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Abstract

This study takes an empirical approach to explainable AI in job recommendation systems
(JRS). Using a real-world Kaggle’s Career Builder 2012 dataset, the study compares the
recommendations generated by different JRS designs and then decomposes the factors that
contribute to the ranking results. Two post hoc techniques: LIME and SHAP, and the Ex-
plainable Boosting Machines (EBM) algorithm are implemented for explanation purposes.
The results of the experiment confirm the potential of using inherently explainable models
(EBM) to mitigate the trade-off between performance and explainability in recommenda-
tion tasks. JRSs using the EBM algorithm can perform on par with complex counterparts,
using the Factorization Machines algorithm. These explainable JRS can generate both
global and local explanations. JRS using post hoc analysis could retrieve most of the criti-
cal features of the original model when explaining at a local scope. Equally important, the
explanations from both approaches can reflect the bias in the recommendation systems,
which links to data quality in this case. Finally, the study proposes some use cases to il-
lustrate the solution to challenges in explaining embedded features in job recommendation
systems.

Keywords: explainable AI, recommendation systems, job recommendation systems, data-
centric explanation, biases, fairness.
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Chapter 1

Introduction

1.1 Introduction

The emerging application of artificial intelligence (AI) raises the same need to explain
the decisions generated by opaque algorithms. Explainable Artificial Intelligence (XAI) is
gaining attention as a means of improving transparency in AI systems and thus enabling
trust from various stakeholders.

This project focuses on explainable AI in Job Recommendation System (JRS). While
numerous research contributions have been made to improve the performance of JRS al-
gorithms, there is still limited focus on providing comprehensible reasons behind these
systems. The best-performing models in recommendation challenges (such as ACM Rec-
Sys challenges) are often ensemble models or models based on neural networks, which
present challenges in providing intuitive explanations to users.

This project tackles XAI’s challenges in JRS using model-specific and model-agnostic
approaches. Model fidelity was used as one metric to evaluate the explanation for a model-
specific approach. In addition, the target audience is lay users (i.e. job seekers) who
are assumed to have limited knowledge about AI to understand the mechanism for mak-
ing recommendations. Given this assumption, the final output of XAI pipelines must
be human-digestible explanations, which minimize unnecessary cognitive processes for the
target audience to understand these explanations.

The project aims to answer four research questions:

1. How well do State-Of-The-Art (SOTA) algorithms perform on job recommendations?

2. Which features contribute mainly to the ranking results?

3. How to evaluate the explanations generated by different XAI techniques?

4. How to make explanations digestible for lay users?

1.2 Thesis structure

The remaining content of this project is divided into five chapters as below:

• Chapter 2 presents background studies for this project. This includes an overview
of explainable AI (XAI), job recommendation systems and the need for explanation,
and methods of evaluating explanations.

6



CHAPTER 1. INTRODUCTION 7

• Chapter 3 presents the methodology of this project. It starts with a general mapping
of the experiment design to answer research questions, followed by the experiment
design. Key aspects of the experiment including data collection, the choice of al-
gorithms for recommendation systems, and explanation approaches are discussed in
this chapter.

• Chapter 4 explains in detail how the experiment was carried out following the design
in chapter 3. The results of each phase are interpreted in this chapter.

• Chapter 5 discusses the results with respect to the proposed research questions
and comparison with previous findings. In addition to a model-centric explanation,
this chapter provides a data-centric explanation tailored to the data set used in this
project for implications in further research.

• Chapter 6 summarizes key contributions of the project, limitations of the project,
and future research opportunities.



Chapter 2

Literature Review

This chapter presents background knowledge for this project. It starts with an overview
of explainable AI (XAI), job recommendation systems, and the methods of evaluating
explanations.

2.1 Overview of Explainable AI

According to DARPA, AI systems are considered explainable when they communicate
to human users their rationale, strengths, and weaknesses, and how they will behave in
the future [4]. XAI emphasizes generating explainable models while maintaining a high
level of performance (which are normally measured by accuracy), thus, enabling human
to understand, appropriately trust, and effectively manage the emerging generation of AI
system [1, 4].

To achieve the ultimate goal of XAI, the first step is to identify the need for explain-
ability or the target audience of XAI models. The demand for explainability is perceived
differently by various stakeholders in the AI system. For example, stakeholders can be
end users who are affected by AI system decisions or take actions from AI system [4]. The
group of people who "take action by the AI system", could be divided into domain experts,
data scientists, and developers, managers, and regulatory bodies, as shown in figure 2.1.

Figure 2.1: XAI audience profile, figure from paper [1]

The second consideration of XAI could be the scope of explainability, which is often
divided into global and local interpretability [1, 19, 8]. Global interpretability provides the

8



CHAPTER 2. LITERATURE REVIEW 9

target audience with an understanding of the input (data) and their modeled/holistic rela-
tionship with the model’s output. Thus, this scope requires trained models and knowledge
of algorithms and data [19]. On the contrary, local interpretability explains the predictions
for one data instance or a group of similar rows [1, 8]. According to Molnar (2019), in
some situations, it might be easier for the audience to look at the individual prediction
of complex models, such as being linearly dependent on some features, rather than the
complex dependence [19].

Third, to answer the question of "How" to explain, there is a variety of taxonomy for
XAI techniques. At a general level, we could divide XAI techniques based on whether we
need to use the pre-trained models for an explanation. This refers to the two approaches:
model-specific and model-agnostic. Model-agnostic techniques assume that all models are
black-box; thus, they do not consider the inner mechanism of these models. Instead, they
take the trained outputs of the black-box models as targets of their surrogate models, and
the explanations are interpreted based on the surrogate models [8, 19]. On the other hand,
the model-specific [1, 8] or model-intrinsic approach [35, 19] looks at the internal decision
mechanism of the models, thus, depending on different classes of algorithms. Model-specific
approaches aim to approximate the black-box counterparts with an interpretable version
so that it can achieve both goals of model performance and explainability.

According to Hall et al. (2019), an XAI technique can be local or global, depending on
how much explanation can be generated [8]. For example, Shapley value-based techniques
(such as the method [17]) by design are a local XAI technique as they compute the additive
feature contribution for each prediction. Hall et al. (2019) argue that the addition of
SHAP can provide a generalized explanation for the whole model. SHAP method can
also be classified as model-agnostic, unlike other taxonomies such as in [1, 19], when the
calculation of Shapley values is based on a class of algorithms, such as tree-based models
(TreeSHAP).

Equally important, XAI only meets its goals if it can be delivered to the target audience
with suitable technical knowledge. Instead of top-down approaches for XAI taxonomy as
[1], Liao et al. (2022) proposed a mapping XAI question bank to map the information
needs of the audience. There are 9 categories of questions: How, Why, Why not, How to
be that, How to be this still, What if, Performance, Data, Output [13].
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2.2 Job Recommendation System

2.2.1 Background of recommendation system

Early recommendation systems mostly use Content-based filtering (CBF) or Collaborative
Filtering (CF) approaches.
In CBF recommendation systems, the profile of users and items are used as features to
predict the outcome of the interaction between users and items. Thus, the recommenda-
tions are perceived as explainable when profile features are literally explainable themselves
[35].
CF systems take another approach by making suggestions based on past interactions be-
tween users and items, which can be implicit or explicit. Thus, CF recommendation sys-
tems have a "domain-free" advantage, meaning that they do not rely on the profile of users
and items, which are not always available. CF recommendation systems can be divided
further into two approaches: neighborhood models and latent factor models. Recommen-
dations generated by the first approach can be explainable as they are based on either
neighboring items by the same user or on neighboring users for the same item. The level of
complexity increases for latent models as they characterize both items and users inferred
from a rating pattern. The matrix factorization-based model by Koren et al. ( 2009) from
the Netflix competition was a well-performed candidate for this approach [6, 10].

Despite high accuracy, CF recommendation systems commonly face cold-start chal-
lenges when users and items are brand new to the system. In this aspect, content filtering
is superior. Additionally, latent factor models were generally less intuitive to explain com-
pared to content-based filtering due to the matrix factorization mechanism [35].

2.2.2 SOTA job recommendation systems

Research contribution to () could be highlighted with three competitions: ACM Recom-
mendation System Challenge (ACM RecSys Challenge) in 2016 1 and 2017 2 and Kaggle’s
job recommendation challenge in 2012 [2]. ACM RecSys Challenges formulate the problem
as a personalized top-k recommendation by computing 30 suitable jobs for a user, and user
interaction with one of the top-k is counted as a success. The Kaggle challenge aims to
predict the jobs that users will apply for in a given window. These competitions attracted
business-oriented social networks as data contributors such as XING.com (in RecSys chal-
lenges) and CareerBuilder (in Kaggle challenge). These data sets were reused in many
studies post-competition, making them an essential contribution to the field, according to
Ruijt et al. (2021) [3].

Table 2.1 summarizes the selected JRS using three datasets. State-Of-The-Art (SOTA)
models vary between ensemble models, hybrid recommendation systems, and deep learning
models. For example, the Mim-Solution developed by Pacuk et al. (2016) consists of two
stages: first, select the most relevant job posts for each user using a learning-to-rank
approach; second, for each pair (users, job post), predict the probability that users will
interact with the job posting using the GBDT algorithm [24].

The complexity in SOTA job recommendations also comes from the feature engineering
process. For example, the winning model of RecSys 2017 by Volkovs et al. (2017) focuses
on extracting features from the (user, item) pairs, including five categories: user content,
item content, user-item content, user-item interaction, and user-item temporal. A total of

1https://recsys.acm.org/recsys16/challenge/
2http://www.recsyschallenge.com/2017/
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Table 2.1: SOTA JRS using three datasets: CB12, RS2016, RS2017

No Authors Data Highlights of JRS design
1 Zhang et al.

(2016) [34]
RS2016 Two-stage ensemble ranking system:

- First: CBF method to select 100 relevant items for each user.
Algorithms: Using word2vec to compute the similarity between
tag words, and build a doc2vec model to judge the content simi-
larity between a pair of items.
- Second: use the CF method to re-rank the list and select a top-n
list. Algorithms: Latent Semantic model (LSI) to capture similar
users in interactions

2 Mishra et al.
(2016) [18]

RS2016 - CF: K-mean clustering on users and items & Cosine Similarity
- Scoring: Heuristic scoring, based on impression frequency, inter-
action score, matching between items and users), Linear Regres-
sion
- Gradient Boosting Decision Trees (GBDT)

3 Liu et al.
(2016) [15]

RS2016 Ensemble ranking system, using:
- Temporal-based ranking on history
- Temporal re-weighted Matrix Factorization
- Encoder-Decoder Sequence Model (RNNs)

4 Pacuk et al.
(2016) [24]

RS2016 Two-stage system:
- Candidate selection: Using a set of criteria for similarity: e.g.,
common tags, the popularity of items, Jaccard coefficients
- Candidate ranking: using the predicted probability that the user
will positively interact with the job offer. Algorithms: GBDT

5 Xiao et al.
(2016) [32]

RS2016 Hierarchical ranking model with ensemble learning:
- Feature representations: 3 categories: user features, job post
features, user-job post interaction features
- Logistic Regression (LogReg), XGBoost, GBDT, and Temporal
Intensity are used to compute element scores - Ensemble GBDT
for final score

6 Lian et al.
(2017) [12]

RS2017 Deep negative sampling for users with negative reaction (deleted,
unclicked)
- Feature engineering: Profile matching, Historical Matching, Bag
of Words (BoW)
- Algorithms: LogReg, Support Vector Machine (SVM), Factor-
ization Machines (FM), GBDT, LambdaMART for the ranking
model

7 Volkovs et al.
(2017) [30]

RS2017 Combination of content and neighbor-based models:
- Intensive feature engineering: 5,416 features of five categories
- Data augmentation: validation set: Randomly selected a subset
of 20K unique items that had at least one positive interaction
- Algorithms: XGBoost

8 Guo et al.
(2014) [5]

CB2012 - Content-based recommenders using BoW and TF-IDF cosine-
based similarity, entities and Jaccard similarity, social tags and
Jaccard similarity;
- Case-based recommenders using categories of entities, categories
of entities with the explicit features;
- A hybrid recommender using both the categories of entities fea-
tures and the bag-of-words feature

9 Lacic et al.
(2020) [11]

CB2012,
RS2017,
Studo
Jobs

- Data augmentation: Generate sessions for CareerBuilder data.
- Session-based recommendation methodology: Inferred latent ses-
sion representations in a k-nearest neighbor.
- Algorithms: Autoencoder, Denoising Autoencoder, and Varia-
tional Autoencoder
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5,416 features were used to train the XGBoost model to predict the probability of positive
interaction [30].

2.2.3 The influence of data on JRS performance

Finding high-quality public datasets for recommendation research in the HR context is
a challenging task for two reasons. First, scraping persons’ profiles from social network
platforms such as LinkedIn is now prohibited. Second, the interaction between persons
and job posts normally cannot be scraped and is heavily dependent on data providers.
For these reasons, most of the existing studies in job recommendation systems leverage
datasets provided in public competitions, as mentioned in the previous section [3].

Lacic et al. (2020) implemented three variants of autoencoders for session-based job
recommendations and evaluated their performance on three datasets: ACM RecSys 2017,
CareerBuilder 2012, and Studo - a private dataset collected from the online platform Studo
Jobs [11]. The authors compared the performance of autoencoder models against different
SOTA models, including the popularity-based approach, neural networks, session-based
nearest neighbor models (all of these models were adapted from Hidasi et al. (2015) [9])
and matrix factorization methods for implicit feedback (Bayesian personalized ranking-
Factorization Machines (BPR-FM) by Rendle et al. (2009) [26]).
Experiment results showed a great variation in model performance depending on the
datasets and the metrics selected for evaluation. For example, session KNN-based mod-
els outperformed other model classes with respect to accuracy (measured by normalized
Discounted Cumulative Gain (nDCG) or Mean Reciprocal Rank (MPR)). The variational
auto-encoder model (VAE) developed by Lacic et al. (2020) performed second best in the
ACM RecSys 2017 dataset but worse in the Studo dataset and medium performance in the
CareerBuilder dataset. Matrix factorization models performed best in the ACM RecSys
2017 dataset but were ranked second worst in terms of nDCG in the other two datasets.

It is noted from the study by Lacic et al. (2020) that CareerBuilder data were aug-
mented to generate sessions and more types of interaction to be comparable with other
datasets. Thus, apart from the nature of the dataset, a data-centric explanation is nec-
essary for users in order to draw a fair conclusion of which models are best performers in
which situation.
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2.3 Explanation challenges in job recommendation systems

2.3.1 Overview of explainable recommendation system

Explainability in recommendation systems can be either in the methods or in the results
or both aspects [14]. Zhang and Cheng (2020) used two dimensions to classify explainable
recommendation systems: "information/style of explanations" and “models for explainable
recommendations” [35]. When benchmarking to the criteria of Section 2.1, most of the
models in the taxonomy by Zhang and Cheng (2020) follow model-intrinsic approaches,
as explanations depend on the model classes. These include neighbor-based, matrix fac-
torization, topic modeling, graph-based, deep learning, knowledge-based, and rule-mining
models. The post hoc explanation methods had fewer representatives in this survey.

In personalized recommendation systems, local explanation per user or group of users
is preferred over global explanation. Integrating post hoc techniques into the component
of the black-box recommendation system is a common approach to generating local expla-
nations.

Using the MovieLens dataset, Peake and Wang (2018) used association rules trained
on the output of a matrix factorization-based recommendation system to generate expla-
nations [25]. The explanations were formed with the template "Because you watched X, I
recommend Y". Morisawa and Yamana (2021) and Caio et al.(2019) incorporated LIME
to generate explanations for movie recommendations. LIME-RS by Morisawa et al. (2021)
set an optimal number of explanations instead of selecting all feature importance as an
explanation. The excluded features include negative features that may cause misleading
interpretations or unmatched features with the target users [20]. Using model fidelity@10
and model fidelity@50, LIME-RS by Morisawa et al. (2021) outperformed both XAI models
presented in [21, 25].

Regarding the model-specific approach, Guo et al. (2020) developed explainable rec-
ommendation systems based on Generalized Additive Model (GAM). The algorithm called
Generalized Additive Models with Manifest and Latent Interactions (GAMMLI), decom-
posed recommendations into three components: (1) user and item main effects, (2) mani-
fest user-item interactions based on the observed features, and (3) latent effects of residual
interactions [6]. These effects were quantified into importance ratio (IR), i.e. the percent-
age of variation explained by each component, and visualized using line plots and bivariate
heat maps. GAMMLI has been applied to three real-world datasets: MovieLens, Santander
Bank, and University Recommendation.

Regardless of using model-specific or model-agnostic approaches, the above examples
of explainable recommendation systems were all built on structured datasets. In addition,
the features are literally explainable such as genres of movies in MovieLens; or GPA, GRE,
and university ranking as in Kaggle’s University Recommendation. Thus, even raw feature
importance scores make sense to the audience.

2.3.2 Explaination challenges in job recommendation systems

There is a limited contribution toward explainable job recommendation systems. Most
SOTA JRS in previous competitions aim for accuracy in recommendation rather than
explainability. Two major challenges in explaining job recommendations are identified
from existing studies.

First, anonymity in the data sets could be attributed to the lack of an intuitive ex-
planation. For example, in ACM RecSys Challenge, all information about users and jobs
was encoded by index terms. As a result, the importance of global characteristics is the
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most feasible explanation that can be derived from JRS developed on these datasets. The
winning model of the ACM RecSys Challenge 2017 by Volkovs et al. (2017) integrated the
XGBoost model to display the top five features within each feature category. Among 5,416
features in five categories, the most important category is user-item interaction. Given a
pair of (user, item) (u, v), the interaction between the user and the item was calculated by
taking the average similarities of all items with which the user (u) interacted, except the
item v [30].

Second, the feature engineering process adds more challenges for model interpretation.
Given the huge number of features such as Volkovs et al. (2017), feature importance scores
need further filtering and the final outputs were perhaps useful only for system developers.
For JRS built on text features (such as job descriptions and candidate CVs), text features
normally require embedding or transformation. Embedded features are numbers in latent
vectors, and thus cannot directly infer the profile of users and items.

Person-Job Fit Neural Network (PJFNN) developed by Zhu et al. (2018) is an example
of an explainable job recommendation using visualization to explain embedded features.
This model was based on the assumption that both job postings and resumes can be
projected onto a shared latent representation. Thus, suitable candidates for a given job
post were determined by the similarity of their latent representations to that of the job
post. Latent vectors were plotted in the corresponding heat maps, in which darker colors
mean greater similarity [36]. This study did not use data sets from ACM RecSys and
CareerBuilder.
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2.4 Evaluation explainable recommendation systems

This section begins with a discussion of a common belief in the trade-off between model
performance and explainability. Following that, we look at different approaches to evaluate
XAI models and the importance of communicating explanations in a human-understandable
manner.

2.4.1 Trade-off between model performance and explainability

The trade-off between model performance and explainability has been a controversial topic.
According to the authors who support the trade-off, the best-performing methods (such as
deep learning) are generally less explainable, but outperform explainable models (such as
decision trees) [1, 19, 4].

Rudin (2018) criticized this perception, especially when the input data were clearly
structured with meaningful features. In such situations, there were no significant differences
in performance between complex models such as deep neural networks, boosted decision
trees, and much simpler models such as logistic regression [28]. In addition, Rudin (2018)
did not support post hoc explainable methods in high-stakes decisions such as criminal
justice, healthcare, and computer vision. The author argued that the surrogate models
did not have perfect fidelity with respect to the original models, leading to unfaithful
explanations. A proposed solution was to use models that were inherently interpretable.

Rudin’s (2018) criticism of the model-agnostic approach possibly comes from a different
perception of the term "explainability". The author draws a distinction between explaining
the mechanism of calculation (inherently in the model, to answer the question "How") and
causal inference (which is often explained by feature importance in the model-agnostic
techniques to answer the question "Why").

Based on empirical studies, both model-specific and post hoc analysis approaches could
be used to increase interpretability without sacrificing the original model’s performance.
For example, Schellingerhout et al. (2022) use a model-intrinsic approach to explain career
path prediction. All models in this study were neural network-based. The finding of
this study supports Rudin (2018)’s claim. Explainable neural network models performed
on par with their counterparts, and the explainable-Long Short Term Memory (e-LSTM)
model even outperformed LSTM for one performance metric. [29]. Post hoc analysis can
help minimize the trade-off between model performance and interoperability, as can be
seen from the Local Interpretable Model-agnostic Explanations (LIME)-RS case studies in
section 2.3. For example, in Peak and Wang’s study [25], combining association rules with
recommendation systems achieved the same precision as black-box models while gaining
interpretability (84% of the model’s recommendations could be explained).

2.4.2 Evaluation of XAI for recommendation systems

Evaluation explanations can come from either the algorithm’s perspective or the user’s
perspective, according to Zhang et al. (2020). Evaluation from the user’s perspective
directly considers the quality of the explanation. This approach had various terms for
measurement, persuasiveness, effectiveness, efficiency, transparency, trustworthiness, and
user satisfaction [35]. Normally, additional surveys/experiments on the target audience of
the explanation are required, such as in the study [29].

Evaluation from algorithm perspectives assesses the methods used to generate expla-
nations. As explanations can be generated globally (through a model-agnostic approach)
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and/or locally (through a model-agnostic approach), the evaluation should be adjusted
based on the scope of the explanation.

Peak and Wang (2018) proposed the first metric to evaluate interpretability in the
recommendation system: model fidelity 2.1. The authors stress the distinction between
evaluating the recommendation models and evaluating the explanation models. When
using the surrogate models in post hoc explainability, we aim to approximate the original
black-box models. Thus, we can measure how close our approximation is by using the
model fidelity [25]. It is interpreted as the percentage of explainable items (i.e., the set
of retrieved items by the interpretable model) over the recommended items (the set of
retrieved items by the complex recommender model). Thus, the higher the metric, the
better [21].

Model Fidelity =
|Explainable items ∩ Recommended items|

|Recommended items|
(2.1)

Molnar (2020) also pointed out the importance of model fidelity in relation to accu-
racy. "If the black-box model has high accuracy and the explanation has high fidelity, the
explanation also has high accuracy." [19]

Model fidelity can be easily calculated on the whole dataset as the underlying assump-
tion is that explainable models are able to perform exact machine learning tasks as the
black-box models on the whole dataset (thus, generating a global explanation).

Evaluation of a local explanation from an algorithm perspective is more challenging
because the explanation by nature is case by case and may not be representative of how
the black-box system works. Therefore, human evaluation was often selected for this
evaluation.

From previous work by Ribero et al. [27], simulating human experiments can be used
to implement such an evaluation. The general design of these experiments was to have
a benchmark of gold features generated by self-explainable models and to check the
fraction of gold features that can be recovered by explanations. I define this concept as
"Feature Importance Fidelity" which is calculated by the following formula 2.2.

Feature Importance Fidelity =
|Important local features ∩ Important global features|

|Important global features|
(2.2)

2.4.3 Generation of human-digestible explanations

XAI involves machine learning, social science [1], and psychology. Hadash et al. (2022)
argued that the ultimate output of the XAI system should be comprehensible for users as
much as possible. Using the example of (visual) explanation generated by the LIME and
SHapley Additive exPlanation (SHAP) methods for credit loans, the authors criticized
these methods for potentially misleading interpretation without an additional cognitive
process. Accordingly, a good explanation should be self-explanatory and depend as little
as possible on implied knowledge [7].

The criticism of XAI techniques in study [7] is perhaps too harsh. I would attribute
the potential of being misleading to the way to communicate explanations to the target
audience, not the XAI techniques themselves. The following two empirical studies support
the importance of communicating explanations.
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In study [29], the direct explanation generated by the neural network models needed
further transformation to become digestible to the audience (recruiters). Raw explanations
including feature importance, attention gradient per feature, attention score per time step,
and spatio-temporal attention were visualized in the diagram and combined with interpre-
tation instructions. Although the target audience was unfamiliar with the technical terms
in the raw explanations, they could easily parse the terms with additional instructions on
the visualization platform and perceived the explanation as useful.

Another example to support the importance of communication "post-explanation" is
the study by Yang et al. (2022). The authors designed CrystalCandle, a model-explainer
interface representing a complete XAI process from raw input to the generation of human-
digestible explanation [33]. Human-digestible narratives were generated based on feature
hierarchy and narrative templates.

• The feature hierarchy helped to interpret the meaning of a feature, which was helpful
when the original data used to train the model had a complex tabular structure.

• Narrative templates were manually constructed by model owners and then trans-
lated into appropriate code and will be substituted by feature values in Narrative
Generator.

Furthermore, additional tuning was performed on the list of narratives, so only the top
narratives (with the highest importance score) were presented to users to avoid overwhelm-
ing. This system was applied to the LinkedIn sales team and helps to improve the adoption
rate of recommendations, user satisfaction, and revenue [33].



Chapter 3

Methodology & Experiment Design

This chapter presents the methodology and experiment design to answer four research ques-
tions. It starts with an overall pipeline mapping to each research question, followed by data
collection, selection of algorithms for the recommendation systems, and XAI techniques.
The chapter concludes with evaluation metrics.

3.1 Methodology

This project uses an empirical approach to answer research questions. The Kaggle Career-
Builder 2012 data set 1 was used for the experiment. A detailed description of this dataset
is provided in Section 3.2.

The general experiment design is mapped to research questions, as shown in figure 3.1

Figure 3.1: Mapping methodology to research questions

1https://www.kaggle.com/competitions/job-recommendation/data
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The first step is to generate job recommendation systems formulated by a top k recom-
mendation problem as in ACM RecSys Challenge. Complexity in recommendation systems
is simulated based on a variety of model classes and feature engineering techniques. For
this phase, the inputs are profiles of users, items, and interactions between users and items.
The results of this phase are complex recommendations. White-box models are also used as
a baseline to compare recommendation performance. The performance of recommendation
systems is evaluated using quantitative metrics such as accuracy, f1, recall, and hit rate.
More details of the algorithm selection and system design are provided in Section 3.3.

The second step, corresponding to two research questions (RQ2 and RQ3), focuses on
interpreting the recommendation using both model-agnostic and model-specific approaches.
Model-specific explanations, either locally or globally, would address both research ques-
tions quantitatively, using global feature importance and model fidelity. Model-agnostic
explanation aimed at local explanation and will be evaluated based on several use cases.
More details of the explanation methods are discussed in Section 3.3.

The final step is to generate human-digestible explanations (RQ4). As discussed in
Section 2.3, human-digestible explanations for embedded text features require additional
processing, such as visualization or text explanation. The heat map used in the Person-Job
Fit Neural Network (PJFNN) study by Zhu et al. (2018) was feasible if both users and jobs
had comparable profile features (e.g., skills for users and requirements for jobs). In this
project, the data were not sufficient to replicate such explanations. However, visualization
would be used for a general explanation.

In addition to model-centric explanations, data-centric explanations are provided for
future implications.
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3.2 Data Collection

When choosing a data set for implementation, both ACM RecSys data and Kaggle’s Ca-
reerBuilder data have their own advantages and limitations.

ACM RecSys data 20172 (provided by XING.com) has various interactions between a
job seeker and a job post including explicit (such as users’ click on the reply and application
button or deleting the recommendation) and implicit (such as users’ click on the site,
bookmark, impression, or recruiters’ clicks on user profile). For this reason, the ACM
Recsys data are more popular for building SOTA models. The only limitation of ACM
RecSys data is that all profile information is anonymized, such as job role, description,
or requirements for confidentiality purposes. Therefore, no verbal explanation can be
generated based on these features.

CareerBuilder 2012 dataset, on the other hand, has text features such as job titles,
descriptions, and requirements, which support the generation of explanations. However, it
only has one interaction type which is the historical application of users for job posts. As
the ultimate research goal was to generate explanation job recommendations, the Career-
Builder dataset is more suitable. This dataset contains four types of information:

• User data: Information about job seekers includes the user profile (user.tsv) and
their work history (user_history.tsv). The user profile information includes cate-
gorical and numeric features. The user history only provides a list of job titles that a
user has done in chronological order. This may be insufficient to represent the skills
or qualifications of job seekers. Detailed descriptions of the data sets can be found
in tables, as can be seen in A.1 and A.2.

• Item data: Details of a job posting. Three text features are provided, including job
title, job description, and job requirement.

• Interaction data: is the job application made by users. As mentioned above, only
positive interaction data is available. Thus, for the implementation, we need to
perform negative sampling to have both apply and no-apply actions. Details of this
process are discussed in Section 4.1

2http://www.recsyschallenge.com/2017/
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3.3 Job recommendation system design

3.3.1 General JRS pipeline

In general, the job recommendation systems in this project follow a four-stage pipeline:
(1) feature engineering, (2) shortlisting potential applications, (3) ranking applications,
and (4) returning the best N results, as shown in table 3.1. Complexity elements of the
recommendation systems were adapted from the previous empirical studies reviewed in
section 2.2.

Step Summary Complexity factor Reference (if available)
1 Feature Engineer-

ing: transform text
features into lower
dimension matrix

(1) TF-IDF or (2) Latent
Dirichlet Association

Guo et al. (2014) [5],
Zhang et al. (2016) [34]
Zhu et. al. (2018) [36],
Lacic et. al. (2020) [11]

2 Shortlist potential
job applications for
each user.

(1) Random sampling with
control on positive labels
and (2) Unsupervised K-
Nearest Neighbors (KNN)

Volkov et al. (2017) [31],
Lacic et. al. (2020) and Hi-
dashi et. al (2015)

3 Ranking job ap-
plications, using
binary classification
models as scoring
method

Various model classes:
white-box, ensemble, fac-
torization machines, and
explainable ensemble*

Zhu et. al. (2018)
[36], BPR-FM model in the
study by [32], [12], Lacic et.
al. (2020)

4 Finalizing result Derived from step 3. The
scoring criteria are the
probability of class 1.

Table 3.1: Overview of complexity in each step of job recommendation system
explainable ensemble models in step 3 is not 100% complex as it is considered
model-specific approach for explanation.

The first step in the job recommendation system is feature engineering. Text features
for job details and user profiles cannot be used directly to train models. Thus, the features
of the raw text are transformed into a matrix of a lower dimension, adding complexity
to the recommendation systems. TF-IDF and Latent Dirichlet Allocation (LDA) were
implemented for this process, which will be discussed in detail in Section 4.1. After
transformation, different scenarios of features and ranking algorithms were formulated, as
shown in Figures 3.2 and 3.3.

The second step is to shortlist potential applications (i.e., ranking data). Each job
application is represented by a pair of (UserID, JobID). Due to the huge number of avail-
able jobs and users, forming all possibilities of combination would lead to computation
complexity. In addition, the ranking ground truth is not available in the original dataset.
Therefore, I will simplify this step by shortlisting a maximum of 100 applications for each
user. Two approaches to generating ranking data were implemented: random sampling
with control of positive labels and unsupervised KNN. Please refer to Section 4.2 for more
details.

Third, potential applications are ranked for a given user (in this case, 100 applications).
In this project, the interaction between Users and Jobs only has two outcomes: apply or
not apply. Thus, binary classification models were used as the ranking method and the
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probability of class 1 was used as the ranking criteria. These machine learning-based
classification methods also add complexity to recommendation systems.

The final output, job recommendations, includes four pieces of information: JobID,
predicted label (Y_pred), predicted probability of the label (Y_prob), and rank (based
on Y_prob). 20 recommended jobs for each user in the test sets are sorted descendingly
according to the scoring criteria in the previous steps.

3.3.2 Algorithm selection for ranking methods

Figure 3.2: Job Recommendation System design: TF-IDF in feature engineering
features and White-box & Black-box algorithms for ranking.

White-box models

Three white box models: LogReg, Decision Trees (DT), and Gaussian Naive Bayes
(NB) were selected as baseline models, similar to the study by Zhu et al. (2018) [36].
According to the taxonomy of the Arietta et al. (2019) class, these models are transparent
in three aspects: simulatability, decomposability, and algorithmic transparency, which may
not require post hoc analysis. Specifically:

• Simulatability denotes the ability of a model to be simulated or thought about strictly
by a human, hence complexity takes a dominant place in this class.

• The decomposability aims to explain the explainability of each component of the
models, such as the input, the parameters, and the calculations.

• Algorithmic transparency refers to the ability of the user to understand the process
followed by the model to produce any given output from its input data.
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Intrinsic explainability in these models is attributed to feature importance scores (for
DT) and coefficients (for logistic regression). Gaussian NB predicts the class based on
conditional and unconditional probability; thus, it does not provide a direct explanation
of the importance of the characteristic. As a result, a post hoc explanation is still needed
for this model.

Ensemble & Complex models
Three ensemble/black-box models adapted from the baseline models in Zhu et al. (2018)
study, that is, XGBoost (XGBT), Linear Discriminant Analysis (LnDA), and Quadratic
Discriminant Analysis (QDA). Additionally, XGBoost has demonstrated outstanding per-
formance in many ACM RecSys Challenges SOTA models. Therefore, the baseline XG-
Boost of ACM Challenge in 2017 was incorporated into this project, with 25 trees and a
maximum depth of 2.

The seven above models were combined with TF-IDF in feature engineering, as shown
in figure 3.2. All of these models were trained using sklearn library.

Figure 3.3: Job Recommendation System design:
Latent Dirichlet Allocation in feature engineering - Factorization machines and
Explainable ensemble models for the ranking algorithm.

Hybrid Factorization Machines models
The FM model developed by Rendle (2010) [26] combines the advantages of Support Vector
Machines (SVM) with matrix factorization models. Instead of using dense parametrization
like in SVM, FM models use factorized parametrization which allows estimating param-
eters under very spare data where SVMs fail. In other words, data from one interaction
between a user and a job can help predict the parameters for related interactions. This
experiment implements Bayesian Factorization Machines for classification, using myfm3 li-
brary.

3https://pypi.org/project/myfm/
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FM models were combined with LDA in feature engineering as illustrated in Figure
3.3 with four variations.

• fm: Pure matrix factorization using only UserID and JobID.

• fm_match: In addition to UserID and JobID, this model uses three location-matching
features: City, State, and Country.

• fm_side_info: In addition to UserID and JobID, this model uses side information
from users and jobs. These are categorical features as described in section 4.1.
However, this model does not include location-matching features.

• fm_extended: This model uses all information available for users and jobs, including
side information and location matching information.

3.3.3 Evaluation recommendation systems

Binary classification models used for ranking applications were evaluated using accuracy,
precision, recall, and f1-score. Using recall and f1-score indicates how well the ranking
models can detect augmented negative labels in the interactions.

The final topN-recommendation systems were evaluated using hit_rate@k. As the
ranking ground truth was not available in the original dataset, a relevant recommenda-
tion was defined as an actual application by test users. As a result, revised hit_rate@k
was defined as the proportion of users for whom at least one of the top k recommended
jobs (from augmented potential applications) matches with the actual positive jobs (from
interaction data) as illustrated in function 1.

Algorithm 1 Function to calculate hit_rate@k
Input: recommendation_data, evaluation_data, k
Output: hit_rate

1 total_users← {unique users in recommendation_data}
hit_count← 0

2 foreach user_id in total_users do
3 user_recommendations← {job_i in recommendation data for user_id | i =1, 2, ... k}

actual_jobs← {job_j in evaluation data for user_id | label = 1}
4 foreach rec_job_id in user_recommendations do
5 if rec_job_id exists in actual_job then
6 hit_count← hit_count+ 1

break

7 hit_rate← hit_count
total_users

return hit_rate

For each recommendation system, hit_rate were calculated at three level: 5, 10, and
20. Interpretation of hit_rate@5, for example, is the ability to recommend jobs that users
will apply (ie. relevant) within the first five jobs. Thus, the higher the hit_rate, the better.
In addition, a high hit_rate@5 is more desirable than a high hit_rate@10 as it illustrates
the ability to retrieve relevant jobs with fewer attempts.



CHAPTER 3. METHODOLOGY & EXPERIMENT DESIGN 25

3.4 Selection of XAI techniques

We implemented both post-hoc (model-agnostic) and model-specific approaches for ex-
plaining the ranking of recommended jobs. White box models introduced in section 3.3 can
also be considered model-specific as they have inherited explanations (i.e. feature impor-
tance). From the literature review, black-box models in general perform better than their
white-box counterparts. Thus, we propose a model-specific approach using explainable
resemble models as a hybrid of two groups. It has algorithm complexity yet is explainable,
thus, can minimize the trade-off.

3.4.1 Post-hoc approach: LIME and Kernel SHAP

The two popular model-agnostic techniques, namely Local Interpretable Model-agnostic
Explanations (LIME) [27] and SHapley Additive exPlanation (SHAP) [17] were selected
for post-hoc explanation. Both techniques provide a local explanation. In other words,
these techniques could explain the recommendations on a subset of data points (in this
case, interactions formed in the potential application space), and per single data record (in
this case, per application).

As the final output of the job recommendation is 20 jobs, the scope for local explanation
is 20 applications. Both LIME and SHAP provide feature importance as the explanation,
using two different approaches, as below:

LIME method
LIME, developed by Ribeiro et al. (2017) [27] is based on the general idea that all

decisions generated by black-box models can be explained by a simpler model on smaller
data points (locally). Thus, the process of explanation for LIME can be summarized in six
steps:

1. Permuted data: Create fake data for the data point that needs to be explained.

2. Calculate the distance between the permuted data and the original observation, to
measure how similar the permuted data is.

3. Make prediction using the permuted data, using the black-box model.

4. Pick m features that best describe the black-box model outcome from the permuted
data. LIME uses the smallest number of features that can produce the closest out-
come to the original outcome.

5. Use a simple model to fit the permuted data with m features and similarity scores
as weights.

6. The feature weights from the simple models will be used to explain feature importance
in the black-box model.

For the experiment, LIME was implemented using two libraries, namely interpretml4

and the original lime library5.
SHAP
SHAP developed by Lundberg et al. (2017) makes an explanation of marginal feature

contribution using Shapley values. Using a game-theory approach, each feature is consid-
ered as a player, and the model will predict the outcome given all possible coalition of
features.

4https://interpret.ml/docs/lime.html
5https://lime-ml.readthedocs.io/en/latest/lime.html
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Shapley values attribute to each feature the change in the expected model prediction
when conditioning on that feature. They explain how to get from the base value E[f(z)]
that would be predicted without knowing any features of the current output f(x). Since
calculating Shapley values requires forming all possible combinations of features, classical
Shapley has a disadvantage in computational complexity, especially in the situation of
high dimensional data. There are variations of SHAP for specific model classes, such as
TreeSHAP of GPUTreeSHAP.

This project implemented the Kernel SHAP algorithm, using SHAP library6. Kernel
SHAP is a combination of Linear LIME (i.e. LIME using linear regression as the surrogate
model) and Shapley values that improve computation efficiency as well as the accuracy of
the estimate [17].

3.4.2 Model-specific approach: EBM and DPEBM

Explainable Boosting Machines (EBM) developed by Lou et al. (2012) [16] and Noris et
al. (2019) [23] is a tree-based cyclic gradient boosting Generalized Additive Model (GAM)
with automatic interaction detection. The general form of EBM is as below:

g(E[y]) = β0 +Σfi(xi) + Σfi,j(xi, xj) (3.1)

where g is the link function that adapts the model to different settings such as classification
or regression; fi is the feature function, and fi,j is the function of pairwise interaction
between features.

The underlying theory of EBM is GAM but with more improvements. Standard GAM
models the dependent variable as the sum of univariate models (feature models), making
it understandable for users. However, it has a lower accuracy compared to complex models
where interaction between predictors is allowed. GA2M improves GAM by adding selected
terms of interacting pairs of features. EBM inherits the advantage of GA2M and improves
further with cyclic gradient boosting techniques to learn the feature function f .

Differentially Private Explainable Boosting Machines (DPEBM) also developed by
Noris et al. (2021) is an improved version of EBM to minimize the risk of leaking train-
ing data by machine learning models. DP-EBM ensures both performance and privacy
compared to EBM by modifying three aspects: (1) Generate differentially private bins in
preprocessing data, (2) Randomly select split in each epoch instead of best split (EBM)
to avoid privacy budget on selecting which feature to include in each tree, and (3) Add a
Gaussian noise in each split.

A comparison in pseudo-codes between EBM and DP-EBM is available in the appendix
B.

3.4.3 Evaluation explanation for job recommendations

The average fidelity of the model (2) is calculated for the ensemble explainable models
to evaluate how close the output of the explainable model is to the black-box model.
To evaluate how well local explanations work, the fidelity rate of the importance of the
characteristic was calculated using the alorithm 3.

6https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
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Algorithm 2 Calculate model fidelity rate for each user
Data: source_rec, xai_rec, u_id
Result: model_fidelity_rate

1 source_rec← {job_i generated by black-box JRS | where UserID = u_id}
2 xai_rec← {job_j generated by explainable JRS | where UserID = u_id}
3 fidelity ← {source_rec} ∩ {xai_rec}

4 model_fidelity_rate← #jobs in fidelity
#jobs in source_rec

5 return model_fidelity_rate

Algorithm 3 Calculate feature importance fidelity rate for local explanation
method. Gold features are based on the global feature important score (nonzero),
and local features are based on the average magnitude of the feature contribution.

Data: gold_features, local_features
Result: feature_importance_fidelity_rate

1 gold_features ← {featurei from self-explainable model | i = 1, 2, ... k }
2 local_features ← {featurej from local explanation sample | j = 1, 2, ... m}
3 fidelity ← {gold_features} ∩ {local_features}
4 feature_importance_fidelity_rate ← #features in fidelity

#features in gold_features

5 return feature_importance_fidelity_rate;



Chapter 4

Implementation and Results

This chapter presents the implementation of the experiment and the interpretation of
the results of the experiment, following the methodology in chapter 3. In general, the
experiment includes three phases:

• Build the JRS and generate top N recommendations: Sections 4.1, 4.2, 4.3 and 4.4.

• Explain the recommendations using two XAI approaches: Section 4.5 and 4.6

• "Post explanation" to generate human-digestible explanation: Section 4.7

The source code, detailed analysis, and high-resolution figures are available in Github
repository.

4.1 Data pre-processing and Feature Engineering

4.1.1 Data cleaning

Regarding job-related features, HTML tags were cleaned from text features such as Job
Titles, Job Descriptions, and Job Requirements. Jobs that do not have these attributes
were crossed out.

Regarding user profiles, duplicated records and records missing important features such
as "Major", "TotalYearsExperience", and "CurrentlyEmployed" for user profiles were ex-
cluded. Character-type attributes in the user information were encoded in numbers: De-
greeType (1-5), ManagedOthers (0/1), and CurrentlyEmployed (0/1). Nonrelevant fea-
tures were dropped, including Zip5, and ManagedHowMany (this feature did not add
more information as we already had ManagedOthers).

Job applications were filtered using two following conditions:

• Users must have a work history.

• Users with more than 10 applications are excluded.

• Applications of new users who lack profile or work history information are excluded.

4.1.2 Data augmentation: Negative sampling for interaction data

The action of applying for a job is considered a positive interaction, and the CareerBuilder
2012 dataset only has a positive class. Thus, to train binary classification models, we need
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to generate at least another "negative" class. In this case, a negative class means that
users do not apply for the job.

Negative sampling was performed using the methodology of the study by Zhu et al.
(2018) [36]. Specifically, for each user in the application dataset:

• Get the list of jobs that they have applied for n JobID(s)

• Get the list of candidates’ jobs: candidates jobs = all jobs (N) - applied jobs (n)

• Randomly selected n JobID(s) from the candidate jobs. Each application between
(UserID, JobID) from this list is assigned label 0.

The final result of this process is an equal ratio of positive and negative applications
for all users. At the same time, user-related features remained the same in augmented job
applications.

4.1.3 Data splitting

The original data was collected in 7 windows. Each 13-day window was divided into two
parts: the first 9 days were the training period and the last 4 days were the test period.
Thus, I split the data using the "Split" column in the dataset.

4.1.4 Feature Engineering: Generate location matching features

For each pair of (UserID, JobID) in the application dataset, we check whether user infor-
mation and job information match in location, including City, State, and Country. This
resulted in three binary features where 1 = match and 0 = not match. Location-matching
features were used in most of the models in Section 4.3

4.1.5 Feature Engineering: Transform the text features

The text features in include two groups: (1) Job details: Title, Description, Requirements
in the dataset jobs.tsv, and (2) User work history: Title in the user_history.tsv.

Two approaches of text transformation were employed to convert text features to nu-
meric representation: TF-IDF and LDA.

TF-IDF

TF-IDF was used to encode job details and user history. A document in the job details
corpus was a combination of job titles, job descriptions, and job requirements, while a
document for the work history only contained joined job titles. Thus, the TF-IDF vector
for job detail had 100 features, while the TF-IDF vector for working history had 50 features.

As LIME-Tabular was implemented for post hoc explanation, the vectors were flattened
into columns before training ranking models. The column names follow template"job_matrix_[index]"
or "work_history_[index]" . TF-IDF flatten features were used to train white-box, black
box/ensemble models.

Latent Dirichlet Allocation (LDA) - Topic Modelling

LDA was used for clustering text features for job details and users’ work history. We
use the same hyperparameters of the LDA models in the study by Lacic et al. (2020) [11],
which resulted in 20 topics for each LDA model.
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The dominant topic of each document was used as a representation of Job Titles, Job Re-
quirements, and Job Descriptions (corresponding variable names are TitTopic, ReqTopic,
and DescTopic)
For users, each document was defined as all job titles linked to that user. I used the same
model as Job features, thus the outcome was a column named WorkHistoryTopic. LDA
features were used in hybrid FM models, EBM models, and DPEBM models.

4.1.6 Feature Engineering: Discretizing user profile features

For white-box and ensemble black-box models, numeric features of user profiles were reused
for training models, such as TotalYearsExperience, WorkHistoryCount, etc. However,
for models requiring categorical data such as factorization machines, using continuous
features will result in extra computation for one-hot encoding. Thus, numeric features
were discretized into categorical, using a customer bin similar to the ACM RecSys data:
Senior level (corresponding to TotalYearsExpence) and WorkHistoryLevel (corresponding
to WorkHistoryCount). These features are used in hybrid FM models, EBM models, and
DPEBM models, as shown in figure 3.3.
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4.2 Generating potential applications

As discussed in the Data Overview section 3.2, there were no available target job lists or
ranking ground truth that could be used to formulate potential applications. Thus, ranking
data were augmented by shortlisting a maximum of 100 applications for each user before
ranking, using two approaches: random sampling and unsupervised KNN. With 3,716 test
users, the complete ranking data will have a maximum of 371,600 applications.

Figure 4.1: Potential applications generated by unsupervised KNN models

4.2.1 Potential application generation by random sampling with control
on positive label

The random sampling process for test users is quite similar to negative sampling for ap-
plication data, as described in Section 4.1.2. For a given user:

1. Get the list of actual jobs that users have applied (m) and keep the first application.

2. Get the list of candidate jobs: candidate jobs = all jobs (N) - applied jobs (m).

3. Randomly selected 99 jobs from the list of candidate jobs and assigned them label 0.

In the end, the ranking data contain applications for 3,716 test users, each of them
having 1 successful application and 99 failed applications.

4.2.2 Potential application generation by unsupervised KNN models

Unsupervised KNN models were used to obtain 100 potential applications for each user.
KNN is also considered a Collaborative Filtering recommendation because it takes into
account the similarity of user-item interaction using distance measures.

The process of generating potential applications (KNN ranking data) is illustrated in
Figure 4.1. Application data used in training binary classification models were used to
train unsupervised KNN models. The distance metrics depended on the type of features.
Specifically:

• For systems using a mixture of numeric, categorical, and TF-IDF flattening features
as in 3.2, cosine similarity was used as the distance metric.

• For systems that use only categorical features and LDA dominant topics 3.3, the
Hamming distance was used as the distance metric.
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4.3 Training ranking models

17 binary classification models of four groups were trained using augmented interaction
data, following the design in figure 3.2 and figure 3.3. Models were trained on 563,889
applications made by 146,577 users, corresponding to 373,227 jobs. After training, models
were evaluated on test applications (15,736 applications) made by 3,716 users to 15,289
jobs. Four metrics were used for evaluations: accuracy, precision, recall, and f1 score.

Figure 4.2 shows performance metrics of white-box and ensemble/black-box models
on binary classification tasks. Overall, all models have high performance in all four met-
rics. The high recall (above 80%) in all models also indicates that models can detect the
augmented negative labels.

Figure 4.2: Performance metrics on binary classification task: White-box vs.
Black-box models. All models were combined with TF-IDF for transforming text
features before training.

Figure 4.3 shows the performance of the hybrid factorization machine models (FM) and
the explainable ensemble models (EBM and DBEBM). These models used only categorical
input to train the models. In general, explainable ensemble models perform equally well as
hybrid FM models in all performance metrics. For example, fm_side_info, ebm_side_info,
and dpebm_side_info used the same features: user profiles, LDA dominant topic in the
user’s work history, and LDA dominant topic in job details. All of these models performed
at medium levels ( 70%).

Another observation from figure 4.3 is the consistent influence of side information
on the performance of the models. The extended models ( fm_extended, ebm_extended,
dpebm_extended) achieved 90% in four performance metrics, similar to the white-box and
black-box models analyzed above.

Analysis within variations of each model class confirmed this observation. Excluding
side information and relying only on historical interaction between users and jobs (as
in model fm) resulted in medium accuracy (71%). However, adding only side information
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Figure 4.3: Performance metrics on binary classification task: FM models vs.
Explainable ensemble models (EBM, DPEBM). All models were combined with
LDA for transforming text features before training.

about users and jobs does not improve the performance. It even decreases the performance
slightly (fm_side_info vs. fm, ebm_side_info, dpebm_side_info). In contrast, adding
location information matching improves significantly the performance of the models (from
71% in fm to 91% for fm_location). Thus, the LDA dominant topic features do not
contribute much to the binary classification performance.

Regarding computation efficiency, hybrid factorization machine models took the longest
time for computation among the four model classes. This was due to the process of one-hot
encoding features and matrix factorization. As a result, all FM models have high feature
dimensions. The fm_extended model had a factorized feature dimension of 521,962.
After training, models were exported to pickle format for reuse in the recommendation
tasks. sklearn-based and interpretml-based pre-trained models are generally lightweight
(less than 1 GB/model). Hybrid FM pre-trained models are large (greater than 10 GB/model),
taking much longer time to load the model.
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4.4 Finalize ranking results and evaluation recommendation
systems - RQ1

This section presents the implementation of the final step for topN-recommendation. Po-
tential applications in step 4.2 were ranked using pre-trained models from 4.3 and returned
the top 20 jobs for each user. The workflow of generating recommendations for each user
is illustrated in figure 4.4

Final results from 17 job recommendation systems were evaluated using hit_rate@5,
hit_rate@10, and hit_rate@20. The findings answer research question 1: How well do
the SOTA models perform on recommendation system.

Figure 4.4: Top-N recommendation work-flow (for a single user)

Evaluation on recommendation system using random ranking data
Figure 4.5 summarises the hit rate calculated on different JRS. For JRS using white-

box and black-box ranking models, the hit rates remained stably high across three levels
(5, 10, 20). JRS using XGBoost models had the highest performance with 100% correct
positive recommended jobs.

Figure 4.5: Evaluating hit rate of JRS using different ranking algorithms. Source
of potential applications: random ranking data. White-box and black-box ranking
algorithms were combined with TF-IDF in feature engineering. The remaining
algorithms were combined with LDA in feature engineering.

For JRS using factorization machines as ranking methods, the hit rates increased gradu-
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ally when adding more side information. fm_extended, the model with all side information
from users, jobs, and location matching performed equally well as white-box and black-box
ranking methods. Unlike in binary classification tasks, LDA dominant topics in user work
history and job details contributed to the recommendation performance. For example,
comparing fm_match (only including location matching features) to fm_extended, the
latter model achieved a remarkably higher hit rate at the first 5 and 10 recommended jobs.

Finally, for JRS using explainable ensemble models as ranking methods (EBM and
DPEBM), the side information seems not to influence the performance. All JRSs using
the DPEBM ranking algorithm achieve perfectly correct hit rates regardless of which side
information was included.

Evaluation on recommendation system using unsupervised ranking data
Figure 4.6 summarises the hit rate calculated on JRS using potential applications from

unsupervised KNN models (as in section 4.2). In general, JRS using KNN ranking data
performs much worse than those using random ranking data in the previous section. The
highest hit rate is 4.25%. In addition, hit_rates are increasing when relaxing the top k
recommended jobs. Among all model classes, only XGBT has a stable hit_rate across
three levels of top-k.

Figure 4.6: Evaluating hit rate of JRS using different ranking algorithms. Source
of potential applications: unsupervised KNN model. White-box and black-box
ranking algorithms were combined with TF-IDF in feature engineering. The re-
maining algorithms were combined with LDA in feature engineering.

It can be seen from the figure that JRS using white-box and black-box ranking algo-
rithms performs better than JRS using hybrid-FM, EBM, and DPEBM algorithms. This
means that feature engineering has influenced the performance of job recommendations.
Specifically, the white-box and black-box ranking models used numeric and TF-IDF trans-
formation matrices, so the features have more details than categorical features in the hybrid
FM, EBM, and DPEBM ranking models.
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Influence of source of potential applications on JRS performances
The low hit rates of JRS using KNN ranking data raise the question of whether us-

ing model-based to shortlist applications is worse than random ranking data. According
to previous studies, the use of collaborative filtering before ranking job applications con-
tributes to the personalization of the recommendation. In other words, the hit rates are
likely to be higher compared to ranking on randomly selected applications.

Figure 4.7 shows the comparison in the average probability of two classes (0: Not apply
and 1: Apply) on different JRS combined with different sources of potential applications.
The classification algorithms in all JRS use the same threshold of 50% to determine the
final class. The higher the predicted probability, the greater the certainty in the predicted
class. For example, given the same input, if model A predicts class 1 with 55% and model
B also predicts class 1 with 80%, then the decision by model B has a higher certainty than
model A. Thus, comparing the average of probability may reveal the level of certainty in
decision-making by different JRS.

Figure 4.7: Comparison average predicted probability. JRS uses different sources
of potential applications: random ranking data (left) and unsupervised KNN rank-
ing data (right).

It can be seen from the right figure that the average probability of class 1 is clearly
higher than that in class 0, especially for factorization machine models. In other words,
the use of potential applications from the KNN model helps the JRS predict positive labels
with higher certainty.
In the figure on the left, most FM models have an average probability of class 0 close to
50%. This means that the final decision contains more uncertainty since it just passes the
threshold of 50%.
This analysis indicates that adding context by using unsupervised KNN to shortlist ap-
plications may contribute to higher certainty in final job-ranking decisions. The low rec-
ommendation of JRS using KNN ranking data may come from other causes, for example,
sparsity in the data. A data-centric explanation is provided in Chapter 5.
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4.5 Explaining recommendations - RQ2

4.5.1 Summary experiment

In this part of the experiment, different explainers need to decompose the features that
contribute to the recommendations. The explanations can be global or local. The findings
answer Research Question 2: Which features contribute mainly to the ranking
results?.

The input of the explainers are the application labels (0/1) and/or the predicted proba-
bility generated by the recommendation systems. These "black-box inputs" vary depending
on the design of the recommendation systems. Thus, to evaluate the utility of the expla-
nation by different model interpreters (local vs. global), the black-box inputs should be
fixed. As a result, test applications are used to evaluate ranking algorithms in section 4.4
that was used for this purpose.

The global explanations were generated using all test applications. Local explanation,
on the other hand, took a subset of applications. The sample size in this case is 20
applications, as each user would have a maximum of 20 recommended jobs. The detail of
the sample used to generate an explanation is available in table F.1. The labels of these
applications were assumed to be recommendations generated by different models in Section
4.4.

Figure 4.8: Model interpretation experiment setting

The explanation experiment setting is presented in figure 4.8. First, global self-explanations
in terms of feature importance were obtained in the following models:

• Ensemble explainable models (i.e. model-specific explanation): EBM and DPEBM
models (section 4.5.2, 4.5.3)

• White-box models: LogReg, DT (section 4.5.4)

• Black-box model having feature importance score: XGBT (section 4.5.4)

Regarding the local post hoc explanation, LIME and Kernel SHAP took the labels of
the applications and used different ranking algorithms to generate the contribution scores
of the features. It was noted that the current LIME and SHAP libraries could not perform
calculations on FM models due to the high feature dimensions. The feature importance
plots of the local post hoc explanations were compared with their global counterparts
(Section 4.5.5, 4.5.6)
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Finally, local self-explanations could be obtained from the EBM and DPEBM models.
Therefore, to evaluate the consistency of the explanation, the feature importance plots of
one application (UserID = 13, JobID = 821691) were compared by different explainers.

4.5.2 Global explanation by model-specific approach: EBM models

Figure 4.9 presents the term importance for the whole model for three variations of EBM
models. The "term importance" is the average absolute contribution (i.e., score) that
each term (i.e., feature or interaction of features) makes to predictions averaged across the
training dataset.

Figure 4.9: Global feature importance explanation by EBM models. Features
with zero-term importance are included in the plot. Interaction between user profile
features and job features are highlighted in red colors.

As can be seen from figure 4.9 when considering only location for ranking applica-
tion, the matching state is more important than the matching city and matching country.
This could be explained by the nature of the CareerBuilder dataset, where most of the
applications were in the US.

The middle plot of figure 4.9 illustrates the important contribution of interaction be-
tween users and jobs’ to the application ranking, when excluding location information.
The interaction terms could be interpreted as a matching degree between the user profile
and the job details. Some examples include users’ education level and job description (De-
greeType & DescTopic), education level and job requirement (DegreeType & ReqTopic),
users’ number of working experience and job requirement (SeniorLevel & ReqTopic), and
number of working experience and job description (SeniorLevel & DescTopic)

4.5.3 Global explanation by model-specific approach: DPEBM models

Figure 4.10 presents the term importance for the whole white-box model for three vari-
ations of DPEBM models. The term importance is calculated similarly to those in EBM
models.

As can be seen from these figures, there were no interactions between features that
can be obtained from DPEBM models. When considering individual feature contributions
to ranking applications, the patterns were similar to the observation in EBM models.
Specifically, matching in State and City contributes more to the final ranking than side
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Figure 4.10: Global feature importance explanation by DPEBM models. Features
with zero-term importance are excluded from the plot.

information (ReqTopic, DescTopic). Information from user profiles does not contribute
much to the final ranking compared to other types of features.

4.5.4 Global self-explanation by white-box models and XGBoost

Figure 4.11 presents the top 20 feature importance for white-box models and the XGBoost
model. The feature importance differentiates a lot for each model.

Figure 4.11: Global feature importance by white-box models and XGboost model.
Features with zero-term importance are included in the plot.

For logistic regression, the level of importance is illustrated by the absolute value of
the coefficients. Accordingly, location matching in State, City, and Country are the top
three important features. The remaining features in the top 20 important features belong
to the TF-IDF values of the terms in the job details.

Decision Tree determined ranking applications mostly based on whether applicant is
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in the same state with the job position. Although other features have much lower im-
portance scores compared to State, the features about user profiles (TotalYearExperience,
WorkHistoryCount, and DegreeType) are slightly more important than job details.

For XGBoost, the decision is mainly based on matching the state between users and
jobs.

4.5.5 Kernel SHAP: Local feature importance

Kernel SHAP was implemented on 3 white-box models, 4 black-box models, and 6 explain-
able ensemble models in the same sample of the first 20 applications in the test application
data for comparison. The current Kernel SHAP explainer in SHAP library did not sup-
port explaining directly factorization machine models.

For a given instance (x), the Kernel SHAP explainer calculates the expected model
output, and the Shapley value of all the features that contribute to that output, according
to equation 4.1. Shapley values can be either positive or negative. A positive Shapley
value means that the feature pushes the prediction higher and a negative Shapley value
means that the feature pushes the prediction lower.

E[f(x)] =
n∑

i=1

ShapleyValue(xi) (4.1)

where:

• E[f(x)] represents the expected model output for a given instance x.

• n is the number of features in the instance x.

• ShapleyValue(xi) denotes the Shapley value for the i-th feature in the instance x.

Figure 4.12: Local feature importance by Kernel SHAP for output of white-box
models. The length of the bar indicates the magnitude of importance.
(Sample: 20 applications - Model: White-box)
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For comparison of the consistency of local explanation without knowing the model
classes (white-box or black-box or explainable ensemble), the sign of Shapley values was
eliminated. In other words, the overall magnitude of the influence of the feature was
calculated by taking an average of absolute Shapley values for each instance of the sample.
The results are shown in the figures: 4.12 and 4.13

Kernel SHAP local explanation on white-box models
It can be seen from figure 4.12 that the importance of the dominant features is loca-

tion matching (City or State) as they appear in the top three features. However, when
considering local explanation in the Decision Tree model, user profile features appear more
important than job details: DegreeType, TotalYearExperience, work_matrix features. De-
greeType is also equally important as job_matrix_80 in Logistic Regression. For the Naive
Bayes model, only location matching and job detail features appear in the top 20.

Kernel SHAP local explanation on black-box models

Figure 4.13: Local feature importance of top 10 features by Kernel SHAP. The
length of the bar indicates the magnitude of importance.
(Sample: 20 applications - Model: Black-box)

For black-box models, matching the State between the user and job contributes the
most to the final outcome of the application (apply or not apply). XGBoost and LnDA
seem to depend on only location criteria to predict the outcome of applications. In the
AdaBoost model, user education was among the top 3 important features. For the QDA
model, job details ("job_matrix" features) are the second important factor group.
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Kernel SHAP local explanation on explainable ensemble models
For the ensemble explainable model, we only compute Kernel SHAP for EBM models

to check the consistency between local explanation by Kernel SHAP (post-hoc) versus the
self-explanation by the EBM model.

Figure 4.14: Local feature importance generated by Kernel SHAP. The length
of the bar indicates the magnitude of importance. Important features of the user
profile are highlighted in red colors.
(Sample: 20 applications - Model: EBM)

As can be seen from plot 4.14 local post hoc explanations by Kernel SHAP can capture
only individual feature contribution, while the local self-explanation by the EBM model
can capture both individual and feature interaction.

For a deeper analysis, I took the first job application in the test data and compared the
explanation by EBM_side_info model and Kernel SHAP. The explanations are illustrated
in Figure 4.15. This application has predicted label 1.

• In the top figure, the term importance score by the EBM model shows how features
contributed to label 0 and label 1. Accordingly, DecsTopic and the interaction be-
tween CurrentlyEmployed & DescTopic and the interaction between SeniorLevel &
ReqTopic are three contributing factors to positive labels. Meanwhile, the combi-
nation of SeniorLevel & DecsTopic and DegreeType & ReqTopic contributes more
towards the negative label.

• In the bottom figure (Kernel SHAP), the Shapley values highlighted in red push
higher predicted probability, or contribute to a positive label. The top three features
of this type include DescTopic, DegreeType, and ReqTopic. Meanwhile, SeniorLevel
(in blue) pushes the predicted probability to decrease (i.e. Not apply) with the
strongest magnitude. It means that for this application, the SeniorLevel negatively
influences on "Apply" decision.



CHAPTER 4. IMPLEMENTATION AND RESULTS 43

Figure 4.15: Comparison local explanation: Self-explanation generated by
EBM_side_info model (top) and Post-hoc explanation generated by Kernel SHAP
(bottom) on the same single job application.

4.5.6 LIME: Local feature importance

LIME local explanation on white-box models
Figure 4.16 shows the local explanation generated by LIME on 20 applications from

white-box models. The top 20 important features are plotted based on the magnitude
of feature contribution, measured by taking an average of the absolute value of feature
weights across 20 applications in the sample.

Compared to the local explanation generated by Kernel SHAP for the same instance
in figure 4.12, the LIME explanation put more favor on the user profile, highlighted in red
bars. Interestingly, in LIME’s explanation for Naive Bayes, all location-matching features
(City/State/Country) are not presented.

LIME local explanation on black-box models
LIME’s explanation of black-box models (as shown in figure 4.17) shares the same

pattern as Kernel SHAP’s explanations (4.13). The dominant feature is matching State
and City.
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Figure 4.16: Local feature importance of top 20 features by LIME. The length
of the bar indicates the magnitude of importance. Features relating to user profiles
are highlighted in red color.
(Sample: 20 applications - Model: White-box)

Figure 4.17: Local feature importance of top 10 features by LIME. The length
of the bar indicates the magnitude of importance. Features relating to user profiles
are highlighted in red color.
(Sample: 20 applications - Model: Black-box)
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LIME local explanation on explainable ensemble models
Similarly to Kernel SHAP, LIME could not capture the interaction between features.

The magnitude of individual feature contribution for three variations of EBM models is
shown in figure 4.18.

Figure 4.18: Local feature importance features by LIME. The length of the bar
indicates the magnitude of importance. Features relating to user profiles are high-
lighted in red color.
(Sample: 20 applications - Model: Explainable ensemble)

Comparison between post-hoc local explanation and local self-explanation
Figure 4.19 compares the local self-explanation using the EBM_side_info model ver-

sus the post hoc explanation using LIME. This application was made represented by
(UserID=13, JobID = 821691).

Although both explanations make the same decision (class 1, with probability 54%),
the LIME explanation (bottom figure) ignores the contribution of ReqTopic on the positive
label. ReqTopic is ranked as the most important topic that contributes to a negative label.
Meanwhile, in the self-explanation by the EBM side info model (top figure), ReqTopic is
placed at the bottom in terms of individual contribution towards a negative label. This is
because the interaction of ReqTopic and other features of the user profile, such as Senior-
Level & ReqTopic have a stronger magnitude towards the positive label.
This example again highlights the necessity of interaction effects between features to ex-
plain the ranking result of an application.
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Figure 4.19: Comparison local explanation: Self-explanation generated by
EBM_side_info model (top) and post-hoc explanation generated by LIME (bot-
tom) on the same single job application.
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4.6 Evaluation explanation - RQ3

This section evaluates the utility of the explanation using two metrics: model fidelity rate
and feature importance fidelity rate. The findings answer Research question 3: How
to evaluate the explanations generated by different XAI techniques?

4.6.1 Model fidelity rate - Global explanation

The model fidelity was computed on JRS using EBM and DPEBM as ranking algorithms.
The fidelity rate of the model was calculated on each test user, using the algorithm 2,
and then taking the average fidelity of all test users for evaluation. The purpose of this
evaluation is to measure how well explainable models can retrieve recommended jobs using
the benchmark recommended jobs from hybrid FM models.

Figure 4.20 shows the results of the model fidelity for two groups of explainable en-
semble models: EBM and DPEBM. A high model fidelity rate implies that the explainable
ensemble model can be used for recommendation and at the same time reduce the com-
plexity in matrix factorization.

Figure 4.20: Average model fidelity rate on explainable ensemble models

In general, explainable ensemble models can only retrieve a maximum of half of the jobs
recommended by hybrid factorization models. EBM performed better than the DPEBM
models. In addition, the source of potential applications does not greatly influence the
fidelity of the model of the EBM models. EBM_extended models perform best as they
use all available information.

However, for DPEBM models the ability to retrieve close results as black-box models
depends on side information and the source of potential applications. Specifically, DPEBM
models using unsupervised KNN applications show a preference for using all sides of the
information. On the contrary, DPEBM models that use random ranking applications only
need location information to achieve the same performance.
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4.6.2 Feature importance fidelity rate - Local explanation

First, a maximum of 20 important features from self-explainable models: Logistic Regres-
sion, Decision Tree, and three variations of EBM models with nonzero feature importance.
These are called gold features.

Second, from the local explanation by LIME and Kernel SHAP, the top 20 features were
extracted based on the magnitude of the contribution. The fraction of gold features that
appeared in local features was used for the feature-important fidelity rate. For example, if
a City appears in both the gold feature and local feature set (regardless of its rank), it is
counted in the fidelity set.

Figure 4.21: Figure importance fidelity rate for two local explanations by two
techniques: LIME and Kernel SHAP. Detailed results are available at appendix F.2

Figure 4.21 shows a comparison between LIME and Kernel SHAP using the same set
of gold features as a benchmark. Accordingly, there is no difference between LIME and
Kernel SHAP feature fidelity rates when benchmarking the gold features by three EBM
models and by the XGBoost model. However, when using the gold features from white-box
models (Logistic Regression and Decision Tree), Kernel SHAP performs better in terms of
retaining the most important features.
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4.7 Generating human-digestible explanation - RQ4

4.7.1 Summary experiment

The last part of the experiment approach aims to answer research question 4: How
to make explanations digestible for lay users?. The "Post-explanation" experiment
focuses on communicating the explanations from different model interpretation techniques
(as in section 4.5) to the target audience in the most human-digestible way. The target
audience in this case is lay users who have limited knowledge of machine learning. Using a
human-computer interaction approach and user experience approach, the cognitive process
of understanding a job recommendation is composed of several elements.

1. Why does job A have a higher ranking than job B in the list of recommended items?

2. What factors lead to the higher ranking of the job?

First, the probability of the predicted class (i.e., score) can serve as the first explanation
element. For example, the explanation can be presented in the template "This job matches
[score]% to your profile." Job A has a higher probability of being applied by the user than
job B means that it matches the user better.

Second, the raw explanations in section 4.5 are feature names and their contribution
to the outcome, so they could answer the second question. The challenge, however, lies
in feature names as they lack semantics due to the feature engineering process. To gain
semantics, we could use either visualization or text explanation, depending on how text
features are embedded. Specifically:

For feature names generated by JRS in figure 3.2, the TF-IDF column index of the
term can be extracted from feature names as they follow the template "job_matrix_[idx]"
or "word_matrix_[idx]". The document index is the corpus that will be the row index
in the TF-IDF matrix. TF-IDF values could be converted into raw terms in the original
document, using the pseudocode 4. For local post hoc explanations, using text features
instead of embedded TF-IDF features may provide more context to the users.

Algorithm 4 Convert TF-IDF feature names to raw text: apply to 1 job applica-
tion

Input: UserID, JobID
local explainer (Kernel SHAP/ LIME)
local explanation
corpus (job details, user work history)
Output: converted features

1 top_features← ExtractTopFeatures(local_explanation, n = 20)
2 top_matrix_features← ExtractTFIDFFeatures(top_features, corpus)
3 matrix_index_list← GetMatrixColumnIndices(top_matrix_features)
4 doc_index← GetDocIndex(JobID or UserID, corpus)
5 converted_matrix_terms ← InverseTransformTFIDF(top_matrix_features, corpus,

matrix_index_list, doc_index)
6 converted_features ← ReplaceFeatures(local_explanation, top_features,

converted_matrix_terms)
7 return converted_features

Features name generated by JRS in 3.3, the LDA topic contribution or keywords can
provide an intuitive explanation to the user, especially when combined with visualization.
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Words cloud, for example, helps users capture the theme of each category. This can be an
industry or a discipline of employment. The word clouds of all LDA models are available
in appendix C.2.
Keywords contributing to a dominant topic could be extracted, using pseudocode 5. This
pseudocode is based on the assumption that keywords are the words in the document that
have the highest probability under that dominant topic.

Algorithm 5 Extract keywords contributing to the dominant topic of a given
document - Standard LDA

Input: lda_model, feature_names : the pre-trained LDA model and feature names
dtm : document-term-matrix
doc_idx : document index in the corpus
topic_idx : dominant topic index
top_n : number of top words
Output: top_words

1 topic_word_distributions← ExtractTopicWordDistributions(lda_model, dtm)
2 doc_topic_distributions← ExtractDocTopicDistributions(lda_model, dtm)
3 doc_word_indices← ExtractWordsFromDocument(dtm, doc_idx)
4 doc_words← [feature_names[idx] for idx in doc_word_indices]
5 word_probs← CalculateWordProbabilities(topic_word_distributions,

doc_words,
doc_word_indices,
topic_idx)

6 sorted_words← SortWordsByProbabilities(word_probs)
7 top_words← GetTopNWords(sorted_words, top_n)
8 return top_words

The next two sections present two use cases for the illustration post-explanation process.

4.7.2 Usecase Post-explanation: extract raw term from TF-IDF features

This use case focuses on interpreting post hoc local explanations for JRS using TF-IDF
features. The use case includes 20 recommended jobs for UserID 577106 using a logistic
regression ranking model. The full result of the recommendation is available in Table G.1.
This user has an education background in Computer Science and has previously worked
as a "Help Desk Analyst" role.

The first recommended result is JobID 355928, "Technical Support Specialist" with the
positive predicted label. For the full job description and job requirements, see Appendix
G.

First, feature information is retrieved based on the UserID and JobID of the recom-
mendation, including location matching, user profile, job details (TF-IDF), and user work
history (TF-IDF). Local explainers (LIME and Kernel SHAP) use this information to pre-
dict their own labels and compute feature contributions to those outcomes. The local
explanation is shown to the left of two figures 4.22 and 4.23. The original model had 159
features, but in the plot, only the top features are presented.

Interpretation of local explanation by Kernel SHAP

The final probability of application is 0.969 which means that the label predicted by
the SHAP explainer is positive (label 1). This is the same result as the label predicted by



CHAPTER 4. IMPLEMENTATION AND RESULTS 51

the original JRS.
After extracting the main features and converting the name of the features to raw

terms, using the algorithm 4, the local explanation is re-plotted using the converted text
features, as shown on the right side of two figures 4.22 and 4.23. Accordingly, most of
the important features come from the job details ("job_matrix_[index]"). For this appli-
cation, keywords such as "degree, plus, excellent, computer, high, clients" have positive
Shapley values (highlighted in red). These terms also have non-zero TF-IDF values. Thus,
the audience can interpret that job detail with these terms push the probability of applying
for the job to increase. The term "technical" has negative Shapley values (highlighted in
blue). This means that the term reduces the probability that users will apply for the job. In
terms of location matching, "State", "Country", and "City" all appear in the top features.
However, their influence is different. Matching in state contributes positively, matching in
country contributes negatively to the probability of application, while mismatching in city
does not influence the final outcome of the application.

Interpretation raw explanation by LIME

For the same use case, the local interpretation of LIME separates two labels by two col-
ors and plots the feature that contributes to each label, as shown in Figure 4.23. The length
of the bar indicates the importance of the feature. Accordingly, the final result generated
by the LIME explainer is also positive: the probability of label 1 is 0.97. Among the top
20 features plotted, the most influencing features of this decision are more about location
matching than job detail. Matching in "State" is more important than not matching in
"City" in driving the user to apply for the job. Although many job-related terms appear
in the top features supporting positive labels, only those with nonzero values (>0) actually
appear in the job description: "office, technical, excellence, design, and company". The
user profile feature, such as "DegreeType", is also among the top 10 important features to
support users applying to the job.
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4.7.3 Usecase Post-explanation: LDA topic contribution visualization

This use case focuses on interpreting self-local explanations using the EBM ranking model.
The local explanation sample includes 20 recommended jobs for the user with UserID =
577106. Only categorical features were used to generate this result, using the EBM_side_info
model. The full result of the recommendation is available in table G.2. This user has an
education background in Computer Science and has previously worked as a "Help Desk
Analyst" role.

The first job recommended for this user is JobID = 92240, Outside Sales Representative
- B2B. This application has a positively predicted label by the EBM model and will be
explained in more detail after computing the contribution of the feature.

First, complete feature information was retrieved based on the UserID and JobID of the
recommendation, including user profile, job details (TitTopic, ReqTopic, DescTopic), and
user work history (WorkHistoryTopic) (EBM_side_info does not use location matching
information). EBM_side_info will use this information to predict labels but in a local
manner. Figure 4.24 shows a local explanation of this application. Actual (1) is the label
predicted by the recommendation system, and predicted (1) is the label predicted by the
local EBM model. In fact, the user applied for this job based on the original data.

In the feature importance plot, both individual features and interaction between fea-
tures are plotted. The left side represents features supporting negative labels (DegreeType
& ReqTopic, ManagedOthers & DescTopic, CurrentlyEmployed & DescTopic, SeniorLevel
ReqTopic) and the right side represents figures supporting positive labels (DescTopic, Re-
qTopic, DegreeType & DescTopic, etc.). The interaction between user profile features and
job details features is worth investigating to understand whether the user is likely to apply
for the job (based on a local explanation).

Figure 4.24: Use-case "post-explanation": UserID = 577106, JobID = 92240.
EBM_side_info. Local self-explanation
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The first step to transform the above explanation into understandable words is to
"decode" the value of the features, as all features have been discretized during feature
engineering. Table 4.1 shows the interpretation of this case. LDA topic modeling features
(WorkTopicHistory, ReqTopic, DescTopic, and TitTopic) represent the dominant topic
model for the given user and job. They need further interpretation.

Features name Discretized value Intepretation
City 0 Not match between User & Job
State 0 Not match between User & Job
Country 1 Match between User & Job
DegreeType 5 Master’s level
CurrentlyEmployed 1 Yes
ManagedOthers 1 Yes
WorkHistoryTopic 0 Required further explanation
WorkHistoryLevel 1 1-2 previous jobs
SeniorLevel 2 3-5 years working experience
ReqTopic 16 Required further explanation
DescTopic 18 Required further explanation
TitTopic 0 Required further explanation

Table 4.1: Use-case: Generate narrative on EBM_side_info local explanation.
Feature interpretation.

The audience can capture the theme of each dominant topic by using word clouds.
Figure 4.25 shows the keywords in the dominant topic for the job title (Topic 0), the job
requirement (Topic 16), the job description (Topic 18), and the user’s work history (Topic
0). These keywords may not appear in the given application, but they give the user an
overview of the theme of each topic.
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Figure 4.25: Use-case: Generate narrative on EBM_side_info local explana-
tion. Wordcloud of dominant topic calculated by Approach 1. Wordcloud after
re-calculating dominant topics by approach 2 is available in the appendix G.1

Based on the LDA methodology, all topics (20 topics) are assigned to each document.
However, only the dominant topic was used in the training model, thus excluding the 19
remaining topics. It is noted that the method to compute the dominant topic in feature
engineering (by Lacic et al. 2020 [11]) focuses on the overlap between words in the docu-
ment and words in each topic to determine the dominant topic. This approach does not
make use of the probability distribution of words in each topic by the standard LDA model.
The latter approach would result in more consistency and the dominant topic would better
capture the user’s previous job titles. I also recalculated the dominant topics and compared
the results. See the Appendix G.1 for more details.

• Approach 1: Based on word-topic distribution, adapt from Lacic et al. 2020 [11]

• Approach 2: Based on standard LDA topic-document distribution.

Figure 4.26 shows the contribution of the topic by two approaches. The plot of Ap-
proach 1 (left side) shows the dominant topics for Job Requirements and for Job Descrip-
tions because of nonzero values in topic contribution. Zero values for Job Title and Work
History may be explained by no overlap in words between the document and the topic.
This is the limitation of Approach 1.
On the right side of the figure, the contribution of the topic of Approach 2 shows the full
results for 4 types of documents. The dominant topics are different from those computed
in Approach 1, for example, ReqTopic (7 vs. 18), TitTopic (3 vs. 0), and WorkHistory-
Topic (13 vs. 0). Using this plot, the audience may notice a similar contribution between
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Topic 11 and Topic 7 for Job Description and check the word cloud or extract keywords
contributing to this topic for further investigation.

Figure 4.26: Use-case: Generate narrative on EBM_side_info local explanation.
Compare topic contribution calculation by two approaches.

Similarly to computing the topic contribution, there are two methods of extracting key-
words from a document contributing to a specific topic. The algorithm 5 adapts approach
2, using the probability property of LDA. This approach is more consistent compared to
using only the presence of the word (Approach 1).
Figure 4.27 shows the results of the keyword extraction using two approaches. Under ap-
proach 1, the words in the Title and Work History in this use case do not overlap with
keywords from the feature name of LDA models. As a result, no keywords can be extracted.

Keyword extraction using approach 2 can be done on the original dominant topics
(calculated by approach 1), or on the new dominant topics recalculated by approach 2.
The results are quite similar regardless of how to generate dominant topics. The extracted
keywords still need a further filter for non-meaningful terms, such as "com, www" or
general terms such as "company, job, history,..."
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Figure 4.27: Use-case: Generate narrative on EBM_side_info local explanation.
Keywords extracted by two approaches.

It is also necessary to compare the extracted keywords with the original text input.
For example, for the job requirement, the raw text (quoted below) does not contain much
information about the skills or experience requirements for the jobs. Thus, extracted
keywords might not be helpful.

For immediate consideration call (248) 514-1991 and ask for Andre. To submit your
resume or work history, please apply via Online. Visit us online at www.rtui.com

Another example is the job description. The raw job description (quoted below) is still
quite short, and half of it contains an introduction about the company. However, extracted
keywords contain meaningful terms that capture the nature of this job: "representative,
advertising, communication, media, energy".

Independent Sales Representatives! Register Tapes Unlimited (RTUI) is hiring! Busi-
ness is good. We are growing. We need you now! LOOKING FOR A NEW CAREER?
National Media Company is looking for sales candidates to sell dramatic
new advertising media. Qualified candidates will have enthusiasm, high
energy and great communication skills. No experience necessary. WILL
TRAIN 100%. You pick territory.

The extracted keywords may help interpret the interaction between user-related fea-
tures and job-related features in the local explanation 4.24. For example, the interaction
between "ManageOthers & DescTopic" and "CurrentlyEmployed & DescTopic" does not
support this user in applying for this job. Specifically, the job description states "No ex-
perience necessary", thus, a candidate who has already worked as a manager might not be
motivated to apply for the job. However, in this case, the user actually applied for this job
probably because of (s)he wants to change career direction from IT to Business and this
job is a good starting point.
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Discussion of findings

5.1 Research Question 1: JRS performance

The performance of JRS is evaluated on the basis of two aspects: the ability to rank
an application and the ability to retrieve relevant jobs for users. Most of the ranking
algorithms used in the experiment perform well in the first aspect, which means that
the choice of algorithms may not have much influence on this task. The high prediction
performance could be attributed to the feature engineering and large amount of data. As
user information and job information are well represented (using all details of the TF-IDF
matrix 3.2) and balance of the target label (by negative sampling for interaction labels),
using simple models like Logistic Regression or Naive Bayes can also perform well like the
ensemble counterparts (such as XGBoost, AdaBoost).

However, the ability to retrieve relevant jobs depends on several factors.
The most important factor is the representation of positive labels in the potential applica-
tion space. In the experiment, most job recommendation systems using random ranking
data perform much better than those using KNN-generated ranking data because the per-
centage of positive labels in the random ranking data is higher.

Labels Sampling with
controlled label

KNN - LDA KNN - TF-IDF

#"Apply" (1) 3,716 147 174
#"Not apply" (0) 367,884 368,951 371,426
# applications 371,600 369,098 371,600
Percentage of label
(1)

1.000% 0.040% 0.047%

Table 5.1: Data-centric explanation: Percentage of positive labels in augmented
potential applications

Table 5.1 shows the percentage of positive labels on three augmented application
datasets. For two datasets generated by unsupervised KNN models, even though the
algorithm learns better from the context of the application (similarity measured by dis-
tance metric), if the original data have a low percentage of positive application for each
user, it will likely suggest "similarly negative label" applications. Thus, ranking models
will continue learning from this negative pattern and suggest applications with users are
not likely to apply (label 0). Therefore, the final recommendation performance was a very
low hit rate (below 5%). Increasing the fraction of positive labels to only 1% can boost
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the recommendation significantly, even in random potential applications: most of the JRS
on this dataset get a hit_rate higher than 80%.

Another data-centric explanation for the poor performance of unsupervised KNN mod-
els in augmenting potential applications was the cold-start situation. In this experiment,
applications were not split randomly but following the original design of the dataset, using
column "Split". As a result, after data cleaning, 100% of the test users are cold-start
users. In other words, no previous applications by test users were made in the training
application data for the unsupervised KNN model to learn the context. Thus, it learns
more from the context of the jobs (the same jobs applied by different users, rather than
the same users applied to different jobs). This issue could be improved by using a different
splitting strategy to minimize the number of users in the cold start.

5.2 Research Question 2 & 3: Explanation Utility

Global explanation
It can be seen from both local and global explanations that location-matching features

play a significant role in predicting the outcome of an application. However, this contri-
bution may be attributed to the nature of the dataset. The CareerBuilder dataset was
collected entirely in the US; thus, it lacks diversity in the representation of matching in
location features.

When dropping location-matching features from the model, the role of the user profile
and job detail was more visible, as illustrated by global and local explanations of the
EBM_side_info model.

Regarding the contribution of text features toward the final decision, job features (either
"job_matrix" or "ReqTopic", "TitTopic", "DescTopic") in general contribute more to the
decision than User features ("work_matrix" or "WorkHistoryTopic"). This is again due
to the nature of the datasets. Specifically, the user work history was represented only by
job titles linked to a user, so the amount of information from this text is much less than
the amount of information for a job post. The titles may not cover skills or qualifications
that users have while doing previous jobs. The lack of information about users’ skills was
attributed to the design of the Kaggle challenge (using CareerBuilder data), which is to
predict the outcome of the applications rather than a recommendation problem.

Post-hoc local explanation
High dimensionality can influence the feasibility of implementing post hoc explanation

techniques. For example, using factorization machines resulted in enormous dimensions,
combined with large datasets that both current LIME and SHAP-Kernel libraries could
not handle.

Regarding the utility of local explanations, Kernel SHAP shows better performance in
retaining important features (based on a small sample of explanations). Kernel SHAP al-
ready combined LIME and classical Shapley values to optimize the sampling for computing
feature contribution, which could be attributed to the observation in this experiment. This
performance comes with computation cost as Kernel SHAP still took a considerably longer
execution time than LIME. However, the result might not hold if we change the explanation
samples or perform on the whole test application. Thus, having the best representative of
the sample for an explanation would validate the observation.

Finally, when comparing local self-explanation (by EBM_side_info) and local post hoc
explanation use cases, both LIME and Kernel SHAP failed to capture the interaction be-
tween features. Given the nature of the system is matching jobs to users, such interaction
effects may give a more intuitive explanation compared to considering individual factors.
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The only limitation of EBM in the interpretml library is that it does not support ex-
tracting local explanations. The output of the local explainer is wrapped in an object for
interactive visualization; thus, no contribution weights could be extracted for evaluating
the magnitude of contribution like (SHAP and LIME).

Which explanation is more suitable?
From the perspective of the audience (job seeker), using a local explanation is preferable

to a global explanation, as it is tailored to a specific user and the recommended jobs.
However, the local explainer may not always come up with the same conclusion (whether
the user will apply for the job) because it makes predictions based on the surrogate model.

Choosing a suitable sample size for the local explainer can help improve the fidelity
of the prediction. All use cases in this LIME and SHAP experiment in this project use
a sample size of 500, which can guarantee a consistent prediction between surrogate and
black-box models. Using a smaller sample size (e.g. 100) resulted in different predicted
labels. Furthermore, the poor explanation may also be attributed to the poor performance
of the black-box model. In other words, the low "accuracy" in prediction by the local
surrogate model is one indicator of the low performance of the original black-box models.

5.3 Research Question 4: Generating an intuitive explana-
tion for lay users

From the two use cases in Section 4.7 the challenge of explaining job recommendations
comes from the feature engineering process rather than the ranking models. Human-
digestible explanations should interpret the embedded features. Thus, the overall XAI
pipeline is still model-specific, as it cannot provide a complete intuitive explanation without
knowing the model mechanism. Post hoc techniques such as LIME and Kernel SHAP can
be used to generate a raw explanation.

As discussed in section 5.2, the user’s work history text data are less informative than
the job’s text data. Thus, it can lead to misleading explanations by matching only the job
titles the user previously has with the job titles of the open position. In previous studies,
such as [36], user information is represented only by the skills section in their CVs, and job
information is filtered using only job requirements. Having such a comparable filter of the
raw text will improve the explanation.

Using visualization combined with text can help the audience understand the explana-
tion. From the two use cases, the extracted keywords or converted feature names still need
further filtering or processing to form a narrative explanation. Equally important, the raw
text (job description, job requirement) can also influence the quality of the explanation. If
the raw documents are too vague or contain too little information, the keywords extracted
might not be helpful.
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Conclusion

6.1 Reseach limitation

First, the data set used for the experiment was only in the US and does not provide ranking
ground truth. This may lead to bias in favor of matching the location of job seekers and
the job post. In addition, text data from users are less informative compared to that on
the jobs, which may lead to bias in explanation towards embedded job features.

The second limitation also comes from the dataset, including the sparsity and the cold
start situation by design. A better augmentation strategy should combine the context (as
in the KNN ranking data) and the control presence of positive labels (as random ranking
data) for the best results.

Third, the experiment design only considers applications made by users with existing
work histories. This means that for users without work history information (for example,
fresh graduates), the findings from this project may not be applied.

Fourth, the experiment only simulates the complexity of job recommendation systems,
instead of fully reproducing a SOTA system as introduced in the ACM RecSys Challenge.
This is due to the mismatch between user characteristics and job characteristics in the
dataset. Specifically, in the ACM data, users and jobs have many compatible tabular
features. Baseline models of ACM RecSys 2017 show at least five types of matching that
can be inferred from comparing users and table features: matching in the current user title
and job role, discipline, career level, industry and location (country and region).

Finally, all explanation evaluation in this study is based on an algorithm approach
rather than human evaluation. The interpretation of the explanation in the last exper-
iment use cases is from the author’s perspective. User experiment surveys would add a
comprehensive evaluation of the quality of the explanation.

6.2 Future work

Future research may investigate the opening issues or limitations of the current experiment
design. First, in terms of data enhancement for interaction or ranking ground truth, one
might consider using an algorithm to simulate job applications or using different negative
sampling strategies, as in the study [3]. The sampling methods introduced in RecBole
library currently support random negative sampling and popularity-biased negative sam-
pling. Having a dataset with more geographical diversity may add implications to job
recommendations, especially when hybrid and remote work is becoming more popular.
Implicit feedback also adds more diversity and better reflects reality, as users may show
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their interest in a job before actually applying to the position (such as implicit feedback
in ACM RecSys datasets).

Equally important, evaluation recommendation systems should consider both relevance
(i.e., via hit rate metrics) and the level of certainty in decision-making (i.e., via the prob-
ability of predicted class). Raising the threshold for decisions higher than 50% may help
eliminate ambiguous decisions. However, in the case of users changing career direction, a
recommendation with lower certainty is still helpful as long as it explains the ambiguity.
For example, job seekers can use the explanation to identify their skills gap.

Third, the complexity of the algorithm used for recommendation systems can be ex-
tended with neural network-based models or multilayer ensemble models. Tuning hyper-
parameters for surrogate models in post hoc explanation techniques can help improve the
accuracy of local prediction.

Finally, narrative generation is not fully automated and scalable. Due to time lim-
itations, in the current setting, each component of the narrative generation pipeline is
already automated, such as extracting raw terms and plotting explanations with converted
features. These can be input for building a narrative generation platform, such as the
Crystal Candle in the LinkedIn study [33].

6.3 Conclusion

This research focuses on explainable AI in recommendation systems using Kaggle’s Ca-
reerBuilder 2012 dataset. It builds an end-to-end process that includes the generation of
recommendations, the generation of explanations, and the communication of explanations
in an intuitive manner.

Empirical results from extensive comparison and use cases bring three main findings:
(1) The performance of JRS depends on the selection of potential applications before
ranking them. Combining the context of existing applications and the controlled positive
sampling during the shortlisting process will help improve the relevance of recommenda-
tions. The ranking performance was similar among four groups of models: white-box,
black-box, Factorization Machines (FM), and Explainable Boosting Machines (EBM).
(2) Two explanation approaches, model-agnostic and model-specific, show mixed results
in explanation utility. Model-agnostic models (EBM and DPEBM) can retrieve a maxi-
mum of half of the recommendations of the original black-box systems. EBM models show
potential in both performance and self-explanation (globally and locally). Post hoc expla-
nation techniques, LIME and kernel SHAP, can retrieve most of the important features of
the original model at a local explanation scope. Equally important, the explanations from
both approaches can reflect the bias in the recommendation systems, which in this case
links to data quality. This is helpful for system developers.
(3) Communicating human-digestible explanations requires a deeper understanding of fea-
ture engineering as the systems used transform text data. Mixed use of text explanation
and visualization has been illustrated as a use case for the "post-explanation process".

The findings of this project contribute to the research community in explainable AI
and explainable recommendation systems in three aspects: (1) The project validates the
performance of the factorization machine algorithm ([26]) in recommendation systems us-
ing a new kind of input: text data. The project also tackles explanation challenges in job
recommendation systems when combined with post-hoc XAI techniques. (2) The project
validates the ensemble explainable algorithms in [23, 16, 22] in terms of prediction per-
formance and explainability, for systems that require complicated feature engineering. (3)
Finally, the study provides detailed data-centric explanations for future implications.



Appendix A

Detailed description of dataset -
CareerBuilder 2012

user.tsv: contains information about the users. Each row of this file describes a user. The
UserID column contains a user’s unique id number, the WindowID column contains which
of the 7 windows the user is assigned to, and the Split column tells whether the user is in
the Train or Test groups. The remaining columns contain demographic and professional
information about the users.

# Column Non-Null Count Dtype
0 UserID 389,708 non-null int64
1 WindowID 389,708 non-null int64
2 Split 389,708 non-null object
3 City 389,708 non-null object
4 State 389,218 non-null object
5 Country 389,708 non-null object
6 ZipCode 387,974 non-null object
7 DegreeType 389,708 non-null object
8 Major 292,468 non-null object
9 GraduationDate 269,477 non-null object
10 WorkHistoryCount 389,708 non-null int64
11 TotalYearsExperience 375,528 non-null float64
12 CurrentlyEmployed 347,632 non-null object
13 ManagedOthers 389,708 non-null object
14 ManagedHowMany 389,708 non-null int64

Table A.1: Dataset description - user.tsv - 389,708 entries

user_history.tsv: contains information about a user’s work history. Each row of this
file describes a job that a user held. The UserID, WindowID, and Split columns have the
same meaning. The JobTitle column represents the job title, and the Sequence column
represents the order in which the user held that job, with smaller numbers indicating more
recent jobs.

jobs.tsv: contains information about job postings. Each row of this file describes
a job post. The JobID column contains the job posting’s unique id number, and the
WindowID column contains which of the 7 windows the job was assigned to. The other
columns contain information about the job posting. Two of these columns deserve special

64



APPENDIX A. DETAILED DESCRIPTION OF DATASET - CAREERBUILDER 201265

# Column Dtype
0 UserID int64
1 WindowID int64
2 Split object
3 Sequence int64
4 JobTitle object

Table A.2: Dataset description - user_history.tsv - 1,753,901 entries

attention, the StartDate and EndDate columns. These columns indicate the period this
job posting was visible on careerbuilder.com. Each job was visible for part of its 13-day
window, but not necessarily for the entire 13 days.

# Column Non-Null Count Dtype
0 JobID 1,091,923 non-null int64
1 WindowID 1,091,923 non-null int64
2 Title 1,091,916 non-null object
3 Description 1,091,913 non-null object
4 Requirements 1,050,521 non-null object
5 City 1,091,921 non-null object
6 State 1,091,922 non-null object
7 Country 1,091,920 non-null object
8 Zip5 685,724 non-null object
9 StartDate 1,091,923 non-null object
10 EndDate 1,091,914 non-null object

Table A.3: Dataset description - jobs.tsv - 1,091,923 entries

apps.tsv: contains information about applications made by users to jobs. Each row
describes an application. The UserID, WindowID, Split, and JobID columns have the same
meanings as above, and the ApplicationDate column indicates the date and time at which
UserID applied to JobId.

# Column Non-Null Count Dtype
0 UserID 1,603,111 non-null int64
1 WindowID 1,603,111 non-null int64
2 Split 1,603,111 non-null object
3 ApplicationDate 1,603,111 non-null object
4 JobID 1,603,111 non-null int64

Table A.4: Dataset description - apps.tsv - 1,603,111 entries



Appendix B

Pseudo code of explainable ensemble
models

The figure below summarizes pseudo code in ensemble explainable models: EBM and
DPEBM [22].

Figure B.1: Pseudo codes of Explainable Boosting Machines (EBM) and Differ-
entially Private EBM model
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Appendix C

Feature Engineering

C.1 Transform text features: user details and job details

Hyper-parameters of TF-IDF transformation on job details
Each document in the job detail corpus includes the job title, job description, and job
requirements. The corpus has a total: 1,050,509 documents.

• ngram_range = (1, 2)

• min_df = 5

• max_features = 100

• stop_words= ’english’

Hyper-parameters of TF-IDF transformation on user work history
Each document in the corpus was all job titles linked to a user (identified by UserID). The
corpus has a total: 152,292 documents.

• ngram_range = (1, 2)

• min_df = 5

• max_features = 50

• stop_words= ’english’

Hyper-parameters of LDA models

LDA models adopt the same hyper-parameters from the study by Lacic et. al. (2020)
[11]. Lacic et. al. performed LDA only on job details while in this experiment, LDA was
performed on both jobs and users information.

• n_components = 20

• max_iter = 5

• learning_method = ’online’

• learning_offset = 50
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C.2 LDA Topic model visualization

Wordclouds of LDA Topic Model for Job details

Figure C.1: Wordcloud-Job Requirement LDA Topic Modelling
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Figure C.2: Wordcloud-Job Title LDA Topic Modelling
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Figure C.3: Wordcloud-Job Description LDA Topic Modelling

Wordclouds of LDA Topic Model for User Work history
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Figure C.4: Wordcloud-User work history LDA Topic Modelling
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C.3 Discretization features

Discretization converts numeric features into categorical datatypes. These features train
hybrid FM, EBM, and DPEBM models. The bin sizes for WorkHistoryLevel, and YearO-
fExperience level adopt from ACM RecSys 2017.

Table C.1: Discretization details for user side information

Features Discretized values
UserID: Unique User ID

DegreeType:

0 = None
1 = High school
2 = Vocational
3 = Associate’s
4 = Bachelor’s
5 = Master’s
6 = PhD

CurrentlyEmployed: 0 = No, 1 = Yes
ManagedOthers: 0 = No, 1 = Yes
WorkHistoryTopic: LDA dominant topic 0-19

WorkHistoryLevel:
Converted from numeric feature "WorkHistoryCount"

0 = less than 1 job
1 = 1-2 jobs
2 = 3-4 jobs
3 = 5 or more jobs

SeniorLevel:
Converted from numeric feature "YearsOfExperience"

0 = less than 1 year
1 = 1-3 years
2 = 3-5 years
3 = 5-10 years
4 = 10-15 years
5 = 16-20 years
6 = more than 20 years

Table C.2: Discretization details for job side information

Features Value
JobID Unique Job ID
TitTopic: LDA dominant topic 0-19
DescTopic: LDA dominant topic 0-19
ReqTopic: LDA dominant topic 0-19



Appendix D

Detailed experiment design

D.1 Feature and ranking model

Figure D.1: Feature engineering and ranking model settings
[22]
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Appendix E

Hit rate of job recommendation
systems

Detail hit rate results for job recommendation systems using potential appli-
cations from random ranking data.

Table E.1: Hit_rate@k of all JRS on test interaction data
Source of potential application: random ranking data

Ranking model hit_rate@5 hit_rate@10 hit_rate@20
logreg 0.8754 0.8808 0.8959
dt 0.8875 0.8875 0.8891
nb 0.8778 0.8875 0.9029
xgbt 1.0000 1.0000 1.0000
ada 0.8743 0.8805 0.8961
lnda 0.8749 0.8808 0.8953
qda 0.8773 0.8864 0.9055
fm 0.3275 0.4836 0.8654
fm_match 0.3275 0.4836 0.8654
fm_side_info 0.3154 0.4525 0.5988
fm_extended 0.8987 0.9095 0.9268
ebm_location 1.0000 1.0000 1.0000
ebm_side_info 0.1389 0.2449 0.3614
dpebm_location 1.0000 1.0000 1.0000
dpebm_side_info 1.0000 1.0000 1.0000
dpebm_extended 1.0000 1.0000 1.0000
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Table E.2: Hit_rate@k of all JRS on test interaction data
Source of potential application: unsupervised KNN ranking data

Ranking model hit_rate@5 hit_rate@10 hit_rate@20
logreg 0.0361 0.0393 0.0401
dt 0.0393 0.0396 0.0422
nb 0.0344 0.0363 0.0396
xgbt 0.0420 0.0425 0.0425
ada 0.0361 0.0393 0.0398
lnda 0.0361 0.0393 0.0401
qda 0.0336 0.0385 0.0401
fm 0.0043 0.0051 0.0079
fm_match 0.0043 0.0051 0.0079
fm_side_info 0.0041 0.0054 0.0073
fm_extended 0.0084 0.0095 0.0098
ebm_location 0.0076 0.0089 0.0092
ebm_side_info 0.0011 0.0022 0.0035
ebm_extended 0.0073 0.0087 0.0095
dpebm_location 0.0076 0.0089 0.0092
dpebm_side_info 0.0011 0.0022 0.0035
dpebm_extended 0.0076 0.0089 0.0092



Appendix F

Local explanation

The table below provides information about the application sample used in evaluation
post-hoc explanation approaches in section 4.5.

UserID JobID label
13 821691 1
13 329572 0
514 131166 1
514 620304 0
681 654542 1
681 625758 1
681 15081 1
681 291467 0
681 1035056 0
681 2083 0
767 85377 1
767 385582 0
883 663823 1
883 136012 0
1006 655183 1
1006 466034 0
1066 709999 1
1066 1096020 1
1066 700868 1
1066 726478 0

Table F.1: Test application sample for model interpretation. The "label" column
represents the actual outcome: 1 - Apply, 0 - Not apply. The green row is the
selected application for comparison in local explanation.

Usecase for comparison in local self-explanation versus post-hoc local ex-
planation

User profile:
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UserID 13
WindowID 6
Split Test
City Philadelphia
State PA
Country US
ZipCode 19143
DegreeType Bachelor’s
Major Psychological & Social Sciences
GraduationDate 40878
WorkHistoryCount 6
TotalYearsExperience 5

User work history: Job titles:

• Pennsylvania Mentor
• Student Worker
• Internship in Adoption Unit
• Student Worker - Continuing Education
• Sales Associate

Job detail:

• JobID: 821691 - Job Title: Group Counselor
• Job Description: The Group Counselor provides social skill interventions

within a camp environment to children presenting with social, emotional, and
behavioral problems. The Group Counselor is responsible for modeling appropri-
ate social skill interactions for campers and providing a safe environment where
campers can learn and practice positive social skills. Key Areas of Responsi-
bilities: Provide age-appropriate recreational and therapeutic activities within
the camp environment. Provide crisis management techniques and de-escalation
strategies. Provide a safe and structured environment for campers to engage in
therapeutic activities. Encourage positive peer social interactions throughout all
activities. Create problem-solving and positive decision-making activities. Cre-
ate activities related to improving social skills and interactions. Introduce and
practice social decision making social problem-solving concepts with campers.
Provide campers opportunity for leadership and various roles within each ac-
tivity and group. Model appropriate social interactions and decision making
skills for campers. Provide encouragement and praise for campers efforts in each
activity. Participate in all activities with campers. Access resources to help
appropriately address campers mental health needs. Collaborate with directors
to access needed materials and resources for behavioral plans and interventions.
Ensure cleanliness of camp environment. Responsible for daily goal sheets to
document camperrsquo;s behaviors. Will provide safety techniques and physical
emergency intervention due to safety concerns when needed. Consults with: The
Group counselor will consult with directors at camp site. The group counselor
will have daily interactions with all counselors at camp. Group counselor will
consult with and collaborate with all STAP staff to ensure the safety and all
campers and assist with behavioral strategies. Term of employment: Seasonal;
summer position (June ndash; August) Hours: 8:30 ndash; 4:00. Must be flexible
with work hours, will work day, and evenings as necessary.

• Job Requirement: Bachelors degree or non-degreed candidates accepted. Ex-
perience providing services to children with behavioral problems and social skill
deficits. Relevant experience providing services to children in a camp setting.
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F.1 Data use for evaluation local explanation

F.2 Feature importance fidelity - Local explanation

Table F.2: Feature importance fidelity for Kernel SHAP local explaination

Original Model # features # gold features
ebm_location 3 4
ebm_side_info 11 19
ebm_extended 14 13
logreg 159 20
dt 159 20
xgbt 159 4

Table F.3: Feature importance fidelity for LIME local explanation

Original Model # features # gold features
ebm_location 3 4
ebm_side_info 11 19
ebm_extended 14 13
logreg 159 20
dt 159 20
xgbt 159 4



Appendix G

Appendix: Use Case - Interpret
explanation for recommendations

G.0.1 User information

User profile:

UserID 577106
WindowID 5
Split Test
City Chicago
State IL
Country US
ZipCode 60628
DegreeType Master’s
Major Computer Information Systems
GraduationDate 01/10/2009 0:00

Work History:

• Help Desk Analyst Level 3

• Help Desk Level 3

G.0.2 Case 1: Interpret post hoc explanation by Kernel SHAP and
LIME

The table below shows the result of the JRS recommendation using logistic regression as a
ranking algorithm, the source of potential application is the random ranking data. Column
"Y_pred" is the predicted label by the recommendation system. Column "Y_pred_posthoc"
is the predicted label by the post-hoc explainers, including LIME and Kernel SHAP. The
column "label" is the actual interaction between the user and the jobs from the original
data.
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UserID JobID Y_prob Y_pred rank label Y_pred_posthoc
577106 355928 0.950842121 1 0 1 1
577106 514855 0.534474817 1 1 0 1
577106 296141 0.512052627 1 2 0 1
577106 596860 0.499821843 0 4 0 1
577106 1057551 0.499680993 0 5 0 1
577106 404437 0.488222237 0 9 0 0
577106 115760 0.478346461 0 13 0 0
577106 838051 0.475534386 0 15 0 0
577106 1076079 0.47423476 0 17 0 0

Table G.1: "Post-explanation" use case: JRS ranking algorithm: LogReg; Source
of applications: Random ranking data; UserID = 577106. The first application was
selected for detailed post-hoc explanation and interpretation in Figures 4.22 and
4.23

The post hoc explanation of the first application: UserID = 577106, JobID = 355928
is illustrated in Figs. 4.22 and 4.23. The following are the raw text features of JobID:
355928.

• Job Title: Technical Support Specialist

• Job Description: Technical Support Specialist Mount Prospect, IL Company
Description: Since 1887, Cummins Allison has produced a wide range of prod-
ucts. Today we manufacture a variety of equipment serving financial, gaming
and commercial marketplaces across the U.S. and worldwide. Our factory direct
sales of top quality products include: High speed coin and currency processing
equipment as well as other office products. For more information, visit our web
site at www.cumminsallison.com. Responsibilities: Currency pattern develop-
ment for International currencies both in house and onsite worldwide. Working
with mechanical, software and electronic design engineers to identify and resolve
problems relating to currency pattern development. The ability to travel once
or twice a month for up to one week or longer to international locations.

• Job Requirement: Qualifications: Applicants must be skilled in Microsoft
Word, Excel and basic network communications for the PC and servers. An
excellent command of English is essential, with other languages a plus. Min-
imum requirements include an Associate’s Degree in Electronic or Computer
Technologies or a certificate of completion from an accredited Technical Degree
program. Field experience for electro mechanical devices is also beneficial. Re-
ply information: We provide excellent benefits including a successful 401k plan
and tuitionassistance. Please send e-mail responses, including salary history, to
jobs@cumminsallison.com EOE m f d v

G.0.3 Case 2: Interpret local self-explanation by EBM side info model

The table below shows the recommendation generated by JRS using EBM_side_info as
a ranking algorithm. The source of potential application is KNN ranking data. Column
"Y_pred" is the predicted label by the recommendation system. The column "Y_pred_local"
is the predicted label generated by the model itself but in the local scope. The column
"label" is the actual interaction between the user and the jobs from the original data.
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UserID JobID Y_prob Y_pred rank label Y_pred_local
577106 92240 0.551190765 1 0 1 1
577106 16606 0.551190765 1 1 1 1
577106 367673 0.551190765 1 2 1 1
577106 14404 0.506421643 1 3 1 1
577106 927790 0.50383071 1 4 1 1
577106 766469 0.480923437 0 5 0 0
577106 649469 0.480923437 0 6 0 0
577106 356244 0.480923437 0 7 0 0
577106 500312 0.480923437 0 8 0 0
577106 1017568 0.480923437 0 9 0 0
577106 610171 0.480923437 0 10 0 0
577106 251074 0.473254323 0 11 0 0
577106 281238 0.472712644 0 12 0 0
577106 453343 0.472712644 0 13 0 0
577106 24530 0.472712644 0 14 0 0
577106 476420 0.472712644 0 15 0 0
577106 1052122 0.472712644 0 16 0 0
577106 899538 0.472712644 0 17 0 0
577106 480445 0.472712644 0 18 0 0
577106 96236 0.472712644 0 19 0 0

Table G.2: "Post-explanation" use case: JRS ranking algorithm EBM_side_info
model; Source of applications: KNN-ranking data; UserID = 577106. The expla-
nation for the first application (green row) was illustrated by figures 4.24

The local self-explanation of the first application: UserID = 577106, JobID = 92240
was illustrated in figure 4.24. Below are the raw text features of JobID: 92240.

• Job ID: 92240. - Job Title: Outside Sales Representative - B2B

• Job Description: Independent Sales Representatives! Register Tapes Unlim-
ited (RTUI) is hiring! Business is good. We are growing. We need you now!
LOOKING FOR A NEW CAREER? National Media Company is looking for
sales candidates to sell dramatic new advertising media. Qualified candidates
will have enthusiasm, high energy, and great communication skills. No experi-
ence is necessary. WILL TRAIN 100%. You pick territory.

• Job Requirement: For immediate consideration call (248) 514-1991 and ask
for Andre. To submit your resume or work history, please apply via Online.
Visit us online at www.rtui.com
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Figure G.1: Use-case: Generate narrative on EBM_side_info local explanation.
Wordcloud of LDA topic model for the use case. The dominant topic was recalcu-
lated based on the standard topic-document distribution approach. Thus, results
may be different from the original features.
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