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Abstract

In this study, a Dutch variant of the RoBERTa language model known as RobBERT was

made domain-specific to the domain of Dutch general practitioners(GPs). The model was

trained and fine-tuned using 2.2 million user-identified symptoms (S-rules) derived from

SOAP notes(Subjective, Objective, Assessment and Plan).

Spreekuur.nl is an online consultation application that requires users to complete a ques-

tionnaire before participating in an online consultation. A GP can review the answers to the

questionnaire to help them diagnose the patient. Currently, full agendas and heavy work-

loads burden Dutch GPs because they are the primary point of contact for receiving health-

care in the Netherlands. This study aimed to help alleviate the workload of GPs by predicting

diagnoses based on the answers to a questionnaire.

First, the questionnaire data was converted into the text format of an S-rule(user-identified

symptoms), resembling an S-rule written by a Dutch GP. The S-rule specifically concerns the

Subjective symptoms and patient’s narrative without a further medical examination. An S-

rule is part of a SOAP note which is the documentation standard for Dutch GP to document

a consultation.

ICPC codes are a standard GPs use in consultations to standardise and document a

patient’s diagnosis and are present in each SOAP note. ICPC codes were used to classify a

diagnosis based on the S-rule.

A new classification head was introduced, enabling the separate classification of ICPC

symptom codes and ICPC disease/diagnosis codes.

To align with the diagnostic decision-making process of GPs, a threshold function was

implemented to determine the number of ICPC codes returned. The threshold function out-

performed the simple approach of returning only the top three codes while providing fewer

than three codes on average. When predicting ICPC symptom codes, the threshold function

achieved an accuracy of 90%; for ICPC diagnosis/disease codes, the accuracy was 88.6%.

Notably, when evaluating the model’s performance on the generated S-rules from the ques-

tionnaire dataset, the accuracy was 87.6% for ICPC symptom codes and 86.5% for ICPC

diagnosis/disease codes. A LIME symptom-module was proposed. The symptom-module

is an adaptation of the LIME text-module. The symptom-module generates various sam-

ples of a text by removing words and tokens. The model then generates output probabilities

for these samples, and the probability changes are utilised as training data for a white-box

model. The white-box model aims to identify the most important symptoms for each ICPC

diagnosis/disease code.

Furthermore, a user study was conducted with five participating general practitioners, of

which four participants found that the model contributed to their diagnostic ability by sug-

gesting ICPC codes. Three participants found the explanations generated from the symptom

module to improve their diagnostic ability, while further fine-tuning is needed.

Keywords— Diagnosis prediction, Language model, ICPC codes, SOAP notes, LIME symptom

module
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Chapter 1

Introduction

Worldwide, ageing populations, pandemics such as COVID-19, and the economy are slowly encum-

bering countries’ healthcare systems[4][5]. Currently, full agendas and heavy workloads burden Dutch

GPs because they are the primary point of contact for receiving healthcare in the Netherlands[6]. The

pandemic has had its upsides, during the pandemic, new technologies and ideas emerged for taking

online consultations[7].

One of these techniques was the Spreekuur.nl1 website. Spreekuur.nl is an online triage consul-

tation tool created by Topicus2 and DigiDok3. The website lets users fill in a question-by-question

questionnaire regarding their health, area of complaint and symptoms. At the end of the question-

naire, the user is redirected to a self-help website called Thuisarts.nl4 if their health complaint can

be handled by themselves, redirected to a hospital if their health complaint is sufficiently dangerous,

or lastly, the user is invited to an online chat with their general practitioner. When the GP accepts

the chat, the GP can see a summary of the answers to questions in the questionnaire. DigiDok

created these questionnaires in regulation with the NHG(ªDutch general practitioners associationº)[8]

and NTS(ªDutch Triage Standardº)[9]. The questionnaires are validated by a team of expert GPs,

professors and triagists, giving improvements and commentary. Topicus is the developer and creator

of Spreekuur.nl and other applications including VIPLive5 and SpoedEPD6. These applications are

used nationwide by GPs and healthcare organizations in the Netherlands. Topicus has the unique

position to use a large amount of data and knowledge gathered, which are normally not available to

the general public.

Topicus and DigiDok want to use Spreekuur.nl to further alleviate Dutch GPs by presenting a list of

predicted diagnoses to them based on the answers acquired from the questionnaire. Machine learn-

ing is already being used for medical applications across different fields[10] and has state-of-the-art

performance in for example cardiology[11], diagnostic imaging[12] and disease prediction[13]. A di-

agnoses prediction model can help practitioners by finding correct diagnoses codes more efficiently

and serve as an extra helping hand when conducting a differential diagnosis.

A major hurdle in machine learning and especially in the healthcare sector, is explainable artifi-

cial intelligence(XAI)[14][15]. Best-performing models often use deep learning techniques to predict

and learn, which is not readable to humans. Deep learning models are considered a black box. In

healthcare, experts want to know for certain if a model is making predictions for the right reasons and

if the network is not ªcheatingº or taking ªshortcutsº[16]. The predicted diagnoses should be substan-

tiated with explanations and reasons, such as correlated symptoms. XAI helps GPs understand how

the model came to these conclusions and helps GPs crosscheck predictions with their knowledge to

make a final diagnosis.

1https://Spreekuur.nl
2https://Topicus.nl
3https://Digidok.nl
4https://Thuisarts.nl
5https://viplive.nl
6https://viplive.nl/viplive-voor-u/huisartsenposten/spoed-epd
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CHAPTER 1. INTRODUCTION 2

The open-ended questions in the questionnaire for patients to report the progression of their health

complaints offer valuable information. Hence, a RoBERTa Language model was adapted and trained

in this study. The primary research question is thus formulated as follows: ªHow can a RoBERTa

language model be used for predicting diagnoses based on patient-reported symptoms?º An

additional research question aims to identify the most effective approach for explaining the diagnoses

prediction model’s generated predictions to GPs. The secondary research question is: ªWhich XAI

method is most effective at explaining the predictions of a diagnoses prediction model to

Dutch general practitioners?º

In this study, a Dutch variant of the RoBERTa model is trained called RobBERT[17] on 2.2 million

user-identified symptoms (S-rule), which were present in written SOAP notes. ICPC codes are used

by GPs in consultations to standardize and document a patient’s diagnosis; hence they are used as

a ground truth for training en predicting diagnoses. To obtain the diagnosis of the health complaints

when a patient filled in a questionnaire, 17 thousand filled out questionnaires were connected to the

SOAP notes. These 17 thousand questionnaires were converted from tabular data into a textual form

mimicking the S-rule in written SOAP notes. One of the key challenges encountered in this study was

implementing a hierarchical structure to predict ICPC codes. Multiple ICPC codes may be appropriate

for a given S-rule, and GPs may assign different codes for the same S-rule. The variability in ICPC

codes reduces the learning ability of the model. It impacts the performance measures of the model,

as a conventional loss function does not account for the possibility of multiple appropriate codes for a

given S-rule.

To address this variability in ICPC codes, a modification was made to the classification head of the

RoBERTa model by creating a separation between symptoms and diagnoses/diseases. The modifica-

tion allowed the model to predict both ICPC symptom and ICPC diagnosis/disease codes separately.

The modification could predict 318 ICPC symptom codes and 361 ICPC diagnosis/disease codes.

After training, the model obtained an overall accuracy of 51.4%. A new performance measure was

added: the top-3 accuracy for predicting ICPC symptom codes was 88.6%, and the top-3 accuracy

for predicting ICPC diagnosis/disease codes was 87.5%. A threshold function was also added, which

more efficiently chose how many ICPC codes it should suggest to the GP. The threshold function got

an accuracy of 90% for suggesting ICPC symptom codes and 88.6% for suggesting ICPC diagno-

sis/disease codes.

To improve the explainability of the model, a new ªsymptom-moduleº is added to LIME[2]. The

symptom-module utilised changes in the text to identify which symptoms significantly influenced the

model when predicting ICPC diagnosis/disease codes. To validate the model’s performance and to

measure the interpretability of the explanations, a user study was conducted with five GPs. Each

GP rated the suggested ICPC codes and explanations of the models on ten different real test cases.

The user study emphasised the key challenge of this study by showing the variability of ICPC codes.

The five GPs were first shown five of the same cases and chose 13 different ICPC codes between

them. The user study concluded that the diagnoses prediction model and explanation helped the

participants’ diagnostic ability. The main improvement is in optimising and fine-tuning the explanations

and suggested ICPC codes to reduce the number of mismatched keywords, symptoms and suggested

ICPC codes. The GP chose a suggested code in 90.0% of the cases, which signifies that the actual

performance of the model is higher than the standard top-3 performance measure may indicate.
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1.1 Outline

The outline of this study is as follows:

First, a description of relevant information about the Dutch healthcare system and general practition-

ers is provided in chapter 2: ªBackgroundº. In chapter 3: ªRelated worksº, relevant papers to this

study are explored. chapter 4: ªSource dataº, provides a description and analysis of the source data.

The Research questions are formulated in chapter 5: ªResearch questionsº. chapter 6: ªMethodol-

ogyº, provides the methodology of this study. chapter 7: ªDatasetº prepares the dataset for training

the model. chapter 8: ªDiagnoses prediction modelº, describes the model’s training and validation.

chapter 9: ªExplainabilityº adds a new explainability method to explain a diagnosis using symptoms

and shows the results of the user study. The results are discussed further in chapter 10: ªDiscussionº

with a brief overview for future works. Finally, a conclusion is found in chapter 11: ªConclusionº, which

answers all research questions.

1.1.1 Walkthrough guide

• For readers who prefer a concise overview, it is recommended to read the following chapters:

chapter 8: ªDiagnoses prediction modelº, chapter 10: ªDiscussionº, and chapter 11: ªConclu-

sionº. These chapters provide an overview of the study’s main findings.

• Healthcare professionals are encouraged to at least read chapter 4: ªSource dataº for its data

analysis on ICPC codes, chapter 9: ªExplainabilityº for an explanation of how the output of the

machine learning model is used to explain a diagnosis, and in particular, section 9.2: ªUser

studyº that validates the model’s explanations and ability to predict ICPC codes.

• For those interested in the technology behind the study, it is recommended to begin with

chapter 2: ªBackgroundº to understand how the Dutch healthcare system works. chapter 3:

ªRelated worksº provides context on how chapter 6: ªMethodologyº is substantiated. chapter 8:

ªDiagnoses prediction modelº demonstrates how the RoBERTa model is implemented with a

new classification head, and its performance and validation. Finally, chapter 9: ªExplainabilityº

explains how the last linear layer of neurons can be split up to explain a model via symptoms

and diagnosis. chapter 11: ªConclusionº concisely answers all research questions.



Chapter 2

Background

Healthcare systems vary widely per country; this section looks into the Dutch healthcare system and

Dutch GP standards. The ªGatekeeping principleº and ªtriageº of the Dutch healthcare system will

be explained. Dutch GP standards such as differential diagnoses, SOAP, and ICPC codes will be

described.

2.1 Dutch general practitioners

The Dutch healthcare system differs from other systems worldwide, with a key characteristic being the

ªgatekeeping principleº. Under this principle, patients must be referred by their general practitioner

(GP) to receive hospital or specialist care. This principle makes primary care in the Netherlands more

dominant than in other countries. Dutch GP practices can be divided into two categories: a general

practice that is open during the day and handles non-urgent care, and a general practice emergency

centre that is open during the night and weekends and handles urgent care cases when a regular

general practice is not available or unable to meet the patient’s medical needs.

Dutch GPs have broader profiles and specialities because of the ªgatekeeping principleº, which re-

sults in most visits not ending with a referral to a hospital or specialist[18]. Dutch GPs are overworked

because they need to handle more patients in the same amount of time, making consultation time per

patient shorter[19][20].

In the following sections, it will be explained how triage is performed, how a Dutch GP finds a dif-

ferential diagnosis and how consultations are documented in a EPD using SOAP notes and ICPC

codes.

2.1.1 Triage

When calling a GP practice, GP emergency centre or hospital for a health-related issue, a triagist or

doctor’s assistant will pick up the phone. The triagist or doctor’s assistant will take the caller through

a triage process to calculate the urgency of the caller’s health problem. Triage consists of a series

of questions and measures the degree of urgency in patients. Triage causes more severe cases to

urgent care sooner by applying a ªTreat first what kills firstº or ABCD policy[21]. Most countries have

their own triage standards or use the International Triage Standard (ITS)[22]. The healthcare system

and GPs in the Netherlands use NTS[9], which consists of five steps:

1. ABCD-safe - Are complaints life-threatening?

2. Category of complaint

3. Determination of urgency

4. Follow-up action for patient

5. Advice for patient

There are six different urgency levels in the NTS:

1. U0: Failure of ABCD - reanimation needed.

4
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2. U1: Unstable ABCD - Directly life-threatening (seek care immediately).

3. U2: Threatening ABCD or organ damage (seek care as soon as possible).

4. U3: Reasonable chance of damage (seek care within a few hours).

5. U4: Negligible chance of damage (seek care within 24 hours).

6. U5: No chance of damage.

DigiDok modified NTS to create questions in the questionnaire. Only five of six urgency levels are

used because a U0 patient cannot complete a questionnaire. The first questions in Spreekuur.nl will

always make sure the patient is ABCD-safe. In the case of ABCD-unsafe, the patient will be asked

to seek immediate help. During the questionnaire, urgency levels are calculated to help patients in

need of urgent care and to alleviate the workload of GPs by giving self-care advice to lower urgency

patients.

2.1.2 Differential diagnosis

During a consultation with a patient, the practitioner will try to find a differential diagnosis[23]. To find

an appropriate diagnosis, GPs will first listen to medical information, health complaints, and symptoms

according to the patient. Practitioners will ask more in-depth questions based on given complaints.

This process is called anamnesis and offers practitioners an idea of what actions must be taken next.

Practitioners will take a medical examination of the patient, if necessary, based on the anamnesis.

Now, a differential diagnosis can be made by practitioners. Practitioners factor in each symptom

and evidence from anamnesis and examination to argue for and against diagnoses and correlate

them to the most probable diagnosis. Typically the differential diagnosis consists of between one

and three different potential diagnoses. The differential diagnosis requires experience and expertise

and requires GPs to weigh in medical calculations, per-patient differences, and personal intuition[24].

In cases where a GP is unsure about the diagnosis, a less specific diagnosis or symptom is given

instead. With the diagnosis, a prognosis can be given. The diagnosis and prognosis can be aided

by the use of resources such as NHG[8] and Thuisarts[25]. These resources provide guidelines,

anamnesis questions, and other relevant information to help with the diagnosis and prognosis.

2.1.3 SOAP notes

The previous section explains how a GP traverses a consultation to obtain a differential diagnosis and

prognosis. Consultations are documented in an electronic health record(EHR) or EPD in Dutch. EPDs

serve as a comprehensive health record containing a patient’s medical history. A patient’s EPD can be

made available across different healthcare specialists, given the patient’s permission. Consultations

and diagnoses must be documented precisely and uniformly to keep them readable and organised for

multiple organisations and to combat information loss. Dutch healthcare professionals and GPs use a

standard called SOAP[26] to keep the EPD organised and readable. After a consultation, a SOAP(or

SOEP in Dutch) note is documented in the EPD. SOAP is an abbreviation for Subjective, Objective,

Assessment and Plan.

1. Subjective: Information and symptoms according to a patient.

2. Objective: Objective symptoms based on medical examinations.

3. Assessment: Differential diagnosis/diagnoses according to GP or health professional.

4. Plan: Prognosis and medical advice based on differential diagnosis.
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Components/ chapters A B D F H K L N P R S T U W X Y Z

1. Symptoms and complaints

2. Diagnostic, screening and prevention

3. Treatment, procedures and medication

4. Test results

5. Administration

6. Other

7. Diagnoses, diseases

Table 2.1: ICPC structure and component description.

2.1.4 ICPC codes

A SOAP note is a standardised method to document the details of a patient’s visit to a healthcare

provider. One challenge with SOAP notes is that different practitioners may interpret them differ-

ently. To address this issue, the World Health Organisation (WHO) introduced the International

Classification of Primary Care (ICPC) as a standardised system of codes for classifying symptoms

and diagnoses in primary care settings. ICPC codes have a biaxial structure and consist of 17 chap-

ters; each chapter is divided into seven components as seen in Table 2.1 and Table 2.2[27]. ICPC

codes cover a wide field of symptoms and diagnoses such as A03 Fever, N93 Carpal tunnel syndrome

or Z01 Poverty/financial problems. ICPC codes make further distinctions per code by introducing a

hierarchical structure, for example, A96 Death, A96.01 Natural death and A96.02 Unnatural death.

ICPC codes are used in many healthcare and GP systems worldwide. Dutch healthcare practitioners

use their version of ICPC codes, updated regularly by the NHG. The version of NHG biggest differ-

ence is that it only has three components: 1) Symptoms and complaints, 2) Diagnostic, screening

and prevention and 3) Diagnoses and diseases. The Assesment of a SOAP note typically contains

a maximum of one ICPC code. The ICPC code or name of the complaint/diagnosis can be inputted

onto sites used by Dutch GPs such as NHG[8] to help to find differential diagnosing and prognosing

a patient or to find an ICPC code.
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Letter Chapter description

A General and unspecified

B Blood and blood-forming organs and immune mechanism

D Digestive

F Eye

H Ear

K Circulatory

L Musculoskeletal

N Neurological

P Psychological

R Respiratory

S Skin

T Endocrine, metabolic and nutritional

U Urological

W Pregnancy, childbearing, family planning

X Female genital

Y Male genital

Z Social problems

Table 2.2: ICPC chapters and description.



Chapter 3

Related works

In this section, research relevant to this paper will be laid out. Relevant research includes XAI methods

and papers regarding diagnosing patients based on symptoms.

3.1 Symptom checkers

Over the past ten years, there has been an increase in the number of online symptom checkers.

Symptom checkers allow users to input their symptoms in various formats, such as free text, a list,

or a questionnaire, and provide a list of possible diagnoses, advice, and urgent recommendations.

This research shares a notable correlation with symptom checkers, as both focus on the diagnosis

of patients based on symptom interpretation. In this study, it is crucial to thoroughly examine the

existing research conducted on symptom checkers, as it serves as a valuable source of inspiration.

This includes using such research for validation purposes and establishing a baseline against which

the findings of this study can be compared.

Symptom checkers often include disclaimers stating that they are ªfor informational purposes

onlyº[28][[29]] and not intended to constitute professional medical advice, diagnosis, or treatment. The

disclaimer allows symptom checkers to avoid legal trouble if a diagnosis is incorrect. However, these

systems still provide diagnoses and recommendations[30]. Symptom checkers and the research

underlying them are often proprietary, making it difficult to do analysis.

Several papers have compared the performance of symptom checkers. Several methods have

been used, to measure the performance, such as comparing the diagnoses of a hand surgeon to

those of symptom checkers when provided with the same symptoms[31]. Another widely used method

involves using standardised medical vignettes, which are typically used as examination material for

doctors in training[32][33][34]. Vignettes contain a description of symptoms and a ground truth. They

are used as input to symptom checkers by one or more doctors for validation. Each study uses

different vignettes, as there is no standard for evaluation, and each symptom checker takes different

inputs. These different performance measures result in different conclusions about which symptom

checker performs best.

Most studies evaluate whether the ground truth is the first predicted diagnosis (accuracy-at-1) or

is among the top-5 predicted diagnoses (accuracy-at-5). Ceney et al. (2021)[32] measured accuracy

using a modified version of the 45 vignettes used in the study by Semigran et al. (2015)[33] and

looked at the number of questions needed to have the ground truth diagnosis listed first. For example,

Ada[35] had an accuracy of 72% with an average number of questions needed of 45.8. The worst-

performing symptom checker had an accuracy of 22% and required an average of 9.5 questions to

reach a conclusion.

Wallace et al. (2022)[30] conducted a systematic review of the performance of symptom check-

ers by comparing ten different studies on the topic. The review found that the accuracy of diagnosis

and triage among symptom checkers varied significantly between studies and overall had low accu-

racy. Additionally, the review noted that symptom checkers are not regulated, and many studies did

not specify performance measures. These findings highlight the need for standardised evaluation

methods, as previously suggested by Painted et al. in their research on the topic[36].

8



CHAPTER 3. RELATED WORKS 9

3.2 From text to machine-readable data

This study chose to utilise the BERT (Bidirectional Encoder Representations from Transformers) lan-

guage model for to diagnose patients on based on their answers in a questionnaire. chapter 6:

ªMethodologyº provides detailed insights into the rationale behind this model selection. Additionally,

the related work presented in this section describes the underlying principles of language models, the

development of BERT, and its capacity to comprehend natural language.

Words can give humans an immediate impression if the context is known. ªWampimukº, is a

non-existent word with many different definitions without context. Nevertheless, given an example

sentence: ªThe Wampimuk climbs in the treeº, the human mind can imagine a definition based on

this context. A machine learning model does not have this human intuition by default, as a word or

sentence is just byte data. Natural Language Processing (NLP) is the field of artificial intelligence

concerned with the processing and analysis of natural language data. In the following sections,

multiple NLP techniques are discussed.

3.2.1 RNNs

Recurrent Neural Networks (RNNs) are a type of artificial neural network that takes each word in a

sentence as a separate input, allowing the model to process sentences of any length. RNNs use the

current input and previous hidden states to compute the next hidden state, allowing them to capture

context across multiple steps. However, RNNs can suffer from the vanishing gradient problem dur-

ing training, where the gradient used to update the network’s weights shrinks as it backpropagates

through time. The vanishing gradient problem results in insufficient weight updates and poor perfor-

mance. To solve this problem, long short-term memory(LSTM)[37] and Gated recurrent unit(GRU)[38]

were introduced. LSTM, initially proposed in 1997, can be seen as a cell that consists of three gates:

1) An input gate that controls the input of information at each step, 2) An output gate controls the

output of information, and 3) a forget gate determines which data can be forgotten. GRU, proposed in

2014, is a small neural network at the output of each step with three layers: 1) the recurring layer from

the RNN, 2) a reset gate and 3) an update gate which acts as a coupled version of three LSTM gates.

These methods allow RNNs to carry context along multiple steps allowing for good performance at

NLP tasks. RNNs with LSMT or GRU units resulted in an excellent performance for NLP tasks due to

their memory but have the issue that it becomes harder to compute or train for longer word sequences

due to sequential calculation.

3.2.2 Attention head

In recent years, significant advancements have been made in NLP, specifically in developing machine-

learning models that address the limitations of sequential processing.

One key concept in these advancements is the use of attention mechanisms, which play a crucial

role in NLP tasks. Attention heads are components that calculate the attention of each word in a

sentence. The attention layer processes each word simultaneously and produces a vector for each

word, indicating the relative importance of other words in the sentence to that word.

Each word is pre-processed with a semantic embedding which gets multiplied by three different

weights vectors to calculate a query, key and value vector.

To calculate the attention of a specific word, the query vector associated with that word is multi-

plied by each key vector. The resulting values are then scaled and subjected to a softmax operation,

which produces scores representing the relevance of each word to the selected word. These scores

are multiplied with all value vectors to calculate the attention. Figure 3.1 illustrates this process,
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tasks such as general language understanding, question answering, and sentence pair completion

while only requiring fine-tuning on labelled data.

BERT achieved state-of-the-art performance on multiple NLP benchmarks, with successors such

as RoBERTa (2019) [40]. Among other changes, the most significant change RoBERTa made to

the BERT architecture was removing the ªnext sentence predictionº task in BERT. The authors of

RoBERTa show in their paper that the NSP task does not increase performance and even get higher

performance with the task removed.

Figure 3.4: Example from Devlin et al. al.[1] showing the architecture of BERT.

3.3 Diagnosis Prediction using machine learning

In this research it was chosen to utilise the BERT language model. However, it is imperative to

thoroughly investigate related literature concerning the prediction of diagnoses both with and without

the utilisation of language models. Furthermore, this section aims to explore the specific adaptations

made to the BERT model to enhance its predictive capabilities of diagnoses.

There has been significant research on using machine learning to predict diagnoses. Many med-

ical datasets are publicly available, and machine learning can be used to uncover patterns in these

datasets that may not be readily apparent to humans. In many cases, research on diagnosis predic-

tion focuses on predicting a single disease or diagnosis using binary output or probability predictions

(where 1 indicates the presence of the disease and 0 indicates the absence of the disease). How-

ever, this study focuses on the problem of predicting many diagnoses simultaneously. In this section,

existing research will be reviewed on diagnosis prediction and discuss how these approaches can be

applied to the problem of multi-diagnosis prediction.

Medicine is one of the oldest research fields, with millions of studies now available online from

resources such as PubMed1. A machine learning algorithm is typically built from scratch and trained

on a dataset. Zhou et al.(2014)[41] used a large-scale biomedical literature database to construct a

symptom-based human disease network. They looked at diseases and symptoms in the MeSH terms

of over 800 thousand studies. From these terms, symptom±disease relationships could be extracted,

resulting in 147,978 connections between 322 symptoms and 4,219 diseases. This research also

highlighted a challenge in diagnosis prediction, as many symptom-disease relationships are nearly

1https://pubmed.ncbi.nlm.nih.gov/
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identical. Diseases and symptoms have three causal structures: symptom S can be a direct cause of

disease D, D does not directly cause symptom S but is correlated to a common cause R or third, S is

a direct cause of D with addition to a latent common cause R is also present. Richens et al. (2020)[42]

used these causal structures to derive a counterfactual diagnostic algorithm. A counterfactual is much

like a contrastive. In contrastive explanations, a comparison of two outputs demonstrates why an out-

come occurred. On the other hand, counterfactual explanations use the current output to explain

why outcomes did not occur. Richens et al. show that existing diagnosis prediction approaches are

based on association and suffer from sub-optimal and dangerous diagnoses. Their approach, how-

ever, identifies diseases that correlate most with a patient’s symptoms. A Bayesian Network(BN) is

used, which models relationships between hundreds of diseases, risk factors, and symptoms as BNs

are interpretable and explicitly encode causal relations between variables. Diseases, symptoms, and

risk factors are binary nodes and can be either on or off.

Their counterfactual algorithm is trained on symptoms extracted from medical vignettes. It uses a

diagnostic measure for ranking the likelihood that a disease D is causing a patient’s symptoms given

evidence E. The diagnostic measure looks at the number of symptoms that need to be switched off to

cure S and the number of symptoms that would persist if all other causes of the patient’s symptoms

are switched off. The model achieved expert clinical accuracy. The diagnostic measure correlates

strongly with how a doctor procures a diagnosis. While the doctors achieved an average diagnostic

accuracy of 71.40%, the model achieved an average accuracy of 77.26%, placing in the top 48% of

doctors in their cohort.

BioBERT (2019)[43], is a domain-specific BERT model pre-trained from scratch on Pubmed and PMC

biomedical text data (18 billion words in total). BERT already achieves state-of-the-art performance

on biomedical tasks such as biomedical named entity recognition, biomedical relation extraction, and

biomedical question answering. BioBERT further improves upon its performance by adapting BERT

to the biomedical domain. Pubmed and PMC medical texts contain words not present in the corpus

used to train BERT, which are tokenized into stemmed words or individual characters. BioBERT can

correctly tokenise these words by pre-training from scratch and learn a domain-specific context that

the pre-trained BERT model could not accurately represent.

Van Aken et al. (2021) [44] further pretrained and fine-tuned BioBERT by adding training objectives to

learn relationships between admissions and outcomes. This objective, CORe, is similar to the ªNext

sentence predictionº task in the original BERT paper [39]. Instead of predicting whether a sentence

is the next sentence in a sequence, CORe predicts whether an admission is the follow-up admission

of the first admission. Van Aken et al. also applied the same strategy to medical articles and case

reports, predicting whether a treatment, prognosis, or diagnosis results from symptoms or risk factors

in a symptom-outcome pair. With the additional training objective, Van Aken et al. achieved state-of-

the-art performance on diagnoses, procedures, in-hospital mortality, and length-of-stay prediction on

the MIMIC 3 dataset, which consists of electronic health records. The dataset contains 1266 unique

ICD-9 codes, which could be predicted with an AUROC of 83.54%.

3.4 Explainable AI

As computing power and deep learning techniques have improved over the years, the performance

of many medical tasks has also increased. However, increased model complexity and structure can

result in ªblack boxº models with internal inference processes that humans cannot interpret. BERT is

an example of a ªblack-boxº as it decision making can not be derived from looking at the parameters
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and structure of the model itself.

Explainable Artificial Intelligence (XAI) is a field of machine learning that focuses on increasing

the transparency and interpretability of AI-driven decisions without sacrificing performance[45]. XAI

has been increasingly adopted in the healthcare industry due to its ability to enhance the accuracy of

clinical decision-making and reduce the risks associated with incorrect diagnoses or treatments. By

providing clear explanations for AI-driven decisions, XAI can help to reduce bias, improve fairness,

and increase trust in machine learning models. XAI can also help healthcare practitioners understand

the logic behind AI-driven decisions and make more informed decisions.

There are two approaches to explaining a machine learning model: intrinsic and post-hoc. An

intrinsic explanation refers to a model that is self-explaining or ªtransparentº and is not considered a

ªblack boxº but a ªwhite boxº. A post-hoc explanation, on the other hand, is an explanation that is

generated by post-processing the model’s output and structure to fabricate an explanation. Arrieta et

al. (2019)[45] provide a detailed overview of the different methods and approaches used in XAI. They

note that XAI has different categories of explainability and goals depending on the target audience.

The primary aim of XAI is to increase the trustworthiness of AI-driven systems. Additionally, there is a

distinction between local and global explanations. A local explanation focuses on explaining a single

prediction, while a global explanation is concerned with explaining the behaviour of the entire model.

When designing an XAI system, it is essential to consider the target audience and the goals of the

AI. The target audience will influence the methodology and techniques to make the AI explainable.

Danilevsky et al.(2020)[46] performed a survey regarding XAI for NLP models and identified five

primary explainability techniques:

1. Feature importance: Use the importance score of different features to derive an explanation.

2. Surrogate model: Predictions are explained by an explainable proxy model. The proxy model

can have a different mechanism leading to concerns about the fidelity of the model[2].

3. Example-driven: Explain the output by presenting other semantically similar examples[47] [48].

4. Provenance-based: Explain by illustrating the prediction derivation process.

5. Declarative induction: Induce human-readable representations such as rules and trees to make

the model more explainable.

There is, however, yet to be a consensus on how to evaluate the explainability of an AI, as explain-

ability differs per use case and is subjective. Nauta et al.(2022)[3] who conducted a systematic review

of XAI, defined 12 explanatory quality properties called the Co-12 properties(e.g. correctness, con-

sistency, confidence) and present an extensive quantitative overview of XAI evaluation methods. An

example of one of the most well-known XAI methods is LIME. In 2016, Ribeiro et al.[2] proposed a

Local Interpretable Model-Agnostic Explanation (LIME) method for generating interpretable explana-

tions of black box machine learning models. LIME trains an interpretable white box classifier, such

as a decision tree or linear classifier, by optimising the loss function on local data surrounding a

given prediction. LIME can explain any machine-learning model and is an example of a surrogate

model. LIME can explain text by generating slight variations of an input sentence and using the new

probabilities as training data for an interpretable classifier.



Chapter 4

Source data

For this study, the data is supplied by Topicus. The data includes the questionnaire data from

Spreekuur.nl and data containing SOAP notes from general practitioner practices from SpoedEPD.

The supplied data is described and analysed in this section.

4.1 Questionnaire data

Spreekuur.nl provided questionnaire data in .XLSX format from 3 March 2021 to 23 December 2022.

Totalling 79,215 data entries when combined and when duplicates were removed. Each entry is a

ªstartedº questionnaire, which can contain more than 100 columns. Many data entries can be fil-

tered because questionnaires that are not completed or instances where users are triaged out (high-

urgency) cannot be connected to a ground truth. Each question has an identifier; e.g. ATC 100,

BKH 080, HOO 280. Each question can have three possible question types, open(string), input(int)

and choice(int). Each answer and question identifier can be linked back to the text of the question via a

lookup table. Integer values and definitions of an answer are not consistent across questions. A value

of 0 may mean ªNoº for one question and ªYesº or ªMaybeº for another. The dataset matrix is dense;

each question has a value even if not seen or filled in by the user (presented by value ª999999º).

An entry example can be found in Table 4.1. The first question in Spreekuur.nl separates the ques-

tionnaire into 24 different categories based on input complaints like ªskin complaintsº, ªcoughingº or

ªthroat soreº. Choosing the input complaint most relevant to the patient’s health complaint will result

in the most relevant questions being asked. For example, choosing ªThroat soreº results in questions

about the patient’s throat. Figure 4.1, shows how many questionnaires are completed each month

in the questionnaire dataset. Note: Time-stamp 1970-01-01 is a value for a questionnaire that is not

completed, which happens almost 20.000 times.

Entry/Identifier ABC BRW 005 6 BRW 005 020 BUI 190 010 BUI 200 1 DBS 090 ........ dag awn klacht keuze

1 0 999999 999999 0 1 Ik heb last van symptomen ...... 2 4

Table 4.1: Example of one data entry of a questionnaire.
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Column name Example input

organisatie naam Centrale Huisartsendienst Drenthe

organisatie id HASH

sda regel
Pati Èent klaagt over toenemende pijn in de rechteronderbuik, voelt zich steeds beroerder

en pijn niet te houden, zeker tijdens de rit naar de post.

sha regel
Pati Èent klaagt over toenemende pijn in de rechteronderbuik, voelt zich steeds beroerder

en pijn niet te houden, zeker tijdens de rit naar de post.

o regel temp 38,5 c (rect), buik gespannen

e regel Rectaal bloedverlies

p regel Doorverwijzen SEH

icpc hoofdcode D

icpc code D88

patient leeftijd 70

patient geslacht Man

spreekuur koppel id HASH

Table 4.2: Example of a patients data entry in SpoedEPD

4.3 Data analysis

The dataset consists of 2,273,077 entries, representing 1,305 different ICPC codes. When the hi-

erarchy of the codes is removed (e.g. U71.01 to U71), 776 unique ICPC codes remain. Removing

the hierarchy simplifies the problem by reducing the amount of possible ICPC structure. After the

prediction model performs well, the amount of ICPC codes can be increased. Figure 4.2 shows that

the categories ªL - Musculoskeletalº, ªA - General and Unspecifiedº, ªD - Digestiveº, ªR - Respiratoryº

and ªS - Skinº are the most frequently occurring categories. The categories ªX - Female Genitalº, ªY

- Male Genitalº, ªW - Pregnancy, Childbearing, Family Planningº, ªB - Blood, Blood Forming Organs

and Immune Mechanismº, and ªZ - Social Problemsº are the least occurring categories. The distri-

bution of categories is uniformly the same as in other GP practices, as a scientific article by Nivel

shows by measuring the occurrence of each category across multiple GP practices[49]. Figure 4.3

and Figure 4.4 present stacked bar charts of the top 100 occurring ICPC codes, with and without

hierarchy. The most frequently occurring code is ºS18 - Laceration/cut,º appearing in 4% of the data

entries, followed by ºA03 - Feverº (3.6%), ºD06 - Abdominal pain localised otherº (3.1%), and ºU71 -

Cystitis/urinary infection otherº (2.9%). Notably, most of the codes represent symptoms rather than di-

agnoses. GP often records an ICPC symptom code when uncertain of the diagnosis. The distribution

of ICPC codes is uniformly the same compared to other GP practices as shown in the scientific article

conducted by ªHuisarts en wetenschapº, which accounted for 957.636 consults in 2011, crossing nine

GP practices [50].









Chapter 5

Research questions

Previous sections provide context and background information on the problem statement being ad-

dressed and identify some research gaps and practical issues. These issues can be reformulated as

research questions, which can be further refined into sub-questions to aid in answering or validating

the main research question. The main research question for this study is: “How can a RoBERTa lan-

guage model be used for predicting diagnoses based on patient-reported symptoms?” Sub-

research questions have been formulated to help address the main question.

1. What is the most effective method for transforming SOAP notes and questionnaire data

to train a RoBERTa diagnoses prediction model?

The existing data comprises SOAP notes presented in natural language, while the question-

naire data is structured in a tabular format. It is essential to devise an optimal method for

transforming the questionnaire data into natural language, maximising the inclusion of valuable

information while minimising the extent to which the model needs to undergo fine-tuning to

achieve high diagnostic performance.

2. How can data from the SOAP note dataset link an ICPC code to the anonymous ques-

tionnaire data?

Before training, it is necessary to determine the eventual diagnosis/ICPC code assigned by a

GP based on the questionnaire and consultation. Fortunately, the SOAP note dataset includes

the SOAP note from the respective questionnaire. Previously, an ICPC code/SOAP note could

be linked to a questionnaire through a ID field, but the field has since been removed. To validate

or train the model on a as large as possible dataset it should be investigated how ICPC codes

can be linked to questionnaires without the use of the removed field.

3. What is the performance of the diagnoses prediction model against established baseline

models?

The RoBERTa language model’s complexity may exceed the requirements of the current task,

and a simpler model could achieve comparable results with lower computational costs. Train-

ing and validating baseline models on the same dataset as the RoBERTa model can assess

whether the enhanced performance of the RoBERTa model justifies its use over the baseline

models.

4. What strategies can improve the model’s performance to predict ICPC codes?

As observed in section 3.3: ªDiagnosis Prediction using machine learningº, various strategies

and architectural modifications have been implemented on BERT to enhance its performance

in specific tasks. The hierarchical structure of ICPC codes presents an opportunity for poten-

tial model improvement if appropriate modifications are made to the architecture or training

procedures.

5. How can the model’s performance be validated for diagnosing patients using ICPC codes?

The diagnostic process employed by Dutch GPs is only partially captured by providing a sin-

gle diagnosis. As discussed in chapter 2: ªBackgroundº, GPs conduct a differential diagnosis,
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considering multiple possible diseases or diagnoses. However, the ground truth data only com-

prises a single ICPC code. During the validation process, it is essential to acknowledge that

the model’s predicted diagnosis could be considered equally valid compared to the single ICPC

codes. Two GPs may potentially employ different ICPC codes with nearly identical definitions

for the same S-rule.

6. What is the relationship between the model’s performance and the inclusion of specific

questionnaire questions and answers as input features for the model?

A questionnaire typically can consist of a large number of questions and answers. However, not

all questions hold the same level of significance for a GP. Similarly, in the context of machine

learning models, specific questions can significantly enhance the diagnostic capability of the

model. In contrast, excluding specific questions may not impede its diagnostic performance or

even improve it. Removing questions and answers may also simplify the complexity of the input

data of the model which can have a positive impact on the performance.

7. To what extent can current knowledge of diagnoses, symptoms, and causes in the med-

ical field be used for predictions?

The available data primarily comprises general practice consultations, comprising substantial

information regarding the relationship between symptoms, diagnoses, and diseases. These

consultations hold the potential to establish connections between a patient’s narrative and a

specific diagnosis, thereby potentially enhancing the model in diagnosing patients with similar

narratives. In this study, it is essential to employ a method that effectively uses the entirety of

this data and knowledge to maximise its information for the model.

8. Which XAI method is most effective at explaining the predictions of a diagnoses predic-

tion model to Dutch general practitioners?

The presence of ªblack boxesº and non-interpretable machine learning models poses a chal-

lenge in the medical domain. GPS must have access to explanations regarding the decision-

making behind a diagnosis prediction. Such explanations enable GPs to gain insights into the

contributing questions and answers, serving as a valuable second opinion. Moreover, these ex-

planations can cause the GPs to understand the underlying decision-making behind the model’s

predictions, facilitating a more informed decision-making process for the GPs themselves.

9. How does the use of the diagnoses prediction models impact the efficiency of Dutch

GPs?

As shown in chapter 3: ªRelated worksº, numerous studies highlight the potential disparity

between a medical prediction model’s performance as suggested by a validation set and its

actual performance. To accurately measure the model’s performance, it is crucial to evaluate

it using real-world use cases and involve Dutch GPs in the assessment process. Additionally,

the model’s explainability plays a crucial role in the diagnostic process of GPs. This aspect can

also be measured by examining whether the model effectively enhances the GP’s diagnostic

process and if the provided explanations accurately represent the model’s decision-making.



Chapter 6

Methodology

Research questions were formulated in chapter 5: ªResearch questionsº that address the problem

statement and research gaps. This chapter contains the methodology on which and what is needed

to answer these questions. The three following chapters (chapter 7: ªDatasetº, chapter 8: ªDiagnoses

prediction modelº and chapter 9: ªExplainabilityº) implement the methodology and provide an in-depth

overview of the techniques that are proposed. These chapters also contain the results of the study.

The provided data for this study comprises 2.2 million textual consulation, specifically in the form

of SOAP notes, as observed in chapter 4: ªSource dataº.

In chapter 3: ªRelated worksº it was noted, that training a language model to be domain-specific

can enhance its performance. Hence, for this study, a BERT-based language model was selected.

The section also specified how BERT works and how to train a BERT model which will be further

investigated in the following sections. Moreover, previous studies have emphasised the significance

of explainable predictions, particularly in the context of medical prediction models. However, it is worth

noting that XAI methods often lack proper validation as shown by Nauta et al.[3]. To address this gap,

this research aims to conduct validation, for instance, through the implementation of a user study.

To provide an overview of the following sections, a summary of the steps can be found in Table 6.1,

serving as a roadmap for the study.

Steps

1. Connect ICPC codes to questionnaire data

2. Transform questionnaire data to natural language

3. Pre-train model to be domain-specific

4. Fine-tune model to predict ICPC codes

5. Validate the model

6. Make the model explainable

7. Conduct user study

Table 6.1: Identified roadmap

6.1 Connecting ground truth

The questionnaire data has no ground truth (ICPC code) by default. In the SOAP note dataset, the on-

line consultation following the Spreekuur.nl questionnaire should be present. A ground truth is needed

to train and validate a machine-learning model. In total, there are 58,651 questionnaire entries. Till

March 2022, the SOAP notes and questionnaire data could be connected via a ªspreekuur koppel idº,

but this feature was removed. Topicus decided to remove the feature to anonymise the question-

naire data and create a separation of concerns between applications. The questionnaire data is

anonymised but potentially can be linked to the corresponding SOAP note in the SOAP note dataset

by person-related information such as sex, age and time of completion.

Furthermore, data made available for this study consists of SOAP notes and questionnaire data.

Questionnaire data differs from SOAP notes as it only consists of tabular questions and answers, and

SOAP notes are text. First, the questionnaire data must be processed to textual data corresponding
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to the S-rule as it represents the subjective patient-identified symptoms. The S-rule allows the model

to train on both datasets, making training the model on the questionnaire data less complex as the

data dimensions are significantly reduced.

The details of how the questionnaire data is connected to a ground truth, how the questionnaire

data is transformed into S-rules, and how the datasets for this study are generated are described in

chapter 7: ªDatasetº.

6.2 RoBERTa

In this study, a variation of BERT, a state-of-the-art natural language processing model, will extract

medical representations from input data to predict a diagnosis. The use of BERT is justified by its

strong performance on medical benchmarks for predicting diagnoses or diseases[44]. As seen in

chapter 4: ªSource dataº, most of the data consists of text which would require a language model

to process. The large amount of SOAP notes in the dataset can be utilised to extract existing med-

ical information and knowledge from consultations. To diagnose a patient based on the answers of

Spreekuur, the tabular data from a questionnaire must be transformed into natural language for the

language model to process it. BERT can produce better representation than other transformer-based

language models as it does not focus on translation or generation. BERT can provide representations

which can have a deeper understanding of the context of a sentence because BERT looks at the

input sentence bidirectionally. In some cases, BERT is surpassed by domain-specific implementa-

tions such as BioBERT. More recent variations of BERT, such as RoBERTa, show increased perfor-

mance compared to BERT overall. The available data in this study consist of SOAP notes of Dutch

GPs and questions/answers of patients from the questionnaires. A domain-specific implementation

of BERT/RoBERTa can increase the model’s diagnostic ability by creating better representations for

medical data.

There are two options for training a BERT/RoBERTa model on medical data: 1) Train on an

existing pre-trained model such as BERT base, BioBERT, or RoBERTa base, or 2) Pre-train a BERT

/ RoBERTa model from scratch. Pre-training a model from scratch requires a large amount of data

to train and update all randomly initialised parameters, and the available data in this study may not

be sufficient to do so as pre-trained models such as BERT, BioBERT, and RoBERTa are trained on

billions of words and millions of lines, providing realistic representations.

Another option is to train on an existing pre-trained model. Trained BERT models are language

specific as they are mostly only trained on data from one language. Domain-specific BERT variants

such as BioBERT only perform well on English medical data. Therefore, Dutch medical data would

require a BERT model trained on a Dutch corpus. RobBERT[17], a RoBERTa-based language model

trained on the Dutch OSCAR dataset [51], is currently the state-of-the-art performing Dutch BERT

model on Dutch NLP benchmarks. RobBERT can be further pre-trained with the medical data in this

study to make it domain-specific to the medical field of Dutch GPs.

There are two options when pre-training a RoBERTa model further on medical data: 1) Use the

original vocabulary and extend pre-training on domain-specific data, or 2) Extend pre-training on

domain-specific data but use a new vocabulary. Using the original vocabulary allows the use of the

same trained tokenizer. However, it has the limitation that out-of-vocabulary words (OOVs) may not

be correctly tokenized and may be split up into sub-words or characters, changing the meaning and

representation. Using a new vocabulary can have the caveat of losing how the new token embeddings

are linked to the presentations in the pre-trained model.

Verkijk et al. (2021) [52] created a domain-specific RobBERT model using Dutch electronic hos-

pital notes. The authors used approximately 10 million notes from two Dutch hospitals. They trained
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two different models: A trained RoBERTa model from scratch and a pre-trained RobBERT model

with a new domain-specific vocabulary and frozen transformer layers. They found that when sufficient

domain-specific data is available, a model pre-trained from scratch yielded the best performance. The

model was unavailable; otherwise, it could have been used as a basis for this study.

Chalkidis et al. (2020) [53] created a legal domain-specific BERT model by using over 350 thou-

sand legal documents. They also trained two models (one from scratch and one further pre-trained)

and concluded that the model’s performance depended on the task, and no clear model was the best.

It is chosen to explore the same strategy as Verkijk and Chalkidis et al. and further train RobBERT

to be domain-specific to the Dutch medical fields. chapter 8: ªDiagnoses prediction modelº shows how

the final ªdiagnoses prediction modelº was made and what architectural decisions were made.

6.2.1 Vocabulary transfer

In their studies, Mosin et al. (2022)[54] [55] investigated the use of vocabulary transfer for improving

the performance of language models in biomedical texts. The need for vocabulary transfer arises

when the dataset used for fine-tuning contains rare words or word fragments that are not present in

the pre-training dataset. Implementing a new specific tokenisation scheme can enhance the model’s

performance by adequately tokenising and representing these rare words. Mosin et al. showed that

using vocabulary transfer for biomedical texts can improve the performance of medical text dataset

benchmarks by up to 10%. The authors experimented with two different token initialisation heuristics:

1) If a token in the new vocabulary coincides with a token in the old vocabulary, they assign the old

token’s embedding to the new token. 2) For new tokens that cannot be directly mapped to old tokens,

they split the new token into a partition of several tokens from the original tokenisation. For each such

partition, they calculate the minimum number of tokens and choose the partition with the smallest

number of tokens. In the case of ties, they choose the partition that contains the most extended

token. All token embeddings in the chosen partition are then averaged to produce a single average

embedding for the new token. Overall, Mosin et al.’s results indicate that vocabulary transfer can be

an effective approach for improving the performance of language models on biomedical texts. The

results and implementation of the tokenizer can be found in section 8.2: ªTokenizerº.

6.2.2 Pre-training

As specified in chapter 3: ªRelated worksº, BERT uses two training objectives, ªMasked Language

Modelº (MLM) and ªNext sentence predictionº(NSP), to learn its representations. Other works ex-

tending BERT have shown that additional training objectives for domain-specific tasks can improve

performance. Among other changes, the most significant change RoBERTa made to the BERT archi-

tecture was removing the ªnext sentence predictionº task in BERT. The authors of RoBERTa[40] show

in their paper that the NSP task does not increase performance and even get higher performance with

the task removed. Van Aken et al. [44] added a training objective called CORe to BioBERT which

predicted if diagnoses and treatments were indeed part of the symptoms or risk factors in a health

record. With the CORe task, they managed to get state-of-the-art performance in ICD-9 diagnoses

prediction tasks. They showed that it is possible to predict diagnoses based on symptoms using

1266 possible ICD-9 codes. CORe, like NSP, separates an input sequence into two parts. CORe

splits sequence t into tN,1...k ∈ AN and into t′N1k ∈ DN where A is the admission of the sequence

D is the discharge note of the sequence. They train the model to maximise P (PN | XN−N ) where

XN
−
N = Enc

(

tN,1...k, t
′

N,1...k

)

an PN is the patient corresponding to sequence t. Just like NSP, they

use negative sampling for 50% of the examples. The model’s final implementation and results after

pre-training can be found in section 8.3: ªMasked Language modelling/ pre-trainingº.
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6.3 Validation

To validate the model in this study, three dataset splits for training, testing, and validating the model

should be created. To achieve a fair validation, the ICPC codes the dataset should be distributed

equally among each set. The testing set should be composed of 10% of the entire dataset, while the

remaining 90% is split into training, and 10% should be taken for a validation set. The training set is

solely used for training. The model is never updated on the validation or test set to ensure the model

does not overfit, and the performance metrics are as accurate as possible.

Accuracy-at-x is a commonly used performance metric for evaluating diagnosis prediction models

and symptom checkers. It refers to the accuracy when the ground truth diagnosis is among the top x

predictions. The metric is often used in diagnosis prediction and symptom checkers papers because

it aligns with the method used by medical professionals to diagnose patients. Other measures should

consider that multiple ICPC codes may be suitable for a single S-rule as there may not be enough

information in the S-rule to make a single diagnosis. When training a BERT model, it is important to

consider its accuracy and loss, as the final neural network layers are updated based on the loss. In

this study, it is necessary to conduct experiments on the model’s loss function, as ICPC codes have a

hierarchical structure. As mentioned earlier, the data used in this study may contain biases that could

impact the model’s performance. The model may achieve good results because it has learned to

rely on these biases or struggle because of them. To address these biases, the loss function can be

made uniform and, for example, increased for rare ICPC codes. The performance of these methods

should be analysed by examining the model’s confusion matrix, precision, recall, and f1 scores to

identify biases and the actual performance of the model. section 8.6: ªPerformanceº specifies which

performance measures were used precisely in this study and the performance of the final model on

these measures.

6.4 User study

The standard method of evaluating physicians and other clinicians on their diagnostic abilities is using

standardised medical vignettes. Vignettes are created for testing purposes and use non-existent pa-

tients, consisting of a description of symptoms and medical information with a diagnosis as the ground

truth. Existing symptom checkers are often proprietary and systemic reviews show that these check-

ers often have no evaluation method. When applying medical vignettes to these existing symptom

checkers, the performance greatly decreased compared to the performance specified in the respec-

tive paper. This research used a user study to evaluate the model’s performance in real scenarios.

The user study presents GPs with an S-rule and a list of predicted diagnoses. The GPs are then

asked to provide the corresponding ICPC code for the presented S-rule. The chosen ICPC codes can

then be used to measure the real-life model’s performance.

Moreover, the user study also aims to measure the model’s explainability. Nauta et al. [3] high-

lighted that only a tiny percentage of XAI research papers conduct user studies to evaluate model

explainability in real-world scenarios. section 9.2: ªUser studyº presents the user study, including the

question formulation, the results, and the conclusion.
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response. If the answer is ªyesº, the value ªjeuk+º (itch+) is added under the ªklacht/beloopº (com-

plaint/course) section. If the answer is ªnoº, nothing is added to the S-rule, as this information is not

deemed useful for the GP. For the question ªDo you have a fever?º the negative answer is also added

to the S-rule, ªkoorts-º (fever-), because this can be critical information for the GP. The questionnaires

and codebooks are updated periodically, and it is crucial to match the version of the questionnaire

and codebook when generating S-rules. An example of a generated S-rule to give an idea is

ªinitial complaint: skin complaints, fever, moderately ill, 4days-1wk skin complaints, does

not recognise complaints, slightly sensitive (score 1), increase in complaints, location:

nails, hands, complaints: red, hard spot, pus, swelling, cause: I had last week a cut on

my cuticle. The cuticle is torn. That wound is now closed, but my entire fingertip is now

swollen and redº.

The advantage of generating an S-rule is that the model has a maximum input size that would

be exceeded if the entire question and answer set were taken as input. Furthermore, generating an

S-rule removes questions and answers that are not relevant to GPs. Another advantage of generating

an S-rule is that it will match reasonably well with an S-rule written by a GP, minimising the fine-tuning

required when training on GP-written S-rules and generated S-rules. The present study generated

S-rules for 17,202 of the 17,833 total connected questionnaires.

7.2.3 ICPC code selection

In the SOAP note dataset, 1,305 unique ICPC codes are present. However, as explained in chap-

ter 4: ªSource dataº, these codes can be simplified to only 776 unique ICPC codes. Of these sim-

plified codes, 318 are related to symptoms, while 360 codes are related to diagnoses and diseases.

The remaining 96 codes are related to operations and actions at the GP centre. They are removed

from the dataset as these codes are not relevant because the codes are seen as ªescape codes’

and ªmeaninglessº codes[57] by the NHG[8] which is the organisation responsible for updating ICPC

codes. 56 of these codes only occur once in the whole dataset and are not present in the connected

questionnaire dataset.

As mentioned in section 4.3: ªData analysisº, approximately 60% of the dataset comprises 50

unique codes, and in Table 7.3, it can be observed that a large number of ICPC codes occur less than

0.1% of the time in the SOAP note dataset. In the connected questionnaire dataset, only 382 unique

codes appear, as it is much smaller than the SOAP note dataset. Table 7.2, shows that 71 of the 382

codes only occur once in the questionnaire dataset.

Codes that only occur once cannot be divided equally in a training, validation and test set. If the

code only occurs in the training set, the model may learn to predict it accurately, but the prediction

cannot be validated. On the other hand, if the code only occurs in the test set, the model has not been

trained on it and cannot predict it accurately. Therefore, a trade-off must be made between including

all codes and splitting them equally among the three sets.

In the SOAP note dataset, 14 ICPC codes that only occur once or twice are removed to allow

for equal distribution of the codes in the training, validation, and test sets. These codes represent a

negligible proportion of the total dataset. When the model is trained on this dataset, the weights in the

sequential layer are updated, and the rest of the RoBERTa model is updated. Even codes that occur

only a few times update the word and sentence representations, which may increase the model’s

knowledge.

For the questionnaire dataset, no codes are removed. The questionnaire dataset is small com-

pared to the SOAP note dataset, which raises the question of whether the model would benefit from
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fine-tuning on the questionnaire data. When the model is trained on all ICPC codes in the SOAP note

dataset, it is already trained on ICPC codes that may only occur once or twice in the questionnaire

dataset; hence they do not need to be removed from the questionnaire dataset. If the model does not

benefit from fine-tuning it on the questionnaire dataset (as seen in chapter 8: ªDiagnoses prediction

modelº), it can still be used for testing the model. In this case, the most fair comparison would be

when no codes are removed.

How much does the code occur How many ICPC codes satisfy this condition

<= 1 6

<= 2 14

<= 5 28

<= 50 149

<= 100 215

<= 500 363

<= 1,000 427

Table 7.2: The amount of codes that occur <= x times in the questionnaire dataset.

How much does the code occur How many ICPC codes satisfy this condition

<= 1 71

<= 2 112

<= 5 180

<= 50 307

<= 100 333

<= 500 375

<= 1,000 379

Table 7.3: The amount of codes that occur <= x times in the connected SOAP dataset.

7.3 Generating Dataset

This study created two distinct datasets, each consisting of three sets for training, testing, and vali-

dating the model. The SOAP note dataset includes all S-rules and simplified ICPC codes, and the

questionnaire dataset includes all questions and answers, the generated S-rules, and the simplified

ICPC codes. To ensure the model is evaluated on unique data, the questionnaire dataset is mutually

exclusive to the SOAP note dataset. The ICPC codes in the SOAP note dataset are divided into differ-

ent sets in a stratified manner. The distribution ratios of the split sets, and their corresponding lengths,

are shown in Table 7.4. To achieve a fair validation, the remaining ICPC codes in both datasets are

distributed equally among each set. The testing set is composed of 10% of the entire dataset, while

the remaining 90% is split into training, and 10% is taken for a validation set. The total questionnaire

dataset can also be used for validation if fine-tuning has no benefit.
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Dataset Split Train set length Test set length Validation set length

SOAP note dataset ∼80%/∼10%/∼10% 1,048,575 221,692 199,523

Questionnaire dataset ∼80%/∼10%/∼10% 13,932 1,721 1,549

Table 7.4: The length of each set in both datasets.

7.4 Conclusion

In this section, a total of 17,000 questionnaires were connected with their corresponding SOAP note

and ICPC code. The questionnaires were converted from tabular data into natural language using a

codebook provided by Digidok. This conversion was necessary to allow the data to be used for the

training and validation of the RobBERT language model.

It is important to note that there is no definitive performance measure available to evaluate the

quality of the questionnaire connections. To address this limitation, both manually connected and

automatically connected datasets from the same time period were compared to each other to assess

the quality of the connections. However, it should be acknowledged that when training and validating

the model using this data, the ground truth may not be entirely accurate, and the model’s actual

performance could differ from what the performance measure suggests, either being higher or lower.

Another limitation of the study relates to the utilisation of ICPC codes. Specifically, the decision

was made to employ simplified codes and eliminate certain codes that appeared infrequently (oc-

curring only once or twice) within the 2.2 million SOAP notes as they could not be stratified equally

between train/test/validation sets. It is crucial to recognise that the model lacks the training with these

excluded codes, thus decreasing its ability to make accurate predictions regarding them. Further-

more, the variation in the ICPC code distribution across the SOAP note and questionnaire dataset

should be considered during the model’s validation process. The difference in distribution causes the

model to have great performance on a ICPC code which occurs often in the SOAP note dataset but

which is not present as much in the questionnaire dataset.
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8.1 Training environment and settings

For the following experiments, a single NVIDIA T4 16GB was used. Custom code created with Python,

Pytorch and HuggingFace was used to load, develop, train and validate the model. For training the

model with Masked Language Modelling (pre-training) and afterwards training the classification head

of the model (fine-tuning), the same settings as initially used in the RoBERTa and RobBERT papers

[40][17] were taken. The settings enable Gradient checkpointing and gradient accumulation steps to

allow having a batch size of 64 for pre-training and a batch size of 64 when fine-tuning. The settings

used can be seen in Table 8.1.

Gradient accumulation steps accumulate gradients over several batches and only steps the opti-

miser after a certain number of batches have been performed. This requires less memory allowing

for larger batch sizes. Having a batch size of 32 and a gradient accumulation step of 2 is the same as

having a total batch size of 64 because it will process two batches of 32, before stepping the optimiser.

Usually, all activations are saved during a forward pass to compute the gradients requiring a sig-

nificant memory overhead. Gradient checkpointing strategically saves activations, so only a fraction

of the activations need to be saved to calculate the gradients. Calculating the gradients with gradient

checkpointing reduces the memory overhead while slightly increasing training time.

Mixed precision training (FP16 parameter) saves memory. Typically, variables are stored in 32-bit

floating precision. With Mixed precision training, the model is allocated twice in the memory(16 and

32-bit). The backwards/forwards pass are still saved in 32-bit precision, but the activations for the

gradient computation are in 16-bit precision to save memory. Enabling FP16 can have a slight impact

on the training performance, as noted by NVIDIA1 in their documentation about the subject.

Setting Value

Batch size 32(pre-training) / 64 (fine-tuning)

gradient accumulation steps 2(pre-training) / 1 (fine-tuning)

gradient checkpointing True

fp16 True

Weight decay 940

Learning rate 5e−5

Adam epsilon 2e−8

Warmup steps 250

Table 8.1: Settings used for training the model.

8.2 Tokenizer

The tokenisation process employed in this study uses the byte-level Byte Pair Encoding (BPE) tok-

enizer, which is loaded with the same vocabulary and tokens as the RobBERT model. The RobBERT

tokenizer has a vocabulary size of 40,000, meaning there are 40,000 possible tokens. A custom to-

kenizer is not created because it would require retraining the RobBERT model from scratch, as the

internal representations of RobBERT are mapped explicitly to the same vocabulary and tokens as the

RobBERT tokenizer. Using a new tokenizer is equivalent to using an untrained RoBERTa model.

1https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
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The byte-level BPE tokenizer from RobBERT is initially trained by pre-tokenising the training set

and then splitting words into symbols. The frequency of each possible symbol pair is calculated,

and the symbol pair with the highest frequency is merged and added to the vocabulary. The training

process is repeated until the desired vocabulary size is reached (40,000). If a word or symbol is

absent in the vocabulary, it is replaced by the <unk> symbol. The first and last token of the RobBERT

tokenizer always corresponds to the<s> and </s> symbols. In case there are fewer tokens in the

input than are required as input for the RobBERT model, extra padding tokens (<pad>) are added

until the input size is reached. If there are more tokens than the input size of the RoBERT model, the

tokens get concatenated to the necessary length.

8.3 Masked Language modelling/ pre-training

As described in section 6.2: ªRoBERTaº, in BERT/ RoBERTa language models, pre-training plays

a critical role in adapting the model to specific domains, especially when the input data is from a

different domain than the original model. In the case of RobBERT, which is Dutch-specific, further

pre-training on S-rules in the SOAP note dataset is required to make it domain-specific to the Dutch

GPs vocabulary.

The pre-training process begins with loading the weights of the pre-trained RobBERT model into

the RoBERTa model from Huggingface. A data collator is then added to the model to mask tokens

from the output of the tokenizer randomly. There is a 15% (optimal value according to RobBERT

and RoBERTA paper) chance that a token from the tokenizer is masked. In 80% of these cases, the

masked token is replaced with the special token(<mask>). In 10% of the cases, the masked tokens

are replaced by a random token from the vocabulary. In the 10% remaining cases, the masked tokens

are left as is to bias the representation towards the actual observed word. The output is concatenated

or padded with padding tokens for the input to corresponding with the input length of the RoBERTA

model (512). The output of the RoBERTA model is a representation vector of length 768 for each

input token. The representation vector for the masked token is used to predict the original token using

a language modelling head added to the RoBERTa model.

The language modelling head can be seen in Figure 8.2 and includes a linear layer with the same

size as the representation vector(768), an activation layer, a normalisation layer, and a final linear

ªdecoderº layer with the output size the same as the vocabulary size. For the activation function,

GELU[58] is used by the RoBERTa paper. The normalisation layer calculates the mean and variance

for each item in a batch of activations and normalises each. Normalisation allows the output to

remain generalisable and not reach high values. In the final linear ªdecoderº layer, each output neuron

represents a token in the vocabulary. The softmax function (see Formula Figure 8.4) converts the final

output to probabilities. The resulting probability indicates the most probable token that was masked.

Optimally the probability for the correct token is 1.00, while the probability for the other tokens is 0.00.

The weights in the linear layers and the representation in the model are updated using the Cross-

Entropy loss (see Formula Figure 8.3), which is back-propagated to update the representation in the

RobBERT model and the weights of the language modelling head layers.
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context. A significant challenge in this study is to incorporate a hierarchy that emulates the differential

diagnosis process of a GP.

GPs may provide a less specific ICPC code when they are uncertain. Ideally, the loss function

should not heavily penalise the model when it produces a less specific code than the ground truth.

However, it is difficult to establish a hierarchy among less specific and more specific codes in ICPC, as

symptoms, diagnoses, and diseases are often correlated. There is also no documentation or research

that models a hierarchy. Additionally, GPs may prioritise different symptoms when diagnosing and are

not aware of all existing codes. An example can be found in the SOAP note test set where a user

reported: ªMy toe is infectedº, while the ground truth of the S-rule was ªS11: Local infection of/under

the skinº, the trained model predicted ªS09: Local infection finger/toe/cuticleº which seems a better

fitting ICPC code for the case. Cases like these, however, can significantly affect the accuracy-at-

1 and the model’s ability to learn. In the journal of Zwaanswijk et al.[57], it was concluded that GP

practices give ªmeaningfulº codes 64.8% of the time. The quality of ªmeaningfulº codes meaning if the

most ªaccurateº is chosen for the diagnosis is not yet researched. In some cases, a further medical

examination is also needed to provide a specific code, which is not present in the S-rule. These

challenges will be further explored in section 9.2: ªUser studyº

To address these challenges, two symptom/diagnosis architectures are proposed to improve the

model’s ability to predict a correct ICPC code. section 8.6: ªPerformanceº introduces a new approach

to consider the possibility that multiple diagnoses may be valid and a new method to measure the

diagnostic ability of the model.

8.5.1 Proposed architectures

To address the challenges outlined in the previous section, two architectures were tested to enhance

the model’s ability to predict diagnoses accurately. The available hierarchical information only in-

cludes whether a code represents a symptom or a diagnosis/disease. Although ICPC codes include

a letter indicating a category, symptoms and diagnoses may have different categories while closely

related. Two classification heads were created instead of the single classification head used in the

previous section to implement a hierarchy. One head, called the ªSymptom head,º was used to clas-

sify symptoms and had 318 output neurons, each representing an ICPC symptom code. The other

head, called the ªDiagnosis head,º was used to classify diagnoses and diseases and had 360 output

neurons, each representing an ICPC diagnoses or disease code.

The rationale behind this approach is that if the model can accurately classify ICPC codes that are

symptoms and diagnoses, these layers can be interchanged to obtain the most likely ICPC symptom

code for a ground truth with an ICPC diagnosis code and vice versa. The following two subsections

propose two different architectures that use these two new classification heads.

Both proposed architectures were trained on the S-rules in the relatively small questionnaire

dataset to get determine if it was worth training the model on the larger SOAP note dataset for a

long period.

8.5.2 Stacked symptom and Diagnosis layer

One proposed architecture involves stacking both the Symptom head and Diagnosis head, as shown

in Figure 8.7. With the proposed architecture, symptoms are predicted, and the probabilities of these

symptoms can be used to predict a diagnosis. The architecture resembles the counterfactual diagnos-

tic algorithm explained by Richens et al. [42] in chapter 3: ªRelated worksº. Richens et al. proposed

that symptoms can be a direct or indirect cause of disease and created an algorithm that predicts

diseases based on this idea. The primary advantage of the proposed approach, which also applies to
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8.5.3 Side-by-side Symptom and Diagnosis layer

The proposed architecture involves two layers: the first 318 neurons represent the symptom ICPC

codes, and the last 360 neurons represent the diagnosis/disease ICPC codes. Unlike the previously

proposed stacked approach, these layers are side-by-side, forming one sequential layer, as depicted

in Figure 8.8. During training, separate loss functions are used for the symptom and diagnosis/disease

neurons. The ground truth information is used to compute the loss function for only the corresponding

set of neurons. Specifically, when the ground truth is a symptom, the loss function only considers the

symptom neurons, even if the highest activated neuron corresponds to a diagnosis/disease symptom.

The separate loss function allows the model to deal with the ambiguity present in the labels by consid-

ering the hierarchy of symptoms and diagnoses. The model can also pass context to the sequential

layer to predict symptoms and diagnoses/diseases.

The side-by-side architecture still makes a prediction explainable with high accuracy for the diag-

noses/disease codes and the symptom codes in the dataset. The highest activated diagnosis/disease

codes can be substantiated by examining the highest activated symptom codes and vice versa,

as shown in Figure 8.9. The softmax function is applied separately to the symptom and diagno-

sis/disease neurons, and the resulting outputs reveal that code S09 is the most activated symptom

code. In contrast, code S76 is the most activated diagnosis/disease code. According to GPs in the

section 9.2: ªUser studyº, both codes are sufficient for a diagnosis, with S76 being more specific than

S09 as it corresponds to a diagnosis rather than just a symptom. Further details on the loss function

used in training and the model’s performance can be found in the subsequent sections.

The proposed architecture was again trained for 1000 steps on the questionnaire dataset. The

resulting accuracy for predicting diagnoses and disease codes was 56%, while the accuracy for

predicting symptom codes was 58%. The combined accuracy for predicting either code was 42%.

These findings show that the model’s performance is increased by splitting the final layer into diag-

noses/diseases and symptoms. This proposed architectural modification was chosen to improve the

model’s performance further. In the following section, the model is fully trained on the SOAP note

dataset and validated.
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8.6 Performance

The proposed architectures were only trained on the questionnaire dataset in the previous section.

The best-performing architecture was chosen to be improved by first training it on the SOAP note train

set, which contains 1.2 million S-rules. The side-by-side architecture is chosen to train thoroughly on

the SOAP note train set because of its performance compared to the original ªplainº architecture. First,

in the following sections, new performance measures are described. Finally, the full performance of

the model can be found in Table 8.3. Overall the model’s performance improved when looking at the

diagnosis and symptom accuracy.

Metric / model(test/val) Plain classification head (%) Side-by-Side classification head (%)

Accuracy 52.4 / 52.6 51.4 / 51.4

Accuracy top-3 78.2 / 78.2 78.4 / 78.4

Accuracy threshold 84.6 (4.0 picked) / 84.5 (4 picked) 83.5(3.7 picked) / 83.6 (3.7 picked)

Macro accuracy 19.9 / 19.9 22.2 / 22.5

Macro accuracy top-3 37.1 / 37.6 42.6 / 42.3

Macro accuracy threshold 48.2 / 48.2 52.7 / 53.0

Symptom accuracy 65.9 / 66.1 66.9 / 66.9

Symptom accuracy top-3 87.9 / 87.7 88.8 / 88.6

Symptom accuracy threshold 90.0 (3.0 picked) / 90.0 (3.0 picked) 90.0 (2.7 picked) / 89.7 (2.7 picked)

Symptom macro accuracy 27.3 / 27.1 30.5 / 30.0

Symptom macro accuracy top-3 46.8 / 46.6 51.5 / 51.4

Symptom macro accuracy threshold 56.1 / 56.3 60.4 / 59.3

Diagnosis accuracy 63.4 / 63.5 64.9 / 65.0

Diagnosis accuracy top-3 85.6 / 85.6 87.1 / 87.5

Diagnosis accuracy threshold 89.0 (3.3 picked) / 89.0 (3.3 picked) 88.6 (2.9 picked) / 89.1 (2.9 picked)

Diagnosis macro accuracy 29.4 / 29.5 36.3 / 36.7

Diagnosis macro accuracy top-3 47.8 / 47.9 57.3 / 57.2

Diagnosis macro accuracy threshold 57.0 / 56.7 63.3 / 64.0

Table 8.3: Model’s performance versus the plain classification head. BOLD means better performing.

8.6.1 Symptom accuracy and Diagnoses accuracy

More than using accuracy as a performance measure is often required, as the side-by-side model

predicts symptoms and diagnoses/disease codes separately. That is why a separate accuracy is

added for ICPC symptom codes and ICPC diagnoses/disease codes. The activations of the first 318

neurons in the last linear layer determine the symptom accuracy. Specifically, for each entry in the

dataset where an ICPC symptom code represents the ground truth, the activations of the 318 output

neurons are converted into probabilities using the softmax function (refer to Figure 8.4). Notably,

the evaluation does not consider the remaining 360 neurons that represent ICPC diagnosis/disease

codes. To predict the accuracy of ICPC diagnoses/disease codes, the activations of the last 360

neurons are put in the softmax function. The accuracy function calculates the accuracy, as seen in

Figure 8.10. The accuracy function does not take into account the distribution of the ICPC codes

which may not correctly represent the actual performance of the model.
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As seen in Table 8.3, the model has a symptom accuracy of 66.9% and a diagnosis accuracy of

64.9% on the test SOAP note set. The accuracy is much higher than the normal accuracy of 51.4%

because of its preconditions on the knowledge that the ground truth is an ICPC diagnosis/disease or

symptom code.

Accuracy =
TP + TN

TP + TN + FP + FN

Figure 8.10: where TP = True positive; FP = False positive; TN = True negative; FN = False negative

8.6.2 Accuracy top-k

The accuracy function used in this study evaluates the model’s performance based on the highest

probability neuron in the output layer. However, in a clinical setting, multiple ICPC codes can represent

a patient’s diagnosis, and different general practitioners may assign other ICPC codes for the same

symptom or condition (as observed in section 9.2: ªUser studyº). As a result, more than a standard

accuracy measure may be required as it otherwise would lead to sub-optimal performance. A top-x

accuracy metric is employed to address this issue, where k denotes the number of highest probability

neurons considered. The top-k accuracy measures whether the ground truth ICPC code is among

the k highest probabilities. A top-3 and top-5 accuracy represent a reasonable number of potential

ICPC codes that can be presented to a GP without overwhelming them with too many options.

As seen in Table 8.3, the model has a symptom accuracy top-3 of 88.6% and a diagnosis accuracy

top-3 of 87.1.9% on the SOAP note test set.

8.6.3 Macro average accuracy

The SOAP note and questionnaire datasets are unbalanced. A minority of the labels (approximately

10% of the total) account for most of the dataset (around 60%). In such cases, it is essential to

evaluate the model’s ability to predict each label accurately rather than solely considering its overall

performance on the entire dataset. The macro average accuracy function, as shown in Figure 8.11,

accounts for this issue as it sums the accuracy of each label and divides it by the number of labels.

As shown in Table 8.3, the model has a lower macro accuracy than the normal accuracy top-

1/top-3. The outcome was predictable due to the dataset’s unbalanced distribution of ICPC codes.

Nevertheless, it is a good performance given that 333 out of the total 678 ICPC codes occur less than

100 times in a dataset of 2.2 million S-rules. The decision not to remove the ICPC codes appearing

less than 100 times from the dataset was made to provide a fair performance measure and to ensure

comparability with future works that may have more data available.

Macro Average Accuracy =

∑

N

n=1
Precision(n)

N

Figure 8.11: where N = the amount of classes, for precision formula see Figure 8.12

Precision =
TP

TP + FP

Figure 8.12: where TP = True positive; FP = False positive
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8.6.4 Threshold

After the last linear layer, the output values are passed through the softmax function to transform

them into probabilities. The Accuracy top-k function selects the top-k probabilities as the predicted

set. However, the method does not consider the probabilities of the selected set. When the model is

uncertain, the returned set may need to be larger as there are more possible labels. Conversely, if

the highest probability in the model is very high, the model may need to return fewer possible labels

as the first label is likely to be the ground truth. Suggesting several diagnoses corresponds directly

how a Dutch GP provides a differential diagnosis. When the GP is uncertain about the diagnosis,

more possible diagnoses are given. Conversely, only one diagnosis is given when the GP is confident

about the diagnosis.

A threshold function is implemented to sum the highest probability neurons until a threshold value

is met. These neurons are then considered as possible ICPC labels. The threshold value can be

changed to increase performance, with the downside that more ICPC codes are suggested. The

most optimal threshold value is chosen(90%), which has better performance than the Accuracy top-3

method but, on average, returns fewer than 3 possible labels. It should be noted that neurons with a

probability of less than 1% are not considered for the threshold function.

As seen from Table 8.3, the threshold function yields higher accuracy than the top-3 diagnosis

and symptom accuracies. Moreover, the threshold function generates fewer than three ICPC codes

on average. The original classification head sometimes performed better but picked more ICPC codes

on average than the top-3 accuracy.

8.7 Fine-tuning

The model is trained on 2.2 million S-rules in the SOAP note dataset but needs to be fine-tuned

on the questionnaire dataset. Even when different learning rates were employed, the model’s over-

all performance slightly decreased after fine-tuning. These findings suggest that the questionnaire

dataset lacks sufficient new information for the model to learn and that the generated S-rules corre-

spond well to those written by GPs in the SOAP note dataset. This observation led to the decision to

only use the questionnaire dataset as an additional validation set to determine whether the model’s

performance on the generated S-rules is comparable to the written S-rules and whether it can be

used in practical applications to predict ICPC codes when a patient fills in a questionnaire. Two val-

idation sets were constructed from the questionnaire dataset, one utilising the entire dataset, which

has a length of 17,833, and the second using the automatically connected dataset, with a length of

5,356. If the complete questionnaire dataset is correctly connected to the s-rules from the SOAP

note dataset, the model’s performance on these two sets should be identical. Table 8.4 presents the

model’s performance on these two sets and with the SOAP note test set as reference. The macro

average accuracy is lower in the total set than the auto set because it contains more unique ICPC

codes. It can be seen that the model performs slightly worse on the auto and total set compared to

the test set from the SOAP note dataset. The total set performs worse than the auto set because

some entries are wrongly connected compared to the perfectly connected auto set, as also specified

in subsection 7.2.1: ªQuality of connectionº.
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Performance measure / validation set Auto set (%) Total set (%) Test set SOAP note (%)

Accuracy top-1 49.4 48.7 51.4

Accuracy top-3 74.7 72.4 78.4

Accuracy threshold 80.1 (3.8 picked) 77.3 (3.7 picked) 83.5 (3.7 picked)

Macro accuracy top-1 20.3 17.6 22.5

Macro accuracy top-3 45.7 39.2 42.6

Symptom accuracy top-1 65.1 63.3 66.9

Symptom accuracy top-3 85.4 82.2 88.8

Symptom threshold 87.6 (2.84 picked) 84.3 (2.84 picked) 90.0 (2.7 picked)

Symptom macro accuracy top-3 58.5 50.9 51.5

Diagnosis accuracy top-1 61.5 59.9 64.9

Diagnosis accuracy top-3 83.4 80.5 87.1

Diagnosis threshold 86.5 (3.1 avg) 83.2 (3.1 picked) 88.6 (2.9 picked)

Diagnosis macro accuracy top-3 62.3 52.6 57.3

Table 8.4: Performance on questionnaire dataset. The avg stands for the average amount of ªactivatedº neurons.

8.7.1 Weight of certain questions

To improve model performance, a common approach is to adjust model architecture or hyperparam-

eters. However, an alternative approach is to modify the input data instead. For the data used for

training the model, this is infeasible. GPs write the s-rules used for training in the SOAP note dataset.

These S-rules cannot be modified because the context of each S-rule can be completely different.

The s-rule in the questionnaire dataset used for validation can be modified. The s-rules from this

dataset are generated with the answers to the questionnaire of patients. The S-rule can be modified

by removing columns of specific questions/categories and then regenerating the S-rule. The following

modified S-rules were generated: 1. Without medication, 2. Without operation, 3. Without open ques-

tions. Medication and operation are removed because medication and operations were never a factor

when diagnosing a patient by GPs in section 9.2: ªUser studyº. Note that the S-rules without open

questions also remove medication and operations since they are answered in an open-question field.

Table 8.5 compares the performance of these modified S-rules to the original S-rule. The comparison

is made on the automatically connected questionnaire dataset to ensure that the S-rule corresponds

to the ICPC code. The Table shows no significant improvement in any of the performance measures.

It does, however, show that open questions improve the model’s performance significantly, which is to

be expected because it gives a context not present in closed questions.
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Performance measure/ S-rule No medication(%) No operations(%) No open questions (%) Original (%)

Accuracy 49.3 49.5 43.2 49.4

Accuracy top-3 74.4 74.6 67.2 74.7

Symptom accuracy 65.4 65.1 58.3 65.1

Symptom accuracy top-3 85.2 85.4 78.3 85.4

Diagnosis accuracy 61.2 62.1 52.9 61.6

Diagnosis accuracy top-3 83.3 83.4 74.2 83.4

Table 8.5: The performance of the modified s-rules. Bold indicated the best-performing s-rule for that perfor-

mance measure. Tested on the automatically connected questionnaire dataset.

8.8 Performance Versus other models

The RoBERTa language model may be overly complex for the task at hand, and a more straight-

forward model may achieve similar results while being computationally less expensive. Prompting a

research question: ªCan a simpler model achieve comparable performance to the RoBERTa model

for predicting ICPC codes using S-rules?º. Two baseline models, a Naive Bayes model[59] and a

random forest classifier[60], were also trained on the same (total) questionnaire dataset. The aim is

to compare the model’s performances against the RoBERTa model.

A Naive Bayes classifier was selected as a baseline model because it is a simple language model

that utilises word frequencies to calculate the log-likelihood of a word corresponding to a class. The

most likely class of a document is determined by summing the log-likelihood of each word in the

document per class and selecting the class with the largest sum.

A random forest classifier was also trained as a baseline model to determine whether a language

model is appropriate because a decision tree has a similar structure as a questionnaire. The random

forest classifier consists of multiple decision trees, where each decision tree predicts the same data

entry. The most predicted class is chosen as the most likely class.

Both baseline models showed a drastically decreased accuracy (24.4% and 9.5%) and macro

average accuracy (2.8% and 0.4%) and were not considered to improve further. Because of version

changes in the questionnaire dataset, many identifiers changed definitions (e.g. BK040 → BK050)

hence the random forest classifier had too many columns to build a good decision tree.

Performance measure / validation sets Naive Bayes (%) Random forest (%) Original (%)

train set 28.6 (1.8 macro) 8.5 (0.5 macro) 48.6 (17.9 macro)

Test set 24.4 (2.8 macro) 9.5 (0.4 macro) 49.0 (25.3 macro)

Val set 23.0 (2.8 macro) 7.8 (0.2 macro) 47.0 (21.2 macro)

Table 8.6: Baseline accuracy of Naive Bayes and random forest model compared to the baseline on the ques-

tionnaire validation sets. (macro is the macro average accuracy)
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8.9 Conclusion

The proposed architecture demonstrated overall improvement compared to the standard classification

head of RoBERTa. The validation techniques employed in this study aimed to capture the hierarchical

structure inherent in the ICPC codes and employ a similar approach to a GPs process conducting

differential diagnosis. Although fine-tuning did not enhance the model’s performance, evaluating the

model using the connected questionnaire dataset did not significantly decrease its performance. This

outcome suggests that the generated S-rule and the connection method of the dataset performed

effectively. Furthermore, the removal of questions and answers from the S-rule did not substantially

impact the model’s performance. Notably, the advantage of removing questions and answers is a

shorter generated S-rule, reducing the likelihood of it not fitting as input for the model.

In chapter 6: ªMethodologyº, there was a discussion on whether a language model was a suitable

choice considering its computational complexity. However, experiments with a simple naive Bayes

classifier and random regression tree revealed inadequate performance, reinforcing the selection of

the RoBERTa model.

The key question lies in determining whether the model’s performance is satisfactory for real-world

use cases by actual general practitioners. While the performance appears promising, it is important

to note that previous research[16] has highlighted discrepancies between validation set performance

and actual performance due to shortcuts or cheating. To measure the model’s actual performance,

the model’s fit for use and detect any potential cheating behaviour, it is necessary to establish model

explainability, which is addressed in the subsequent section.



Chapter 9

Explainability

9.1 LIME

LIME includes a text-module that can identify the most influential keywords within a given text. The

module generates various samples of the text, each with different tokens removed.

These new samples are used as input for the diagnoses prediction model to calculate new proba-

bilities of the model’s output for each sample. By comparing the probabilities of the modified samples

with those of the original text, the most influential words or ªkeywordsº can be identified. The number

of samples is a variable that can be changed. More samples will provide better keywords but will take

longer to compute. For this study, it was chosen to have 5 thousand sample. A white-box model such

as Ridge regression is trained to make these explanations locally interpretable using the modified

samples and their corresponding probabilities. This approach explains the predicted ICPC codes by

showing the keywords that influenced the prediction the most.

During testing, it was found that keywords were often irrelevant, as they were present in every gen-

erated S-rule or were stopwords, such as ªklacht/beloopº (complaint/course) or ªhulpvraagº (question

for GP). Each keyword has a score representing how influential it was to the prediction. The scores

cause issues when attempting to provide the GP with an explanation. The score of each keyword

does not represent a probability and cannot be translated to a reliable metric for deciding whether

to include a keyword in the explanation. Determining the optimal number of keywords to be shown

to the GP is hard. Showing too many causes non-insightful keywords to be included while showing

insufficient keywords creates the opposite effect.

Furthermore, the LIME text-module only identifies single words as keywords, which does not fully

represent how complex language models like RoBERTa make decisions. For instance, RoBERTa

considers the context of multiple symptoms together to predict a particular ICPC code. The LIME text-

module’s output does not cover context but only considers single words, which, for an explanation,

may need to provide more confidence to a GP about the model’s predictions.

An example can be observed in the following translated S-rule (originally in Dutch and translated

to English). The highlighted words indicate the most influential keywords for the top 2 most probable

ICPC symptom codes.

ªinitial complaint: skin complaints, fever, moderately ill, 4days-1wk skin complaints, does

not recognise complaints, slightly sensitive (score 1), increase in complaints, location:

nails , hands , complaints: red, hard spot, pus , swelling , cause: I had last week a cut

on my cuticle. The cuticle is torn. That wound is now closed, but my entire fingertip

is now swollen and red. Self-help: Nothing , because I don’t know what I can do best.

Request for help: advice on reduction of complaints, diagnosis, treatment º

51
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Code Keywords

ªS09 - Local finger/toe/paronychia infectionº ªcuticleº (0.31), ªpusº (0.1), ªfingertipº (0.1), ªnailsº (0.07), ªreductionº (0.05)

ªL12 - Hand/Finger symptoms/complaintsº
ªfingertipº (0.08), ªhandsº (0.06), ªswellingº (0.03), ªtreatmentº (0.02)

and ªnothingº (0.02)

Table 9.1: Five most influential keywords with scores.

As seen in Table 9.1, the highest probability ICPC symptom code was ªS09 - Local finger/toe/paronychia

infectionº. The five most influential keywords for the symptom code are ªcuticleº, ªpusº, ªfingertipº,

ªnailsº, and ªreductionº. The second highest probability ICPC symptom code was ªL12 - Hand/Finger

symptoms/complaintsº, with the five most influential keywords being: ªfingertipº, ªhandsº, ªswellingº,

ªtreatmentº and ªnothingº. While the top keywords align well with the symptom, the subsequent key-

words provide less meaningful insights.

A new symptom-module is proposed in subsection 9.1.1: ªLIME symptom-moduleº that allows

ICPC diagnosis/disease codes to be explained by ICPC symptom codes instead of keywords. Other

ICPC symptom codes cannot explain ICPC symptom codes as they would only reference themselves.

In this study, it was chosen to explain ICPC symptom codes by the text-module and ICPC diagno-

sis/disease codes by the symptom-module.

To evaluate whether the LIME text-module or the LIME symptom-module would be a valuable

explanation for GPs, a user study was conducted to investigate whether they serve as a valuable

explanation for GPs.

9.1.1 LIME symptom-module

In chapter 8: ªDiagnoses prediction modelº, a side-by-side layer was proposed using a side-by-side

layer to differentiate between the classification of symptom codes and diagnosis/disease codes. Pre-

dicting symptoms and diagnoses/diseases showed a promising performance. With high performance,

an S-rule can get given both the highest probability symptom code and the highest probability diagno-

sis/disease code. The side-by-side layer enables ICPC diagnosis codes to be explained by identifying

the most activated symptoms.

This development led to the LIME symptom-module, which shares the same foundation as the

text-module. Initially, samples were generated by deleting tokens from an S-rule. Predicting these

modified samples resulted in changes to the output of both symptom neurons and diagnosis/disease

neurons. These modified outputs were then utilised to identify the most influential symptoms associ-

ated with a specific diagnosis/disease code.

The outputs of the symptom neurons and the diagnosis/disease neuron of interest were sepa-

rately saved for further analysis. The cosine distance between the original sample and each modified

sample was calculated to determine the importance of the ICPC symptom neurons for the selected

diagnosis/disease neuron. Samples with a larger modification had a smaller similarity. These cosine

distances were then employed as sample weights for a ridge model using a exponential kernel func-

tion on cosine distance. The sample weight indicates the importance of each sample for trainign the

model. The kernel width determines how large the neighbourhood of the local model is. The training

data of the ridge model consisted of the outputs of the symptom neurons and the output probabilities

of the selected diagnosis/disease neuron that served as a ground truth label. The model had 678

trainable coefficient each representing a ICPC symptom code. The resulting coefficients of the ridge

model (which has the same length as the ICPC symptom neurons) signified the importance of that

code for the ICPC diagnosis/disease codes. The coefficients with the highest weights were consid-
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ered the most influential and were sorted and returned by the symptom-module. An example of two

explanations derived from the following translated S-rule:

ªinitial complaint: eye complaints, less haze after blinking, sensitive (score 2), does not

wear lenses, eye L, 1-3 days, does not recognise complaints, visual complaints: blurred

vision, flashes of light, location: eyelid, corner of the eye, complaints: tears, burning,

itching, redness, stinging, pus, pain on/around eye, swollen eyelid, additional: herpes

face, hay fever.º

Code Symptoms

ªF72 - Blepharitis/hordeolum/chalazionº

ªF16 - Symptoms/complaints eyelidsº (1.18)

ªF15 - Deviating aspect eyeº (0.38)

ªF01 - Pain eyeº (0.06)

ªF70 - Infectious conjunctivitisº

ªF02 - Red eyeº (0.59)

ªF13 - Deviating feeling eyeº (0.13)

ªF03 - Discharge from eyeº (0.09)

Table 9.2: Three most influential symptoms with scores.

As seen in Table 9.2,The highest probability diagnosis/disease code, ªF70 - Infectious conjunctivi-

tisº, is the most probable diagnosis together with ªF72 - Blepharitis/hordeolum/chalazionº. the most

influential symptoms were checked with a GP and described the clinical picture of the corresponding

diagnosis well.

9.2 User study

The primary objective of the diagnoses prediction model in this study is to assist Dutch GPs in di-

agnosing patients. The LIME model was modified to explain ICPC diagnosis/disease codes based

on ICPC symptom codes. Although the modification does not represent the internal decision-making

inside the RoBERTa model, it aims to aid GPs in their decision-making process. Evaluating the per-

formance of these explanations requires input from medical professionals who possess the expertise

to provide medical validation for an explanation. Since machine learning researchers typically need

more medical qualifications to assess a model’s real-world performance beyond the dataset and stan-

dard performance measures discussed in the previous sections, a user study involving Dutch GPs

was conducted. The user study serves two purposes: 1) evaluating the performance of the model’s

explainability and 2) assessing the performance of the diagnoses prediction model itself.

Throughout the study, it has been highlighted that developing a diagnoses prediction model us-

ing ICPC codes presents a significant challenge. Multiple ICPC codes may apply to an S-rule, and

the usage of ICPC codes can vary among GPs. These factors influence the model’s performance

measurement since only one ground truth is available. Achieving high accuracy, particularly in the

top-1 accuracy, is considered challenging due to the variability of ICPC codes. The user study helps

to accurately quantify the model’s performance by providing different GPs for the same S-rule cases.

By involving an adequate number of participants, it becomes possible to measure the model’s perfor-

mance on a small subset of S-rules.

As indicated in section 3.4: ªExplainable AIº, no performance measure is often present in XAI-

related studies that evaluate the explainability of a model. Quantifying the accuracy of explanations
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After the ten cases, there are six more general questions (see Figure 9.3). These measure the

opinion of the GP on the explanation and suggested diagnoses of the model in general. These general

questions were open to give more context to the answers to the previous questions.

1. ªWould the suggested diagnoses in their current form help you to find a correct diagnosis more

quickly (why/why not)?º. This question measures if GPs would use the model and find that the

model improves their diagnostic ability.

2. ªCould related symptoms in suggested diagnoses help you to find a correct diagnosis faster

(why/why not)?º and ªCould related keywords for suggested symptoms help you find a cor-

rect diagnosis more quickly (why/why not)?º. These questions measure the ªContextº quality

property and how helpful the explanations are to their diagnostics ability.

3. ªWhat do you think of the number of suggested symptoms and words in an explanation?º This

question measures the quality property of the ªCompactnessº and whether GPs like the num-

ber of explanations given for each suggested diagnosis.

4. ªHow do you feel about the explanation being shown in the form of keywords and relevant

symptoms?º This question shows if a GP would instead find keywords an insightful explana-

tion, prefer diagnosis codes to be explained by the symptom module, or not find the form of

explanation helpful at all. The question measures the ªCompositionº quality property.

5. ªWhat kind of control would you like over the suggested diagnoses and explanation (e.g. adding

and removing your symptoms or adjusting the S rule)?º This question measures the ªControl-

labilityº quality property and measures how much control a GP would like over the diagnoses

prediction model or explanations. In essence, a modified S-rule can quickly be re-entered in the

model to get new predictions and explanations, but this answers the question of what control

GPs would want over an explanation.

A complete example of a user study can be found in Appendix C: ªExample of a full user studyº.
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The threshold function initially achieved a performance of 80.1% in section 8.6: ªPerformanceº.

However, when considering the ªnewº ground truth derived from the user study, the model’s threshold

function provided the chosen ICPC code in 84.0% of the cases. When excluding cases where the

ground truth ICPC code was in the output of the threshold function but the GP chose an ICPC code

not provided by the model, the model’s performance improves to ∼98.33%. On one occasion, a code

was chosen which was not in the output of the threshold function, and the ground truth was also not

in the output of the threshold function.

Case 1 Case 2 Case 3 Case 4 Case 5

Ground truth L17 F72 S09 X15 L08

Option # in model 1 4 1 Not in model 1

Participant 1 L17 (#1) F02 (#2) S09 (#1) S75 (#1) L08 (#1)

Participant 2 L17 (#1) F05 (#X) S09 (#1) S06 (#X) L08 (#1)

Participant 3 L17 (#1) F02 (#2) S09 (#1) S74 (#2) L08 (#1)

Participant 4 L77 (#X) F70 (#1) S09 (#1) X72 (#4) L08 (#1)

Participant 5 A80 (#4) F73 (#5) S09 (#1) S74 (#2) L08 (#1)

Table 9.3: The variance in the first 5 cases across each participant.

The average rating of the scales per participant is presented in Table 9.4. For question 1, the

average position of the chosen ICPC code was calculated. If the chosen ICPC code was absent in

the model, it was excluded from the calculation. For instance, participant 2 selected the ICPC code

with the highest probability in 8 out of 10 cases. However, the participant chose an ICPC code absent

in the model in 2 out of 10 cases. As a result, the average chosen option of the participant is 1.00.

The quality of the returned ICPC codes by the threshold function indicates an average rating of

3.62 out of 5.00, as reported by the practitioners. The rating suggests that although the GPs prioritise

the ICPC code with the highest probability, they acknowledge the potential relevance of the other

presented ICPC codes. It is worth noting that the GPs rated the ground truth (question 5) with an

average score of 3.34 out of 5.00. The rating is lower than the rating assigned to the returned ICPC

codes by the threshold function. During the user study, all practitioners typically did not find the lower

probability ICPC codes probable. These results can be used to optimise and improve the threshold

function. The same is true for the ªrelated symptomsº and ªrelated keywordsº which showed the same

problem. The ªrelated symptomsº had an average rating of 3.5/5, and the ªrelated keywordº had an

average rating of 3.32/5. As previously explained, there are always two keywords minimum and three

symptoms. During the user study, it was again found that while the keywords and symptoms often

contribute to the practitioners’ decision-making ability, the lower-scoring keywords and symptoms

were often incorrect. The GPs found that incorrect explanations only hindered their diagnostic ability.

However, these parameters can still be optimised to increase the models’ performance. Rerunning

the same user study with a correct amount of keywords, symptoms, and diagnoses would lead to a

higher rating.
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Average scale Question 1 Question 2 Question 3 Question 4 Question 5

Participant 1 1.3 (9/10) 3.4 3.4 3.25 3.2

Participant 2 1.0 (8/10) 4.0 3.5 ∼3.56 3.3

Participant 3 1.6 (10/10) 3.4 3.2 ∼2.56 3.6

Participant 4 ∼1.87 (8/10) 3.1 3.4 3.1 3.2

Participant 5 ∼2.22 (9/10) 4.2 4.0 ∼4.11 3.4

Total average ∼1.6 3.62 3.5 ∼3.32 3.34

Table 9.4: Average rating across ten cases of each participant

9.2.4 Results general questions

The analysis and quantification of the answers to the general questions pose a more significant chal-

lenge because they are open-ended. To establish a quantification method, the answers are simplified

to a variable of either Yes/No, as presented in Table 9.5. The complete answers to each general

question for each participant can be found in Appendix B: ªAnswers to the general questionsº

Describing a consensus for each question is complicated. However, it is worth noting that prac-

titioners generally expressed a positive view regarding the models’ diagnostic ability. Of five partici-

pants, four indicated that the model’s suggested ICPC codes assisted them in their diagnostic ability.

The model enabled GPs to identify the correct ICPC code more efficiently.

Three practitioners mentioned that the ªrelated symptomsº provided by the symptom-module en-

hanced their diagnostic abilities. Frequently, practitioners employed these related symptoms to pin-

point a more specific ICPC code instead of considering them as explanations generated by the model.

Two practitioners found the ªrelated keywordsº to be insightful. All practitioners observed that the key-

words did not contribute significantly to their decision-making process. However, they acknowledged

that the keywords effectively reflected the model’s decision-making and increased trust in the model.

Many times, however, it was noted by practitioners that a lot of weird keywords appeared, such as

stop-words. The issue can be addressed by further optimising the system by analysing these wrong

keywords’ scores.

Practitioners found it challenging to understand that ICPC codes may not appear immediately

correct after reading the S-rule. In future iterations, explaining that the model outputs probable di-

agnoses, including those that often emerge after additional examinations, is crucial. The clarification

should extend to explanations as well. In this case, a ªrelated symptomº may be included but is not

present in the patient’s symptoms and complaints outlined in the S-rule.

Question 1 2 3 4 5 6

Participant 1 Yes (With some improvement) Yes No Good as it is Yes Change S-rule

Participant 2 Yes No No 3 till 5 Yes Change S-rule

Participant 3 Yes Yes No 2 till 3 Yes No necessity

Participant 4 No (Yes for triagist) No Yes 3 Yes No necessity

Participant 5 Yes Yes Yes Max 5
Keywords = Yes

Symptoms = Maybe
Change S-rule

Table 9.5: Summarised answers to general questions
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9.3 Conclusion

In this section, a LIME-based symptom module was proposed that aimed to enhance the explainability

of the diagnoses model by explaining the predicted ICPC codes by the most influential symptoms. To

measure the effectiveness of the proposed module, a user study was conducted involving five Dutch

GPs. The primary objective of the user study was to evaluate the model’s actual performance and

determine its suitability for use by GPs. Additionally, the study aimed to assess how well the model’s

explanation performed through the evaluation of six co-explanation properties.

It is important to note that the assessment of co-explanation properties remains subjective, as

different GPs may have different preferences regarding the methods of explanation. This subjectivity

was observed during the user study, where varying or contradicting opinions were expressed by

participating GPs.

The results of the user study indicated that the model has a positive impact on the decision

making of the participating GPs and the model had a higher accuracy compared to the validation set.

The suspected ICPC variability per GP was proven and it was shown that the predicted ICPC codes

by the threshold function encapsulated the variability present per GP well. When the model would

be actually implemented in the process of the GP, a more accurate performance can be measured

because the user study only existed of five GPs.

To conclude this section, the user study results will be used to review the symptom and text

modules, considering the six co-explanation properties.

1. Compactness: Participants expressed that an optimal number of 3-5 suggested ICPC codes

would be desirable. Moreover, they found the quantity of explanations to be sufficient.

2. Composition: Participants acknowledged the adequacy of the composition, but they found

the inclusion of both symptom, diagnosis codes, relevant symptoms and relevant keywords

confusing. Moreover they found the relevant symptoms to take up too much space.

3. Confidence: The participants did not consult the scores associated with the explanations or

the overall prediction. While the purpose of these scores was explained at the beginning of the

user study, it appears that the scores did not attract enough attention.

4. Context: Participants indicated that the symptom-module and text-module demonstrated the

decision-making process of the model. However, they did not find it helpful for their diagnostic

process but rather useful in identifying a less specific ICPC code.

5. Coherence: Given that the participants were medical professionals, they comprehended the

explanations effectively and were able to accurately identify incorrect explanations. It was ob-

served that GPs utilise ICPC codes differently per GP, which could impact their perception of

the model’s performance.

6. Controllability: Participants appreciated the availability of a controllable S-rule to modify the

model’s predictions and explanations. However, they expressed that further control features

were unnecessary as that would only increase the time required to arrive at a diagnosis.



Chapter 10

Discussion

10.1 User study

The user study yielded promising results, indicating that 80% of the participating GPs observed an

enhancement in their diagnostic capability when utilising the suggested diagnoses. Nonetheless,

certain limitations were encountered during the implementation of the user study. One particular

limitation relates to the study structure, which may have introduced a potential bias.

In each case, the initial question posed to the participants was, ªWhich ICPC code do you think

is most appropriate (a code not listed here is also allowed)?º This question was asked subsequently

to the participants reviewing the S-rule and being presented with the diagnoses suggested by the

model. This structural arrangement can potentially create an acquiescence bias by already providing

ICPC codes to the GPs before posing the question. Acquiescence bias refers to the tendency of

participants to agree or accept suggestions presented to them as defined by Kuru et al. (2016)[61].

The authors investigate how a Likert scale which was also utilised in this study, introduces the bias in

social media measurement surveys.

In retrospect, a more representative assessment of the model’s performance could have been

achieved by asking the initial question after the participants had reviewed the S-rule but before being

presented with the suggested diagnoses. This modification would have eliminated the potential ac-

quiescence bias by solely evaluating the decision-making abilities of the GPs rather than considering

both the model’s suggestions and the GPs’ responses. These possible biases were chosen to ignore

in this study because the user study was already nearing completion.

Another possible bias is the ªResponse Order Effectº bias[62], where participants are more likely

to choose choices presented earlier. The diagnoses prediction model presents more probable diag-

noses higher than less probable diagnoses. To remove the potential ªResponse Order Effect biasº,

the suggested diagnoses could be shuffled among the first five cases.

The user study was completed by five participants. To ensure a robust validation of the model’s

performance, a larger number of participants would be advantageous. If the diagnoses prediction

model were to be implemented by Topcicus to improve the decision-making of GPs, a feedback loop

could be considered. By monitoring the use of the model in actual scenarios, an accurate assessment

of the model’s performance could be obtained. The model could be implemented into the GP side

of Spreekuur.nl, which is used by 60 GP practices and emergency centres, presumably including

hundreds of GPs. Consequently, the feedback loop can provide more validation cases than the 50

user study cases. Within the feedback loop, it would be feasible to track the frequency with which

the model is utilised by GPs. Additionally, the feedback loop could keep track of how many times an

option is chosen by the GP that was suggested by the model. This feedback mechanism provides a

robust validation approach which could be used for training the model if enough data is gathered.

10.2 S-rules

GPs write s-rules to document symptoms and patient narratives. The s-rule generated from ques-

tionnaire answers demonstrated slightly inferior performance compared to the s-rule written by GPs.

62



CHAPTER 10. DISCUSSION 63

A notable limitation is that an ICPC code is typically assigned after documenting a comprehensive

SOAP (Subjective, Objective, Assessment, Plan) note, which includes additional examinations not

present in the S-rule. The model’s prediction does not incorporate this supplementary information,

resulting in suboptimal performance as two identical s-rules can yield different diagnoses based on

further examination. User study participants also indicated instances where the model predicted a

disease or diagnosis not suggested by the available information. The model can predict the most

probable codes, usually only assigned after further examination. These codes can assist GPs by

proposing ICPC codes that typically arise after further examination.

Furthermore, the model performed well when applied to written S-rules and was not further fine-

tuned using the generated S-rules. This performance suggests an additional use case for the diagno-

sis prediction model. Since the model’s performance was higher when applied to written S-rules than

generated ones, it suggests GPs could utilise the model when formulating an S-rule. However, further

research is necessary to determine the model’s actual performance when predicting ICPC codes for

GPs during the s-rule writing process. It is crucial to acknowledge that the dataset comprised three

GP emergency centres, each with a limited number of GPs and triage professionals responsible for

writing S-rules making the model less generalisable for normal general practices. S-rules from GPs

in different centres or practices may reduce the prediction model’s performance.

10.3 Linking dataset

This study attempted to link the resulting ICPC code following an anonymous questionnaire. Previ-

ously, SOAP notes and questionnaires could be linked via an ID field, which has since been removed.

Approximately 17 thousand questionnaires were connected using personal information such as age,

sex, and time stamps. These 17 thousand questionnaires exhibited a 3% decrease in performance

across all metrics compared to the 4 thousand questionnaires linked via the ID field. This performance

decline suggests that the connected ICPC code was incorrect in at least 3% of the questionnaires

(potentially even more due to the possibility of fasely linked ICPC codes coincidentally being correct).

Out of approximately 50 thousand questionnaires, only 17 thousand could be successfully linked to

an ICPC code. Training the model on the generated S-rules did not improve performance, indicating

that the dataset needed more data entries. Expanding the dataset size could enhance the model’s

performance.

Topicus now faces a decision between privacy and utility. They can reintroduce the ability to con-

nect questionnaires to SOAP notes via an ID, enabling a reliable linkage and a larger dataset. The

removal of the ID field did not yield the desired results for Topicus, as the information in the SOAP

note and questionnaire datasets still allows for reasonably accurate data linkage. Alternatively, if Top-

icus retains the current structure, they must eliminate additional personal information. Alternatively,

Topicus can add the connection between SOAP notes and notes and questionnaires within a ran-

domly selected subset of new questionnaires. This linkage allows for the continued utilisation of the

connected questionnaires for various utility purposes, including validation, while gradually expanding

the dataset over time. Notably, the remaining data remains highly protected through this method.

However, a drawback of this approach emerges over an extended duration, wherein a substantial

majority of patients would likely be present within the connected dataset. This scenario introduces

the potential for establishing associations between the unconnected questionnaires and SOAP notes.
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10.4 Loss functions

For training the diagnoses prediction model, the Cross-Entropy loss is employed. It is worth noting

that various loss functions were explored, but none yielded improved performance. Specifically, the

investigation focused on transforming the single-label output into a multi-label one. The dataset’s

ground truth comprised only one ICPC code per consultation; however, the user study revealed that

multiple ICPC codes could be associated with a questionnaire or consultation performed by a GP.

Initially, a Sigmoid activation function was applied with a Binary Cross Entropy (BCE) loss function.

This choice was motivated by the substantial variability in the training data, which suggested that

multiple neurons could be activated with enough variability. To address the challenge of training a

multi-label model on a single-labelled dataset, Cole et al.[63] investigated two strategies, which were

also adopted in this study. The first strategy, ªassume negative,º assumes that the unknown labels

(whether present in the ground truth or not) are negative. This approach considers all labels, except

the ground truth, as negative. The second strategy, ªignore unobserved negatives,º involves excluding

the unknown labels from the loss function calculation using BCE.

Applying the ªassume negativeº strategy resulted in the output neurons exhibiting very small val-

ues (approximately 0.00) when using the Sigmoid activation function. The dataset’s large amount of

possible ICPC codes led the model to achieve a lower loss by not activating any neurons. In Cole et

al. paper, the number of possible labels was lower and was weakly labelled instead of single labelled.

Conversely, the ªignore unobserved negativesº strategy activated all neurons (approximately 1.00) for

every prediction. Furthermore, due to the single-labelled ground truth, the multi-label model cannot

be accurately validated.

Other loss functions were also employed to make use of the hierarchy in ICPC codes such as

decreasing the loss when the predicted code was of the correct category/letter but this did not result

in improved performance.

10.5 Adding tokens

Another potential improvement to the model involved expanding the tokenizer’s vocabulary by adding

additional tokens(see subsection 6.2.1: ªVocabulary transferº). An algorithm was devised to introduce

4,000 new tokens into the vocabulary. To identify these tokens, the TF-IDF score was computed

for complete words, and the highest-scoring words were added to the vocabulary as tokens until

the vocabulary size reached 44,000. The RobBERT model was trained on all S-rules to update the

representations using the extended vocabulary. It was observed that the inclusion of the 4,000 new

tokens led to significant forgetting and resulted in poorer performance compared to the original model.

10.6 ICPC variability

The primary challenge encountered in this study was the variability between possible ICPC codes. In

many cases, multiple ICPC codes could potentially serve as appropriate diagnoses. The absence of

a hierarchical documentation structure further complicated the issue. The current approach employed

in this study, utilising a side-by-side classification head with a threshold function, partially mitigates

the problem by separately predicting symptoms and diagnoses. However, including a hierarchical

structure would present a more beneficial solution. A loss function that considers the hierarchical

position of the ICPC code could then be efficiently implemented. For instance, the loss could be

reduced when the predicted ICPC code falls within the hierarchy of the ground truth code.
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Creating a disease/symptom hierarchy poses significant challenges, as it often leads to an infinite

structure. Most diseases manifest as various symptoms; conversely, a single symptom can be asso-

ciated with multiple diseases. The variability in the ICPC codes severely impacts the model’s ability to

validate and learn effectively. The model may be penalised for assigning a code that another GP, as

observed in the user study, would consider correct. Additionally, the validation process is adversely

affected due to the dataset being solely single-labelled.

The main reason behind the single-labelled dataset is the GP documentation tools Dutch GP

utilise. These software systems only permit a single ICPC code as input per consultation. GPs

primarily rely on ICPC codes to quickly locate the corresponding SOAP note for a patient. When

multiple ICPC codes apply to a consultation, the GP must duplicate the information into two separate

consultations with two ICPC codes, which is often excessively time-consuming. Furthermore, GPs

often combine consultations with two similar ICPC codes in one to improve searchability and the

number of consultations present for a single patient.

Enabling multi-label inputs could serve as a scientifically robust and forward-looking solution. A

multi-label dataset will improve data analysis capabilities and potentially enhance healthcare out-

comes by identifying new symptoms and disease patterns or a sudden increase in ICPC code usage.

Multi-labelled SOAP notes could also enhance the efficiency of GPs in searching for ICPC codes.

Furthermore, utilising multi-label inputs would facilitate the development of a more accurate machine-

learning model.
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Conclusion

Spreekuur.nl is an online consultation application that requires users to complete a questionnaire

before participating in an online consultation. A GP can review the answers to the questionnaire to

help them diagnose the patient. This study aimed to help alleviate the workload of GPs by predicting

diagnoses based on the answers to a questionnaire and providing explanations in terms of symptoms

and keyword-based evidence for these symptoms.

First, the questionnaire data was converted into the text format of an S-rule (user-identified symp-

toms), resembling an S-rule written by a Dutch GP. The S-rule specifically concerns the Subjective

symptoms and patient’s narrative without a further medical examination. An S-rule is part of a SOAP

note which is the documentation standard for Dutch GP to document a consultation.

ICPC codes are a standard GPs use in consultations to standardise and document a patient’s

diagnosis and are present in each SOAP note. ICPC codes were used to classify a diagnosis based

on the S-rule.

a Dutch variant of the RoBERTa language model known as RobBERT was made domain-specific

to the domain of Dutch GPs. The model is trained and fine-tuned using 2.2 million S-rules. A new

classification head was introduced, enabling the separate classification of ICPC symptom codes and

ICPC disease/diagnosis codes.

Fine-tuning the model on 17 thousand-generated S-rules did not improve performance, as the

size of the questionnaire dataset was insufficient for the model to learn. Instead, the questionnaire

data was employed to validate the model’s performance.

To align with the diagnostic decision-making process of GPs, a threshold function was imple-

mented to determine the number of ICPC codes returned. The threshold function outperformed the

simple approach of returning only the top three codes while providing fewer than three codes on av-

erage. When predicting ICPC symptom codes, the threshold function achieved an accuracy of 90%;

for ICPC diagnosis/disease codes, the accuracy was 88.6%. Notably, when evaluating the model’s

performance on the generated S-rules from the questionnaire dataset, the accuracy was 87.6% for

ICPC symptom codes and 86.5% for ICPC diagnosis/disease codes.

However, it should be noted that the model’s actual performance may be higher due to the vari-

ability of ICPC codes across different GPs, as observed in the user study.

Additionally, explaining the model’s decision-making process is crucial for GPs. The user study

revealed that the LIME symptom-module and text-module provided satisfactory explanations; how-

ever, participants found irregularities distracting. Future research can focus on further enhancing the

explanation mechanisms for improved usability.

All sub-research questions will first be concluded.

1. What is the most effective method for transforming SOAP notes and questionnaire data

to train a RoBERTa diagnoses prediction model?

The S-rule of the SOAP note dataset contains the symptoms and the patient’s narrative as de-

scribed by the patient in a text format. DigiDok, has codebooks that are already available to

convert questionnaire data into the S-rule’s text format. The advantage of transforming ques-

tionnaires into S-rule lies in their resemblance to an S-rule written by a Dutch GP. Consequently,
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fine-tuning the model on the generated S-rule is reduced, as the model can benefit from the

similarities to GP-written S-rules.

2. How can data from the SOAP note dataset link an ICPC code to the anonymous ques-

tionnaire data?

Before training, it is necessary to determine the eventual diagnosis/ICPC code assigned by

a GP based on the questionnaire and consultation. Fortunately, the SOAP note dataset in-

cludes the SOAP note from the respective questionnaire. Previously, an ICPC code/SOAP

note could be linked to a questionnaire through a designated ID field, but the field has since

been removed. Among the available questionnaires, 5,356 were automatically connected using

the now-removed ID field, while an additional 15,445 questionnaires were manually connected

using timestamps and personal information. The manually connected dataset was validated

using the 5,356 automatically connected questionnaires, resulting in a precision of 99% for the

2,840 questionnaires present in both datasets. However, it is important to note that only 53%

of the automatically connected dataset was successfully linked using the manual connecting

algorithm. Consequently, the total dataset consisted of 17,833 questionnaires after merging

the automatically and manually connected datasets.

Both datasets were used for validating the model. The total dataset had a 3% lower perfor-

mance than the automatically connected dataset. This performance difference can be used to

indicate how well the questionnaires were connected in the manually connected questionnaires

in the dataset.

3. What strategies can improve the model’s performance to predict ICPC codes?

The primary challenge encountered in this study was the variability between possible ICPC

codes. In many cases, multiple ICPC codes could potentially serve as appropriate diagnoses.

Moreover, different GPs had varying levels of efficiency in the user study in their use of ICPC

codes. The only available hierarchical information was whether an ICPC code represented a

symptom or a diagnosis/disease.

To address the variability, a new classification head was proposed. The classification head was

divided into 318 neurons representing all ICPC symptom codes and 360 neurons representing

all ICPC diagnosis/disease codes. The training was conducted using separate cross-entropy

loss functions and activation functions. The division slightly improved accuracy while enabling

the model to more effectively predict less frequently occurring ICPC codes.

The diagnosis accuracy of the model increased from 63.4% to 64.9%, and the symptom accu-

racy improved from 65.9% to 66.9%. The macro accuracy for symptoms increased from 27.3%

to 30.5%, and for diagnosis, it rose from 29.4% to 36.3%.

To better emulate the diagnosis process of a GP, a new threshold function is implemented,

which returns a variable number of ICPC codes based on their probabilities. The threshold

function selects the ICPC codes with the highest probabilities until a threshold value is met.

The approach increased the symptom and diagnosis accuracy to 90% and 88.6%, respectively,

while on average, returning fewer than three codes (2.7 and 2.9).

4. How can the performance of the model be validated for diagnosing patients using ICPC

codes?

Providing a single diagnosis only partially captures the diagnostic process employed by Dutch

GPs. Multiple ICPC codes often apply to the same S-rule, indicating variability in the assigned

codes. Dutch GPs often use multiple diagnoses as a differential diagnosis or use less specific

ICPC codes when uncertain, such as ºCoughº or ºFever.º Consequently, the model achieved
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an accuracy of only 51.4%. However, when considering the top-3 predicted ICPC codes, the

model’s accuracy increases to 78.4%.

Using the normal accuracy function as a performance measure is also inadequate in this

context because the proposed classification head of the model predicts symptoms and diag-

noses/disease codes separately. Therefore, separate accuracy measures are employed for

ICPC symptom and ICPC diagnosis/disease codes. The symptom accuracy is determined by

the activation of the first 318 neurons, while the last 360 neurons determine the diagnosis

accuracy.

A user study was conducted to measure the actual performance of the model. The five partici-

pants chose an ICPC code suggested by the threshold function 84.00% of the time in 50 cases.

There often needed to be more information in the generated S-rule to indicate the more detailed

ground-truth ICPC code. The participants were always shown the same first five cases. The

five participants chose 13 different ICPC codes across these five cases. This suggests that the

real performance may be higher when considering the variability of ICPC codes.

5. To what extent can current knowledge of diagnoses, symptoms and causes in the medi-

cal field be used for predictions?

The current medical knowledge that was available in this study consisted of 2.2 million SOAP

notes. As these SOAP notes are from actual documentation from Dutch GPs, they contain

domain-specific knowledge from the medical field, specifically the Dutch healthcare field. The

S-rules in the SOAP note dataset were used to make the RobBERT model domain-specific

by updating its representation using Masked Language Modelling. The MLM accuracy rose

from 47.3% to 76.7%. Afterwards, the classification head is trained on the SOAP note dataset.

Further fine-tuning the model on the generated S-rules from the questionnaire dataset was un-

necessary as it did not increase the model’s performance. The generated S-rule dataset was

small compared to the S-rules in the SOAP note dataset and did not contain enough new infor-

mation for the model to learn. Hence, the questionnaire dataset was used for validation. The

threshold function got a symptom accuracy of 87.6% (2.82 picked on average) and 86.5% (3.1

picked on average) on the automatically connected questionnaire dataset.

6. What is the relationship between the model’s performance and the inclusion of specific

questionnaire questions and answers as input features for the model?

The models did not significantly perform worse when removing specific questions/answers and

parts of the generated S-rule. The removed parts also did not increase the model’s perfor-

mance. A large section of the S-rule often consists of previous operations or medicine. The

section often is unrelated to the diagnosis of the patients. Other open questions did contain

informative information. Patients described the course of their complaint, which is often much

more insightful than what a multiple-choice question would produce in the generated s-rule.

The performance when removing open questions proves the necessity of using a language

model for this study.

7. What is the performance of the diagnoses prediction model against established baseline

models?

The RoBERTa language model may be overly complex for the task at hand, and a more straight-

forward model may achieve similar results while being computationally less expensive. Hence

a naive classifier and random forest classifier were trained to compare the performance against

the complex RoBERTa language model. Both baseline models showed a drastically decreased

accuracy (24.4% and 9.5%) and macro average accuracy (2.8% and 0.4%) and were not con-

sidered to improve further.
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8. Which XAI method is most effective at explaining the predictions of a diagnoses predic-

tion model to Dutch general practitioners?

RoBERTa lacks transparency and interpretability due to its complexity. To address this issue,

the LIME symptom-module was proposed. The symptom-module is an adaptation of the LIME

text-module. The text-module generates various samples of a text by removing words and

tokens. The model then generates output probabilities for these samples, and the probabil-

ity changes are utilised as training data for a white-box model. The white-box model aims to

identify the most important keywords for each ICPC code.

The symptom-module leverages the same samples but focuses on the changes in output prob-

abilities of the first 318 symptom code neurons. By analysing these changes, the module iden-

tifies the most influential ICPC symptom codes corresponding to an ICPC diagnosis/disease

code. A user study was conducted to evaluate the effectiveness of these two types of expla-

nations. The survey included questions that measured six out of the twelve CO explanation

quality properties specified by Nauta et al. [3].

The user study results indicated that three out of five participants found a diagnosis’s ºrelated

symptomsº helpful. In comparison, two out of five participants found the ºkeywordsº associ-

ated with a code beneficial. The explanations were found to gain insights into the model’s

decision-making process. However, the participants found that the explanations increased their

diagnostic abilities.

Participants also noted that less relevant keywords and symptoms often hindered their diag-

nostic abilities by causing distractions.

9. How does the use of the diagnoses prediction models impact the efficiency of Dutch

GPs?

A user study was conducted to measure the performance of the diagnoses prediction model

and evaluate its explainability. The study involved five participants, and their experiences were

measured to determine the impact of the model on their diagnostic abilities.

The user study results showed that four out of five participants reported an enhancement in their

diagnostic abilities due to the incorporation of the diagnoses prediction model. Specifically, the

participants were able to provide more specific ICPC codes.

In conclusion, this study demonstrates the promising performance of the model in predicting S-

rules generated from questionnaire answers and those written by GPs. Explaining the suggested

ICPC codes is crucial for establishing trust in the model’s decision-making process. While the LIME

symptom-module and text-module demonstrated potential in offering explanations, further optimisa-

tion is required to remove irrelevant symptoms and keywords. By incorporating further improvements

and fine-tuning in areas such as the threshold function, suggested explanations, and the visual layer,

the model can effectively suggest additional ICPC codes to practitioners. GPs found that suggesting

ICPC codes enhanced their diagnostic capabilities in online consultations. It is important to note that

the dataset utilised in this study consists of data from only three GP emergency practice centres. In-

creasing the number of participating general practices would provide a more comprehensive dataset,

leading to higher macro average accuracy as many ICPC codes have a low occurrence within the cur-

rent dataset. Furthermore, a multi-label dataset or hierarchical implementation of ICPC code could

drastically improve the model’s performance in future works.
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Appendix B

Answers to the general questions

Table B.1, Table B.2, Table B.3, Table B.4, Table B.5 provide the answers of each participant to the

general questions. The answers are translated from Dutch to English.

Participant 1 Answer

Question 1
On the one hand, yes. On the other hand, you also get too many choices and confusion

and I usually keep the choice as limited as possible.

Question 2 Yes in most cases

Question 3

No, it usually has a more restrictive effect because you usually come up with the keywords yourself.

In a few cases, however, the computer had come up with better words than I could.

So it also keeps you sharp. There is, as it were, someone who thinks along with you

Question 4 It’s great how the quantity remains limited despite the sometimes very long stories of the patients

Question 5 I find it useful. As a result, the patient’s story is compressed

Question 6 The possibility to adjust the s line yourself

Table B.1: Translated answers of Participant 1

Participant 2 Answer

Question 1

Yes, because sometimes I’m looking for possible symptom diagnoses of which I don’t know ICPC code.

This gives me a suggestion in the right direction, so I don’t have to enter a number of words

in E-rule myself with trial & error

Question 2

Not, because it has sometimes been confirmed that a discovered for eg hand is given while

case/diagnosis is about a foot problem. Than is disappointed. Well, as a suggestion

when you are not sure about a diagnosis and therefore prefer to choose

the underlying(in accordance with ADEPT guidelines)

Question 3

No, for me is noise that distracts from formulating E-rule. They don’t always match what I would

consider a keyword for a case. For example, the case about ’blisters’,

AI does not see this as a keyword, but I do.

Question 4 3(-5) is fine by me. Not anymore, because then reading/watching will take too much effort.

Question 5
Nice to be able to ’understand’ AI how it arrives at this suggestion, but not for my own thinking because

that is more based on clinical reasoning

Question 6

Adjust S-rule yourself and that AI gives new suggestions as a result. Optionally select keywords /

keywords yourself that get ’extra weight’ in AI

(but that I quite laborious)

Table B.2: Translated answers of Participant 2
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Participant 3 Answer

Question 1 Yes, I think so because I also have a better picture of the differential diagnosis

Question 2 Yes, with infections redness/warm/swelling with infection. bruises; swelling, whether or not wounds.

Question 3 No

Question 4 2-3 is enough. That is now well understood.

Question 5 Makes it clearer to connect and understand.

Question 6 No need.

Table B.3: Translated answers of Participant 3

Participant 4 Answer

Question 1 no, but possibly the triagist / assistant

Question 2 no diagnosis is already there in my head while reading the case it doesn’t change the symptoms.

Question 3
Yes, these do raise alarm symptoms and points for attention. the worst of the complaints

come forward more and can help me choose a cure or wait or send in

Question 4 too few keywords not too few diagnoses too many symptoms 3 is a nice overview

Question 5 yes fine the keywords clear color short alarms stand out

Question 6 No need

Table B.4: Translated answers of Participant 4

Participant 5 Answer

Question 1 Yes, pre-sorting already largely selects the correct ICPC codes.

Question 2
Certainly, it shows more options that apply, if there are also ICPC codes with subcodes

it would be complete.

Question 3
It’s a handy explanation of why the system chooses certain codes, so it’s nice for that clarity.

As a doctor, I don’t go beyond that.

Question 4 Well, I think a maximum of 5 options offers a clear choice.

Question 5

Keywords provide a good insight into the choices of the system to select certain codes.

The relevant symptoms too, but are sometimes less specific and may therefore distract

from your final choice.

Question 6

I would like to add things myself (or rather that the system does that automatically from the chat >

so that you can stand on answers in the chat and that there is the possibility

to check it to take over in the S line ).

Table B.5: Translated answers of Participant 5
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Example of a full user study

See next page for pdf.
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1 
 

Achtergrond 
Spreekuur.nl is een online triage consultaƟe hulpmiddel voor huisartsen. De website laat paƟënten 
een vragenlijst invullen over hun gezondheid, klachtgebied en symptomen. Aan het einde van de 
vragenlijst kan er een online chat gestart worden met hun huisarts. De huisarts kan een samenvaƫng 
zien van de vragen die door de gebruiker in de vragenlijst zijn beantwoordt. Spreekuur.nl voorkomt 
dat paƟënten onnodig fysiek naar de huisarts te gaan door een online consult aan te bieden. 

Deze tool is gemaakt door het IT-bedrijf Topicus. Topicus heeŌ een unieke posiƟe om de grote 
hoeveelheid verzamelde gegevens en kennis te gebruiken, die normaal niet beschikbaar zijn voor het 
grote publiek. Door middel van deze data kan Spreekuur.nl gebruikt worden om huisartsen verder te 
ontlasten door een lijst met voorspelde ICPC codes aan te bieden, gebaseerd op de antwoorden die 
zijn verkregen uit de vragenlijst. 

Doel 
U wordt gevraagd om in deze user study 10 casussen van paƟënten te bekijken, elk met dezelfde 
algemene vragen. Na de 10 casussen, staan nog enkele algemene vragen. Elke casus bestaat uit een 
‘S-regel’ (SubjecƟef van SOEP-notaƟe) dat automaƟsch gegenereerd is op basis van de antwoorden 
van een paƟënt op een vragenlijst. Onder de ‘S-regel’ staan verschillende voorspelde mogelijke 
diagnoses met ICPC codes die het meest relevant zijn. Een mogelijke diagnose kan een symptoom zijn 
als de diagnose ‘onzeker’ is en wordt gedetailleerder naarmate de huisarts ‘zekerder’ wordt van een 
diagnose. 

Elke voorgestelde mogelijke diagnose heeŌ een uitleg eronder. Indien de best passende diagnose 
bestaat uit een symptoom, bestaat de uitleg uit de belangrijkste trefwoorden van de ‘S-regel’. Indien 
de best passende diagnose bestaat uit een diagnose of ziekte, bestaat de uitleg uit relevante 
symptomen die passen bij de diagnose én de ‘S-regel’. 

Bij elke mogelijke diagnose staat ook een kleur met ‘MaƟg bewijs’, ‘Redelijk bewijs’ en ‘Sterk bewijs’ 
die aangeeŌ hoeveel de voorgestelde mogelijke  diagnose past bij de ‘S-regel’. Het is de bedoeling dat 
de ’S-Regel’ eerst wordt gelezen en dat pas daarna de vragen worden beantwoord. 

U mag de volgende site gebruiken voor het vinden van ICPC codes in dien de code niet aanwezig is bij 
de voorgestelde symptomen: hƩps://viewers.nhg.org/icpcviewer/ 

Bij eventuele opmerkingen of vragen kunt u contact opnemen met Pieter Zeilstra via e-mail 
(pieter.zeilstra@topicus.nl) of telefonisch (0639857364).  

 

 

Voorbeeld van twee voorgestelde diagnoses. 
Eén diagnose is een symptoom en de andere 
eén diagnose. De ‘uitleg’ van een symptoom 
bestaat uit een aantal trefwoorden terwijl de 
‘uitleg’ onder een diagnose bestaat uit 
gerelateerde symptomen.  
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Voorbeeld collage paƟënt 
Hieronder zijn een paar aĩeeldingen om aan te duiden hoe een vragenlijst wordt doorlopen door 
een paƟënt. Een vragenlijst kan tussen de 10 tot 40 vragen bevaƩen. 
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Figuur 1 PaƟënt kiest een klacht gebied 

 
Figuur 2 PaƟënt krijgt vragen 

 
Figuur 3 PaƟënt krijgt vragen 
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Figuur 4 PaƟënt na het beantwoorden van alle vragen een chat met eigen huisarts starten 

Voorbeeld collage huisarts 
De aĩeelding hieronder laat zien hoe een huisarts een vragenlijst kan inzien en een chat kan 
beginnen. 

 
Figuur 5 Huisarts kan antwoorden van vragenlijst inzien en vragen stellen via chat 
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Hoe ziet dit eruit? 
Aan het chat-gedeelte van een arts zal naast de chat de gegenereerde ‘S-regel’ met voorgestelde 
diagnoses te vinden zijn. 
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Begin vragenlijst 
Casus 1 
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Vragen casus 1:  

1. Welke ICPC code vind u het meest passend (een code die hier niet bijstaat mag ook)? 
Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de S-regel?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

5. Zou u “L17 -Voet/teen symptomen/klachten” een adequate code vinden? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 2 
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Vragen casus 2:  

1. Welke ICPC code vind u het meest passend (een code die hier niet bijstaat mag ook)? 
Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

5. Zou u “F72 - BlephariƟs/hordeolum/chalazion” een adequate code vinden? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

  



10 
 

Casus 3 
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Vragen casus 3:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde  diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

5. Zou u “S09 - Lokale infecƟe vinger/teen/paronychia” een adequate code vinden? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 4 
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Vragen casus 4:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 
Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Zou u “X15 - Andere symptomen/klachten vagina” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 5 
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Vragen casus 5:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

5. Zou u “L08 - Schouder symptomen/klachten” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 6 
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Vragen casus 6:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

5. Zou u “R05 - Hoesten” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 7 
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Vragen casus 7:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 
5. Zou u “S04 - Lokale zwelling/papel/knobbel huid/subcuƟs” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 8 
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Vragen casus 8:  

6. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

7. Vindt u de voorgestelde diagnoses passen bij de s-regel? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 
8. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

9. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 
10. Zou u “U01 - Pijnlijke micƟe” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 9 

 
Vragen casus 9:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☒ ☐ 

 

4. Zou u “S13 - Beet mens/dier” een adequate code vinden? 

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Casus 10 
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Vragen casus 10:  

1. Welke ICPC code vindt u het meest passend (een code die hier niet bijstaat mag ook)? 

Click or tap here to enter text. 

2. Vindt u de voorgestelde diagnoses passen bij de s-regel?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 

3. Vindt u de gerelateerde symptomen passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 

 
4. Vindt u de gerelateerde trefwoorden passen bij de voorgestelde diagnoses?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☒ ☐ 

 

5. Zou u “D10 - Braken” een adequate code vinden?  

Helemaal oneens Oneens Neutraal Eens Helemaal eens 
☐ ☐ ☐ ☐ ☐ 
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Algemene vragen 
1. Zouden de voorgestelde diagnoses in huidige vorm u kunnen helpen sneller een juiste diagnose 

te vinden (waarom wel/niet)? 

Click or tap here to enter text. 

 

2. Zouden gerelateerde symptomen bij diagnoses in huidige vorm u kunnen helpen sneller een 
juiste diagnose te vinden (waarom wel/niet)? 

Click or tap here to enter text. 

3. Zouden gerelateerde trefwoorden bij symptomen in huidige vorm u kunnen helpen sneller een 
juiste diagnose te vinden (waarom wel/niet)? 

Click or tap here to enter text. 

4. Wat vindt u van de hoeveelheid voorgestelde diagnoses, symptomen en trefwoorden bij een 
uitleg? 

Click or tap here to enter text. 

5. Wat vindt u ervan dat de uitleg word getoond in de vorm van trefwoorden en relevante 
symptomen? 

Click or tap here to enter text. 

6. Wat voor controle zou u willen over de voorgestelde diagnoses (denk bijvoorbeeld aan zelf 
symptomen toevoegen en verwijderen of de S-regel aanpassen)? 

Click or tap here to enter text. 
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