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ABSTRACT

Relative Strength Index (RSI) is a well-known technical
indicator, which outputs are frequently used by traders
and algorithms alike as a part of their decision process.
Unfortunately, it is also suspect to generating numerous
false signals, which reduces its performance. In this study
we attempt to mitigate this issue by assembling a custom
RSI based trading algorithm, referred to as 3-IRSI. Con-
sequently, Particle Swarm Optimization (PSO) is applied
in order to find optimal Bitcoin trading setups. Its per-
formance is then compared against PSO optimized RSI
and one other commonly used algorithm, as well as buy-
and-hold strategy. Experiment results are presented in the
form of descriptive statistics and demonstrate that the re-
sulting algorithm is capable of outperforming its peers.
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1. INTRODUCTION

Bitcoin emerged in 2009 [3] as a peer-to-peer electronic
cash system [18] and since then it has received a lot of
attention due to its decentralized nature. Its unique char-
acteristics have prompted research into understanding how
it can be classified |14] and properly regulated [16} 20]. As
of today bitcoin is experiencing a widespread adoption.
Unfortunately, its price can experience a lot of volatility
[2]. Which makes it hard for investors to achieve profit
and as a result they seek algorithms that would improve
their portfolio’s performance [6].

Such algorithms can be grouped into many categories,
with technical being one of the oldest and most widely
applied [5, |15]. Aforementioned algorithms can be fur-
ther classified into multiple subcategories depending on
the range of utilized techniques. One of the most widely
used are trend-following indicators such as Moving Aver-
age Convergence Divergence (MACD) [1] and momentum
oscillators such as Relative Strength Index (RSI) |22]. Un-
fortunately, during prolonged [bull marketk and [bear mar-|
oscillators such as RSI are known for their ability to
remain in one of the two value extremes. This result in
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their ability to misidentify market bottoms and ups and
as a consequence in suboptimal trading decisions [23].

In this paper we propose a new RSI based algorithm, de-
noted as 3-Period Integrated Relative Strength Index (3-
IRSI), which hopes to alleviate some of the RSI’s short-
comings. The need to evaluate its performance resulted in
the formulation of the following research questions:

e RQI: How does 3-IRSI fare against buy-and-hold
strategy?

e RQII: What is the performance of the 3-IRSI in
comparison to RSI and MACD?

In order to answer those research questions, we have used
one hour resolution bitcoin trading data ranging from April
2019 up to and including November 2021. Subsequently,
Particle Swarm Optimization (PSO) [12] was applied in
order to find optimal 3-IRSI, RSI and MACD setups. The
results are presented in the form of descriptive statistics
and demonstrate that, under chosen methodology, 3-IRSI
is capable of substantially outperforming its peers.

2. RELATED WORK

Even though technical analysis was originally developed
for a different type of financial assets, Corbet et al. demon-
strated that it is capable of generating useful Bitcoin trad-
ing signals [7]. Similarly, Detzel et al. demonstrated
that moving averages can predict Bitcoin returns [8]. Fur-
thermore, Huang et al. evince that their model utilizing
124 different technical analysis algorithms possess a strong
predictive power and is capable of outperforming buy-and-
hold strategy [|11].

Briza and Naval Jr. demonstrated that their setup consist-
ing of numerous technical indicators paired with Particle
Swarm Optimizer and a custom multi-objective optimiza-
tion function radically surpassed performance of various
considered alternatives |4]. Likewise, Cohen demonstrated
that PSO equipped with a multi-objective optimization
function consisting of: percentage of dollar value invested
(OMDD), net profitability factor (NPF) and profitability
percentage (PP) is capable of yielding profitable MACD
and RSI setups [6]. Whereas, Nakano et al. [19] used a
neural network paired with a mixture of different technical
indicators, attaining higher performance than the distinct
rules themselves.

As previously demonstrated, current research can be di-
vided into two main categories. Firstly, a lot of emphasis is
put on evaluating performance of pre-existing technical in-
dicators. Secondly, such indicators are often used as a part
of some greater system. In this context our main contribu-
tion is investigation into whenever it may be worthwhile
to build upon them.



3. EXPERIMENT DESIGN

For the purpose of this experiment, we will assume al[frictioh-
1,000 euros of starting capital and use OHLCV
Bitcoin trading data of one hour resolution. The data it-
self range from April 2019 up to and including November
2021. The choice of the OHLCV format has been made
due to its perceived popularity and ability to capture the
most important aspects of the historical price activity. In
essence, OHLCYV is a five-tuple containing selected infor-
mation about trading activity within some predetermined
time frame such as one hour or a day. Its exact structure
can be judged from .

OHLCV = (OPEN, HIGH, LOW,CLOSE,VOLUME) (1)

OPEN and CLOSE refer to the price of the underlying
asset at the beginning and at the end of the specified time
frame. HIGH and LOW to the highest and lowest value
achieved within that period, whereas VOLUME refers to
the amount of the asset traded. The example of so-called
candlestick pattern resulting from plotting OHLCV data
can be seen in Figure A red candlestick implies its
CLOSE value is lower than its OPEN value, conversely
for green.

Figure 1. Candlestick pattern resulting from plot-
ting Bitcoin’s one hour OHLCYV data

In order to simulate a real-world scenario, our experimen-
tal setup contains an internal clock denoted as t,. This
clock is then incremented using "ticks” of one hour. Next,
clock’s time is used to retrieve a vector of preceding 100
hours of the Bitcoin trading activity. Where the number of
data entries per tick has been chosen arbitrarily as a bal-
ancing factor between signal accuracy and the amount of
data in needed of processing. As a next step this OHLCV
vector is processed using . This operation yields a vec-
tor of the last 100 hourly bitcoin trends.

CLOSE — OPEN
GAIN_.LOSS(OHLCV) = ———— "~ """ 4100 (2)
OPEN

Subsequently, such input vectors are processed by a de-
cision module consisting of either RSI, 3-IRSI or MACD
and some internal logic ensuring that assets cannot be sold
or bought twice in a row. Finally, portfolio’s value at the
time of the last SELL action is returned. Resulting chain
of actions is subsequently denoted as M_GAIN in Figure
211

We will now briefly give more background to the RSI and
MACD, which will be followed by the exact algorithm for
3-IRSI and explanation how each trading strategy was in-
corporated into Particle Swarm Optimizer.

3.1 Relative Strength Index

Relative Strength Index is a bounded momentum indica-
tor |22] whose output ranges from zero up to 100. Its

exact formula can be seen bellow as and (). Where
AVG_GAIN (Input)e and AVG_LOSS(Input), refers to
the average gain and loss incurred during last o periods.
Example RSI output can be seen in Figure

100
RSI(Input =100 - — 3
(Input)a 1+ RS(Input)q @)

AVG-GAIN (Input)q
RS(Input)y = ——————— (4)
AVG_LOSS(Input)q
It’s important to note that many trading strategies utiliz-
ing this indicator exist. Alas due to the time constraints,
we will consider only ’touch’ trading strategy [23]. This
strategy generates BUY and SELL signals whenever RSI

output ’touches’ values of 30 and 70.

Figure 2. RSI signal resulting from Figure’s[I] data

3.2 Moving Average Convergence Divergence
Moving Average Convergence Divergence is an unbounded
trend indicator [1], which is constructed from a difference
between two Exponential Moving Averages (EMAs) [17] as
can be seen in @ This, in turn, is processed by another
EMA generating so-called signal line . Resulting signals
are then overlaid and their crossovers are used to generate
BUY and SELL signals.

SIGNAL(Input)y, g,y = (EMAy o MACD,, g)(Input) (5)

MACD(Input)q g = EMA(Input)o — EMA(Input)g (6)

Figure[3|contains a sample output of previously mentioned
operations, where MACD and signal line are yellow and
red respectively.

Figure 3. MACD and signal line resulting from
Figure’s [1] data

3.3 3-Period Integrated Relative Strength In-
dex



3-Period Integrated Relative Strength Index is assembled
by first computing RSI signal, which results in a data vec-
tor denoted as D in . Consequently, denotes that D
is divided into 3 semi-overlapping series of a semi-varied
length which are subsequently normalized using @ and
integrated using Riemann sums.

D:[fio dy - dn,fl] (7)

(RIEMANN o NORMj,,)(D) v
VEC(D)a,p,~v = |(RIEMANN o NORM, g)(D)| = |vi| =V (8)

(RIEMANN o NORMg,~)(D) va

z+0 z+1 z+2 y

NORM(D) g,y = v-e y-e ymE YT (9)
' dz40 do41 dz42 dy
100 100 100 100

Equation uses the resulting pressure vector V' in order
to compute the final decision vector B, which in itself is
achieved using some simple Boolean rules. This in theory
should detect direction of a trend, and be more resistant
to sudden irregularities present within the RSI output.
Finally, generates final trading decisions.

vy > v1 A vy > vg bo
vg < v1 Avy > v b
DVEC(V)= 2SS A 20 1% g (10)
vy < v ANvy < g ba
vy > vy Avy < vg b3

BUY  if by vy
DECISION(B) ={ SELL if by (11)
wAIT if by

It should be pointed out that decision rules presented in
(10]) are not final, as there are many equally valid alterna-
tives. As an example D_V EC could utilize some scaling
parameter {2 ensuring the appropriate numerical differ-
ences between two or more pressure vectors.

3.4 Particle Swarm Optimization

Particle Swarm Optimization is a computationally inex-
pensive and effective |13] way of optimizing nonlinear func-
tions [12]. Which is proven to work with dynamic systems
[9L110] at the same being independent of its gradient. This
differentiates PSO from other methods such as gradient
descent |21], subsequently making it deal for our purposes.
As due to the number of potential variables, we cannot
reasonably identify market’s function.

Native PSO works by generating a set of P particles. Each
particle p is capable of retaining its current coordinates dp,
communicating its local best positions ¢, and reacting to
and electing global_best. Where best is defined as a set of
coordinates minimizing a certain user provided UTILITY
function. This, in turn, allows them to effectively explore
given search space as each particle’s velocity v, represents
among the others a product of ¢, and global_best.

Our experimental setup which is based on Cohen’s work
[6] can be seen in Figure In the following paragraphs we
are going to explain the main differences between it and
that of native PSO.

Firstly, each particle’s velocity and location has to be ex-
tended up to d dimensions, where the exact number is de-
termined by a number of subscript variables present within

Vp < initialize v, A dp randomly

/ tn < tn+1 /Z—

Vp < dp =dp +vp

Vp <= ¢p = LIFT (tstart, tstart+1, ) (UTILITY 0M_GAIN,,)

Vp  bp = maz(bp, cp)

Vp  vp = 0.8 x V (by, global_best)p.+,,

global_best = max(bo, b1, b2, - ,bn)

no

tend = tn

yes

yield global_best

Figure 4. Modified PSO’s flow chart diagram




the optimized trading strategy. This result in one dimen-
sion for RSI, three for MACD and four for 3-IRSI (one
additional dimension is for the RSI itself). Subsequently,
we use this information in order to update particle’s ve-
locity V' formula, which can be seen in .

[8] [RAND(O, a)] [~v] [RAND(0, a)]
w0 w0 n w0
T|E g g g
V(bns@)n,t =+ + |-3 = &+ |8 g o (12)
SRS S ~S =
_B_ LRAND(O, o) | Lyl LRAND(O, o)

Secondly, as our setup utilizes multi-objective UTILITY
function. The resulting value will be maximized instead
of minimized [6]. The UTILITY function’s formula is al-
most the same as presented by Cohen (figure 5A) [6] and
can be seen in . Chosen values were selected in order
to ensure UTILITY’s primary focus on minimizing max-
imum loss experienced by the portfolio. At this point we
have to point out that Cohen’s original equation contains
an error. As certain border cases such as systems gener-
ating as many gains as losses would result in computing
natural logarithm of zero, which is undefined. This issue
is subsequently resolved in .

0.6| [(FIX o OMDD)(Value)
UTILITY (Value) = sum{ |0.2 (FIX o PP)(Value) (13)

0.2 (FIX o NPF)(Value)

FIX(Value) = (14)

In(Value) if Value # 0
if Value =0

Similarly formulas for NPF and OMDD are the same
as presented by Cohen (equations 3 and 4 respectively)
[6], and are provided here for the sake of completeness as
(15) and (16)). Cohen defines PP as simply “percentage
of profitable trades in relation to all trades” [6], which is
something we adhere to.

OMDD(Value) = 100 —- MDD_PERCENTAGE(V alue) (15)

NPF(Value) = (PF(Value) — 1) % 100 (16)

Whereas, LI F'T adapts function composition of M_GAIN
with UTILITY such that it can accept a list of times-
tamps and process them in order. At the same time ensur-
ing that previously processed timestamps are disregarded.
This modification allows our system to simulate a real
world scenario in which new data is processed as soon as
it is available.

Because of the size of the total solution space the experi-
ment was re-run multiple times using different coordinate
cut-off values which were chosen on an arbitrary basis.
Consequently, the best setups are reported.

4. RESULTS

In this section we present outcomes of applying Particle
Swarm Optimization to RSI, MACD and 3-IRSI. Subse-
quently we discuss their performance and use this infor-
mation in order to answer research questions.

4.1 Data

Resulting data can be found in Tables and Each
table is divided into four vertical categories. The first
category specifies setup’s number; second is used to in-
dicate strategy’s parameters; third reports value of the
UTILITY function, Opposite Maximum Drawdown, Net
Profit Factor and Profitable Percentage denoted as U, OMDD,
NPF and PP correspondingly; the fourth category is used
exclusively for the purpose of reporting Net Profits (NP),
which itself is in euros. Furthermore, each table is divided
into two horizontal categories. First one is used for re-
porting setup’s specific data, whereas second is used for
summarizing it by the means of descriptive statistics. The
numerical data are rounded to two decimal places and the
best setups in terms of NP are further emphasised using
bold characters.

As buy-and-hold strategy was not a subject to the Par-
ticle Swarm Optimization process, it will not be found in
any of the tables. That is why its net profit of 10384.05
is reported here.

4.2 Research Question I

Table [3| demonstrates that 3-IRSI is capable of delivering
substantial gains. The most profitable setups, namely 3
and 4 yield about 20584 euros of net profit. Interestingly
enough even though we attempted to maximize OMDD,
those two setups are not the ones maximizing it, which
is achieved by setup 8 instead; which at the same time
achieves slightly lower profits. Moreover setup 2 which
achieved the second highest OMDD value performs sub-
stantially worse than setups 3, 4 and 8. At the same time
setup’s 8 NPF is much higher than that of setup 3 or 4.
This implies a tendency of those two systems to gain and at
the same time lose greater amount of assets due to subop-
timal trading choices. Finally, PP of each system demon-
strates that even though they executed profitable trading
decisions less than half a time, it was nonetheless sufficient
to achieve profits far outstretch buy-and-hold strategy.

To summarize, six out of eight 3-IRSI setups managed
to outperform buy-and-hold strategy, with best systems
outperforming it by as much as 98%. At the same time
the worst setup in terms of NP, namely setup 7 achieved
only about 10% of its contender profits. This illustrates
that under chosen methodology certain 3-IRSI setups are
capable of substantially outperforming the buy-and-hold
strategy. This answers RQI.

4.3 Research Question II

Table [1 illustrates that RSI setup number 1 achieved the
highest net profit. At the same its UTILITY function
value is the same as that of the second setup, which achieved
almost three times lower profit. The comparable UTILITY
function value is to be attributed to much higher PP. In-
terestingly enough in the case of RSI, higher values of PP
do not appear to directly translate into higher net prof-
its; which is clearly demonstrated by setups number 1, 7
and 8. Similarly to 3-IRSI setups with the highest NPF
such as setup 6 are not the ones achieving the most profit.
Moreover, unlike 3-IRSI; setup attaining the lowest value
of OMDD namely setup 3, does not translate to a lowest
net profit as that belongs to setup number 4.

Whereas MACD statistics depicted in Table 2] demon-
strate that setup 6 achieved the highest profit and at the
same time has the lowest PP and the highest OMDD.
Unfortunately the profit achieved by this setup is sub-
stantially lower than that of RSI or 3-IRSI. Moreover,
overall inferior performance of the considered setups di-



Setup X U OMDD | NPF PP NP
1 2 4.05 83.34 18.85 | 58.03 11661.93
2 5 4.05 77.75 20.01 | 66.54 3866.96
3 10 3.06 37.41 1.30 65.40 77.03
4 11 3.01 38.04 -7.87 62.72 -355.67
5 21 3.12 45.14 -1.09 65.96 -35.55
6 25 3.81 50.41 23.15 | 63.38 652.36
7 28 3.15 49.00 -2.06 59.18 -52.4
8 35 3.65 43.92 14.63 | 68.97 351.39
Min 2 3.01 37.41 -7.87 58.03 -355.67
Max 35 4.05 83.34 23.15 | 68.97 11661.93
Mean 17.13 3.49 53.13 8.37 63.77 2020.76
Variance || 139.84 || 0.20 309.53 144.99 | 13.92 || 16995976.75
SD 11.83 0.45 17.59 12.04 3.73 4122.62
Table 1. RSI
Setup X Y Z U OMDD | NPF PP NP
1 8 15 13 2.80 31.87 -2.29 | 37.46 -314.72
2 14 15 7 2.75 29.09 -2.65 | 37.71 -351.71
3 15 24 3 2.75 28.74 -1.16 | 38.96 -196.48
4 17 26 5 2.91 38.31 -0.27 | 36.91 -45.64
5 18 19 5 2.80 31.90 -1.36 | 37.52 -205.29
6 21 31 11 3.48 67.58 3.25 | 35.20 610.34
7 25 15 10 3.02 46.68 -0.90 | 35.40 -131.35
8 25 28 10 3.10 45.33 1.67 | 35.25 248.64
Min 8 15 3 2.75 28.74 -2.65 | 35.20 -351.71
Max 25 31 13 3.48 67.58 3.25 38.96 610.34
Mean 17.88 | 21.63 8 2.95 39.94 -0.46 | 36.80 -48.28
Variance || 33.27 | 41.70 | 12.29 || 0.06 173.43 4.00 1.91 105503.54
SD 5.77 | 6.46 3.51 0.25 13.17 2.00 1.38 324.81
Table 2. MACD
Setup X Y. Zg K, U OMDD | NPF PP NP
1 10 34 19 12 4.05 75.07 32.67 | 45.76 13389.60
2 10 39 17 12 4.06 75.12 32.80 | 46.11 12461.70
3 12 30 17 12 4.07 74.70 34.43 | 47.25 20584.00
4 14 30 17 12 4.07 74.70 34.43 | 47.25 20584.00
5 14 31 19 11 3.97 67.16 29.82 | 47.38 19272.10
6 14 34 10 14 3.98 74.75 23.83 | 44.32 8829.14
7 15 34 10 14 3.64 54.56 11.05 | 43.98 1005.13
8 15 34 15 12 4.20 86.00 44.29 | 47.08 17918.20
Min 10 30 10 11 3.64 54.56 11.05 | 43.98 1005.13
Max 15 39 19 14 4.20 86.00 44.29 | 47.38 20584.00
Mean 13 | 33.25 | 15.5 | 12.38 || 4.01 72.76 35.84 | 46.14 14255.48
Variance || 4.29 | 8.79 | 13.14 | 1.13 0.03 80.04 355.66 | 1.86 46809522.94
SD 2.07 | 2.96 3.63 1.06 0.16 8.95 18.86 1.36 6841.75

Table 3. 3-IRSI

rectly maps to their considerably lower UTILITY func-
tion value, with its mean value oscillating around three.
This contrasts with a mean value of 4.01 for 3-IRSI and
3.49 for RSI. This substantial difference is a direct result
of much lower PP, NPF and OMDD values. Most notably
NPF mean value is negative, which directly translates to a
negative NP, where as opposite is true for RSI and 3-IRSI.
At the same time OMDD mean value of 39.94 implies that
the systems utilizing MACD can result in portfolios expe-
riencing a draw down of as much as 60.06%.

Previously conducted analysis reveals that 3-IRSI appears
to outperform RSI in terms of NP and NPF, with best se-
tups experiencing as much as 76.5% greater profits. Whereas
RSI managed to achieve much higher PP. Moreover even

though RSI’s OMDD values show more spread, they are
capable of approaching the values experienced by the 3-
IRSI. When it comes to comparing performance of 3-IRSI
to MACD, the former appears to outperform the latter in
all considered metrics. This answers RQII.

5. DISCUSSION

Our findings suggest that under the assumption of[friction]
3-IRSI is capable of outperforming RSI, MACD
as well as buy-and-hold strategy. Unfortunately due to
the short time span given to conduct this study, relatively
small amount of data could be gathered; as a result the
exact magnitude of this phenomenon remains largely un-
known. Nonetheless, current results indicate it is possi-



ble to build upon already existing technical indicators and
achieve even better performance in terms of net profit.

At the same time, data generated by this experiment re-
sults in some secondary findings. First of all, we have to
note the apparent suboptimality of the UTILITY func-
tion in regards to maximizing 3-IRSI’s NP. As higher U
values do not necessarily translate to higher NPs. This in-
dicates that current setup can be further refined by either
incorporating more metrics or by trying different input
parameters.

Whereas, the high performance of the RSI setup number
1, supports the previously held notion of a highly volatile
Bitcoin price action [2]. As setups with a sorter look-back
period are known to perform better in more volatile mar-
kets [23]. Moreover, GAIN_LOSS used as a data trunca-
tion method paired with the RSI indicator appears to sup-
port Cohen’s previous observation about unsuitability of
the original RSI setup for trading Bitcoin and at the same
time extends it to one hour resolution [6]. This is due to
presence of this setup within multiple concurrent runs, yet
resulting particles were continuously drifting away from
X = 14 to either higher or lower input values. Which
can be observed by inspecting U and X values of setups
number 3, 4 and 5.

The overall weak performance of the MACD indicator
could be a direct result of the chosen data truncation
method. Which future studies should try to verify by using
either CLOSE or QPENECLOSE ingtead of GAIN_LOSS.
Another possible explanation is its unsuitability for trad-
ing at this temporal resolution, this could be verified by
repeating current experiment using OHLCVs of different
time resolutions.

Finally, as this experiment was limited only to[friction-Tess|
, more research is needed in order to verify wher-
ever 3-IRSI is capable of delivering similar performance
without this assumption.

6. CONCLUSION

In this study we have assembled a custom RSI based indi-
cator called 3-IRSI which was then optimized using parti-
cle swarms and subsequently evaluated against buy-and-
hold strategy as well as PSO optimized RSI and MACD.
The resulting algorithm managed to outperform its peers.
Unfortunately, due to the time allocated for the study,
more data are needed in order to know the exact magni-
tude of this phenomenon. Nonetheless, current research
indicates that it is possible to build upon already existing
technical indicators in order to achieve even better perfor-
mance. As a result more future research should take this
route.

APPENDIX
A. Glossary

bear market market trending down.

bull market market trending up.

friction-less market market with no commission fees.
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