation model is used with infinite CPs such that each EV always has a 

CP available on arrival. Section 2.1 mentioned that public usage of the excess capacity from private 

CPs for commuters can decrease the required number of public CPs in a neighborhood. Therefore, 

the required CPs for this category are calculated as well. The required number of CPs is calculated 

as follows: 

Section 4.3 three simulated event types (i.e., EV starts charging, EV stops charging, EV departs 

from CP). Each time one of these events occur, regardless of which EV triggers that event, two 

characteristics are logged for the current time in the simulated neighborhood:  

• The number of CPs that are currently occupied by an EV in the simulated category. From this, 

the average number of occupied CPs per week hour is calculated for each category. 

• The number of CPs that are currently actively charging an EV in the simulated category. From 

this, the average number of charging CPs per week hour is calculated for each category. 

From the data on the number of CPs that are occupied over time, each average occupied number 

of CPs C̅î,n,t is calculated for the three sets of categories î, in current neighborhood n, during each 

week hour t. These three sets of categories î are as follows: 

1.) The CP occupancy for public charging, calculated for the EV categories residents and visitors 

together. 

2.) The CP occupancy for charging at work locations, calculated for only the EV category 

commuters. 

3.) The CP occupancy for both public charging and charging at work locations, when excess 

charging capacity at work locations can be used for public charging, calculated for the EV 

categories residents, visitors, and commuter together. 
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Next, the required number of CPs Cî,n is calculated according to the method of Utrecht. To do so, 

from each average number occupied of CPs C̅î,n,t the peak value is selected. To this peak hour 

value, the average number of CPs that should remain unoccupied during the peak hour Crest is 

added, as shown in Equation 4.6. In conformance with the method of Utrecht, Crest is set to 3 CPs. 

Cî,n = max
t∈{1,2,…,168}

C̅î,n,t + C
rest (4.6) 

Where: 

Cî,n  is the number of CPs, required by EVs in the set of categories î, in neighborhood n, 

C̅î,n,t  is the average number of CPs, occupied by EVs in the set of categories î, in 

neighborhood n, at week hour t, 

Crest  is the average number of CPs that should remain unoccupied, at the peak hour. 

From the data on the number of CPs that are actively charging over time, the mean number of 

charging CPs during the peak hour is determined. This is done by the same method used to 

calculate the required number of CPs in Equation 4.6. Only now the peak value is selected from 

the mean number of charging CPs per week hour, without adding a Crest value. Translating this 

peak number of CPs charging to an actual power demand on the power grid and determining if this 

power demand exceeds the current power grid capacity is beyond the scope of this research. 

Warmup period 

Since our initial simulation always started with 0 CPs occupied, a warmup period is used before 

the data is logging such that the simulated neighborhood can reach a steady state and show a typical 

occupancy level from the start. To understand why a warmup period is required, the effect of 

having a warmup period on the number of occupied CPs by residents is shown in Figure 4.8. In 

this figure, two paired simulation sessions for the CP occupancy over time are shown, where 

simulation session 1 (Sim 1) has no warmup period and simulation session 2 (Sim 2) has a warmup 

period of 4 weeks. In Figure 4.8 we observe that after 3 days, there is no difference anymore 

between the number of CPs occupied with and without a warmup period. For the number of CPs 

charging, we no longer observe this difference after about half a day. From Figure 4.8 we conclude 

that a warmup period of 3 day is sufficient. For programming convenience however, instead a 

warmup period of 1 week is used.  
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Simulation replications 

Since the results are prone for stochastic peaks, each simulation is replicated 1000 times, from 

which the average number of required CPs are calculated. This number of replications was chosen 

such that the 95% confidence interval (CI) for the mean number of required CPs has the same 

value for the upper and lower bound when rounded to whole numbers.  

For each set of simulation results, a 95% CI of the spread of the simulated results was made. This 

95% CI can be interpreted such that that 95% of the time, a simulation result is in this interval, as 

is visualized in Figure 4.9. In this figure, the 95%-CI is demarked by red lines, the blue dots are 

simulation results that are within this CI and the orange dots are outside this CI.  

 

 

  

  
Figure 4.8: The effect of a warmup period, on the number of CPs occupied and charging over time. 
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Figure 4.9: Example of a 95%-CI for the spread of the results of 1000 simulation replications 
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 Experimental scenarios in the trajectory 

Section 4.1 described three simulation objectives, of which the second and third objectives were 

formulated to experiment with the required number of CPs in a neighborhood. For these 

experiments, scenarios are used. First, to determine the effect of using a different number of CPs 

in a neighborhood, a scenario for a custom number of CPs in a neighborhood is used. Second, to 

determine the effect of a decreased idle time on the required number of CPs, two scenarios are 

used, namely a cap on the parked time and a cap on the idle time. For both caps, the effect on the 

required number of CPs is determined with the assumption that citizens fully comply with those 

caps. This section describes the simulation of the three scenarios in more detail. 

Custom CPs Scenario 

When simulating the effect of a custom number of CPs, an input number of CPs is used for each 

of the three categories of EV users (residents, visitors, and commuters) and queues are logged to 

indicate the shortages of those numbers of CPs. To test the performance of the input CP numbers 

a neighborhood, the peak shortage is determined for the same three sets of combined categories î 

as used in Section 4.4.  The peak CP shortage Sî,n in neighborhood n is determined by calculating 

the average CP shortage S̅î,n,t per week hour 𝑡 and selecting the peak number from these values, as 

shown in Equation 4.7. 

Sî,n = max
t∈{1,2,…,168}

S̅î,n,t (4.7) 

Where: 

Sî,n  is the shortage of CPs, required for the set of categories î, in neighborhood n, 

S̅î,n,t  is the average number of EVs waiting for a CP, in the set of categories î, in 

neighborhood n, in week hour t. 
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Capped parking time Scenario 

When simulating a strict enforcement of a maximum to the parking time it is not always necessary 

or desirable to restrict parking times over the entire day (e.g., during nighttime). Therefore, a 

capped parking time is enforced over a part of the day. In case of a capped parking time, we cut 

off the parked time (as drawn from Figure 4.4) and the charging time (calculated as tEVn
charging

 in 

Equation 4.4), when these pass the maximum cap during the enforced time. In this scenario, we 

assume that the enforcement of the capped parking duration is 100% complied with and no vehicles 

stay parked after this duration. To explain how this works, 6 possible situations in a neighborhood 

are visualized in Figure 4.10, with an enforced period from 8:00 to 20:00 hours and a maximum 

parking duration of 3 hours. These 6 charging sessions would normally have taken 6 hours. 

 

Session 1 starts during the enforced time and has both the normal duration and capped duration 

finish during the enforced time. In such a case, we cut off the duration at the capped time. Session 

2 starts during the enforced time, has the normal duration finish outside the enforced time, but has 

the capped duration finished during the enforced time. In such a case, we cut off the duration at 

the capped time. Session 3 starts during the enforced time but has both the normal duration and 

capped duration finish outside the enforced time. In such a case, we do not cut off the duration 

early, letting the session complete the full charging duration. Session 4 starts outside the enforced 

time and has both the normal duration and capped duration finish outside the enforced time. In 

such a case, we do not cut off the duration early, letting the session complete the full charging 

duration. Session 5 starts outside the enforced time, has the normal duration finish outside the 

enforced time, but has the capped duration finished during the enforced time. In such a case, we 

cut off the duration at the start of the enforced time. Session 6 starts outside the enforced time but 

 

Figure 4.10: Visualization of six examples of sessions with a duration of 6 hours, with a maximum duration cap of 3 hours and 

an enforced time between 8:00 and 20:00 hours. 
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has both the normal duration and capped duration finish during the enforced time. In such a case, 

we cut off the duration at the capped time. 

The required number of CPs in a neighborhood with a capped session time is determined by the 

same method used for the required number of CPs in a regular neighborhood as explained Section 

4.4. In case a cap on the parked time is used, it is possible that the LOS is cut off before the 

charging time has finished. This means that an EV must leave before charging has finished. Since 

we deem this undesirable, the number of sessions that were cut off during the charging time is 

logged as an additional output. 

Capped idle time scenario 

The third scenario simulates the results from a strict enforcement of a maximum idle time duration. 

This can be the result of tracking the time between the moment charging has finished and the EV 

is disconnected from a CP, penalizing people after a certain idle time duration. In case this scenario 

is simulated, the idle time duration is cut off when it passes the capped idle time limit. This is done 

similarly to the capped parking time scenario, for which we again assume that the enforcement of 

the capped idle time is 100% complied with and no vehicles stay parked after the capped idle time 

has passed. 
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 Conclusions 

This chapter answered the third set of research questions, namely: 

3.) How can we simulate for the required number of CPs in a neighborhood? 

a. Which relevant distributions and characteristics can we extract from the available data? 

b. How can we use the approaches from literature in our model? 

c. Which assumptions need to be made as a substitute for missing information? 

To answer sub question a, five publicly available distribution sets from ElaadNL were used. Three 

were used for determining the arrival intensity, namely one on the fraction of sessions over the 

days in a week, one on the intensity per 15 minutes over workdays, and one on the intensity per 

15 minutes over weekend days. Two were used for determining the charging events, namely one 

on the charging time and one on the parked time during a session. 

To answer sub question b, several approaches were used from the literature study from Chapter 3, 

either as a direct or indirect implementation. Examples of these direct implementations are the 

Poisson arrivals, as described by Li, Zhang & Wang (2018), a method to calculate the charging 

time from a specific energy demand, as described by Xie et al. (2018), and the three categories to 

work with (residents, visitors, commuters), as described by several papers. Examples of indirect 

implementations are the relation between the different arrival intensities over time and the typical 

lengths of charging sessions for each of the categories, as described by several papers. 

To answer sub question c, three assumptions were made. The first is the assumption of the average 

number of weekly charging sessions per EV, for which we used the insights from the papers by 

Arias, Bae & Sungwoo (2016), Venegaz, Perez & Petit (2018) and Refa & Hubbers (2019). From 

these sources, we assumed the values shown in Table 4.1. The second assumption is a 

simplification, namely that of the queuing structure. We assume that, when all CPs are occupied, 

EVs enter a FIFO queue, in which the EV remains until a CP becomes available. Therefore, all 

CPs are always occupied when EVs are queued. In practice, we expect that some CPs remain 

unoccupied during these peak hours. However, since we do not have any data on this, we cannot 

incorporate this effect into our model. The third assumption is that the proposed caps on the LOS 

can be enforced 100% successfully, having no vehicles stay at a CP after the time cap. In practice, 

this would not be the case, but no empirical data is available on this. 
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5. Analysis of results 

This chapter presents and analyzes the results from our simulation approach. Section 5.1 presents 

the prognosed number of CPs that result from our simulation approach and compares these results 

with the prognosed number of CPs by ElaadNL. Section 5.2 describes a sensitivity analysis 

performed on two assumptions, namely the mean number of weekly charging sessions per EV 

category and the realized mean charging power of the CPs. Section 5.3 describes the effect of three 

scenarios. First the effect of using a different number of required CPs in a neighborhood than 

calculated in Section 5.1, on the peak shortage of CP capacity. Second and third, the effect of using 

an enforced cap for the parked time and the idle time on the required number of CPs. Section 5.4 

concludes this chapter by answering the fourth set of research questions: 

4.) What conclusions can we draw from the results? 

a. How does our simulation approach perform, compared to the predictions by ElaadNL?  

b. How sensitive is our simulation approach to the assumptions in our model? 

c. What is the effect of alternative scenarios on the performance of our simulated setup? 

 Simulation performance and results 

This section elaborates on the first simulation objective formulated in Section 4.1, by describing 

the results from our simulation model. To do this, the numbers of the three categories EV users in 

residential areas are used, as prognosed by ElaadNL. Section 5.1.1 discusses the results from our 

simulation approach in general. Section 5.1.2 describes our simulation results in detail for the 

neighborhood Berkum and compares those with the prognosed numbers of CPs by ElaadNL. 

5.1.1 Simulation results 

This section briefly adress two generic observations from our results, before discussing the results 

in more detail. The full overview of the prognosed numbers by ElaadNL and our own simulation 

results can be found in Appendix A. 

First, in the neighborhoods that have a number of predicted EVs below 10, our simulation model 

strongly overpredicts the number of required CPs. This is caused by the method used, since a low 

number of EVs is more prone for stochastic peaks. Additionally, our approach determines the 

required number of CPs such that there are on average at least 3 free CPs during the peak hour, 

regardless of the number of CPs that are situated in that area.  



52 
 

Second, strange irregularities occur in the prognosed number of public CPs per neighborhood by 

ElaadNL. For instance, the southern city center has a low number of prognosed residents and 

visitors, but a high number of prognosed CPs for these categories in the prognosis chart by 

ElaadNL. When comparing our results with those of ElaadNL, large deviations occur for this type 

of neighborhoods. These differences cannot be explained by the information currently available.  

5.1.2 Simulation results for Berkum 

To look at our results in more detail, the remainder of this chapter is based on the numbers for the 

neighborhood Berkum. Berkum is used since this is a neighborhood with the most average number 

of EV users in each category, compared to the other neighborhoods in Zwolle in Appendix A. 

Table 5.1 shows the predicted number of CPs for each category of EV users in each of the 3 

prognosed years. 

 

The remainder of this section describes the results in two parts. The first part discusses the required 

number of CPs that are presented in Table 5.2. The second part discusses the peak number of active 

CPs, as observed in our simulated data, to indicate the expected load on the power grid. These 

results are shown in Table 5.3.  

Demand for public CPs in Berkum 

For the three groups of EV categories described in Section 4.4, the prognosed number of CPs by 

ElaadNL, the average required number of CPs in our results, and the intervals of the required 

number of CPs in our results are shown in Table 5.2. When regarding these results, we make two 

observations.  

Table 5.1: Prognosed number of CPs in Berkum, Zwolle, in the prognosis chart of ElaadNL (2020)  
Residents using 
public CPs 

Weekly visitors using 
public CPs 

Commuters using 
private CPs 

2025 105 28 182 

2030 197 52 356 

2035 344 115 654 
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First, when comparing “residents and visitors” and to a lesser degree the “commuters”, we observe 

an interesting trend. For the 2025 scenario we predict a larger number of CPs (approximately 12%) 

and for the 2035 scenario we predict a smaller number of CPs (approximately -14%) than ElaadNL. 

To explain these differences, we should look at the main difference between our modelling 

approach and the approach by ElaadNL, as discussed in Section 2.3. In our approach, the number 

of CPs is determined by the peak CP occupancy in a stochastic simulation approach, whereas 

ElaadNL uses a deterministic regression approach, that uses a multitude of linear functions. This 

means that in our approach, lower quantities are more volatile for accidental peaks than larger 

quantities, especially compared to the results from linear regression. In our approach, this volatility 

for stochasticity gets lower as the population size increases. Therefore, both in the real world and 

in our simulation model, we expect a relatively larger number of required CPs per EV in 

neighborhoods with a smaller number of EVs compared to neighborhoods with a larger number of 

EVs. In contrast, using linear regression could result in an underprediction of the number of 

required CPs in neighborhoods with a smaller number of EV users and an overprediction in 

neighborhoods with a larger number of EV users. Since the method by ElaadNL is not publicly 

available we cannot validate this explanation. However, Section 2.3 described an early publication 

of the method by ElaadNL in which a multiple regression analysis was used. Since EV charging 

is a stochastic process, the methodological differences may indicate a more realistic “real world” 

prognosis from our simulation approach, compared to a multiple regression analysis by ElaadNL. 

Table 5.2: Required number of CPs in the prognosis chart of ElaadNL (2020) and in three results of our simulation model, in Berkum, 

Zwolle. 

Year Category ElaadNL Mean result Interval of results 

2025 

Residents and visitors 33 38 [33, 43] 

Commuters 36 36 [31, 40] 

Residents, visitors, and 
commuters 

-  52 [46, 58] 

2030 

Residents and visitors 62 67 [60, 74] 

Commuters 71 67 [61, 74] 

Residents, visitors, and 
commuters 

- 96 [88, 105] 

2035 

Residents, visitors 137 116 [106, 126] 

Commuters 130 122 [113, 131] 

Residents, visitors, and 
commuters 

- 172 [161, 183] 
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Second, when the excess capacity of private CPs at work locations can be used as public CPs, we 

observe this reduces the required number of public CPs by a fourth in each of the simulated years 

compared to simply adding the private CPs at work locations to the public CPs. To better 

understand the peak hour of occupied CPs, we look at the stacked bar chart for the average 

occupancy per week hour for the three categories of EV users in Figure 5.1. This figure shows that 

the peaks of the workplace CP occupancy correspond to the troughs of the public CP occupancy.  

 

Peak hour demand of the power grid 

The average peak hour demand of the power grid is shown in Table 5.3. These results cannot be 

compared to ElaadNL data, since ElaadNL does not have any prognoses related to the power grid. 

When comparing these values to their corresponding peak number of occupied CPs in Table 5.2, 

we observe that during each peak hour about one third of the occupied CPs are actually charging.  

 

 

Figure 5.1: Average number of occupied CPs per week hour, over 4 weeks of data, for the scenario of 2035 in Berkum, Zwolle 

Table 5.3: Peak number of CPs charging simultaneously in three results of our simulation model, in Berkum, Zwolle. 

Year Category Mean result Interval of results 
# CPs charging over 
# CPs occupied 

2025 
Residents and visitors 13 [10, 15] 33.6% 

Residents, visitors, and 
commuters 

16 [14, 19] 31.3% 

2030 
Residents and visitors 23 [19, 26] 33.7% 

Residents, visitors, and 
commuters 

30 [27, 34] 31.5% 

2035 
Residents and visitors 39 [34, 43] 33.3% 

Residents, visitors, and 
commuters 

55 [50, 59] 31.7% 
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Translating the peak numbers of CPs in Table 5.2 to an actual power demand on the power grid 

and determining if this power demand exceeds the current power grid capacity is beyond the scope 

of this research. 

 Sensitivity analysis on the assumptions 

Two values for our simulation had to be assumed, since no data was available on these values. The 

first of the two estimated values are the average number of weekly sessions per EV, for which the 

assumed values were determined from the literature explained in Section 4.2.1. The second is the 

realized charging power, for which an estimation by Zwolle was used. This section describes a 

sensitivity to measure the effect of errors in the assumed values, on the required number of CPs in 

a neighborhood presented in Section 5.1. 

To flatten outliers in the analysis results due to stochasticity while keeping the simulation time at 

feasible levels, each experiment in the sensitivity analysis is performed 100 times. The sensitivity 

analysis uses the average values of those 100 simulation sessions.  

The remainder of this section discusses the sensitivity analysis for public charging (only regarding 

the EV categories residents and visitors) in two parts. The first part describes the effect of the 

charging power and the number of weekly sessions, on the peak number of occupied of CPs. The 

second part describes the same effect on the peak number of CPs charging.  

Sensitivity of the peak CP occupancy 

To understand the effect of the charging power per CP and the weekly sessions per EV on the peak 

CP occupancy, its sensitivity analysis is visualized in Figure 5.2. From this figure, we make two 

observations. First, we observe that changes in the charging power do not affect the number of 

occupied CPs. This is caused by how we calculate the length of stay at a CP, for which the time is 

drawn from an empirical distribution, as discussed in Section 4.3. Therefore, the charging power 

is most of the time not a factor when determining the occupancy and uncertainties in the charging 

power therefore do not affect the peak number of occupied CPs in our model.  

Second, we observe that changes in the number of sessions per EV affect the peak CP value by the 

same percentage. This is in line with our expectations, since all the session arrivals are distributed 

by the same probabilities over time. From this, we expect that percentual difference of the total 

sessions affect the number of arrivals in a timeslot by the same percentage. Since the length of stay 
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is not affected by the number of weekly sessions, the occupancy of CPs is only affected by the 

number of arrivals. From this, we reason that the percentual difference of the total sessions affect 

the peak occupancy by the same percentage. 

 

To help interpreting Figure 5.2, an arbitrary example is given: when the mean charging power 

increases by 10% (either by misprediction or technological developments) and the mean number 

of weekly sessions of an EV decreases by 10%, the peak number of occupied CPs decreases by 

10%. An overview of all individual values in this figure are shown in Appendix B. 

Sensitivity of the peak number of CPs charging 

To understand the effect of the charging power per CP and the weekly sessions per EV on the peak 

number of CPs charging, its sensitivity analysis is visualized in Figure 5.3. From this figure we 

make three observations. First, we observe that changes in power directly affect the number of 

charging CPs. This is expected, since the charged time is calculated by dividing the power charged 

during a charging session (as drawn from data) over the realized charging power of a CP, as 

explained in Section 4.3.  

Second, the percentual change in the number of sessions per EV affect the peak number of CPs 

charging negatively by the same percentage, as shown in Table 5.4. Of the two factors in Figure 

5.3, the charging power has a smaller influence on the peak number of charging CPs than the 

number of weekly sessions. The influence of the charging power decreases further as the charging 

power decreases, as shown in Table 5.4. We can explain this with the arrival peak of public EVs 

that we saw in the data analysis of Section 4.2.2. We reason that a longer charging time leads to 

EVs with an earlier arrival time still charging during the peak hour. However, since the arrival rate 

  
Figure 5.2: The effect of the number of sessions and the estimated charging power on the peak number of CPs occupied. 
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decreases as we move further from the peak, the number of extra EVs that are still charging during 

the peak hour due to an increased charging duration also decreases. This results in a smaller 

increase of the peak number of CPs charging for an increased charging power.  

Third, the effect of the two factors on the peak number of CPs charging influence each other. The 

effect of both factors together can be determined from the multiplication of the effects of the 

individual factors that are shown in Table 5.4. 

 

 

To help interpreting Figure 5.3, an arbitrary example is given: when the mean charging power 

increases by 10% (either by misprediction or technological developments) and the mean number 

of weekly sessions of an EV decreases by 10%, the peak number of occupied CPs decreases by 

14%. An overview of all individual values in this figure are shown in Appendix B. 

  

Table 5.4: Individual effects of the number of sessions and the estimated charging power, on the peak number of CPs charging 
Effect of factor  25% 20% 15% 10% 5% 0% -5% -10% -15% -20% -25% 

Effect on peak 

# CPs charging by 

Weekly sessions -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 

Charging power 23% 18% 13% 9% 4% 0% -3% -7% -10% -13% -16% 

 

  

 
Figure 5.3: The effect of the number of sessions and the estimated charging power on the peak number of CPs charging. 
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 Results of alternative scenarios 

This section elaborates on the second and third simulation objectives formulated in Section 4.1, by 

describing the effect of three scenarios that were introduced in Section 4.1. Section 5.3.1 describes 

the effect on the peak shortage when deviating from the required number of CPs, as calculated in 

Section 5.1. Section 5.3.2 describes the effect on the required number of CPs when enforcing a 

cap on the parked time and the idle time, for which the method is explained in Section 4.5.  

5.3.1 Finite resources 

This section discusses the effect of deviating from the calculated required number of public CPs 

on the peak shortage of CPs. This is done for Berkum, using the expected numbers of public EVs 

(only regarding the EV categories residents and visitors) for the year 2035 and the corresponding 

calculated number of 116 required CPs. The results are shown in Figure 5.4, where the CP 

shortages and the realized number of CPs are shown relative to the required number of 116 CPs.  

 

 

 

Figure 5.4a: Peak CP shortage for a realized number of CPs (relative to the required number of CPs) and the mean CP utilization 
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Figure 5.4b: Peak CP shortage for a realized number of CPs (relative to the required number of CPs) and the mean CP utilization 
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From Figure 5.4 we make three observations. First, in Figure 5.4a we observe that the shortage 

increases exponentially as the number of CPs decreases. Beforehand, we might have expected that 

the shortage would increase linearly by the same number as the total number of CPs is decreased. 

However, when an EV arrives and cannot occupy a CP, that EV must wait for the duration of the 

shortest remaining LOS. When a second EV arrives, that EV must wait for the duration of the 

second shortest remaining LOS, etc. This waiting time increases the initial LOS of the waiting EV. 

This results in a bottleneck effect in the system, where the arrival rate of EVs is larger than the 

departure rate and the departure rate depends on the number of CPs. When the realized number of 

CPs are below 95%, the bottleneck results in exponentially growing peak queue lengths. When 

this bottleneck duration becomes too long and a queue length does not structurally reset (by having 

no waiting EVs somewhere over the span of a day), the system becomes unstable, resulting in ever 

increasing queue lengths that equal the entire EV population size of a neighborhood. 

Second, in Figure 5.4b we observe a shortage when taking 100% of the calculated number of CPs. 

However, since we calculate the number of required CPs based on the mean peak occupancy, small 

shortages may still occur that get amplified by the effect that we discussed in the previous 

observation. When we look at the average occupancy per hour that we saw earlier in Figure 5.1, 

we can confirm that these shortages are incidental. In case we want to decrease these shortages 

further, we can pick a higher value for the number of CPs that should remain unoccupied during 

peak hour (depicted by Crest in Equation 4.9 of Section 4.4) at the cost of a lower utilization level. 

Third, Figure 5.4 shows that for the results with stable shortages (with a realized number of CPs 

that is 95% or larger), the utilization decreases linearly with an increased number of realized CPs. 

Over the interval of Figure 5.4b, the utilization decreases on average by 3%, as the total number 

of CPs is increased by 5%.  

From these three points we conclude that even though small shortages in the peak hour do not 

disrupt the availability of CPs too much, deliberate shortages should be limited as much as 

possible, since the negative effect of larger CP shortages is much greater than the negative effect 

of CP excesses. 
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5.3.2 Capped connection times 

This section describes the effect of a decreased idle time on the required CPs in Berkum. Two 

options were introduced in Section 4.1 and 4.4 to decrease the idle time. These are a maximum 

allowed parked time duration and a maximum allowed idle time duration. Both are simulated with 

an enforced time between 08:00 and 22:00 hours, meaning that EVs with sessions that end during 

nighttime (22:00-08:00) should be removed from the CP before 8:00, as explained in Section 4.5. 

Capped parked times 

The first option to decrease the idle time, namely the maximum allowed parked time duration at a 

CP, is the most traditional and therefore easier to enforce. When enforcing a cap on the parked 

time, we want to shorten the LOS as much as possible. However, when the allowed LOS is too 

short, we start cutting of the charging time, making EVs leave before charging has finished. To 

show this effect, we also plot the total number of charging sessions that were stopped early over 

the simulated time of 4 weeks. The effect of a capped parked time on the peak hour occupancy is 

visualized in Figure 5.5. This figure shows the parked time cap relative to the observed mean 

parked duration in our simulation results, namely 12 hours.  

 

 

Figure 5.5: Required number of CPs and the number of charging sessions stopped early when using a cap on the parked time 

(relative to the mean parked time) 
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When regarding the results, we observe that enforcing a cap on the parked time has a significant 

influence on the total number of CPs required. However, we also observe that an enforced cap that 

is lower than 80% of the mean parked time results in early stopped charging sessions and a 

decreased mean number of CPs charging. Since this is a negative effect, we conclude that we 

should not enforce a cap on the parked time that is lower than 80% of the current mean parked 

time. This means that we should not handle a cap that is lower than 9.6 hours, at which level the 

required number of CPs is decreased from 113 to 60 (decreasing 47%). 

Capped idle times 

The second option to decrease the idle time, namely a maximum allowed idle time duration, 

requires more advanced technology. This option requires the EV owner to know when the EV has 

stopped charging and a method to specifically track the idle time. However, since both 

technologies are currently available on the market, we can realistically look at the effect on the 

required number of CPs when enforcing a cap on the connection time. The effect of a capped idle 

time on the peak hour occupancy is visualized in Figure 5.6. This figure shows the idle time cap 

relative to the observed mean idle time in our simulation results, namely 10 hours. 

 

When regarding the results, we observe that enforcing a cap on the idle time has a significant 

influence on the total number of CPs required, without having the negative effects of the lower 

cap durations that we saw with the capped parked times. For a capped idle time however, it is less 

transparent for the EV user to know when the cap is reached compared to a cap on the parked time, 

since the total cap is now dependent on the at forehand unknown charging time.  

 

Figure 5.6: Required number of CPs when using a cap on the idle time (relative to the mean idle time). 
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 Conclusions 

This chapter answered our fourth set of research questions, namely: 

4.) What conclusions can we draw from the results? 

a. How does our simulation approach perform, compared to the predictions by ElaadNL? 

b. How sensitive is our simulation approach to the assumptions in our model? 

c. What is the effect of alternative scenarios on the performance of our simulated setup? 

To answer sub question a, we concluded that the number of required CPs that we calculate are 

close to those calculated by ElaadNL. In our results for Berkum, we predicted more CPs in 2025 

and fewer CPs in 2035 compared to the predictions by ElaadNL. We explained this by the different 

methods that were used. When the excess capacity of private CPs at work locations can be used as 

public CPs, we concluded that the required number of public CPs can be reduced by a fourth. 

To answer sub question b, we concluded from the sensitivity analysis on the realized charging 

power per CP and the number of weekly charging sessions per EV that only the latter influenced 

our results on the required number of CPs. This number of required number of CPs was affected 

by the same percentage as the prediction error of the weekly charging sessions per EV. The peak 

number of CPs charging was affected by both assumed factors, making it more volatile to errors.  

To answer sub question c, we tested the effect of three scenarios. The first scenario tested the effect 

of deliberate shortages to the number of required CPs. We conclude that these shortages should be 

limited, since the peak EV queue length increases exponentially to the CP shortage in a 

neighborhood when less than 95% of the required number of public CPs are realized. Second and 

third, we tested a cap on either the parked time or on the idle time between 08:00 and 22:00 hours. 

A cap on the idle time works most effectively, since it cannot break off a charging session before 

the battery is full, which can happen for a cap on the parked time. When disregarding the cap 

values that affect the charging time, a parked time cap can decrease the required CPs by up to 47% 

at a cap of 9.6 hours. An idle time cap can go as far as 0 hours, decreasing the required CPs by up 

to 61%.  
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6. Conclusions and recommendations 

This chapter concludes this thesis in three parts. Section 6.1 summarizes the most important 

conclusions of our research, by answering our research question. Section 6.2 discusses the 

strengths and limitations of our research. Section 6.3 describes our final recommendations for 

further research and for implementations. 

 Conclusions 

This thesis supported Zwolle in anticipating proactively on the required charging capacity for the 

expected EV growth in its municipality. This was done by proposing and developing a simulation 

approach as our answer to our main research question in Chapter 1: 

“How can we model the charging sessions that take place in a neighborhood, to predict 

the required number of public CPs in that neighborhood?” 

A simulation model generated the charging sessions of three categories of EV users in a 

neighborhood (residents, visitors, and commuters), by using publicly available data distributions. 

Three sets of distributions were used to simulate the arrival intensities over time (fractions of 

sessions over the seven weekdays, arrival probabilities for Mondays-Fridays, and arrival 

probabilities for Saturdays-Sundays) and two sets of distributions were used to determine the LOS 

of EVs (power charged and connected times). A method developed by the municipality of Utrecht 

was used in this simulation model to calculate the required number of CPs in a neighborhood. This 

value was determined by the average occupancy rate of CPs during the peak hour.  

The simulation approach was used for three objectives. As first objective, our simulation model 

was used to predict the required number of public CPs in each neighborhood and the peak number 

of public CPs charging for three prognosed years (2025, 2030 and 2035), that are shown in 

Appendix A. In our results we saw that about one third of the peak number of occupied public CPs 

are actually charging during this peak hour. When the excess charging capacity of private CPs at 

work locations was utilized as public charging capacity, the required number of public CPs was 

reduced by a fourth. When comparing our results for neighborhoods in Zwolle with the prognosed 

numbers by ElaadNL, we observed that our results predict a lower EV/CP ratio for the 2025 

prognosis and a higher EV/CP ratio for the 2035 prognosis. These differences were explained by 

the different methods used to determine the required number of CPs.   
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As second objective, the simulation model was used to predict the shortage when a neighborhood 

has fewer CPs than required. We concluded that these shortages should be limited, since the peak 

EV queue length increased exponentially to the CP shortage in a neighborhood, when less than 

95% of the required number of public CPs were realized. 

As third objective, the simulation model was used to predict the effect of a decreased idle time on 

the required number of CPs in a neighborhood. To decrease the idle time, two measures were 

simulated. The first was a cap on the parked time and the second was a cap on the idle time directly. 

When comparing the two, the cap on the parked time is easier to implement than a cap on the idle 

time and can reduce the required number of CPs in a neighborhood by up to 47% before charging 

durations start getting cut off. A cap on the idle time is less transparent for the user but does not 

share the issue of cutting off charging durations, potentially reducing of the required number of 

CPs in a neighborhood by up to 61%.  

 Discussion 

In this research, a recurring problem was the availability of data. Even though data distributions 

were used that were drawn from large populations, several assumptions had to be made that could 

not be substantiated with data. This section addresses the four most important assumptions and 

simplifications made in this research. 

First, no data was available to us on the number of sessions per EV per week, or the realized 

charging power of a CP. For both, different studies were used to make assumptions on these values. 

However, these assumptions could not be validated.  

Second, the charging time and idle time are drawn paired in our model, to ensure that the charging 

sessions in our data follow the underlaying data distributions. This meant that EVs that charged 

the most power, also stayed the longest and therefore had the largest idle times. In practice, this is 

not necessarily the case and for an individual EV session not a realistic representation of reality. 

However, since the populations for which the model was used are sufficiently large, this 

simplification does not affect the outcomes of our model significantly. 

Third, several articles in literature described a relation between the arrival time and the LOS of an 

EV. Since only one distribution for the power charged and one on the connected times for the 

entire day were available, this effect could not be implemented in our simulation model.  
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Fourth, the prognosed numbers of CPs in the future were estimated by data distributions that were 

drawn from the currently available empirical data, disregarding future (technological) 

developments that may have an influence on this process. In reality we expect future developments 

that will have an influence on the current data distributions, such as changes to batteries (e.g., 

battery capacity, battery charging speed), charging behavior (e.g., shifting charging location, 

changes in charged quantities) or innovations in alternative fuel substitutes (e.g., hydrogen, 

biofuels). Since we cannot estimate the future effects of these innovations, these effects were 

disregarded in this research.  

Despite of these assumptions, we are confident about our results. We saw that our results are close 

to those of ElaadNL, for the neighborhoods with at least 20 prognosed EV users. However, 

compared to the predictions of ElaadNL, we tend to predict an increasingly lower number of EVs 

per CP for lower quantities of EVs (<200) and a larger number of EVs per CP for larger quantities 

of EVs in a neighborhood (>300). These observed deviations can be explained by comparing our 

approach with the theory behind the approach by ElaadNL, who in an early publication on their 

model used a multiple regression-analysis on a number of variables. However, since the currently 

used approach by ElaadNL is not publicly available, their results cannot be explained in detail. In 

contrast, our approach is fully transparent and our solutions can be visualized with graphs and be 

experimented on. Therefore, we are confident in the relevance of the outcomes of our simulation 

approach. 

 Recommendations 

Two recommendations are made for improvements to the model presented in this thesis, which we 

already introduced in the discussion:  

First, we recommend implementing a relation between the arrival time and the LOS. This is the 

most important recommendation for improving our simulation approach, by which the generated 

data can become more realistic.  

Second, we recommend improving the method used for drawing the charging time and the idle 

time. This does not necessarily improve the model on the scale that it is currently used for but 

makes individual simulated charging sessions more realistic when the model should be used for 

other purposes.  



66 
 

Furthermore, three recommendations are made for implementations:  

First, we recommend using the calculated CP values as a realistic indication for the CP quantities 

that are required in 2025, 2030 and 2035. However, since the data is based on historic data, Zwolle 

needs to stay alert for technological developments that may affect the charging behavior of EVs. 

One way to do this, is to repeat the experiments when the underlaying data distributions can be 

updated with more recent data.  

Second, we recommend looking into the results for each neighborhood in detail, to value the 

simulation results for each neighborhood differently. For the neighborhoods with larger expected 

numbers of EV users, the outcomes in our model can be used as a good predicter for the required 

quantity of CPs. For these neighborhoods we recommend placing at least 95% of the prognosed 

CPs proactively, to limit the critical shortages as much as possible. For the remainder of the 

required CPs and for the CPs in neighborhoods with smaller expected numbers of EVs, the 

outcomes should be regarded as an indication for which candidate locations should be anticipated, 

but for which the CPs can be placed reactively. 

Third, we recommend utilizing the excess charging capacity of private CPs at work locations for 

public charging and implementing either a parked time cap or an idle time cap, since we 

demonstrated that these measures lower the required number of CPs significantly. 

Lastly, two recommendations are made for further research: 

First, in this thesis we proposed a method to determine the required number of CPs in a 

neighborhood. However, determining where in that neighborhood these CPs should be realized 

was beyond the scope of this research. This is a relevant problem for Zwolle on which we 

recommend further research. 

Second, in this thesis we determined the peak number of CPs charging simultaneously in a 

neighborhood as an indicator for the demand from the power grid. However, determining the actual 

power demand from the power grid and determining whether this demand requires alterations to 

the current power grid required a lot more work and were therefore also beyond the scope of this 

research. Determining the load on the grid heavily depends on the positioning of the required CPs 

in a neighborhood. This makes it a relevant problem for Zwolle, on which we recommend further 

research after the previous recommended research is finished.  
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Appendices 

Appendix A: Prognoses and simulation results per neighborhood 

Table A1: Prognosis and results for 2025 

CBS-buurtnaam Prognosed EVs ElaadNL Simulation Difference 
Peak 
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Binnenstad-Zuid 55.1 15.1 971.2 18.1 192.7 22 181 186 21.5% -6.1% 7 74 
Binnenstad-Noord 13.5 16.8 136.1 19.9 27.0 9 30 31 -54.8% 11.1% 3 12 
Noordereiland 22.1 7.6 202.6 9.2 40.2 11 43 44 19.6% 7.0% 4 17 
Het Noorden 16.0 2.5 202.6 6.8 40.2 9 42 43 32.4% 4.5% 3 17 
Schildersbuurt 6.9 3.4 20.2 3.9 4.0 6 8 9 53.8% 100.0% 2 3 
Bollebieste 23.6 8.4 101.3 10.0 20.1 12 23 25 20.0% 14.4% 4 9 
Dieze-Centrum 14.7 6.7 81.1 8.1 16.1 9 20 20 11.1% 24.2% 3 8 
Bagijneweide 22.5 0.0 101.3 9.0 20.1 11 23 25 22.2% 14.4% 4 9 
Hogenkamp 45.2 5.9 141.6 14.8 28.1 19 31 36 28.4% 10.3% 6 13 
Indischebuurt 13.1 9.2 0.0 11.1 0.0 9 3 9 -18.9% - 3 3 
Meppelerstraatweg-Zuid 4.8 1.7 0.0 2.2 0.0 5 3 5 127.3% - 1 1 
Bedrijventerrein Floresstraat 15.9 7.6 60.5 8.8 12.0 9 16 17 2.3% 33.3% 3 6 
Wipstrik-Noord 89.3 25.2 121.5 29.8 24.1 33 27 39 10.7% 12.0% 11 12 
Wipstrik-Zuid 65.5 15.1 0.0 17.8 0.0 25 3 25 40.4% - 9 9 
Stationsbuurt 37.2 0.0 1092.7 12.0 216.8 17 205 208 41.7% -5.4% 5 84 
Oud-Assendorp 77.2 28.6 0.0 34.0 0.0 30 3 30 -11.8% - 10 10 
Nieuw-Assendorp 57.5 21.0 0.0 25.4 0.0 24 3 24 -5.5% - 8 8 
Wezenlanden 14.2 6.7 101.3 7.9 20.1 9 23 24 13.9% 14.4% 3 9 
Pierik 53.3 14.3 20.2 17.4 4.0 22 8 23 26.4% 100.0% 7 7 
Bedrijventerrein Marslanden-Noord 1.6 0.0 81.1 0.1 16.1 4 20 20 3900.0% 24.2% 1 8 
Hanzeland 44.0 11.8 424.9 14.4 84.3 19 82 86 31.9% -2.7% 6 34 
Kamperpoort 21.6 0.0 506.0 9.0 100.4 11 97 99 22.2% -3.4% 4 40 
Veerallee 56.3 16.8 181.9 20.2 36.1 23 38 44 13.9% 5.3% 8 15 
Bedrijventerrein Voorst-A 5.6 0.0 202.6 3.0 40.2 6 42 42 100.0% 4.5% 1 17 
Bedrijventerrein Voorst-B 1.6 0.0 202.6 0.1 40.2 4 43 43 3900.0% 7.0% 1 17 
Spoolde 3.3 5.0 0.0 6.0 0.0 5 3 5 -16.7% - 1 1 
Oud-Westenholte 62.4 17.6 15.1 25.4 3.0 24 7 25 -5.5% 133.3% 8 8 
Westenholte-Stins 104.9 24.4 0.0 28.6 0.0 38 3 38 32.9% - 13 13 
Vreugderijk 1.0 0.0 0.0 0.3 0.0 4 3 4 1233.3% - 1 1 
Bedrijventerrein Voorst-C 39.9 10.9 323.6 13.1 64.2 18 64 67 37.4% -0.3% 6 26 
Bedrijventerrein Voorst-D 3.0 1.7 121.5 1.8 24.1 5 27 28 177.8% 12.0% 1 11 
Frankhuis 227.9 0.0 20.2 39.5 4.0 74 8 75 87.3% 100.0% 25 25 
Mastenbroek 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Schoonhorst 135.3 35.3 40.3 41.9 8.0 48 12 49 14.6% 50.0% 16 16 
Werkeren 150.2 36.1 40.3 42.9 8.0 53 12 53 23.5% 50.0% 18 18 
Milligen 269.4 58.8 60.5 70.3 12.0 91 16 91 29.4% 33.3% 31 31 
Tippe bij de Ijssel 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Breecamp 56.0 12.6 0.0 15.2 0.0 22 3 22 44.7% - 8 8 
Breezicht 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Stadsbroek 0.3 0.0 0.0 0.1 0.0 3 3 3 2900.0% - 0 0 
Holtenbroek IV 39.7 10.9 202.6 13.3 40.2 18 42 46 35.3% 4.5% 6 18 
Holtenbroek I 44.9 12.6 40.3 14.7 8.0 19 12 20 29.3% 50.0% 6 6 
Holtenbroek II 34.2 14.3 0.0 17.1 0.0 16 3 16 -6.4% - 5 5 
Holtenbroek III 30.2 9.2 0.0 10.6 0.0 14 3 14 32.1% - 5 5 
Aalanden-Zuid 35.9 0.0 60.5 15.0 12.0 16 16 20 6.7% 33.3% 5 6 
Aalanden-Midden 68.1 0.0 60.5 22.0 12.0 26 16 27 18.2% 33.3% 9 9 
Aalanden-Noord 143.8 32.8 40.3 39.4 8.0 50 12 50 26.9% 50.0% 17 17 
Aalanden-Oost 110.6 25.2 0.0 30.1 0.0 40 3 40 32.9% - 14 14 
Brinkhoek 3.1 5.9 0.0 7.0 0.0 5 3 5 -28.6% - 1 1 
Langenholte 2.7 0.8 0.0 1.2 0.0 5 3 5 316.7% - 1 1 
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Haerst 2.1 2.5 20.2 2.8 4.0 4 8 8 42.9% 100.0% 1 2 
Berkum 105.1 27.7 181.9 33.1 36.1 38 38 52 14.8% 5.3% 13 16 
Bedrijventerrein de Vrolijkheid 12.8 0.8 161.8 1.2 32.1 8 35 35 566.7% 9.0% 3 14 
Veldhoek 3.1 2.5 20.2 2.6 4.0 5 8 8 92.3% 100.0% 1 3 
Kantorenterrein-Oosterenk 26.5 9.2 951.0 11.2 188.7 13 178 179 16.1% -5.7% 4 73 
Bedrijventerrein Hessenpoort 76.1 21.8 202.6 26.1 40.2 29 42 51 11.1% 4.5% 10 17 
Tolhuislanden 2.7 0.8 0.0 1.2 0.0 5 3 5 316.7% - 1 1 
Herfte 6.1 1.7 0.0 2.1 0.0 6 3 6 185.7% - 1 1 
Bedrijventerrein Marslanden-Zuid 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Wijthmen 12.2 5.0 20.2 6.2 4.0 8 8 9 29.0% 100.0% 2 3 
Oud Schelle 28.7 11.8 0.0 14.4 0.0 14 3 14 -2.8% - 5 5 
Schellerhoek 48.7 13.4 161.8 16.0 32.1 20 35 40 25.0% 9.0% 7 14 
Schellerbroek 51.6 14.3 20.2 17.0 4.0 21 8 21 23.5% 100.0% 7 7 
Schellerlanden 99.2 27.7 60.5 33.4 12.0 36 16 37 7.8% 33.3% 12 12 
Oldenelerlanden-Oost 83.5 19.3 0.0 22.7 0.0 32 3 32 41.0% - 11 11 
Oldenelerlanden-West 50.1 11.8 0.0 13.7 0.0 21 3 21 53.3% - 7 7 
Oldenelerbroek 104.3 28.6 10.1 34.2 2.0 37 6 38 8.2% 200.0% 12 12 
Schelle-Zuid en Oldeneel 1.5 5.0 0.0 5.8 0.0 4 3 4 -31.0% - 1 1 
Katerveer-Engelse Werk 9.0 4.2 121.5 5.4 24.1 7 28 28 29.6% 16.2% 2 11 
Oud Ittersum 33.5 10.1 60.5 12.3 12.0 16 16 19 30.1% 33.3% 5 6 
Ittersumerlanden 81.9 0.8 101.3 26.8 20.1 30 24 34 11.9% 19.4% 10 11 
Ittersumerbroek 105.0 24.4 0.0 28.6 0.0 38 3 38 32.9% - 13 13 
Geren 12.6 5.0 0.0 5.8 0.0 9 3 9 55.2% - 3 3 
Gerenlanden 122.2 31.9 20.2 38.0 4.0 43 8 43 13.2% 100.0% 14 14 
Gerenbroek 140.6 37.0 20.2 44.0 4.0 50 8 51 13.6% 100.0% 17 17 
Oude Mars 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Windesheim 8.2 2.5 0.0 2.9 0.0 7 3 7 141.4% - 2 2 
Harculo en Hoogzutmen 3.0 3.4 20.2 3.7 4.0 5 8 8 35.1% 100.0% 1 2 
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Table A2: Prognosis and results for 2030 

CBS-buurtnaam Prognosed EVs ElaadNL Simulation Difference 
Peak 
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Binnenstad-Zuid 110.5 30.2 1900.1 36.2 377.0 40 351 364 10.5% -6.9% 13 145 
Binnenstad-Noord 27.0 39.5 136.1 47.2 27.0 15 30 33 -68.2% 11.1% 5 12 
Noordereiland 44.3 11.8 395.6 14.4 78.5 19 77 81 31.9% -1.9% 6 32 
Het Noorden 32.1 8.4 395.6 13.6 78.5 15 78 81 10.3% -0.6% 5 31 
Schildersbuurt 13.9 6.7 39.8 7.8 7.9 9 12 13 15.4% 51.9% 3 4 
Bollebieste 47.5 13.4 198.1 15.7 39.3 20 42 47 27.4% 6.9% 7 17 
Dieze-Centrum 29.4 10.1 158.3 12.3 31.4 14 34 36 13.8% 8.3% 5 13 
Bagijneweide 45.2 0.0 115.9 24.0 23.0 19 26 31 -20.8% 13.0% 6 10 
Hogenkamp 90.6 18.5 277.2 29.8 55.0 33 56 67 10.7% 1.8% 11 23 
Indischebuurt 26.3 14.3 0.0 16.6 0.0 13 3 13 -21.7% - 4 4 
Meppelerstraatweg-Zuid 9.6 3.4 0.0 4.4 0.0 7 3 7 59.1% - 2 2 
Bedrijventerrein Floresstraat 31.8 10.9 118.9 13.3 23.6 15 27 30 12.8% 14.4% 5 11 
Wipstrik-Noord 179.1 42.0 237.4 50.2 47.1 62 49 73 23.5% 4.0% 21 22 
Wipstrik-Zuid 131.4 28.6 0.0 33.6 0.0 46 3 46 36.9% - 16 16 
Stationsbuurt 74.6 5.0 2137.5 24.9 424.1 28 390 398 12.4% -8.0% 10 161 
Oud-Assendorp 154.7 53.8 0.0 63.6 0.0 55 3 55 -13.5% - 18 18 
Nieuw-Assendorp 115.1 40.3 0.0 47.6 0.0 41 3 41 -13.9% - 14 14 
Wezenlanden 28.4 10.1 198.1 11.9 39.3 13 41 44 9.2% 4.3% 4 17 
Pierik 107.0 29.4 39.8 35.0 7.9 39 12 39 11.4% 51.9% 13 13 
Bedrijventerrein Marslanden-Noord 3.3 0.0 158.3 0.3 31.4 5 34 34 1566.7% 8.3% 1 14 
Hanzeland 88.3 24.4 831.1 29.0 164.9 32 156 166 10.3% -5.4% 11 65 
Kamperpoort 43.3 0.0 989.9 14.0 196.4 18 185 189 28.6% -5.8% 6 76 
Veerallee 112.9 27.7 356.3 33.4 70.7 40 71 85 19.8% 0.4% 13 30 
Bedrijventerrein Voorst-A 11.3 0.0 395.6 6.0 78.5 8 78 78 33.3% -0.6% 2 32 
Bedrijventerrein Voorst-B 3.3 0.0 395.6 0.3 78.5 4 78 78 1233.3% -0.6% 1 32 
Spoolde 6.8 7.6 0.0 9.3 0.0 6 3 6 -35.5% - 2 2 
Oud-Westenholte 125.1 32.8 15.1 43.2 3.0 45 7 45 4.2% 133.3% 15 15 
Westenholte-Stins 210.5 39.5 0.0 47.1 0.0 71 3 71 50.7% - 24 24 
Vreugderijk 2.0 0.8 0.0 0.7 0.0 4 3 4 471.4% - 1 1 
Bedrijventerrein Voorst-C 80.9 21.8 633.5 26.4 125.7 30 120 129 13.6% -4.5% 10 50 
Bedrijventerrein Voorst-D 6.9 3.4 237.4 3.9 47.1 6 49 49 53.8% 4.0% 2 20 
Frankhuis 457.0 134.4 39.8 159.7 7.9 153 12 153 -4.2% 51.9% 50 50 
Mastenbroek 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Schoonhorst 271.3 59.6 79.1 70.7 15.7 90 19 91 27.3% 21.0% 31 31 
Werkeren 301.2 79.8 79.1 95.1 15.7 99 19 100 4.1% 21.0% 33 33 
Milligen 540.3 156.2 118.9 186.2 23.6 179 27 180 -3.9% 14.4% 59 59 
Tippe bij de Ijssel 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Breecamp 112.3 24.4 0.0 28.7 0.0 41 3 41 42.9% - 14 14 
Breezicht 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Stadsbroek 0.6 0.0 0.0 0.2 0.0 4 3 4 1900.0% - 1 1 
Holtenbroek IV 79.7 22.7 395.6 26.8 78.5 30 78 88 11.9% -0.6% 10 32 
Holtenbroek I 89.9 24.4 79.1 29.4 15.7 33 19 35 12.2% 21.0% 11 11 
Holtenbroek II 68.4 22.7 0.0 26.7 0.0 26 3 26 -2.6% - 9 9 
Holtenbroek III 60.6 13.4 0.0 16.4 0.0 24 3 24 46.3% - 8 8 
Aalanden-Zuid 71.5 0.0 118.9 23.0 23.6 27 27 36 17.4% 14.4% 9 11 
Aalanden-Midden 135.5 0.0 118.9 42.0 23.6 47 27 49 11.9% 14.4% 16 16 
Aalanden-Noord 286.0 66.4 75.6 78.9 15.0 95 19 96 20.4% 26.7% 32 32 
Aalanden-Oost 221.8 42.0 0.0 49.7 0.0 74 3 74 48.9% - 25 25 
Brinkhoek 6.4 10.9 0.0 13.0 0.0 6 3 6 -53.8% - 2 2 
Langenholte 5.4 1.7 0.0 1.9 0.0 5 3 5 163.2% - 1 1 
Haerst 4.2 3.4 39.8 4.2 7.9 5 12 12 19.0% 51.9% 1 4 
Berkum 196.6 52.1 356.3 62.0 70.7 68 70 96 9.7% -1.0% 23 30 
Bedrijventerrein de Vrolijkheid 23.9 1.7 316.5 1.7 62.8 12 64 65 605.9% 1.9% 4 26 
Veldhoek 5.7 4.2 39.8 4.7 7.9 6 12 12 27.7% 51.9% 2 4 
Kantorenterrein-Oosterenk 53.2 15.1 1860.8 17.6 369.2 22 342 347 25.0% -7.4% 7 140 
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Bedrijventerrein Hessenpoort 175.7 40.3 395.6 48.2 78.5 60 77 100 24.5% -1.9% 20 33 
Tolhuislanden 5.4 1.7 0.0 1.9 0.0 6 3 6 215.8% - 1 1 
Herfte 12.2 2.5 0.0 3.3 0.0 8 3 8 142.4% - 2 2 
Bedrijventerrein Marslanden-Zuid 0.0 0.0 0.0 0.0   3 3 3 - - 0 0 
Wijthmen 24.5 10.1 39.8 12.3 7.9 12 12 14 -2.4% 51.9% 4 5 
Oud Schelle 57.5 20.2 0.0 23.8 0.0 23 3 23 -3.4% - 8 8 
Schellerhoek 97.6 26.9 316.5 32.1 62.8 36 64 76 12.1% 1.9% 12 26 
Schellerbroek 103.4 28.6 39.8 34.1 7.9 38 12 38 11.4% 51.9% 13 13 
Schellerlanden 199.0 46.2 118.9 55.3 23.6 68 27 70 23.0% 14.4% 23 23 
Oldenelerlanden-Oost 164.8 31.1 0.0 36.9 0.0 57 3 57 54.5% - 19 19 
Oldenelerlanden-West 98.9 21.0 0.0 25.2 0.0 35 3 35 38.9% - 12 12 
Oldenelerbroek 205.6 48.7 10.1 57.7 2.0 69 6 69 19.6% 200.0% 23 23 
Schelle-Zuid en Oldeneel 3.0 6.7 0.0 8.4 0.0 5 3 5 -40.5% - 1 1 
Katerveer-Engelse Werk 18.0 9.2 237.4 11.0 47.1 10 48 49 -9.1% 1.9% 3 19 
Oud Ittersum 67.2 25.2 70.6 29.9 14.0 26 18 28 -13.0% 28.6% 9 9 
Ittersumerlanden 164.4 15.1 198.1 44.3 39.3 56 41 63 26.4% 4.3% 19 19 
Ittersumerbroek 210.6 39.5 0.0 47.2 0.0 71 3 71 50.4% - 24 24 
Geren 25.4 7.6 0.0 8.9 0.0 13 3 13 46.1% - 4 4 
Gerenlanden 245.2 53.8 39.8 64.1 7.9 81 12 82 26.4% 51.9% 27 27 
Gerenbroek 282.0 62.2 39.8 74.1 7.9 94 12 94 26.9% 51.9% 32 32 
Oude Mars 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Windesheim 16.6 4.2 0.0 4.6 0.0 10 3 10 117.4% - 3 3 
Harculo en Hoogzutmen 5.8 5.0 39.8 5.7 7.9 6 12 13 5.3% 51.9% 2 4 
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Table A3: Prognosis and results for 2035 

CBS-buurtnaam Prognosed EVs ElaadNL Simulation Difference Peak charging 
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Binnenstad-Zuid 207.9 47.0 3486.2 56.1 691.7 71 638 664 26.6% -7.8% 24 263 
Binnenstad-Noord 50.8 67.2 136.1 80.3 27.0 25 29 37 -68.9% 7.4% 8 12 
Noordereiland 83.2 22.7 726.3 27.2 144.1 31 137 147 14.0% -4.9% 11 56 
Het Noorden 60.4 13.4 726.3 19.8 144.1 24 137 144 21.2% -4.9% 8 57 
Schildersbuurt 26.1 9.2 72.6 11.0 14.4 13 18 20 18.2% 25.0% 4 7 
Bollebieste 89.2 24.4 363.4 29.4 72.1 33 72 83 12.2% -0.1% 11 30 
Dieze-Centrum 55.3 15.1 290.3 18.1 57.6 23 58 64 27.1% 0.7% 7 24 
Bagijneweide 84.9 23.5 115.9 54.6 23.0 31 27 38 -43.2% 17.4% 11 12 
Hogenkamp 170.4 31.9 508.5 46.0 100.9 58 98 120 26.1% -2.9% 19 42 
Indischebuurt 49.3 20.2 0.0 24.0 0.0 21 3 21 -12.5% - 7 7 
Meppelerstraatweg-Zuid 18.0 5.0 0.0 6.2 0.0 10 3 10 61.3% - 3 3 
Bedrijventerrein Floresstraat 59.8 16.8 217.7 19.6 43.2 24 45 51 22.4% 4.2% 8 18 
Wipstrik-Noord 336.8 105.0 436.0 124.8 86.5 113 85 133 -9.5% -1.7% 37 40 
Wipstrik-Zuid 247.2 44.5 0.0 53.0 0.0 82 3 82 54.7% - 28 28 
Stationsbuurt 140.0 16.8 3921.6 38.6 778.1 49 716 735 26.9% -8.0% 16 293 
Oud-Assendorp 290.9 84.0 0.0 99.9 0.0 97 3 97 -2.9% - 32 32 
Nieuw-Assendorp 216.5 63.0 0.0 74.8 0.0 74 3 74 -1.1% - 25 25 
Wezenlanden 53.5 14.3 363.4 17.4 72.1 22 71 76 26.4% -1.5% 7 29 
Pierik 201.2 45.4 72.6 54.1 14.4 68 18 69 25.7% 25.0% 23 23 
Bedrijventerrein Marslanden-Noord 6.3 0.8 290.3 0.6 57.6 6 59 59 900.0% 2.4% 1 24 
Hanzeland 166.0 37.8 1525.1 45.0 302.6 57 283 304 26.7% -6.5% 19 117 
Kamperpoort 81.3 0.0 1815.9 27.0 360.3 30 336 344 11.1% -6.7% 10 138 
Veerallee 212.5 70.6 423.4 83.7 84.0 73 82 111 -12.8% -2.4% 24 36 
Bedrijventerrein Voorst-A 21.2 0.0 726.3 9.0 144.1 11 138 139 22.2% -4.2% 3 57 
Bedrijventerrein Voorst-B 6.2 0.8 726.3 0.6 144.1 6 137 137 900.0% -4.9% 1 56 
Spoolde 12.8 14.3 0.0 17.3 0.0 8 3 8 -53.8% - 3 3 
Oud-Westenholte 235.1 73.1 15.1 90.8 3.0 80 7 80 -11.9% 133.3% 27 27 
Westenholte-Stins 395.7 82.3 0.0 98.0 0.0 129 3 129 31.6% - 43 43 
Vreugderijk 3.7 0.8 0.0 1.0 0.0 5 3 5 400.0% - 1 1 
Bedrijventerrein Voorst-C 153.0 34.4 1162.2 41.1 230.6 52 216 235 26.5% -6.3% 18 89 
Bedrijventerrein Voorst-D 13.9 6.7 436.0 7.8 86.5 9 85 86 15.4% -1.7% 3 35 
Frankhuis 859.1 252.0 72.6 300.2 14.4 280 18 281 -6.7% 25.0% 92 92 
Mastenbroek 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Schoonhorst 510.1 147.0 145.2 175.3 28.8 167 32 170 -4.7% 11.1% 55 56 
Werkeren 566.2 171.4 145.2 204.2 28.8 187 31 189 -8.4% 7.6% 62 62 
Milligen 1015.6 294.0 217.7 350.1 43.2 331 45 335 -5.5% 4.2% 109 110 
Tippe bij de Ijssel 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Breecamp 211.2 37.8 0.0 45.2 0.0 70 3 70 54.9% - 24 24 
Breezicht 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Stadsbroek 1.1 0.8 0.0 0.6 0.0 4 3 4 566.7% - 1 1 
Holtenbroek IV 149.9 35.3 726.3 41.6 144.1 53 137 155 27.4% -4.9% 17 57 
Holtenbroek I 169.1 38.6 145.2 45.6 28.8 57 32 61 25.0% 11.1% 19 20 
Holtenbroek II 128.7 39.5 0.0 46.9 0.0 46 3 46 -1.9% - 15 15 
Holtenbroek III 113.9 24.4 0.0 29.0 0.0 41 3 41 41.4% - 13 13 
Aalanden-Zuid 133.3 0.0 217.7 41.0 43.2 45 45 61 9.8% 4.2% 15 19 
Aalanden-Midden 252.9 19.3 217.7 65.8 43.2 82 45 88 24.6% 4.2% 28 28 
Aalanden-Noord 533.5 162.1 75.6 192.8 15.0 178 19 179 -7.7% 26.7% 58 59 
Aalanden-Oost 416.9 86.5 0.0 103.2 0.0 136 3 136 31.8% - 45 45 
Brinkhoek 12.0 16.8 0.0 20.3 0.0 9 3 9 -55.7% - 3 3 
Langenholte 10.1 2.5 0.0 2.8 0.0 7 3 7 150.0% - 2 2 
Haerst 7.7 6.7 72.6 7.8 14.4 6 18 19 -23.1% 25.0% 2 7 
Berkum 344.2 115.1 653.7 137.0 129.7 116 124 173 -15.3% -4.4% 39 54 
Bedrijventerrein de Vrolijkheid 41.7 1.7 581.1 2.2 115.3 18 111 115 718.2% -3.7% 6 46 
Veldhoek 10.0 5.0 72.6 6.4 14.4 7 18 19 9.4% 25.0% 2 7 
Kantorenterrein-Oosterenk 100.1 27.7 3413.6 33.0 677.3 36 622 633 9.1% -8.2% 12 256 
Bedrijventerrein Hessenpoort 350.5 79.8 726.3 95.4 144.1 115 138 184 20.5% -4.2% 39 60 
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Tolhuislanden 10.0 2.5 0.0 2.7 0.0 7 3 7 159.3% - 2 2 
Herfte 22.9 5.0 0.0 5.9 0.0 12 3 12 103.4% - 4 4 
Bedrijventerrein Marslanden-Zuid 0.0 0.0 0.0 0.0  0.0 3 3 3 - - 0 0 
Wijthmen 46.0 16.0 72.6 19.1 14.4 20 18 24 4.7% 25.0% 7 8 
Oud Schelle 108.1 37.8 0.0 44.7 0.0 40 3 40 -10.5% - 13 13 
Schellerhoek 183.3 42.0 581.1 49.7 115.3 62 111 135 24.7% -3.7% 21 47 
Schellerbroek 194.3 44.5 72.6 52.9 14.4 65 18 66 22.9% 25.0% 22 22 
Schellerlanden 374.1 110.0 217.7 131.3 43.2 125 45 129 -4.8% 4.2% 41 42 
Oldenelerlanden-Oost 304.8 57.1 0.0 68.4 0.0 100 3 100 46.2% - 34 34 
Oldenelerlanden-West 183.0 32.8 0.0 39.2 0.0 62 3 62 58.2% - 21 21 
Oldenelerbroek 380.5 119.3 10.1 141.8 2.0 128 6 128 -9.7% 200.0% 43 43 
Schelle-Zuid en Oldeneel 5.5 10.1 0.0 12.2 0.0 6 3 6 -50.8% - 2 2 
Katerveer-Engelse Werk 34.0 14.3 436.0 17.0 86.5 16 85 87 -5.9% -1.7% 5 35 
Oud Ittersum 126.2 42.8 70.6 51.3 14.0 45 18 46 -12.3% 28.6% 15 15 
Ittersumerlanden 308.9 47.9 363.4 83.4 72.1 101 72 115 21.1% -0.1% 34 35 
Ittersumerbroek 395.8 82.3 0.0 98.0 0.0 129 3 129 31.6% - 43 43 
Geren 47.9 10.9 0.0 13.0 0.0 20 3 20 53.8% - 7 7 
Gerenlanden 460.9 133.6 72.6 159.2 14.4 153 18 154 -3.9% 25.0% 51 51 
Gerenbroek 530.3 154.6 72.6 184.1 14.4 174 18 175 -5.5% 25.0% 58 58 
Oude Mars 0.0 0.0 0.0 0.0 0.0 3 3 3 - - 0 0 
Windesheim 31.2 6.7 0.0 8.0 0.0 15 3 15 87.5% - 5 5 
Harculo en Hoogzutmen 11.0 8.4 72.6 10.1 14.4 8 18 19 -20.8% 25.0% 2 7 
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Appendix B: Sensitivity analysis of Section 5.2 in tables 

Table B1: The effect of the number of sessions and the estimated charging power, on the 

peak number of CPs occupied. 

  Charging power per CP 
  -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 

W
e

ek
ly

 s
es

si
o

n
s 

p
er

 E
V

 

-25% -24% -25% -25% -24% -25% -24% -24% -25% -25% -25% -25% 

-20% -19% -20% -21% -20% -20% -20% -20% -20% -20% -20% -19% 

-15% -15% -14% -15% -14% -14% -15% -14% -14% -14% -14% -15% 

-10% -10% -11% -11% -10% -10% -10% -10% -10% -10% -11% -10% 

-5% -6% -4% -5% -5% -5% -5% -5% -5% -5% -5% -4% 

0% 0% 0% 1% 0% 0% 0% 1% 1% 0% 0% 0% 

5% 5% 5% 6% 6% 5% 5% 6% 6% 6% 5% 5% 

10% 11% 11% 11% 11% 11% 11% 11% 10% 11% 11% 10% 

15% 15% 15% 14% 15% 15% 15% 15% 15% 14% 14% 14% 

20% 20% 20% 20% 20% 19% 20% 20% 21% 21% 19% 20% 

25% 26% 25% 25% 26% 25% 25% 25% 25% 26% 25% 25% 

Table B2: The effect of the number of sessions and the estimated charging power, on the 

peak number of CPs charging. 

  Charging power per CP 
  -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 

W
ee

kl
y 

se
ss

io
n

s 
p

er
 E

V
 

25% 49% 46% 40% 34% 29% 29% 26% 23% 17% 11% 9% 

20% 43% 40% 31% 29% 26% 23% 17% 14% 11% 9% 9% 

15% 37% 31% 29% 23% 17% 14% 14% 9% 6% 3% 3% 

10% 31% 26% 20% 17% 17% 11% 6% 3% 3% 0% -6% 

5% 23% 20% 17% 11% 9% 3% 3% 0% -3% -9% -9% 

0% 20% 14% 11% 6% 3% 0% -3% -6% -9% -9% -14% 

-5% 14% 9% 3% 0% -3% -6% -6% -11% -11% -14% -17% 

-10% 9% 3% -3% -6% -9% -9% -14% -14% -17% -20% -23% 

-15% 0% -3% -6% -11% -11% -17% -17% -20% -20% -23% -26% 

-20% -3% -9% -11% -17% -17% -20% -23% -23% -26% -29% -31% 

-25% -11% -14% -17% -20% -23% -23% -26% -29% -31% -34% -34% 
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Appendix C: Extensive results for Berkum, Zwolle 

Table C1: Required CPs when using a cap on the LOS 

  CPs required Peak charging  
LOS cap to the 
average LOS 

LOS cap (Hours) 
Residents+ 
Visitors 
  

Residents+ 
Visitors+ 
Commuters 
  

Residents+ 
Visitors 
  

Residents+ 
Visitors+ 
Commuters 
  

# Charging 
sessions 
ended early 

10% 1.2 10 -91.15% 26 -57.87% 6 -84.62% 21 -65.00% 3857 

20% 2.4 22 -80.53% 60 -51.12% 15 -61.54% 45 -25.00% 1901 

30% 3.6 35 -69.03% 85 -43.82% 26 -33.33% 56 -6.67% 941 

40% 4.8 44 -61.06% 97 -38.76% 32 -17.95% 58 -3.33% 435 

50% 6 49 -56.64% 103 -35.96% 37 -5.13% 58 -3.33% 162 

60% 7.2 52 -53.98% 105 -34.27% 38 -2.56% 58 -3.33% 94 

70% 8.4 55 -51.33% 115 -32.58% 38 -2.56% 58 -3.33% 92 

80% 9.6 60 -46.90% 130 -29.78% 39 0.00% 60 0.00% 0 

90% 10.8 64 -43.36% 133 -27.53% 39 0.00% 60 0.00% 0 

100% 12 69 -38.94% 135 -24.72% 39 0.00% 60 0.00% 0 

110% 13.2 75 -33.63% 138 -21.35% 39 0.00% 60 0.00% 0 

120% 14.4 84 -25.66% 142 -16.29% 39 0.00% 60 0.00% 0 

130% 15.6 89 -21.24% 146 -13.48% 39 0.00% 60 0.00% 0 

140% 16.8 93 -17.70% 148 -11.24% 39 0.00% 60 0.00% 0 

150% 18 95 -15.93% 150 -10.11% 39 0.00% 60 0.00% 0 

Table C2: Required CPs when using a cap on the idle time 

  CPs required Peak charging 

idle time cap 
to the 
average idle 
time LOS cap (hours) 

Residents+ Visitors 
  

Residents+ Visitors+ 
Commuters 
  

Residents+ 
Visitors 
  

Residents+ 
Visitors+ 
Commuters 
  

10.00% 1 43 -61.95% 65 -39.33% 39 0.00% 60 0.00% 

20.00% 2 47 -58.41% 75 -37.08% 39 0.00% 60 0.00% 

30.00% 3 49 -56.64% 91 -35.96% 39 0.00% 60 0.00% 

40.00% 4 51 -54.87% 98 -34.83% 39 0.00% 60 0.00% 

50.00% 5 53 -53.10% 103 -33.71% 39 0.00% 60 0.00% 

60.00% 6 53 -53.10% 107 -33.71% 39 0.00% 60 0.00% 

70.00% 7 55 -51.33% 122 -32.58% 39 0.00% 60 0.00% 

80.00% 8 58 -48.67% 132 -30.90% 39 0.00% 60 0.00% 

90.00% 9 63 -44.25% 133 -28.09% 39 0.00% 60 0.00% 

100.00% 10 69 -38.94% 136 -24.72% 39 0.00% 60 0.00% 

110.00% 11 79 -30.09% 140 -19.10% 39 0.00% 60 0.00% 

120.00% 12 87 -23.01% 146 -14.61% 39 0.00% 60 0.00% 

130.00% 13 92 -18.58% 148 -11.80% 39 0.00% 60 0.00% 

140.00% 14 94 -16.81% 150 -10.67% 39 0.00% 60 0.00% 

150.00% 15 97 -14.16% 153 -8.99% 39 0.00% 60 0.00% 
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Table C3: Effect of deviating from the calculated required CPs 

 CPs Peak shortage Utilization 

Realized CPs to the 
calculated required 

Residents+ 
Visitors 

Residents+ 
Visitors+ 
Commuters 

Residents+ 
Visitors   

Residents+ 
Visitors+ 
Commuters   

Residents+ 
Visitors 

Residents+ 
Visitors+ 
Commuters 

50% 56.5 93 668 591% 1102 592% 96% 98% 

55% 62.15 102.3 461 408% 756 406% 96% 97% 

60% 67.8 111.6 265 235% 468 252% 95% 93% 

65% 73.45 120.9 187 165% 345 185% 92% 89% 

70% 79.1 130.2 106 94% 213 115% 86% 83% 

75% 85 139.5 95 84% 159 85% 81% 77% 

80% 90 148.8 54 48% 96 52% 77% 73% 

85% 96 158.1 46 41% 74 40% 73% 69% 

90% 102 167.4 37 33% 53 28% 69% 65% 

95% 107 176.7 13 12% 23 12% 65% 62% 

100% 113 186 7 6% 10 5% 62% 59% 

105% 119 195.3 2 2% -3 -2% 60% 56% 

110% 124 204.6 -10 -9% -15 -8% 57% 54% 

115% 130 213.9 -15 -13% -26 -14% 54% 52% 

120% 136 223.2 -20 -18% -36 -19% 52% 49% 

125% 141 232.5 -30 -27% -46 -25% 50% 48% 

 


