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Abstract

Probabilistic databases lack of the support of aggregate functions, since there is diffi-
culty in representing query result. Specifically, probabilistic databases have exponen-
tial number of possible worlds with potentially different answers for each worlds, it is
impractical to represent all of them to the user. To tackle the problem, a few proba-
bilistic databases present aggregate queries as expected value or top-k result. In this
thesis, the ultimate goal is implementing aggregate function in probabilistic databases,
particularly for DuBio, a probabilistic database developed by the University of Twente.

This research includes a methodology to build such aggregate functions in DuBio, ex-
periments to study the feasible number of records these functions can achieve, what is
their scalability and how uncertainties of the database affects them. We devise 2 ap-
proaches to represent the results of aggregate queries. Firstly, representing all possible
answers to the user. Secondly, representing the query result approximately as a his-
togram or top k. We have implemented 3 aggregate functions in total, i.e. Combination
and All possible worlds to return all possible aggregate answers, TopK to return ag-
gregate answers over top K probable worlds. To evaluate these functions, we conduct
5 experiments including changing the database size by increasing number of records,
number of random variables, number of alternatives and sentence’s complexity.

Our conclusion is as follows: Combination and All possible worlds basically have expo-
nential growth rate. However All possible worlds is favored over Combination because
it grows exponentially w.r.t. number of variables while Combination grows exponen-
tially w.r.t. number of records. The maximum number of record Combination and All
possible worlds can query safely under 30 seconds on a commodity hardware is 15 and
26, respectively. Despite exponential growth, in practice, user can safely use All pos-
sible worlds aggregate queries when the intermediate result before aggregation has
max 26 tuples. TopK algorithm has log-linear growth rate, it reaches safely about 350
records on a commodity hardware. Therefore this function is practical for large-sized
databases, and scalable on server hardware.

The contribution of this research is providing aggregate functions which can return all
possible answers, and answers on Top K probable worlds for DuBio database.



Nomenclature

o The sentence of world

® The sentence of record

a The number of alternatives

n The number of records

r The number of random variables
w The number of possible worlds



Chapter 1

INTRODUCTION

Uncertainty Management In data integration, uncertainty management has been
considered as a fundamental aspect. Since it is unavoidable to produce uncertainty
data during mapping process, and the generated uncertainty should be represented
explicitly as a relevant information source[9]. In information extraction, uncertainty
data emerges inherently by the ambiguity of natural language text[5]. In business
intelligence, the uncertainty exists in decision making, e.g. because the source has
unreliable data collection method[[10]. And in data publishing, preserving privacy is
usually achieved by adding noise to original data[|16] which leads to imprecise data on
purpose. As a result, a large number of applications today have to deal with imprecise
and uncertain data. Meanwhile, traditional databases are not characterized to man-
age the uncertainty of information, probabilistic databases are modelled to handle the
uncertain data[|18]].

Probabilistic Databases “An incomplete database is a database that allows its instance
to be in one of multiple states (worlds); a probabilistic database is an incomplete
database that, furthermore, assigns a probability distribution to the possible worlds”[[11]].
A tuple t is uncertain in the databases and described by a random variable, which can
be either true if it belongs to the database instance or false if it does not. Each tuple
can be either independent or mutual dependent/exclusive from each other[[11]]. The
probability of a variable represents the level of certainty of a tuple, it has a value in
between 0 and 1, higher value represents higher confidence in the presence of the
record.(The terms tuple and record are used interchangeably in this thesis)

Problem Statement It is expected that probabilistic databases scale and support com-
plex queries as well as traditional databases[[11]. In fact, in probabilistic database,
it is difficult to represent the aggregate query efficiently. Every tuple is described by
a variable, when combining all of those tuples, it is impractical to present all possi-
ble answers to the user. For example, given that n records are uncertain in a table
T with attribute a, an aggregate query like “SELECT SUM(a) FROM T” in the worst
case, could have a different possible answer for each possible world, i.e., 2" possi-
ble answers. As a result, we acknowledge there is no such aggregate functions in
probabilistic database to date. Hitherto, MayBMS[7]] and Trio[4] are 2 prominent
probabilistic databases, instead of supporting aggregate functions, these databases of-
fer expected value for aggregation. Nevertheless, this approach could lead to deviated
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query answers if the data values and their probabilities follow skewed and non-aligned
distributions[|19]]. The lack of support for aggregates in probabilistic databases is the
primary motivation for us to conduct this research. We are aware of the exponential
complexity of aggregate in probabilistic databases, however we decided to find out up
to which size it is practically possible to aggregate, and different forms of aggregate
query(exact answer, histogram answer, top-k answer).

Research Questions The research conducted is to implement aggregates in proba-
bilistic database. Hence, the principal question we try to answer is “How to implement
aggregates in probabilistic databases, particularly for DuBio?”. By referring aggregates
here, we concentrate solely on COUNT function, since algorithmically, it is represen-
tative of the other functions(SUM, MIN, MAX, AVG, etc.). To elaborate further on the
main question, we have the following questions:

1. RQ1 To present the result of queries exactly, how do we implement a function
which returns all possible answers and their probabilities?

2. RQ2 To present the result of queries approximately, how do we implement a
function which returns possible answers and their probabilities distribution as a
top-k ranking or histogram?

3. RQ3 What is the maximum number of records our aggregate functions can reach
under a reasonable time, particularly in DuBio(for both exact and approximate
count)?

4. RQ4 What is the complexity of our algorithms?

5. RQ5 How the uncertainties in probabilistic database affects our algorithms. Speak-
ing of uncertainties in DuBio, it is number of possible worlds the database can
present. This number is varied by following factors in DuBio which we would
like to measure:

a) RQ5.1 How the number of random variables affects our algorithms?

b) RQ5.2 How the number of alternatives per random variable affects our al-
gorithms?

c) RQ5.3 How the complexity of sentences(propositional formulas) affects our
algorithms?

Implementation Particularly, we build aggregates for DuBioEL the probabilistic database
being developed by the University of Twente, based on possible worlds theory and Bi-
nary Decision Diagram structure. The certainty of a tuple in Dubio is represented by
a sentence(propositional formula of random variable). We developed aggregate func-
tions in PL/SQL, which are exact aggregate(return all possible answers), histogram
aggregate(return answers grouped into buckets) and topk(return answers in top high-
est probability worlds). In the scope of this thesis, we focus our algorithmic work on
exact and topk only.

"https://github.com/utwente-db/DuBio


https://github.com/utwente-db/DuBio

Methodology We designed 5 experiments to evaluate the performance of the aggre-
gate algorithms, specifically in the database size and the number of database instances.
We have generated synthetic data, and different number of random variables, number
of alternatives, different number of variables in a sentence. The aggregate query is
attached along with explain analyze to collect the running time. Code for aggregate
and experiments in the thesis is available atE]

Structure The thesis is organized as follows: in[chapter 2|we describe the background
knowledge about probabilistic databases, Binary Decision Diagrams and DuBio. In
we explain our algorithms and their complexity, which are Combination,
All possible worlds and TopK. Then in chapter 4, we detail our experiment setup and
describe main results. Next in we discuss about optimization and the lim-
itations of this research. Finally in we draw our conclusion and talk about
future work.

2Code for aggregate and experiments is available at https://github.com/stubbornfox/
dubio/
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Chapter 2

BACKGROUND & RELATED WORK

This chapter includes 4 sections, insection 2.1|we give high-level definition of proba-
bilistic database according to its most general form, i.e. Possible Worlds Model. Next, in
section 2.2]we provide background on Binary Decision Diagram, a data structure used
to represent a sentence in DuBio. Afterwards, we explain thoroughly about DuBio and
how does it adopt possible world theory in its implementation(section 2.3). Finally,
different approaches of aggregation have been developed over multiple probabilistic

databases(section 2.4)).

2.1 Probabilistic Database

In general, a probabilistic database is a probability space over the possible instance
of the database. I denotes a database instance of the probabilistic database PWD. A
probabilistic database is a probability space (W, P), where[|18]:

* W is a non empty set, i.e. W = {I,,I,,...I,}, which represents all possible in-
stances.

* Pis a function, i.e. P : W — (0, 1], which assigns probabilities to the instances

I'suchthat 3}, P(I;)=1

In the scope of this research, we restrict the probabilistic databases to have a finite set
of possible worlds. By definition, there is a practical representation of probabilistic
database called probabilistic conditional tables[[11], in which, each tuple is annotated
with a propositional formula over random variables. Then the probability space is
assigned over probability distribution of these random variables. Using that represen-
tation, the correlation of tuples in a table is expressed, which can be either:

* Independence, e.g. (t;,X — 1),(t,,Y — 1) (X, Y is independent)

* Mutual dependence, e.g. (t;,X — 1), (t,,X — 1)

11



* Mutual exclusive, e.g. (t;,X — 1), (t,,X — 2)

Hitherto, we explain probabilistic database at high-level conceptual definition, for fur-
ther examples and detailed representation of the databases, we describe it particularly

in Dubio sectionl

2.2 Reduced Ordered Binary Decision Diagrams

DuBio uses Binary Decision Diagram(BDD) structure to represent “sentence” of a record.
To understand what is BDD and why it is applicable to present sentences, this section
provides knowledge of BDD, Reduced BDD, Ordered BDD and their properties.

A Binary Decision Diagram (BDD) is a rooted directed acyclic graph which represents
a propositional formula effectively. In which[|12]:
* Leaf node is logical value of the formula, which is either False or True.

* Non-leaf node is proposition, from which there are 2 outgoing edges, false edge
is denoted by a dotted line(--»), true edge is denoted by a solid line(—)

* All paths from root to leaf have distinct propositions.

is a binary decision diagram for formula ¢ = pV(qAr), from which we can
identify all possible interpretations of the value of ¢. For example, the branch that
goes left, left, left w.r.t the interpretation .#(p,q,r) = {f alse, f alse, f alse}, and leaf
label is false so we can conclude value of ¢ is false under this interpretation.

- -
- -
- -
- -
7 7 7 7
/7 / / /

7 Vi / ’

¥ » r’s s

F F F T T T T T

Figure 2.1: A binary decision diagram for formula ¢ =p V(g Ar)

Reduced BDD A BDD can become more concise without loosing any interpretations
by applying reductions. A BDD is reduced if there is no further reduction can be done.
To reduce a BDD[|12]:
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* Remove duplicate leaves, redirect all edges to 2 remaining leaves.

* Delete a node and redirect as long as:

1. It has 2 edges pointing to the same node. After that, redirect its coming
node to its child node.

2. Itisidentical to another node(same proposition label, same sub-BDDs child).
After that, redirect its incoming edges to the other node.

Figure 2.2 is a reduced BDD for ¢, as we can see the tree is concise now with 4

paths(the full BDD in[Figure 2.1 has 8 paths)

L __ . ———- o

M
—

Figure 2.2: A reduced binary decision diagram for formula ¢ =p V (@A)

In a BDD, each path represents an interpretation, if there is no indication about or-
der of propositions, the appearance of propositions in each path could be different.
Figure 2.3|is an example of unordered BDD. We can see the order of propositions is
different between left branch(p < q < r) and right branch(p < r < q).

Ordered BDD An Ordered BDD is a BDD where the order of propositions in all branches

is compatible[[12]]. For example, the BDD(in|Figure 2.2) is ordered as p < q < r. It has
four branches where the orderings of atoms are {pg, pgr, p}, thus, the orderings are
compatible.

Properties If a BDD is ordered, its reduced BDD is also ordered. Two equivalent formu-
las will have structurally identical reduced BDD under an ordering of proposition[|1]].
From a reduced ordered BDD(ROBDD) of formulas ¢, ¢,, we can deduce:

* ¢ is valid(always true) iff ROBDD(¢) is a single leaf True

* ¢ is unsatisfiable(always false) iff ROBDD(¢)is a single leaf False

* if ROBDD(¢,) and ROBDD(¢,) are identical, ¢, = ¢,

13



The size of reduced order BDD depends strongly on orderings of propositions so choos-
ing efficient orderings helps construct efficient reduced ordered BDD.

We can also combine two BDDs using connectives “and”, “or” or “not” by using the
Apply operator [[12]. If the BDDs are both ordered with the same atoms ordering,
there exists an efficient merge algorithm for Apply. This makes BDD powerful since
we are not required to construct the full BDD again when performing logic operator
between 2 formulas.

- -
- -
- -
- -
7 7 7 7
7/ / / /
7 Vi 7 /
¥ » ¥ ¥

F F F T T T T T

Figure 2.3: A BDD for formula ¢ = p V (g A r) with different orders of atoms in
branches

2.3 DuBio Database

We illustrate the probabilistic database DuBio through the examples of “Big cats” in
DuBio is a scalable and powerful probabilistic database developed by the
University of Twente using possible worlds semantic. To represent the possible worlds,
DuBio uses the concept of “sentences”[|13]], which are propositional formulas with ran-
dom variable assignments, also called “alternatives”, as atoms. We use the following
notation:

* Z Arandom variable represents the existence of a specific bit of uncertainty. It
is a probability distribution of a number of mutually exclusive alternatives. For
example, random variable X represents the alternative species of “Mufasa”.

* Z=a A random variable assignment(rva) represents such an alternative. For
example, the random variable X has 3 alternatives X=1, X=2, X=3, which de-
scribes that “Mufasa” could either be a Leopard, a Jaguar or a Cheetah, respec-
tively.

* ¢ A sentence represents a propositional formula constructed from alternatives
i.e rva, using binary operations A(and), V(or), and the unary operation — (not)
. For examples, (-X =1),(Y =2)A(C=3),(Y =1)V(Y =2)

14



\Y A
variable possible values description cat age(years) ¢ p
A 1,2,3,4 Simba’s age range Simba [0-2] A=1 0.8
B 1,2,3,4 Mufasa’s age range Simba [3-6] A=2 0.2
C 1,2,3,4 Scar’s age range Mufasa [3-6] B=2 0.5
X 1,2,3 Mufasa’s species Mufasa [7-10] B=3 0.5
Y 1,2 Scar’s species Scar [7-10] C=3 0.7
F 1,2 Simba’s lineage Scar [11-14] C=4 0.3
S L

cat species ® p cat dad @ p
Mufasa Leopard X=1 0.8 Simba Mufasa F=1 0.5
Mufasa Jaguar X=2 0.1 Simba Scar F=2 0.5
Mufasa Cheetah X=3 0.1
Scar Leopard Y=1 0.7
Scar Jaguar Y=2 0.3
Simba Leopard (F=1AX=1)V (F=2AY=1) 0.75
Simba Jaguar (F=1AX=2)V (F=2AY=2) 0.2
Simba Cheetah F=1AX=3 0.05

Figure 2.4: Big cat Observation Database. Tables Species(cat, species) and Age(cat,
age) describe (possibly uncertain) big cat species and their age range, respectively.
Lineage(cat, dad) L represents relationship of those cats.

(t,p) A pair represents the possible attributes and their corresponding sen-
tence. For example,

((cat = “Scar”, species = “Leopard”, age = [7-10]), Y =1 A C = 3).

2 ={(ty,¢41),--, (tn, ,)} A probabilistic database is a set of pairs (t;, ;). With-
out loss of generality, we use a representation of a database 2 as containing one
relation to keep the formulas simple. For our example database consisting of
two relations, we denote this as a database storing S > A.

W ={ty,..,t,} Aworld is induced by a random variable assignment 6,, to each
random variable. A tuple t; exists in world # if ¢; is true for 6,,; For example,
0,={A—-1,B—2,C—>3,X—1,Y — 2 F — 1} produces:

W = {(“Mufasa”, “Leopard”, [3-6]), (“Scar”, ‘Jaguar”, [7-10]), (“Simba”, “Leop-
ard”, [0-2])}

BPWS ={W,...W,} PWS is a set of all possible worlds. Semantically, a
query is performed over probabilistic database 2: Q(2) = Uy cpwsQ(W).

The query over probabilistic database translated in relational algebra with the exten-

sion of sentence propagation:

* Projection 7, (R)

15



(<ay,..,a,>,9)E€ER

(<a;>,¢)en,(R) {
a=a

* Selection o ,(R)

(t,p)ER

(t.9)€o,(R) = {p(t)z true

* Cartesian productR x S
(tI’ (Pl) €R

tity, 1 APy) ERXS
(t1ts, 01 A p,) {(tz,ipz)es

e Join R >, S

Rr1, S =0,(RxS)

For example, the query of Leopard under 6 years old resulted as Q2.5 The query
plan is interpreted as: from the result of joining relations S and A, joined tuples with
age smaller than “6 years” are selected. Projection is applied to the resulting tuples to
leave only the desired attributes.

Ql = 7T'-cat,species(O-age<6,species:Leopard(S > cat=a.cat A))

cat species @ P

Mufasa Leopard X =1AB=2 0.4
Simba Leopard (F=1AX=1)V (F=2AY=1) 0.75

Figure 2.5: The result query for under 6-year-old Leopard

The probability of each tuple can then be calculated from sentence as follows[|17]]:

P(X=aAY=b) = PX=a)xP(Y=>h) X£Y
PX=aAX=Db) = 0 a#b
PX=aVX=b) = PX=a)+P(X=D>) a#b
PX=aVY=b) = PX=a)+P(Y=b)—P(X=aAY=b) X#Y

In Big cat database, example of calculating some probabilities:

* Mufasa is not Leopard:
P(-X=1)=1-0.8=0.2

* Mufasa and Scar are both Leopard:
P(X=1AY=1)=0.8x0.7=0.56

* Mufasa is either Leopard or Jaguar:
PX=1vX=2)=0.84+0.1=0.9

16



On an engineering level, DuBio was built on top of PostgreSQL. To describe rva, the
database adds new data type called “dictionary”, where the key is rva and the value
is probability. To represent a sentence and calculate the truth value of the sentence,
DuBio offers a type that represents a Binary Decision Diagram(BDD)[2]. For detailed
implementation of BDD, we refer to [[14]], [[15]].

2.4 Related Work

Theoretically, a query on a probabilistic database is a set of all possible answers, which
are evaluated over all possible worlds. The set of answers could be huge and it is
impractical to present all of them to the user. Thus, to date, there are 2 approaches
considerably good to represent the query answer: ranking tuples and aggregation over
imprecise values[|18]].

2.4.1 Ranking tuples

In this approach, the system computes all possible answer tuples, then ranks them in
the decreasing order of their probabilities. Afterwards, top k tuples are chosen to be
displayed to the user. Christopher Ré et.al came up with Efficient Top-k Query Eval-
uation on Probabilistic Database[6]]. To speed up the query performance, instead of
naively computing all probabilities then selecting top k; they approximate probabili-
ties only to the degree needed to guarantee that the top k answers are the correct ones,
and the ranking of these top k answers is correct[6]]. The algorithm is called multi-
simulation. In general, it runs many simulation steps to identify and rank k answers,
and only a few simulation steps to the others to ensure that they are not in the top
k. Multisimulation’s running time scales almost linearly with respect to k. The fewer
answers the user requests, the faster they are retrieved [|6]]. However this approach is
suitable if the user is only interested in the top highest probabilities.

2.4.2 Aggregation over imprecise values

In this approach, the value of aggregate query is interpreted as expected value. It
means the answer is defined to be the expected value of the aggregation operator
over instances database of probabilistic database. With this approach, most aggre-
gate functions can be computed easily using the linearity of expectation[18]]. For
example, expected count can be computed by a single pass over the set of tuples:
ECOUNT = Y. Prob(y;). Applying this representation, MayBMS[7]] and Trio[4]
probabilistic databases support expected sum and expected count operators. Never-
theless, this approach could lead to unintuitive query answers if the data values and
their probabilities follow skewed and non-aligned distributions[|19]].
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2.4.3 Histograms on Probabilistic Data

In tradional database management systems, Histogram[3]] is a special type of column
statistic that represents the distribution of data. It sorts values into a specific range
of values, which is typically called “bins” or “buckets”. In probabilistic database, Cor-
mode and Garofalakis used histogram method to compress the large amount of data
down to concise data synopses while retaining their statistical characteristics[|8]. It
then becomes feasible to evaluate queries on these summaries to give an approximate
answer in a reasonable time. In general terms, similar tuples are divided into the same
bucket, and the bucket boundaries are optimized to reduce the within-bucket dissimi-
larity (using the given error functions such as sum-squared-error, sum-absolute-error,
etc.)

18



Chapter 3

ALGORITHMS

As we have mentioned earlier, we would like to have 3 representations for the result of
aggregate query, which are exact aggregate(return all possible answers), histogram ag-
gregate(return answers grouped into buckets) and topk(return answers in top highest
probability worlds). Within the scope of this thesis, we dedicated our effort to algo-
rithms for exact aggregate and topk. Regarding exact aggregate, we developed two
functions called Combination and All Possible Worlds. For topk, we built a function
call Topk Worlds using max heap data structure.

3.1 Exact aggregate

3.1.1 Notation and definition

Exact aggregate includes all possible aggregate query answers. In support of small
sized table, this representative is still reasonable and accountable.

Notation Given relation R contains n tuples in probabilistic database presenting set of
possible worlds Z# = {(Wy, ¢w,), (Wa, by, ..., (W, qup)}, here, each sentence
quj =X =x)A(Y =y)A---A(Z = z) represents world W;. A query for number of
rows over R has form:

i€0,1,...,n

t(R) = {(i,®;)}, wh
count(R) ={(i,®;)}, where {@i = Véy, | count(ReW;) =1i

3.1.2 Method 1 - Combination of records

Intuition Every record has 2 statuses, either exist or non-exist in a world. Therefore,
all subsets of n records presents all possible outcomes. We started with this brute
force algorithm to simply guarantee to find the correct solution and know how far this
inefficient approach could lead to.

19



Syntax SQL query form:

SELECT count, STRING_AGG(bdd, '[|")

FROM dicts, COMBINATION('select bdd from R', dict)
WHERE dicts.name='mydict'

GROUP BY count;

The Algorithm is shown in The function is written in PL/SQL, its argu-
ment is a query string which selects record sentences. We generate all subsets of the
array of sentences, then looping through the subsets to build its sentence and calculate
its size. Finally, we group all the subsets with the same size, and using STRING_AGG to
unite their sentences. DuBio provides AGG_OR function to aggregate BDD through op-
erator “or”. To group those sentences, AGG_OR requires plenty of time to concatenate
a large BDD so we simply used STRING_AGG instead.

Complexity The complexity of this algorithm is exponential, i.e. 2" because it loops
through all subsets of n records. Basically, this algorithm depends strongly on the
number of records. The uncertainties of the database such as the number of random
variables or number of alternatives are expected not to affect its performance.

Discussion This approach is straight forward to implement and easy to understand,
however it is slow and inefficient. Because of its complexity, we consider it as a good
solution for the database with few records but rich in uncertainty.

Algorithm 1: COMBINATION (query, dict)
Data: query = SELECT bdd FROM R
Result: [(O: ¢O)> (15 ¢1)) ) (n, ¢n])
Initialize
sentences = EXECUTE query; // [¢1...¢0,,]
all_combinations < sentences.powerset; ; // returns all subsets of

an array
for comb in all_combinations do

¢ <« Bdd(1);

sige « 0;

for ¢ in sentences do

if o € comb then

¢ —PNYp;
sige <« sige + 1;
else
| ¢ =P AY;

end

end

if not isfalse(¢p) and prob(dict,¢p) > 0 then

| RETURN NEXT size, ¢

end

end

Figure 3.1: PseudoCode of the Combination of records Algorithm.
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3.1.3 Method 2 - All possible worlds

Intuition This approach is intuitively suitable with possible worlds theory. We simply
build all possible worlds from dictionary, then aggregate on each world as usual.

Syntax SQL query form:

SELECT (q.c).count, STRING_AGG((g.c).bdd, '[")

FROM (
SELECT UNNEST(POSSIBLE_WORLDS_COUNT(R.bdd, dicts.dict)) AS c
FROM R, dicts WHERE dicts.name='mydict'

) q
GROUP BY count;

The Algorithm We implemented a custom aggregate POSSIBLE_WORLDS_COUNT, its
state transition function is POSSIBLE_WORLDS_ACCUM(“The state transition function
takes the previous state value and the aggregate’s input value(s) for the current row,
and returns a new state value”[[21]). We described the state transition function in
Here, the input value is “row’s sentence”, the state value is an array
of world’s sentence and their current count. For each row, we extract its sentence
variables, collect all alternatives of the variables, then extend the current list of worlds
with this new variables. Next we update the aggregate result in the new list of worlds.
Finally, we group all the worlds that have the same aggregate result, the sentence of
each world is grouped by STRING_AGG.

Complexity The complexity of this algorithm is also exponential. Basically, it is the
size of possible worlds, if the probabilistic database has v variables, each variable has
a alternatives, the complexity is a”’.

Discussion In comparing to the latter algorithm, this one should perform more effi-
ciently. It depends strongly on the uncertainties of probabilistic databases, i.e., the
number of possible worlds w.
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Algorithm 2: POSSIBLE WORLDS ACCUM(¢, listOfWorlds)

Data: record sentence ¢, listOfWorlds[world sentence ¢, count c] loW
Result: new loW
Initialize
array vars < @.vars ; // random variables in sentence ¢
array worlds < build worlds(vars); // return worlds includes
those variables

array newLoW « []; // store new worlds and count result
for world in worlds do
for ¢, count in loW do

¢ «— ¢ A world;

if not isfalse(p A ¢) then
| count < count + 1;

end

newLoW.add (¢, count);
end
end
return newLoW;

Figure 3.2: PseudoCode of the All possible worlds Algorithm.

3.2 Approximate aggregate

Approximate aggregate answers aggregate query approximately by grouping the an-
swers in buckets or returns answers in top k probable worlds. The approximate rep-
resentation is expected to support larger sized table.

3.2.1 Notation and definition

Buckets aggregate divides all the possible count values into buckets. Using this repre-
sentation, we can see roughly the peaks, skews or outliers over the distribution values
of count.

Notations Each histogram bucket b = [s, e] consists of a start point s and end point e
and covers |b| = e —s + 1 possible counts. Technically, the sentence of bucket b is the
union of all worlds where count on this world i belongs to intervals [s, e]

i€l,...,b
b_count(R, b) = {([s;—¢;],®,)}, wh b
_count(R, b) ={([s; —e], #,)}, where {@i:U¢Wj|C0unt(R€VVj)€[5i_ei]

Top k aggregate returns aggregate in the top k probable worlds.

Notations Given relation R contains n tuples in probabilistic database presenting set
of possible worlds Z # & = {(W, ¢w,), (Wa, dw,)s ..., (W, d)Wp)}, here, each sentence
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quj =X =x)A(Y =y)A---A(Z = z) represents world W;, its probability is defined
as P(W;). A top k query aggregate over R has form:

i€0,...,n
top_count(R, k) = {(i,®;)}, where { &, = Uqbwj | count(ReW;) =i
Vjell...k],¥p >k,P(W,) < P(W))

3.2.2 Method 3 - Top k ranking

Intuition Natural representation to users by restricting the number of worlds to k,
since large number of worlds have low probability, users are only interested in top
highest probabilities.

Syntax SQL query has form:

SELECT (q.c).count, STRING_AGG((q.c).bdd, 'I")

FROM(
SELECT UNNEST (TOPK_WORLDS_COUNT (TOPK_WORLDS(dicts.dict, k), R.bdd))
AS ¢ FROM R, dicts WHERE dicts.name='mydict'

) q
GROUP BY count;

The Algorithm Firstly, we coded a function TOPK_WORLDS to find top k probable
worlds, which is described in detail in It is assumed that the alterna-
tives of each random variable are sorted by probability. We begin by choosing the
highest probable alternative of each random variable to build the first world. Next, by
replacing each random variable’s alternative with its successive alternative, we have
new v worlds. We keep those worlds sorted by using max heap data structure. The
root always gives the greatest probable world.

After having topk worlds, we do the aggregation in this k worlds by implementing a
custom aggregate function called TOPK_WORLDS_COUNT, and its state transition func-
tion is TOPK_WORLDS_ACCUM (Algorithm 4). Finally, we also group the worlds with
the same count result and world’s sentences are grouped by STRING_AGG.

Complexity The complexity of TOPK_WORLDS is log-linear. Specifically, the cost for
building max heap is O(xlogx), x is the number of nodes in the heap. Here, we loop
k times to collect top k worlds, and in each loop we add v worlds to the the heap.
Thus, there are totally v x k nodes in the heap, and the complexity is O((vk)log(vk)).

Discussion Because of its log-linear complexity, we expect this algorithm to perform
well with database that has large number of records and variables. It is worth to
mention that the result in TopK Worlds may be less than k answers. For example, if all
top k worlds has the same count value, there will be only 1 answer to return. In the
last step, we group the worlds by its count, so the final result is not always ordered by
probability value.
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Algorithm 3: TOPK_ WORLDS(dictionary dict, integer k)

Data: A dictionary has random variable’s alternatives sorted
Result: top k probable worlds

Declare

int v < dict.vars.size

array alt_size « [v,.alts.size, v, .alts.size, ...,v,.alts.size]
heap maxHeap ; // max heap sorted by probability
2D-array bestWorlds < []; // store the top k worlds
2D-array seens «— []; // store processed node
Initialize

toplworld < [0,,0,,...,0,]

maxHeap.push(toplworld)

repeat

currBestWorld < maxHeap.heap pop;

bestWorlds.add (currBestWorld);

for int i=0; i<v-1; i++ do

if alt size[i] > currBestWorld[i] + 1 then
nextBestWorld < currBestWorld;

nextBestWorld[i] < nextBestWorld[i] + 1;
else
| Continue;

end

if nextBestWorld ¢ seens then
maxHeap.heap push(nextBestWorld);

seens.add(nextBestWorld);
end
end
until bestWorlds.count = k or maxHeap.empty;
return bestWorlds;

Figure 3.3: PseudoCode of the TOPK_WORLDS.

Algorithm 4: TOPK_ WORLDS_ ACCUM((listOfWorlds, topKWorlds, bdd ¢)

Data: record bdd ¢, topKWorlds, listOfWorlds[ {world bdd ¢, count c}]
Result: new listOfWorlds
Initialize
for ¢ in topKWorlds do

count = listOfWorlds[ ¢ ];

if not isfalse(p A ¢) then

| listOfWorlds[ ¢ ].count = count + 1;

end
end
return listOfWorlds;

Figure 3.4: PseudoCode of the TOPK_WORLDS ACCUM.
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Chapter 4

EXPERIMENTAL EVALUATION

4.1 General Settings

Setup Our experiments were run on a commodity hardware. The computer is a Mac-
BookPro 16,1 with 6-Core Intel Core i7 at 2.66 GHz running the macOS Big sur operat-
ing system. DuBio Database is installed on Postgres 14.1. The whole set of experiments
is built and managed as a web application programmed in Ruby on Railﬂ

Data We evaluate the aggregate functions over synthetically generated data. We call it
“cat breed” database. The database has one table which includes cats and their uncer-
tain breeds. We use Fakelﬂ(a library for producing fake data) to generate cat names
and their breeds. For each random variable, we generate randomly 2-4 alternatives if
not specified. Regrading probability of each alternative in a random variable, the first
alternative has probability p;, which is randomly between [0..1], the second alterna-
tive has probability p, randomly between [0..p, ] and so on. This condition ensures the
alternatives have probabilities in descending order. DuBio dictionary also normalizes
automatically the probability value of alternatives to make sure > p; = 1.

Measurement To measure the execution time of the aggregate query, we use SQL
command EXPLAIN[20], i.e.,
EXPLAIN(ANALYZE TRUE, FORMAT JSON, TIMING FALSE) statement; where:

* ANALYZE causes the statement to be executed. The option is set TRUE to get
actual execution time(milliseconds).

» FORMAT specifies the output format. The format is set to JSON so that programs
can parse information conveniently.

e TIMING includes actual startup time and time spent in each node in the output.
We are merely interested in the overall execution time of the statement, so this
option is set to FALSE. It also reduces timing overhead of EXPLAIN ANALYZE
compared to executing query normally.

"https://github. com/stubbornfox/dubio/
“https://github.com/faker-ruby/faker#creature
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It's worth noting that, run times measured by EXPLAIN ANALYZE do not include the
network transmission costs and I/O conversion costs because no output rows are de-
livered to the client[|22]

The ideal execution time for a query is from 1s to 2s, and we have set 30s as the
maximum time out for aggregate query. Usually, 30s is the default connection timeout
in a system, as well as a decent amount of time for user’s patience. We use Class
Timeout in ruby to auto-terminate a potentially long-running query if it hasn’t finished
in 30 seconds.

Timeout: :timeout(30) {
ActiveRecord: :Base.connection.execute(statement)

}

Methodology To ensure fairness to all experiments we run VACUUM ANALYZE on the
tables before each experiment.

4.2 Experimental Details

Overall, the experiments are used to evaluate the performance of algorithm and how
factors such as number of random variables, number of alternatives, complexity of the
sentence affect the aggregate functions. The following are details of the 5 experiments,
in which, experiments from A to D is conducted for all algorithms separately, regarding
TopK algorithm, we use k=5. Experiment E is conducted for TopK only.

4.2.1 Experiment A

Increasing number of tuples and variables gradually. The scale of a probabilistic
database is different when compared to a traditional database. Beyond the factors
like number of tuples, columns or data type, probabilistic database also accounts for
the size of possible worlds this database could present(which is decided by random
variables in DuBio).

* Goal We use this experiment to find out the feasible largest number of tuples
our algorithms can handle. It also helps to observe the trend of execution time
on the scale of number of tuples and random variables. By this experiment, we
are able to answer research questions [RQ1} [RQ2} RQ3| RQ4.

* Setup The detail setup is diagrammed as

— DICTS array has 500 random variables, there are uniformly between 2-4 al-
ternatives per variable, probability is chosen randomly based on condition:
1> p(Z=i) =2 p(Z=j) > 0,1 <j.
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DICTS = {a: "a=0:0.52; a=1:0.48;",
b: "b=0:0.86; b=1:014:"..}

CATS =
[{name: "Oliver", breed: "Ragdoll", bdd: "a=0"},
{name: "Oliver", breed: "Birman", bdd: "a=1"},...]

Figure 4.1: Experiment A Setup

— CATS array has 1000 records, represents about 300 cats, each cat has 2-4
possible breeds.

— For each cat in CATS:

1. If random variable r in cat’s sentence is not yet in the database, then
add r to dictionary.

2. Add cat to CatBreed table.
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3. Try to get execution time, if it is more than 30s, end loop; else continue

4.2.2 Experiment B

Increasing number of random variables while keeping the number of records
constant. As we mentioned earlier, there are 2 dimensions a probabilistic database
can expand: possible worlds and quantity of data. This experiment focuses on how
the number of possible worlds would affect the aggregate query.

Start

VARSI[10] = [a, b, ¢, d,....]

DICTS = {a: "a=0:0.52; a=1:0.48;",
b: "b=0:0.86; b=1:0.14;"....}

CATSI[15] = [{name: "Oliver", breed: "Ragdoll", bdd: "} ,
{name: "Oliver", breed: "Birman", bdd: "},...]

Add all CATS to CatBreed

For each rin VARS

Add DICTS]r] to dict

Update CatBreed bdd

Yes

Execute EXPLAIN
ANALYZE statement

Execution
time < 30s?

Figure 4.2: Experiment B(n=15, r=1..10, a=2)
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* Goal We use this experiment to find out how the execution time changes w.r.t
the number of random variables. This experiment answers research question

* Setup The detail setup is diagrammed as [Figure 4.2l We setup experiments on
1-10 random variables for a fixed number of 15 tuples.

— DICTS has 10 random variables, 2 alternatives per variable.
— Add 15 records to CatBreed.
- For each random variable r in DICTS:

1. Add r into dictionary
2. Assign random variables in dictionary uniformly to tuple’s sentence
3. Get execution time, exit if it takes more than 30s

4.2.3 Experiment C

Increasing number of alternatives per random variables while keeping all tuples
constant. This experiment is similar to experiment B, which studies how the number
of possible worlds could affect the execution time. In DuBio, possible worlds size
could be changed by either adding more random variables or giving more alternatives
of each random variable.

* Goal This experiment studies how number of alternatives of random variables
affects the execution time, which answers research question [RQ5.2

* Setup The detailed setup is diagrammed as We experiment for a
fixed number of 15 tuples and 7 random variables. The number of alternatives
per random variable varies from 2 to 5.

DICTS has 7 random variables, each has 2 alternatives.

CATS has 15 cats, 7 random variables assigned among their sentences.
Add DICTS and CATS to database

For each alternative in 2..5:

1. Get execution time, exit if it takes more than 30s

2. Add 1 more alternative to each random variable, its probability is 0.001 (try
to ensure random variable in dictionary has alternatives in descending
order of probability)

4.2.4 Experiment D

Increasing the complexity of sentence in each tuple. As mentioned earlier, DuBio
uses concept sentences, which are propositional formulae of random variable assign-
ments. The complexity of a sentence here is the number of different variables in each
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Start

VARS[7] =[a, b, ¢, d,....]

DICTS = {a: "a=0:0.52; a=1:0.48;",
b: "b=0:0.86; b=1:0.14;"....}

CATSI[15] = [{name: "Oliver", breed: "Ragdoll", bdd: "a=0"},

{name: "Oliver", breed: "Birman", bdd: "a=1"},...]

Add DICTS to DB dict
Add all CATS to CatBreed

altin [2..5]
Execute EXPLAIN
ANALYZE statement
for all rin VARS:
Dict.add(r=alt:0.001)
Yes
Execution
time < 30s?
No
End

Figure 4.3: Experiment C(n=15, r=7, a=2..5)

sentence. This experiment basically mimics a complex query which includes condi-
tions joining multiple tables. We would like to see how the aggregate function is
affected under complicated sentences.

* Goal This experiment studies the effects of complexity of the tuple’s sentence on
the execution time of the algorithms, which answers research question RQ5.3

* Setup The detailed setup is diagrammed as [Figure 4.4, We ran the experiment
from 1 to 15 tuples and used in total 5 random variables, the number of variables
appearing in each sentence is 1, 2, 3.

— DICTS has 5 variables, each has 2-4 alternatives

— SENTENCES has 3 arrays bdds, where the first is list of bdd included 1 ran-
dom variable, the second is list of bdd included 2 different random vari-
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VARS[S] = [a, b, ¢, d,....]

DICTS = {a: "a=0:0.52; a=1:0.48;",
b: "b=0:0.86; b=1:0.14;"....}

SENTENCES [3]= [

["a=0" "a=1" "b=0"....],
['a=08&d=0", "a=0&d=1", "a=1&d=0",.....],
["a=08&d=08&c=0", "a=0&d=0&c=1".....]]

CATS[15] = [{name: "Oliver", breed: "Ragdoll", bdd: "'},
{name: "Oliver", breed: "Birman", bdd: ""},...]

For each sentence s in SENTENCES
iin [1.15]

—>

Figure 4.4: Experiment D(n=1..15, 1..3 random variables in a sentence)

ables, and the third one is list of bdd included 3 different random variables.
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The operator in those bdds is A to simulate when we join multiple tables.
— For sentences in SENTENCES:
1. Clear database, assigni =0
2. Loop until i=15:
(a) Add variables in the sentences; to database dictionary
(b) Assign sentences; to cat;, add cat to CatBreed

(c¢) Get execution time, exit if it takes more than 30s; else increase i
by 1.

4.2.5 Experiment E

Increasing k in Topk. Topk’s complexity is a log-linear of k*v, we would like to confirm
this dependency of Topk on k.

Start

VARS[40] = [a, b, ¢, d,....]

DICTS = {a: "a=0:0.52; a=1:0.48;",
b: "b=0:0.86; b=1:0.14;"....}

CATS[100] = [{name: "Oliver", breed: "Ragdoll", bdd: "a=0"},
{name: "Oliver", breed: "Birman", bdd: "a=1"},...]

Add 100 CATS to CatBreed
Add 40 VARS to Dictionary

k=5, k<=50
Execute EXPLAIN
ANALYZE
statement(k)
k=k+5
Yes
Execution
time < 30s?

No

Figure 4.5: Experiment E(n=100, k=[5,10,...,50]
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* Goal This experiment studies the scalability of TopK on k, which answers re-

search question

* Setup The detailed setup is diagrammed as We experimented this
for a fixed number of 100 records with k varying in [5,10, 15 ...50]

— Add 40 random variables and 100 records to database, assign k = 0
— while k < 50:

1. k=k+5
2. Get execution time for Topk, exit if it takes more than 30s

4.3 Results

4.3.1 Experiment A

The running time of 3 algorithms regarding records is shown in On com-
modity hardware, Combination, All possible worlds and Topk are able to aggregate
over 17, 26 and 339 records, respectively under 30s. As the number of records in-
creases, Combinations and All Possible worlds bend upward more steeply. They both
have running time increasing exponentially, however we notice that Combination ex-
plodes faster than All possible worlds. This happens because time complexity of Com-
bination is 2", while All possible worlds is on average 23 (n records is annotated by 3
variables). Regarding TopK, we observe that it has linearithmic run time. Indeed, its
complexity is O(vk*log(vk)). Here, k=5 and v=§, so its run time complexity over n is
0(53—” xlog 5?").

In general, to query all possible answers, All possible worlds is favored over Combi-
nation. Even though All possible worlds reached the limit of 26 records, it can be
safely used on the result of a query when the intermediate result before aggregation
has max 26 tuples. These circumstances may hold quite often in practice. To query
aggregate approximately, TopK with log-linear complexity is adequate to query over
three hundred records.

On a server hardware, e.g. 10 times faster than our commodity computer, for All pos-
sible worlds and Combination, the increase in size of n is about n + 3 (to be precise,
n + log,10). In fact, the increase in problem size for algorithms with exponential
growth rate is by addition of a constant. Therefore, with the server hardware 10
times faster, All possible worlds will be able to process for 29 records, or with hard-
ware 100 times faster, it can only reaches 32 records max. Meanwhile, running TopK
on a server hardware will improve the size of n by a multiplicative factor. Top K has
log-linear complexity, which means it grows faster than linear(O(n)) but slower than
quadratic(O(n?)). Therefore, on server hardware 10 times faster, TopK will increase
size of n by a factor between [ +/10, 10].
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Timeout
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‘max 26

max 17

# records

Figure 4.6: Running time of 3 methods in total

4.3.2 Experiment B

Evaluating effect of v on running time is given by the graph in which
shows running time taken for n = 15 as v changes from 1 to 10. As we can see,
Combinations and All Possible worlds running time scales exponentially while TopK
running time grows linearly as v increases.

All possible worlds complexity is a”, so the exponential trend proved this hypothesis.

Regarding Combination, we expected it is not affected by increasing v. However,
the construction of the BDD in this algorithm, e.g. ¢; A 5+ A @, costs exponential
growth. When v is small, this world sentence becomes simple, e.g, all records are
only annotated by 2 variables A and B, then a world sentence ® = (A= 1)A(B =
1)A...(A=1) A(B = 1) eventually shrinks to (A = 1) A(B = 1). When v is large,
the world sentence ¢ remains its size and costs time to construct. So the trend here
reflects the exponential cost of constructing BDD when v changes.

For TopK, we mentioned its complexity is vk * log(vk), the trend confirmed our ex-
pectation. In the implementation of TopK, while being aware of the cost of BDD, we
tried to restrict constructing BDD, e.g. to present a world’s sentence we use a string
“A=0AB =1...". Therefore, the cost for construction of BDDs does not affect much
like Combination. Precisely, the number of BDD constructed in Combination is suf-
ficiently large 2" = 2!° = 32768, while the number of BDD constructed in TopK is
n x k=15 x 15 = 75(we only build BDD to check if a record belongs to a world, BDD
of the world & is restricted to only variables appearing in ¢).
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Figure 4.7: Effect of #vars on running time(n=15)

4.3.3 Experiment C

shows result of running time with different a, in which, y-axis is logarithmic
scale of running time, x-axis is a, changing from 2 to 5. For different a per variable,
All possible worlds has [n(running time) increasing linearly, while Combination and
TopK stay flat.

As a increases, the running time of All possible worlds scales exponentially. This proves
our expectation about scale of All possible worlds to a, because the complexity is a”,
here v = 7, so the running time represents the same trend with function f(a) = a’.
In a short range of a and the graph [n(f (a)) grows linearly.

While Combination and TopK are not affected, because their complexity does not de-
pend on a. Besides, in this experiment, new alternatives added to dictionary and all
record’s sentence ¢ is unchanged so any BDD constructed in this 2 algorithms should
stay the same even though a changes.

4.3.4 Experiment D

Effect of sentence’s complexity on running time is given by the graph in
which shows running time taken for multiple v in a sentence ¢. The solid line shows
running time when record’s sentence includes 1 variable, dot line shows running time
for sentence with 2 different variables and dash line shows running time for sentence
with 3 different variables.
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Figure 4.8: Effect of #alternatives on running time(n=15)

TopK has 3 lines twisted together and does not show a clear trend, Combination has
3 lines overriding each other, which means there is no clear effect of different v in a
sentence for these 2 algorithms. This happens because Combination depends strongly
on n and TopK complexity only depends on k and v.

Regarding All possible worlds, it shows that sentence with 3 variables takes more time
than sentence with 2 variables. Similarly, sentence with 2 variables takes more time
than sentence with 1 variable. Multiple different variables appearing in a sentence
will cost more time. Since in this algorithm, the possible worlds set are expanded
across the row, the more variables in sentence of a row, the larger the set will expand.
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Figure 4.9: Effect of sentence’s complexity on running time

4.3.5 Experiment E

Effect of K on running time of TopK is shown in the query is executed on
100 records. For top 5 and top 10, it takes 0.7s, and 1.7s respectively. For top 50 of
100 records, it takes 28.6s (almost up to the timeout). We observe that the running
time is almost linear. Mathematically, with v = 31 the running time should represent
trend of the function f (x) =31k xlog(31k). So this result fulfills our expectation.

In this experiment, we also compared between Topk and top k of All possible worlds
algorithm. To simulate Topk, we sort possible worlds by their probability and limit to
k. The result is shown in We spot that with small k (e.g. topl, top5),
TopK takes less time than top k of All possible worlds. When k = 10, TopK and top k
of All possible worlds takes similar time. However, with k = 15 TopK takes more time.
We also observe that k does not affect top K of All possible worlds.

Even though All possible worlds scales faster, TopK will take more time when k be-
comes larger. This happens because the O(All possible worlds) formula doesn’t have a
k in it (confirmed by the experiments to be independent of k) and the O(TopK) formula
depends on k by k x logk when keeping v constant, so it grows with this trend(also
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confirmed by the experiment that it grows a little bit more than linear).
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Figure 4.10: Effect of K on running time(n=100)
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Figure 4.11: Topk versus top k of All possible worlds(n=15)
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Chapter 5

DISCUSSIONS

In this chapter, we discuss the ways to optimize and improve our algorithms. Then,
we describe the limitations of this research.

5.1 Optimization

In Combination, we blindly generate combination subset of n records. However we
can optimize this algorithm by checking correlation between n records, i.e. if 2 records
is mutual dependent, it can be treated as 1 element; or 2 mutual exclusive records
should never belong in the same subset.

In All possible worlds method, we build the full possible worlds representing all pos-
sible answers. However, the number of possible worlds could be refined by using
negative proposition. For example, in 3 different worlds, A=1, A=2, A=3 could be
reduced to 2 different worlds A=1 and !A=1 (if the table only includes alternative
A=1).

In the implementation of all possible worlds, we do not restrict the construction of
the BDD. If we apply the optimization like TopK(see |[subsection 4.3.2]), this algorithm
could have achieved a better performance.

In TopK implementation, we assumed that our variables have their alternatives sorted
by their probabilities. We skipped the implementation of sorted dictionary. This could
be always implemented in the future by maintaining sorted dictionary beforehand or
sort those alternatives before calling TopK. In our experiments, the synthetic data is
generated with alternatives sorted by their probabilities. One thing worth mentioning
here is that we assumed the dictionary does not include unused random variables.
However if it does, we can also optimize it by refining the dictionary to the table
before processing.
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5.2 Limitations

In this thesis, we restrict ourselves to a synthetic data with only one table CatBreed.
The table uses synthetically generated sentences to represent uncertainty of a cat’s
breed. Also the probabilistic database model we used only handles discrete attribute
values of probability. All experiments ran on commodity hardware only. Even though
developing approximate aggregation as a histogram is our intention in the beginning,
we still haven’t figured out any effective algorithm. The TopK algorithm returns the
aggregates for the k most probable worlds. An alternative form of topk, which returns
exactly the most m probable aggregate answers, lets call it TopM. An algorithm could
be constructed for this form as well.
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Chapter 6

CONCLUSIONS

6.1 Conclusions

Our primary motivation is to implement aggregates in probabilistic database, particu-
larly DuBio, which leads us to 5 Research Questions. We implemented 3 algorithms,
and set up 5 experiments to evaluate their performance. In this section, we attempt
to answer our research questions.

RQ1 To present the result of queries exactly, how do we implement a function which
returns all possible answers and their probabilities?

To answer this question, we implemented 2 algorithms called Combination and All
possible worlds. Combination generates all subsets of records, and group those subsets
with the same size. All possible worlds traverses all relevant possible worlds in the
database and computes a count for each. The aggregate function processes the row’s
sentence (, taking the used random variables and builds the ongoing possible worlds.
Next, if ¢ belongs to a world seen before, increase the count on that world.

RQ2 To present the result of queries approximately, how do we implement a function
which returns possible answers and their probabilities distribution as a top-k ranking or
histogram?

To build topk ranking function we used a sorted dictionary, which means alternatives
of each random variables is sorted by their probabilities. Next we build top k worlds
by picking the top alternatives of each random variables. To figure out the next best
random variable’s alternative, we use max heap to store candidate worlds built by
picking next alternative of each variable. The world with highest probability is always
root of that heap.

Computing histograms as an approach for obtaining approximate aggregate results is
very promising. In this research, however, we focused on top-k only. A naive algorithm
for computing a histogram is to group the result of an exact aggregate into buckets.
This algorithm will have the same complexity as the exact aggregate algorithm.

41



RQ3 What is the maximum number of records our aggregate functions can reach under
a reasonable time, particular in DuBio(for both exact and approximate count)?

Under 30s, on a commodity hardware, the number of records that could be aggregated
is as follows:

#records

Combination All possible worlds TopK(k=5)
16 26 339

In general, to represent exact query result, All possible worlds is favoured over Com-
bination, because Combination scales w.r.t. the power of n and All possible worlds
scales slower w.r.t. the power of v.

For TopkK, it performs much better with log-linear complexity. We believe it could reach
sufficiently larger number of records by using a server infrastructure.

RQ4 What is the complexity of our algorithms?

Algorithm complexity

Combination All possible worlds TopK
o2" O(a") O(vk xlog(vk))

This time complexities are confirmed in our experiment A(Figure 4.6)). Both Combina-
tion and All possible worlds running time has exponential growth rate, Combination
scales faster. TopK has log linear growth rate.

RQ5 How the uncertainties in probabilistic database affects our algorithms?

RQ5.1 How the number of random variables affects our algorithms?

Combination and All possible worlds scale exponentially. Whilst, TopK scales near
linearly with number of random variables

RQ5.2 How the number of alternatives per random variable affects our algorithms?

Depending strongly on the number of worlds, All possible worlds scales exponentially
with the number of alternatives. While, Combination and TopK running time aren’t
affected.

RQ5.3 How the complexity of sentences affects our algorithms?

The complexity of sentence doesn’t affect much the running time of TopK and Com-
bination. However for All possible worlds, it obviously shows the increase in the
running time.
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Overall, to query all possible answers, All possible worlds is favored over Combina-
tion. However each algorithm has advantages and disadvantages varying on different
circumstances. Even though All possible worlds can only reach to 26 records, it can be
safely used on the result of a query when the intermediate result before aggregation
has max 26 tuples. Combination stops at 15 records, but if the database has a huge
number of variables and the table has not more than 15 tuples, this algorithm is a
reasonable choice. To query aggregate approximately, TopK with log linear complex-
ity is adequate over hundred records. Given the complexity and experiment result on
a commodity hardware, we are able to estimate algorithm’s performance on a server
hardware. Combination and All possible worlds could only handle a couple of more
records because of their exponential complexity. Meanwhile, TopK with log-linear
complexity can improve the size of records by a multiplicative factor.

6.2 Future work

In discussion part(chapter 5)), we show insights used to optimize our algorithms which
could be implemented in the future:

* All possible worlds, we could refine the number of possible worlds by using neg-
ative propositional formula.e.g. {A=1,A=2,A=3,A=4} - {A=1,1A=1}.
This optimization is expected to improve performance when a random variable
has many alternatives but the table only relates a few of those alternatives.

 All possible worlds, we are aware it takes time to build BDD with multiple ran-
dom variables, especially BDD to represent a world . As we mentioned how
we optimized it in result(subsection 4.3.2) and discussion part(chapter 5), we
can have this algorithm perform better by reducing cost of constructing BDD.

* Implement sorted dictionary for TopK. During our implementation, we assumed
that the variables alternatives are sorted by their probabilities. However, in prac-
tice, DuBio has alternatives sorted by their added time. We should sort alterna-
tives every time new alternative added. This helps to bring insight when we look
at the dictionary, we will notice which alternatives are more likely.

Histogram is a promising representation for aggregation result. We would like to
focus on this representation in the future.

Experiments Experiment is run on commodity hardware only, we would like to run
it on a server hardware to confirm our estimation. We also want to experiment the
query on a real schema data which includes multiple tables and the query is a bit more
complicated.

43



References

[9]

[10]

[11]

[12]

Randal E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams”. In: ACM Comput. Surv. 24.3 (Sept. 1992), pp. 293-318. 1SSN: 0360-
0300. pot: [10.1145/136035.136043. URL: https://doi.org/10.1145/
136035.136043.

Henrik Reif Andersen. “An introduction to binary decision diagrams”. In: https:
//www.cs.utexas.edu/ isil/cs389L/bdd.pdf. Department of Informa-
tion Technology, Technical University of Denmark. 1997.

Yannis E. loannidis. “The History of Histograms (abridged)”. In: VLDB. 2003.

Jennifer Widom. “Trio: A System for Integrated Management of Data, Accuracy,
and Lineage”. In: CIDR. 2005.

Rahul Gupta and Sunita Sarawagi. “Creating Probabilistic Databases from In-
formation Extraction Models.” In: Jan. 2006, pp. 965-976.

Christopher Ré, Nilesh Dalvi, and Dan Suciu. “Efficient Top-k Query Evaluation
on Probabilistic Data”. In: (June 2006). https://www.cs.stanford.edu/
people/chrismre/papers/Multisimulation_TR.pdf.

L. Antova et al. “Fast and Simple Relational Processing of Uncertain Data”. In:
(Apr. 2008), pp. 983-992.

Graham Cormode and Minos Garofalakis. “Histograms and Wavelets on Prob-
abilistic Data”. In: IEEE Transactions on Knowledge and Data Engineering 22.8
(2010), pp. 1142-1157. por1: 10.1109/TKDE. 2010.66.

Matteo Magnani and Danilo Montesi. “A Survey on Uncertainty Management
in Data Integration”. In: J. Data and Information Quality 2 (July 2010). DOTI:
10.1145/1805286.1805291.

Carlos Rodriguez et al. “Toward Uncertain Business Intelligence The Case of
Key Indicators”. In: IEEE Internet Computing 14 (July 2010), pp. 32-40. DOI:
10.1109/MIC.2010.59.

Dan Suciu et al. Probabilistic Databases (Synthesis Lectures on Data Manage-
ment). Morgan & Claypool Publishers, 2011.

Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer London,
2012.

44


https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://www.cs.utexas.edu/~isil/cs389L/bdd.pdf
https://www.cs.utexas.edu/~isil/cs389L/bdd.pdf
https://www.cs.stanford.edu/people/chrismre/papers/Multisimulation_TR.pdf
https://www.cs.stanford.edu/people/chrismre/papers/Multisimulation_TR.pdf
https://doi.org/10.1109/TKDE.2010.66
https://doi.org/10.1145/1805286.1805291
https://doi.org/10.1109/MIC.2010.59

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

B. Wanders and Maurice van Keulen. “Revisiting the formal foundation of Prob-
abilistic Databases”. In: Proceedings of the 2015 Conference of the International
Fuzzy Systems Association and the European Society for Fuzzy Logic and Tech-
nology, IFSA-EUSFLAT 2015. Advances in Intelligent Systems Research. Nether-
lands: Atlantis Press, June 2015, p. 47. ISBN: 978-94-62520-77-6. DOI: 10 .
2991/ifsa-eusflat-15.2015.43.

V. Cincotta. Design and Implementation of a Scalable Probabilistic Database Sys-
tem. July 2019.

K.D. van Rijn. A binary decision diagram based approach on improving proba-
bilistic databases. July 2020. URL: http://essay.utwente.nl/82217/.

Joonas Jalko et al. “Privacy-preserving data sharing via probabilistic modeling”.
In: Patterns 2.7 (2021), p. 100271. 1SSN: 2666-3899. DOI: https://doi.org/
10.1016/j.patter.2021.100271. URL: https://www.sciencedirect.
com/science/article/pii/S2666389921000970.

Maurice van Keulen. “probabilistic DB theory”. In: University of Twente, master
course “probabilistic programming”. 2021.

Nilesh Dalvi, Christopher Ré, and Dan Suciu. “Probabilistic Databases: Dia-
monds in the Dirt”. In: (). https://homes.cs.washington.edu/ suciu/
filelb_cacm-paper.pdf.

Robert Fink, Larisa Han, and Dan Olteanu. “Aggregation in Probabilistic Databases
via Knowledge Compilation”. In: https://www.cs.ox.ac.uk/people/
dan . olteanu/papers/fho-v1ldb12 . pdf. Deptartment of Computer Sci-
ence, University of Oxford.

The PostgreSQL Global Development Group. SQL Commands - EXPLAIN. URL:
https://www.postgresql.org/docs/current/sql-explain.html.

The PostgreSQL Global Development Group. User-Defined Aggregates. URL: https:
//www.postgresql.org/docs/current/xaggr.html.

The PostgreSQL Global Development Group. Using EXPLAIN - EXPLAIN. URL:
https://www.postgresql.org/docs/current/using-explain.html.

45


https://doi.org/10.2991/ifsa-eusflat-15.2015.43
https://doi.org/10.2991/ifsa-eusflat-15.2015.43
http://essay.utwente.nl/82217/
https://doi.org/https://doi.org/10.1016/j.patter.2021.100271
https://doi.org/https://doi.org/10.1016/j.patter.2021.100271
https://www.sciencedirect.com/science/article/pii/S2666389921000970
https://www.sciencedirect.com/science/article/pii/S2666389921000970
https://homes.cs.washington.edu/~suciu/file15_cacm-paper.pdf
https://homes.cs.washington.edu/~suciu/file15_cacm-paper.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fho-vldb12.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fho-vldb12.pdf
https://www.postgresql.org/docs/current/sql-explain.html
https://www.postgresql.org/docs/current/xaggr.html
https://www.postgresql.org/docs/current/xaggr.html
https://www.postgresql.org/docs/current/using-explain.html

	INTRODUCTION
	BACKGROUND & RELATED WORK
	Probabilistic Database
	Reduced Ordered Binary Decision Diagrams
	DuBio Database
	Related Work
	Ranking tuples
	Aggregation over imprecise values
	Histograms on Probabilistic Data


	ALGORITHMS 
	Exact aggregate
	Notation and definition
	Method 1 - Combination of records
	Method 2 - All possible worlds

	Approximate aggregate
	Notation and definition
	Method 3 - Top k ranking


	EXPERIMENTAL EVALUATION
	General Settings
	Experimental Details
	Experiment A
	Experiment B
	Experiment C
	Experiment D
	Experiment E

	Results
	Experiment A
	Experiment B
	Experiment C
	Experiment D
	Experiment E


	DISCUSSIONS
	Optimization
	Limitations

	CONCLUSIONS
	Conclusions
	Future work

	References

