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Fig. 1. Two frogs sitting on a leave

Frogs are a good indicator species for the health of an ecosystem. For this
reason, the size of the frog population in a certain ecosystem can give a good
indication of the health of that ecosystem. At the same time, it is harder to
estimate the size of a frog population than it is to estimate the size of other
populations of animals. Therefore frog populations are often not represented
well in existing Species Distribution Models (SDMs). In this paper, a model is
proposed that is able to more accurately calculate the distributions of frogs
in an area. In the first part of this research, a review is given of the existing
literature in the field. In the second part, an actual model is proposed to
effectively predict frog distributions.
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1 INTRODUCTION
Biodiversity and ecosystem health are obviously very important
to our survival and to the world in general. Healthy ecosystems
provide us with many services. [4] Divides these services into four
categories, each of which is crucial for our existence or well-being:

(1) Provisioning services. Ecosystems provide us with all kinds
of things like food or fuel.

(2) Regulating services. Ecosystems regulate the environment,
for example by purifying our air and water.

(3) Cultural services. Ecosystems provide us with services that
can improve our well-being (think of forest walks for exam-
ple).

(4) Supporting services. Ecosystems also provide supporting ser-
vices, which make all other services possible.

Unfortunately, ecosystem health has come under more and more
under pressure lately, mostly because of human actions. According
to [4], we are now facing the greatest species extinction rate since
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the event that wiped out the dinosaurs (and many other species) 65
million years ago.

It goes without saying that the destruction of ecosystems would
have catastrophic consequences. It is therefore important to actively
reduce ecosystem destruction and even improve ecosystem health
if possible. The first step towards improving ecosystem health is to
do regular measurements. By doing so, researchers can learn about
the current state of an ecosystem and see whether their actions are
having the wanted effect.
The problem is that ‘ecosystem health’ is an abstract concept

that is not easy to measure. To get an indication of the health of
an ecosystem, researchers therefore often use so-called indicator
species. Indicator species are organisms that can serve as a measure
of the environmental conditions in a certain area by their presence
in that area [2].

Researchers can then build a so-called Species Distribution Model
(SDM) to estimate the population size of such a species, giving
them an indication of the ecosystem health. [6] defines an SDM as
a “model that relates species distribution data (occurrence or abun-
dance at known locations) with information on the environmental
and/or spatial characteristics of those locations . . . The model can
be used to provide understanding and/or to predict the species’
distribution across a landscape.” (p. 678).

So to train an SDM, information about the distribution of a species
in certain locations is combined with other environmental data in
those locations (e.g. the temperature). From that other environmen-
tal data, variables can be derived which can be used to predict the
population size of the species in other locations.

According to [10], frogs are good indicator species because their
skins are very permeable, making them highly susceptible to pollu-
tants. This means that if ecosystems get polluted, frogs will disap-
pear. The size of the frog population in a certain area is therefore a
good indicator of the pollution of that area. At the same time, frogs
are often poorly served in existing SDMs, because they tend to live
in a very localized area [10].
For these reasons it is relevant to build a new model which can

more accurately predict the density of a frog population in a certain
area. This is the goal of the EY Data Challenge of 2022 [9] and also
the goal of this research.

2 RESEARCH QUESTIONS
This research is conducted in order to complete level 3 of the EYData
Challenge of 2022 [9]. The objective is to build a Species Distributino
Model to predict the density of frog population for regions covering
Australia, South Africa and Costa Rica. Before the model can be
used to accurately estimate frog population density, a number of
predictor variables should be derived from the datasets that the
model is trained on. Therefore the following two research questions
will need to be answered:

(1) What predictor variables can be used to accurately indicate
the size of a frog population?

(2) Can a model be built that can accurately predict the size of a
frog population using certain predictor variables?

3 LITERATURE REVIEW
The first part of this research consisted of a review of the existing
literature on using Species Distribution Models for frog populations.
To start off, [6] gives a good introduction into the field. As was

already mentioned in the introduction, Elith defines an SDM as a
“model that relates species distribution data (occurrence or abun-
dance at known locations) with information on the environmental
and/or spatial characteristics of those locations . . . The model can
be used to provide understanding and/or to predict the species’
distribution across a landscape.” (p. 678).

3.1 SDMs for frogs
Let’s continue with the existing literature on SDMs for frogs. This
research is relevant because it gives insight into which kinds of data
have proved to be working well for predicting frog population sizes.
[15] combined an SDM with species co-occurance patterns to

create a Joint Species Distribution Model for predicting frog density.
The benefit of this is that this model can also show whether the
distribution of two different species are related to eachother.

3.2 SDMs for amphibians
Because research on SDMs for frogs in particular has been quite
sparse, research on other kinds of amphibians was examined as
well. The assumption was made that variables that would accurately
predict the distribution of these species would help do so for frogs
as well because amphibians and frogs are quite similar.
[12] Used satellite data along with data from GIS systems to

predict the presence of amphibian species (under which were frogs)
near water reservoirs. This data was used for training an Artificial
Neural Network model, which managed to achieve an accuracy of
100% for its task. This research will also use satellite and GIS data.

[11] Aimed to find out how vulnerable populations of amphibians
(under which were frogs) would be to climate change and the higher
temperatures as a consequence of this. Historical climate data was
used to train an SDM that could predict the future distribution of
the amphibians, given the expected increase in temperature. Tem-
perature would be a good predictor variables for this research as
well.

[16] Showed the importance of comparing multiple models for
predicting the frog presence. This is something that might be in-
teresting to do for this research as well. Even though the original
idea for the EY Data Challenge is to use a linear regression model, it
would be interesting to compare this to other models to see which
one would be the most effective.

3.3 Transferability
Lastly, after the predictor variables have been decided on, the bias
in the data is addressed and the model is built, it should be able
to predict frog population sizes in Australia, Costa Rica and South
Africa. Therefore it is a good idea to also consider research on the
transferability of SDMs.

[17] Shows that different predictor variables lead to more or less
transferability of the model. Some variables are more transferable
than other variables. This shows that it is important to test each
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of the predictor variables that will be used in the model for its
transferability across the other regions.

[5] considers transferability across Spain andAustralia. This paper
is particularly interesting, because Australia is one of the regions
used in this research as well. In the paper, multiple algorithms are
compared and the conclusion is drawn that General Linear Models
and Generalized Additive Models have the best performance and
transferability. It would be interesting to test these algorithms for
the regions covered and compare their performance to the simple
linear regression model used initially.

3.4 Lessons learned
The literature review has shed some light on what SDMs are in
general, how they can be modeled and how they can be made trans-
ferable across different areas. It has also uncovered some predictor
variables, like the temperature and GIS-data, which have proven to
be effective. This has partly answered the first research question.
The next step will be to build the actual model, which will likely un-
cover some additional predictor variables and will also help answer
research question two.

4 BACKGROUND INFORMATION
Before the methodology used for building the model is explained, it
is important to have some background knowledge. In the following
sections, first the modeling process of SDMs is explained. Then, the
concept of pseudo-absences is introduced and it is explained how
this could help mitigate bias in the data.

4.1 Modeling
Figure 2 [14], gives a good overview of how the Species Distribution
Modeling process works in practice.

The first two steps are to gather observation data (for the target
variable) and environmental data (for the predictor variables). Then,
the datasets can be processed and combined, after they can be split
into a train and a test set used for training and testing the model.

The next step consists of choosing the model algorithm and actu-
ally training it on the train data. The resulting model can then be
used to predict the frog distribution in other areas.

4.2 Pseudo-absences
Usually, there is only presence data for species. This makes sense,
because it is easy to log an observation of a certain species, but it
is much harder to tell whether a species is absent in a certain area.
According to [14], this lack of absence data is a big source of bias in
SDM models.
If there is only frog presence data available, each area where no

observation has been recorded could be seen as a potential absence
for that species. But the problem is that it is not clear whether the
species are truly absent there, or if it just has not been observed.

This bias can be addressed by generating ’pseudo-absences’. Pseudo-
absences are generated from all the potential absence points and
can be used to replace actual absence data. According to [3], pseudo-
absences do indeed improve model accuracy if proper absence-data
is missing.

Fig. 2. Miller

There are multiple ways to generate pseudo-absences. For this
research, the method that was selected is the one provided by [19],
which is a three-step method based on a couple of assumptions.

Firstly, it assumes that the probability that a species is present
in an area but has just not been spotted is higher if that area is
environmentally similar to the area of a known occurrence.

Secondly, it assumes that this probability is also higher if the area
where no species have been spotted is geographically close to the
area of a known occurrence.
Based on those assumptions, pseudo-absences are generated in

three steps. First of all, a set of potential absences data is gener-
ated based on all the locations where no presence point has been
recorded.

Secondly, the data points that are environmentally similar to the
known occurrences are removed from this set. This can be done as
follows. First, a clustering algorithm is trained using the presence
data. Then, the absence dataset is fed to that model. All absence
data points that are too environmentally similar (i.e. too close to the
center of a cluster) to the known presence points are then removed
from the set.
Lastly, the coordinates of all the data points in the remaining

dataset are compared to the known presence points. All the values
that are geographically too close to the known presence points (i.e.
their coordinates are too close to the coordinates of any known
presence points) are also removed from the set. The remaining set
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Fig. 3. Frog presence data - Australia

Fig. 4. Frog presence data - Costa Rica

of pseudo-absences are considered likely to be true absences and
are therefore added to the dataset that the SDM will be trained on.

5 METHOD
For the data challenge, EY provided two datasets containing frog
presence data. There was one dataset for the region of Australia and
one dataset for the regions of Costa Rica and South Africa. These
datasets were combined and the latitude and longitude of each frog
presence was extracted.
EY also provided a number of base models. These models were

used as a starting point and were then improved upon to make
the models perform more accurately. The method for doing so is
explained in the next sections.

5.1 Area selection
As can be seen in figures 3 - 5, large parts of the countries in the
provided dataset contain barely any frog presence data, if at all. The
parts that do not contain any data are not relevant for training the
model and only take up valuable computing resources.

For this reason, sub-areas of data were selected within these coun-
tries for the data generation. This was done manually, by looking at
the frog presence data in the countries (see figures 3-5) and selecting
areas that have a high density of frog occurrence data.

5.2 Grid creation
After loading the data, the frog data was cut into equal sized grids of
5 degrees longitude and 5 degrees latitude (about 5 square kilometres
[1]).

Each grid got assigned a frog count, based on the number of frog
occurrences within the area of the grid. The frog count was used as
the target variable for the model.

Fig. 5. Frog presence data - South Africa

Table 1. Datasets used

dataset type of data
TerraClimate climatic data (e.g. minimum

temperature, maximum tem-
perature)

Sentinel-2 Level-2A satellite data (i.e. color bands;
e.g. red, green, blue)

Copernicus DEM GLO-30 elevation data
JRC Global Surface Water surface water data (e.g. fre-

quency with which water re-
turns yearly)

Esri 10-Meter Land Cover land cover data (per pixel; e.g.
’forest’ or ’water’)

5.3 Predictor variables
A number of datasets, all provided by the Microsoft Planetary Por-
tal [13], were used for extracting the predictor variables. Table 1
provides a summary of the datasets that were used.
Each of these datasets contains multiple features. The value of

each of the features for a grid was calculated by averaging all the
values for that feature within the area of the grid. The resulting val-
ues were then added to the dataset to be used as predictor variables
in the model.

5.4 Pre-processing
Before training the model, a number of pre-processing steps were
carried out to increase model performance.

5.4.1 Data cleaning. Firstly, the data was cleaned up. NaN values
were removed from the set, as well as outliers (grids with exception-
ally high values for the frog count). The outlier removal was done
manually by plotting all of the frog counts and choosing a limit
above which datapoints would be removed. This value depended
on the data fed to the model, but was usually around 100-200.

5.4.2 Mapping categorical values. The datasets contained some cat-
egorical values, which used an integer to represent a certain category
(e.g. the land cover value provided by the Esri dataset). These values
were converted to binary format using one hot encoding.

5.4.3 Normalizing data. Some predictor variables have larger vari-
ables than others. To mitigate the impact that these higher values
have on the model performance, a simple min-max normalization
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Table 2. Predictor variables

Variable
Maximum temperature (tmax)
Minimum temperature (tmin)
Accumulated precipation (ppt)
Soil moisture (soil)
Normalized Difference Vegetation Index (NDVI)
Elevation
Slope (in %)
Land cover
Frequency with which water was present (occurrence)
Frequency with which water returns from year to year (recur-
rence)
Number of months that water was present (seasonality)

algorithm was applied to make sure each value would be between 0
and 1, depending on their relative size.

5.4.4 Feature engineering. From the gathered features, a number of
new features were engineered. These features were thought to be
better at predicting the species distribution than the raw features.
The features that were calculated were:

• Normalized Difference Vegetation Index (NDVI): (NIR - Red) /
(NIR + Red) where NIR is the value of the NIR (near infrared)
band provided by the Sentinel-2 dataset and RED the value
of the red band. This gives an indication of the vegetation
health in a certain area [7].

• Normalized Difference Water Index (NDWI): NDWI = (Green
– NIR)/(Green + NIR) where NIR is again the value of the NIR
band and Green the value of the Green band, both provided
by the Sentinel-2 dataset. This gives an indication of whether
there is open water in an area [8].

• Slope. The slope of the elevation in an area (in %). This was cal-
culated using the elevation data provided by the Copernicus
dataset.

5.4.5 Feature selection. To prevent unnecessary complexity, only
the most effective features were eventually included in the model.
The features that were deemed to be most important for model
performance, based on the literature review and the analysis of the
model results, are summarized in table 2

5.5 Generating pseudo-absence data
Next, the pseudo-absence data was generated based on the 3-step
approach presented in the background information section. In this
case, the presence data consisted of all the grids that had a frog
count higher than 0 and the absence data consisted of all the grids
having a frog count of 0. Each of the grids with a frog count of 0
was considered to be a pseudo-absence point.

A simple k-means clustering algorithm was then trained on the
presence dataset, creating clusters based on how environmentally
similar each datapoint was to the others. Then the absence data was
fed to the model.

It was decided upon that the number of pseudo-absences would
be equal to the number of frog presences. This meant that, if the
amount of presences was k, only the k most dissimilar datapoints
(i.e. the datapoints that were removed the furthest from the centers
of the clusters), would be added to the final dataset that was fed to
the model.
The last step, of removing the data that was geographically too

close, was not necessary as the division of the data into grids al-
ready ensured that the pseudo-absence points were sufficiently far
removed from the presence points.

5.6 Model training
Finally, the eventual dataset, which now only contained the relevant
features and unbiased datapoints, was fed to the model. The data
was randomly split into a 70/30 split, in which 70% was used to train
the model and 30% was left out to validate the results.
The model itself was a Neural Network, which had the selected

features as inputs and the frog count amount of a grid as output.

6 RESULTS
In order to measure model performance, three experiments were
conducted. Each time, three areas were selected, one for each of the
countries that this research is focused on (Australia, Costa Rica and
South Africa). The size of the selected areas was increased with each
experiment, leading to more data points (grids) to train the model
on. This was done in order to find out what effect the increase of
data would have on model performance.

For each experiment, the areas were chosen manually, by plotting
the frog presence data in each of the countries and selecting areas
which were dense with frog presence data. Unsurprisingly, most
frog presence data was available around large cities (e.g. Sydney
and Melbourne) and national parks (e.g. the Kruger National Park),
so these areas were mostly selected.

Each area used in the experiments consisted of a name (to make
it easier to reference them) and a bounding box, containing the
coordinates of the area in the following form: (minimum longitude,
minimum latitude, maximum longitude, maximum latitude).
For each experiment, each of the steps described in the method

section was performed, after which the model was trained once with
presence-only data (i.e. all grids with frog count > 0) and once with
a combination of presence-only data and pseudo-absence data. This
way, the impact of the pseudo-absences could also be determined.

As mentioned earlier, the data was split into a train and a test
set. The performance of the model was represented using the R2
score the model achieved on the test set. The R2 score "represents
the proportion of variance (of y) that has been explained by the
independent variables in the model. It provides an indication of
goodness of fit and therefore a measure of how well unseen samples
are likely to be predicted by the model, through the proportion of
explained variance" [18].

So, the higher the R2 score is, the more the variance in the target
variable can be explained by the variances of the independent vari-
ables. If the R2 score is 100%, the variance in the target variable can
be entirely explained by the variances in the independent variables,
indicating a perfect correlation between the independent variables
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Fig. 6. Frog presence - Sydney area

Fig. 7. Frog presence - Puerto Jimenez area

Fig. 8. Frog presence - Kruger National Park area

Table 3. Areas used in experiment 1

Area Bounding box
Syndey (150.5, -34.0, 151.0, -33.5)
Puerto Jimenez (-83.5, 8.25, -83.0, 8.75)
Kruger National Park (31.25, -24.25, 31.75, -23.75)

and the target variable. A higher R2 score therefore suggests better
model performance on unseen samples.

6.1 Experiment 1: 100 grids per area
For the first experiment, three areas (see table 3 and figures 6-8)
were chosen such that each of the areas could be split up into 100
(5.55 squared kilometer) grids. So there were 300 grids in total.

6.1.1 Without pseudo-absences. R2-score: 0.001 The first exper-
iment resulted in an R2 score very close to 0, indicating a lack of
correlation between the independent variables and the target vari-
able. The cause of this was most likely the lack of data used to train
the model on.

6.1.2 With pseudo-absences. R2-score: 0.065
Adding pseudo-absence data significantly increased the R2 score,

it being over 60 times bigger than the R2 score that was achieved
without using the pseudo-absence data. However, the accuracy was

Table 4. Areas used in experiment 2

Area Bounding box
Melbourne (144.5, -38.25, 145.5, -37.25)
San Jose (-84.0, 9.5, -83.0, 10.5)
Kruger National Park (31.0, -25.0, 32.0, -24.0)

Fig. 9. Frog presence - Melbourne area

Fig. 10. Frog presence - San Jose area

Fig. 11. Frog presence - Kruger National Park area (larger)

still very low, so it can be concluded that a sample count of 300 is
not enough to train a Species Distribution Model for frogs.

6.2 Experiment 2: 400 grids per area
For the second run, three larger areas were selected (see table 4 and
figures 9-11), each of which big enough to be be split into 400 grids.

6.2.1 Without pseudo-absences. R2-score: 0.264
As can be seen, increasing the size of the areas led to a significant

increase in the R2 score. This gives an indication that increasing the
amount of data points does indeed lead to higher model accuracy.

6.2.2 With pseudo-absences. R2-score: 0.365
Even thought the impact was not as big as for the first experiment,

the addition of pseudo-absences once again led to a significant in-
crease in model performance, this time by over 10%, strengthening
the belief that the use of pseudo-absences increases model perfor-
mance.
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Table 5. Areas used in experiment 3

Area Bounding box
Sydney (149.0, -34.75, 151.0, -32.75)
Most of Costa Rica (-84.5, 8.5, -82.5, 10.5)
Kruger National Park (30.5, -25.5, 32.5, -23.5)

Fig. 12. Frog presence - Sydney area (larger)

Fig. 13. Frog presence - Most of Costa Rica

Fig. 14. Frog presence - Kruger National Park area (largest)

6.3 Experiment 3: 1600 grids per area
For the third and last experiment, three even larger areas were
selected (see table 5 and figures 12-14), such that each of the areas
could be split up into 1600 equal-sized grids.

6.3.1 Without pseudo-absences. R2-score: 0.310
There was another significant increase in model performance

when increasing the amount of data used for the third time. Inter-
esting was that the model did not perform better than it did during
the previous run with pseudo-absence data.

6.3.2 With pseudo-absences. R2-score: 0.546 For the last exper-
iment, the inclusion of pseudo-absence data once again caused a
significant increase in model performance. From this, it can be in-
cluded that both increasing the amount of data, as well as using
pseudo-absences, both consistently increase model accuracy.

7 CONCLUSION
This research tried to answer two questions. The first question was
what predictor variables would be accurate for predicting frog dis-
tributions. This question was answered through a review of the

existing literature, combined with an analysis of actual model per-
formance. The predictor variables that were deemed to give the best
indication of the size of a frog population are summarized in table 2.
The second question was whether a model could be built to ac-

curately predict frog distributions, using the predictor variables.
The results of the experiments conducted showed that this should
indeed be possible. Even though the model could not be trained
on larger areas of data due to limited computing resources, it was
proved that the accuracy of the model significantly increased each
time the amount of data fed to the model increased. This indicates
that it should indeed be possible to accurately predict the size of
frog populations, given that there are enough computing resources
and data available.
Lastly, the results also showed that the use of pseudo-absence

data did indeed increase model performance. From this it can be
concluded that the use of pseudo-absence data is effective for pre-
dicting the size of frog populations when proper absence data is not
available.

8 DISCUSSION
The main limitation for this research was the lack of computing
resources, combined with the large nature of the data used (e.g. satel-
lite data). This combination was the cause that only small subsets
of the entire regions could be used for training the model.

The research has, however, proved that model accuracy increased
significantly each time the amount of data fed to themodel increased.
The results of the research could therefore be improved upon in the
future by using more computing resources.
Another potential improvement would be to use more datasets.

For this research, only 5 datasets were used, but the Microsoft Plan-
etary Portal offers many other datasets which could be used. Also,
data could be gathered from other resources.

Improvement could also be made by distinguishing between frog
species, as this research was focused on predicting frog distributions
in general.

Also, for this research, absence data was not available and there-
fore pseudo-absence data was used instead. By training the model
using actual absence data, it might become more accurate.

Lastly, this research focused on only three countries. In the future,
a model could be trained using many other countries (e.g. coun-
tries from Europe could be included), which would make it more
transferable across the entire world.

REFERENCES
[1] United States Naval Academy. 2019. Approximate Metric Equivalents for Degrees,

Minutes, and Seconds. https://www.usna.edu/Users/oceano/pguth/md_help/
html/approx_equivalents.htm

[2] The Editors of Encyclopaedia Britannica. 1998. indicator species. https://www.
britannica.com/science/indicator-species

[3] Rosa M. Chefaoui and Jorge M. Lobo. 2008. Assessing the effects of pseudo-
absences on predictive distribution model performance. Ecological Modelling 210,
4 (2008), 478–486. https://doi.org/10.1016/j.ecolmodel.2007.08.010

[4] Eric Chivian and Aaron Bernstein. 2010. HowOur Health Depends on Biodiversity.
(2010).

[5] J. Duque-Lazo, H. Van Gils, T. A. Groen, and R. M. Navarro-Cerrillo. 2016. Trans-
ferability of species distribution models: The case of Phytophthora cinnamomi in
Southwest Spain and Southwest Australia. Ecological Modelling 320 (2016), 62–70.
https://doi.org/10.1016/j.ecolmodel.2015.09.019

[6] Jane Elith and John R. Leathwick. 2009. Species Distribution Models: Ecological
Explanation and Prediction Across Space and Time. Annual Review of Ecology,

7

https://www.usna.edu/Users/oceano/pguth/md_help/html/approx_equivalents.htm
https://www.usna.edu/Users/oceano/pguth/md_help/html/approx_equivalents.htm
https://www.britannica.com/science/indicator-species
https://www.britannica.com/science/indicator-species
https://doi.org/10.1016/j.ecolmodel.2007.08.010
https://doi.org/10.1016/j.ecolmodel.2015.09.019


TScIT 37, July 8, 2022, Enschede, The Netherlands Niek Zieverink

Evolution, and Systematics 40, 1 (2009), 677–697. https://doi.org/10.1146/annurev.
ecolsys.110308.120159

[7] EOS. 2022. NDVI. https://eos.com/make-an-analysis/ndvi/
[8] EOS. 2022. NDWI. https://eos.com/make-an-analysis/ndwi/
[9] EY. 2022. EY launches 2022 Better Working World Data Challenge to help tackle

biodiversity loss.
[10] EY. 2022. Level 3: Frog Counting Tool. https://challenge.ey.com/challenges/level-

3-frog-counting-tool
[11] Alyssa A. Gerick, Robin G. Munshaw, Wendy J. Palen, Stacey A. Combes, and

Sacha M. O’Regan. 2014. Thermal physiology and species distribution models
reveal climate vulnerability of temperate amphibians. Journal of Biogeography 41,
4 (2014), 713–723. https://doi.org/10.1111/jbi.12261

[12] Nadia Shaker Habib, Omar Kamal Abu Maghasib, Ahmed Rashad Al-Ghazali,
Bassem S. Abu-Nasser, and Samy S. Abu-Naser. 2020. Presence of Amphibian
Species Prediction Using Features Obtained from GIS and Satellite Images. Inter-
national Journal of Academic and Applied Research (IJAAR) 4, 11 (2020), 13–22.

[13] Microsoft. 2022. Data Catalog | Planetary Computer. https://planetarycomputer.
microsoft.com/catalog

[14] Jennifer Miller. 2010. Species Distribution Modeling. Geography Compass 4, 6
(2010), 490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.x

[15] Laura J. Pollock, Reid Tingley, William K. Morris, Nick Golding, Robert B. O’Hara,
KirstenM. Parris, Peter A. Vesk, andMichael A.McCarthy. 2014. Understanding co-
occurrence by modelling species simultaneously with a Joint Species Distribution
Model ( <scp>JSDM</scp> ). Methods in Ecology and Evolution 5, 5 (2014), 397–406.
https://doi.org/10.1111/2041-210x.12180

[16] Clémentine Préau, Audrey Trochet, Romain Bertrand, and Francis Isselin-
Nondedeu. 2018. Modeling potential distributions of three European amphibian
species comparing ENFA and MaxEnt. Herpetological Conservation and Biology
13 (2018).

[17] Dennis Rödder and Stefan Lötters. 2010. Explanative power of variables used in
species distribution modelling: an issue of general model transferability or niche
shift in the invasive Greenhouse frog (Eleutherodactylus planirostris). Naturwis-
senschaften 97, 9 (2010), 781–796. https://doi.org/10.1007/s00114-010-0694-7

[18] scikit learn. 2022. 3.3. Metrics and scoring: quantifying the quality of predictions.
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score

[19] Senait D. Senay, Susan P. Worner, and Takayoshi Ikeda. 2013. Novel Three-Step
Pseudo-Absence Selection Technique for Improved Species DistributionModelling.
PLoS ONE 8, 8 (2013), e71218. https://doi.org/10.1371/journal.pone.0071218

8

https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://eos.com/make-an-analysis/ndvi/
https://eos.com/make-an-analysis/ndwi/
https://challenge.ey.com/challenges/level-3-frog-counting-tool
https://challenge.ey.com/challenges/level-3-frog-counting-tool
https://doi.org/10.1111/jbi.12261
https://planetarycomputer.microsoft.com/catalog
https://planetarycomputer.microsoft.com/catalog
https://doi.org/10.1111/j.1749-8198.2010.00351.x
https://doi.org/10.1111/2041-210x.12180
https://doi.org/10.1007/s00114-010-0694-7
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://doi.org/10.1371/journal.pone.0071218

	Abstract
	1 Introduction
	2 Research questions
	3 Literature Review
	3.1 SDMs for frogs
	3.2 SDMs for amphibians
	3.3 Transferability
	3.4 Lessons learned

	4 Background information
	4.1 Modeling
	4.2 Pseudo-absences

	5 Method
	5.1 Area selection
	5.2 Grid creation
	5.3 Predictor variables
	5.4 Pre-processing
	5.5 Generating pseudo-absence data
	5.6 Model training

	6 Results
	6.1 Experiment 1: 100 grids per area
	6.2 Experiment 2: 400 grids per area
	6.3 Experiment 3: 1600 grids per area

	7 Conclusion
	8 Discussion
	References

