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Abstract

Developing psychopathology after a traumatic event has been a sought-after re-
search for some time, and most of it has focused on the detrimental causes of
anxiety, depression, or post-traumatic stress disorder. Earlier research showed a
high degree of intra-individual variation in how individuals respond to stress. While
no attempt has been made to understand resiliency using the available data, some
researchers have tried to understand the same using a medical perspective.

In this thesis, we are developing methods to improve the estimation of functional
brain connectivity using magnetic resonance imaging (MRI). This involves prepro-
cessing and estimation of connectivity using state-of-the-art tools. It is then followed
by the analysis of the correlation matrices, which is the baseline for understanding
the significance of the connections.

The analysis is followed by research and development of various Machine Learn-
ing algorithms to understand whether complex mathematical algorithms can make
sense of the data, and the correlations between them. This also led to another ques-
tion as to whether they can perform better when there is not enough data for the
analysis. This was followed by experimenting with state-of-the-art neural networks
for brain analysis for a comparison of the brain regions and was concluded with the
development of a new feature-engineered multi-layer perceptron framework that not
only dealt with the low data problem but was also able to find robust biomarkers of
brain resilience.

Our research resulted in finding biomarkers of brain resilience from various Ma-
chine Learning models, and showing that feature-engineered Multi-Layer Percep-
tron models can conclude better results as compared to data-hungry graph models,
with the Feature Engineered Multi-Layer Perceptron model performing sig-
nificantly better with around 64% classification accuracy as compared to 62% from
the BrainGNN model. It also answers a significant question in research, pertaining
to the fact that, if properly feature-engineered, multi-layer perceptron models can
perform significantly better with less data, as compared to complex models.

viii
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Chapter 1

Introduction

Computational Neuroscience is a rapidly emerging field that enables us to better
understand the brain’s cognitive processes and information processing within the
brain. By the time I finish writing this, a significant amount of activity has occurred
inside my brain, which may be decoded through the study of neurons. The ultimate
goal of computational neuroscience is to understand how electrical and chemical
signals are used to represent and interpret information in the brain. It explains the
biophysical mechanisms of computing in neurons, as well as computer simulations
of neural circuits and learning models. This led to a lot of questions in the medical
sector, as to how far can the experimentation in the brain be able to help clinicians
provide personalized treatments and aid in solving various intra-personal issues.

Kietzmann et. al. [4] says that computational neuroscience seeks mechanical ex-
planations for how the nervous system processes information to produce cognitive
function and behavior. At the center of the field are its models, which are mathemat-
ical and computational representations of the system under investigation that link
sensory stimuli to brain responses and/or neural responses to behavioral responses.
These models range in complexity from simple to complicated. Artificial neural net-
works (ANNs), as described in Appendix have recently come to dominate vari-
ous artificial intelligence (Al) disciplines. As the term "neural network” implies, these
models are inspired by biological brains. Current Artificial Neural Network (ANN)s
incorporate various characteristics of biological neural networks, enhancing comput-
ing efficiency and enabling them to do complex tasks ranging from perceptual (e.g.,
visual object and auditory voice identification) to cognitive (e.g., machine transla-
tion) to motor control (e.g., playing games or controlling a prosthetic arm). Apart
from modelling complex intelligent behaviors, [ANNjs excel at predicting neural re-
sponses to novel sensory stimuli with a degree of precision that much exceeds that
of any other model type now available.
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Over the years, the biggest challenge has been the representation of brain signals in
a form machines understand. One of the most important forms of translation was us-
ing functional magnetic resonance imaging (fMRI) images. Mathews and Jezzard [5]
describe that functional magnetic resonance imaging (fMRI) with blood oxygenation
level-dependent (BOLD) is a powerful technique for identifying brain activity in both
healthy and ill humans. BOLD fMRI detects local changes in relative blood oxygena-
tion, which are most likely the result of neurotransmitter action and so reflect local
neural signaling. This has resulted in a data format that is easily represented in im-
age form and can be used to perform modeling that, in turn, would be able to solve
several computational neuroscience challenges.

1.1 Motivation for research

This thesis work has been carried out in collaboration with Philips Research, in
their brain, behavior, and cognition department, and the Leiden Medical Center. A
new era of healthcare is dawning, one in which people increasingly take charge of
their health and well-being, aided by an industry that is fast evolving and embracing
technology in novel and ground-breaking ways, and Philips has always been at the
forefront of breakthrough innovation. One of the goals of this department is to use
these technologies to direct insights into our personality, mood, and physical func-
tioning that can be used for context-sensitive health coaching. One of the leading
research topics within Philips is Connected Care. In Connected Care, the focus is
on investigating technologies and solutions that stimulate personal understanding
of perception and mental issues. Amongst various such domains, one area where
research is being carried out is stress resilience.

The sensation of being overwhelmed or unable to cope with mental or emotional
pressure is referred to as stress. Stress is our body’s reaction to pressure. Stress
can be caused by a variety of conditions or occurrences in one’s life. It is frequently
triggered when we encounter something novel, unexpected, or threatening to our
sense of self, or when we believe we have little control over a situation. Schneider-
man et. al. [6] found that stressors have a significant impact on our mood, sense
of well-being, behavior, and health. Acute stress responses in young, healthy peo-
ple may be adaptive and do not usually hurt their health. However, if the threat is
constant, especially in elderly or sick people, the long-term impact of stressors can
be detrimental to health. The type, quantity, and duration of stressors, as well as
an individual’s biological sensitivity (i.e., genetics, constitutional factors), psycholog-
ical resources, and learned coping methods, all affect the link between psychosocial
stress and disease.
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Hence, one of the main research areas of Philips is understanding stress resilience,
and how it can be built up in an individual. Setroikromo et. al. [7] describes “stress
resilience” as effectively coping with stressors and promptly returning to equilibrium,
or "homeostasis,” after the stress has passed. However, rather than stress resis-
tance, | usually refer to effective coping as "stress optimization.” Although recover-
ing after the initial stress is an important aspect of stress management, the term
resilience does not express the importance of active coping. Some individuals can
easily cope with stress, while others develop psychiatric disorders, such as mood
swings or anxiety after a traumatic event. Why some individuals are more resilient
to stress is understudied, as most research is focused on the detrimental causes of
anxiety, depression, or post-traumatic stress disorder. Therefore, in this project, we
specifically searched for brain imaging biomarkers of stress resilience.

1.2 Problem Formulation

First responders, such as police officers, are more likely to experience traumatic
events based on their work and a lower incidence of psychopathology has been
reported in this population [8]. Such resilience is highly appreciated in this field
of work, especially by first-line responders like the police and medical people. If
anything, the current pandemic has shown the necessity of resilience in first-line re-
sponders in dire situations. Recruitment of first-line responders in the future could be
heavily benefited by the prospect of resilience from fMRI imaging, as it can be used
as a recruitment tool in the future, which can not only save the recruiting organiza-
tion, but also the candidates who unknowingly take up jobs they might not be able to
handle and have to give up on other opportunities. However, such a tool requires the
explainability and understanding of the brain, especially the connections in the brain,
called biomarkers. Our thesis aims to develop methods to improve the estimation of
functional brain connectivity using functional magnetic resonance imaging (fMRI) [9].
Functional connectivity is measured by [fMRI| and the estimation of coherent activ-
ity across the brain. This includes the computation of coherence metrics, principal
components, and separation of physiological noise. Functional connectivity gives us
inherent information about the blood-oxidation level in the brain, which could show
the inference of connections between two regions of interest. A common assump-
tion is that the connectivities inside the brain have a significant difference between
people who are resilient to stress, as compared to vulnerable people. We aim to do
this in two different ways.



CHAPTER 1. INTRODUCTION 4

1.2.1 Biomarkers from Statistical Analysis

Our first task was to understand whether we could use the adjacency matrices,
which are the matrices extracted after preprocessing the fMRI images and shows
the correlation values between the of the brain, to rank the connections based
on how important it is to understand resilience. We found the absolute mean group
difference between the connections of resilient people and those who are vulnerable,
resulting in a ranking of the connections that show the highest difference, effectively
finding biomarkers of stress resilience.

1.2.2 Machine Learning based biomarkers

We replicated the ranking of the connections using linear methods to create a base-
line method and used the state-of-the-art graph neural network to get a better classi-
fication score. However, we know that fMRI data is hard to get due to privacy issues
and also the fact that people suffering from issues like psychopathology don’t open
up to doctors, and hence, it's a tough job to get enough data for research purposes.
This brought up the issue of overfitting, as described in appendix [Al We overcame
the issue by creating a novel Machine Learning framework to replicate the biomark-
ers of stress resilience by effective feature-engineering with a multi-layer perceptron
to get a good classification score with the robust ranking of the connections.

1.3 Research Questions

We define three major research questions that have been addressed in the thesis:

1. Can we identify biomarkers of stress resilience using statistical methods from
fMRI images?

2. Can we use Machine Learning algorithms to understand and explain biomark-
ers of stress resilience?

3. Can we overcome the problem of overfitting due to less data availability?

e We came across a fundamental problem of overfitting (described in Ap-
pendix in Machine Learning while we were trying to find biomarkers
using ML algorithms, which we had to overcome to find robust biomarkers
of stress resilience.
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1.4 Research Contribution

The overall goal of our thesis is to find biomarkers inside the brain that would aid
clinicians in understanding resilience. The main contributions to our work are as
follows:

1. We analyzed mean group differences between the resilient and vulnerable
groups of people to check for connections that might be important for re-
silience.

2. We used different Machine Learning frameworks (Linear Regression, Logistic
Regression, Support Vector Machine, and Multi-layer Perceptron) to draw upon
rankings between the connections responsible for classification between the
resilient and vulnerable groups of people, thereby finding biomarkers of stress
resilience.

3. We used a state-of-the-art Graph Neural Network model, called BrainGNN [3]
to analyze the connections of the brain, drawing upon the classification score
to find the regions of interest that might strongly correlate with the classification
score, thereby explaining which are more involved in stress resilience.

4. Both the standard Multi-Layer Perceptron (MLP) and BrainGNN encountered
the problem of overfitting, which is a classic Machine Learning (ML) problem.
To overcome that, we propose a new framework called feature-engineered
Multi-layer Perceptron (fe-MLP) that uses linear model coefficients to reduce
data dimensionality, and, in turn, be efficient at finding robust biomarkers of
stress resilience.

1.5 Report organization

The rest of this thesis report is organized as follows. In chapter 2, we discuss previ-
ous advancements in the field of stress resilience and computational neuroscience
leading up to my thesis work. Then, in chapter 3] we discuss the methodology that
we used to carry out the research. We detail the experimental settings in chap-
ter [4.1] followed by the results in chapter [4.2] Finally, in chapter [5, we conclude the
final thesis with a summary of the work we carried out during the entire research
process, and by outlining the limitations of our research along with the future steps
that can be carried out to advance the research further.



Chapter 2

Background & Related Work

In this chapter, we will give a brief introduction to Computational Neuroscience, and
how it has evolved over the years, from being a core clinical study to the com-
putational aspects of it. We will also discuss the effects of Machine Learning on
Computational Neuroscience, and how that is linked with stress resilience and our
research.

2.1 Computational Neuroscience - History

Neuroscience, alternatively referred to as Brain Science, is the study of the neu-
ral system’s development, structure, and function. Neuroscientists study the brain
and its relationship to behavior and cognition. Neuroscience, on the other hand,
is concerned not only with the normal functioning of the nervous system but also
with what happens to it when people suffer from neurological, psychiatric, or neu-
rodevelopmental diseases. There are numerous branches of modern neuroscience,
but the one we will focus on is Computational Neuroscience, which is concerned
with understanding how brains compute by simulating and modeling brain functions
using computers and by applying techniques from mathematics, physics, and other
computational fields to study brain function [10].

According to Voss et al. [11], the term Computational Neuroscience was coined
when a group of scientists intended to investigate the links between physical activity
and exercise and the brain and cognition across the lifespan in healthy people. This
resulted in an explosion of research in the field, ranging from cognition to physiologi-
cal consequences to mental health difficulties, and the reality quickly sank in that the
brain is an enormously complex organ with an abundance of research opportunities.
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2.2 Stress Neurobiology and Clinical Implications

One of the most recent research that has captivated the neuroscience community
comes from the study of neurobiology, specifically stress. According to Godoy et
al. [1], stress is a key area of research in both basic and clinical neuroscience, owing
to the pioneering historical studies undertaken by Walter Cannon and Hans Selye
in the previous century, when the concept of stress emerged from a biological and
adaptive perspective. Following that, further research was performed to further our
understanding of stress, as illustrated in figure [2.1] Since then, it has been shown
that the response to stressful stimuli is developed and triggered by the now-famous
stress system, which integrates a diverse array of brain regions capable of detecting
and interpreting events as real or potential risks. On the other hand, various types
of stressors activate distinct brain networks, as illustrated in figure [2.2] necessitating
fine-tuned functional neuroanatomical processing. This integration of information
from the stressor may result in rapid activation of the Sympathetic-Adreno-Medullar
(SAM) and Hypothalamic-Pituitary-Adrenal (HPA) axes, two critical components of
the stress response. The stress response’s intricacies extend beyond neuroanatomy
and SAM and HPA axis mediators to the timing and duration of stressor exposure,
as well as its short-and/or long-term consequences. The discovery of stress neu-
ronal circuits and their interaction with mediator molecules across time is critical for
understanding not just physiological stress reactions, but also their mental health
repercussions. This expanded the scope of research into stress neurobiology be-
cause whenever there is a problem, there is usually an implicit quest for a solution.
As a result, the study of stress resilience was initiated, and it has become a highly
explored topic in recent years.

According to Baratta et al. [12], unfavorable events can affect the structure and func-
tion of the brain and are considered to be significant risk factors for depression,
anxiety, and other mental diseases. However, because the majority of people who
encounter undesirable or stressful life events do not suffer harmful consequences,
it is critical to understand the mechanisms that promote resistance to the damaging
effects of stress on a clinical level. Although considerable effort has been directed
at the level of basic research toward discovering experimental settings that miti-
gate/amplify the impacts of an unfavorable experience, even when parameters are
held constant, inter-subject variability in behavior exists. This has shifted the focus
to elucidating how genetic and environmental factors interact to determine an organ-
ism’s resistance to future adversity. The articles in this Research Topic summarize
recent research targeted at deciphering the brain mechanisms underlying resilience
and applying that knowledge to reduce susceptibility. This has resulted in numerous
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The Stress System

Psychological Physical
Stressors v Stressors

F Stress Response 5
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g Medlators d
Specmc Receptors
Body Brain Brain

Energy mobilization Genomic Effects Non-Genomic Effects
Metabolic Changes  Epigenetic Programming  |mmune Reactivity

Immune System Activation
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Reproduction Shutdown Altered Cellular
Machlnary . .
Celullar Excitability -
e exeewy Figure 2.2: Neuroanatomy of stress, Fig
Synaptic Plasticity 2 [1 ]
Physiological & Behavioral J
Changes

Adaptatlon
Figure 2.1: The stress system, Fig 1 [1]

clinical and technical studies on stress resilience, as well as a broad spectrum of
implications across all fields of research.

2.3 Stress Resilience and Neuroimaging

A variety of disciplinary methodologies have been employed to elucidate the ge-
netic, epigenetic, and brain circuit-level mechanisms underlying stress resistance.
Wau et al. [13] present an in-depth overview of recent advancements in each of these
analysis categories. Much of our understanding of the molecular mechanisms un-
derlying human resilience has increasingly come from neuroimaging investigations.
Werff et al. [14] compare the structural and functional changes associated with re-
silience in people who might have developed post-traumatic stress disorder (PTSD)
in the aftermath of trauma. Due to the complexity of this construct, neuroimaging
research on it is challenging. Werff et al. [15] described approaches for conceptu-
alizing resilience. The few structural and functional neuroimaging studies designed
to evaluate resilience have concentrated on alterations in brain regions involved in
emotion and stress regulation networks.

Previous neuroimaging studies on resilience have compared resilience to psychopathol-
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ogy following stress exposure, making specific resilience links difficult to make.
Setroikromo et al.cite [7] used a three-group design with a non—trauma-exposed
control group to distinguish resilience-related effects from psychopathology-related
effects, and they examined resilience-specific cortical thickness and/or cortical sur-
face area [16] correlates and their associations with psychometric assessments [17].
We measured the cortical thickness and surface area of the[ROlIs, as well as the en-
tire brain. In ROl and whole-brain studies, there were no significant differences in
cortical thickness or surface area between the resilient and control groups. The re-
searchers discovered no correlation between resilience to extreme stress and mea-
sures of cortical thickness and surface area in a sample of Dutch police officers.
Functional and structural connectivity methods [18], as well as innovative imaging
task paradigms, are expected to improve neuroimaging of resilience in the future.
This enabled us to delve deeply into the paradigm of image analysis to determine
whether any specific connections or[ROls emerge that could be used to explain why
some people are more resilient than others and be added as a supplement to the
work already done by Setroikromo et al. [7].

2.4 Analysis of Neuroimaging Data

Resting-state functional connectivity reveals intrinsic, spontaneous networks that
encapsulate the human brain’s functional architecture [19]. To avoid potential con-
founding factors such as deceptive correlations based on non-neuronal sources,
reliable statistical analysis used to discover such networks must incorporate noise
sources. Gabrieli et al. [20] describe the functional connectivity toolbox Conn, which
implements the component-based noise correction method [21] strategy for physi-
ological and other noise source reduction, additional movement and temporal co-
variates [22] removal, temporal filtering, and windowing of the residual blood oxygen
level-dependent (BOLD) contrast signal [23]. This toolbox is considered to be a
state-of-the-art toolbox for neuroimaging data processing. It can be used to prepro-
cess fMRI [24] pictures and generate adjacency matrices.

According to Aribisala et al. [25], displaying brain pictures in Montreal Neurologi-
cal Institute and Hospital space generates more noise than retaining them in
real space. Real space represents the point-coordinate system in real-world pho-
tographs, whereas [MNI| representation compresses the images into a selected coor-
dinate system, also referred to as standard space. We chose to conduct our analysis
in real space, which required us to co-register [26] the images in real space with the
mean images, to construct subject-specific atlases [27], which in turn aided
us in creating adjacency matrices with real space representation. This enables us
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to simplify our research techniques by establishing a common representation for
subsequent analysis. Aribisala et al. [25] stated the purpose of this study was to
compare the robustness of ROl analysis of magnetic resonance imaging (MRI) brain
data in real space to that of MNI| space analysis and to test the hypothesis that [MNI|
space image analysis introduces more partial volume effect errors than does real
space analysis of the same dataset.

2.5 Deep Learning and Graph Neural Network

The importance of machines in the field of Computational Neuroscience was real-
ized with the rising amount of data, both textual and neuroimaging, and this led to
several computer scientists using them to understand the underlying effectiveness
of the connections.

2.5.1 Deep Learning

Filippi et. al. [28] stated that deep learning is a type of artificial intelligence that
mimics the structure and organization of neurons in the brain as well as human
intelligence. Deep learning has been used passionately in the field of medicine
during the last decade, outperforming previously known methods. Deep learning
algorithms, for example, have demonstrated their effectiveness in several fields of
neuroscience, including the anatomical segmentation of specific brain areas, the
delineation of brain lesions such as tumors, and the image-based prediction of vari-
ous neurological illnesses. Deep learning is no longer simply an academic exercise,
but a powerful tool in clinical practice, thanks to algorithm optimization, increased
processing hardware, and access to a massive amount of imaging data.

According to Kietzmann et al. [4], computational neuroscience seeks mechanistic
explanations for how the nervous system processes information to generate cog-
nitive function and behavior. At the heart of the field are models, which are math-
ematical and computational representations of the system under investigation that
connect sensory stimuli to brain responses and/or neural responses to behavioral
responses. Deep neural networks (DNNs) have lately risen to prominence in a vari-
ety of fields of artificial intelligence (Al). As the term "neural network” implies, these
models are inspired by biological brains. On the other hand, current DNNs neglect
numerous elements of biological neural networks. These simplifications increase
their computational efficiency, enabling them to perform complex feats of intelligence
ranging from perceptual (e.g., visual object and auditory voice recognition) to cog-
nitive (e.g., machine translation) to motor control (e.g. driving a car or controlling
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a prosthetic arm). DNNs excel at accurately predicting neural responses to novel
sensory stimuli, much above the accuracy of any other model type now known, in
addition to their ability to describe complex intelligent behaviors. DNNs can have mil-
lions of parameters to capture the domain knowledge required for job execution suc-
cess. Contrary to popular assumption, the computational characteristics of network
units are determined by four easily manipulable factors: the input data, the network
structure, the functional objective, and the learning algorithm. With complete ac-
cess to the activity and connectivity of all units, advanced visualization techniques,
and analytic tools for mapping network representations to neural data, DNNs pro-
vide a powerful framework for developing task-performing models and will generate
significant insights in computational neuroscience.

2.5.2 Graph Neural Network

Graphs are a universal language for describing and analyzing items that have rela-
tionships or interactions. It is made up of nodes and the connections between them.
Nodes frequently have attributes. Graphs are used to represent a wide range of
data, from social media to neural networks. The primary issue with graphs is that
they can be of any size and have a complex topological structure (i.e. no spatial
locality). They do not have a set node ordering or reference point, and they are
frequently dynamic with multimodal properties. The key idea for graph-based net-
works is to generate node embeddings [29] based on local network neighborhoods.
Each network neighborhood defines a computation graph where information is ag-
gregated from the neighbors using Neural Networks, which shows that each node
is a summation of all the nodes with which it is connected over the total number
of nodes (connected), and the addition of the surrounding node embeddings. The
calculation to average the neighboring messages is as follows:

hg =,
hl
W =W Y |N(Z))| + By« k), vl € {0,...,.L — 1}
u€eN (v)

2, = hE

Here, W, and B; are the trainable weight matrices (i.e. what the machine learns
from the data) and hZ is the final node embedding. These node embeddings are
then sent to various Graph Neural Network layers to make a proper classification.
The following are the most important network layers responsible for classification:

e Batch Normalization: Stabilizes Neural Network Training.
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— Re-center the node embeddings into zero mean.

— Re-scale the variance into unit variance.
e Dropout: Regularizes a Neural Network to prevent overfitting.

— During training, with some probability p, we randomly set neurons to 0
(turn off).

— During testing, they use all the neurons for computation.

e Attention/Gating: Controls the importance of a message, mainly through the
application of activation functions.

The way Graph Neural Network handles unstructured graph data shows that these
algorithms may be the optimal solution for our complicated problem. According to
Zhou et. al. [30], many learning problems necessitate dealing with graph data that
offers rich relationship information among elements. Graph neural networks (GNNs)
are connectionist models [31] that reflect graph dependence through message pass-
ing between graph nodes. Graph neural networks, as opposed to ordinary neural
networks, retain a state that can represent information from their neighborhood with
arbitrary depth by aggregating the information from all their neighboring neurons,
which is not the case for an ordinary neural network.

There are a few state-of-the-art graph-based models that are being researched con-
tinuously in the field of Computational Neuroscience. BrainNetCNN [32] is one of
them. It is a convolutional neural network [33] framework for predicting clinical neu-
rodevelopmental outcomes from brain networks. BrainNetCNN was used to predict
cognitive and motor development outcome scores from preterm infants’ structural
brain networks. BrainNetCNN outperformed a fully connected neural network with
the same number of model parameters on both localized and diffuse damage pat-
terns. However, the BrainNetCNN is limited by the fact that it is only a classification
algorithm and, hence, can not be used for our case, where we require more ex-
plainability and understand the features responsible for classification, which would
allow us to understand the reasons for resilience. To overcome these shortcom-
ings, we came across BrainGNN [3], an interpretable brain graph neural network for
fMRI analysis. BrainGNN is a graph neural network (GNN) architecture for analyzing
functional magnetic resonance imaging (fMRI) and identifying neurological biomark-
ers [34]. The fundamental goal of developing this framework was to improve trans-
parency in medical image analysis, and BrainGNN includes [ROl}selection pooling
layers (Rpool) that emphasize prominent [ROIs (nodes in the graph) for determining
which are significant for prediction. Furthermore, on pooling results, regular-
ization terms such as unit loss, topK pooling (TPK) loss, and group-level consistency
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(GLC) loss [35] were proposed to encourage proper ROI-selection and allow flexibil-
ity to maintain either individual or group-level patterns.



Chapter 3

Methodology

In this chapter, we will outline the methodology that helped us to find the biomarkers
of stress resilience by statistical inference and with the help of machine learning.
We start by outlining the Data Acquisition process in chapter [3.1], followed by Data
Preprocessing in chapter [3.2) where the data is preprocessed to get the adja-
cency matrices. This was then followed by the analysis of the adjacency matrices
and searching for initial biomarkers of stress resilience ranking using statistical in-
ference in chapter[3.3] We then continued to find the same using Machine Learning
methods in chapter [3.4]and chapter[3.5] We then used state-of-the-art BrainGNN to
find the resilience, and check if this could outperform our methods. We con-
cluded by developing a novel framework to avoid overfitting due to less availability,
by measures of proper feature engineering, as described in section [3.7, and the
framework in chapter [3.8]

3.1 Data Acquisition

We received the fMRI image dataset from the Leiden Medical Center. Resting-state
functional Magnetic Resonance Imaging scans were obtained from trauma-
exposed executive personnel of the Dutch police force and non-trauma-exposed
recruits from the police academy. Participants were divided into three groups: a
resilient group (n = 19; trauma exposure; no psychopathology), a vulnerable group
(n = 18; trauma exposure, psychopathology) and a control group (n = 9; no trauma
exposure, no psychopathology) as shown in table 3.1l Resting-State Functional
Connectivity of the three networks of interest were compared between these
groups, using independent component analysis and a dual regression approach.

14
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Group No. of participants
Resilient 19

Vulnerable 18

Control 9

Table 3.1: fMRI resilience dataset from Leiden Medical Center
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Figure 3.1: Preprocessing pipeline [2]

3.2 Data Preprocessing

Initially, the anatomical images received were divided into 91 neocortical regions of
interest per the Hamburg nonMNI atlas, provided by the Hamburg team of Philips
Research. We started by binarizing the brain regions into 62 neocortical regions per
the Desikan atlas [36], by creating subject-specific atlases for each subject in native
space. Another instance of the same was created in MNI space to understand which
representation of the data stores more information and less noise.

Signals in crude [fMRI] information are impacted by numerous components other
than mind action, like breath, head development, and so forth. These may prompt
an expansion of the remaining change and decrease affectability. To tackle these
issues, we need to preprocess the information appropriately. We chose to utilize the
utilitarian tool CONN [20] for this. We began preprocessing by performing subject
movement assessment and remedying by realigning and unwarping the informa-
tion. Realigning realigns the pictures procured from similar subjects after some time
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and matches them spatially. Realignment can be separated into the accompanying
advances:

o Registration: Assesses 6 parameters for differences between the source pic-
tures and the reference image (1st picture in the series).

e Transformation: Here, each picture is coordinated with the main picture of the
time series, dependent on the changing boundaries of the first cut.

¢ Interpolation: B-Spline interpolation [37] is carried out.

Even after realignment, there is still a great deal of difference, which may prompt
loss of affectability or particularity. We continued to unwarp the information to elimi-
nate some undesirable changes without eliminating "valid” actuations.

As clarified in [38], cuts can’t be obtained at the same time because of the idea of
the fMRI| procurement conventions, and, accordingly, may be briefly skewed from
one another. Thus, we continued with the Slice-Time Correction step in the pipeline,
the impacts of which are referenced in [39].

Potential anomaly examines are recognized from the noticed worldwide BOLD sign
and the measure of subject movement in the scanner in the subsequent stage.
Acquisitions with outline astute relocation above 0.9mm or worldwide BOLD sign
changes over 5 standard deviations are hailed as likely anomalies. Casing insightful
uprooting is processed at each time-point by considering a 140x180x115mm bound-
ing box around the mind and assessing the biggest dislodging among six control
focuses set at the focal point of this jumping box. The worldwide BOLD sign change
is processed at each time point as the adjustment of the normal BOLD sign inside
SPM’s worldwide mean veil scaled to standard deviation units.

The following stage is co-registration [26] of pictures. The primary capacity of this
progression is to accomplish coordination between methodology and intra-subject
information. The realigned utilitarian information should be connected to the pri-
mary information. The underlying information has anatomical localization, and the
practice has a BOLD sign. We need these two to cover, which prepares for improved
interpretation into MNI/local space. This is trailed by spatial standardization, which
is a type of co-enlistment between subjects. The principal capacity of this progres-
sion is to twist pictures of people into a similar standard space. The significance of
standardization has been written down in

Useful and anatomical information is standardized into standard MNI space and
divided into grey matter, white matter, and CSF tissue classes utilizing the SPM12
bound together division and standardization method as expressed in [40]. This strat-
egy iteratively performs tissue arrangement, assessing the back tissue likelihood
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maps (TPMs) from the force upsides of the reference utilitarian/anatomical picture,
and enlistment, assessing the non-straight spatial change best approximating the
back and earlier TPMs, until intermingling. Direct standardization brought together
division and standardization techniques independently of the practical information,
utilizing the mean BOLD sign as a reference picture, and of the underlying informa-
tion, utilizing the crude T1-weighted volume as a reference picture. Both utilitarian
and anatomical information are re-inspected to a default 180x216x180mm bouncing
box, with 2mm isotropic voxels for useful information and 1mm for anatomical infor-
mation, utilizing fourth request spline addition.

Following the preprocessing pipeline, a couple of yield NIfTI[[documents are worked
out, comprising of the meaning of the pictures and some others. We then, at
that point, utilize our recently made subject-explicit chart books and co-register them
over the [fMRI| preprocessed information before moving them on to the denoising
pipeline. Co-enlistment over mean [fMRI| information for more than one subject can
be found in Figure

The next stage is passing the data through the CONN denoising pipeline. CONN’s
denoising pipelineﬂ combines two general steps: linear regression of potential con-
founding effects in the BOLD signal, and temporal band-pass filtering.

Denoising has the effect of reducing the impact of artifactual variables on useful
availability estimates. This effect can be best illustrated by examining the con-
veyance of useful network esteems between haphazardly chosen sets of focuses
inside the cerebrum when denoising. Considering the BOLD sign after a standard
insignificant preprocessing pipeline (before denoising), FC conveyances show very
enormous between-meeting and between-subject inconstancy, and slanted circu-
lations with differing levels of positive inclinations, steady with the impact of world-
wide or huge scope physiological and subject-movement impacts. Following denois-
ing, FC circulations exhibit broadly concentrated dispersions, with hardly discernible
larger tails on the positive side, and significantly decreased inconstancy between
meetings and between subjects.

The last stage in the preprocessing pipeline is to compose connectivity (correlation)
frameworks utilizing the Seed-Based Connectivity measuresﬂ Seed-based avail-
ability measurements portray the network designs with a pre-characterized seed or

'https://radiopaedia.org/articles/nifti-record format
2hitps://web.conn-toolbox.org/fmri-methods/denoising-pipeline
3https://web.conn-toolbox.org/fmri-techniques/network measures/seed-based
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Figure 3.2: The graph on the left represents the vulnerable mean matrix, the graph
in the middle represents the resilient mean matrix, and the graph on
the right represents the difference between the vulnerable and resilient
mean matrix.

ROI (Regions of Interest). This technique utilizes Seed-Based Connectivity maps
utilizing the Fischer—changedﬂ bivariate relationship coefficients between an ROI
BOLD time-arrangement and every individual voxel time-arrangement:

. [ S(z,t)R(t)dt
r(z) = (JRZ(t)dt [ S%(z,t)dt)0.5

Z(x) = tanh™1(r(x))

However, after the completion of the entire preprocessing pipeline, we concluded
that 1 subject was completely out of sync and failed to preprocess properly. Hence,
we decided to ignore that subject and the output from the final stage are adjacency
matrices of the 45 subjects with dimensions of 62x62, comprising of all the [ROls of
the brain.

3.3 Analysis & Stats. Inference Adjacency Matrices

Our initial analysis started by looking at the adjacency matrices from the prepro-
cessed fMRI images. The combined distribution of all the subjects was observed,
which resulted in Figure 4.2l We also checked the distribution of individual subjects
and understood whether any subjects/groups showed similar distributions in com-
parison to others, and the result is shown in Figure [4.3]

On initial analysis of the adjacency matrices, no connections popped out due to the
overall adjacency matrices being sparse, and hence, important connections were all

“https://blogs.sas.com/content/iml/2017/09/20/fishers-transformation-correlation.html

Vulnerable minus Control Group Mean Matrix in Native o1s
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over the matrix. That’s why a clustering mechanism was devised by Chen et. al. [41]
which states that for pattern recognition, a dendrogram that visualizes a clustering
hierarchy is frequently combined with a reorderable matrix to effectively cluster the
important connections together and find the activations within the adjacency matri-
ces. This resulted in reordered adjacency matrices as shown in figure[3.2]

One way of understanding which connections might be responsible for stress re-
silience was to understand the difference between the connections in the resilient
and vulnerable groups. We took the difference between the mean matrices of all
the subjects of the resilient and vulnerable groups as shown in figure 3.2} Luthar et.
al. [42] states that the higher the difference between the connections of both groups,
the more important those connections are in explaining resilience. We took the ab-
solute value of the difference in the connections and ranked them in descending
order. The resulting biomarkers are shown in table [4.3]

3.4 Baseline Linear Modelling

We developed baseline linear models to understand the connections responsible
for resilience. A baseline model is always the first step to understanding whether
the machine learning models can make sense of the dataset. We decided to do a
comparison of the linear models to find the baseline connections. We decided to
use the entire dataset for baseline modeling. However, the number of connections
(features) is way too high for interpretation. Therefore, we decided to remove the
duplicate connections (connections from one hemisphere of the brain) from the ad-
jacency matrices. We removed the healthy control subjects from the dataset, leading
to a smaller dataset. The columns comprising of participant_id, sex, and age have
also been removed as they played no part in improving the predictability of the Ma-
chine Learning models. The adjacency matrices have been flattened to be used as
features for linear models. We also converted the categorical column of the diag-
nosis (the value we have to predict) column of the dataset to numerical to be made
interpretable by the linear models. The correlation values that resulted from the pre-
processing pipelines are the values to be used for features, and these represent the
correlation values between the connections between the regions of the brain. We
split the dataset into 70% training data and 30% testing data. We decided to run the
model k-times for interpretability.

We then checked for the average accuracy over k iterations of the Logistic and Sup-
port Vector Machine (SVM) models and found biomarkers of brain resilience.
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3.4.1 Linear Regression

We began with a Linear Regression model and chose to fit the complete data set.
All of the obtained connections were utilized to fit the model with coefficients w =
(w1,..., wp) to minimize the residual sum of squares between observed targets in
the dataset and anticipated targets using the linear approximation. We used Ordi-
nary Least Squares (scipy.linalg.Istsq) wrapped as a predictor object to fit the data
and predict the coefficients of determination (R22).

We then used the absolute values of the model coefficients from the Linear Re-
gression model to rank the features responsible for the coefficients of determination
(R?). We sorted the features based on their importance, and repeated the same for
over k-folds, resulting in an order-independent ranking of the features of importance.

3.4.2 Logistic Regression

We followed the Linear Regression Model with a separate Logistic Regression model.
The training algorithm uses “"cross-entropy” loss, with L2 regularization, and a one-
vs-rest (OvR) scheme and is trained on the entire dataset for 100 iterations. We
have also used L-BFGS-B — Software for Large-scale Bound-constrained Optimiza-
tion solverf], which supports L2 regularization.

We selected the model coefficients from the models which predicted better than
chance (over 50% accuracy) over k-folds to rank the features responsible for predic-
tion. We sorted the features based on their importance, and repeated the same for
over k-folds, resulting in an order-independent ranking of the features of importance.

3.4.3 Support Vector Machine

Following that, the Support Vector Machine model was used to complete the linear
set. This implementation is based on the libsvmf| Support Vector Machine (SVM)
package. We used Grid Search to identify the optimal Support Vector Machine set-
tings, which is a suggested strategy because the right choice of the regularization
parameter (C) and kernel coefficient (gamma) is important to the Support Vector
Machine (SVM)’s performance and should be exponentially spaced apart to get good
values. The parameter C, which is shared by all SVM kernels, trades off the mis-
classification of training samples against the decision surface’s simplicity. Gamma
quantifies the influence of a single training example.

Shttp://users.iems.northwestern.edu/ nocedal/lbfgsb.html
Shitps://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf
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These parameters were utilized to generate classification scores, in which we used
the model coefficients from models that predicted better than chance (more than
50% accuracy) over k-folds to rank the predictive characteristics. We sorted the
features by relevance and repeated the process over k-folds, resulting in an order-
independent ranking of the most significant features.

3.5 Multi-layer Perceptron

After the creation of baseline linear models, we decided to find the features respon-
sible for resilience using a multi-layer perceptron. A perceptron is a computer model
or computerized system that is designed to mimic or simulate the brain’s ability to
perceive and differentiate. We know that the small dataset might be a factor during
our experiments. So, we decided to run the model for ’k’ number of times, where 'K’
is chosen as a random number that fits the dataset well, to remove the factor of over-
fitting, as was explained by running the model initially. We divided the dataset into
49-21-30 splits, as described in chapter [3.8] We split the dataset k-times with var-
ious subjects being in the various datasets (train-validation-test) for different folds,
hereby removing the overfitting factor. For each fold, we sample the features 100
times to make the features order-independent.

The Multi-layer perceptron model consists of 4 Dense layers [43] and 4 Dropout
layers [44] with Rectified Linear Unit (ReLU) activation function [45], and a 'sigmoid’
activation function [46] in the last layer to get the probability values for both the
classes after classification. We have also used Adam Optimizer [47] and Sparse
Categorical Cross Entropy as the loss function. The model converged fast and over-
fitted tremendously after 50 epochs. So, we decided to train the model for a max
of 50 epochs and employed early stopping, where we selected the model with the
highest validation accuracy.

This model was then tested for classification on the test set and the features were
then separated and checked over k-folds to see which features were responsible for
most of the predictions. This allowed me to create a top-30 list of the most important
features (connections) responsible for resilience.
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Figure 3.3: BrainGNN [3]: Interpretable Graph Neural Network for Brain Graph

Analysis. The functional correlation matrix in this image is equivalent
to our adjacency matrix.

3.6 Graph Neural Networks

Our research included exploring a different form of Machine Learning model that
could handle graph-based data. As our adjacency matrices are in the form of
graphs, we explored various graph-based Machine Learning models that could han-
dle this data. This is how we came across the state-of-the-art Graph Neural Net-
work method, BrainGNN [3]. We decided to implement the state-of-the-art Brain
Graph Neural Network from the paper by Li et. al. [3], which consists of the Pooling
Regularized Graph Neural Networks [48], where the terms Pooling and Regularized
Graph are termed in each layer of the neural network, followed by a classification
layer, which can be seen in Figure [3.3

We started by creating a graph dataset from the adjacency matrices that received
post-processing from the fMRI images, as described in chapter [3.2l Graph neural
networks are usually trained in batches. However, due to the small dataset, we de-
cided to encapsulate the entire dataset in a single batch. The adjacency matrices
were converted into graphs using the networkx library and self-loops were removed.
The edge indexes and attributes were stored separately, along with the number of
nodes.

As PyTorch is our main framework for the Graph Neural Network model, the edge
attributes were stored in a list and then converted into tensors for further processing.
Similarly, the label list, adjacency matrices, and the edge indexes were converted
into PyTorch tensors. Then the entire lists were encapsulated in a Data format, and
then divided into 49-21-30(train, validation, and test) split for training purposes. The
train, test, and validation splits were then converted into PyTorch Data format from
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the Dataloader’|and sent to training.

There are two proposed models for Pooling Regularized Graph Neural Networks,
namely LI_NET [49] and NNGAT [48]. We decided to proceed with LI_.NET for
our analysis since LI_NET handles high data dimensionality better than the NNGAT
layer. The next option we had was to choose which pooling layer would better suit
our research. We chose the TopKPooling [35] [90] [51] layer, which is mainly used
for data reduction and interpreting biomarkers. The last layer is a simple classifi-
cation layer, using the softmax function, to provide the probability of the respective
classes. The results of the training are mentioned in Section [4.2.5

3.7 Selection of Train-Validation-Test Data Split

Before proceeding with the Feature Engineered Multi-layer Perceptron, we decided
to find the proper train-validation-test split that can be optimally used for preventing
overfitting. We used a plethora of train-validation-test splits for various Multi-layer
Perceptron models over various epochs, to see which split performed the best in
terms of train-test-validation accuracy. Apart from the train-validation-test split, this
model also helped us to understand the best epoch for any number of features
assigned, ultimately converging on the best number of features responsible for re-
silience. The results are mentioned in chapter [4.2.6]

3.8 Feature Engineered Multi-layer Perceptron

Due to the rampant overfitting of the multi-layer perceptron and the Graph Neural
Network, we decided to employ a different framework that would prevent overfitting.
This led to me creating a Feature Engineered Multi-layer Perceptron, which uses
model coefficients from a logistic regression model, which can be used to rank the
top k-features, as described in chapter [3.4.2l We then selected the top 30 features
(connections) and separated them into the splits resulting from chapter [3.7] These
features are then sent to the multi-layer perceptron as described in chapter 3.5/ and
then the top 30 connections, ranked by the Logistic Regression models, are made
order-independent by removing overfitting due to the aforementioned feature engi-
neering. This then allows us to select the top-k features responsible for resilience.
The results from this model can be seen in section4.2.6.

Based on the folds decided in chapter [4.1.5] we checked the training and validation

"https://pytorch.org/docs/stable/data.html
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accuracy of different folds and how erratic they are. Fold 3 having a 70-30 dataset
split has performed the best, with the accuracies being less erratic as compared to
the other folds, as seen in Figure [8.4 Also, a comparison between the features
and epochs was analyzed to see if there is a linear trend between them, as seen in

figure [3.5

The training and validation accuracies were observed over the epochs, which can be
seen in the figure and we have concluded that the top 10, 24, and 30 features
represent the lowest training and validation errors, while having 75%, 62.5%, and
75% testing classifications respectively.

This gave us conclusive evidence of the perfect fit for the dataset, even though we
don’t have enough data to run complicated Deep Learning models. So, we decided
on the final split of 49%-21%-30% to run all our Linear and MLP models on, and
found out that 10 features perform the best classification score. We also determined
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that we don’t need more than 50 epochs for the MLP| models and models.



Chapter 4

Experimental Settings and Results

4.1 Experimental Settings

4.1.1 Preprocessing and Analysis

We used the CONN ToolboXT| to preprocess our fMRI dataset. This required co-
registration of anatomical images in native space. Hence, we had to binarize the
of the brain from 1-62, stating the images comprise 62 regions, and any region
more than 62 had to be made 0.

4.1.2 Baseline Modelling
Hyper-parameter Optimization

We have employed several hyperparameters for the 3 different linear models.

For the linear regression, we have used fit_intercept as True, normalize as False,
positive as False.

For the logistic regression model, we have used penalty as 12, tolerance for
stopping criteria(tol) as 0.0001, C as 1.0, fit_intercept as True, random _state as
None, solver as Ibfgs, max_iter as 100, multi_class as auto, and verbose as 0.

For the SVM model, we have used C as 10, kernel as linear, degree as 3, gamma
as 0.001, coef0 as 0.0, shrinking as True, probability as False, tol as 0.001,
cache_size as 200, class weight as None, verbose as False, max_iter as -1, de-
cision_function_shape as ovr, break ties as False, and random_state as None.

'https://web.conn-toolbox.org/
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4.1.3 Multi-layer Perceptron
Hyperparameter Optimization

For the model, we have used Adam Optimizer with a starting learning rate of
0.1, Sparse Categorical Cross Entropy loss function, 4 dense layers comprising
of 1891, 512, 256, and 64 neurons respectively, with Rectified Linear Unit activa-
tion function, along with 4 dropout layers with 0.4 probability. The final Dense
layer comprises of 2 neurons and sigmoid activation function in order to get the
probability of the two classes for classification.

4.1.4 BrainGNN
Training and Testing

We started by converting the adjacency matrices into brain graphs, by reading the
individual MatLab files of each subject. We started by selecting the first 62 columns
from the MatLab files, which are the connections between the [ROls of the brain,
and converting the NaN values to 0. We then removed the self-loops and created
edge index and edge attribute lists for all the subjects. For each subject, we have a
list of all the edge attributes (correlation values), edge index (the connections), and
adjacency matrices. This was converted into a Data formalE].

Hyperparameter Optimization

We tuned the hyper-parameters in accordance to the needs of our research. We
kept the number of epochs to 100 as the data seemed to overfit tremendously
after that. The batch size has been determined to fit the entire dataset together
well, so we kept it at 36, representing the entire dataset. The learning rate was
kept at 0.001 and Adam Optimizer has been used with a weight decay factor of
1e-2. A regularization factor of 0.2 has been used for L2 regularization. We
have kept 1000 GNN layers in order to avoid overfitting. We used BCE loss for
the distance loss measurement, the pooling method we used was TopkPooling,
and the model we used was NNGAT.

2https://pytorch.org/docs/stable/data.html
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Model Training Accuracy | Testing Accuracy
Logistic Regression - 58%
Support Vector Machine - 60%
Multi-layer Perceptron 57.3% 61.8%
BrainGNN 72% 62%
feature-engineered Multi-layer Perceptron 72% 64%

Table 4.1: Overview of all the models

4.1.5 Feature Engineered Multi-layer Perceptron
Finding the perfect fit

To find the most reliable biomarkers, we used the model coefficients from the Logis-
tic model to rank the features, followed by sending the features incrementally to a
multi-layer perceptron. The dataset was split into 4 different folds (90%-10%, 80%-
20%, 70%-30%, and 60%-40%) to avoid overfitting. For each fold, we checked the
training and validation accuracy to show how erratic they are when increasing the
number of features over epochs.

For the multi-layer perceptron, we have performed hyperparameter tuning to opti-
mize the model, as mentioned in chapter [4.1.3] We ran the model for a maximum of
100 epochs, as most of the features converged way before the 100 mark. Early stop-
ping has been employed to save the best model (model having the highest validation
accuracy), which has then been used for the test dataset.

4.2 Results

During the research, we came across various results that drove me towards my
final goal of finding biomarkers of brain resilience, which have been described be-
low. In chapter 4.2.1] we find the results of the preprocessing pipeline, i.e. the
adjacency matrices. We then discuss the results from our baseline linear models in
section [4.2.3] followed by the results from the BrainGNN in section4.2.5/and we end
with the results from the feature engineered Multi-layer perceptron in chapter [4.2.6]

The overview of all the modeling has been tabulated in [4.1], and the biomarkers
of brain resilience can be seen in table 4.2l Another important aspect of these rank-
ings can be seen visually in Appendix [C]
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Figure 4.1: Co-registered subject-specific atlas over mean [fMRI image shows that
the newly created subject-specific atlas is aligned perfectly over subject
5's mean [fMRIimage and hence, can be used for further preprocessing

4.2.1 Preprocessing and Analysis

Figure shows the co-registration of the mean fMRI|images over the newly cre-
ated subject-specific atlas, taking into account the 62 neocortical labels from the
Desikan atlas. This implies the use of real space for carrying out our research.

We then checked for the overall distribution of correlation values of all the subjects in
real space, as seen in figure 4.2, which shows a slightly right-skewed taif¥] signifying
that most of the data is clustered on the left to center scale.

We also found a similar right-skewed tail for each subject in both the real space(B.2)
and [MNI| representation of the brain, with a slight difference in the mean and stan-
dard deviation. An example of the trend can be seen in figure [4.3 which shows the
correlation matrix for subject 1 along with the distribution of the occurrences of the
correlation values.

As the difference between the adjacency matrices of each subject is so minimal, we
decided to take the difference between the mean of the vulnerable group and the
mean of the resilient group for further analysis, which is shown in figure [3.2] These
were then used by our Machine Learning models for further analysis.

4.2.2 Statistical Inference

We analyzed the mean group differences between the adjacency matrices of the
vulnerable and the resilient groups and then used the absolute values to rank the
connections. The result is described in table 4.3

3https://www.expii.com/t/normal-distribution-right-and-left-skewed-graphs-5338
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Figure 4.2: Overall distribution of correlation values of all the subjects in real space,
clearly indicating a normal distribution with a mean of little over 0.
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Figure 4.3: Correlation map of subject 1 on the left hand side showing the same
region values in the center and the upper and lower diagonal showing
the left and right hemispheres of the brain, and distribution of correlation
values on the right side with a right tailed distribution.
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Group Difference - Stats. Inference Score
Pars Opercularis left, Rostral Middle Frontal right 0.26
Pericalcarine right, Superior Temporal right 0.25
Pars Opercularis right, Rostral Middle Frontal left 0.24
Superior Temporal left, Pericalcarine right 0.23
Pericalcarine left, Superior Temporal right 0.22
Caudal Anterior Cingulate right, Superior Frontal right | 0.22
Cuneus left, Pericalcarine left 0.22
Posterior Cingulate right, Superior Frontal left 0.21
Pars Triangularis right, Rostral Middle Frontal left 0.21
Pars Opercularis left, Caudal Anterior Cingulate right | 0.21

Table 4.3: Rankings of important connects from mean group differences between
connections

4.2.3 Baseline Model

We started our experimentation by creating baseline linear models, namely Linear
Regression, Logistic Regression, and Support Vector Machines. The features are
ranked based on the model coefficients from the linear models and will be compared
with our experimented models.

The linear models have been fitted 100 times by selecting different sets of random
subjects based on 70%-30% split, resulting in separate features responsible for the
resilience and separate classification scores (R? coefficient for linear models). We
then managed to select the top 10 connections from the linear models, based on
how many times each connection appears in the top-10 feature list for various mod-
els. For the Logistic Regression, we have managed an average accuracy of 58%,
and for the Support Vector Machine, we managed an average accuracy of 60%. The
important connections from the Linear Regression can be seen in table [4.2] the im-
portant connections from the Logistic Regression can be seen in table and the
important connections from the Support Vector Machine can be seen in table [4.2]

We also created an adjacency matrix comparison amongst the connections respon-
sible for resilience amongst the three linear models, which can be seen in figure [4.4]
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Figure 4.4: Connections of Resilience in matrix form from the 3 linear models, with
Linear Regression in the left, Logistic Regression in the middle, and
Support Vector Machine on the right.
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Figure 4.5: Training Accuracy and Loss for initial MLP model

4.2.4 Multi-layer Perceptron
Model Training and Testing

After the baseline linear models, the next step of our experiment was to train our
data on a multi-layer perceptron. Even before training, there was an expectation of
overfitting the data as the number of features (connections) was too high as com-
pared to the number of subjects. Training an initial model on the entire dataset for
around 30 epochs gave us an average training accuracy of 97%, average validation
accuracy of 57%, and average testing accuracy of 60% with a standard deviation of
around 10%, as seen in figure [4.8] This indicated overfitting of the data, and also
the fact that the feature ordering might play a significant role in the classification
accuracy. A dirty way | used to remove overfitting is by including a 100-fold [MLP|
model where for each fold, we randomly select the subjects based on previously
accepted 49%-21%-30% split. Each version of the created dataset then goes into
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Figure 4.6: MLP Model on various number of features. On the Y-axis, we have the
accuracies of different models and on the X-axis, we have the number
of features.

Figure 4.7: Our MLP model on various number of iterations. On the y-axis, we have
the train, test and validation accuracy values and on the x-axis, we have
the number of folds.

the [MLP| model 100 times based on a different sampling of the features. We treat
each sampling as the ranking for the features, as we’ve seen from the figure [4.7|that
after a certain number of features, the model fails to make more sense of the added
features and the classification accuracy drops significantly to a chance. We trained
our [MLP| based on the hyperparameters described in the previous section, which
resulted in the graph below with an average training accuracy of 57.3%, average
validation accuracy of 51.25% and an average test accuracy of 61.81%.

4.2.5 BrainGNN

The dataset was divided into 49%-21%-30% split after trying out a series of different
folds, where the fold mentioned above performed the best. We devised the dataset
100 times, running the model for each iteration, selecting the best model for testing,
and recording the scores. The average accuracy and loss plots are shown in 4.8,

The final average train accuracy was recorded at 72%, validation accuracy was
recorded at 20% and test accuracy was recorded to be 62%.
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Figure 4.8: BrainGNN Training/Validation Accuracy/Loss Plot

Even though the validation dataset was too low to get any significant result, | believe
the result is far off from being clear-cut. However, we decided to keep the top-10
regions of interest in place of the most number of[ROls presented in the top-10 most
of the time, as seen in table [4.2]

4.2.6 Feature Engineered Neural Network

We decided to use 100 different model coefficients fitted each time after dividing
the dataset into a 70%-30% split randomly, ranking the absolute model coefficient,
effectively understanding the top features (connections). We then selected the top
30 connections from this ranked list, then divided the dataset into our selected 49%-
21%-30% train-validation-test split, sampled the features randomly 100 times, and
sent them to the Multi-layer Perceptron model for training and testing. This gave
us an average training accuracy of 72%, average validation accuracy of 65%, and
an average testing accuracy of 64%. | also recorded the top-10 connections, which
were ranked in the top-10 most of the time in the loop, hereby confirming biomarkers
of stress resilience. The result is shown in table [4.21

4.2.7 Final Ranking and Prediction

A comparison has been drawn between all the machine learning models to find
robust biomarkers of stress resilience. We found that 6 out of the top 10-ranked
connections stood out from all the machine learning models, effectively saying that
those connections are robust to different settings. The rankings can be seen in ta-
ble 4.4l
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Pericalcarine Right - Superior Temporal Right
Pars Opercularis Left - Rostral Middle Frontal Right
Rostral Middle Frontal left - Pars Opercularis Right
Caudal Anterior Cingulate Right - Superior Frontal Right
Pericalcarine Left - Superior Temporal Right
Posterior Cingulate Right - Superior Frontal Right

Table 4.4: Robust biomarkers from all machine learning models

Subject

Prediction

Subject008

Vulnerable

Subject037

Vulnerable

Subject038

Vulnerable

Subject039

Vulnerable

Subject041

Resilient

Subject042

Resilient

Subject044

Vulnerable

Subject045

Resilient

Subject046

Vulnerable

Table 4.5: Predictions of healthy control subjects based on feature-engineered
Multi-layer Perceptron

We also had 9 healthy control subjects who were not exposed to any sort of stress.
We made predictions for the said subjects, as to which group they might fall into
based on our feature-engineered multi-layer perceptron. The predictions are shown
in table [4.5]

Kinser et. al. [52] states that almost 80% of the people in the world are more sus-
ceptible to stress, and end up having some forms of mental issues if exposed to it.
Our analysis shows that almost 67% of the people in the population data shared by
Leiden Medical Center belong to the vulnerable category.



Chapter 5

Conclusion

In our thesis, we sought to investigate stress resilience using resting-state fMR]]
brain imaging, thereby assisting us in better understanding the impact of stress on
the brain and the possibility of identifying biomarkers of stress resistance.

We present two ways that helped us to converge on biomarkers of stress resilience.
We first introduce statistical inferences, which can be used to find biomarkers by
analyzing the group differences between the resilient and vulnerable groups of peo-
ple. The second way is by using different Machine Learning models to analyze the
connections and converging on biomarkers of stress resilience with good accuracy.

We have analyzed the connections using several Machine Learning models, in-
cluding Linear Models, Neural networks, and state-of-the-art BrainGNN, which is
a highly interpretable Brain Graph Neural Network for [f[MRI analysis. However, due
to the unavailability of much data, we didn’t manage to get robust and faced
the problem of overfitting. This allowed us to research alternate solutions that would
avoid the low data problem.

We introduced a novel framework for our research, called the feature-engineered
Multi-layer Perceptron, which takes in the most important features based on model
coefficients from linear models, and they’re trained effectively with the help of a multi-
layer perceptron to provide better classification accuracy and robust biomarkers of
stress resilience.

5.1 Limitations of study

The frameworks presented in this thesis come with their limitations as well. The
biggest limitation to our research is the availability of data, as it is in the case of

37
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much medical research. This led to another major limitation, which has been the ab-
sence of an end-to-end evaluation for our proposed feature-engineered multi-layer
perceptron framework that would require lots of resources and data to train the dif-
ferent classifiers and make them order-independent for ranking. Another limitation,
coming from the low data availability, was in the case of reduction of data dimen-
sionality. We reduced the brain [ROIs from 92 to 62, which led to a lot of ROl being
merged, effectively biasing the data to a few clusters, and hindering us from finding
robust biomarkers.

5.2 Future Prospects

Several directions could effectively advance the research on stress resilience. |
have listed the following that | believe would advance the research by a considerable
amount:

e We could employ more robust statistical analysis like clustering, and grouping
based on connections, effectively trying to understand whether some clusters
play a better role in resilience as compared to others.

¢ If we have enough data, we could try out various state-of-the-art Graph Neural
Network models to understand the network connections within the brain and
get better classification results.

¢ |f we have enough data, we also don’t reduce the data dimensionality consid-
erably, as was the case for clustering some of the brain regions from 92
to 62[ROls.

e We could also enhance the framework by ranking the initial features
based on a combination of the linear models, and then using the subsequent
rankings in more complicated neural networks, to get better classification scores,
and hence, better biomarkers of stress resilience.
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Appendix A

Machine Learning

A.1 Artificial Neural Network

The term "Artificial Neural Network” is derived from biological neural networks, which
are responsible for the development of the human brain’s structure. Artificial neu-
ral networks, like the real brain, have neurons that are connected at several levels.
Nodes are the collective term for these neurons. The dendrites from biological neu-
ral networks represent inputs, the cell nucleus represents nodes, the synapse rep-
resents weights, and the axon represents output in Artificial Neural Networks. The
biological neuron is depicted in figure [A.1] while the artificial neuron is depicted in

figure[A.2]

To grasp the concept of the architecture of an artificial neural network, we must first
understand what a neural network is. A neural network is defined by the placement
of a large number of artificial neurons, referred to as units, in a succession of layers.
Consider the numerous layers that can be found in an artificial neural network. The
three levels of an Artificial Neural Network are as follows:

¢ Input Layer: This layer takes in inputs from the user.

< o1 o —> I

wi

w2

Q(?

Input 2 Xz

/

Input 3 Xn

Y  OQutput

Figure A.2: A classic example of Artificial

Figure A.1: A classic example of Biologi- neuron

cal neuron
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o Hidden Layer: Between the input and output layers is a hidden layer. It per-
forms all of the mathematics necessary to unearth hidden traits and patterns.

e Output Layer: The hidden layer modifies the input and communicates the
outcome via this layer. When an input is received, the artificial neural network
calculates both the weighted sum of the inputs and the bias. A transfer function
is used to express this computation.

i=1

It computes the weighted sum, which is then passed to an activation function
to get the outcome. Activation functions control whether a node should fire
or not. Only those who are fired make it to the output layer. There are a
variety of activation functions accessible, depending on the type of work being
performed.

The best way to think of an Artificial Neural Network is as a weighted directed graph
with artificial neurons serving as nodes. Directed edges with weights can be used
to depict the relationship between neuron outputs and neuron inputs. An external
source provides an Artificial Neural Network with an input signal in the form of a
pattern and a picture in the form of a vector. Following that, these inputs are mathe-
matically assigned using the notation x(n) for each of the n inputs.

Then, each input is multiplied by the weights associated with it (these weights are
the details utilized by artificial neural networks to solve a specific problem). These
weights, in general, describe the strength of the connections between neurons in-
side an artificial neural network. Within each computing unit, all weighted inputs are
added.

If the weighted sum equals zero, either bias is applied to the output to make it
non-zero, or another method is employed to scale up to the system’s response.
The inputs for bias and weight are identical, and weight equals one. The sum of
weighted inputs can be any value between 0 and positive infinity in this scenario. To
ensure that the response remains within acceptable bounds, a specified maximum
value is bench-marked and the sum of weighted inputs is routed via the activation
function.

Activation function is a group of transfer functions that work cooperatively to achieve
the desired effect. While activation functions can take on any shape or size, they are
frequently composed of linear or non-linear sets of functions. As seen in figure
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Figure A.3: Working of an artificial neural network

and extensively explored in the article ANN D the binary, linear, and tan hyperbolic
sigmoidal activation functions are among the most commonly used sets of activation
functions.

A.2 Overfitting, underfitting, & bias-variance tradeoff

The ideas of overfitting, underfitting, and the bias-variance tradeoff are all crucial to
machine learning. Overfitting occurs when a model’s performance on the training
data used to fit the model is much better than its performance on a test set that
was not included in the model training process. For example, the prediction error for
training data may be considerably smaller than that for testing data. One of the key
reasons for separating data for training and testing is to enable the comparison of
model performance measures across these two data sets. This enables the model’s
forecasting capability to be validated using new, previously unseen data.

A model is said to have a large variance if it overfits the training data. One way
to look at it is that whatever variability there is in the training data, the model has
done an excellent job of "learning” it. It is far too accurate. A model with a large

'https://www.javatpoint.com/artificial-neural-network
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Figure A.4: Bias Variance Tradeoff

variance has almost certainly learned how to deal with noise in the training data.
The term "noise” refers to random fluctuations, or deviations from true values, in the
characteristics (independent variables) and responsiveness of data (dependent vari-
able). Noise can conceal the true relationship between features and the response
variable. Almost all the data in the current world is noisy.

If the training set contains random noise, the test set almost certainly contains ran-
dom noise as well. Due to the unpredictable nature of the noise, the random fluctu-
ations’ specific values will differ from those of the training set. The model is unable
to predict oscillations in the new, previously unreported data in the testing set. This
is why the testing performance of an overfitted model is worse than its training per-
formance.

Overfitting is more likely in the following circumstances:

e There are a considerable number of possible features in comparison to the
number of samples (observations).

e The more features there are, the more likely it is that an erroneous association
between the features and the response will be discovered.

In complex models, deep decision trees or neural networks are used. These types
of models generate their features effectively and have the ability to establish more
sophisticated assumptions about the link between characteristics and response, in-
creasing the likelihood of overfitting. On the other hand, if a model does not closely
match the training data, this is referred to as underfitting, and the model is deemed
biased. In this case, the model’s properties or the type of model used may be overly
simplistic. The trade-off between them is illustrated in figure [A.4]



Appendix B

Preprocessing Pipeline

This section will be used to understand some of the nuances of the preprocessing
pipeline, which are already mentioned in the aforementioned sections.

B.1 Importance of Normalization

The importance of normalization during fMRI preprocessing is as follows:

e This is necessary for the analysis of fMRI data at the between-subject level.

To transform the brain images of each individual to reduce the variability be-
tween individuals and allow meaningful group analyses to be successfully per-
formed.

Improve the statistical power of the analysis.

Increase generalizability of findings at the population level.

Allows for cross-study comparisons.

B.2 MNI Space and Real space

Normally, in brain analysis, an individual’s brain is registered in standard space (e.g.,
Talairach or MNI space)['} which normalizes differences in brain size and shape be-
tween participants. The sought to define a more representational brain. In
a two-stage procedure, they built a new template that was approximately matched
to the Talairach brain. To begin, they analyzed 241 normal MRI scans manually,
identifying a line extremely similar to the AC-PC line and the brain’s margins. Each
brain was sized to correspond to the Talairach atlas’s comparable places. They next

Thttps://brainmap.org/training/BrettTransform.html
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utilized an automated nine-parameter linear technique to match 305 normal MRI im-
ages (all right-handed, 239 M, 66 F, age 23.4 +/-4.1) to the average of 241 brains
matched to the Talairach atlas. They then developed an average of 305 brain scans
altered in this manner-the MNI305. The MNI305 was the company’s initial template.
The current standard MNI template is the ICBM152, which is the average of 152
normal MRI scans matched to the MNI305 using a nine-parameter affine transform.
This is the standard template used by the International Consortium for Brain Map-
ping; it is also the standard template used in SPM99.

An alternate method is to convert the standard space atlas-based [ROIl to the sub-
ject’s spacereal space coordinate system. This latter method retains the ease of
atlas-based analysis while keeping the integrity of the original picture data and is
expected to exhibit less processing-related bias. This is the coordinate system used
throughout the MRI scan, and so there should be no degradation in the picture or
the associated [ROls for image analysis.



Appendix C

Visualization of biomarkers inside
the brain

One of the major results from our Machine Learning models is the biomarkers of
stress resilience. With the importance of the rankings, another very important aspect
is the visualization of biomarkers inside the brain. Those visualizations give us a
clear indication of which areas inside the brain is responsible for the resilience and
provide a visual aspect for experts, which might help them in analyzing the results
of the Machine Learning models. The visualizations are color-coded to show the
different connections responsible for resilience. The visualizations can be seen in
the following figures.

Figure C.1: Visualization of the biomarkers of stress resilience from Linear Regres-
sion model.
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Figure C.2: Visualization of the biomarkers of stress resilience from Logistic Re-
gression model.

Figure C.3: Visualization of the biomarkers of stress resilience from Support Vector
Machine model.

Figure C.4: Visualization of the biomarkers of stress resilience from Multi-layer Per-
ceptron model.
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Figure C.5: Visualization of the biomarkers of stress resilience from feature-
engineered Multi-layer Perceptron model.



Appendix D

Mapping of to Brain Regions

We have the following regions of interest from the brain, which have been in connec-
tion with the analysis, and the short to long-form has been mapped in this section in
the following table. We have also used I’ for ’left’ and ’r’ for ’right’ in the aforemen-
tioned table, to show in which hemisphere of the brain does the [ROl lies.
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Short Form | Full form

CaudAntC | Caudal Anterior Cingulate
CaudMidF | Caudal Middle Frontal
Cun Cuneus

Ent Entorhinal

Fus Fusiform

IP Inferior Parietal

IT Inferior Temporal

IstC Isthmus Cingulate

LO Lateral Occipital
LFOrb Lateral Orbifrontal

LG Lingual

MedFOrb Medial Orbitofrontal
MidT Middle Temporal
PaHC Parahippocampal
PaCen Paracentral

ParsOper Pars Opercularis
ParsOrb Pars Orbitalis
ParsTriang | Pars Triangularis
PerCC Pericalcarine

PostC Postcentral

PCing Posterior Cingulate
PreC Precentral
Precuneous | Precuneus
RosAntCing | Rostral Anterior Cingulate
RosMidF Rostral Middle Frontal
SF Superior Frontal

SP Superior Parietal

ST Superior Temporal
SM Supramarginal
TransT Transverse Temporal

Insula

Insula
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