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Abstract

The illegal dumping of waste materials presents a significant challenge for environmental
conservation efforts due to the potential risks it poses to human health and natural habitats. The
timely localization and disposal of illegal dumping sites can help prevent further contamination of its
surroundings. Currently, the predominantly used method for detecting illegal dumping sites involves
manual interpretation of satellite imagery, which is time-consuming, error-prone, and expensive for
certain communities. To address this issue, there is a need for more efficient and accurate automated
detection methods using satellite imagery. This study aimed to investigate the viability of Adversarial
Autoencoder (AAE) models for detecting illegal dumping sites from satellite imagery. Initially,
experiments were conducted using Generative Adversarial Networks (GANs), including vanilla GAN,
Wasserstein GAN (WGAN) and Wasserstein GAN with gradient penalty (WGAN-GP). However, the
study later pivoted towards AAE models, which were found to produce more informative
embeddings that improved anomaly detection. The AAE model was trained to produce embeddings
that represent the unique features of each satellite image. These embeddings were then visualized
using certain techniques, such as dimensionality reduction methods and clustering techniques, to
better understand the patterns and structure within the data. The results of this study demonstrate the
promising potential of using AAE models for detecting illegal dumping sites from satellite imagery.
By providing a more efficient and cost-effective approach to monitoring and identifying potential
illegal dumping sites, this technology can help promote sustainable environmental management and
public health.
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1 Introduction

Many municipalities have designated organizations or landfills for their inhabitants to safely dispose
of their solid waste in a controlled environment. Proper waste management is critical for people that
live in urban areas, especially with a 52% urbanization percentage in 2022 [1]. However, illegal waste
dumping has become an increasingly common threat to humans, animals and the environment [2].
Illegal waste dumping can be described as the disposal of trash generated at one location and
disposed of at another location without legal permission [3]. This could be for instance used
household garbage, used tires, old mattresses or garden waste in places such as the roadside, forests
and other non-designated dumping sites. However, at a larger scale, construction and industrial waste
are especially harmful to the surrounding area, as they can contain toxic substances. This waste then
gets illegally buried, disposed of at a landfill or burned.

This has a severe impact on soil quality, surface water, air quality, wildlife and human
wellbeing. Due to a lack of access or opportunity to better alternatives, parts of the population are
forced to live in close proximity to these illegal sites, causing them to develop severe health
complications, both in the long and short term. Short-term health issues may include respiratory
diseases, general anxiety, headaches, nausea and eye irritation [2], [4] while long-term exposure to
illegally dumped waste may lead to specific types of cancer [5], cardiovascular diseases, malignant
neoplasms and birth defects.

In 2015, the UN adopted the Sustainable Development Goals (SDG), one of which being SDG
12: Responsible Consumption and Production [6]. This SDG addresses the growing problem of
improper waste management and unlawful toxic and chemical waste disposal among others. It calls
for environmentally sound waste management to reduce waste released into soil, air or water to
minimize negative health impacts on humans and the environment. Therefore, in consonance with the
SDGs, illegal dumping sites must be localized and disposed of responsibly, and the areas affected
must be restored and redeveloped for them to be safe for flora and fauna.

One challenge in the aforementioned statement, however, is often the localization of these
illegal dumping sites. The GWMO (United Nations Environment Programme and International Solid
Waste Association) [7] also voiced the need for data on dumping, stating: “availability and reliability
of waste and resource data are dire, and urgently needs attention”. Due to the dumping sites being
illegally created, it can take significant amounts of time to discover their precise locations. Therefore,
to alleviate the grave impact illegal dumping has on its environment, the timely detection of illegal
dumping sites is crucial. There have been recent advancements in the field of automatic illegal waste
detection, however, the predominantly used method by municipalities and local governments is still
manual detection from photos. This process requires expert knowledge and is slow, inaccurate and
expensive.

Therefore, an effective solution is needed to detect illegal dumping sites in order for
municipalities and local governments to combat this rising problem. There exists a wide range of
methods and solutions, however, the use of machine learning, in particular deep learning, has proven
to be effective in extracting waste locations from satellite imagery or aerial imagery [8]. Deep learning
models have been successfully deployed in the detection of illegal dumping from satellite imagery
due to their strong image analysis capabilities. Satellite imaging is readily available and has an
adequate resolution for the intended purpose, therefore this will be the input for the model of focus in
this solution.

This paper explores the possibility of using deep learning techniques to effectively detect
illegally dumped waste near real-time from satellite imagery.



1.1 Research objectives

Thus, the main objective of this paper is to examine the possibility of using a deep learning model to
automatically and reliably detect the locations of illegal dumping sites from satellite imagery. The
main research question is formulated as follows:

RQ: How can a deep learning model be developed for the purpose of detecting illegal dumping sites
from satellite imagery?

In order to answer this question, sub-questions must be formulated. First, we need to know what
framework or structure is best for this detection task. Furthermore, knowledge is needed on what
satellite imagery datasets can be used for training purposes and input of the model. This results in the
following sub-questions:

SQ1: What deep learning framework is optimal for dumping detection from satellite imagery?

SQ2: What satellite data will be useful for training and as input for the deep learning model?

1.2 Thesis structure

In the following chapters, the full process of research, ideation, implementation, training and
evaluation will be documented. In chapter 2, the conducted background research is recorded. This will
provide an overview of state-of-the-art deep learning detection models, relevant satellite datasets and
possibilities for training the model. In chapter 3, the methods and techniques for the development of
such a model will be outlined. Chapter 4 will document the ideation and design process of the deep
learning model. Chapter 5 will discuss the realisation, implementation and results of the project. In
chapter 6, the results of chapter 5 will be evaluated. Chapter 7 will outline the conclusion of the project
and chapter 8 will discuss the limitations of the project and opportunities for future research.



2 Background research

The goal of this background research is to investigate the concept of deep learning, applications of
deep learning models and existing deep learning models for object detection. Current deep learning-
based solutions for illegal dumping detection will also be explored.

2.1 Background research structure

This background research will be split up into multiple parts. Firstly, an overview of deep learning
concepts and detection methods is given. Secondly, types of satellite datasets will be examined along
with their features and specifications. Thirdly, training data as an input to the deep learning model
will be discussed, as well as the option of synthetic data generation for training. Fourthly, existing
studies on dumping detection will be reviewed. Lastly, a brief explanation of Adversarial
Autoencoders is given.

2.2 Deep learning and applications
2.2.1 Deep learning

There are multiple definitions that aim to encompass the concept of deep learning (DL). Marcus [9]
defines DL as a statistical technique for classifying patterns, based on sample data, using neural
networks with multiple layers. Cullel-Dalmau et al. [10] and Sarker [11] agree on the definition that
DL is a subset of artificial intelligence (AI) that aims to mimic the way the human brain works, in
particular the connections between neurons. Deng et al. [12] provide the most detailed definition,
writing that deep learning “uses a cascade of multiple layers of nonlinear processing units for feature
extraction and transformation. Each successive layer uses the output from the previous layer as input,
learn multiple levels of representations that correspond to different levels of abstraction; the levels
form a hierarchy of concepts”. This is achieved by making use of several layers in a neural network, as
Pak et al. [13] added. In this paper, we will use the definition as formulated by Deng et al. [12]. In
2006, Hinton et al. [14] first proposed the DL algorithm that could process large amounts of data with
an impressive learning speed compared to existing approaches at the time. DL has become a
subcategory of Al that has risen in popularity over the past five years due to its efficacy and
versatility, as observed by Sarker [15]. DL is a commonly used and preferred method in machine
learning in an attempt to mimic the way connections between neurons in the human brain work.

Typically, it makes use of digital ‘neurons” or nodes, which are connected to other nodes to
transmit signals. As defined by Cullel-Dalmau et al. [10], these signals consist of a number, where the
output of the nodes is a nonlinear function of the sum of the inputs. The connections between nodes
are characterized by weights that dictate how much a signal contributes to the output. Nodes are then
structured into different layers, which are interconnected as well. In the most basic form, there are
three types of layers in a DL neural network: the input layer, the hidden layers and the output layer,
as illustrated in Figure 1. The input layer represents the inputs that the DL model receives, the hidden
layers are the layers where the values for nodes are calculated and the output node represents the
summation of the previous layers resulting in an output. The lower layers close to the data input learn
simple features, while higher layers learn more complex features derived from lower-layer features as
described by Srivastava et al. [16] and Shinde et al. [17]. In a DL network, more nodes and layers entail
that the model is able to perform more complex tasks, albeit at a higher computational cost.
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Figure 1 The basic structure of a deep learning neural network

2.2.2 Applications of deep learning

As mentioned before, DL neural networks are highly versatile systems which are applied in many
research areas and aspects of society. There are countless examples of DL being used in a variety of
fields, four of which will be covered in this section: computing science, healthcare, business
intelligence and customer service.

Firstly, DL supports state-of-the-art applications in computing science research areas. These
include natural language processing (NLP), computer vision (CV), image analysis, sentiment analysis,
speech recognition and many more, as summarized by Sarker [11] and Pathak et al. [18]. In 2016,
Google’s DL-based AlphaGo famously beat one of the strongest players, Lee Sedol, in the ancient
Chinese strategy game of Go, proving DL’s fast learning capabilities and further popularizing DL to
the public. Thus, DL shows promising results in fields of study in computing science, but many other
major research fields are currently exploring the value of DL as well.

Secondly, the use of DL in healthcare has also been explored. DL networks have been
deployed in the detection of breast cancer from images with a 0.966 accuracy score as researched by
Wang et al. [19]. Prediction of risks in patients based on current clinical status is also a rising topic in
research. Lui et al. [20] have also obtained state-of-the-art results in early Alzheimer's disease
diagnoses with a DL model. Furthermore, Tran et al. [21] predicted suicide risks in mental health
patients and Miotto et al. [22] built a model for the prediction of future diseases from the patient's
current clinical records. High-level classifications of skin cancer from images have been achieved by
Cullel-Dalmau et al. [10]. Esteva et al. [23] further proved this technique in skin cancer classification
reaching dermatologist-level results. This is merely a peripheral overview of recent DL developments
in healthcare, but this method has promising prospects.

Thirdly, DL has also solidified its place in business intelligence, with many of the world’s
largest companies like Amazon, Netflix, Microsoft, Spotify and Facebook making use of this powerful
machine learning technique. DL can provide many useful services to companies like the prediction of
customer purchase behaviour, as demonstrated by Chaudhuri et al. [24]. Furthermore, streaming
services, e-commerce platforms and social media platforms oftentimes utilize DL to design complex
recommendation systems that provide users with new relevant content as researched by Da'u et al.
[25] and Singhal et al. [26]. These recommendations are based on personal collected historical data to
keep users engaged for longer in the platform.

Lastly, DL models have been deployed in intelligent chatbots for customer service. Facebook,
WhatsApp and Telegram use DL methods to make context-aware messaging chatbots on their
platforms. [27]-[29] demonstrate the use of DLs with NLP for intelligent chatbots in e-commerce
among other applications. This underlines the versatility of DL in many, often subtle, aspects of daily
life.



2.3 CNNs for image analysis
2.3.1 CNN architecture

For object detection, Convolutional Neural Networks (CNN) are the predominantly used method in
DL. The reason for this is mostly its impressive feature extraction. In computer vision, feature
extraction is a process by which an initial set of data is reduced by identifying key features of the data
[30]. In traditional models, feature extractors were designed manually for specific tasks. The main
benefit of the use of CNNSs to its predecessors is that they can automatically identify relevant features
in data, meaning without manual human labelling on what the model should look for. CNNs are also
strongly optimized for processing 2D input-data structures like images as mentioned by Alzubaidi et
al. [31]. Accordingly, they are widely used in pattern- and image-recognition problems.

In a CNN neural network, the first hidden layer recognizes a set of primitive patterns in the
input, the second layer detects patterns within the patterns of the first layer, the third layer detects
patterns of those patterns and so on until it reaches the output layer. Typically, CNNs are composed
of distinct layers, meaning that more layers give rise to more complexity. This leads to increased levels
of abstraction, meaning that the model eventually is able to recognize entire objects, such as cats,
humans, tumours, dumping sites etc.

CNNs have multilayer hierarchical structures, typically featuring alternating convolutional
and pooling layers followed by a fully connected layer. The convolutional layer operates on a small
area of the original input image. Then there is a feature detector, also known as a kernel or filter which
will move across fields of the image for the detection of features. This process is called a convolution
[32]. The output of the convolutional layer goes through an activation function which will result in a
convolved feature map [33]. More abstract and sophisticated features can be extracted as these feature
maps will be the input of subsequent convolutional layers.

Generally, after the convolutional layer comes the pooling layer. They include the maximum,
average and random pooling. The maximum and average pooling layers calculate the respective
maximum and average values of neighbouring neurons, as explained by Song et al. [33]. The random
pooling layer selects values for neurons based on a particular probability. The goal of the pooling
layer in a CNN is to capture features in the input received from the previous layer. It is, however, not
able to locate the precise location of these features. This means that if there is a shift in the input data,
it will still be able to effectively detect the features as stated by Song et al. [33]. This layer also reduces
the dimensionality of the feature maps, leading to less computational cost.

Lastly, there is the fully connected layer. This fully connected layer features several hidden
layers which are composed of neurons, where each neuron is also interconnected with the neurons of
the subsequent layer as laid out by Song et al. [33]. The fully connected layer aims to map the features
it has received from the convolutional and pooling layers and map them into linear space and
coordinates with the output layer. Then, the output layer typically uses a classification function to
output the results of the classification. This classification function is commonly a Softmax function or
support vector machine (SVM) [33].

Other components that are crucial to the CNN are the activation and loss functions. The
activation function is a nonlinear function that essentially decides whether a neuron in the network
should be activated or not. This will dictate whether a neuron’s input is important to the network or
not. Commonly used activation functions are the Sigmoid, Rectified Linear Unit (ReLU) or Maxout
functions. The loss function represents the difference between the expected outcome of the model and
the predicted or detected outcome by the CNN. Typical loss functions include the cross-entropy and
mean squared error statistics.
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2.3.2 CNN-based object detection models

There are different architectures for building a CNN model for object detection. The three most
accomplished of these CNN detection models are Faster R-CNN, SSD and YOLO. Faster R-CNN is the
culmination of two of its predecessors: Fast R-CNN and R-CNN. R-CNN (region-based CNN) is a first
trial towards building an object detection model that extracts features using a pre-trained CNN. Then,
Fast R-CNN was developed, which was faster than R-CNN, but neglected how region-proposals
(division of the image in regions) are generated. Ren et al. [34] later solved this with Faster R-CNN,
which builds a region-proposal network that can generate region proposals. These are then inputted
into the Fast R-CNN detection model to inspect for objects. When an object is detected, it outputs the
image with a bounding box (rectangle containing the object) pasted on top of it.

SSD (single-shot detection) is a CNN-based object detection method is another method that
yields impressive results. It does the task of localization and classification of objects in one pass of the
network. The main benefit of SSD in object detection is that it produces bounding boxes at different
scales and aspect ratios, which is a shortcoming of similar object detection algorithms. This makes SSD
more accurate, at the compromise of slower speeds.

YOLO (you only look once) is based on the concept that objects within an image can be
detected and classified at one glance. In object detection, traditional detection systems apply a model
to an image at multiple locations and scales in the image to compare. Then, high-scoring regions of the
image, meaning a high possibility of the desired object in the image, are considered detections. What
makes YOLO different from similar models is that YOLO applies the neural network to the full image
rather than regions of it.

When comparing the three approaches for object detection from satellite imagery, we can look
at several documented approaches to it. Van Etten [35] used the aforementioned techniques (or slight
variants) to detect ships and airplanes from satellite images and found that YOLO was the overall
best-performing technique. Compared to Faster R-CNN and SSD, Van Etten [35] wrote that YOLO
was by a great amount the fastest and most accurate of the three, with Faster R-CNN showing the
worst results. Li et al. [36] researched the detection of greenhouses from satellite images, comparing
the three techniques. They conclude that although YOLO, Faster R-CNN and SSD all show promising
results, Faster R-CNN and SSD fail to satisfy the accuracy and speed requirements associated with
high-resolution satellite imagery. Furthermore, Cheng et al. [37] successfully deployed a YOLO model
for the detection of landslides in China from satellite imagery, with an accuracy of 94.08%. As
landslides share similar features to dumping sites, this further supports the use of a YOLO model in
waste detection. Moreover, Liu et al. [38] used a YOLO model for plastic waste detection from regular
surveillance cameras but stated that their results lead them to believe there is great potential for
satellite images as well. Therefore, for the use of large-scale images such as satellite imagery, YOLO is
the best currently available object detection method.
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2.4 Satellite datasets

In this section, factors that are important in selecting a satellite dataset will be discussed. The type of
imaging sensor used, along with other important characteristics, will be addressed.

2.4.1 Satellite imagery types

On the topic of satellite datasets, there are several types to consider. For our purposes, Zhu et al. [39]
distinguish three main types of satellite imagery: satellite images made with optical imaging sensors,
radar imaging sensors and non-imaging sensors.

Firstly, optical imaging sensors. This remote-sensing equipment operates in the visible and
infrared (IR) ranges. These sensors typically produce panchromatic, multispectral, and hyperspectral
imagery. Panchromatic images, as explained by Zhu et al. [39], are captured by a sensor that is a
monospectral channel detector that is sensitive to radiation within a broad wavelength range. The
resulting image is a grayscale image. Multispectral means that the sensor is sensitive to a few spectral
bands. Here, the resulting image is a multilayer image containing colour information, as well as
brightness. Hyperspectral images are captured with sensors that are sensitive to 10 up to 100 spectral
bands. The result is a set of images, where each image contains one spectral band. According to Zhu et
al [39], the set of images can be easily used for purposes such as object recognition and material
identification. Additionally, it is noteworthy that recording more spectral bands corresponds to a
decrease in resolution.

Secondly, radar imaging sensors typically operate in the electromagnetic spectrum. As the
name suggests, it utilizes radar technology to gather data on targets. An advantage of this imaging
technique is that it is unaffected by weather such as clouds or fog, as explained by Zhu et al. [39].
Furthermore, it is able to measure through water, sand and walls.

Thirdly, non-imaging sensors are sensors that record the visible, IR and microwave spectral
bands. According to Zhu et al. [39], typical non-imaging sensors include radiometers, altimeters,
spectrometers, spectroradiometers, and LIDAR. However, the applications of these non-imaging
sensors mainly focus on atmospheric features such as temperature and wind speed, therefore it may
not be as applicable to this project.
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2.4.2 Characteristics
In the context of detecting illegal waste dumping sites, three key factors to consider in satellite
datasets include spatial resolution, temporal resolution, and environmental factors.

Spatial resolution is an essential feature in the detection of illegal waste from satellite imagery.
Luyendyk et al. [40] define spatial resolution as an area on the ground represented by each pixel of the
satellite images. This is usually represented by a number of meters, where a lower number represents
a finer resolution. High spatial resolution satellite imagery can capture smaller features and provide
more detailed information about the area of interest. In the context of detecting illegal dumping sites,
high spatial resolution imagery enables the identification of smaller waste dumping sites.
Additionally, high spatial resolution imagery can reveal specific details about the waste materials
being dumped, such as the type, quantity, and location of the waste. This information can be used to
develop targeted efforts to address the issue of illegal dumping in the area.

Temporal resolution is also critical for identifying and monitoring illegal dumping sites from
satellite imagery. Temporal resolution refers to the frequency at which images are captured. Frequent
image captures allow for the identification of patterns and changes in waste dumping activity over
time. By analysing satellite imagery over time, we can identify areas where illegal dumping is most
prevalent and track changes in dumping activity. Temporal resolution is also essential in monitoring
the effectiveness of interventions aimed towards the culpable parties contributing to illegal dumping.

Environmental factors are another critical feature for identifying and monitoring illegal
dumping sites from satellite imagery. Changes in land use, vegetation health, and surface water
quality can all be indicators of waste dumping. For example, the presence of barren earth or disturbed
vegetation may indicate the location of an illegal dumping site. Similarly, changes in vegetation health
can indicate the presence of waste materials that may be affecting plant growth. Water quality changes
can also indicate the presence of waste materials that are affecting water ecosystems. By monitoring
these environmental factors over time, these indicators can hint towards areas where illegal dumping
is likely occurring and track changes in dumping activity.
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2.5 Training data

While there are numerous satellite imagery datasets to choose from, transforming these raw satellite
images into datasets fit for training a CNN model presents challenges that are not often encountered
in computer vision problems using ‘regular images’. This requires more pre-processing and other
techniques in order to curate a representative dataset for the model. In this section, challenges
encountered by researchers in the field will be discussed, as well as data augmentation, using weakly
labelled sample data in the dataset and synthetic data.

2.5.1 Challenges and solutions in satellite data for CNNs

Large amounts of training data are essential to developing an accurate prediction or detection model.
However, there is a shortage of adequate remote sensing training data as observed by Song et al. [33].
Remote sensing/satellite datasets are more time-consuming to produce than regular computer science
image datasets. Furthermore, Padubidri et al. [41] also noted that a large portion of the remote sensing
datasets that are available are biased towards non-dumping-related applications. This is a major
limitation faced by researchers in this domain.

Satellite images are fundamentally different from regular images. They can contain more
spectral information such as optical imaging, thermal and LIDAR imaging and typically have a far
greater resolution. Most of the CNN models in existence, however, were developed for the use of
ordinary images as opposed to satellite imagery. This leads to challenges, as pre-trained models are
accustomed to objects in front view which take up a large portion of the image, as observed by Song et
al. [33]. Compare this to satellite imagery, where the model has to detect a tiny object from a large-
scale image at a top-down view.

There have been improvements made to CNN models to account for the differing input
images. Here, the type of dataset used is important, as covered in section 2.4. According to Song et al.
[33], data augmentation can also greatly help in the training process. Data augmentation is the process
of supplementing the training set with slightly different copies of images already in the training set.
Long et al. [42] experimented with rotation, translation and scaling of the training satellite images
containing oil barrels. After the data augmentation, the authors ended up with 60 times the original
data as a training source and a detection score of 96.7%. Furthermore, Youssef et al. [43] also used
augmented data in their remote sensing training set of aircraft classification, increasing their test
accuracy from 72.4 to 97.2%. This means that using augmented data can effectively be used to improve
accuracy.

Another improvement that can be made to CNNs to use weakly labelled sample data. One of
the major challenges in creating a satellite imagery dataset, as stated by [44], is the manual annotation
of the images in the dataset. This process is very labour-intensive, time-consuming and error-prone.
According to Song et al. [33], weakly labelled training can moderately be used to achieve greater
accuracy and IoU scores. As accurate sample labelling is a time and labour-intensive process, there are
also many weakly labelled datasets. This means that the labelling is not complete or not accurate or
that the data is of low quality. Song et al. [33] state that the inclusion of these weakly labelled images
improves accuracy in the testing phase as the training set is more representative and extensive.
Maggiori et al. [45] used a dataset containing errors and mislabelling and finetuned the prediction
model based on the correctly labelled data. This led to the model having greater accuracy in object
extraction. As remote sensing/ satellite data can be sparse for deep learning purposes, this technique
can be used to remedy that problem. It should be noted that only moderate use of weakly labelled
data leads to improved results.
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2.5.2 Synthetic data

Due to the lack of sufficient training data, another solution that can alleviate this problem is the use of
synthetic data for training data. Padubidri et al. [41] explore the use of generating synthetic data to
compensate for the shortcoming of dumping-related satellite imagery for training purposes. The
authors use Blender, an open-source 3D modelling software, to produce the synthetic data. Publicly
available 3D models of dumped objects and garbage were placed randomly on non-dumping satellite
images. This process was automated via the use of Blender’s Python scripting feature along with
various add-ons. Generated synthetic data was iteratively tested on the CNN model that the authors
used, and the synthetic data generation system was finetuned. Ultimately, 2000 synthetic dumping
satellite images were created. The authors found that the CNN model performed better with the
synthetic data as opposed to the performance using only authentic dumping satellite imagery.
Padubidri et al. [41] obtained precision and recall scores of 0.98 and 0.90 respectively with a basic
CNN model.

[44] also examines the possibility of combining synthetic data with real data to improve
detection results in satellite imagery. The authors state that synthetic data can offer limitless
customization. Any specification can be accommodated as the synthetic data is purpose-built. The
authors [44] built this model in order to achieve more accurate vehicle detection from satellite
imagery. They used 3D models of city blocks in the game development software Unity, along with
randomized buildings and roads, crosswalks and bus lanes and even small imperfections such as road
oil spills. Furthermore, they configured the option to change the time of day, cloud cover and intensity
of the sun. The authors found that by using a combination of this synthetic data with the real dataset,
superior results were achieved with respect to only using synthetic data or only using real data. This
shows that there is great potential in the method of synthetic data for training and testing purposes.
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2.6 Related work

Thus far, a few studies have attempted to automate the illegal waste dumping detection process
utilizing deep learning or another method in machine learning. In [46], the authors use multi-spectral
satellite images from the WorldView and GeoEye-1 satellites. Then, they use a CNN with a U-Net
structure with multiple variations to detect landfills on multiple pre-trained models. The paper also
puts forward a high-resolution landfill dataset which may be useful during this project for training
purposes. Devesa et al. [47] use multi-spectral satellite imagery from the Sentinel-1 earth observation
mission, with a 10m spatial resolution. Then, the authors also use the CNN-based U-Net segmentation
model to detect and classify Argentinian urban solid waste. The authors use the evaluation metric of
Intersection over Union (IoU) to assess the results. This metric is a commonly used method to quantify
the overlap of the ground truth area and the predicted masked area in a percentage. Devesa et al. [47]
achieved an IoU of 0.673 using RGB, IR, and certain shortwave IR (SWIR) bands as input for their
model.

Another approach used by Silvestri et al. [48] is the maximum likelihood estimation algorithm
(MLE) for the detection of dumped waste, in particular buried waste. They utilized high-resolution
multispectral satellite images from the IKONOS dataset to detect areas where the soil is bare or
vegetation is sparse. According to the authors, the presence of stressed or scarce vegetation is a good
indicator to infer buried waste locations. They also underline the importance of GIS in their project as
an auxiliary data source. GIS (Geographic Information System) is a type of database containing
geographic data combined with powerful software tools for managing, analysing, and visualization
purposes.

Furthermore, the use of drones for illegal waste detection has also been explored. Youme et al.
[49] explore the use of drones at varying altitudes ranging from 5-30m for waste detection in West
Africa. The drones, equipped with an L1D-20c RGB colour camera, have a very high spatial resolution
of up to a few centimetres and are convenient for fast configuration of shutter speed, ISO and GPS
coordinates. After the data acquisition through the drones, an SSD algorithm is used for the actual
waste detection, with varying IoU scores up to 0.64. Mager et al. [50] also conducted a feasibility study
on the use of drones for this purpose. They used drones equipped with cameras featuring a 2cm
spatial resolution flying at a 50m altitude to gather data about their region of interest. Thereafter, they
used GIS software (ArcGIS) to manually map the types of waste observed in the drone imagery.

Research has also been done on non-aerial imagery for the use of waste detection. Dabholker
et al. [51] use hundreds of images from security cameras which locally run a CNN model (AlexNet &
GoogleNet) to localize and identify the type of (domestic) garbage found. The model can distinguish
between certain classes such as electronics, matrasses or furniture, achieving varying results
depending on the class, ranging between a 0.7 and 0.95 accuracy score. Furthermore, Anjum et al. [52]
make use of scene images in public and residential areas. They then input these images into a deep
CNN model which can produce a segmented image with masks for garbage and non-garbage. The
authors obtained a score of 4.1 on a 5-point scale on their survey of 500 collected images.

A table containing several studies in this area along with their techniques and findings can be
found in Appendix A.
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2.7 Adversarial Autoencoders

In this project, an approach that was later explored is the use of anomaly detection for the detection of
illegal waste dumping from satellite imagery, explained further in section 4.2. Two common
techniques used for anomaly detection are the generative adversarial network and adversarial
autoencoder models. Adversarial autoencoders are a relatively new approach, which utilizes certain
concepts of autoencoder models and generative adversarial network models. First, the latter two
networks will be explained, followed by an explanation of adversarial autoencoders.

2.7.1 Autoencoders
An autoencoder (AE) is an unsupervised neural network introduced by Hinton et al. [59] and was
traditionally used for feature learning and dimensionality reduction [60]. Its main goal is to
reconstruct its original input as closely as possible. The autoencoder consists of an encoder and a
decoder. The encoder is trained to map the input data to a code, or latent variable, and the decoder
reconstructs the original data based on the code received from the encoder [59]. A diagram of this
structure is depicted in Figure 2. An optimal autoencoder would perform as close to perfect
reconstruction as possible, with "close to perfect" defined by the reconstruction quality function d,
which it will try to optimize.

The autoencoder cannot directly copy the input, rather it must copy approximations of the
input data. To enforce this, the code space Z typically has a lower dimensionality than input space X,
compressing the data [59]. This way, the model can also be used for the dimensionality reduction of
data, such as images. Dimensionality reduction can improve performance on tasks such as
classification or anomaly detection and can make data more interpretable.

Qriginal input Latent representation Reconstructed output
Encoder Decoder

£

Figure 2 Architecture of an Autoencoder
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2.7.2 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a system of two neural networks competing in an
adversarial manner. The framework consists of two models that are trained concurrently, the
generator and the discriminator.

The generator receives a dataset, after which its purpose is to generate new data as close to the
input data, starting with random noise. Conversely, the discriminator is trained to differentiate
between real and synthetic data samples. The networks are trained in an adversarial fashion, in which
the generator tries to produce samples that are indistinguishable from real samples, and the
discriminator tries to correctly classify the generated samples as fake.

Over a large training period, the generator will generate samples with such similarity to the
real data that the discriminator cannot reliably distinguish the real images from the generated images.
Thereafter, the discriminator can be discarded and a generator capable of generating images close to
the inputted dataset remains. GANs can be used for data generation, such as generating faces [61],
text-to-image translation [62], style transfer and upscaling low-resolution images to high-resolution
images [63], but also anomaly detection [58], [60], [64], [65], which will be elaborated on in section
5.2.1. A diagram of the architecture of a GAN model is given in Figure 3.

Training set V Discriminator
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Random / - @ T {Fake

Generator S Fake image

Figure 3 Architecture of a GAN [66]
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2.7.3 Adversarial Autoencoders

The Adversarial Autoencoder (AAE) is an approach introduced by Makhzani et al. [67] that combines
Autoencoders with Generative Adversarial Networks. An AAE is comprised of an encoder, decoder,
generator and discriminator. In an AAE, the encoder component of the AE is trained to produce latent
codes that are similar to the noise input of the GAN. The generator component is then trained to
produce new samples from the latent codes. The discriminator component is trained to differentiate
between the synthetic samples generated by the generator and real samples. This results in the
generator producing synthetic samples that are similar to real samples, while the encoder preserves
the structural properties of the input data in the latent codes.

Furthermore, the encoder is trained to map the input data to a probability distribution that is
similar to the prior distribution. The encoder is trained to minimize the divergence between the
encoded distribution and the prior distribution. This encourages the encoder to produce latent codes
that are similar to the noise input and to preserve the most important features of the input data in the
latent codes [67]. The AAE is trained by training the encoder, generator, and discriminator in parallel.
This results in a model that can produce new samples that are similar to the input data and preserves
the structure of the input data in the latent codes.

Figure 4 shows the architecture of an AAE. In this figure, x is the input data, gq(z|x) is the
encoding distribution and x is the latent representation as an output of the encoder. In the generator
component, p(z) is the prior distribution that we want to impose on the codes [60]. q(z) is given by

q(z) = fx q(z]x) pg(x) dx where p,(x) is the data distribution.
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Figure 4 Architecture of an Adversarial Autoencoder
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2.7.4 Adversarial Autoencoders for anomaly detection

The goal of anomaly detection is to identify observations in a dataset that significantly deviate from
the remaining observations [68]. In most cases of anomalies, it is not feasible to construct a
representative dataset of possible forms of anomalies, as they vary significantly in nature [64].
Therefore, a more appropriate approach is to construct a training dataset of the normal observations,
in this case, satellite images that do not contain dumping. Then, a model processes new data, and
when it deviates significantly enough from the learned model (an image containing dumping), it can
be classified as an anomaly.

Autoencoder networks such as adversarial autoencoders have shown superior performance
over other models when given the task of anomaly detection in high-dimensional data such as images.
The idea behind AAEs for anomaly detection is that normal data points will have a higher likelihood
under the encoded distribution produced by the encoder, compared to anomalous data points. During
the training phase, the AAE learns to encode normal data points into latent codes that are similar to
the prior distribution. This prior distribution is chosen to be the multivariate Gaussian distribution in
this case.

During the detection phase, the AAE is used to encode new data points into latent codes. The
likelihood of each data point under the encoded distribution produced by the encoder is then
calculated. Data points with lower likelihoods are considered as an anomaly. The threshold for
determining the anomaly can be selected based on the distribution of the likelihoods of the normal
data points. This way, AAEs can be used to detect anomalous data points that are different to the
normal data points in terms of the encoded distribution [60]. This is different from traditional methods
such as reconstruction-based methods that rely on the reconstruction error to detect anomalies. AAEs
can detect anomalies that are not only dissimilar to the normal data points in terms of reconstruction
but also in terms of the encoded distribution.

Additionally, AAEs can also be used for semi-supervised anomaly detection, where a small
amount of labelled anomalous data is used to fine-tune the model, making it more robust to detect
anomalies. One such model is the GANomaly, which combines features of the AE and GAN very
similarly to the AAE [69].
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3 Methods and techniques

This chapter will cover the methods and techniques used in the design process of the illegal dumping
detection system. First, an overview will be given of the Creative Technology Design Process. Next,
the CRISP-DM standard process will be discussed, a more data science-oriented approach to the
design process. Both these techniques will serve as an underlying architecture for the project.

3.1 Creative Technology Design Process

To answer the research questions posed in section 1.1, a solid design approach is needed. This project
will use the Creative Technology Design Process by Mader & Eggink [53]. This approach is an
iterative design process, meaning that a prototype will be built, evaluated and improved upon in a
cyclical fashion. The process consists of four phases: the ideation phase, specification phase, realisation
phase and evaluation phase.

Firstly, in the ideation phase, a problem statement is formulated, and relevant information or
required knowledge is acquired. Inspiration for the ideation phase may come from existing solutions
or other related work identified in chapter 2. In this project, this involves looking at relevant or similar
existing solutions, examining their methods and results and determining what would be good
approaches to this problem. This can involve multiple concepts, as per the Creative Technology
Design Process [53].

The specification phase is where the multiple ideas from the ideation phase are built and
evaluated. Project requirements are formulated based on the acquired knowledge from the ideation
phase [53]. In the realisation phase, a functional model is built according to the requirements set in
the specification phase. Lastly, in the evaluation phase, the model built in phase 3 is tested based on
users, target audience, or in our case the test dataset. Conclusions are made about the design and
potential improvements or adjustments are explored.

This process is a cyclical process, meaning it would be possible to return to previous phases
during the design process. For instance, when the feasibility of the design turns out to be questionable,
it would be possible to return to the ideation phase. An overview of this design process can be seen in
Figure 5.
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Figure 5 The Creative Technology Design Process [53]
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3.2 CRISP-DM

A commonly used standard process in data science is the CRISP-DM model, which stands for Cross-
Industry Standard Process for Data Mining. This methodology, introduced by Chapman et al. [54]
aims to standardize the data mining process across industries. The CRISP-DM process consists of six
sequential phases: business understanding, data understanding, data preparation, modelling,
evaluation and deployment. The following section will provide additional information regarding the
steps involved in the CRISP-DM process model, as described by [55].

1.

Business understanding focuses on understanding the objectives and requirements of the project.
An overview of the available and required information will be given. This knowledge will lead to
a data mining problem definition and a preliminary plan in order to achieve the established
objectives.

Data understanding starts with data collection, followed by activities to get familiar with the data.
Data types should be identified, along with the number of rows and columns in the data. In the
context of this project, it would mainly contain satellite imagery. Furthermore, data could be
visualized and a statistical analysis of the quality of the data could be conducted.

Data preparation is the third phase in the process which covers the activities necessary to create
the final dataset. This includes a selection of a dataset, relying on certain inclusion/exclusion
criteria. Then the data is cleaned, constructed and integrated.

Modelling is when the actual model is built. This entails a choice of algorithm/model, the
implementation of said algorithm, a system built for testing the model and lastly, the actual model
is developed.

Evaluation is the fifth phase. In this phase, the model built in phase 5 is evaluated critically
against the business objectives and problem definition determined in phase 1. If there as aspects of
the model that do not meet certain expected results, in which case the cycle may be repeated to
make adjustments or corrections to either the algorithm or the dataset.

Deployment is the phase a project enters if the results of the evaluation phase are satisfactory in
light of the set objectives. In this last phase, a plan is made for the deployment of the model, next
to plans for the monitoring and maintenance thereafter. Lastly, a final report should be made
concluding the results of the implementation.

A diagram of the CRISP-DM process model and the relations between the phases can be Figure 6.

Using the CRISP-DM model as a guideline in the coming steps of this project will be advantageous in
providing an overview in organizing the data science project, as well as a clear view of progress for
supervisors and stakeholders.
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Figure 6 Diagram of CRISP-DM, by Kenneth Jensen

3.3 Approach

In this project, the Creative Technology Design Process and CRISP-DM will be utilized to create a
comprehensive approach to detect illegal dumping.

Firstly, the Creative Technology Design Process will be applied to generate novel and creative
ideas that will aid in the development of the deep learning model. The ideation will take place,
wherein ideas for the model will be generated. These ideas will be analysed based on feasibility and
potential effectiveness before being implemented. Here, principles of CRISP-DM will also be applied,
keeping the data in mind when making these decisions. Additionally, testing will be conducted at
every stage of the process to ensure that the model is performing adequately.

Secondly, the CRISP-DM process will be utilized to guide the data mining process. The
process will begin with the initial data collection phase, wherein a dataset will be constructed. The
next phase will be data preparation, wherein the data will be pre-processed and transformed for use
in the model. This will likely involve manual annotation of the data in order for it to be suitable for a
model. The modelling phase will come next, wherein various deep learning models will be evaluated
and compared for their effectiveness in detecting illegal dumping sites. As this process is cyclical,
changes to the data and/or the model can be made during this phase. As deployment to real use-cases
falls outside of the scope of this project, the deployment phase of CRISP-DM is left out.

Overall, utilizing principles of both the design-oriented Creative Technology Design Process
and the data-oriented CRISP-DM process will ensure a thorough approach to detecting illegal
dumping from satellite imagery using deep learning.
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4 |deation
4.1 Dataset

The dataset that will be used is a dataset provided to use by the project coordinator containing satellite
images of known locations of illegal dumping on the island of Cyprus. The data consists of 1016
citizen-reported dumping points across the country, demonstrated in Figure 7. Then, Google Earth
Engine was used to create the dataset from the various locations, with 15 acquisition points for each
location. Every 6 months, an image was captured of each location, going back 7,5 years in time. As
Google Earth Engine allows for satellite imagery in time-series, some of the acquisition points may
represent the environment prior to the initiation of waste deposition, at the time when waste material
is disposed of or being disposed of, and potentially after clean-up efforts have been made. This entails
that not every image in the ~15.000 image dataset necessarily contains dumping. Consequently, this
means that this image dataset must be annotated, to allow for reliable training. The images will be
sorted into two categories: dumping and non-dumping.
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Figure 7 Map of reported dumping sites in Cyprus
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4.1.1 Cropping and annotation

The images from the original dataset possess a very high resolution, with dimensions of 6663x8192
pixels. This high resolution exceeds the computational capacity of many machine learning models.
Additionally, the manual annotation process for these images may also be affected due to the larger
file sizes, potentially leading to a longer annotation process and decreased accuracy in the annotated
data. Therefore, the images require cropping to a lower dimension to simplify the annotation process
and reduce computational cost in the neural networks. The images are cropped to a 512x512 pixel size
via a Python script provided in Appendix B. This 512x512 dimension is consciously chosen as most
machine learning models support image sizes up to 512x512. Due to the way the dataset was created
in Google Earth Engine, we know that the centre of the image represents the exact dumping location.
Therefore, the cropping was done on the centre of the original image, as displayed in Figure 8. This
size of patch still covers a large area of land and is fit to visually confirm whether the image contains
dumping or not.

6663x8192

5

512x512

/ A

Figure 8 Original and cropped image

After cropping, the images were sorted into the two categories of dumping vs. non-dumping.
The sorting process was made conducive by the use of the Image-Sort application [56]. During the
sorting process, some images were discarded as unusable due to the land being completely obstructed
by a cloud or images with exposure errors. Additionally, some images showed artefacts of the Google
Earth Engine Ul Examples of these unusable images can be seen in Figure 9. The resulting final
dataset to be used contained 9417 dumping images and 4212 non-dumping images.

Figure 9 Unusable images
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4.2 Possible approaches

During the ideation phase of this project, different approaches to illegal dumping detection were
discussed. As mentioned in the state-of-the-art in chapter 2, the predominantly used approach is a
CNN with a large dumping dataset and a large non-dumping dataset. The preliminary approach after
the background research was to train a CNN model with YOLO architecture for this task. However,
the YOLO models require a training dataset with images where the bounding box is already given.
The current dataset does not support this, and there are no available YOLO-supported datasets with
dumping vs. non-dumping satellite images.

In this project, we therefore ultimately decided to take a different, novel approach to this
detection task. As CNNs are the more straightforward strategy, we wanted to explore different
approaches and models. A selection of the approaches considered will be covered in the following
section.

4.21 Time-series LSTM

One approach to address this problem is by utilizing a Long Short-Term Memory (LSTM) network.
LSTMs are a type of Recurrent Neural Network (RNN) that are specifically designed to handle
sequential data and retain memory of past inputs. The LSTM network is able to capture the temporal
dependencies present in the time-series data, as also demonstrated by [57]. In a time-series model, the
LSTM network would be trained on the historical data, which would include a series of dumping and
non-dumping images. The network would then make predictions based on the current state and the
information it has retained from previous inputs. In this case, the prediction would be whether a given
image in the time-series is a dumping image or not.

By using an LSTM network, we can determine the point in time when dumping occurs by
tracking the predictions made by the network. As the LSTM network processes each image in the
time-series data, it would generate a probability score indicating whether the image is a dumping
image or not. The point in time when the network's prediction crosses a certain threshold would
correspond to the point when dumping occurs.

Given the dataset that we used, this ultimately did not seem a fitting choice for this problem.
This is due to the fact that the 15 acquisition points for each location would not prove to be a clear
time-series, as assumed initially. For instance, out of the fifteen images captured for each location,
oftentimes dumping would occur in some images, disappear again and then reappear in the following
images. These small variations may cause unreliability in a trained model. Additionally, there are
images in a location where I, as a human interpreter of the images, know that a certain image contains
dumping based on the context of the previous image and the next image containing dumping.
However, due to strong shadows, clouds, disturbances or insufficient resolution, no dumping can
clearly be seen in the image without the context of the surrounding images. These images were
classified by me as non-dumping, but this raises concerns about whether this kind of data will be
suitable for this approach.
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4.2.2 Anomaly detection

Anomaly detection is generally understood to be the identification of rare items, events or
observations which deviate significantly from the majority of the data and do not conform to a well-
defined notion of normal behaviour. Anomaly detection has applications in many domains including
cyber security, medicine, computer vision, statistics, neuroscience, law enforcement and financial
fraud, to name only a few [58].

In our case, we can use anomaly detection to see which images contain dumping and which
do not. The norm would be the non-dumping images, while the dumping images would be
considered anomalous. Through anomaly detection, a model will be given a dataset containing only
non-dumping images, leading the model to learn how the norm is represented. When this trained
model is consequently presented with a new dataset containing a subset of the non-dumping images
and the dumping images, the model will detect the dumping images as anomalies as they fall outside
what the model has learned to be the norm [58].

This would be a more fitting approach to the detection problem, thereby now treating it as an
anomaly detection problem. Given the data, it would seem that the dataset is better suited for
anomaly detection tasks. Furthermore, anomaly detection models are significantly lighter and require
less training and data to output meaningful results. Possible approaches to anomaly detection would
be statistical techniques, GANs, RNNs or adversarial autoencoders to name a few. Due to the high
dimensionality of the data, statistical techniques will not provide sufficient insightful results, and
RNNs would require a time-series dataset which is not optimal as discussed in the section above.
Therefore, approaches that will be explored feature GANs and adversarial autoencoders.
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5 Realisation

Following the Creative Technology Design Process, this chapter represents the realisation phase of the
design process. In this section of the report, the process of the implementation is documented, starting
with the tools used, dataset creation, the choice of model and any alterations to the initial planning
will be discussed.

5.1 Tools

For this project, the high-level programming language Python was used. Among data scientists,
Python is popular due to its simplicity, readability and versatility. It has a vast collection of machine
learning and data science libraries, such as PyTorch, TensorFlow, Keras and Scikit-learn. These
libraries offer a wide range of algorithms, tools and frameworks for developing machine-learning
solutions.

As for the choice of machine learning frameworks, PyTorch was chosen because of its
flexibility in implementation. It is easier to make code modifications in the model and is more suited
to atypical or exotic machine-learning approaches than other frameworks.

Scikit-learn was also used as it supports many useful tools for statistical modelling and other
machine learning model. This library was mostly used for data pre-processing and data analysis.

The machine used to run these experiments was an 8th generation Intel Core i5-8250U CPU
with 8GB RAM and Intel UHD Graphics 620.

5.2 Generative Adversarial Network
5.2.1 GANSs for anomaly detection

As briefly explained in section 4.2.2, GANs are a suitable approach to generating new data samples
based on a given dataset. To reiterate, a GAN is comprised of two networks, a generator and a
discriminator. The generator receives a dataset, after which its purpose is to generate new data as
close to the input data. The discriminator receives either real data, sampled from the actual data
distribution or a synthetic, ‘fake’ sample from the generator. The discriminator then tries to
differentiate the generated data from the real data. These two networks are trained in an adversarial
manner, where each network becomes more skilled at its respective task over iterations of the training
process. For generative purposes, as mentioned in section 2.7.2, the discriminator is discarded,
whereafter a generator remains which can create new and truthful images based on its input.

This GAN architecture can also be used for anomaly detection. Once the GAN has been
trained on non-dumping images, it can be used for anomaly detection by evaluating the likelihood of
an instance being generated from the normal data [70]. Instances with low likelihood scores are
considered to be anomalies, as they are considered to be significantly different from the normal data.
This approach has been shown to be effective in a number of studies, with results that are on par with
or superior to traditional anomaly detection methods in some cases, as discussed by Deecke et al. [70].

5.2.2 Vanilla GAN implementation

The implementation process started with the development of a vanilla GAN, which is the simplest
form of the model, using the tools described in section 5.1. The GAN was constructed using sequential
dense layers. To test the generative capabilities of the GAN, the model was trained on the MNIST
handwritten digits dataset. This is a benchmark dataset in computer vision containing 10.000 scanned
handwritten digits, and in this case, will be used to train the model. The GAN will take this dataset as
an input and will output new handwritten digits, where it will try to create new data samples as
closely as possible to the handwritten digits.
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Initially, the vanilla GAN showed poor and noisy results which did not seem to converge over
more epochs. A batch normalization layer was added, which improves the stability of the network.
This normalizes the inputs for each layer of the network, preventing too small or large value,
improving performance in the generator and discriminator. The image below is the result of a run of
200 epochs with a batch size of 32.

Figure 10 Vanilla GAN, 200 epochs, batch size of 32

These outputs were an improvement upon the first iterations, but the results were not satisfactory for
a simple dataset like the MNIST dataset. The batch size was then increased to 64, and below is the
result for 400 epochs:
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Figure 11 Vanilla GAN, 400 epochs, batch size of 64

The results obtained from the vanilla GAN still display a significant level of noise, which is
inadequate for the desired purpose. Furthermore, in other runs of the same model, there was evidence
for mode collapse. This is a phenomenon in GAN training where the generator creates a specific
subset of samples, as opposed to a variety of unique samples, as it has learned that that specific
sample is successful at “fooling’ the discriminator and thus continues only generating that type. This is
a common problem in GAN training, and the next section will explore a variation of the vanilla GAN
that remedies this problem.
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5.2.3 WGAN with gradient penalty

After the insufficient results from the vanilla GAN, a WGAN was implemented. The WGAN, or
Wasserstein loss GAN, implemented here uses convolutional layers instead of dense layers as seen in
the vanilla GAN. One of the key differences between a WGAN and a traditional GAN is the loss
function used to evaluate the performance of the generator and discriminator. In a traditional GAN,
the loss function is a binary cross-entropy, which is based on the idea of minimizing the difference
between the generated data and real data. In a WGAN, as proposed by Arjovsky et al. [71], the loss
function is based on the Wasserstein distance, which measures the difference between the generated
and real data distributions.

The use of the Wasserstein distance in WGANSs has several advantages over traditional GANSs.
For example, the Wasserstein distance is a well-defined and continuous metric, which makes it easier
to optimize the generator and discriminator during training [71]. Additionally, the Wasserstein
distance provides a more stable training process, which may lead to improved results.

In addition to this, gradient penalty was included in the WGAN, a concept introduced by
Gulrajani et al. [72]. The main idea behind gradient penalty is to add a regularization term to the loss
function that punishes the discriminator for having a high gradient magnitude. During training, it is
possible for the discriminator to become too powerful, resulting in a highly fluctuating loss function
that is difficult to optimize. This can lead to training instability and slow convergence. The gradient
penalty term helps to alleviate this problem by penalizing the discriminator for having a high gradient
magnitude [72]. The image below is the output of the model after 1500 epochs with a batch size of 64.

Figure 12 WGAN with gradient penalty, 1500 epochs, batch size 64

Visually, this is an improvement over the experimental results from the vanilla GAN. The synthetic
samples inhibit significantly less noise than the previous model, and over larger training periods,
some of the samples can clearly be recognized as digits.

However, as the MNIST handwritten digit dataset features 28x28 pixel images and our dataset
features 512x512 pixel images, the dumping dataset might pose a serious computational challenge for
this model. The results obtained in Figure 12 were obtained after two days of training, and with
results that are still unreliable and unrecognizable at times, this approach proved lacking for our
purposes. The results raise concerns about whether a dataset with images almost 20 times in size will
be an improvement in performance, as well as training times which were already long on this dataset.

31



5.3 Adversarial Autoencoder

After evaluating the results from the previous models, more research was done on what kind of
anomaly detection model could be a better candidate for our purpose. The adversarial autoencoder
was a fitting contender, as it allows for more manipulation of latent space for anomaly detection. To
achieve this, the AAE must first learn the data distribution of the satellite images. This model can then
learn high-level features of the structure of the images or the dimensions that are most informative in
an observation out of the multi-dimensional data distribution. Conversely, the model can also learn
lower-level features that contribute less to the overall image structure, such as the texture of lands,
pastures, etc.. As dumping disturbs the ‘normal’ land textures, the aim is to detect changes in the
satellite imagery texture. Because an AAE outputs the latent space, this allows for great flexibility in
detecting anomalous images. Furthermore, in contrast to certain GAN models which also output the
latent space, the AAE does so without the need for full GAN training. This immensely speeds up the
process of tuning hyperparameters in the model and running it.

Furthermore, the GAN generator would likely map the processed dumping images to the
dense areas of the latent space distribution, which would be problematic. The dumping images would
then be considered probable images (thus not anomalous), and low probability-based anomaly
identification would no longer be possible. On the other hand, this phenomenon would likely happen
with an AAE model as well, however, AAE models allow for greater control over the latent space,
which could prove beneficial in the process of interpreting and manipulating the output of the model.
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5.3.1 New dataset

As the initial planning was to use a CNN or GAN model, large amounts of data were a requirement
for reliable and adequate results. For an AAE, the dataset might look different from the dataset
created earlier, which features two large categories of dumping vs. non-dumping satellite imagery.

First, a dataset was created featuring ~10.000 satellite images of buildings and ~5.000 images
of pastures, which were obtained from the Google Earth Engine. This dataset will be used for training
purposes only, letting the model learn about the type of imagery, textures of the land, features of
buildings etc.

Then, a subset of the dumping dataset was created, which features only the images that depict
this dumping most clearly. This dataset will be used to infer the encodings. From each location in the
dumping dataset, one representative image was selected that inhibits the most apparent instance of
dumping from among the 15 images at that location. The resulting dataset of the most apparent
dumping consisted of ~1.000 images, with each image corresponding to one of the ~1.000 dumping
locations. When distinguishing between the dumping and non-dumping images, this dataset helps the
model recognize the most prevalent examples of dumping, eliminating most edge cases which could
potentially lead to ambiguity or interfere with the model's ability to accurately distinguish between
normal and anomalous instances. Due to the nature and architecture of the AAE, ~1.000 anomalous
images are sufficient. In the same manner, a subset of non-dumping images was created for the same
purpose as the images with the most apparent dumping,.

However, this non-dumping dataset must meet certain requirements for the model to be
reliable and to avoid overfitting. Firstly, the non-dumping data must come from the same data
distribution as the dumping dataset, thus the same type of area or land patch that the dumping
images were captured from. Secondly, the non-dumping images must contain a roughly similar
landscape as the dumping images. The dumping imagery that was captured features mostly rural or
agricultural areas, meaning that the non-dumping image dataset must also display this type of
environment. Thirdly, it is imperative to ensure that the images used for training are not taken at the
exact same location as the images depicting instances of dumping. Utilizing identical locations and
framing for both the dumping and non-dumping images could result in a dataset where the model is
exposed to both images of a location with and without evidence of dumping. This could result in
overfitting, as the model would become overly familiar with the features present in both the dumping
and non-dumping images.

In order to adhere to the specified requirements, I chose to process the original satellite images
by re-cropping them. As previously mentioned, the presence of dumping in an image can typically be
identified at its centre. Consequently, by extracting 512x512 segments from the corners of the original
6663x8192 pixel image, new non-dumping images can be generated that maintain the same data
distribution and approximate landscape as the dumping image, while avoiding the use of the same
location. Therefore, using the same bulk cropping script as before, sections from the bottom right and
top left were cropped in order to create the new non-dumping dataset, as depicted by the red 512x512
pixel squares in Figure 13. This resulted in a ~4.700 image dataset.
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Figure 13 Bottom right and top left re-cropping of the original image

5.3.2 Model implementation

Thereafter, the AAE model was developed according to the architecture displayed in Figure 4 using
the tools listed in section 5.1. The model was trained on the ~10.000 building imagery and ~5.000
pasture imagery datasets. After training, the encoder can now be used to infer the encodings, or
embeddings, from the new dumping and non-dumping datasets. The trained encoder can now
generate truthful and representative embeddings for each image in the dataset.

The embeddings are created for each of the dumping and non-dumping images following a
multivariate Gaussian distribution. Each image is expressed in 512 embeddings of size 256 numbers
with every embedding group being a multivariate normal distribution. Now that these 512
embeddings are created for each of the ~1.000 dumping images and ~4.700 non-dumping images, the
goal is to identify differences between the embeddings and techniques to discriminate between them.
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5.4 Processing embeddings in latent space

Having obtained the embeddings for both dumping and non-dumping images, various methodologies
can now be used to differentiate between these two classes within the latent space. In this section,
Principal Component Analysis was applied to the embeddings, reduced in dimensionality and
clustered using the k-means algorithm and the t-SNE technique.

5.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely-used mathematical technique in the field of machine
learning and computer vision. It is a dimensionality reduction method that aims to transform high-
dimensional data into a low-dimensional representation while preserving as much of the variance in
the data as possible [73]. The objective of PCA is to find the most significant features, referred to as
"principal components", that capture the greatest variation in the data.

In the context of the embeddings, PCA can be used to reduce the dimensionality of the
embeddings, making it easier to visualise and differentiate between the dumping and non-dumping
embeddings. By applying PCA to the embeddings, the number of dimensions is reduced, while
preserving the relationships between the data points. This can reveal patterns or clusters in the data
that correspond to the different categories. The resulting visualization can be used to determine which
features or components in the lower-dimensional space are most useful for discrimination between the
two categories.

After the PCA has been applied to the embeddings, the plan is to cluster and visualize them in
2-dimensional space using the k-means clustering algorithm. The k-means algorithm itself will be
explained in the next section, but the required data input shape for k-means is
(n_samples, n_features), where n_samples is the number of samples, and n_features is the
number of features in the input data. The number of features must be consistent across all samples.
Therefore, we must process the embeddings such that it adheres to this data shape.

As mentioned before, each image is now represented as 512 embeddings of size 256 numbers.
The goal is now to see which of the 512 embeddings correspond to depictions of dumping in an
image. We want to apply PCA to each embedding separately, to compress them. To do this, first, we
must create embedding groups. This means that, for all of the 512 embeddings, we want to gather the
256-dimensional vector for each embedding over all of the images of one category. The embedding
groups (in this case, the dumping embedding groups) are created following the pseudocode below.
The code returns 512 groups corresponding to each embedding group.

Line

1 | Initialize an empty list called groups

2 | For each of the 512 embeddings:

3 Initialize an empty list called observations

4 For each image in embeddings_dumping_images:

5 Retrieve embedding for the current image and store in a variable called embedding
6 Add embedding to the observations list

7 Add the observations list to the groups list

8 | Return groups

Figure 14 Pseudocode for creating the (dumping) embedding groups
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This results in a multi-dimensional array with the following shape:
512 X # of images X 256

Next, PCA was applied to each of the embedding groups. The algorithm iterated over the embedding
groups and applied PCA with 4 components, whereafter the resulting shape is then:

512 X # of images X 4

Then, as we need two dimensions instead of three for the next step (k-means algorithm), the
dimensionality is reduced further by flattening the embeddings. Flattening is defined as reducing a
multi-dimensional array into a one-dimensional array. In this case, we need to reduce the first (512)
and third (4) dimensions into one dimension (512 x 4 = 2048). This was done using the reshape()
function provided by NumPy as can be seen in Figure 15. Here, the reduced_embeddings variables
represent the embeddings after PCA.

Line
1 | flattened_embeddings_d =
reduced_embeddings_d.reshape(reduced_embeddings_d.shape[1], -1)
2 | flattened_embeddings_nd =

reduced_embeddings_nd.reshape(reduced_embeddings_nd.shape[1], -1)

Figure 15 Flattening embeddings code
The resulting shape is now:
# of images x 2048

This means that each image is expressed by a 2048-dimensional vector. This is done for both the
dumping and dumping embeddings and the results are combined using NumPy’s concatenate()
function for n-dimensional arrays. The final shape of the reduced and concatenated embeddings is
now:

(# of dumping images + # of non_dumping images) X 2048

Now, the data is in the form of (n_samples, n_features), where the number of dumping and non-
dumping images combined is the number of samples and each one is represented by a 2048-
dimensional vector, the number of features. The data is now significantly reduced in dimension and
adheres to the input data shape for the next step, the k-means algorithm.
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5.4.2 K-means clustering algorithm

The k-means algorithm is a clustering algorithm commonly used in machine learning and computer
vision. The goal of the k-means algorithm is to divide a set of data points into a specified number of
clusters (k) in such a way that the points in each cluster are as close to each other as possible, and as
far away from the points in other clusters as possible. The k-means algorithm works by initializing k
random centroids and then iteratively assigning each data point to the nearest centroid, updating the
centroids to be the mean of all the points assigned to them, and repeating these steps until
convergence and the data is clustered [74].

The k-means algorithm can be used to group the embeddings into clusters based on their
similarity. By consequently observing the resulting cluster, we can identify clusters that correspond to
the different dumping and non-dumping categories. The number of clusters is a hyperparameter in
this algorithm, initially k = 2, so two clusters were chosen corresponding to the two categories. Scikit-
Learn allows us to initialize the centroids using k arrays. The means for the two embedding categories
were computed and used for the initial centroid positions. As mentioned before, this is typically done
randomly, however, as we can already calculate the means, this allows us to hint the algorithm
towards the two clusters.

Next, the k-means was conducted on the concatenated embeddings of the dataset. As the
embeddings have been processed such that it is in the form of (n_samples, n_features), the
concatenated set of embeddings can be used as is. In Figure 16, the implementation is shown. Scikit-
Learn’s KMeans () function is used here, the amount of clusters is specified, the means of the dumping
and non-dumping clusters are used for the centroid initialization and the k-means is conducted on the
concatenated set of embeddings. Furthermore, the variable y_kmeans stores the cluster assignments
for each data point and centers stores the cluster centers, which can now be used for visualization.

Line

1‘ kmeans = KMeans(n_clusters=2, init=[d_means, nd_means]).fit(embeddings_concat)

2 | y_kmeans = kmeans.predict(embeddings_concat)

3 | centers = kmeans.cluster_centers_

Figure 16 k-means clustering implementation

The resulting scatterplot can be seen below. In the graph, the two clusters are displayed in a
scatterplot, where the red stars are the two centroids.
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Figure 17 k-means clustering scatterplot with k=2
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As can be observed in the plot, there is no clear separation between the two categories. Upon further
inspection, it became clear that of the ~1.000 dumping embeddings, 94% of the data points belonged
to cluster 2 (yellow), however, from the ~4.700 non-dumping data points, 93% also belonged to cluster
2. Ideally, we want a more clear separation, not two clusters where a significant majority of all data
points belong to one cluster.

As mentioned before, the k argument in k-means is a hyperparameter, therefore it can be
tweaked to obtain different results. There is a method to determine the optimal number of clusters for
the k-means algorithm. A popular technique is the ‘elbow method’. This concept uses inertia, which is
a measure of the sum of squared distances between each data point and the centroid of its assigned
cluster. In the elbow method, the inertia of the clusters is plotted as a function of the number of
clusters. Then, the elbow point is selected in the plot as the optimal number of clusters in the k-means.
The elbow point is characterized by a notable decrease in the rate of change of inertia, indicating that
further increasing the number of clusters beyond that point would not result in a significant
improvement in the quality of the clustering. In Figure 18, the elbow plot can be seen, however, there
is no apparent elbow or significant drop-off in the inertia. This may be an indicator that the data is not
well-separable with this technique.
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Figure 18 Elbow plot
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Another method that we can use to get the optimal number of clusters is by using the silhouette score.
This is a measure of the quality of the clustering in k-means using the Euclidean distance. It provides a
measure of how well each data point is assigned to its own cluster, compared to other clusters. The
silhouette score ranges from -1 to 1, with a score of 1 indicating a strong, well-defined cluster
structure, and a score of -1 indicating a poor clustering structure. A higher silhouette score should
mean that the data is more well-clustered with the corresponding k-value. A graph showing the
silhouette scores for a range of numbers of clusters can be seen in Figure 19.
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Figure 19 Silhouette score plot

From this plot, we can see that the optimal number of clusters is 3. Previously, the means of the two
embedding categories were used for centroid initialization. However, as we now have more than two
clusters, this is no longer possible. Instead, the k-means++ algorithm is used, which is an improved
technique on centroid initialization over random initialization. k-means++ is also built into the Scikit-
Learn module and can simply be implemented like so: KMeans(n_clusters=3, init=’kmeans++?’).
The k-means scatterplot with k=3 can be seen in Figure 20 below.
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Figure 20 k-means clustering with k=3
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It can be observed that the data is still not well-separated, the cluster centres were situated in close
vicinity to one another, the data points do not show clear separation and the majority of the data
points are assigned to the same single cluster. More experiments were conducted with k-values 4, 6, 8
and 10, and the resulting visualizations can be found in Appendix C. These results did not show
significant improvement in the clustering, as hypothesized by the results of the elbow plot.

5.4.3 t-SNE

t-SNE (t-distribution Stochastic Neighbourhood Embedding) is an alternative dimensionality
reduction technique used for the visualization of high-dimensional datasets. This method is based on
minimizing the divergence between two probability distributions. One distribution represents the
high dimensional data points and the other the low dimensional map. The low-dimensional map is
randomly initialized, and through an iterative optimization process, point locations are updated to
group similar data points and separate different data points [75].

The resulting low-dimensional representation, typically 2 or 3 dimensions, can reveal patterns
and relationships in the data that may not be apparent in higher-dimensional space. In particular,
t-SNE has proven useful in exploring and visualizing complex datasets where traditional visualization
techniques may not work optimally. For instance, PCA is highly affected by outliers in the dataset,
whereas t-SNE can manage outliers more robustly [75]. Therefore, experiments were done with t-SNE,
as the k-means algorithm did not show well-separated clusters, independent of the number of
clusters.

When applying t-SNE on the concatenated sets of embeddings, 2 components were chosen, as
we want to map the clusters in 2D space. Scikit-Learn provides a function, TSNE(), that was used for
this implementation. The exact lines used can be seen in the figure below. The fit_transform()
function was used on the data as it can scale the data and also learn the scaling parameters of the data.

Line

1‘ tsne = TSNE(n_components=2)
2 | tsne_result = tsne.fit_transform(embeddings_concat)

Figure 21 t-SNE implementation code
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A scatterplot is the resulting clusters can be seen in Figure 22. This result is less sporadic in its
clustering, in contrast to the k-means plot. There is still overlap, the two clusters both populate the
centre of the plot. However, on the outside ring, the blue cluster dominates, perhaps proving effective
for a circular classification boundary. The blue cluster represents the dumping embeddings, while the
green cluster represents the non-dumping embeddings.
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Figure 22 t-SNE scatterplot

5.5 Alterations to initial planning

During the background research phase of the project, the preliminary plan was to train a CNN model
with a YOLO architecture. The dataset did, however, not allow for the data requirements for YOLO
training, so an alternative model was to be selected. This also meant that the use of synthetic data was
no longer relevant. Next, time-series LSTM and anomaly detection models were considered, where
anomaly detection seemed to be the better approach to this problem. Experiments were done on a
vanilla GAN, WGAN and WGAN-GP, however, the plan was thereafter altered again to go forward
with an AAE model.
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6 Evaluation

In this chapter, we evaluate the performance of the AAE model, compare it to other approaches, and
discuss its generalizability. We also analyse the strengths and weaknesses of the AAE model in order
to gain insights into the effectiveness of this approach for detecting dumping. Through this
evaluation, the goal is to contribute to the development of more effective and efficient methods for
detecting illegal dumping.

6.1 AAE performance

The performance of the AAE was evaluated by visualizing the embedding generated by the encoder in
the model, using dimensionality reduction and clustering techniques k-means and t-SNE.

K-means clustering was initially used to separate the embeddings into two clusters
corresponding to dumping and non-dumping sites. However, this technique showed poor results, as
the clustering did not effectively separate the two classes, with some dumping sites being clustered
with the non-dumping sites and vice versa. Thereafter, more experiments were done with a range of
k-clusters, with similar performance. This poor separation could be due to the fact that the AAE model
generates continuous embeddings, which are difficult to cluster into discrete classes.

In order to visualize the embeddings in a more effective manner, t-SNE was used to reduce
the dimensionality of the cluster into two dimensions. t-SNE is a powerful technique that can provide
insights where traditional dimensionality reduction techniques fail. The t-SNE visualization showed
more promising results, as there was significantly less overlap between the two clusters. Due to the
circular mapping of the t-SNE clusters, an oval-shaped boundary can be used as a decision boundary
for the classification of dumping vs. non-dumping, with some margin of error due to the overlapping
of some data points.

Overall, while the k-means clustering visualization showed poor performance, the t-SNE
visualization indicated that the AAE model was effective to some degree in generating embeddings
that separate dumping and non-dumping sites. However, the fact that some overlap still existed
between the clusters suggests that the AAE model could benefit from further refinement. It is also
possible that other methods for visualizing and analysing the embeddings (further discussed in
chapter 8), may yield further insights into the performance of the AAE model. Furthermore, it would
be interesting to experiment with larger datasets, to see how it affects the performance in the
clustering.
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6.1.1 Images on decision boundary

Earlier, an oval-shaped decision boundary was proposed, but to test this, it might be useful to inspect
some images that are on this boundary. From the scatterplot, random data points were manually
selected that are visually in between the dumping and non-dumping clusters. In Figure 23, an image can
be seen that was identified by the t-SNE tool to be non-dumping. However, upon inspecting the
image, it is clear to see why the t-SNE algorithm was irresolute and mapped this image close to the
dumping images. There is a cloud in the top centre of the image, with a colour and texture that could
also represent dumping. This cloud can be very similar to some of the dumping sites present in the
dataset, however, it correctly classified this as non-dumping, although the image is equivocal to the
algorithm to a certain degree.

Figure 23 Non-dumping image on decision boundary (cloud)
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In Figure 24, we can see another image that was in the decision boundary. Similarly to the previous
image, this image also does not contain dumping, however, this time the image was clustered with the
dumping images. Likely, the algorithm had difficulty categorizing this image as it contains a body of
water, with reflections that look familiar to dumping on the satellite images. The white disturbances
make it seem much like scattered waste, but after analysing the other acquisition points for this
location, it can be said with certainty that this is a lake and not a dumping site.

Figure 24 Non-dumping image on decision boundary (body of water)

Lastly, Figure 25 is an image on the decision boundary grouped with the non-dumping images, while it
was, in fact, a dumping image. The image is low-resolution and it is not immediately discernible
whether there is dumping in the image or not. In the context of the other images of this location in
time-series, this image was classified as a dumping image, however, this may not be as unequivocal
when viewed in isolation. There are small white dots to be seen in the image which are the dumping
instance, but it is an image in which it is difficult to say definitively. The resolution of the image is
low, and the quality of the image itself is degraded. The algorithm's classification of the image near
the dumping and non-dumping boundary reflects the inherent difficulty in differentiating between
these two categories on edge cases like the images discussed here.

Figure 25 Dumping image on decision boundary (lacking resolution)
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6.2 Comparison to other approaches
6.2.1 CNN

CNNs are a popular approach for image classification and object detection tasks and are often used in
remote sensing and environmental applications. In contrast, the AAE is a more novel and less
researched approach to image classification.

One advantage of CNNs is that they are well-suited to image classification tasks, as they can
effectively learn and extract features from images. CNNs have been proven effective in many studies
for similar applications and are a well-researched topic. However, CNNs often require large amounts
of labelled data for training, which can be a limiting factor in some applications.

An advantage of the AAE model is that it is able to learn a more compact and abstract
representation of the images than CNNs, which can be useful in cases where storage and computation
resources are limited, for example in less fortunate communities that deal with illegal dumping. The
embeddings generated by the AAE model can also be visualized and analysed in a variety of ways,
which can provide insights into the performance of the model and the underlying structure of the
data. It also allows for more control over the latent space from the model, making the model more
flexible.

However, it should be noted that the AAE model also has some limitations. For example, the
AAE model may be more difficult to train and optimize than CNNs and may require more specialized
knowledge and expertise. This approach requires more time to finetune the model and interpret its
results.

6.2.2 GAN
Another popular approach that was discussed is anomaly detection, a research topic where GANs are
widely deployed. One advantage of GANSs is that they can generate highly realistic images by learning
to mimic the distribution of the training data. However, GANSs are often more difficult to train and
stabilize than AAEs and can suffer from mode collapse (as seen in the vanilla GAN) and other issues.
Comparatively, the AAE is more stable during training and is easier to train than the GAN.
AAEs and GANSs both similarly allow for control over latent space, however, the AAE does so without
the need for full GAN training. GANs are computationally heavy models as compared to AAE. The
GAN model would likely have worked as effectively as the AAE, but due to the fact that GANs are
heavy models that can show issues in training and the long training phase, an AAE would be the
better choice.
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7 Conclusion

The goal of this project was to automatically detect illegal dumping from high-resolution satellite
imagery. lllegal dumping is a pervasive issue that has a significant negative impact on the
environment, wildlife, and human health. Dumping can contaminate the environment, leading to
degradation in soil, surface water and air quality. Furthermore, the presence of illegal waste not only
disrupts the natural balance of ecosystems but also poses severe health risks to local populations. In
addition to ecological consequences, illegal dumping also has significant implications for human
health. The toxic substances present in waste materials can contaminate groundwater, which is a
primary source of drinking water for many communities. Inhaling or ingesting these toxins can cause
serious health problems.

It is important to develop an effective method for detecting illegal dumping to minimize its
ecological and public health impacts. Currently, this is mostly done manually, which is slow,
expensive and inaccurate. Therefore, an automated solution was needed to detect illegal dumping in
near real-time.

7.1 Research findings

The aim of this project was to develop a system for the detection of illegal dumping in high-resolution
satellite imagery. Initially, a CNN-based model was considered for this purpose. However, it was later
decided to explore alternative approaches, with a focus on anomaly detection. The chosen approach
involved the implementation of a vanilla GAN on the MNIST dataset, which yielded poor results. The
generated digits displayed a significant level of noise and little resemblance to the input dataset.

The experiment was then repeated with a WGAN, as well as a WGAN with gradient penalty
(WGAN-GP), which resulted in significantly improved outcomes. The digits were less noisy and
samples could be recognized as digits. However, there were concerns about the performance of these
models on larger images from the dataset, prompting the decision to pivot towards an AAE approach.

The AAE model was implemented, trained, and deployed. Subsequently, embeddings were
generated for a new dataset, and these embeddings were analysed in the latent space. Several
techniques were employed to improve the separation of the embeddings, including PCA and
clustering using k-means. However, poor separation was observed, prompting the application of t-
SNE, which resulted in a better outcome. There was less overlap in the clusters and the clusters were
more clearly defined compared to the k-means clusters. In the t-SNE scatterplot, a circular
classification boundary might be useful in determining which embeddings correspond with dumping
and no-dumping images.

However, there was still an overlap in the clusters generated by both the k-means and t-SNE
clustering algorithms. This could mean that the data is not well-separable or well-suited for clustering.
This would also indicate that, superficially, the patterns that define whether an image contains
dumping or not is not as clear as initially assumed. Therefore, a more complex analysis would be
needed, or a different approach to the pre-processing of the embeddings.

Approach

Vanilla GAN - Batch size 32, 200 epochs
- Batch size 64, 400 epochs

WGAN-GP - Batch size 64, 1500 epochs

AAE k-means - k-means clustering with 2, 3, 4, 6, 8 and 10
clusters

AAE t-SNE - t-SNE in 2D space

Figure 26 Brief overview of the experiments performed in chapter 5
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7.2 Answer to research questions

In this section, the research questions posed in section 1.1 will be addressed. The sub-questions will be
addressed first, followed by an examination of the main research question.

7.2.1 Sub-questions
To offer a concluding answer to the main research question, it is essential to address the sub-questions
first. The sub-questions are formulated as follows:

SQ1: What deep learning framework is optimal for dumping detection from satellite imagery?

Detection of illegal dumping from satellite images is an important problem that requires an effective
model. In this section, I argue that AAEs are a suitable modelling approach for this problem based on
experiments. AAEs are trained to learn a low-dimensional representation of input images called
embeddings. These embeddings capture the important characteristics of an image, allowing for more
effective anomaly detection.

In the case of illegal dumping detection, specific embeddings can be used to determine
whether an image contains evidence of illegal dumping. By training the AAE on a dataset of both
normal and anomalous satellite images, it can learn to produce embeddings that accurately capture
the differences between the two types of images. These embeddings can then be used for classification
after processing and analysis of the data.

One advantage of using AAEs for this problem is that they are less prone to overfitting than
traditional CNNs. CNNs can sometimes learn to recognize specific visual patterns that are only
present in the training data, leading to overfitting and poor generalization to new data. Furthermore,
AAEs actually learn subtle features as well, such as land textures. This helps the model, as dumping
also disturbs these lower-level features.

Concluding, CNNs have been proven to work well on detection problems such as satellite
detection, however, AAEs boast features that may improve the quality of detection and allow for more
control over the model and require significantly less computational cost.

SQ2: What satellite data will be useful for training and as input for the deep learning model?

There were quite some ambivalent images in the original dumping dataset, creating challenging cases
for the model and requiring more pre-processing of the images. For example, images could contain
artefacts of the Google Earth Engine Ul as a result of exporting. A more suitable dataset could be a
dataset containing merely the raw satellite images. Furthermore, there are numerous examples of the
image quality being degraded such as in Figure 25, or exposure errors where the distortions in the
image were grave enough for it to be unusable. Moreover, many images were discarded as unusable
due to a cloud or strong shadows obstructing the dumping site, however, this is of course natural in
satellite datasets.

Lastly, the content of the images was also ambiguous at times. If images were difficult to
categorize for human interpreters, then this challenge is amplified for a machine-learning model. As
mentioned, in many images it was nearly impossible to see whether the image contains dumping or
not, which likely impacted the model’s performance. It is noteworthy that, if applied to real cases of
dumping detection in municipalities, these nuances and vague edge cases will inevitably occur as
well.

Therefore, the used dataset from Google Earth Engine is deemed insufficient for the purpose
of exploring whether the AAE model can be used for illegal dumping detection. The images used
produced embeddings which were meaningfully interpretable to a certain degree, but using a
different higher-quality or paid satellite imagery illegal dumping dataset is recommended. This can
minimize sensor errors, artefacts and ambiguous images and improve the reliability of the model.

47



7.2.2 Main question
With the sub-questions answered, the main research question of this thesis can now be answered.

RQ: How can a deep learning model be developed for the purpose of detecting illegal dumping sites
from satellite imagery?

Although experiments with CNNs for the purpose of detecting illegal dumping from satellite imagery
have been successful, in this project it is also demonstrated how an AAE can be utilized for this
purpose. Compared to CNNs, the proposed AAE-based approach is characterized by its capacity to
learn a more efficient and interpretable latent space that can capture meaningful concepts relevant to
the task at hand. In addition to its ability to learn effective embeddings, the proposed approach
exhibits unique features that distinguish it from traditional CNNs and enhance its overall
performance.

To approach this problem, a dataset must be created, pre-processed and annotated based on
the desired target categories. From this dataset, a subset must be created displaying only the most
apparent instances of dumping. The AAE must be developed and trained and given two datasets, one
anomalous and one normal dataset, from which it infers embeddings corresponding to each image in
the dataset. These embeddings can then be processed using techniques such as PCA, k-means and t-
SNE to expose patterns in the data that can be used to differentiate between dumping and non-
dumping satellite imagery.

Concluding, AAEs are a new and innovative approach to anomaly detection that combine
concepts of multiple models in a novel manner. As dumping detection from satellite imagery using an
AAE model is not yet researched, this state-of-the-art research proves the viability of this approach in
this field. While further research in this area is needed, the current study provides evidence to support
the effectiveness of utilizing AAE models for detecting anomalies in satellite imagery.
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8 Discussion

In this chapter, reflection on the limitations of the research and exploring future directions for this
work will be discussed. The limitations of the methodology and models used will be critically
assessed. We will also discuss potential opportunities for future research and the implications of this
work for the field of deep learning for dumping detection from satellite images. Ultimately, this
discussion will aim to provide a transparent and truthful assessment of the research, while also
highlighting the potential for future innovation and improvement.

8.1 Limitations

In this section, limitations encountered in the design process and implementation of the illegal
dumping detection model will be discussed. Specifically, potential shortcomings in the research
process will be identified and provide a discussion of the impact of these limitations on the reliability
and generalizability of our findings. By acknowledging these limitations, the goal is to provide a more
comprehensive understanding of the research.

The first limitation was the importance of iterative model selection in the project. I initially
used a GAN model but found it difficult to train, computationally expensive, and produced poorly
generated samples. By exploring other models, including the AAE, I found that the AAE was better
suited for this task, producing more meaningful embeddings and better results than the GAN model.
In retrospect, I should have pivoted towards the AAE sooner, emphasizing the importance of iterative
model selection and experimentation in these kinds of machine learning projects. Moreover, in the
end, the GAN models were only trained and tested on the MNIST images, rather than the actual
dumping and non-dumping images from the dataset.

One limitation in the annotation process was the bias in the categorization of dumping vs.
non-dumping. As the annotators had a time-series of all acquisition points of a location, the context
may have given an advantage that the model did not have. For example, when presented with a series
of clear dumping images, I was more inclined to classify a less clear dumping image as dumping as I
was subconsciously aware that there is, in fact, dumping in that location. I have tried to negate this by
being objective in the annotation for a single isolated image, but this bias has undoubtedly played a
part in the annotation process.

Hardware limitations also affected parts of this project. In section 5.1, the tools and hardware
used throughout this project were specified, however, especially when experimenting with GANSs, 1
noticed that the training process was computationally costly. In addition to GANSs being
computationally heavy models, this could perhaps be solved by running the experiments on a faster
CPU. Ultimately, this partly affected the realisation process as GANs were also deemed to be
computationally too costly for this purpose (near real-time detection).

Time constraint was a limitation in this project. This led to a limited analysis of the produced
embeddings by the AAE. Only nearing the end stages of this project, the embeddings were properly
processed and visualized to potentially observe patterns. Had time not been a factor, further analysis
of the embedding could have been done, potentially exposing patterns and specific embeddings
leading to a meaningful classification of dumping vs. non-dumping.

Lastly, due to the fact that an AAE model has never been deployed for the specific task of
dumping detection, in particular not with high-resolution satellite imagery, there were few references
in literature as AAEs are a relatively new concept. At times, it was difficult acquiring relevant
resources to develop this model and process its embeddings, as there is no state-of-the-art for this
specific task.
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8.2 Strengths and weaknesses

To neatly summarize certain strengths and weaknesses of the AAE approach I encountered, the
following list is created:

Strengths

Unique approach

The use of an AAE model for this specific purpose has not been researched yet. This is a
unique and novel approach, that will hopefully spark more research into AAE models.

Data efficiency

The AAE model can work with relatively small datasets, as it can learn to generate
representative and truthful embeddings to be used for anomaly detection from a small set of
examples. Furthermore, the AAE requires significantly less training time as compared to
similar models.

Control over latent space

This approach allows for much control over the latent space from the model. This allows for
more interpretability of the results in a more compressed and simplified representation of the
data while preserving the most important features.

Weaknesses

Accessibility

The interpretation of the embeddings generated by the model requires experts with domain
knowledge of deep learning and autoencoder models and an understanding of how to
interpret latent space. This may limit the accessibility when deploying the model.

Sensitivity to hyperparameters

The model has a number of hyperparameters that must be chosen carefully in order to achieve
good performance. These hyperparameters include the size and structure of the encoder and
decoder networks, the length of the training phase, and the learning rates for the generator
and discriminator. Tuning these hyperparameters can be a time-consuming and
computationally expensive process.

Novelty

The fact that this is a relatively new approach may also be a limiting factor for the use of such
models. There are few studies available in literature that explore the possibility of similar
domains, meaning that there are few reference points when developing these models.
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8.3 Future work

In this section, opportunities for improvement and future research are given. Given the scope of the
project, along with the abovementioned limitations, parts of the AAE model and the resulting
embeddings could be improved upon in the future.

8.3.1 Modelling

One promising area for exploration is the refinement and optimization of the AAE model. For
instance, modifications to the AAE architecture, such as incorporating attention mechanisms [76] or
other neural network modules, could potentially improve the performance of the model. This could
lead to better embeddings being generated which capture the key features of the data more
representatively.

Furthermore, an additional feature to potentially implement in the model would be to give a
(limited) time-series for each image that it has to classify as an anomaly or not. As seen in the edge
cases discussed in section 6.1.1, context is sometimes needed in images where it is difficult to
categorize them. Providing the model with one or two images surrounding the image in the time-
series may improve the accuracy of the anomaly detection.

8.3.2 Hyperparameters

The hyperparameters of the model could also be tuned more, potentially leading to different results.
For example, in the AAE network, hyperparameters such as the batch size, learning rate, latent space
size, adversarial loss weight, activation functions and the number of encoder and decoder layers could
be finetuned for this specific purpose. Moreover, as the AAE learns to map data to a prior distribution,
experiments can be done using different distributions for the data.

8.3.3 Generalizability

The generalizability of the model is a crucial aspect to be evaluated. One potential concern would be
whether the AAE can effectively learn and generalize the hidden patterns of dumping in the context
of different regions, land types and dumping given the limited size and diversity of the training
dataset that was used.

The generalizability of a model can be affected by several factors. For instance, the complexity
of the data, variability of the image features, dataset size and configuration of the model can all
influence how well the model generalizes to other scenarios.

In this case, the model was trained on a specific dataset of satellite images displaying
buildings and pastures. The model was then given the task to infer embeddings from a new dataset,
namely the dumping dataset. This dataset displays different landscapes and features but is from the
same data source (Google Earth) with the same data distribution. The results of the visualization are
optimistic about a certain degree of generalizability of the model, but more research must be done
using entirely different datasets with other data distributions. Furthermore, different model
architectures and other configurations of hyperparameters must be explored to observe their impact
on the performance of the model.
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After the development of this model and analysing its generated embeddings for this specific
dataset, it could be useful to test on different datasets. This could test the generalizability of the model
further. For example, the model could be trained and deployed on more diverse ranges of (anomaly)
datasets, such as:

e Medical imagery

e Abnormalities in network traffic

e X-ray security screening

e Manufacturing inspection

¢ Environmental monitoring (oil spills, deforestation)

¢ Autonomous vehicle vision (accidents, damage to roads)

8.3.4 Satellite imagery type

More research involving different satellite data such as rear-infrared and other hyperspectral satellite
data must be done. This is due to the fact that different spectral bands can capture different types of
information about the environment being imaged. For instance, some spectral bands may be sensitive
to specific features that dumping inhibits in the satellite data, which can expose more hidden details of
dumping. By including a wider range of spectral bands in the imagery, the model may be better able
to detect anomalous features or patterns that might be missed with a more limited set of bands.

8.3.5 Alternative visualisation techniques

The visualization experiments conducted in this research mainly feature dimensionality reduction and
clustering techniques, however, other visualization techniques could bring different insights into the
hidden structures of the embeddings.

For example, saliency maps could be used, which are maps that highlight the areas of an
image that are most important for the classification decision. This way, regions of the image most
relevant the detecting anomalies can be visualized. Similarly, Grad-CAM (Gradient-weighted Class
Activation Mapping) generates heatmaps over regions of the image that emphasize what the model is
most sensitive to. These maps also visualize the most relevant areas for anomaly detection.

Additionally, Self-organizing maps (SOMs) are a type of neural network that can be used to
create low-dimensional maps of high-dimensional data, which can be used to identify clusters and
anomalies in the data. This method is optimized for high-dimensional data and can learn a mapping
from the input data to the output map. This can be utilized to visualize the embeddings in the context
of the original data, allowing for a better understanding of the underlying structure of the data.
Likewise, Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), could
be a useful tool in exposing relationships in the embeddings.

Lastly, in the process of dimensionality reduction, all techniques inevitably encounter some
degree of information loss. Therefore, instead of mapping the data into two-dimensional space, three-
dimensional space visualization should also be explored. This could preserve more of the original
data, and lead to insights previously unobtainable in the lower dimensionality. For example, the t-
SNE method allows for visualization in three-dimensional space, which could potentially reveal more
of the underlying structure of the normal and anomalous data.
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Appendix A

Spatial Performance Datasets used
Title Authors Purpose Description Model used Imagery type resolution metric Scores for training
Mapping illegal Maria Roberta Create Identify dumping U-net CNN Satellite images 10m Intersection over 0.675 (using Georeferenced
waste dumping Devesa & comprehensive site locations (RGB, SWIR-1, Union RGB-NIR-SWIR- locations of
sites with neural- Antonio Vazquez map of potential and track SWIR-2, NIR, NDSW) known illegal
network Brust locations of evolutions over normalized diff waste dumps
classification of illegal waste time using neural SWIR bands)
satellite imagery dumping sites network
classification of
satellite imagery
of Argentina
Learning to Rocio Nahime Prove feasibility Study the Binary CNN Orthophotos 20cm Average 0.94 ~3000 images
Identify lllegal Torres & Piero of applying application of classifier, (RGB precision with =33%
Landfills through Fraternali convolutional convolutional ResNet50 + FPN aerophotogram positive samples
Scene neural networks neural network model metry survey) (AGEA)
Classification in for scene (CNN) scene
Aerial Images classification in classification
this scenario to models for
optimize the landfill detection
process of waste in aerial images
dumps detection
Detecting Anupama High resolution Using satellite Fully WorldView and 30cm Accuracy 0.830 (using High resolution
landfills using Rajkumar, Tamas Landfill dataset imagery along Convolutional GeoEye satellite UNet-ResNet34) multi-spectral
multi-spectral Sziranyi & created from with modern Network and U- images satellite images
satellite images Andras Majdik satellite images deep Net combination grayscale from WorldView-
and deep and applying learning panchromatic 3, WorldView-2
learning suitable deep methods to image, rasterized and GeoEye-1
methods learning detect landfills multispectral satellite missions
methods to using semantic image with high
detect landfills segmentation spectral
resolution (upto
8 bands)
Deep Learning Ousmane Train a detection Automatic CNN SSD Drone with L1D- A few Intersection over 0.64 UAV images split
and Remote Youme, model for finally solution for the 20c RGB color centimeters Union up intro training
Sensing: Theophile Bayet, setupa detection of camera (5472 X and test sets
Detection of Jean Marie monitoring and clandestine 3648)
Dumping Dembele & planning tool waste
Waste Using Christophe that can help dumps using
UAV Cambier municipality to unmanned aerial
control the vehicle (UAV)
problem of images in the
clandestine Saint Louis area
waste dumps of Senegal, West
Africa
Accurate Andreas Develop a Automatically CNN Multi-resolution 11920 x 12020 Precision and 0.98 and 0.90 2.000 synthetic
Detection of Kamilaris, Chirag method for detect sources classification and multi-modal recall dumping images
lllegal Dumping Padubidri & detection and of illegal waste model with optical remote-
Sites Using Savvas reporting illegal as fastas residual block sensing
High Resolution Karatsiolis dumping sites possible using classification dataset (high
Aerial from high- deep learning model resolution RGB)
Photography and resolution and synthetic
Deep airborne training data
Learning images based on
deep learning
A method for the S. Sivestri & M. Introduce and Remote sensing Maximum IKONOS satellite im N/A N/A Satellite data
remote sensing Omri validate a is for the first Likelihood data
identification of method that time applied to Estimation
uncontrolled uses remotely explore an area
landfills: sensed of more
formulation and information and than 10 000 km2
validation a geographic with the aim of
information identifying
system (GIS) to possible
identify contaminated
unknown sites
landfills over
large areas
From lllegal Adi Mager & Demonstrate the The pilot results N/A Drone (GNSS 2cm N/A N/A Michnaf
Waste Dumps to Vered Blass feasibility of suggest that it is RTK) remote Company aerial
Beneficial mapping and feasible to imaging mapping, Google
Resources Using analyzing the identify Maps
Drone contentsof illegal valuablematerial
Technology and waste dumpsites s left on the
Advanced Data using drones and ground in the
Analysis Tools: remote sensing form of
AFeasibility techniques in unattended,
Study order to illegally disposed
estimatetheir waste.
circular
economy.
Garbage Mohd Anjum & A garbage This article Deep CNN model Scene images Not mentioned Custom 4.1 (on scale of Garbage Image
localization M. Sarosh Umar detection and introduces an overlapping 0-5) Dataset (GIDset).
based on weakly localization automated metric Contains
supervised system is. method for large number of
learning in Deep proposed based detecting images for
Convolutional on Convolutional the illegal dumps garbage and
Neural Network Neural Network, of garbage using non-garbage

which is
trained on
images labeled
as garbage or
non-garbage

deep
convolution
neural
network.

classes.

Figure 27 Table summarizing related works

Synthetic

data used Auxiliary data

Distributed
geographical
information and
NIRGB
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Appendix B

import os.path
from PIL import Image

PATH = r"D:\uncropped"

OUTPUT_PATH

= r"D:\cropped\\"

dirs = os.listdir(PATH)

old_width, new_width = 6663, 8192 # Raw image size: 6663 x 8192px
new_dim = 512 # Desired image size: 512 x 512px
. def crop():

for index, item in enumerate(dirs):
full_path = os.path.join(PATH, item)
if os.path.isfile(full_path):

. if __name__
30.

crop()

img = Image.open(full_path)

# Calculate new dimensions

left = int((old_width - new_dim) / 2)
top = int((new_width - new_dim) / 2)
right = int((old_width + new_dim) / 2)
bottom = int((new_width + new_dim) / 2)

# Crop center of the image and save to output directory

im_crop = img.crop((left, top, right, bottom)
im_crop.save(OUTPUT_PATH + item, quality=100)

== '_ main__':

Figure 28 Python centre-cropping script
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Appendix C
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Figure 29 k-means clustering with k=4
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Figure 30 k-means clustering with k=6
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Figure 32 k-means clustering with k=10
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