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Abstract

In this study, a Dutch variant of the RoBERTa language model known as RobBERT was
made domain-specific to the domain of Dutch general practitioners(GPs). The model was
trained and fine-tuned using 2.2 million user-identified symptoms (S-rules) derived from
SOAP notes(Subjective, Objective, Assessment and Plan).

Spreekuur.nl is an online consultation application that requires users to complete a ques-
tionnaire before participating in an online consultation. A GP can review the answers to the
questionnaire to help them diagnose the patient. Currently, full agendas and heavy work-
loads burden Dutch GPs because they are the primary point of contact for receiving health-
care in the Netherlands. This study aimed to help alleviate the workload of GPs by predicting
diagnoses based on the answers to a questionnaire.

First, the questionnaire data was converted into the text format of an S-rule(user-identified
symptoms), resembling an S-rule written by a Dutch GP. The S-rule specifically concerns the
Subjective symptoms and patient’s narrative without a further medical examination. An S-
rule is part of a SOAP note which is the documentation standard for Dutch GP to document
a consultation.

ICPC codes are a standard GPs use in consultations to standardise and document a
patient’s diagnosis and are present in each SOAP note. ICPC codes were used to classify a
diagnosis based on the S-rule.

A new classification head was introduced, enabling the separate classification of ICPC
symptom codes and ICPC disease/diagnosis codes.

To align with the diagnostic decision-making process of GPs, a threshold function was
implemented to determine the number of ICPC codes returned. The threshold function out-
performed the simple approach of returning only the top three codes while providing fewer
than three codes on average. When predicting ICPC symptom codes, the threshold function
achieved an accuracy of 90%; for ICPC diagnosis/disease codes, the accuracy was 88.6%.
Notably, when evaluating the model’s performance on the generated S-rules from the ques-
tionnaire dataset, the accuracy was 87.6% for ICPC symptom codes and 86.5% for ICPC
diagnosis/disease codes. A LIME symptom-module was proposed. The symptom-module
is an adaptation of the LIME text-module. The symptom-module generates various sam-
ples of a text by removing words and tokens. The model then generates output probabilities
for these samples, and the probability changes are utilised as training data for a white-box
model. The white-box model aims to identify the most important symptoms for each ICPC
diagnosis/disease code.

Furthermore, a user study was conducted with five participating general practitioners, of
which four participants found that the model contributed to their diagnostic ability by sug-
gesting ICPC codes. Three participants found the explanations generated from the symptom

module to improve their diagnostic ability, while further fine-tuning is needed.
Keywords— Diagnosis prediction, Language model, ICPC codes, SOAP notes, LIME symptom
module
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Chapter 1

Introduction

Worldwide, ageing populations, pandemics such as COVID-19, and the economy are slowly encum-
bering countries’ healthcare systems[4][5]. Currently, full agendas and heavy workloads burden Dutch
GPs because they are the primary point of contact for receiving healthcare in the Netherlands[6]. The
pandemic has had its upsides, during the pandemic, new technologies and ideas emerged for taking
online consultations[7].

One of these techniques was the Spreekuur.nl' website. Spreekuur.nl is an online triage consul-
tation tool created by Topicus® and DigiDok®. The website lets users fill in a question-by-question
questionnaire regarding their health, area of complaint and symptoms. At the end of the question-
naire, the user is redirected to a self-help website called Thuisarts.nl* if their health complaint can
be handled by themselves, redirected to a hospital if their health complaint is sufficiently dangerous,
or lastly, the user is invited to an online chat with their general practitioner. When the GP accepts
the chat, the GP can see a summary of the answers to questions in the questionnaire. DigiDok
created these questionnaires in regulation with the NHG(“Dutch general practitioners association”)[8]
and NTS(“Dutch Triage Standard”)[9]. The questionnaires are validated by a team of expert GPs,
professors and triagists, giving improvements and commentary. Topicus is the developer and creator
of Spreekuur.nl and other applications including VIPLive® and SpoedEPD®. These applications are
used nationwide by GPs and healthcare organizations in the Netherlands. Topicus has the unique
position to use a large amount of data and knowledge gathered, which are normally not available to
the general public.

Topicus and DigiDok want to use Spreekuur.nl to further alleviate Dutch GPs by presenting a list of
predicted diagnoses to them based on the answers acquired from the questionnaire. Machine learn-
ing is already being used for medical applications across different fields[10] and has state-of-the-art
performance in for example cardiology[11], diagnostic imaging[12] and disease prediction[13]. A di-
agnoses prediction model can help practitioners by finding correct diagnoses codes more efficiently
and serve as an extra helping hand when conducting a differential diagnosis.

A major hurdle in machine learning and especially in the healthcare sector, is explainable artifi-
cial intelligence(XAl)[14][15]. Best-performing models often use deep learning techniques to predict
and learn, which is not readable to humans. Deep learning models are considered a black box. In
healthcare, experts want to know for certain if a model is making predictions for the right reasons and
if the network is not “cheating” or taking “shortcuts”[16]. The predicted diagnoses should be substan-
tiated with explanations and reasons, such as correlated symptoms. XAl helps GPs understand how
the model came to these conclusions and helps GPs crosscheck predictions with their knowledge to
make a final diagnosis.

'https://Spreekuur.nl

2https://Topicus.nl

3https://Digidok.nl

“https://Thuisarts.nl

Shttps://viplive.nl
®https://viplive.nl/viplive-voor-u/huisartsenposten/spoed-epd
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The open-ended questions in the questionnaire for patients to report the progression of their health
complaints offer valuable information. Hence, a RoBERTa Language model was adapted and trained
in this study. The primary research question is thus formulated as follows: “How can a RoBERTa
language model be used for predicting diagnoses based on patient-reported symptoms?” An
additional research question aims to identify the most effective approach for explaining the diagnoses
prediction model’s generated predictions to GPs. The secondary research question is: “Which XAl
method is most effective at explaining the predictions of a diagnoses prediction model to
Dutch general practitioners?”

In this study, a Dutch variant of the RoBERTa model is trained called RobBERT[17] on 2.2 million
user-identified symptoms (S-rule), which were present in written SOAP notes. ICPC codes are used
by GPs in consultations to standardize and document a patient’s diagnosis; hence they are used as
a ground truth for training en predicting diagnoses. To obtain the diagnosis of the health complaints
when a patient filled in a questionnaire, 17 thousand filled out questionnaires were connected to the
SOAP notes. These 17 thousand questionnaires were converted from tabular data into a textual form
mimicking the S-rule in written SOAP notes. One of the key challenges encountered in this study was
implementing a hierarchical structure to predict ICPC codes. Multiple ICPC codes may be appropriate
for a given S-rule, and GPs may assign different codes for the same S-rule. The variability in ICPC
codes reduces the learning ability of the model. It impacts the performance measures of the model,
as a conventional loss function does not account for the possibility of multiple appropriate codes for a
given S-rule.

To address this variability in ICPC codes, a modification was made to the classification head of the
RoBERTa model by creating a separation between symptoms and diagnoses/diseases. The modifica-
tion allowed the model to predict both ICPC symptom and ICPC diagnosis/disease codes separately.
The modification could predict 318 ICPC symptom codes and 361 ICPC diagnosis/disease codes.
After training, the model obtained an overall accuracy of 51.4%. A new performance measure was
added: the top-3 accuracy for predicting ICPC symptom codes was 88.6%, and the top-3 accuracy
for predicting ICPC diagnosis/disease codes was 87.5%. A threshold function was also added, which
more efficiently chose how many ICPC codes it should suggest to the GP. The threshold function got
an accuracy of 90% for suggesting ICPC symptom codes and 88.6% for suggesting ICPC diagno-
sis/disease codes.

To improve the explainability of the model, a new “symptom-module” is added to LIME[2]. The
symptom-module utilised changes in the text to identify which symptoms significantly influenced the
model when predicting ICPC diagnosis/disease codes. To validate the model’s performance and to
measure the interpretability of the explanations, a user study was conducted with five GPs. Each
GP rated the suggested ICPC codes and explanations of the models on ten different real test cases.
The user study emphasised the key challenge of this study by showing the variability of ICPC codes.
The five GPs were first shown five of the same cases and chose 13 different ICPC codes between
them. The user study concluded that the diagnoses prediction model and explanation helped the
participants’ diagnostic ability. The main improvement is in optimising and fine-tuning the explanations
and suggested ICPC codes to reduce the number of mismatched keywords, symptoms and suggested
ICPC codes. The GP chose a suggested code in 90.0% of the cases, which signifies that the actual
performance of the model is higher than the standard top-3 performance measure may indicate.
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1.1 Outline

The outline of this study is as follows:

First, a description of relevant information about the Dutch healthcare system and general practition-
ers is provided in chapter 2: “Background”. In chapter 3: “Related works”, relevant papers to this
study are explored. chapter 4: “Source data”, provides a description and analysis of the source data.
The Research questions are formulated in chapter 5: “Research questions”. chapter 6: “Methodol-
ogy”, provides the methodology of this study. chapter 7: “Dataset” prepares the dataset for training
the model. chapter 8: “Diagnoses prediction model”, describes the model’s training and validation.
chapter 9: “Explainability” adds a new explainability method to explain a diagnosis using symptoms
and shows the results of the user study. The results are discussed further in chapter 10: “Discussion”
with a brief overview for future works. Finally, a conclusion is found in chapter 11: “Conclusion”, which
answers all research questions.

1.1.1 Walkthrough guide

» For readers who prefer a concise overview, it is recommended to read the following chapters:
chapter 8: “Diagnoses prediction model”, chapter 10: “Discussion”, and chapter 11: “Conclu-
sion”. These chapters provide an overview of the study’s main findings.

» Healthcare professionals are encouraged to at least read chapter 4: “Source data” for its data
analysis on ICPC codes, chapter 9: “Explainability” for an explanation of how the output of the
machine learning model is used to explain a diagnosis, and in particular, section 9.2: “User
study” that validates the model’s explanations and ability to predict ICPC codes.

» For those interested in the technology behind the study, it is recommended to begin with
chapter 2: “Background” to understand how the Dutch healthcare system works. chapter 3:
“Related works” provides context on how chapter 6: “Methodology” is substantiated. chapter 8:
“Diagnoses prediction model” demonstrates how the RoBERTa model is implemented with a
new classification head, and its performance and validation. Finally, chapter 9: “Explainability”
explains how the last linear layer of neurons can be split up to explain a model via symptoms
and diagnosis. chapter 11: “Conclusion” concisely answers all research questions.



Chapter 2

Background

Healthcare systems vary widely per country; this section looks into the Dutch healthcare system and
Dutch GP standards. The “Gatekeeping principle” and “triage” of the Dutch healthcare system will
be explained. Dutch GP standards such as differential diagnoses, SOAP, and ICPC codes will be
described.

2.1 Dutch general practitioners

The Dutch healthcare system differs from other systems worldwide, with a key characteristic being the
“gatekeeping principle”. Under this principle, patients must be referred by their general practitioner
(GP) to receive hospital or specialist care. This principle makes primary care in the Netherlands more
dominant than in other countries. Dutch GP practices can be divided into two categories: a general
practice that is open during the day and handles non-urgent care, and a general practice emergency
centre that is open during the night and weekends and handles urgent care cases when a regular
general practice is not available or unable to meet the patient’s medical needs.

Dutch GPs have broader profiles and specialities because of the “gatekeeping principle”, which re-
sults in most visits not ending with a referral to a hospital or specialist[18]. Dutch GPs are overworked
because they need to handle more patients in the same amount of time, making consultation time per
patient shorter[19][20].

In the following sections, it will be explained how triage is performed, how a Dutch GP finds a dif-
ferential diagnosis and how consultations are documented in a EPD using SOAP notes and ICPC
codes.

2.1.1 Triage

When calling a GP practice, GP emergency centre or hospital for a health-related issue, a triagist or
doctor’s assistant will pick up the phone. The triagist or doctor’s assistant will take the caller through
a triage process to calculate the urgency of the caller's health problem. Triage consists of a series
of questions and measures the degree of urgency in patients. Triage causes more severe cases to
urgent care sooner by applying a “Treat first what kills first” or ABCD policy[21]. Most countries have
their own triage standards or use the International Triage Standard (ITS)[22]. The healthcare system
and GPs in the Netherlands use NTS[9], which consists of five steps:

1. ABCD-safe - Are complaints life-threatening?
2. Category of complaint
3. Determination of urgency
4. Follow-up action for patient
5. Advice for patient
There are six different urgency levels in the NTS:

1. UO: Failure of ABCD - reanimation needed.
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. U1: Unstable ABCD - Directly life-threatening (seek care immediately).

2
3. U2: Threatening ABCD or organ damage (seek care as soon as possible).
4. U3: Reasonable chance of damage (seek care within a few hours).

5

. U4: Negligible chance of damage (seek care within 24 hours).
6. U5: No chance of damage.

DigiDok modified NTS to create questions in the questionnaire. Only five of six urgency levels are
used because a U0 patient cannot complete a questionnaire. The first questions in Spreekuur.nl will
always make sure the patient is ABCD-safe. In the case of ABCD-unsafe, the patient will be asked
to seek immediate help. During the questionnaire, urgency levels are calculated to help patients in
need of urgent care and to alleviate the workload of GPs by giving self-care advice to lower urgency
patients.

2.1.2 Differential diagnosis

During a consultation with a patient, the practitioner will try to find a differential diagnosis[23]. To find
an appropriate diagnosis, GPs will first listen to medical information, health complaints, and symptoms
according to the patient. Practitioners will ask more in-depth questions based on given complaints.
This process is called anamnesis and offers practitioners an idea of what actions must be taken next.
Practitioners will take a medical examination of the patient, if necessary, based on the anamnesis.
Now, a differential diagnosis can be made by practitioners. Practitioners factor in each symptom
and evidence from anamnesis and examination to argue for and against diagnoses and correlate
them to the most probable diagnosis. Typically the differential diagnosis consists of between one
and three different potential diagnoses. The differential diagnosis requires experience and expertise
and requires GPs to weigh in medical calculations, per-patient differences, and personal intuition[24].
In cases where a GP is unsure about the diagnosis, a less specific diagnosis or symptom is given
instead. With the diagnosis, a prognosis can be given. The diagnosis and prognosis can be aided
by the use of resources such as NHG[8] and Thuisarts[25]. These resources provide guidelines,
anamnesis questions, and other relevant information to help with the diagnosis and prognosis.

2.1.3 SOAP notes

The previous section explains how a GP traverses a consultation to obtain a differential diagnosis and
prognosis. Consultations are documented in an electronic health record(EHR) or EPD in Dutch. EPDs
serve as a comprehensive health record containing a patient’s medical history. A patient’s EPD can be
made available across different healthcare specialists, given the patient’s permission. Consultations
and diagnoses must be documented precisely and uniformly to keep them readable and organised for
multiple organisations and to combat information loss. Dutch healthcare professionals and GPs use a
standard called SOAP[26] to keep the EPD organised and readable. After a consultation, a SOAP(or
SOEP in Dutch) note is documented in the EPD. SOAP is an abbreviation for Subjective, Objective,
Assessment and Plan.

1. Subjective: Information and symptoms according to a patient.
2. Objective: Objective symptoms based on medical examinations.
3. Assessment: Differential diagnosis/diagnoses according to GP or health professional.

4. Plan: Prognosis and medical advice based on differential diagnosis.
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Components/ chapters A/IB|D/FIHK|LIN|/PIR|S|T|U|W|X|Y|Z
1. Symptoms and complaints

. Diagnostic, screening and prevention

. Treatment, procedures and medication
. Test results

. Administration

. Other

. Diagnoses, diseases

Nojoab~hwWN

Table 2.1: ICPC structure and component description.

2.1.4 ICPC codes

A SOAP note is a standardised method to document the details of a patient’s visit to a healthcare
provider. One challenge with SOAP notes is that different practitioners may interpret them differ-
ently. To address this issue, the World Health Organisation (WHO) introduced the International
Classification of Primary Care (ICPC) as a standardised system of codes for classifying symptoms
and diagnoses in primary care settings. /ICPC codes have a biaxial structure and consist of 17 chap-
ters; each chapter is divided into seven components as seen in Table 2.1 and Table 2.2[27]. ICPC
codes cover a wide field of symptoms and diagnoses such as A03 Fever, N93 Carpal tunnel syndrome
or Z01 Poverty/financial problems. ICPC codes make further distinctions per code by introducing a
hierarchical structure, for example, A96 Death, A96.01 Natural death and A96.02 Unnatural death.
ICPC codes are used in many healthcare and GP systems worldwide. Dutch healthcare practitioners
use their version of ICPC codes, updated regularly by the NHG. The version of NHG biggest differ-
ence is that it only has three components: 1) Symptoms and complaints, 2) Diagnostic, screening
and prevention and 3) Diagnoses and diseases. The Assesment of a SOAP note typically contains
a maximum of one ICPC code. The ICPC code or name of the complaint/diagnosis can be inputted
onto sites used by Dutch GPs such as NHG[8] to help to find differential diagnosing and prognosing
a patient or to find an ICPC code.
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Letter

Chapter description

General and unspecified

Blood and blood-forming organs and immune mechanism

Digestive

Eye

Ear

Circulatory

Musculoskeletal

Neurological

Psychological

Respiratory

Skin

Endocrine, metabolic and nutritional

Urological

Pregnancy, childbearing, family planning

Female genital

Male genital

Nl <|X|s|c|d|w| x| o|z|r|X|T|/7o ® >

Social problems

Table 2.2: ICPC chapters and description.




Chapter 3

Related works

In this section, research relevant to this paper will be laid out. Relevant research includes XAl methods
and papers regarding diagnosing patients based on symptoms.

3.1 Symptom checkers

Over the past ten years, there has been an increase in the number of online symptom checkers.
Symptom checkers allow users to input their symptoms in various formats, such as free text, a list,
or a questionnaire, and provide a list of possible diagnoses, advice, and urgent recommendations.
This research shares a notable correlation with symptom checkers, as both focus on the diagnosis
of patients based on symptom interpretation. In this study, it is crucial to thoroughly examine the
existing research conducted on symptom checkers, as it serves as a valuable source of inspiration.
This includes using such research for validation purposes and establishing a baseline against which
the findings of this study can be compared.

Symptom checkers often include disclaimers stating that they are “for informational purposes
only”[28][[29]] and not intended to constitute professional medical advice, diagnosis, or treatment. The
disclaimer allows symptom checkers to avoid legal trouble if a diagnosis is incorrect. However, these
systems still provide diagnoses and recommendations[30]. Symptom checkers and the research
underlying them are often proprietary, making it difficult to do analysis.

Several papers have compared the performance of symptom checkers. Several methods have
been used, to measure the performance, such as comparing the diagnoses of a hand surgeon to
those of symptom checkers when provided with the same symptoms[31]. Another widely used method
involves using standardised medical vignettes, which are typically used as examination material for
doctors in training[32][33][34]. Vignettes contain a description of symptoms and a ground truth. They
are used as input to symptom checkers by one or more doctors for validation. Each study uses
different vignettes, as there is no standard for evaluation, and each symptom checker takes different
inputs. These different performance measures result in different conclusions about which symptom
checker performs best.

Most studies evaluate whether the ground truth is the first predicted diagnosis (accuracy-at-1) or
is among the top-5 predicted diagnoses (accuracy-at-5). Ceney et al. (2021)[32] measured accuracy
using a modified version of the 45 vignettes used in the study by Semigran et al. (2015)[33] and
looked at the number of questions needed to have the ground truth diagnosis listed first. For example,
Ada[35] had an accuracy of 72% with an average number of questions needed of 45.8. The worst-
performing symptom checker had an accuracy of 22% and required an average of 9.5 questions to
reach a conclusion.

Wallace et al. (2022)[30] conducted a systematic review of the performance of symptom check-
ers by comparing ten different studies on the topic. The review found that the accuracy of diagnosis
and triage among symptom checkers varied significantly between studies and overall had low accu-
racy. Additionally, the review noted that symptom checkers are not regulated, and many studies did
not specify performance measures. These findings highlight the need for standardised evaluation
methods, as previously suggested by Painted et al. in their research on the topic[36].
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3.2 From text to machine-readable data

This study chose to utilise the BERT (Bidirectional Encoder Representations from Transformers) lan-
guage model for to diagnose patients on based on their answers in a questionnaire. chapter 6:
“Methodology” provides detailed insights into the rationale behind this model selection. Additionally,
the related work presented in this section describes the underlying principles of language models, the
development of BERT, and its capacity to comprehend natural language.

Words can give humans an immediate impression if the context is known. “Wampimuk”, is a
non-existent word with many different definitions without context. Nevertheless, given an example
sentence: “The Wampimuk climbs in the tree”, the human mind can imagine a definition based on
this context. A machine learning model does not have this human intuition by default, as a word or
sentence is just byte data. Natural Language Processing (NLP) is the field of artificial intelligence
concerned with the processing and analysis of natural language data. In the following sections,
multiple NLP techniques are discussed.

3.2.1 RNNs

Recurrent Neural Networks (RNNs) are a type of artificial neural network that takes each word in a
sentence as a separate input, allowing the model to process sentences of any length. RNNs use the
current input and previous hidden states to compute the next hidden state, allowing them to capture
context across multiple steps. However, RNNs can suffer from the vanishing gradient problem dur-
ing training, where the gradient used to update the network’s weights shrinks as it backpropagates
through time. The vanishing gradient problem results in insufficient weight updates and poor perfor-
mance. To solve this problem, long short-term memory(LSTM)[37] and Gated recurrent unit(GRU)[38]
were introduced. LSTM, initially proposed in 1997, can be seen as a cell that consists of three gates:
1) An input gate that controls the input of information at each step, 2) An output gate controls the
output of information, and 3) a forget gate determines which data can be forgotten. GRU, proposed in
2014, is a small neural network at the output of each step with three layers: 1) the recurring layer from
the RNN, 2) a reset gate and 3) an update gate which acts as a coupled version of three LSTM gates.
These methods allow RNNs to carry context along multiple steps allowing for good performance at
NLP tasks. RNNs with LSMT or GRU units resulted in an excellent performance for NLP tasks due to
their memory but have the issue that it becomes harder to compute or train for longer word sequences
due to sequential calculation.

3.2.2 Attention head

In recent years, significant advancements have been made in NLP, specifically in developing machine-
learning models that address the limitations of sequential processing.

One key concept in these advancements is the use of attention mechanisms, which play a crucial
role in NLP tasks. Attention heads are components that calculate the attention of each word in a
sentence. The attention layer processes each word simultaneously and produces a vector for each
word, indicating the relative importance of other words in the sentence to that word.

Each word is pre-processed with a semantic embedding which gets multiplied by three different
weights vectors to calculate a query, key and value vector.

To calculate the attention of a specific word, the query vector associated with that word is multi-
plied by each key vector. The resulting values are then scaled and subjected to a softmax operation,
which produces scores representing the relevance of each word to the selected word. These scores
are multiplied with all value vectors to calculate the attention. Figure 3.1 illustrates this process,
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where q represents the calculated query vector for a specific embedding, and K and V represent all
calculated key and value vectors for all embeddings. This calculation can be simplified in the formula
A(Q, K, V) = softmax (QKT) V. For a visual representation of this process, refer to Figure 3.2.

To further enhance the attention mechanism, this layer can be copied multiple times with different
sets of trainable weight vectors for the key, query, and value vectors. This approach is known as
Multi-head attention, and it allows the model to capture different aspects of the input data and attend
to multiple relevant parts simultaneously.

Alg, K, V) = Z W%‘
i 4

Figure 3.1: Attention equation for calculating the attention of a specific embedding using the corresponding query
vector and all key and value vectors in the sentence.

Figure 3.2: Example from Vaswani et al.[1] showing the scaled dot product attention used in a transformer.

3.2.3 Transformer

In 2017, Vaswani et al.[1] introduced the transformer model, which is a neural network architecture
consisting of an encoder-decoder framework built upon the concept of Multi-head attention.

The encoder component utilises a Multi-head Attention layer, enabling simultaneous processing of
every word in a sentence. To achieve this, each word in the sentence is first provided with a semantic
embedding and positional encoding. Subsequently, the Multi-head Attention layer processes all words
concurrently. It generates a vector for each word, representing the importance of other words in the
sentence with respect to that word. These output vectors are then concatenated and passed through
a trainable feed-forward network. If no useful information is provided, the previous outputs are always
added to the Multi-head Attention or feed-forward network output and normalised, which is called a
residual connection.

The decoder component of the transformer model allows it to perform tasks like language trans-
lation. It follows a similar process as the encoder component but adds a Masked Multi-head attention
layer. The Masked Multi-head attention layer uses the same input sentence correctly translated into
another language as training data. During training, the model is trained by masking subsequent se-
quence elements of translated sentences using the Masked Multi-Head attention layer. The output of
the encoder is used as part of the input of next the Multi-head attention layer to add the represen-
tation of the original sentence. The decoder component essentially performs next-word prediction to
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train the transformer model, where it is tasked with predicting the next word of the masked sentence.
The output representation vector serves as input for a neural network, often with an output size cor-
responding to the vocabulary used. The output neuron with the highest value represents a word in
the vocabulary, indicating the next word in the sentence. Figure 3.3, sourced from the original paper
by Vaswani et al., provides an illustration of the encoder and decoder components of the transformer
model. Encoders and decoders can be stacked multiple times, with the original paper employing six
encoders and six decoders.

Output
Probabilities

Feed
Forward
>
Add & Norm
[ Add & Norm } -
88l et Multi-Head
Feed Attention
Forward Nx
Nix | Add & Norm
Add & Norm Ve
Multi-Head Multi-Head
Attention Attention
At t 2
\_ J/ | _/J
Positional o) @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 3.3: Example from Vaswani et al.[1] showing the encoder/decoder structure of a transformer.

3.2.4 BERT

The encoder-decoder structure of the transformer model inspired the development of BERT (2018)[39],
which stands for Bidirectional Encoder Representations from Transformers. BERT is designed to pre-
train deep bidirectional representations of natural language data by joint conditioning on all layers’ left
and right contexts as seen in Figure 3.4.

BERT uses twelve encoder components from the transformer architecture. BERT is trained bidi-
rectionally, resulting in a deeper understanding of language context. Each transformer-encoder layer
consists of a Multi-attention head and a feed-forward network. The input sentence is first tokenized
into an embedding vector using a trainable tokenizer such as WordPiece. BERT uses a Masked
Language Model (MLM) pre-training objective, where some tokens in the input are randomly masked,
and the model is trained to predict the original token based on its context. MLM allows the model
to fuse the left and right contexts and pre-train a deep bidirectional transformer from unlabelled text
data.

In addition to the MLM objective, BERT uses a “next sentence prediction”(NSP) training objective,
where sentence pairs are used to predict whether the second sentence is the corresponding next
sentence of the first sentence.

BERT is pre-trained on a 3.3 billion word corpus from BookCorpus and Wikipedia. The resulting
representations can be used with an additional sequential layer or feed-forward network for NLP
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tasks such as general language understanding, question answering, and sentence pair completion
while only requiring fine-tuning on labelled data.

BERT achieved state-of-the-art performance on multiple NLP benchmarks, with successors such
as RoBERTa (2019) [40]. Among other changes, the most significant change RoBERTa made to
the BERT architecture was removing the “next sentence prediction” task in BERT. The authors of
RoBERTa show in their paper that the NSP task does not increase performance and even get higher
performance with the task removed.

Figure 3.4: Example from Devlin et al. al.[1] showing the architecture of BERT.

3.3 Diagnosis Prediction using machine learning

In this research it was chosen to utilise the BERT language model. However, it is imperative to
thoroughly investigate related literature concerning the prediction of diagnoses both with and without
the utilisation of language models. Furthermore, this section aims to explore the specific adaptations
made to the BERT model to enhance its predictive capabilities of diagnoses.

There has been significant research on using machine learning to predict diagnoses. Many med-
ical datasets are publicly available, and machine learning can be used to uncover patterns in these
datasets that may not be readily apparent to humans. In many cases, research on diagnosis predic-
tion focuses on predicting a single disease or diagnosis using binary output or probability predictions
(where 1 indicates the presence of the disease and 0 indicates the absence of the disease). How-
ever, this study focuses on the problem of predicting many diagnoses simultaneously. In this section,
existing research will be reviewed on diagnosis prediction and discuss how these approaches can be
applied to the problem of multi-diagnosis prediction.

Medicine is one of the oldest research fields, with millions of studies now available online from
resources such as PubMed'. A machine learning algorithm is typically built from scratch and trained
on a dataset. Zhou et al.(2014)[41] used a large-scale biomedical literature database to construct a
symptom-based human disease network. They looked at diseases and symptoms in the MeSH terms
of over 800 thousand studies. From these terms, symptom—disease relationships could be extracted,
resulting in 147,978 connections between 322 symptoms and 4,219 diseases. This research also
highlighted a challenge in diagnosis prediction, as many symptom-disease relationships are nearly

"https://pubmed.ncbi.nim.nih.gov/
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identical. Diseases and symptoms have three causal structures: symptom S can be a direct cause of
disease D, D does not directly cause symptom S but is correlated to a common cause R or third, Sis
a direct cause of D with addition to a latent common cause R is also present. Richens et al. (2020)[42]
used these causal structures to derive a counterfactual diagnostic algorithm. A counterfactual is much
like a contrastive. In contrastive explanations, a comparison of two outputs demonstrates why an out-
come occurred. On the other hand, counterfactual explanations use the current output to explain
why outcomes did not occur. Richens et al. show that existing diagnosis prediction approaches are
based on association and suffer from sub-optimal and dangerous diagnoses. Their approach, how-
ever, identifies diseases that correlate most with a patient’'s symptoms. A Bayesian Network(BN) is
used, which models relationships between hundreds of diseases, risk factors, and symptoms as BNs
are interpretable and explicitly encode causal relations between variables. Diseases, symptoms, and
risk factors are binary nodes and can be either on or off.

Their counterfactual algorithm is trained on symptoms extracted from medical vignettes. It uses a
diagnostic measure for ranking the likelihood that a disease D is causing a patient’s symptoms given
evidence E. The diagnostic measure looks at the number of symptoms that need to be switched off to
cure S and the number of symptoms that would persist if all other causes of the patient’s symptoms
are switched off. The model achieved expert clinical accuracy. The diagnostic measure correlates
strongly with how a doctor procures a diagnosis. While the doctors achieved an average diagnostic
accuracy of 71.40%, the model achieved an average accuracy of 77.26%, placing in the top 48% of
doctors in their cohort.

BioBERT (2019)[43], is a domain-specific BERT model pre-trained from scratch on Pubmed and PMC
biomedical text data (18 billion words in total). BERT already achieves state-of-the-art performance
on biomedical tasks such as biomedical named entity recognition, biomedical relation extraction, and
biomedical question answering. BioBERT further improves upon its performance by adapting BERT
to the biomedical domain. Pubmed and PMC medical texts contain words not present in the corpus
used to train BERT, which are tokenized into stemmed words or individual characters. BioBERT can
correctly tokenise these words by pre-training from scratch and learn a domain-specific context that
the pre-trained BERT model could not accurately represent.

Van Aken et al. (2021) [44] further pretrained and fine-tuned BioBERT by adding training objectives to
learn relationships between admissions and outcomes. This objective, CORe, is similar to the “Next
sentence prediction” task in the original BERT paper [39]. Instead of predicting whether a sentence
is the next sentence in a sequence, CORe predicts whether an admission is the follow-up admission
of the first admission. Van Aken et al. also applied the same strategy to medical articles and case
reports, predicting whether a treatment, prognosis, or diagnosis results from symptoms or risk factors
in a symptom-outcome pair. With the additional training objective, Van Aken et al. achieved state-of-
the-art performance on diagnoses, procedures, in-hospital mortality, and length-of-stay prediction on
the MIMIC 3 dataset, which consists of electronic health records. The dataset contains 1266 unique
ICD-9 codes, which could be predicted with an AUROC of 83.54%.

3.4 Explainable Al

As computing power and deep learning techniques have improved over the years, the performance
of many medical tasks has also increased. However, increased model complexity and structure can
result in “black box” models with internal inference processes that humans cannot interpret. BERT is
an example of a “black-box” as it decision making can not be derived from looking at the parameters
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and structure of the model itself.

Explainable Artificial Intelligence (XAl) is a field of machine learning that focuses on increasing
the transparency and interpretability of Al-driven decisions without sacrificing performance[45]. XAl
has been increasingly adopted in the healthcare industry due to its ability to enhance the accuracy of
clinical decision-making and reduce the risks associated with incorrect diagnoses or treatments. By
providing clear explanations for Al-driven decisions, XAl can help to reduce bias, improve fairness,
and increase trust in machine learning models. XAl can also help healthcare practitioners understand
the logic behind Al-driven decisions and make more informed decisions.

There are two approaches to explaining a machine learning model: intrinsic and post-hoc. An
intrinsic explanation refers to a model that is self-explaining or “transparent” and is not considered a
“black box” but a “white box”. A post-hoc explanation, on the other hand, is an explanation that is
generated by post-processing the model’'s output and structure to fabricate an explanation. Arrieta et
al. (2019)[45] provide a detailed overview of the different methods and approaches used in XAl. They
note that XAl has different categories of explainability and goals depending on the target audience.
The primary aim of XAl is to increase the trustworthiness of Al-driven systems. Additionally, there is a
distinction between local and global explanations. A local explanation focuses on explaining a single
prediction, while a global explanation is concerned with explaining the behaviour of the entire model.

When designing an XAl system, it is essential to consider the target audience and the goals of the
Al. The target audience will influence the methodology and techniques to make the Al explainable.
Danilevsky et al.(2020)[46] performed a survey regarding XAl for NLP models and identified five
primary explainability techniques:

1. Feature importance: Use the importance score of different features to derive an explanation.

2. Surrogate model: Predictions are explained by an explainable proxy model. The proxy model
can have a different mechanism leading to concerns about the fidelity of the model[2].

3. Example-driven: Explain the output by presenting other semantically similar examples[47] [48].
4. Provenance-based: Explain by illustrating the prediction derivation process.

5. Declarative induction: Induce human-readable representations such as rules and trees to make
the model more explainable.

There is, however, yet to be a consensus on how to evaluate the explainability of an Al, as explain-
ability differs per use case and is subjective. Nauta et al.(2022)[3] who conducted a systematic review
of XAl, defined 12 explanatory quality properties called the Co-12 properties(e.g. correctness, con-
sistency, confidence) and present an extensive quantitative overview of XAl evaluation methods. An
example of one of the most well-known XAl methods is LIME. In 2016, Ribeiro et al.[2] proposed a
Local Interpretable Model-Agnostic Explanation (LIME) method for generating interpretable explana-
tions of black box machine learning models. LIME trains an interpretable white box classifier, such
as a decision tree or linear classifier, by optimising the loss function on local data surrounding a
given prediction. LIME can explain any machine-learning model and is an example of a surrogate
model. LIME can explain text by generating slight variations of an input sentence and using the new
probabilities as training data for an interpretable classifier.
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Source data

For this study, the data is supplied by Topicus. The data includes the questionnaire data from
Spreekuur.nl and data containing SOAP notes from general practitioner practices from SpoedEPD.
The supplied data is described and analysed in this section.

4.1 Questionnaire data

Spreekuur.nl provided questionnaire data in . XLSX format from 3 March 2021 to 23 December 2022.
Totalling 79,215 data entries when combined and when duplicates were removed. Each entry is a
“started” questionnaire, which can contain more than 100 columns. Many data entries can be fil-
tered because questionnaires that are not completed or instances where users are triaged out (high-
urgency) cannot be connected to a ground truth. Each question has an identifier; e.g. ATC_100,
BKH_080, HOO_280. Each question can have three possible question types, open(string), input(int)
and choice(int). Each answer and question identifier can be linked back to the text of the question via a
lookup table. Integer values and definitions of an answer are not consistent across questions. A value
of 0 may mean “No” for one question and “Yes” or “Maybe” for another. The dataset matrix is dense;
each question has a value even if not seen or filled in by the user (presented by value “999999”).
An entry example can be found in Table 4.1. The first question in Spreekuur.nl separates the ques-
tionnaire into 24 different categories based on input complaints like “skin complaints”, “coughing” or
“throat sore”. Choosing the input complaint most relevant to the patient’s health complaint will result
in the most relevant questions being asked. For example, choosing “Throat sore” results in questions
about the patient’s throat. Figure 4.1, shows how many questionnaires are completed each month
in the questionnaire dataset. Note: Time-stamp 1970-01-01 is a value for a questionnaire that is not
completed, which happens almost 20.000 times.

Entry/Identifier | ABC | BRW_005.6_ | BRW_005.020 | BUI_.190_010 | BUI.200_1_ | DBS.090 | ... dag-awn | klacht_keuze
1 0 999999 999999 0 1 Ik heb last van symptomen | ...... 2 4

Table 4.1: Example of one data entry of a questionnaire.

15
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data distribution of whole measures data
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Figure 4.1: Amount of questionnaires per month

4.2 SOAP notes data

Table 4.2 shows a cleaned example of one data entry in SpoedEPD. Normally one data entry is 68
columns wide, but only important columns are shown for simplicity. The S-rule(S-regel) includes the
subjective symptoms and patient’s narrative. In SpoedEPD there are two S-rule columns, “sda_regel”,
“sha_regel”. The triagist mentions in the “SDA” field the story and symptoms of the patient. The GP
copies the “SDA” field into the “SHA” field and supplements it with extra information after consulta-
tion(in the dataset, not always the case, but how it should be done). The A-rule(E-regel) includes the
diagnoses in textual form. There is also an “icpc_code” column which can be used as a ground truth
for training a machine learning model.

The data of one patient belongs to the patient’s GP while being saved in the database of Topicus.
Data is collected by requesting permission per GP practice to use anonymised versions of all their
patient’s data. It resulted in three cooperating general practice emergency centres and 2.273.077
data entries. The centres are made anonymous per request of DigiDok and Topicus. 492.590 entries
come from GP centre “GP centre A”, 1.415.207 entries come from GP centre “GP centre B” and
365.430 entries come from GP centre “GP centre C”.

However, it is important to note that all data entries come from GP emergency centres. An emer-
gency post is only used when a health complaint is sufficiently severe. Diagnoses can have a different
distribution compared to normal general practices potentially introducing biases. In the next section,
data analysis will be performed to analyse the data and discover an eventual bias.
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Column name Example input

organisatie_naam Centrale Huisartsendienst Drenthe

organisatie_id HASH

sda_regel Patiént klaagt over toenemende pijn in de rechteronderbuik, voelt zich steeds beroerder
en pijn niet te houden, zeker tijdens de rit naar de post.

sha_regel Patiént klaagt over toenemende pijn in de rechteronderbuik, voelt zich steeds beroerder
en pijn niet te houden, zeker tijdens de rit naar de post.

o_regel temp 38,5 c (rect), buik gespannen

e_regel Rectaal bloedverlies

p_regel Doorverwijzen SEH

icpc_hoofdcode D

icpc_code D88

patient_leeftijd 70

patient_geslacht Man

spreekuur_koppel_id | HASH

Table 4.2: Example of a patients data entry in SpoedEPD

4.3 Data analysis

The dataset consists of 2,273,077 entries, representing 1,305 different ICPC codes. When the hi-
erarchy of the codes is removed (e.g. U71.01 to U71), 776 unique ICPC codes remain. Removing
the hierarchy simplifies the problem by reducing the amount of possible ICPC structure. After the
prediction model performs well, the amount of ICPC codes can be increased. Figure 4.2 shows that
the categories “L - Musculoskeletal”, “A - General and Unspecified”, “D - Digestive”, “R - Respiratory”
and “S - Skin” are the most frequently occurring categories. The categories “X - Female Genital”, “Y
- Male Genital”, “W - Pregnancy, Childbearing, Family Planning”, “B - Blood, Blood Forming Organs
and Immune Mechanism”, and “Z - Social Problems” are the least occurring categories. The distri-
bution of categories is uniformly the same as in other GP practices, as a scientific article by Nivel
shows by measuring the occurrence of each category across multiple GP practices[49]. Figure 4.3
and Figure 4.4 present stacked bar charts of the top 100 occurring ICPC codes, with and without
hierarchy. The most frequently occurring code is "S18 - Laceration/cut,” appearing in 4% of the data
entries, followed by "A03 - Fever” (3.6%), "D06 - Abdominal pain localised other” (3.1%), and "U71 -
Cystitis/urinary infection other” (2.9%). Notably, most of the codes represent symptoms rather than di-
agnoses. GP often records an ICPC symptom code when uncertain of the diagnosis. The distribution
of ICPC codes is uniformly the same compared to other GP practices as shown in the scientific article
conducted by “Huisarts en wetenschap”, which accounted for 957.636 consults in 2011, crossing nine

GP practices [50].
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Figure 4.2: Most ICPC categories.
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Figure 4.3: Hundred most occurring ICPC codes in the dataset.
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Top-100:Most occurring ICPC codes - SIMPLE
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Figure 4.4: Hundred most occurring simplified ICPC codes in the dataset.

4.3.1 S-rule

To accurately represent a complete "S-rule,” it is necessary to combine the "SDA-rule” and "SHA-rule”
when they do not contain the same information. In this study, the average number of words in the
"SDA-rule” was 69, while the average number in the "SHA-rule” was 35. It is noteworthy because the
GP is expected to copy the "SDA-rule” into the "SHA-rule” and add complementary notes. However,
this only occurs in some cases. The average number of words in the combined "S-rule” is 84. Itis also
worth noting that the rule often begins with the same prefix sentence: "Klacht/beloop:” (translated as
"Complaint/course?”).

4.3.2 Bias

In Figure 4.5, the percentage of each ICPC code is shown alongside its sum. The data shows that
the top 10 codes represent ~25% of the total codes, the top 20 codes represent ~38%, the top 50
codes represent ~61%, and the top 100 represents ~79%. This total indicated that the remaining
677 codes only represent ~21% of the total dataset.

Figure 4.6 shows the dataset’s 100 least frequently occurring ICPC codes. Many codes are
recorded only once, twice, or thrice, which may indicate that they represent rare diseases or potentially
incorrect or misspelt codes. It is essential to consider whether these codes should be included as
potential diagnoses. The codes’ low frequency may negatively impact the model’s performance in
predicting more commonly occurring codes.

In Appendix A, further data analysis is done on the age and sex distribution in the dataset.
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Figure 4.5: Distribution and the sum of ICPC codes in the dataset.
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Chapter 5

Research questions

Previous sections provide context and background information on the problem statement being ad-
dressed and identify some research gaps and practical issues. These issues can be reformulated as
research questions, which can be further refined into sub-questions to aid in answering or validating
the main research question. The main research question for this study is: “How can a RoBERTa lan-
guage model be used for predicting diagnoses based on patient-reported symptoms?” Sub-
research questions have been formulated to help address the main question.

1. What is the most effective method for transforming SOAP notes and questionnaire data
to train a RoBERTa diagnoses prediction model?

The existing data comprises SOAP notes presented in natural language, while the question-
naire data is structured in a tabular format. It is essential to devise an optimal method for
transforming the questionnaire data into natural language, maximising the inclusion of valuable
information while minimising the extent to which the model needs to undergo fine-tuning to
achieve high diagnostic performance.

2. How can data from the SOAP note dataset link an ICPC code to the anonymous ques-
tionnaire data?

Before training, it is necessary to determine the eventual diagnosis/ICPC code assigned by a
GP based on the questionnaire and consultation. Fortunately, the SOAP note dataset includes
the SOAP note from the respective questionnaire. Previously, an ICPC code/SOAP note could
be linked to a questionnaire through a ID field, but the field has since been removed. To validate
or train the model on a as large as possible dataset it should be investigated how ICPC codes
can be linked to questionnaires without the use of the removed field.

3. What is the performance of the diaghoses prediction model against established baseline
models?

The RoBERTa language model’s complexity may exceed the requirements of the current task,
and a simpler model could achieve comparable results with lower computational costs. Train-
ing and validating baseline models on the same dataset as the RoBERTa model can assess
whether the enhanced performance of the RoBERTa model justifies its use over the baseline
models.

4. What strategies can improve the model’s performance to predict ICPC codes?

As observed in section 3.3: “Diagnosis Prediction using machine learning”, various strategies
and architectural modifications have been implemented on BERT to enhance its performance
in specific tasks. The hierarchical structure of ICPC codes presents an opportunity for poten-
tial model improvement if appropriate modifications are made to the architecture or training
procedures.

5. How can the model’s performance be validated for diagnosing patients using ICPC codes?

The diagnostic process employed by Dutch GPs is only partially captured by providing a sin-
gle diagnosis. As discussed in chapter 2: “Background”, GPs conduct a differential diagnosis,
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considering multiple possible diseases or diagnoses. However, the ground truth data only com-
prises a single ICPC code. During the validation process, it is essential to acknowledge that
the model’s predicted diagnosis could be considered equally valid compared to the single ICPC
codes. Two GPs may potentially employ different ICPC codes with nearly identical definitions
for the same S-rule.

6. What is the relationship between the model’s performance and the inclusion of specific
questionnaire questions and answers as input features for the model?

A questionnaire typically can consist of a large number of questions and answers. However, not
all questions hold the same level of significance for a GP. Similarly, in the context of machine
learning models, specific questions can significantly enhance the diagnostic capability of the
model. In contrast, excluding specific questions may not impede its diagnostic performance or
even improve it. Removing questions and answers may also simplify the complexity of the input
data of the model which can have a positive impact on the performance.

7. To what extent can current knowledge of diagnoses, symptoms, and causes in the med-
ical field be used for predictions?

The available data primarily comprises general practice consultations, comprising substantial
information regarding the relationship between symptoms, diagnoses, and diseases. These
consultations hold the potential to establish connections between a patient’s narrative and a
specific diagnosis, thereby potentially enhancing the model in diagnosing patients with similar
narratives. In this study, it is essential to employ a method that effectively uses the entirety of
this data and knowledge to maximise its information for the model.

8. Which XAl method is most effective at explaining the predictions of a diagnoses predic-
tion model to Dutch general practitioners?

The presence of “black boxes” and non-interpretable machine learning models poses a chal-
lenge in the medical domain. GPS must have access to explanations regarding the decision-
making behind a diagnosis prediction. Such explanations enable GPs to gain insights into the
contributing questions and answers, serving as a valuable second opinion. Moreover, these ex-
planations can cause the GPs to understand the underlying decision-making behind the model’'s
predictions, facilitating a more informed decision-making process for the GPs themselves.

9. How does the use of the diagnoses prediction models impact the efficiency of Dutch
GPs?

As shown in chapter 3: “Related works”, numerous studies highlight the potential disparity
between a medical prediction model’s performance as suggested by a validation set and its
actual performance. To accurately measure the model’s performance, it is crucial to evaluate
it using real-world use cases and involve Dutch GPs in the assessment process. Additionally,
the model’s explainability plays a crucial role in the diagnostic process of GPs. This aspect can
also be measured by examining whether the model effectively enhances the GP’s diagnostic
process and if the provided explanations accurately represent the model’s decision-making.



Chapter 6

Methodology

Research questions were formulated in chapter 5: “Research questions” that address the problem
statement and research gaps. This chapter contains the methodology on which and what is needed
to answer these questions. The three following chapters (chapter 7: “Dataset”, chapter 8: “Diagnoses
prediction model” and chapter 9: “Explainability”) implement the methodology and provide an in-depth
overview of the techniques that are proposed. These chapters also contain the results of the study.

The provided data for this study comprises 2.2 million textual consulation, specifically in the form
of SOAP notes, as observed in chapter 4: “Source data”.

In chapter 3: “Related works” it was noted, that training a language model to be domain-specific
can enhance its performance. Hence, for this study, a BERT-based language model was selected.
The section also specified how BERT works and how to train a BERT model which will be further
investigated in the following sections. Moreover, previous studies have emphasised the significance
of explainable predictions, particularly in the context of medical prediction models. However, it is worth
noting that XAl methods often lack proper validation as shown by Nauta et al.[3]. To address this gap,
this research aims to conduct validation, for instance, through the implementation of a user study.

To provide an overview of the following sections, a summary of the steps can be found in Table 6.1,
serving as a roadmap for the study.

Steps

. Connect ICPC codes to questionnaire data

. Transform questionnaire data to natural language
. Pre-train model to be domain-specific

. Fine-tune model to predict ICPC codes

. Validate the model

. Make the model explainable

. Conduct user study

N~ OIN|—=

Table 6.1: Identified roadmap

6.1 Connecting ground truth

The questionnaire data has no ground truth (ICPC code) by default. In the SOAP note dataset, the on-
line consultation following the Spreekuur.nl questionnaire should be present. A ground truth is needed
to train and validate a machine-learning model. In total, there are 58,651 questionnaire entries. Till
March 2022, the SOAP notes and questionnaire data could be connected via a “spreekuur_koppel_id”,
but this feature was removed. Topicus decided to remove the feature to anonymise the question-
naire data and create a separation of concerns between applications. The questionnaire data is
anonymised but potentially can be linked to the corresponding SOAP note in the SOAP note dataset
by person-related information such as sex, age and time of completion.

Furthermore, data made available for this study consists of SOAP notes and questionnaire data.
Questionnaire data differs from SOAP notes as it only consists of tabular questions and answers, and
SOAP notes are text. First, the questionnaire data must be processed to textual data corresponding
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to the S-rule as it represents the subjective patient-identified symptoms. The S-rule allows the model
to train on both datasets, making training the model on the questionnaire data less complex as the
data dimensions are significantly reduced.

The details of how the questionnaire data is connected to a ground truth, how the questionnaire
data is transformed into S-rules, and how the datasets for this study are generated are described in
chapter 7: “Dataset”.

6.2 RoBERTa

In this study, a variation of BERT, a state-of-the-art natural language processing model, will extract
medical representations from input data to predict a diagnosis. The use of BERT is justified by its
strong performance on medical benchmarks for predicting diagnoses or diseases[44]. As seen in
chapter 4: “Source data”, most of the data consists of text which would require a language model
to process. The large amount of SOAP notes in the dataset can be utilised to extract existing med-
ical information and knowledge from consultations. To diagnose a patient based on the answers of
Spreekuur, the tabular data from a questionnaire must be transformed into natural language for the
language model to process it. BERT can produce better representation than other transformer-based
language models as it does not focus on translation or generation. BERT can provide representations
which can have a deeper understanding of the context of a sentence because BERT looks at the
input sentence bidirectionally. In some cases, BERT is surpassed by domain-specific implementa-
tions such as BioBERT. More recent variations of BERT, such as RoBERTa, show increased perfor-
mance compared to BERT overall. The available data in this study consist of SOAP notes of Dutch
GPs and questions/answers of patients from the questionnaires. A domain-specific implementation
of BERT/RoBERTa can increase the model’s diagnostic ability by creating better representations for
medical data.

There are two options for training a BERT/RoBERTa model on medical data: 1) Train on an
existing pre-trained model such as BERT base, BioBERT, or RoBERTa base, or 2) Pre-train a BERT
/ RoBERTa model from scratch. Pre-training a model from scratch requires a large amount of data
to train and update all randomly initialised parameters, and the available data in this study may not
be sufficient to do so as pre-trained models such as BERT, BioBERT, and RoBERTa are trained on
billions of words and millions of lines, providing realistic representations.

Another option is to train on an existing pre-trained model. Trained BERT models are language
specific as they are mostly only trained on data from one language. Domain-specific BERT variants
such as BioBERT only perform well on English medical data. Therefore, Dutch medical data would
require a BERT model trained on a Dutch corpus. RobBERT[17], a RoBERTa-based language model
trained on the Dutch OSCAR dataset [51], is currently the state-of-the-art performing Dutch BERT
model on Dutch NLP benchmarks. RobBERT can be further pre-trained with the medical data in this
study to make it domain-specific to the medical field of Dutch GPs.

There are two options when pre-training a RoBERTa model further on medical data: 1) Use the
original vocabulary and extend pre-training on domain-specific data, or 2) Extend pre-training on
domain-specific data but use a new vocabulary. Using the original vocabulary allows the use of the
same trained tokenizer. However, it has the limitation that out-of-vocabulary words (OOVs) may not
be correctly tokenized and may be split up into sub-words or characters, changing the meaning and
representation. Using a new vocabulary can have the caveat of losing how the new token embeddings
are linked to the presentations in the pre-trained model.

Verkijk et al. (2021) [52] created a domain-specific RoObBERT model using Dutch electronic hos-
pital notes. The authors used approximately 10 million notes from two Dutch hospitals. They trained
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two different models: A trained RoBERTa model from scratch and a pre-trained RobBERT model
with a new domain-specific vocabulary and frozen transformer layers. They found that when sufficient
domain-specific data is available, a model pre-trained from scratch yielded the best performance. The
model was unavailable; otherwise, it could have been used as a basis for this study.

Chalkidis et al. (2020) [53] created a legal domain-specific BERT model by using over 350 thou-
sand legal documents. They also trained two models (one from scratch and one further pre-trained)
and concluded that the model’'s performance depended on the task, and no clear model was the best.

It is chosen to explore the same strategy as Verkijk and Chalkidis et al. and further train RobBERT
to be domain-specific to the Dutch medical fields. chapter 8: “Diagnoses prediction model” shows how
the final “diagnoses prediction model” was made and what architectural decisions were made.

6.2.1 Vocabulary transfer

In their studies, Mosin et al. (2022)[54] [55] investigated the use of vocabulary transfer for improving
the performance of language models in biomedical texts. The need for vocabulary transfer arises
when the dataset used for fine-tuning contains rare words or word fragments that are not present in
the pre-training dataset. Implementing a new specific tokenisation scheme can enhance the model’s
performance by adequately tokenising and representing these rare words. Mosin et al. showed that
using vocabulary transfer for biomedical texts can improve the performance of medical text dataset
benchmarks by up to 10%. The authors experimented with two different token initialisation heuristics:
1) If a token in the new vocabulary coincides with a token in the old vocabulary, they assign the old
token’s embedding to the new token. 2) For new tokens that cannot be directly mapped to old tokens,
they split the new token into a partition of several tokens from the original tokenisation. For each such
partition, they calculate the minimum number of tokens and choose the partition with the smallest
number of tokens. In the case of ties, they choose the partition that contains the most extended
token. All token embeddings in the chosen partition are then averaged to produce a single average
embedding for the new token. Overall, Mosin et al’s results indicate that vocabulary transfer can be
an effective approach for improving the performance of language models on biomedical texts. The
results and implementation of the tokenizer can be found in section 8.2: “Tokenizer”.

6.2.2 Pre-training

As specified in chapter 3: “Related works”, BERT uses two training objectives, “Masked Language
Model” (MLM) and “Next sentence prediction”(NSP), to learn its representations. Other works ex-
tending BERT have shown that additional training objectives for domain-specific tasks can improve
performance. Among other changes, the most significant change RoBERTa made to the BERT archi-
tecture was removing the “next sentence prediction” task in BERT. The authors of RoBERTa[40] show
in their paper that the NSP task does not increase performance and even get higher performance with
the task removed. Van Aken et al. [44] added a training objective called CORe to BioBERT which
predicted if diagnoses and treatments were indeed part of the symptoms or risk factors in a health
record. With the CORe task, they managed to get state-of-the-art performance in ICD-9 diagnoses
prediction tasks. They showed that it is possible to predict diagnoses based on symptoms using
1266 possible ICD-9 codes. CORe, like NSP, separates an input sequence into two parts. CORe
splits sequence ¢ into tny 1., € An and into thy,, € Dy Where A is the admission of the sequence
D is the discharge note of the sequence. They train the model to maximise P (Py | Xy_n) Where
Xn_n~n = Enc (tN,lmk,ti\m_“k) an Py is the patient corresponding to sequence t. Just like NSP, they
use negative sampling for 50% of the examples. The model’s final implementation and results after
pre-training can be found in section 8.3: “Masked Language modelling/ pre-training”.
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6.2.3 Classification

BERT and RoBERTa output a representation vector for each token in the input sequence. It is impor-
tant to note that the special tokens [CLS] and [SEP] are added to the input. [CLS] is added in front
of every input example, and [SEP] is a separator token used for the NPS task(not used in RobBERT
and RoBERTa) or question answering. The representation vector for the [CLS] token can be used
for classification as it represents the entire sequence of tokens. The representation vector can be
fed as input to an additional sequential layer or neural network for classification. For predicting ICPC
codes, the neural network output would be the same as the number of ICPC codes. The output must
pass through a “soft-max” layer to produce probabilities for each code. section 8.4: “Classification”,
shows how the pre-trained model is trained on SOAP notes and how it can classify ICPC codes. It
also explores multiple architectures to classify ICPC symptoms and ICPC diagnosis/disease codes
separately.

6.2.4 Explainability

BERT and RoBERTA are considered “black-box” models because their inner workings and the rea-
soning behind its predictions are not easily interpretable. As explained in chapter 3: “Related works”,
LIME can be used to explain any black-box model. LIME works by training a locally faithful, inter-
pretable model (also known as a "white-box” model) to explain the predictions of the black-box model.
LIME can be used to highlight the specific words, answers, or symptoms that had the most impact
on the model’s prediction, providing doctors with valuable insights into the model’s decision-making
process and allowing them to assess the reliability of the prediction, as seen in Figure 6.1. To obtain
these explanations, LIME minimises a loss function by finding the values of the locally faithful model
that best fit the prediction made by the black-box model by using Figure 6.2. The loss function is
minimised so that probability f(x) belongs to a particular class where ,.(z) is a proximity measure
between instance z to z to define the locality around z. The complexity of the explanation is measured
by a function called §2(g), which can vary depending on the specific interpretable model being used
(e.g., the depth of a decision tree). G is a class of interpretable models. LIME was shown to explain
the predictions of BERT models[56] effectively.
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Figure 6.1: How LIME can be used to explain a diagnosis. Taken from the original LIME paper from Ribeiro et
al.[2].

§ = argminL (f, g, 7) + Q(g)
geg

Figure 6.2: Minimising LIME loss function

In chapter 9: “Explainability”, the LIME text-module is applied to ICPC codes and a modified LIME
method is proposed and validated for explaining diagnoses to GPs.
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6.3 Validation

To validate the model in this study, three dataset splits for training, testing, and validating the model
should be created. To achieve a fair validation, the ICPC codes the dataset should be distributed
equally among each set. The testing set should be composed of 10% of the entire dataset, while the
remaining 90% is split into training, and 10% should be taken for a validation set. The training set is
solely used for training. The model is never updated on the validation or test set to ensure the model
does not overfit, and the performance metrics are as accurate as possible.

Accuracy-at-x is a commonly used performance metric for evaluating diagnosis prediction models
and symptom checkers. It refers to the accuracy when the ground truth diagnosis is among the top x
predictions. The metric is often used in diagnosis prediction and symptom checkers papers because
it aligns with the method used by medical professionals to diagnose patients. Other measures should
consider that multiple ICPC codes may be suitable for a single S-rule as there may not be enough
information in the S-rule to make a single diagnosis. When training a BERT model, it is important to
consider its accuracy and loss, as the final neural network layers are updated based on the loss. In
this study, it is necessary to conduct experiments on the model’s loss function, as ICPC codes have a
hierarchical structure. As mentioned earlier, the data used in this study may contain biases that could
impact the model’s performance. The model may achieve good results because it has learned to
rely on these biases or struggle because of them. To address these biases, the loss function can be
made uniform and, for example, increased for rare ICPC codes. The performance of these methods
should be analysed by examining the model’s confusion matrix, precision, recall, and f1 scores to
identify biases and the actual performance of the model. section 8.6: “Performance” specifies which
performance measures were used precisely in this study and the performance of the final model on
these measures.

6.4 User study
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