MSc Computer Science
Final Project

Formal Verification of
Lightweight Decentralized
Attribute-based Encryption

Janneke van Oosterhout

Supervisor: Florian Hahn

June, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Acknowledgements

I would like to acknowledge and give my warmest thanks to my supervisors:
Mohammed B.M. Kamel (E6tvos Lorand University) and Sander Dorigo (Fox-IT).
Mohammed B.M. Kamel guided me through this process and advised me through
all stages of my thesis. His lectures on cryptographic protocols enthused me to learn
more about the topic and write my thesis about Attribute-based Encryption (ABE)
and formal verification. I would also like to thank Fox-IT and especially Sander
Dorigo for giving me the possibility to do my internship and write my thesis at
Fox-IT. I had an enjoyable and educational time at Fox, special thanks also to all
my colleagues.

Thanks should go to my proofreaders: some colleagues at Fox-IT and Javier
Perez y Perez. Your feedback was meaningful and helped me finalize my thesis. I
would also like to recognize Florian Hahn for checking my thesis on behalf of the
University of Twente.

Lastly, I would like to mention my family, Javier, and friends. Thanks for sup-

porting me through this time!

Abstract

Attribute-based Encryption (ABE) is a public key cryptography scheme that pro-
vides one-to-many encryption. Decentralized Attribute-based Encryption (DABE)
is a recent extension of ABE that does not have a single central authority
(CA). DABE contains some heavy computations in the encryption algorithm,
which prevents DABE from being implemented in many resource-constrained de-
vices smoothly. Lightweight DABE versions are designed to perform efficiently
on resource-constrained devices. Outsourcing (Outsourced Decentralized Attribute-
based Encryption (ODABE)) is an approach for lightweight encryption in DABE.
Until now, there did not exist an outsourcing decryption scheme.

Formal verification can be used to show that a cryptographic protocol meets
its security properties. Formal verification can be done either by hand or by us-
ing an automated tool. Automated formal verification is a kind of Computer-aided
Cryptography (CAC) and performs machine-checkable approaches to test the secu-
rity of a protocol. There are numerous tools that perform automated verification,
TAMARIN is such an automated formal verification tool. To formally verify ODABE
TAMARIN is used. Security properties are modelled and it is proven that they hold
in the model.

This thesis has two goals:
e To design and analyse an outsourcing decryption scheme.

e To formally verify the encryption and the proposed decryption ODABE

scheme.

i

Acronyms

AA attribute authority

ABE Attribute-based Encryption

AC associative-commutative

CA central authority

CAC Computer-aided Cryptography

CP-ABE Ciphertext-Policy Attribute-based Encryption

CT ciphertext

DABE Decentralized Attribute-based Encryption

ECC elliptic curve cryptography

Fuzzy-IBE Fuzzy Identity based Encryption

GID Global Identifier

IBE Identity based Encryption

IoT Internet of Things

KP-ABE Key-Policy Attribute-based Encryption

LSSS Linear Secret Sharing Scheme

MK master key

ODABE Outsourced Decentralized Attribute-based Encryption
PK public key

SDABE Secret Sharing for Lightweight Decentralized Attribute-based Encryption

SK secret key

1l

Contents

1 Introduction
1.1 Overview
1.2 Thesis Objectives
1.3 Contribution
1.4 Organization of the Thesis

2 Related Work
2.1 Formal Verification
2.2 Attribute-based Encryptiono
2.3 Decentralized Attribute-based Encryption
2.4 Lightweight Decentralized Attribute-based Encryption.

3 Preliminaries
3.1 Secret Sharing
3.2 Formal Verification
3.3 TAMARIN
3.4 Access Policy
3.5 Linear Secret Sharing Scheme,
3.6 Bilinear Map
3.7 Attribute-based Encryptiono
3.8 Decentralized Attribute-based Encryption
3.9 Lightweight Decentralized Attribute-based Encryption.

4 Proposed Outsourced Decryption
4.1 Decryption DABE
4.1.1 Possible Improvementso
4.2 Security Definition oo
4.3 Proposed Decryption ODABE
4.3.1 Analysis

5 Formal Verification
5.1 ABE Model in TAMARIN
5.2 DABE Model in TAMARIN

12
12
13
13
14
15
17
17
18
20

23
23
23
24
24
27

CONTENTS

5.3 ODABE Model in TAMARIN
5.4 ODABE Decryption in TAMARIN

6 Conclusion
6.1 Summary of the Thesis
6.2 Conclusion

6.3 Future Research Directions
Bibliography

A Lemmas TAMARIN models
A1l ABE
A2 DABE
A3 ODABE

B Labels TAMARIN models
B.1 Facts
B.2 Action facts

B.3 Trace restrictions
List of Figures
List of Tables
List of Algorithms and Protocols

List of Codes

43
43
43
45

46

52
52
23
o7

61
61
62
65

66

67

68

69

Chapter 1
Introduction

This chapter provides an overview of the problem domain, discussing Attribute-
based Encryption (ABE) and formal verification. Additionally, the objectives and

contributions are discussed. Lastly, the organization of this thesis is described.

1.1 Overview

Most encryption schemes perform one-to-one encryption. In public key cryptog-
raphy, a user Alice encrypts a message for the receiver Bob using his public key such
that nobody else is able to decrypt the message.

However, in many cases, it can be more convenient to encrypt one message for
multiple users to decrypt. The reason for this can be that multiple users need to
decrypt the message or it is not known yet who needs to decrypt. An example of
a case where this can be used is in a municipality. Assume the municipality wants
to send an encrypted message to all its residents. Encrypting it individually with
their public key is not efficient, instead, they want to send one encrypted message
to everyone. Moreover, new residents also need to be able to decrypt a message sent
earlier.

ABE provides a one-to-many scheme where the encryptor defines an access policy
over attributes and encrypts the message with that policy. Decryptors who possess
the attributes that satisfy the access policy are able to decrypt. An attribute is
expressed as a string and describes part of the identity of a user [1|. Examples of
attributes are the city you live in, your job, study, gender, etc.. The ABE scheme
relies on a central authority (CA) that owns a public and private key. The encryptor
needs the public key of the CA and an access policy to encrypt a message. A user
who wants to decrypt needs to be issued a secret key from the CA. This secret key

is associated with a set of attributes that the user possesses. A user can decrypt a

1. Introduction

ciphertext if his secret key is associated with a set of attributes that satisfies the
access policy ascribed to the ciphertext [2].

However, a single CA has a few drawbacks, which might result in potential
problems. First of all, the security of the user is at stake since the CA can be
malicious. Secondly, the problem of bottleneck can occur when no secret keys can
be provided to the users when the CA is malfunctioning [3]. A solution to overcome
these problems is to use multiple attribute authorities (AAs).

Decentralized Attribute-based Encryption (DABE) is a version of ABE in which
no CA is involved. There are multiple AAs who all contain their own attributes
and only distribute secret keys for these attributes. A secret key is only associated
with one attribute. In DABE, secret keys can be established without communication
between the AAs. To decrypt, a user needs several secret keys that together identify
a set of attributes that satisfy the access policy ascribed to the ciphertext. The
main challenge in DABE is to make it collusion-resistant; users should not be able
to collude together to decrypt a message if they cannot decrypt it on their own. In
the DABE decryption process the user’s key components are tied together, to make
it collusion-resistant [4].

Compared to other public key cryptography protocols, ABE and DABE con-
tain more expensive computations such as exponentiations and multiplications with
pairings. Resource-constrained devices in the Internet of Things (IoT) environment
cannot perform heavy computations efficiently. Therefore, DABE is not suitable for
resource-constrained devices [5].

To use DABE efficiently in the IoT environment, a lightweight DABE variant
would have to be used. There are several possibilities to make DABE lightweight,
such as outsourcing and secret sharing. Outsourced Decentralized Attribute-based
Encryption (ODABE) is a scheme that outsources heavy computations to a com-
putational node. Until now, only an ODABE encryption scheme has been proposed
[5]. In the encryption scheme, the encryptor prepares the encryption, sends values
to the computational node, which performs the pre-encryption, and the encryptor
finalizes the encryption. Since there does not exist an ODABE decryption scheme
that outsources to a single computational node, this thesis will contain a proposed

decryption scheme that uses outsourcing.

Formal verification is a way to prove whether a cryptographic protocol is secure.
This can either be done by hand or digitally. Computer-aided Cryptography (CAC)
is the area of research that uses formal, automated checking processes to test the
security of a cryptographic protocol [6]. TAMARIN is a formal verification tool re-
leased in 2012 and TAMARIN will be used in this thesis. ABE is formally verified

using ProVerif, another formal verification tool [7]. The other protocols discussed

1. Introduction

before, DABE and ODABE, have not been formally verified yet. Before using them
in the real world, it is important to verify these protocols. Otherwise, one might

wonder, whether this protocol really satisfies the security properties.

1.2 Thesis Objectives

The aim of this thesis is to formally verify an existing lightweight decentralized
ABE scheme (ODABE), design an ODABE decryption scheme and formally verify

the decryption scheme.

Formal verification The first objective of this thesis is the formal verification of
lightweight decentralized ABE (ODABE). The following research questions have to

be answered to fulfill this objective:
e How can the security of the existing ODABE approach be formally verified?

e How can the security of the proposed lightweight decryption in DABE be
formally verified?

The first step to answer the research questions was to fully understand the ABE,
DABE and ODABE protocol. To gain this understanding, several papers on varia-
tions of ABE and formal verification were studied in detail. For formal verification of
the security of the discussed protocols, the tool TAMARIN has been used. TAMARIN
is well established in the academic community, which is shown by the fact that it has
been used to verify for example TLS 1.3, EMV, and 5G-AKA. Hence, the next im-
portant step was to understand the workings of this tool. Finally, the models could
be implemented in TAMARIN. The implementation was performed in three steps:
first the ABE scheme was implemented, and this scheme was extended to DABE
which was again extended to ODABE. To answer the second research question, the

lightweight decryption scheme first had to be designed.

Decryption scheme Another objective of this thesis is to design an outsourcing

DABE decryption scheme. The research questions that will be answered are:

e What are the heavy computation components of the decryption algorithm in
DABE?

e How can the outsourcing approach in ODABE be implemented in the decryp-
tion algorithm of DABE?

After formally proving the DABE and ODABE protocols in Tamarin, the decryption
algorithm in DABE was studied and analysed in detail. The heavy computations

3

1. Introduction

in the decryption algorithm needed to be identified and the outsourcing approach
in ODABE was transformed into an outsourcing decryption scheme. The proposed
decryption scheme was analysed on correctness and implemented in Python to test
its performance. Finally, the Tamarin protocol verifier has been utilized to formally

prove the security of the proposed lightweight decryption scheme.

1.3 Contribution

This section describes the two main contributions: formal verification of ODABE

and the outsourcing decryption scheme.

Formal verification Based on the papers written about ABE, DABE, and
ODABE, the protocols were formally interpreted and modelled in TAMARIN.
Moreover, the papers write about security goals that these protocols should satisfy,
which were implemented in the TAMARIN model. Besides these properties, some
extra security properties and sanity checks were added. Formally verifying ODABE
was the goal, but to do so first ABE needed to be implemented in TAMARIN. The
ABE scheme could be extended to the DABE which again could be extended to
formally verify ODABE.

Decryption scheme Based on the paper on ODABE |[5], the decryption scheme
was designed. The first step was to identify the heavy computational parts of the
decryption scheme in DABE. The outsourcing approach discussed in the paper [5]
was analysed. Combining these two findings, the proposed outsourcing decryption
scheme was designed. Additionally, its correctness and performance were discussed.
The performance was measured by implementing the proposed decryption scheme

in Python and testing this implementation.

1.4 Organization of the Thesis

In Chapter 2, the related work regarding formal verification and different versions
of ABE are discussed. Chapter 3 contains preliminaries such as TAMARIN, access
policies, and algorithms of the DABE, ODABE schemes. Next, in Chapter 4 the
proposed ODABE decryption scheme is described and analysed. In Chapter 5, the
formal verification of the schemes in TAMARIN is discussed. Chapter 6 is devoted
to the conclusion. At the end of the document, appendices with a more detailed

description of the components of the TAMARIN model are added.

Chapter 2

Related Work

This chapter describes the related work regarding formal verification and
variants of Attribute-based Encryption. The variants that will be discussed are
Attribute-based Encryption (ABE), lightweight ABE, Decentralized Attribute-based
Encryption (DABE), and lightweight DABE. Table 2.1 (on page 11) shows an

overview of the papers discussed in this section.

2.1 Formal Verification

TAMARIN was first released in 2012 and has already been used to formally
verify several protocols, such as TLS 1.3 [§8], Identity based Encryption (IBE) [9],
the EMV protocol [10], and the 5G authentication key exchange protocol [11]. All
papers using TAMARIN are listed on the TAMARIN website!. Currently, there is no
research paper that models and verifies Decentralized Attribute-based Encryption
(DABE) or Outsourced Decentralized Attribute-based Encryption (ODABE) in
TAMARIN.

Next to TAMARIN, there are more formal verification tools [6]. Bat-Erdene et
al. [12] and Rajeb et al. [13] both modeled ABE using ProVerif [7], an automatic
cryptographic protocol verifier. In 2014, it has already been stated that more at-
tention needs to be paid to automated verification to prove that a protocol meets
the security goals [14]. However, a paper that models DABE, or ODABE using any

formal verification tool is still missing.

"https://tamarin-prover.github.io/

https://tamarin-prover.github.io/

2. Related Work

2.2 Attribute-based Encryption

ABE is a form of fine-grained access control that facilitates granting access rights
to users [15]. Prior to ABE, there were other systems that tried to manage access
control of encrypted data by using secret sharing schemes in combination with IBE.
However, these schemes were not collusion-resistant, so parties were able to collude
together to gain access [2].

In ABE, the ciphertexts are not encrypted for one particular user. Instead, the
ciphertexts and users’ private keys are associated with either a set of attributes or
an access policy. This enables users to decrypt a message when the attributes and
access policy match [2]. This construction allows the ABE to provide one-to-many
encryption |3].

ABE was first introduced by Sahai and Waters [1], where they described a Fuzzy
Identity based Encryption (Fuzzy-IBE) system. Fuzzy-IBE is a type of IBE that
views identities as a set of descriptive attributes. Sahai and Waters proposed that
the user’s keys and ciphertexts are labelled with descriptive attributes, and a user
can only decrypt the ciphertext if the attributes match. The two main applications
of Fuzzy-IBE are biometric identities and ABE.

Types of ABE There are two types of ABE: Key-Policy Attribute-based
Encryption (KP-ABE) and Ciphertext-Policy Attribute-based Encryption (CP-
ABE). Goyal et al. [15] defined KP-ABE based on the construction of Fuzzy-IBE. In
KP-ABE, the keys of the users are associated with the access policy and the cipher-
texts with sets of attributes. This results in the encryptor not having full control on
who can decrypt his ciphertext. Take for example a ciphertext with two associated
attributes ‘Dutch’ and ‘Student’. Everyone with an access policy that matches the
ciphertext can decrypt, such as ‘Dutch AND Student’, ‘Dutch’, ‘Student’, ‘Dutch
OR Student’ etc. The encryptor can thus not restrict the ciphertext to users who
are a ‘Dutch Student’. Hence, the encryptor does not have the possibility to fully
manage the access. In Figure 2.1(a) an example of KP-ABE is shown. The encryptor
associates attributes A, B, D, E with the ciphertext. Three users obtain keys from
the attribute authority, their keys contain an access policy. Based on the access poli-
cies, users 1 and 2 are able to decrypt the ciphertext since the attributes associated
with the ciphertext satisfy the access policy. User 3 cannot decrypt.

Based on the KP-ABE construction, Bethencourt, Sahai, and Waters [2]| pro-
posed CP-ABE. In CP-ABE, the ciphertexts are associated with access policies and
keys with sets of attributes. The encryptor is able to decide who has access to the
data, by defining an access policy. Only the users who have a private key that satis-

fies the access policy associated with the ciphertext can decrypt. A challenge here is

2. Related Work

Attribute Authority Adttribute Authority
ABDE AANDE

M——C M——:C
Encryptor Encryptor
AANDBORC, o AAND CAND H AB.C AB ACD
User 1J User ZJ Userj User WJ Userzj User:}ﬁ]
(/] (] L] (]
(a) KP-ABE (b) CP-ABE

Figure 2.1: Example of KP-ABE and CP-ABE

to make it collusion-resistant: users should not be able to collude together to decrypt
a message. When users decide to collude, they should only be able to decrypt the
message when at least one of the users can decrypt it on their own. Figure 2.1(b)
shows an example of CP-ABE. The encryptor associates access policy A AND B
with the ciphertext. The users obtain a secret key associated with a set of attributes
from the attribute authority. The sets of attributes of users 1 and 2 satisfy the access
policy, so they are able to decrypt the ciphertext. User 3 does not possess attribute
B and is thus not able to decrypt.

Lightweight Attribute-based Encryption The Internet of Things (IoT) de-
scribes physical objects (e.g. sensors, actuators) that are connected with other de-
vices over the Internet. Currently, IoT devices are also used to exchange data and
the devices may thus contain sensitive information. Therefore, data privacy is crucial
in the IoT environment. Implementing a data access control solution, like ABE, can
offer the required flexibility and fine-grained access control to manage the protection
of the data [16]. However, the ABE schemes described earlier are based on heavy
computations, which makes these schemes unsuitable for resource-constrained IoT
devices, that have resource limitations in terms of CPU, memory, and battery life
[17]. The most costly operations in the CP-ABE schemes are the encryption and the
secret key generation algorithms [18|. These algorithms are based on expensive bi-
linear pairing. Yao et al. [17] introduced a lightweight no-pairing ABE scheme based
on elliptic curve cryptography (ECC). ECC is easy to be realized on hardware or
a chip. Hence, they replaced the bilinear pairing operations with point scalar mul-
tiplications on the elliptic curve. However, Tan et al. [19] stated that the scheme
presented by Yao et al. [17] causes a security problem because the decryption keys
are the same when the access policy contains a single OR gate. Tan et al. solved
the security problem and introduced a lightweight KP-ABE scheme designed for
[oT devices. Oualha and Nguyen [16] extended the CP-ABE scheme using effective
pre-computation techniques, such that it can also be used on resource-constrained

IoT devices.

2. Related Work

Another technique that is used to make CP-ABE feasible in an IoT environment, is
to delegate the costly operations to a set of assisting unconstrained nodes. Touati et
al. [18] introduced this concept to delegate the costly exponentiations in the encryp-
tion algorithm to trusted neighbouring nodes. A trusted node is a node that behaves
the way it is intended, so it follows the protocol and it does not try to learn more
than needed. The costly operations in the key generation algorithm are performed
by an attribute authority (AA) with enough computing power to perform the op-
erations without a need for operation delegation. To delegate the computations in
Touati et al.’s scheme, it is assumed that each resource-constrained IoT device has
at least two trusted unconstrained devices in its neighbourhood and shares pairwise
keys with them. Additionally, Nguyen et al. [20] proposed an Outsourcing mecha-
nism for the Encryption of Ciphertext-Policy ABE (OEABE). They want to reduce
the costly operations by securely delegating the computations of the encryption
algorithm (CP-ABE) to a semi-trusted party. A semi-trusted party follows the de-
fined protocol but it will try to learn as much as possible. Tian et al. [21] proposed
an ABE-FPP scheme, a lightweight attribute-based access control scheme with full
privacy protection. To achieve lightweight computations, they perform heavy en-
cryption computations offline, which reduces the computation burdens. Moreover,

their decryption computations are outsourced.

2.3 Decentralized Attribute-based Encryption

All ABE schemes described earlier rely on a single authority. This means that
there is one trusted authority that manages all attributes. However, in multiple sce-
narios, there is no single authority that maintains and controls all the attributes of
the access policy. Chase [22| was the first one to propose an ABE construction in
which many different authorities operate simultaneously. Each authority is respon-
sible for a specific set of attributes and the authority hands out secret keys for this
set. To achieve this construction two main techniques are used. First, every user
gets a Global Identifier (GID), satisfying two properties: no user can claim another
user’s identifier, and all authorities can verify a user’s identifier. Second, there still
is a central authority (CA). Each user will send his GID to the CA and receive a
corresponding key. A requirement is that the CA needs to be trusted since it holds
the master secret for the system. Since the user’s secret keys are independent, the
scheme is collusion-resistant.

Besides Chase [22], Miiller et al. [23] also proposed a multi-authority ABE
scheme. However, both the schemes introduced by Chase and Miiller et al. still need
a CA. Therefore, these schemes still have the key escrow problem, which means there

is only one CA who generates and thus knows the secret keys of all users. The key

2. Related Work

escrow problem causes two risks for the system. Most importantly, the security of
the users is at stake since the CA can be malicious. Secondly, the problem of bot-
tleneck can occur when no secret keys can be provided because of a malfunctioning
authority [3].

Lin et al. [24] were the first to propose a scheme where the CA is removed.
They extended the multi-authority ABE scheme proposed by Chase [22] and Fuzzy-
IBE introduced by Sahai and Waters [1]. This scheme presented a threshold multi-
authority fuzzy identity-based encryption scheme (MA-FIBE). Their construction is
only m-resilient, where m is the number of secret keys that each authority obtains.
The security is only guaranteed against a maximum of m colluding users, more
than m users can work together to decrypt a ciphertext. Chase and Chow [25] also
proposed a multi-authority ABE scheme where the CA is removed. They suggested
distributing the functionality of the CA over all AAs. In comparison with the scheme
of Lin et al. [24], the construction of Chase and Chow [25] is secure no matter how
many users collude. Chase and Chow focus especially on the privacy of the users.
Since every user has a GID which needs to be presented when they request a secret
attribute key, colluding authorities are able to construct a set of attributes belonging
to a specific user. Chase and Chow are using anonymous credentials techniques to
guarantee the privacy of the users.

Both the schemes of Lin et al. [24] and Chase and Chow [25] are KP-ABE
schemes. Lewko and Waters [4] proposed the first multi-authority CP-ABE system
that is proven secure in the random oracle model and does not require any CA.
Therefore, they avoid having full trust in one single authority and they solve the
bottleneck problem. The only technical difficulty they face is to make the system
collusion-resistant. They achieved this by tying the user’s key components together.
Liu et al. [26] solved two problems of the Lewko and Waters scheme [4]; the con-
struction of a fully secure multi-authority CP-ABE in the standard model, and a
CP-ABE scheme which can completely prevent individual authorities to decrypt a

message. However, their scheme again uses CAs to distribute keys to the users.

2.4 Lightweight Decentralized Attribute-based
Encryption

The effort to propose a lightweight and Decentralized Attribute-based
Encryption scheme is a relatively new path of research. One of the methods to
transform an ABE scheme to a lightweight scheme is to make sure the heavy compu-
tations are not performed by the resource-constrained device in the IoT environment

itself. Outsourcing, introduced by Touati et al. [18], is a technique used to delegate

2. Related Work

heavy computations. Sun et al. [27| presented an outsourced decentralized multi-
authority attribute-based signature (ODMA-ABS) scheme. However, as the name
indicates, they did not propose the outsourcing decentralized technique for ABE
but for Attribute-based Signature (ABS). Chow [28] proposed a framework that
outsources the decryption of a multi-authority ABE scheme. A decryption mediator
performed by a cloud server performs the heavy computations of the decryption
algorithm. Additionally, Tu et al. [29] proposed a multi-authority ABE that out-
sources the encryption and decryption tasks to a fog server and a cloud service
provider. According to Tu et al.: “Fog computing is a revolutionary technology for
the next generation to bridge the gap between cloud data centres and end-users.
[..] Fog servers are distributed on the network edge and less expensive as com-
pared to cloud servers.” [29]. Kamel et al. [5] proposed an Outsourced Decentralized
Attribute-based Encryption (ODABE) scheme to outsource the heavy computations
during encryption. In comparison with Tu et al. [29], Kamel et al. [5] outsource the
heavy computations to a single external node, whereas Tu et al. use several nodes to
perform the heavy computations. Therefore, the encryption performed in ODABE
contains fewer algorithms and is more efficient. Shao et al. [30] also designed a
scheme for mobile cloud computing that outsources encryption and decryption to a
single node but an extra node is involved to store the encrypted messages. Moreover,
Shao et al.’s scheme contains an encryption proxy, decryption proxy, and the cloud
storage server whereas Kamel et al.’s scheme only needs one node for these tasks.
Another technique to create a lightweight DABE is by using a secret sharing
scheme. Kamel et al. [31] proposed the Secret Sharing for Decentralized Attribute-
based Encryption (Secret Sharing for Lightweight Decentralized Attribute-based
Encryption (SDABE)) scheme. By distributing the heavy computations in the en-
cryption algorithm using secret sharing, the user only needs to perform lightweight

computations.

Table 2.1 shows the properties of the main proposed ABE schemes. The following

properties are checked:

e Decentralized: the scheme does not have a single CA but instead contains

multiple authorities.

e Lightweight Encryption: the scheme proposed contains a lightweight encryp-

tion algorithm.

e Lightweight Decryption: the scheme proposed contains a lightweight decryp-

tion algorithm.

e KP-ABE/CP-ABE: whether the scheme is based on KP-ABE or CP-ABE.

10

2. Related Work

e Single node outsourcing: if the scheme makes use of outsourcing heavy com-

putations, only a single node is involved in the outsourcing process.

As can be seen in Table 2.1, a lightweight DABE scheme does not yet exist that
outsources encryption and decryption to a single node. The ODABE scheme pro-
posed by Kamel et al. [5] seems to be the closest to the desired outsourcing ap-
proach. However, it covers only the encryption algorithm. Therefore, in this thesis,

the ODABE scheme will be extended with an outsourcing decryption scheme.

Decen- | Lightweight | Lightweight | KP-ABE/ Single noc.le
Paper . - . (outsourcing)
tralized | Encryption | Decryption | CP-ABE |.
involved
Goyal et al. [15] X X X KP-ABE -
Bethencourt et al. [2] X X X CP-ABE -
Yao et al. [17] X v v KP-ABE -
Tan ct al. [19] X v v KP-ABE | -
Oualha and Nguyen [16] X v X CP-ABE -
Nguyen et al. [20] X v X CP-ABE v
Touati et al. [18] X v X CP-ABE X
Tian et al. [21] X v v CP-ABE v
Chase and Chow |25] v X X KP-ABE -
Lin et al. [24] v/ X X KP-ABE -
Rouselakis and Waters [32] | v/ X X CP-ABE -
Liu et al. [26] v X X CP-ABE -
Lewko and Waters [4] v X X CP-ABE -
Chow |[28] v X v CP-ABE v
Tu et al. [29] v v v CP-ABE X
Shao et al. [30] v v v CP-ABE X
Kamel et al. [5] v v X CP-ABE v
Kamel et al. [31] v v X CP-ABE X
This thesis,
extension to Kamel et al. [5] v v v CP-ABE v

Table 2.1: Supported properties ABE schemes

11

Chapter 3
Preliminaries

This chapter describes the background information for understanding the re-

mainder of this thesis.

3.1 Secret Sharing

Secret sharing refers to dividing a secret s into n pieces, called the shares, in
such a way that no information about s is learned by an unauthorized set of parties

[33]. Secret sharing schemes have two properties: [34]
e Correctness: the secret can be reconstructed by any authorized set of parties.

e Perfect privacy: any unauthorized set of parties cannot learn anything about

the secret.

Shamir [35] introduced the concept of (n, k) threshold scheme, where k& < n, which
means that k-out-of-n parties can reconstruct the secret. Shamir’s scheme is based
on polynomial interpolation.

Shamir’s scheme actually has an access structure where any subset of size greater
or equal to k is able to reconstruct the secret. Ito, Saito, and Nishizeki [36] proposed
a secret sharing scheme realizing any given access structure. A set of parties that
satisfies the access structure is able to reconstruct the secret. An example of an
access structure can be that two parties p; and py are both needed to reconstruct a
secret s (0 < s < m), then both parties get a share s; and s, respectively. s; and sy
are computed such that s = (s; + $2) mod m. Now p; as well as py needs the share

of the other party to reconstruct s [37].

12

3. Preliminaries

3.2 Formal Verification

Computer-aided Cryptography (CAC) is a research area used to design,
analyse and implement cryptography. It makes use of formal, automated approaches.
There are many tools available but they address different parts of the problem space.
CAC operates on three levels: design-level, deployment-level, and implementation-
level. The focus of this thesis will be on the design-level since the tool used,

TAMARIN, is a design-level tool [6].

Design-level security At the design-level, CAC can manage the complexity of se-
curity proofs and detect possible attacks. There are two sorts of design-level security:
symbolic security and computational security. In the symbolic model, messages are
represented as terms and cryptographic primitives are black-box functions of terms.
An adversary in the symbolic model can only use specified primitives and equational
theories. Moreover, the symbolic model contains trace and equivalence properties.
Trace properties state that a bad event never occurs on the trace. Equivalence prop-
erties state that an adversary cannot distinguish between two protocols [6].

In the computational model, messages are bitstrings and the cryptographic primi-
tives are probabilistic. If part of the bitstring is known in a computational model, less
computational resources are needed to decrypt a ciphertext. The security properties
in the computational model can be divided into game-based and simulation-based
properties. Game-based properties model a probabilistic game between an adver-
sary and a challenger, and a goal that the adversary needs to achieve to win the
game and break the scheme. Simulation-based properties model two probabilistic
games, the real game that runs under analysis and the ideal game that runs an ideal
functionality [6].

TAMARIN is an unbounded tool in the symbolic model that uses trace properties.

Unbounded here means that the absence of attacks can be proven [6].

3.3 TAMARIN

TAMARIN is an open-source tool used to verify cryptographic protocols.
TAMARIN supports falsification as well as unbounded verification in the symbolic
model [38]. Moreover, TAMARIN supports verification of trace properties and ver-
ification of protocols with the global mutable state [6]. The input to TAMARIN
is equational theories that represent the protocol messages, a model that specifies
the cryptographic protocol and the capabilities of the adversary, and some security

properties [39].

13

3. Preliminaries

Users can define equational theories with associative-commutative (AC) axioms.
The equational theories can be used to model the properties of functions. An example
of an equational theory is dec(enc(m,k),k) = m which states that decrypting the
ciphertext enc(m, k) with key k gives message m [6].

A protocol in TAMARIN is defined using multiset rewriting rules. The rules con-
tain multisets of facts, that have terms as arguments. The facts model the system’s
state [9]. Facts can be either linear, which means that they can only be executed
once, or persistent, which means they can be executed multiple times. Persistent
facts are indicated with an exclamation mark ‘!” in front of the fact [8]. The rules
define a labelled transition system. A TAMARIN rule consists of three parts and is

written as: [9]
[premises] — [actions] — [conclusions]

The left part consists of the premises. A rule can only be executed when all the
premises are available in the current state. The right-part are the conclusions. When
a rule is executed, it will consume the premises, and produce the conclusions. The ac-
tions specify events in every trace which are used in the security properties. Actions
are optional when defining a rule [8].

An adversary in TAMARIN is able to control the entire network, the adversary can
thus delete, intercept, modify, delay, inject, and create messages. However, the ad-
versary cannot forge signatures or decrypt messages without knowing the entire key
[9].

In TAMARIN one can also define trace restrictions. A restriction is a logical formula
that constrains the application of protocol rules [40].

The security properties, also called lemmas, in TAMARIN are written in first-
order logic and modelled as trace properties. They are checked against the traces of
the label transition system. TAMARIN tries to find a counterexample for the security
properties. If TAMARIN finds one, the security property does not hold since it can
be attacked by an adversary. The interactive TAMARIN mode can be used to see
how the adversary is able to attack. When no counterexample exists, the security

property holds and the proof is shown in the interactive mode [41].

3.4 Access Policy

An access policy is used to make sure that only people with the right set of
attributes are able to decrypt a message. The access policy is a boolean formula

consisting only of AND and OR operators [2].

14

3. Preliminaries

Access tree In ABE, an access policy has to be turned into an access tree [2|. In
an access tree, the leaves describe the attributes of the access policy. The nodes of
the access tree are threshold gates, where the AND gates can be described as n-of-n
threshold gates and the OR gates as 1-of-n threshold gates [15].

To check if a set of attributes y satisfies the access policy, the subtrees are
checked recursively. Let’s take child, as the number of children of node x and ¢ as
the threshold value, 0 < t < child,. If the threshold gate is an OR gate then t = 1,
for an AND gate t = child,. For every node x, the following must be checked:

e If z is a non-leaf node, check all children of node x. Return 1 if and only if at

least ¢ children return 1. Otherwise, return 0 and stop checking the tree.

e If z is a leaf node, check if the attribute denoted with node z is in y. If this is

the case, return 1, otherwise, return 0.

If 0 has been returned when z is a non-leaf node, it can be concluded that y does not
satisfy the access tree. When all nodes are checked and all non-leaf nodes returned

1, y satisfies the access tree [15].

3.5 Linear Secret Sharing Scheme

A Linear Secret Sharing Scheme (LSSS) is a secret sharing scheme where the
relations between all shares are linear. A LSSS matrix M is used to specify the
access policy I' of the ciphertext. Matrix M(I") contains r rows, where r is the
number of leaves in the access tree. The number of columns, ¢, is the depth of the

access tree [42].

Definition 1. (Linear Secret Sharing Scheme (LSSS) [43]|) A secret-sharing scheme

IT over a set of parties P is called linear if
1. the shares for each party form a vector over Z,;

2. there exists a matrix M with r rows and ¢ columns. For all £ = 1,..,r, the
k" row Mj of M belongs to party p. Given that the column vector v =
(s,79,...,7) of matrix M contains the shared secret s and randomly chosen
Tr9,..,Te, we have a vector v of r shares of the secret s according to matrix II.

Share 7 is the share belonging to party k.

LSSS conversion To convert an access tree to a LSSS, algorithm 1 can be used.

15

3. Preliminaries

Algorithm 1 LSSS Conversion algorithm [42]

Initialize counter ¢ to 1
Label the root node of the tree with vector (1)
while There are still nodes without a vector do
if Node is a parent node and an OR gate labelled with vector v then
Its children are labelled by v
else if Node is a parent node and an AND gate labelled with vector v then
Pad v with 0’s at the end to make it of length ¢ (if necessary)
Label one of its children with vector v|1
Label the other child with vector (0, ..,0)| — 1, the zero vector has length ¢
Increment ¢ by 1
end if
end while

Example access policy to LSSS matrix Assume the access policy is ‘A AND B
AND (C OR D)’. The access tree will look as shown in Figure 3.1(a). To transform
the access tree to a LSSS matrix, algorithm 1 is executed. First, a counter c is
initialized to 1, and the root node is labelled with vector (1). The left child of the
root node gets labelled with vector (1,1) and the right child of the root node with
(0, —1). The counter is incremented by 1, so ¢ = 2 now. The AND gate labelled with
vector (1,1) now labels its children with vector (1,1,1) and (0,0, —1) respectively.
The counter c is increased to 3. The OR gate labels both its children with vector
(0,—1). Now all nodes are labelled, and the labelled result can be seen in Figure
3.1(b).

AND)

AND / \
/ \ AND 1.1 OR @, -1
AND OR / \ / \
A/ \B C/ \D Aa1 Booy Cio,-1 Do, -1
(a) Access tree (b) Labelled nodes after LSSS conversion
algorithm

Figure 3.1: Conversion from access tree to LSSS matrix for access policy ‘A AND
B AND (C OR DY’

From the labelled access tree, a LSSS matrix can be created where each row is an
attribute (leaf) of the tree, so the first row is attribute A, the second row is attribute

B, etc.. If a vector is not of length c, it is appended with 0’s to make it of length c:

11 1
0 0 -1
0 -1 0
0 -1 0

16

3. Preliminaries

If this matrix is multiplied with a vector that has as first entry secret s and the
other entries have random values, it can be seen that indeed both attribute A, B

and either C' or D are needed to obtain s.

1 1 1 s+rl+1r2
0 0 -1 |Z|_| -2
0 -1 0] 72 - —r
0 -1 0 " —rl

This matrix multiplication gives A <— s+r14r2, B «+ —r2, C' <~ —rland D < —rl.
There are now several ways to check if a set of attributes satisfy the access policy. One
way is to check if you can recover the secret s based on the calculations above. Take
for example the set of attributes A, B, C then A+ B~+C gives s+rl+r2—r2—rl = s,
so this set of attributes satisfies the access policy. Another way is to use the way
written in section 3.4. Take for example the set of attributes: A, C'. The OR gate
gets a threshold ¢ = 1 and both AND gates gets a threshold ¢ = 2 since they both
have two children. Leaf nodes A and C' return 1, and both B and D return 0 since
they are not part of the attribute set. Now the OR gate returns 1, because one
of its children (C') returns 1 which equals the threshold. However, the left AND
gate returns 0 since only one child returns 1 where the threshold is 2. Hence, this

attribute set does not satisfy the access policy.

3.6 Bilinear Map

Let G and Gt be finite cyclic groups of prime order p, and let g be a generator
of group G. A bilinear map e : G X G — G, has the following two properties [1]:

e Bilinearity: e(aP,bQ) = e(P, Q)™ for all a,b € Z, and P,Q € G.

e Non-degeneracy: e(g,g) # 1, a bilinear mapping of generator g with itself,

gives that e(g, g) is a generator in Gr.

3.7 Attribute-based Encryption

Cipher-Policy Attribute-based Encryption The CP-ABE scheme consists of
four algorithms: [2]

e Setup: takes as input the implicit security parameter and outputs public pa-
rameters public key (PK) and master key (MK).

e Encrypt(PK, M, I'): takes as input the public parameters PK, message M,
and access policy I'. The algorithm encrypts M in such a way that the cipher-

17

3. Preliminaries

text (CT) can only be decrypted by users that possess the set of attributes
that satisfy the access policy.

e Key Generation(MK, S): takes as input MK and a set of attributes S that
describe the generated key. The output of the algorithm is a secret key (SK).

e Decrypt(PK, CT, SK): takes as input the public parameter PK, ciphertext
CT, and secret key SK for a set of attributes S. If the set S of attributes
satisfies the access policy I', the secret key SK can be used to successfully
decrypt ciphertext CT associated with access policy I'. The algorithm will

return the message M if the ciphertext is successfully decrypted.

The KP-ABE scheme contains the same four (Setup, Encrypt, Key Generation,
Decrypt) algorithms. However, where CP-ABE takes the access policy, KP-ABE
uses the set of attributes and where CP-ABE takes the set of attributes, KP-ABE
takes the access policy [15]. The dependency of the original ABE scheme [2] and
some of its variants [15], [16], [17], [18], [19], [20], |[21] on a centralized trusted entity
causes its implementation in scenarios with a huge number of participants to be less
efficient and suffer from security issues. If the central authority, for example, gets

compromised, the entire system cannot function properly anymore.

3.8 Decentralized Attribute-based Encryption

Lewko and Waters’ Decentralized Attribute-based Encryption system
Lewko and Water proposed a DABE system that is secure in the random oracle
model. The construction of their multi-authority CP-ABE scheme consists of the

following algorithms: [4]

e Globalsetup(A) — GP. It takes as input the security parameter A. A bilinear
group G of order N = pipsps, and generator g; of G, are created. A hash
function H : {0,1}* — G that maps global identities GID to elements of G is
published. The output is the global parameter GP that consists of NV and g;.

e AuthoritySetup(GP) — SK, PK. This algorithm is run by an AA. It takes as
input the global parameters GP. For each attribute ¢ belonging to the AA, the
AA chooses two random exponents «;, 5; € Zy. The algorithm outputs public
key PK = {e(gl,gl)ai,gl@iw} and the secret key SK {«;, §;Vi} is kept private
by the AA.

e Encrypt(M, (4, p), GP, {PK}) — CT. The algorithm takes as input message
M, an access matrix (A, p), the set of public keys for relevant authorities, and

GP. The algorithm creates two vectors v and w. The first entry of vector v is a

18

3. Preliminaries

random s € Zy and the first entry of w is 0, the other entries are random values
in Zy. A, denotes the share of s corresponding to row z, A, - v. w, denotes
A, - w. For each row = of A, it chooses a random r, € Zy. The output of the
algorithm is ciphertext CT = {Cy,Vz : Cy 4, Ca,, Cs.}, which is computed as
shown in equations 3.1, 3.2, 3.3, and 3.4.

Co = Me(g1,1)° (3.1)
Cia = e(g1,91) (g1, 1) @™ Va (3.2)
Coo =g, g Va (3.4)

KeyGen(GID, GP, i, SK) — K; grp. This algorithm is called by an attribute
authority to create a key for a user. It takes as input an identity GID, GP,
attribute ¢ belonging to an authority, and the authority’s secret key SK. It
creates and outputs a key K; grp for this attribute identity pair as shown in

equation 3.5.
Kicip = ¢ H(GID)" (3.5)

Decrypt(CT, GP, {K;qp} — M. The decryption algorithm takes as input
the ciphertext CT, GP, and a collection of keys corresponding to attribute,
identity pairs for one fixed GID. The decryptor computes H(GID) from the
random oracle. If the decryptor received the secret keys that are needed to
satisfy the access policy, he uses equation 3.6 to compute for each attribute x

that is part of the access policy. Otherwise, the decryption fails.
Cl,x : G(H(G]D), CS,x)/e(Kp(:L‘),G’IDa C2,$> = 6(917 gl)Ale(H(G]D)a gl)wx (36)

The decryptor chooses constants ¢, € Zy such that) ¢, A, = (1,0,..,0) and

computes (equation 3.7):
I (e(g1, 91)*e(H(GID), g1)**) = e(g1, 91)° (3.7)

The message can be obtained as:

M = Cy/e(g1,91)° (3.8)

Figure 3.2 contains an overview of DABE encryption and decryption.

The challenging part of the scheme is to be collusion-resistant. Lewko and Waters

[4] developed a technique for tying users’ key components together. w, is used which

is a share of 0 in the exponent with base e(H(GID), g;). This structure is used to

19

3. Preliminaries

unblind the secret value s only if a user has the correct set of attributes. Two users

with different GIDs, cannot collude to reconstruct the secret value s, since their w,’s

A A

;o; !‘@ E‘@

Aftribute Attribute

D t
KQ ﬁ ecryptor Authority 1 Authority 2
Attribute Attribute GID, attribute 1,
Encryptor : az, B g, s

e Authority 1 Authority 2 attribute 2 !

have a different base.

GID, 2 _
e(g, g)*t, g%
(g,9)°1, ¢’ ‘ Kigip = galH(GID)ﬁl
@ P
< =(9,0)™, Kagip = g™ H(GID)P
Encryption Decryption
(a) Encryption overview (b) Decryption overview

Figure 3.2: DABE overview

3.9 Lightweight Decentralized Attribute-based
Encryption

The proposed DABE scheme contains some heavy computations. Therefore, it
cannot be used on resource-constrained devices in the IoT environment. A solution is
to create a lightweight version of DABE. An example of a lightweight DABE model
is described below, namely Outsourced Decentralized Attribute-based Encryption
(ODABE).

Outsourced Decentralized Attribute-based Encryption (ODABE) The
ODABE scheme proposed by Kamel et al. [5] implements the same algorithms as
used in the DABE scheme [4]. In addition, a set P exists which contains the computa-
tional nodes that have high computation power. Moreover, the Encrypt () algorithm
changed compared to Lewko and Water’s scheme [4]. Before encrypting, the secret
parameter generation is executed. A user w chooses z;,v;,% € Z, for attribute i.
The attribute authority that contains attribute i, a; receives these values from the

users and sends the following back to the user:
;2

g, g%, "% e(g,9)", e(g, 9)

Encryption in the proposed ODABE scheme works as follows: [5]

20

3. Preliminaries

e User u randomly chooses s € Z, and generates vectors v = (s,...) and w =

(0,...)

e For every row i in M(I"), a random value r; € Z, is created and v, = M(I"); -y
and w; = M(I"); - w are computed.

e A computational node is chosen Fy € P and the user u sends:
[,Vi:v =~ —x; mod p,w; = w; —y; mod p,7; =r; — 2z mod p
e For every leaf 7 in I, the computational node Py computes &;; (Equation 3.9),

Eiz (Equation 3.10), &3 (Equation 3.11) and sends the result (Vi : {&;1, i, Ei3})

back to the user u.

En = e(g,9)e(g,g)™" (3.9)
Ei=g" (3.10)
iz = gPimig® (3.11)

e User u calculates the final ciphertext of message m using equations 3.12, 3.13,

3.14, and 3.15.
CO =m:- €(g7g>s

Cl,i = ile(gag)xie(gag)aizi Vi
CQ,i =Eng” Vi
O3 = gz‘sgyigﬁizi Vi

Figure 3.3 shows an overview of ODABE encryption.

21

3. Preliminaries

R iR

Encryptor Attribgte Attribqte Computational
Authority 1 Authority 2 node
GID ar, B aa, B
T1,Y1, 21 -
L2, Y2, 22
g¥1, g?-:L’!;,-,ﬂlz’-i.1

e(g,9)™, e(g, g)***

79 2
g¥%, g2, gP2,

e(g,9)™, e(g, g)***

. [
P:Vt PV W, T

Vi€, €, &

A

Encryption

Figure 3.3: ODABE Encryption overview

22

Chapter 4
Proposed Outsourced Decryption

This chapter contains the proposed Outsourced Decentralized Attribute-based
Encryption (ODABE) decryption scheme. Moreover, the proposed scheme will be

analysed.

4.1 Decryption DABE

The Decentralized Attribute-based Encryption (DABE) decryption scheme is not
optimized yet for the Internet of Things (IoT) environment. The scheme contains
some heavy computations. As can be seen in equation 3.6, a multiplication and
division with pairs must be done for every attribute x that a user needs for decryp-
tion. This is a relatively costly computation in terms of CPU and memory usage.
Moreover, as can be seen in equation 3.7, for every attribute x an exponentiation
has to be calculated. Lastly, the decryptor needs to divide Cy by e(g, g)°. Hence, the
heavy computations of the DABE scheme are the exponentiations, multiplications
and divisions for every attribute x that is part of the access policy and the set of at-
tributes a user possesses. Table 4.1 shows the number of exponentiations, divisions,

and multiplications in the target group.

4.1.1 Possible Improvements

In an ideal process, the decryptor only needs to compute Cy/e(g, 9)* (Equation
3.8) to obtain the message and all other computations are outsourced to a compu-
tational node. The computational node can have access to the public keys of the
attribute authorities (AAs), the ciphertext, and some other values the decryptor can
send to the computational node. However, the secret keys of the decryptor (K; qip)
should not be sent to the computational node directly. Moreover, if the computa-
tional node performs all computations except the division, then the computational

node can also obtain the message by also doing the division. Therefore, it is not

23

4. Proposed Outsourced Decryption

possible to let a computational node perform the computations of equation 3.6 and
3.7 with the same values as in the original decryption method. The decryptor can
send the computational node the secret key and hash of his Global Identifier (GID)
(¢**H(GID)P and H(GID)). However, these values cannot be sent like this to the
computational node. They need to be modified such that the original value cannot
be obtained.

To solve the problem of not being able to send the secret user key, this key
can be raised to a power p where p €r Z. Now the secret key can be sent to the
computational node since the computational node cannot recover the real secret
key. If only the secret key is raised to the power p and the computational node will
perform the same computations 3.6, the equation cannot be simplified. Therefore,
it is necessary to also raise H(GID) and C , for all attributes x, which are needed

to decrypt the ciphertext, to the power p.

4.2 Security Definition

Definition 2 (ODABE Correctness). The protocol is correct if Yu € U with at-
tributes T, that satisfy access policy I' during encryption by the ODABE_encrypt ()

algorithm, v can decrypt the ciphertext using the ODABE_decrypt(C, sk .y, Fo €
P,GP) algorithm in ODABE, and get the plaintext M, such that:

ODABE_decrypt(ODABE_encrypt(M,I',GP, Py € P), sk, Po € P,GP) =M

4.3 Proposed Decryption ODABE

As described in the paper written by Kamel et al. [5], the ODABE model consists
of three disjoint sets. The set of users is indicated with ¢/ and contains the users
that can encrypt and decrypt. The attribute authorities are part of set A. Lastly, set
P contains the nodes that have high computational power and can execute heavy
computations.

The proposed ODABE decryption scheme is written in Protocols 2 and 3 be-
low. Protocol 2 describes the parameter generation which needs to be done before
executing the outsourced decryption written in Protocol 3. It is assumed that the
computational node is semi-honest, which means the computational node follows
the protocol honestly but tries to learn from the messages it receives. The communi-
cation between the decryptor and the computational node is encrypted. Moreover,
the decryptor can only decrypt the ciphertext if the decryptor contains a set of
attributes A that satisfies the access policy I'.

24

4. Proposed Outsourced Decryption

Protocol 2 ODABE Secret decryption parameter generation
A user v € U randomly chooses a number p € Z,. p is sent to every attribute
authority a; € A and the attribute authorities sends the following back to user u (if
they already generated a secret key of attribute i for user u):

K?erp = g°H(GID)", H(GIDY’

)

Protocol 3 ODABE Decryption
The proposed outsourced decryption scheme works as follows:

e Step 1: The decryptor u € U has ciphertext C' = {Cy,Vi : Cy;,Cs,;,C5,},
H(GID)?, K] 4p, and creates a subset of attributes A such that Z'fl A; =
(1,0, ..., 0).

e Step 2: The decryptor computes Vj € A : Cf’j.

e Step 3: The decryptor chooses a computational node Fy € P and sends:

Vi e A Cﬁj,CQ,j, C3aj7K£GID’ H(GID)p

e Step 4: The computational node Py computes for each leaf j in A:

& =C1;-e(H(GID), C&j)/e(KﬁGID» Ca5) (4.1)

e Step 5: The computational node Fy computes the following and sends it back

to the decryptor:
|A]

e=1I¢& (4.2)

e Step 6: The decryptor computes the following to obtain the message M:

M = Co/(E') (4.3)

25

4. Proposed Outsourced Decryption

An overview of the proposed outsourcing decryption scheme can be seen in Figure

4.1.

R i

Decryptor Aﬁribgte Aﬂribgte Computational
Authority 1 Authority 2 node
GID ay, By s, fa
p .
p L.
K ip = ¢*PH(GID)??,
H(GID)*?
K?GID _ gaz‘pH(GID)‘Bz'p,
H(GID)"
A V5 ij, Cz,_f,ca,j,
K?_ ., H(GID)?
et () Pre-decryption
&
<
Decryption

Figure 4.1: ODABE Decryption overview

26

4. Proposed Outsourced Decryption

4.3.1 Analysis

In this subsection, it is shown that the proposed ODABE decryption scheme is
correct, and performs better than the DABE decryption scheme.

Correctness

Theorem 1. The proposed ODABE scheme with outsourced decryption is correct.

Proof. First, the computational node receives from the decryptor:
Vj e A Cf,j? 027]‘, 037]', KﬁGlD’ H(G]D)p

It computes, Vj € A, using equation 4.1:

Cf, - e(H(GID)?,Cs.)
e(Kj"),GIDv C2,j)
e(g, 9)7e(g, 9)*"Pe(H(GID), g% g*7)
e(g@PH(GID)BiP, gri)

e(g, g)ie(g, 9)*"iPe(H(GID), g)Pirirteir
= e(g,g9)mire(H(GID), g)ﬁj’r‘jp

e(g,g)iPe(H(GID), g)Pirirtwsp
- e(H(GID), g)bimir
e(g, 9)%e(H(GID), g)**

&

The computational node then computes the following using equation 4.2:
A
e=11¢&
J
A

- H e(g,9)"?e(H(GID), g)<*

= e(g,9)%: MPe(H(GID), g)=s “i*

[A] |A]
since Zyj = ZA]'U =v-(1,0,...,0) =s
j j
|A| |A]
and ij = ZAjw =w-(1,0,..,0) =0
j j
=e(g,9)"

27

4. Proposed Outsourced Decryption

Lastly, the decryptor finalizes the decryption by computing (equation 4.3):

Co Me(g, g)°

EVr— (e(g,g))e
_ Me(g,9)°

e(g,9)°
— M

The decryptor obtains message M successfully. As written in Definition 2, recovering

message M successfully implies that the ODABE scheme is correct. m

Collusion-resistance

The most challenging aspect of any Attribute-based Encryption (ABE) scheme
is to make it collusion-resistant. If two users both have a part of the attribute set
needed to decrypt the ciphertext, they cannot collude to decrypt the ciphertext
together.

Theorem 2. The proposed ODABE scheme with outsourced decryption is collusion-

resistant.

Proof. As written in the paper by Lewko and Waters [4], hash functions on the
GID of the users are used to manage collusion-resistance. It has not changed in
comparison to the DABE scheme. When users collude to try to decrypt a ciphertext,
the GID’s do not match. The share w is used to blind the real secret, as can be seen in
equation 3.7. When a user possesses a set of attributes that satisfy the access policy,
the last part of the equation with w will cancel out. If there are multiple GID’s, the
cancellation will not work since the w shares have different bases. Therefore, two
users who try to collude and are not able to decrypt the ciphertext by themselves.

Hence, they will not obtain the message. O]

Performance

Heavy computations In Table 4.1, the number of exponentiations, divisions,
and multiplications in the target group are shown for the ABE, DABE, and ODABE
decryption schemes. There are no computations in the source group in the decryption
algorithms, therefore the source group is left out. ¢ is the number of attributes that
are needed to decrypt the ciphertext, so set A from Protocol 3. z is the number of

nodes of an access tree T of the policy used to encrypt.

e ABE: In the paper by Bethencourt et al. [2|, the ABE decryption model is
described. For every node i of set A they perform a division. Moreover, it is

written that: “The decryption algorithm could require two pairings for every

28

4. Proposed Outsourced Decryption

leaf of the access tree that is matched by a private key attribute and (at most)
one exponentiation for each node along a path from such a leaf to the root.”
[2]. It performs at most one exponentiation for every node in the access tree
except the root. The last computation that needs to be performed to obtain

the message contains two divisions in the target group.

e DABE: As can be seen in equation 3.6, a multiplication and division in the
target group is executed for every attribute ¢ that is part of set A. Equation
3.7 shows a product of ¢ terms, so ¢+ — 1 multiplications, and every term has
two exponentiations to the power ¢;. Lastly, the division to obtain the message

is shown in equation 3.8.

e ODABEF: In step 2 of protocol 3, the decryptor computes Cf’i, so it includes ¢

exponentiations. The other steps are executed by a computational node, except

for the last step. In step 6, the decryptor performs another exponentiation

(£'/7) and a division.

As can be seen in Table 4.1, the proposed ODABE scheme is much more effi-
cient than the DABE decryption scheme because it contains fewer exponentiations,

divisions, and multiplications in the target group.

Exponentiations | Division in Multiplications
in target group | target group | in target group

ABE x—1 2+ 0
DABE 21 1+ 21 —1
ODABE | 1+ 1 0

Table 4.1: Number of heavy computations in decryption schemes, i = |A| and

z=T|

Execution time In order to be able to analyze the proposed ODABE decryp-
tion scheme, the proposed protocol has been implemented and validated in Python.
Kamel [44] already implemented the encryption ODABE scheme in Python. His
code is extended with the ODABE decryption scheme. Moreover, code was added
to also time the decryption schemes. On GitHub! the Python code can be found
(odabe.py).

To test the performance of the original DABE decryption scheme and the pro-
posed ODABE decryption scheme, executions with a certain access policy are exe-
cuted 5 times, and their mean value is registered in Table 4.2. The proposed decryp-

tion scheme has been validated in a setup including a Raspberry Pi zero w (1GHz

Thttps://github.com /jannekevano/MScThesisLightweight DABE

29

https://github.com/jannekevano/MScThesisLightweightDABE

4. Proposed Outsourced Decryption

single-core CPU with 512MB RAM) as the decryptor. Figure 4.2 shows an overview

of the test setup.
E E (__---__-_------.'
R Bl 5

Attribute '
authorities v
Decryptor
Outsourcing
>
Computational
node
Decryption

Figure 4.2: ODABE Decryption setup overview

Every time messages are sent in parallel, 20 ms delay is added as communication
time. Take for example the proposed decryption scheme in Figure 4.1. The decryptor
sends p in parallel to the two attribute authorities. The decryptor then receives
the key and hash of the GID raised to the power p back in parallel. Lastly, the
decryptor sends and receives a message to the computational node. In total, there
are four moments of communication and therefore, 4 - 20 = 80 ms is added as an
extra communication time.

Table 4.2 shows the execution times of the decryptor in DABE and ODABE
decryption based on the number of attributes in the access policy, assuming they are
coupled with AND operators. Figure 4.3 shows a graph of the decryption execution
times. As can be seen, the decryption time of the decryptor is way less in the
proposed ODABE scheme compared to the DABE scheme proposed by Lewko and
Waters [4]. Therefore, it can be concluded that the performance of the proposed
ODABE scheme has improved compared to the DABE decryption scheme.

Number of | DABE ODABE DABE & ODABE
attributes | Decryptor (s) | Decryptor (s) | Communication (s)
1 0,300267 0,126761 0,08
2 0,403176 0,152812 0,08
3 0,502324 0,185990 0,08
4 0,651917 0,182681 0,08
5 0,705068 0,194130 0,08

Table 4.2: Decryptor execution time of decryption schemes

30

4. Proposed Outsourced Decryption

Execution time (s)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

£ ODABE Decryptor execution time
[] ODABE Transmission time
—=— ODABE Decryptor total
—5— DABE Decryptor total
5 8 —~
2 3 4 5

Number of attributes

Figure 4.3: DABE and ODABE decryptor execution time

31

Chapter 5
Formal Verification

In this chapter, the formal verification of the Attribute-based Encryption (ABE),
Decentralized Attribute-based Encryption (DABE), and Outsourced Decentralized
Attribute-based Encryption (ODABE) models in TAMARIN are discussed.

TAMARIN is used to formally verify the ODABE protocol. To verify the ODABE
protocol, the ABE and DABE protocol are formally verified first. This helps to create
a model for the ODABE protocol; improvements can be made to the ABE model
to create the DABE model, and again to the DABE model to create the ODABE

model.

5.1 ABE Model in TAMARIN

The implementation of the ABE model in TAMARIN is based on the paper
written by Bethencourt, Sahai and Waters [2]. The ABE TAMARIN model can be
found on GitHub' (abe.spthy).

The built-ins used in the model are diffie-hellman for the exponentiation (g*

where g is a generator and x a value) and bilinear-pairing for the bilinear pairings
where functions em and pmult are used. |38]
When implementing the model in TAMARIN, it is assumed the access policy consists
of two attributes which are coupled via an OR operator. Hence, only one of the two
attributes is needed to decrypt the message. This assumption is used to simplify the
model. Some future research can be done to include other access policies as well.

The functions in the ABE TAMARIN model are:

e generator/0 is the generator that is used.

Thttps://github.com /jannekevano/MScThesisLightweight DABE

32

https://github.com/jannekevano/MScThesisLightweightDABE

5. Formal Verification

e encABE/3 is used for encryption and takes as input the public key of the
attribute authority (AA), an access policy consisting of two attributes, and a

message m. It outputs the ciphertext ciphertext (CT).

e decABE/2, the decryption algorithm, takes as input the ciphertext CT, and
a secret key belonging to one of the attributes in the access policy (skaABE).

The output is message m.

e skaABE/4 is used as secret key generation algorithm. It generates a secret key
for the combination of a user with Global Identifier (GID) and an attribute
att, assuming the user contains this attribute. skaABE takes as input the secret
key of the AA, the GID of a user, attribute att, and attribute authority AA.

The equation that is used in the ABE model is defined as follows:

decABE(encABE(pk, < att,attX >, m), skaABE(sk, gid, att, AA)) =m

This equation states that encryption can be done by taking the public key, two
attributes, and a message. Decryption takes the result of encryption together with
a secret key, which is created by taking the secret key of the AA, GID, attribute
att and AA. Decryption decABE returns the message m.

To model the protocol, several rules are implemented in TAMARIN:

e attribute_authority_setup is used to setup an authority. It creates a fresh
a and and generates the secret key secret key (SK) (g%, 5) and public
key (e(g,9)%, ¢°). This rule is only executed once, which is indicated by the
Once trace restriction. Two other actions that are included in the rule are
AA_Setup(AA) and SecretKey_AA(AA, SK). In the conclusion, the public key
of the AA is sent over a public channel and available to everyone. Additionally,
two states are stored, one stores the secret key together with the AA en-
tity (AA_SecretKey) and one the public key together with the AA entity
(AA_publicKey).

e reveal AA_key models the compromise of the secret key of the attribute au-
thority AA. The rule reads the secret key database entry and sends it on
the public channel such that it is also accessible for an adversary. The action
RevealAA(AA) states that the secret key of AA was compromised.

e user_create generates a fresh GID. A GID should be unique which is checked
by trace restriction Once. This rule stores the GID together with agent A in a
UserID state.

33

5. Formal Verification

e create_keys_users is a rule to create a secret key for a user for a specific
attribute. The AA is the one creating this key, so the AA_SecretKey state is
taken as input, together with the UserID state that contains the GID, and
a fresh attribute attr is created. The secret key for a user with GID and
attribute attr, assuming the user owns this attribute, is called keyGID and
the function skaABE is used to create this. The observable actions CreateKey
and SecretKey are included in the rule. Two states are stored, of which the first
one is UserKeyCombi which contains the GID, entity A, keyGID, and attribute
attr, the other state is AttributeAuthority that couples the attribute attr
to authority AA.

e create_AP is used to create an access policy based on two attributes. As stated
before, in the ABE TAMARIN model it is assumed that the access policy con-
sists of two attributes coupled via an OR operator. This rule consumes as input
two AttributeAuthorities states containing attributes attrl and attr2. An
access policy is created by concatenating these two attributes. An access pol-
icy can only be created once (checked by using the Once trace restriction)
and action fact Create_AP is included. The rule stores a state APState which

contains the attributes attrl, attr2, and the access policy.

e sender_encrypt is the rule where the encryptor creates the ciphertext and
sends it on a public channel. It takes the APState and AA_publicKey states
and creates a fresh message m. The ciphertext CT is created using the encABE
function. Two actions facts are performed, namely Encrypt(AA, m) and

Secret_m(m). The ciphertext CT is sent on a public channel.

e receiver_decrypt is the rule where the receiver decrypts the ciphertext, as-
suming he has the right attribute. As input, it takes the ciphertext which is
sent on a public channel and the UserKeyCombi state for the attribute that
is part of the access policy. It reconstructs the message by using the decABE
function, which takes the ciphertext and keyGID as input. Only one keyGID is
needed since the access policy contains an OR operator. An action fact checks
if the message that is the result of decryption equals the message that was en-
crypted, using the Equality trace restriction. Additionally, Decrypt(message)

is an action used later in the security properties.

The two trace restrictions that are added to the model are Once, and Equality. Their
names already explain what they do. Once(z) makes sure the entry z is unique and

only created once. Equality(z,y) checks that two entries x and y are equal.

34

5. Formal Verification

Security Properties In the ABE TAMARIN model, the confidentiality of the
message m and the keys is proven. Therefore, several security properties (lemmas)
are added to the TAMARIN model:

e executable and executable_without_decrypt are sanity checks to see if the

protocol is able to be executed entirely.

e secret_message states that for all messages if the message is encrypted then
the adversary cannot learn message m at any point in time. This lemma proves

the confidentiality of the message.

e secret_user_key proves that an adversary cannot learn the secret keys of the

user.

e secret_AA_key states that an adversary cannot learn the secret key of an
attribute authority AA unless the adversary performed a long-term secret key

reveal on this key.

Using the interactive mode in TAMARIN, it can be seen that all security properties

are successfully verified. Appendix A elaborates more on the security properties.

5.2 DABE Model in TAMARIN

The implementation of the DABE model in TAMARIN is based on the paper
written by Lewko and Waters [4]. The DABE TAMARIN model can be found on
GitHub? (dabe.spthy).

The DABE model in TAMARIN is an extension of the ABE model.

First of all, the functions are called gen/0, dabeEnc/3, dabeDec/2, and skaDABE/4.
These functions are the same as the functions in the ABE model. The equation looks
different since in the DABE TAMARIN model it is assumed that the attributes are
coupled via an AND operator, so both attributes of the access policy are needed
to decrypt a ciphertext. Again, this assumption is used to simplify the model and
future research can be performed to include other access policies as well.

There is not one single attribute authority which results in needing multiple public

keys for encryption. Hence, the equation looks as follows:
dabeDec(dabeEnc(m, < att, att2 >, < pkl, pk2 >),

< skaDABE(skl1, gid, attl, AA1), skaDABE(sk2, gid, att2, AA2) >) =m

2https://github.com /jannekevano/MScThesisLightweight DABE

35

https://github.com/jannekevano/MScThesisLightweightDABE

5. Formal Verification

dabeDec takes the result of the encryption algorithm dabeEnc and a concatenation
of two secret keys belonging to the attributes and user. The encryption algorithm
dabeEnc needs a message m, two attributes and two public keys since it is assumed
the attributes belong to two different attribute authorities. The concatenation of
secret keys consists of two skaDABE functions which take the secret key of an attribute
authority AA, the GID of the user, the attribute belonging to the AA, and the AA
entity itself. dabeDec returns the message m.

The rules are mostly the same. However, there are multiple attribute authorities
which slightly change some of the rules. The following rules are part of the DABE

model:

e authority_setup this rule is similar to the attribute_authority_setup in
ABE. However, there can be multiple attribute authorities now. A fresh «a
and 3 are created, such as the public key public key (PK) (e(g, 9)%, ¢°) and
the secret key SK («, 3). Since there can be multiple attribute authorities,
the trace restrictions Once(«) and Once(f) are added to make sure that two
attribute authorities cannot have the same secret key. The other actions that
are included in the rule are AA_Setup(AA), Public_key_AA(AA, PK) and
SecretKey_AA_key(AA, SK). The public key of the AA is sent over a public
channel and available to everyone. Additionally, three states are stored, one
stores the secret key together with the AA entity (AA_SecretKey), one the
public key together with the AA entity (AA_publicKey), and the last one
both the public and secret key together with the AA entity (AA_keys).

e reveal AA_key is not changed compared to the ABE TAMARIN model. This

rule models the compromise of the secret key of an attribute authority AA.

e user_create has slightly changed. The only difference is that an extra action

is added which will be used when defining the security properties (UserGID).

e create_keys_users is a rule to create a secret key for a user for a specific
attribute. The rule is similar to this rule in the ABE model. AA_keys, both
public and secret key, is taken as input in comparison to only the secret key
in the ABE model. KeyGID is created with the skaDABE function. The ob-
servable actions CreateKey, UserGID, AttrAA and Secret_key are included
in the rule. Moreover, trace restriction Once makes sure the attribute is only
used once, and the keyGID is only created once. Same as in the ABE model,
two states are stored: UserKeyCombi and AttributeAuthority. However,
AttributeAuthority also contains the public key of the attribute authority
AA.

36

5. Formal Verification

e create_AP works the same as in the ABE model. The only differences are
the action facts. Three extra trace restrictions are checked in the actions.
First, Once to make sure an access policy is only created once. Additionally,
Attribute is added to check the attributes are indeed part of the access policy.
And lastly Inequality makes sure the attributes of the access policy are not

the same attributes.

e encryptor is the rule where the encryptor creates the ciphertext and sends
it on a public channel. It takes the APState, AttributeAuthority and
AA_publicKey states and creates a fresh message m. The ciphertext CT
is created using the dabeEnc function. Several action facts are performed:
Encrypt, Secret_m, EncryptAtt, OutCT and EncryptCheck. The trace re-
striction Inequality is used to check the attributes are not the same. In the

conclusion, the ciphertext CT is sent on a public channel.

e receiver is the rule where the receiver decrypts the ciphertext, assuming
he has the right attributes. As input it takes the ciphertext which is sent
on a public channel and the UserKeyCombi states for the attributes that are
part of the access policy. It reconstructs the message by using the dabeDec
function, that takes the ciphertext and keyGIDs as input. An action fact checks
if the message that is the result of decryption equals the message that was
encrypted, using the Equality trace restriction. Moreover, it is checked with
the Attribute trace restrictions if the attributes are actually part of the access
policy used to encrypt the message. Additionally, Decrypt, DecryptAttUser,

InCT, and UserGID are actions used later in the security properties.

As can be seen in the rules, in addition to the Equality and Once trace restrictions
(from the ABE TAMARIN model), the DABE model also has an Inequality and
Attribute trace restriction. The Inequality(z,y) restriction states that z is not
equal to y. The Attribute(z,y, ap) restriction makes sure that the access policy ap

equals < x,y > or < y,x >, so it ensures the attributes are part of the access policy.

Security Properties The paper written by Lewko and Waters [4] includes some
security properties the DABE model should satisfy. Based on this, the following
security properties are checked in the DABE TAMARIN model:

e cxecutable, there are several executable lemmas in the model to check that

the entire protocol is executable.

e secret_message checks if the message that is encrypted is kept secret to the

adversary.

37

5. Formal Verification

e collusion_resistant states that users cannot collude to decrypt a cipher-
text. If two users each have one attribute of the access policy, they cannot
combine their keys to decrypt the ciphertext. Hence, neither of the two users
can decrypt the ciphertext if they only have one of the two attributes of the

access policy.

e only_decrypt_with_right_attributes checks that a user can only decrypt

the ciphertext if it has the attributes according to the access policy.

e secret_user_key proves that an adversary cannot learn any of the secret keys

of the user.

e secret_AA_key states that an adversary cannot learn the secret key of an
attribute authority AA unless the adversary performed a long-term secret key

reveal on this key.

e not_two_AA_same_attribute proves that an attribute is only associated with
one attribute authority AA.

e sameCT states that the ciphertext that is decrypted in the protocol is also

created before.
e gid_hiding states that an adversary does not know the GID of a user.

e check_correct_AAs_encrypt checks if the attribute authorities that are used
for encryption are the correct ones, in other words, the public keys and at-
tributes belong to the AAs.

All security properties are successfully verified in the TAMARIN interactive mode.

Appendix A elaborates more on the security properties.

5.3 ODABE Model in TAMARIN

The implementation of the ODABE model in TAMARIN is based on the paper
written by Kamel, Ligeti and Reich [5]. The ODABE TAMARIN model can be found
on GitHub? (odabe.spthy).

The ODABE model in TAMARIN is based on the DABE model described above.
The differences have to do with outsourcing.
The functions used are gen/0 for the generator, odabeEnc/4 for encryption,

odabeDec/2 for decryption, skaODABE/4 for secret key generation for the user, and

3https://github.com /jannekevano/MScThesisLightweight DABE

38

https://github.com/jannekevano/MScThesisLightweightDABE

5. Formal Verification

compNode/7 used for the computation of the computational node. The equation now

looks as follows:
odabeDec(odabeEnc(m, < att, att2 >, < varGenl,varGen2 >,

compNode(z, y, z, nodel D, gid Enc, pubk1, pubk2)),
< skaODABE(skl, gid, attl, AA1), skaODABE(sk2, gid, att2, AA2) >)

m

The encryption algorithm odabeEnc takes a message m, two attributes, two sets
of generated variables needed for encryption, and compNode which performs the
computations of the computational node. compNode takes x,vy, z, the nodel D, the
GID of the encryptor, and the public keys of the attribute authorities that possess
the attributes of the access policy. The decryption algorithm odabeDec takes the
output of the encryption algorithm (ciphertext CT) and a concatenation of two
secret keys which are generated with the skaODABE function. It returns the message
m.

The following rules are the same as in the DABE TAMARIN model:
authority_setup, reveal AA_key, create_keys_users, create_AP and
receiver. The other rules in the ODABE TAMARIN model either differ slightly
from the rules in the DABE model or are completely new rules to cover the

computational node:

e user_create still generates a fresh GID for a user. However, it now also gener-
ates values x, y and z. These values should be kept secret which will be checked
in the security properties with action fact SecretVar. Besides the UserID state
also a Vars state is stored which will be used to send the values z,y, z and the
GID to an attribute authority AA.

e authority_varGen receives the values x,y, z and generates variables to send
back to the user. It takes as input the Vars state which contains the variables
x,y,z and the GID of a user, and the AA_keys state which takes the public
and secret key of an attribute authority AA. The variables that are generated
(varGen) are: (¢¥, g%, ¢°%, e(g,)%, e(g, g)**). The action facts used to check se-
curity properties are AA_Setup_var(AA) and SecretVar (varGen). The state
that is stored is UserValues which contains the varGen, GID, AA, and the
public key of the AA.

e comp_node_create is used to create a computational node. A random fresh
nodel D is generated. This rule can only be executed once, since there is one
computational node, and this is restricted with the Once trace restriction. The
state CPNode is stored that contains the nodel D.

39

5. Formal Verification

e encrypt_prepare is the preparation phase of the encryption. The z,y, z vari-
ables are sent by the encryptor to the computational node. As input the states
Vars and CPNode are taken. The action fact StartEncrypt is used to define
security properties. The state that is stored is CP_Encrypt which contains
x,y, z, the nodel D, GID, and two attribute authorities AA1 and AA2. These
attribute authorities should contain the attributes that are part of the access

policy the user wants to use.

e comp_node_encrypt performs the pre-encryption that is done by the compu-
tational node. The input that is taken are the CP_Encrypt and two AA_pubkey
states for the attribute authorities that are also part of the CP_Encrypt state.
preComp is the result of the function compNode, which contains x, y, z, nodel D,
GID, and the public keys of the attribute authorities, pk1 and pk2. The ac-
tion facts used here are CPPreEncrypt and SecretVar. In the conclusion,

PreEncrypt is the state that contains preComp, nodel D, GID, AA1, and AA2.

e encryptor differs from the DABE TAMARIN model in a way that it takes
more states as input. The extra input states are PreEncrypt, UserID and
UserValues twice for each attribute authority. The function used to create

the ciphertext is odabeEnc.

The decryption in this ODABE model does not use outsourcing. Therefore, the
decryption works the same as the decryption in the DABE model.

The same trace restrictions are used as in the DABE model.

Security Properties The security properties in the ODABE TAMARIN model
are the same as the security properties in the DABE model. They are based on
the papers written by Lewko and Waters [4] and Kamel et al. [5]. Three security

properties are added:

e encrypt_cpnode checks that the user that sends values to the computational
node is also the user that encrypts the message after receiving values back

from the computational node.

e secret_variable proves that the x,y, z variables and the variables that are

generated by the computational node are not known to the attacker.

e authority_setup_correct checks that the setup phase of public and secret
key for an attribute authority is performed successfully before the setup of the

other values occurs.

The security properties are successfully verified, which can be seen in the TAMARIN

interactive mode. Appendix A elaborates more on the security properties.

40

5. Formal Verification

5.4 ODABE Decryption in TAMARIN

The implementation of the ODABE decryption model is based on the ODABE
decryption scheme proposed in Chapter 4. The TAMARIN ODABE decryption
TAMARIN model can be found on GitHub? (odabe_dec.spthy).

The ODABE TAMARIN model described above is extended with the decryption
scheme. Therefore, besides the decryption everything else stays the same compared
to the ODABE TAMARIN model above.

Two functions are added, which are the compNodeDec/3 and raisedTo/2 functions.
compNodeDec is used by the computational node to perform the pre-decrypt com-
putations. It takes two secret keys raised to the power p and the hash of the GID
raised to the power p. raisedTo is a function that takes two parameters and raises
the first parameter to the second parameter. This function is added because it has to
be used in the equation, and the built-in for the hat-symbol " from diffie-hellman

cannot be used in the equation. The equation now looks as follows:
odabeDec(odabeEnc(m, < att, att2 >, < varGenl,varGen2 >,

compNode(zx,y, z,nodel D, gidEnc, pubk1, pubk2)),
compNodeDec(raisedTo(skaODABE(sk1, gid, attl, AAL), p),

raisedTo(skaODABE(sk2, gid, att2, AA2),p), raisedTo(h(gid),p))) = m

The equation works the same as the ODABE equation above. The difference is that
odabeDec takes compNodeDec as input instead of a concatenation of the secret keys.
compNodeDec contains the secret keys (skaODABE) but they are raisedTo the power
p, it also includes the hash of the GID raisedTo the power p.

The extra rules added for outsourcing the decryption are:

e decrypt_prepare is the preparation phase of the decryption. The secret keys
of the user of the attributes needed to decrypt are raised to the power p,
which is a fresh value, and also the hash of the GID is raised to the power p.
As input the ciphertext, APState, UserKeyCombis, and CPNode are taken. The
action fact startDecrypt is used to define the security properties. Moreover,
action fact SecretVar will be used to check that p stays secret. The conclusion
contains two states. First of all, CP_Decrypt which contains the ciphertext,
nodel D, GID, the secret keys raised to the power p, and the hash of the
GID raised to the power p. The other state that is stored is DecryptorPrep
that contains the ciphertext, the attributes, GID, user entity, two attribute

4https://github.com /jannekevano/MScThesisLightweight DABE

41

https://github.com/jannekevano/MScThesisLightweightDABE

5. Formal Verification

authorities AA1 and AA2, and the access policy. This state is stored to make

sure the decryptor rule has the correct inputs.

e comp_node_decrypt performs the pre-decryption that is done by the compu-
tational node. The input that is taken is the CP_Decrypt state. preCompDec is
the result of the function compNodeDec, which contains the secret keys raised
to the power p and the hash of the GID raised to the power p. The action facts
used here are CPPreDecrypt and SecretVar. In the conclusion, PreDecrypt
is the state that contains preCompDec, the nodelD and the GID.

e decryptor is the final step of the outsourced decryption. It differs from de-
cryption in the previous ODABE TAMARIN model in a way that it takes
CPPreDecrypt and DecryptorPrep as inputs. The rest stays the same.

The same trace restrictions are used compared to the ODABE TAMARIN model with
DABE decryption.

Security Properties The security properties in this ODABE TAMARIN model
are the same as in the ODABE model above. One property changed slightly, which
is the executable property. The decryption performed by the computational node
is added here: StartDecrypt and CPPreDecrypt.

Moreover, an extra security property is added, decrypt_cpnode, that checks
if the user that sends the values to the computational node is also the user that
decrypts the message eventually.

Again, all security properties are successfully verified and Appendix A elaborates

more on them.

Appendix B shows a list of the facts, action facts and trace restrictions used in

the TAMARIN models with a short description.

42

Chapter 6
Conclusion

This chapter summarizes the achieved results achieved in this thesis.
Additionally, the conclusion is stated and the open problems for future research

directions are discussed.

6.1 Summary of the Thesis

The goals of this thesis are the formal verification of Outsourced Decentralized
Attribute-based Encryption (ODABE), and designing and formally verifying an out-
sourcing decryption scheme. These are the goals since ODABE has not been formally
verified before and an outsourcing (to a single node) decryption scheme does not yet
exist.

Utilizing TAMARIN helped to achieve these goals. ODABE has been for-
mally verified in TAMARIN, together with Attribute-based Encryption (ABE) and
Decentralized Attribute-based Encryption (DABE). Based on the existing ODABE
encryption scheme [5], an outsourcing decryption scheme was proposed. The ODABE
decryption scheme was checked on correctness before utilizing TAMARIN to formally
verify the scheme. Additionally, the performance of the ODABE decryption scheme
was tested in the Internet of Things (IoT) environment.

As part of this thesis, the analysis of outsourced encryption in DABE has been
accepted in the 19th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2023) to be presented in Polytechnique

Montreal in Canada. Furthermore, other achieved results aimed to be published.

6.2 Conclusion

To conclude the research described and performed in this thesis, the research

questions are answered.

43

6. Conclusion

How can the security of the existing ODABE approach be formally verified?

The ODABE scheme has been formally verified by using the formal verification tool
TAMARIN. The implementation of the model first required implementing the ABE
and DABE models in TAMARIN. The models are created by studying the schemes
in detail and interpreting them in TAMARIN. Based on the papers on these schemes,
the security properties were defined that the model should satisfy. Examples of
security properties that the ODABE scheme satisfies are collusion-resistance, the
secrecy of the keys, and the secrecy of the message. The ODABE TAMARIN model
satisfies all security properties that are tested in the model. Hence, it can be
concluded that the ODABE model was formally verified against these security

properties.

What are the heavy computation components of the decryption algorithm in
DABE?

After analyzing the DABE scheme proposed by Lewko and Waters [4], the
number of exponentiations, divisions, and multiplications of pairs are the heavy
computations in the decryption algorithm. Table 4.1 shows that in the decryption
algorithm of DABE 2i exponentiations, 1 + 4 divisions, and 2¢ — 1 multiplications
are executed, where ¢ is the number of attributes needed to decrypt. These numbers

of exponentiations, divisions, and multiplications can be improved.

How can the outsourcing approach in ODABE be implemented in the decryp-
tion algorithm of DABE?
The approach that can be used to create an outsourcing decryption algorithm can
be generally described as follows; first, the decryptor chooses a random number
p which he sends to the attribute authorities to receive some variables back. The
decryptor will send these variables to the computational node. The computational
node performs the pre-decryption and sends the result back to the decryptor.
Lastly, the decryptor finalizes the decryption to obtain the message. A detailed
description is given in Chapter 4.

In general, the computational node is used to perform the heavy computations of
the DABE decryption scheme. This results in a more efficient decryption algorithm.
The number of exponentiations, divisions, and multiplications performed by the

decryptor decreased significantly.

How can the security of the proposed lightweight decryption in DABE be for-
mally verified?
Again, TAMARIN was used for formal verification. Using the ODABE TAMARIN

44

6. Conclusion

model created before, the decryption scheme is implemented. The security proper-
ties of this model are almost the same as in the ODABE TAMARIN model, some
properties on the outsourcing decryption are added. The TAMARIN model satisfies
all security properties that are tested. Hence, it can be concluded that the ODABE

decryption model was formally verified against these security properties.

6.3 Future Research Directions

There are multiple ways in which the work presented in this thesis can be ex-
tended.

Semi-honest setup to malicious assumption The computational node in the
outsourcing decryption scheme is assumed to be semi-honest. Semi-honest means
that the node follows the protocol as specified but tries to learn from the messages
it receives. Instead, it can be assumed that the computational node is malicious. A
malicious node would, depending on the attack model, be able to change, withhold
or replay messages back to the decryptor. In this case, the proposed scheme should

be improved to make sure it is secure against this malicious node.

Possible errors during communication In the proposed outsourcing decryp-
tion scheme, it is assumed there are no errors in the communication between the
decryptor/computational node or decryptor/attribute authority. It can, of course,
happen in real life that communication is intercepted or communication errors oc-
cur etc. An extension would thus be to check and prevent the possible errors during
communication. This ties in with the option to research malicious computational

nodes.

Access policies in TAMARIN models As written in the formal verification chap-
ter (Chapter 5), to simplify the implementation of the ABE, DABE, and ODABE
schemes in TAMARIN it is assumed the access policy consists of two attributes. In
the ABE scheme, it is assumed the attributes are coupled via an OR operator. In
both the DABE and ODABE schemes, the assumption is made that the attributes
are coupled via an AND operator. As an extension more access policies could be
added or it could be changed such that the access policy is not fixed anymore and

more extensive policies can be tested as well.

45

Bibliography

1]

2|

3]

4]

[5]

(6]

Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption”. In:
Advances in Cryptology — EUROCRYPT 2005. EUROCRYPT 2005. Lecture
Notes in Computer Science. Ed. by R. Cramer. Vol. 3494. Berlin, Heidelberg:
Springer, 2005, pp. 457-473. URL: https://doi.org/10.1007/11426639_27.

John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-Policy
Attribute-Based Encryption”. In: 2007 IEEE Symposium on Security and
Privacy (SP °07). Berkeley, France, 2007, pp. 321-334. DOI: 10.1109/SP.
2007.11.

Q. M. Malluhi et al. “Decentralized ciphertext-policy attribute-based encryp-
tion schemes for lightweight devices”. In: Computer Communications 145
(Sept. 2019), pp. 113-125. 1SSN: 1873703X. DOI: 10.1016/j . comcom.2019.
06.008.

Allison Lewko and Brent Waters. “Decentralizing Attribute-Based
Encryption”. In: Advances in Cryptology - FEUROCRYPT 2011.
EUROCRYPT 2011. Lecture Notes in Computer Science. Ed. by K.G.
Paterson. Vol. 6632. Berlin, Heidelberg: Springer, 2011, pp. 568-588. ISBN:
978-3-642-20465-4. URL: https://doi.org/10.1007/978-3-642-20465-
4_31.

Mohammed B.M. Kamel, Peter Ligeti, and Christoph Reich. “Poster: ODABE:
Outsourced Decentralized CP-ABE in Internet of Things”. In: Applied
Cryptography and Network Security Workshops. ACNS 2022. Lecture Notes
in Computer Science. Vol. 13285. Springer, 2022. URL: https://doi.org/10.
1007/978-3-031-16815-4_35.

Manuel Barbosa et al. “SoK: Computer-aided cryptography”. In: Proceedings
- IEEE Symposium on Security and Privacy. Vol. 2021-May. Institute of
Electrical and Electronics Engineers Inc., May 2021, pp. 777-795. ISBN:
9781728189345. DOI: 10.1109/SP40001.2021.00008.

46

https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1016/j.comcom.2019.06.008
https://doi.org/10.1016/j.comcom.2019.06.008
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-031-16815-4_35
https://doi.org/10.1007/978-3-031-16815-4_35
https://doi.org/10.1109/SP40001.2021.00008

BIBLIOGRAPHY

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Bruno Blanchet and Vincent Cheval. ProVerif: Cryptographic protocol verifier
in the formal model. URL: https://bblanche . gitlabpages . inria. fr/

proverif/.

Cas Cremers et al. “A comprehensive symbolic analysis of TLS 1.3". In:
Proceedings of the ACM Conference on Computer and Communications
Security. Association for Computing Machinery, Oct. 2017, pp. 1773-1788.
ISBN: 9781450349468. DOI: 10.1145/3133956.3134063.

David Basin, Lucca Hirschi, and Ralf Sasse. “Symbolic Analysis of Identity-
Based Protocols”. In: Foundations of Security, Protocols, and FEquational
Reasoning. Ed. by J.D. Guttman et al. Vol. 11565. Springer, 2019, pp. 112-134.
DOI: 10.1007/978-3-030-19052-1. URL: https://doi.org/10.1007/978-
3-030-19052-1_9.

David Basin, Ralf Sasse, and Jorge Toro-Pozo. “The EMV standard: Break,
fix, verify”. In: Proceedings - IEEE Symposium on Security and Privacy.
Vol. 2021-May. Institute of Electrical and Electronics Engineers Inc., May
2021, pp. 1766—1781. 1SBN: 9781728189345. DOI: 10.1109/SP40001 . 2021 .
00037.

David Basin et al. “A formal analysis of 5g authentication”. In: Proceedings of
the ACM Conference on Computer and Communications Security. Association
for Computing Machinery, Oct. 2018, pp. 1383-1396. 1SBN: 9781450356930.
DOI: 10.1145/3243734.3243846.

Baasansuren Bat-Erdene et al. “Security Verification of Key Exchange in
Ciphertext-Policy Attribute Based Encryption”. In: 2022 7th International
Conference on Signal and Image Processing, ICSIP 2022. Institute of Electrical
and Electronics Engineers Inc., 2022, pp. 377-381. ISBN: 9781665495639. DOI:
10.1109/ICSIP55141.2022.9887218.

Narjes Ben Rajeb et al. Formal Analyze of a Private Access Control
Protocol to a Cloud Storage. Tech. rep. 2017, pp. 495-500. DOI: 10.5220/
0006461604950500.

Nigel P. Smart et al. Study on cryptographic protocols. Tech. rep. European
Union Agency for Network and Information Security, 2014. DOI: 10.2824/
3739.

Vipul Goyal et al. “Attribute-Based Encryption for Fine-Grained Access
Control of Encrypted Data”. In: CCS ’06: Proceedings of the 13th ACM con-
ference on Computer and communications security. 2006, pp. 89-98. DOIL:
10.1145/1180405.1180418. URL: https://doi.org/10.1145/1180405.
1180418.

47

https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/proverif/
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1007/978-3-030-19052-1
https://doi.org/10.1007/978-3-030-19052-1_9
https://doi.org/10.1007/978-3-030-19052-1_9
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/ICSIP55141.2022.9887218
https://doi.org/10.5220/0006461604950500
https://doi.org/10.5220/0006461604950500
https://doi.org/10.2824/3739
https://doi.org/10.2824/3739
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

21

[22]

23]

Nouha Oualha and Kim Thuat Nguyen. “Lightweight attribute-based encryp-
tion for the internet of things”. In: 2016 25th International Conference on
Computer Communications and Networks, ICCCN 2016. Institute of Electrical
and Electronics Engineers Inc., Sept. 2016. 1SBN: 9781509022793. DOI: 10.
1109/ICCCN.2016.7568538.

Xuanxia Yao, Zhi Chen, and Ye Tian. “A lightweight attribute-based encryp-
tion scheme for the Internet of Things”. In: Future Generation Computer
Systems 49 (Aug. 2015), pp. 104-112. 1sSN: 0167739X. DOIL: 10. 1016/ j .
future.2014.10.010.

Lyes Touati, Yacine Challal, and Abdelmadjid Bouabdallah. “C-CP-ABE:
Cooperative ciphertext policy attribute-based encryption for the internet
of things”. In: Proceedings - 2014 International Conference on Advanced
Networking Distributed Systems and Applications, INDS 2014. Institute
of Electrical and Electronics Engineers Inc., Nov. 2014, pp. 64-69. ISBN:
9781479951789. DOI: 10.1109/INDS.2014.19.

Syh Yuan Tan, Kin Woon Yeow, and Seong Oun Hwang. “Enhancement of a
Lightweight Attribute-Based Encryption Scheme for the Internet of Things”.
In: IEEE Internet of Things Journal 6.4 (Aug. 2019), pp. 6384-6395. ISSN:
2327-4662. DOI: 10.1109/JI0T.2019.2900631.

Kim Thuat Nguyen, Nouha Oualha, and Maryline Laurent. “Securely out-
sourcing the ciphertext-policy attribute-based encryption”. In: World Wide
Web 21.1 (Jan. 2018), pp. 169-183. 1SSN: 1386145X. DOI: 10.1007/s11280-
017-0473-x.

Hui Tian et al. “A Lightweight Attribute-Based Access Control Scheme for
Intelligent Transportation System with Full Privacy Protection”. In: IEEE
Sensors Journal 21.14 (July 2021), pp. 15793-15806. 1SSN: 15581748. DOI:
10.1109/JSEN.2020.3030688.

Melissa Chase. “Multi-authority Attribute Based Encryption”. In: Theory of
Cryptography. TCC 2007. Lecture Notes in Computer Science. Ed. by S.P.
Vadhan. Vol. 4392. Berlin, Heidelberg: Springer, pp. 515-534. URL: https:
//doi.org/10.1007/978-3-540-70936-7_28.

Sascha Miiller, Stefan Katzenbeisser, and Claudia Eckert. “Distributed
Attribute-Based Encryption”. In: Information Security and Cryptology —
ICISC 2008. ICISC 2008. Lecture Notes in Computer Science. Ed. by P.J.
Lee and J.H. Cheon. Vol. 5461. Berlin, Heidelberg: Springer, 2009, pp. 20-36.
URL: https://doi.org/10.1007/978-3-642-00730-9_2.

48

https://doi.org/10.1109/ICCCN.2016.7568538
https://doi.org/10.1109/ICCCN.2016.7568538
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1109/INDS.2014.19
https://doi.org/10.1109/JIOT.2019.2900631
https://doi.org/10.1007/s11280-017-0473-x
https://doi.org/10.1007/s11280-017-0473-x
https://doi.org/10.1109/JSEN.2020.3030688
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-642-00730-9_2

BIBLIOGRAPHY

[24]

[25]

[26]

27]

28]

29]

[30]

Huang Lin et al. “Secure Threshold Multi Authority Attribute Based
Encryption without a Central Authority”. In: Progress in Cryptology -
INDOCRYPT 2008. INDOCRYPT 2008. Lecture Notes in Computer Science.
Ed. by D.R. Chowdhury, V. Rijmen, and A. Das. Vol. 5365. Berlin, Heidelberg:
Springer, 2008, pp. 426-436. ISBN: 978-3-540-89754-5. URL: https://doi.
org/10.1007/978-3-540-89754-5_33.

Melissa Chase and Sherman S.M. Chow. “Improving Privacy and Security in
Multi-Authority Attribute-Based Encryption”. In: CCS °09: Proceedings of the
16th ACM conference on Computer and communications security. Association
for Computing Machinery, 2009, pp. 121-130. ISBN: 9781605583525. URL:
https://doi.org/10.1145/1653662.1653678.

Zhen Liu et al. “Fully Secure Multi-authority Ciphertext-Policy Attribute-
Based Encryption without Random Oracles”. In: Computer Security -
ESORICS 2011. Lecture Notes in Computer Science. Ed. by Vijay Atluri
and Claudia Diaz. Vol. 6879. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 278-297. 1SBN: 978-3-642-
23821-5. URL: https://doi.org/10.1007/978-3-642-23822-2_16.

Jiameng Sun, Jing Qin, and Jixin Ma. “Securely Outsourcing Decentralized
Multi-authority Attribute Based Signature”. In: Cyberspace Safety and
Security. CSS 2017. Lecture Notes in Computer Science(). Ed. by Sheng Wen,
Wei Wu, and Aniello Castiglione. Vol. 10581. Springer, 2017, pp. 86—102. ISBN:
978-3-319-69470-2. URL: https://doi.org/10.1007/978-3-319-69471-9_7.

Sherman S.M. Chow. “A framework of multi-Authority attribute-based en-
cryption with outsourcing and revocation”. In: Proceedings of ACM Symposium
on Access Control Models and Technologies, SACMAT. Vol. 06-08-June-
2016. Association for Computing Machinery, June 2016, pp. 215-226. ISBN:
9781450338028. DOI: 10.1145/2914642.2914659.

Shanshan Tu et al. “A revocable and outsourced multi-authority attribute-
based encryption scheme in fog computing”. In: Computer Networks 195 (Aug.
2021). 1SSN: 1389-1286. DOI: 10.1016/j.comnet.2021.108196.

Jiaye Shao, Yanqgin Zhu, and Qijin Ji. “Efficient decentralized attribute-based
encryption with outsourced computation for mobile cloud computing”. In:
Proceedings - 15th IEEE International Symposium on Parallel and Distributed
Processing with Applications and 16th IEEE International Conference on
Ubiquitous Computing and Communications, ISPA/IUCC 2017. Institute of
Electrical and Electronics Engineers Inc., May 2018, pp. 417-422. ISBN:
9781538637906. DOI: 10.1109/ISPA/IUCC.2017.00067.

49

https://doi.org/10.1007/978-3-540-89754-5_33
https://doi.org/10.1007/978-3-540-89754-5_33
https://doi.org/10.1145/1653662.1653678
https://doi.org/10.1007/978-3-642-23822-2_16
https://doi.org/10.1007/978-3-319-69471-9_7
https://doi.org/10.1145/2914642.2914659
https://doi.org/10.1016/j.comnet.2021.108196
https://doi.org/10.1109/ISPA/IUCC.2017.00067

BIBLIOGRAPHY

[31]

32|

[33]

[34]

[35]

[36]

37|

[38]

Mohammed B.M. Kamel, Peter Ligeti, and Christoph Reich. “SDABE:
Efficient Encryption in Decentralized CP-ABE using Secret Sharing”. In:
International Conference on Electrical, Computer, and Energy Technologies,
ICECET 2022. Prague, Czech Republic: Institute of Electrical and Electronics
Engineers Inc., 2022, pp. 1-6. ISBN: 9781665470872. DOI: 10 . 1109 /
ICECET55527.2022.9872711.

Yannis Rouselakis and Brent Waters. “Efficient Statically-Secure Large-
Universe Multi-Authority Attribute-Based Encryption”. In: Financial
Cryptography and Data Security. FC 2015. Lecture Notes in Computer
Science. Ed. by R. Bohme and T. Okamoto. Vol. 8975. Berlin, Heidelberg:
Springer, 2015, pp. 315-332. ISBN: 978-3-662-47853-0. URL: https://doi .
org/10.1007/978-3-662-47854-7_19.

Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. “On Secret
Sharing Systems”. In: IEEE Transactions on Information Theory 29.1 (1983),
pp. 35—41. 1SSN: 15579654. DOI: 10.1109/TIT.1983.1056621.

Amos Beimel. “Secret-Sharing Schemes: A Survey”. In: Coding and Cryptology.
IWCC 2011. Lecture Notes in Computer Science. Ed. by Yeow Meng Chee et
al. Vol. 6639. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 11-46. ISBN: 978-3-642-20900-0. pDOI: 10.1007/
978-3-642-20901-7. URL: https://doi.org/10.1007/978-3-642-20901-
T_2.

Adi Shamir. “How to Share a Secret”. In: Communications of the ACM.
Vol. 22(11). 1979, pp. 612-613. URL: https://doi.org/10.1145/359168.
359176.

Mitsuru Ito, Akira Saito, and Takao Nishizeki. “Secret sharing scheme realizing
general access structure”. In: Proc. of the IEEE Global Telecommunication
Conference, Globecom 1987. 1987, pp. 99-102. URL: https://doi.org/10.
1002/ecjc.4430720906.

Josh Benaloh and Jerry Leichter. “Generalized Secret Sharing and Monotone
Functions”. In: Advances in Cryptology — CRYPTO’ 88. CRYPTO 1988.
Lecture Notes in Computer Science. Ed. by S. (Shafi) Goldwasser. Vol. 403.
New York, NY: Springer, 1990, pp. 27-35. ISBN: 9780387971964. URL: https:
//doi.org/10.1007/0-387-34799-2_3.

The Tamarin Team. Tamarin-Prover Manual Security Protocol Analysis in the
Symbolic Model. Tech. rep. 2022. URL: https://tamarin-prover.github.

io/manual/tex/tamarin-manual.pdf.

20

https://doi.org/10.1109/ICECET55527.2022.9872711
https://doi.org/10.1109/ICECET55527.2022.9872711
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1109/TIT.1983.1056621
https://doi.org/10.1007/978-3-642-20901-7
https://doi.org/10.1007/978-3-642-20901-7
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1002/ecjc.4430720906
https://doi.org/10.1002/ecjc.4430720906
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

BIBLIOGRAPHY

[39]

|40]

[41]

[42]

[43]

[44]

Simon Meier et al. The TAMARIN Prover for the Symbolic Analysis of
Security Protocols. Tech. rep. DOI: 10.1007/978-3-642-39799-8{_}48.

Sevdenur Baloglu et al. “Provably Improving Election Verifiability in Belenios”.
In: Electronic Voting. Ed. by Robert Krimmer et al. Vol. 12900. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2021, pp. 1-16.
DOI: 10.1007/978-3-030-86942-7. URL: https://doi.org/10.1007/978-
3-030-86942-7_1.

David Basin et al. “Tamarin: Verification of Large-Scale, Real World,
Cryptographic Protocols”. In: (2022). DOI: 10.1109/msec . 2022 . 3154689.
URL: https://hal.archives-ouvertes.fr/hal-03586826.

Zhen Liu et al. Efficient Generation of Linear Secret Sharing Scheme Matrices
from Threshold Access Trees. Tech. rep. 2014.

Brent Waters. “Ciphertext-Policy Attribute-Based Encryption: An Expressive,
Efficient, and Provably Secure Realization”. In: Public Key Cryptography —
PKC 2011. PKC 2011. Lecture Notes in Computer Science. Vol. 6571. Berlin,
Heidelberg: Springer, 2011, pp. 53-70. URL: https://doi.org/10.1007/978-
3-642-19379-8_4.

Mohammed Kamel. ODABE. 2022. URL: https://github.com/mohammed -
kamel/odabe.

51

https://doi.org/10.1007/978-3-642-39799-8{_}48
https://doi.org/10.1007/978-3-030-86942-7
https://doi.org/10.1007/978-3-030-86942-7_1
https://doi.org/10.1007/978-3-030-86942-7_1
https://doi.org/10.1109/msec.2022.3154689
https://hal.archives-ouvertes.fr/hal-03586826
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://github.com/mohammed-kamel/odabe
https://github.com/mohammed-kamel/odabe

1

2

3

Appendix A

Lemmas TAMARIN models

A.1 ABE

This section contains the lemmas of the ABE TAMARIN model.

executable without decrypt Sanity check to see if the protocol is executable
until decryption. This lemma checks if there exists a trace where the setup of at-
tribute authority attribute authority (AA) was successful and that this attribute
authority is also used for encryption and secret key generation. This lemma is used

in the developing phase.

lemma executable_without_decrypt:
exists-trace
"Ex A AA m gid attl #i #j #k. AA_Setup(AA)@i & Encrypt(AA, m)
@j & CreateKey (A, AA, gid, attl) @k"

Code A.1: executable without decrypt lemma ABE

executable Sanity check to see if the protocol is executable. This lemma checks
if there exists a trace where the setup for attribute authority AA was successful and
that this attribute authority is also used for encryption. Moreover, message m is the

message that is encrypted and also the result of decryption.

lemma executable:
exists-trace
"Ex AA m #i #j #k. AA_Setup(AA)@i & Encrypt(AA, m) @j & Decrypt
(m) @k"

Code A.2: executable lemma ABE

52

1

2

3

A. Lemmas TAMARIN models

secret message This lemma proves the confidentiality of the message. It states
that for all messages, if the message m is encrypted then the adversary cannot learn

message m at any point in time.

lemma secret_message:
"All m AA #i #j. Encrypt(AA, m)@i & Secret_m(m)@j
==> not (Ex #k. K(m)@k)"

Code A.3: secret _message lemma ABE

secret user key This lemma proves the confidentiality of the secret keys of the
user. It states that for all secret keys k of the user, the adversary cannot learn this

secret key k at any point in time.

lemma secret_user_key:
"All k #i. SecretKey(k)@i
==> (not (Ex #k. K(k)@k))"

Code A.4: secret _user key lemma ABE

secret AA key This lemma proves the confidentiality of the secret key of the
attribute authority AA. It states that for all secret keys k of attribute authority
AA, the adversary cannot learn the secret key k unless the adversary performed a

long-term secret key reveal on the attribute authority AA.

lemma secret_AA_key:
"All AA k #i. SecretKey_AA(AA, k)@i ==> (not (Ex #k. K(k)@Qk) |
(Ex #1. RevealAA(AA)@1))"

Code A.5: secret_ AA _key lemma ABE

A.2 DABE

In this section, the security properties of the DABE TAMARIN model are de-

scribed.

executable setup encrypt Sanity check to see if the setup and encryption
phase are executable. The lemma checks if there exists a trace where both attribute
authorities AA1 and AA2 performed the setup correctly and both authorities are

used to encrypt a message. This lemma is used in the developing phase.

lemma executable_setup_encrypt:
exists-trace
"Ex AA1 AA2 #i #j #k. AA_Setup(AA1)@i & AA_Setup(AA2)Qj &
Encrypt (AA1, AA2)@k"

23

1

2

A. Lemmas TAMARIN models

Code A.6: executable setup encrypt lemma DABE

executable encrypt decrypt Sanity check to seeif the encryption and decryp-
tion are executable. The lemma checks if there exists a trace where both attribute
authorities AA1 and AA2 are used for encryption and decryption. This lemma is

used in the developing phase.

lemma executable_encrypt_decrypt:
exists-trace
"Ex AA1l AA2 #i #j. Encrypt (AA1l, AA2)Qi & Decrypt (AAl, AA2)@j"

Code A.7: executable encrypt decrypt lemma DABE

executable Sanity check to see if the protocol is executable. This lemma checks
if there exists a trace where the attribute authorities AA1 and AA2 are correctly
setup. Besides that, two keys are created for user w for attributes attl and att2
and the attribute authorities AA1 and AA2 possess the attributes attl and att2
respectively. Moreover, the access policy on the ciphertext contains the attributes
attl and att2 and these attributes are also used in the encryption phase. Lastly, that
user u decrypts the ciphertext with access policy attl AND att2. This lemma checks

the entire functioning of the protocol.

lemma executable:
exists-trace
"Ex AA1 AA2 u attl att2 #i #j #k #1 #m #n #o #p #q. AA_Setup(
AA1)@i & AA_Setup (AA2)0j &

CreateKey(u, attl)@k & CreateKey(u, att2)@l & AttrAA(attl,
AA1)@m & AttrAA(att2, AA2)0@n & Create_AP(attl, att2)@o

&
EncryptAtt (attl, att2)@p & DecryptAttUser (attl, att2, u)@q

Code A.8: executable lemma DABE

secret message This lemma proves the confidentiality of the message. It states
that for all messages, if the message m is encrypted with an access policy that
contains attributes from attribute authorities AA1 and AA2, then the adversary
cannot learn message m unless the adversary performed a long-term key reveal on
the attribute authorities AA1 and AA2.

lemma secret_message:
"All m AA1 AA2 #i #j. Encrypt (AAl, AA2)Qi & Secret_m(m)@j

54

A. Lemmas TAMARIN models

==> (not (Ex #k. K(m)@k)
| ((Ex #1. RevealAA(AA1)@l) & (Ex #1. RevealAA(AA2)@1)))"

Code A.9: secret _message lemma DABE

collusion resistant The lemma checks that the protocol is collusionresistance,
which means that users cannot collude to decrypt a ciphertext. This lemma checks
for all traces that if we have an access policy consisting of attributes attl and att2
and these attributes are also used for encryption, and user ul only has attribute
attl and thus a key for this attribute and user u2 only has attribute att2 and the
secret key, then these two users both cannot decrypt the ciphertext, so they are not

able to collude together.

lemma collusion_resistant:
"All ul u2 attl att2 #i #j #k #1.
Create_AP(attl, att2)@i & EncryptAtt(attl, att2)Qj &
CreateKey(ul, attl)@k & CreateKey(u2, att2)@l & not(Ex #p.
CreateKey(ul, att2)@p) & not(Ex #q. CreateKey(u2, attl)@q)
==> not((Ex #m. DecryptAttUser (attl, att2, ul)Om) | (Ex #n.
DecryptAttUser (attl, att2, u2)@n))"

Code A.10: collusion _resistant lemma DABE

only decrypt with right attributes The lemma checks that a user can
only decrypt the ciphertext if it has the attributes according to the access pol-
icy. It checks that for all traces where the encryption is done with an access policy
containing attributes attl and att2 and decryption is done by user u, it means that

user u has a secret key for attributes attl and att2.

lemma only_decrypt_with_right_attributes:
"All u attl att2 #i #j.
EncryptAtt (attl, att2)@i & DecryptAttUser (attl, att2, u)Qj
==> ((Ex #k. CreateKey(u, attl1)@k) & (Ex #1. CreateKey(u, att2)
1)) "

Code A.11: only decrypt with right attributes lemma DABE

secret user key This lemma is exactly the same as in the ABE TAMARIN

model, lemma A.4.

not two AA same attribute This lemma proves that an attribute is only
associated to one attribute authority. It states that for all attribute authority AA1
which possesses attribute att, there does not exists an attribute authority AA2 who

also possesses attribute att, where AA1 and AA2 are not the same.

95

1

2

1

2

A. Lemmas TAMARIN models

lemma not_two_AA_same_attribute:
"All AA1l att #i. AttrAA(att, AA1)Q@i ==> not(Ex AA2 #j. AttrAA(
att, AA2)@j & not (AA1l = AA2))"

Code A.12: not _two_AA same attribute lemma DABE

secret AA key Thislemma is exactly the same as in the ABE TAMARIN model,

lemma A.5.

sameCT The lemma proves that the ciphertext that is decrypted in the protocol is
also encrypted before. So for all ciphertext that is used as an input in the decryption
algorithm, there exists a trace where this ciphertext was the output of the encryption

algorithm.

lemma sameCT:
"All ct #i. InCT(ct)@i ==> (Ex #j. OutCT(ct)@j)"

Code A.13: sameCT lemma DABE

gid hiding This lemma proves the confidentiality of the Global Identifier (GID)
of a user. It states that for all user GIDs gid, the adversary cannot learn the GID
gid.

lemma gid_hiding:
"All gid #i. UserGID(gid)@i
==> not (Ex #j. K(gid)@j)"

Code A.14: gid hiding lemma DABE

check correct AAs encrypt The lemma checks if the attribute authorities
that are used for encryption are the correct ones, so the public keys and attributes
belong to the AAs. It states that for all encryption phases with attribute authorities
AA1 and AA2, attributes attl and att2, and public keys pk1l and pk2, there exists
traces where the public key pkl belongs to attribute authority AA1, the public key
pk2 belongs to attribute authority AA2, attribute attl is associated to attribute
authority AA1l, and attribute att2 is associated to attribute authority AA2. This

lemma is used in the developing phase.

lemma check_correct_AAs_encrypt:
"A1l AA1 AA2 attl att2 pkl pk2 #i. EncryptCheck (AA1l, AA2, attl,
att2, pkl, pk2)e@i
==> (Ex #j #k #1 #m. Public_key_AA(AA1l, pkl1)Qj &
Public_key_AA(AA2, pk2)@k & AttrAA(attl, AA1)Q1l & AttrAA
(att2, AA2)GOm)"

26

1

2

A. Lemmas TAMARIN models

Code A.15: check correct AAs encrypt lemma DABE

A.3 ODABE

This section contains the lemmas of the full ODABE scheme in TAMARIN, so
including the proposed ODABE decryption scheme. The lemmas are similar to the
lemmas in the ODABE scheme without the proposed ODABE decryption scheme,

except for the computational node decryption lemmas.

executable setup encrypt Sanity check to see if the setup and encryption
phase are executable. The lemma check if there exists a trace where both attribute
authorities AA1 and AA2 performed both setups, the public/private key setup and
variable generation setup, correctly and both authorities are used to encrypt a mes-

sage. This lemma is used in the developing phase.

lemma executable_setup_encrypt:
exists-trace
"Ex AA1 AA2 #i #j #k #1 #m. AA_Setup(AA1)@i & AA_Setup(AA2)Qj &
AA_Setup_var (AA1)@1 & AA_Setup_var (AA2)@m & Encrypt (AA1l,
AA2) @k"

Code A.16: executable setup encrypt lemma ODABE

executable encrypt decrypt Thislemma is exactly the same as in the DABE
TAMARIN model, lemma A.7.

executable Sanity check to see if the protocol is executable. This lemma checks
if there exists a trace where the attribute authorities AA1 and AA2 are correctly
setup, both with normal setup and variable setup. Besides that, two keys are created
for user u with GID gid2 for attributes attl and att2 and the attribute authorities
AA1 and AA2 possess the attributes attl and att2 respectively. Moreover, the access
policy on the ciphertext contains the attributes attl and att2 and these attributes
are also used in the encryption phase. The encryptor has GID gid and prepares
the encryption to send to the computational node ¢p, who performs pre-encryption.
Lastly, that user v with GID gid2 decrypts the ciphertext with access policy attl
AND att2. He also prepares decryption for the computational node ¢p to perform

the pre-decryption. This lemma checks the entire functioning of the protocol.

lemma executable:

exists-trace

o7

1

2

3

4

A. Lemmas TAMARIN models

"Ex AA1 AA2 u attl att2 cp gid gid2 #i #j #k #1 #m #n #o #p #q
#s #t #u #v #w #x. AA_Setup(AA1)@i & AA_Setup(AA2)Q@j &
AA_Setup_var (AA1)Qu & AA_Setup_var (AA2)Qv &

CreateKey(u, attl, gid2)@k & CreateKey(u, att2, gid2)0l &
AttrAA(attl, AA1)@m & AttrAA(att2, AA2)@n & Create_AP(
attl, att2)@o &

EncryptAtt (attl, att2)0p & DecryptAttUser (attl, att2, u)Qq
& StartEncrypt(cp, gid)@s & CPPreEncrypt(cp, gid)Qt &
StartDecrypt (cp, gid2)@w & CPPreDecrypt(cp, gid2)ox"

Code A.17: executable lemma ODABE

authority setup correct Sanity check to see if the setup of variables for at-
tribute authority AA is done after setting up the attribute authority AA (public/pri-
vate key). The lemma states that when the variable setup of attribute authority AA
is performed, there exists a trace that the normal setup of attribute authority AA

is performed before the variable setup. This lemma is used in the developing phase.

lemma authority_setup_correct:
"A1l AA #i. AA_Setup_var (AA)@i ==> (Ex #j. AA_Setup(AA)@j & j <

i)ll

Code A.18: authority setup correct lemma ODABE

secret message This lemma is exactly the same as in the DABE TAMARIN

model, lemma A.9.

collusion resistant The lemma checks that the protocol is collusion resistance,
which means that users cannot collude to decrypt a ciphertext. This lemma checks
for all traces that if we have an access policy consisting of attributes attl and att2
and these attributes are also used for encryption, and user ul with GID gid1 only
has attribute attl and thus a key for this attribute and user u2 with GID gid2 only
has attribute att2 and the secret key, then these two users both cannot decrypt the

ciphertext, so they are not able to collude together.

lemma collusion_resistant:

"A1l ul u2 attl att2 gidl gid2 #i #j #k #1.

Create_AP(attl, att2)@i & EncryptAtt(attl, att2)@j &

CreateKey(ul, attl, gidl)@k & CreateKey(u2, att2, gid2)@l & not
(Ex #p. CreateKey(ul, att2, gidl)@p) & not(Ex #q. CreateKey(
u2, attl, gid2)eq)

==> not((Ex #m. DecryptAttUser (attl, att2, ul)Om) | (Ex #n.
DecryptAttUser (attl, att2, u2)@n))"

Code A.19: collusion _resistant lemma ODABE

o8

1

2

A. Lemmas TAMARIN models

only decrypt with right attributes The lemma checks that a user can
only decrypt the ciphertext if it has the attributes according to the access pol-
icy. It checks that for all traces where the encryption is done with an access policy
containing attributes attl and att2 and decryption is done by user u with GID gid,

it means that user u has a secret key for attributes attl and att2.

lemma only_decrypt_with_right_attributes:
"All u attl att2 #i #j.
EncryptAtt (attl, att2)@i & DecryptAttUser (attl, att2, u)Qj
==> ((Ex gid #k. CreateKey(u, attl, gid)@k) & (Ex gid #1.
CreateKey(u, att2, gid)el))"

Code A.20: only decrypt with right attributes lemma ODABE

secret user key This lemma is exactly the same as in the ABE TAMARIN

model, lemma A.4.

not two AA same attribute This lemma is exactly the same as in the
DABE TAMARIN model, lemma A.12.

secret AA key Thislemma is exactly the same as in the ABE TAMARIN model,

lemma A.5.

encrypt cpnode This lemma checks that the user that sends the values to the
computational node is also the one who finishes the encryption. It states that for
a user u that performs encryption, there also exists a trace where the user started
the encryption by preparing and sending values to the computational node ¢p, who

performs pre-encryption.

lemma encrypt_cpnode:
"All u #i. EncryptUser(u)@i ==> (Ex id #j #k. StartEncrypt (id,
u)@j & CPPreEncrypt(id, u)e@k)"

Code A.21: encrypt _cpnode lemma ODABE

decrypt cpnode This lemma checks that the user that sends the values to the
computational node is also the one who finishes the decryption. It states that for
a user u that performs decryption, there also exists a trace where the user started
the decryption by preparing and sending values to the computational node c¢p, who

performs pre-decryption.

lemma decrypt_cpnode:
"All u #i. DecryptUser(u)@i ==> (Ex id #j #k. StartDecrypt(id,
u)@j & CPPreDecrypt (id, u)@k)"

29

A. Lemmas TAMARIN models

Code A.22: decrypt_cpnode lemma ODABE

sameCT This lemma is exactly the same as in the DABE TAMARIN model, lemma
A.13.

secret variable This lemma proves the confidentiality of the variables that are

created. It states that for all variables k, the adversary cannot learn variable k.

lemma secret_variable:
"All k #i. SecretVar(k)@i
==> (not (Ex #k. K(k)@k))"

Code A.23: secret _variable lemma ODABE

gid hiding This lemma is exactly the same as in the DABE TAMARIN model,
lemma A.14.

check correct AAs encrypt Thislemma isexactly the same asin the DABE
TAMARIN model, lemma A.15.

60

Appendix B

Labels TAMARIN models

This appendix contains the facts, action facts and trace restrictions of the
TAMARIN models. They all have a small description and between the brackets after
the description you can see in which model (ABE, DABE, ODABE, or ODABE-Dec)

this (action) fact / trace restriction is used.

B.1 Facts

e AA_SecretKey($AA, sk): stores the entity AA and the secret key sk of this
entity. (ABE, DABE, ODABE, ODABE-Dec)

e AA_publicKey($AA, pubk): stores the entity AA and the public key pubk of
this entity. (ABE)

e UserID(GID, $A): stores the GID of user A. (ABE, DABE, ODABE, ODABE-
Dec)

e UserKeyCombi(GID, $A, keyGID, att): stores the secret key, keyGID, of user
A with GID for attribute att. (ABE)

e AttributeAuthority(att,$AA): couples the attribute attr to attribute au-
thority AA. (ABE)

e APState(attl,att2, accessPolicy): stores the access policy consisting of at-
tributes attl and att2. (ABE, DABE, ODABE, ODABE-Dec)

e AA_pubkey($AA, pubk): stores the entity AA and the public key pubk of this
entity. (DABE, ODABE, ODABE-Dec)

o AA_keys($SAA, pubk, sk): stores the entity AA, the public key pubk of this
entity, and the secret key sk of this entity. (DABE, ODABE, ODABE-Dec)

61

B. Labels TAMARIN models

e UserKeyCombi(GID, keyGID, att $AA,$A): stores the secret key, keyGID, of
user A with GID for attribute att belonging to attribute authority AA. (DABE,
ODABE, ODABE-Dec)

e AttributeAuthority(att,$AA, pk): couples the attribute attr to attribute au-
thority AA with public key pk. (DABE, ODABE, ODABE-Dec)

e Vars(z,y,z, GID): stores the variables x,y,z and the GID of the user.
(ODABE, ODABE-Dec)

e UserValues(varGen, GID, AA, pk): stores the variables, varGen, that at-
tribute authority AA with public key pk setup for user with GID. (ODABE,
ODABE-Dec)

e CPNode(nodel D): stores the nodel D of the computational node that is created.
(ODABE, ODABE-Dec)

e CP_Encrypt(x,y, z,nodelD, GID, AAl, AA2): stores the computational
node’s nodel D that performs the pre-encryption with z,y, z for user with
GID where the attributes of attribute authorities AA1 and AA2 are used in
the access policy. (ODABE, ODABE-Dec)

e PreEncrypt(preComp, nodel D, GID, AAl, AA2): stores the result of pre-
encryption, preComp, performed by computational node with nodelD for
user with GID and involved attribute authorities AA1 and AA2. (ODABE,
ODABE-Dec)

e CP_Decrypt(ct,nodel D, GID, keyGID1p, keyGID2p, hGIDp): stores the com-
putational node’s nodel D that performs the pre-decryption with keyGID1p,
keyGID2p, hGIDp, and ct for user with GID. (ODABE-Dec)

e DecryptorPrep(ct,attl,att2, U, GID, accessPolicy, AA1, AA2): stores a state
for the decryptor U with GID with the ciphertext ct, attributes attl and att2
together with the accessPolicy and the attribute authorities AA1 and AA2
associated with the attributes. (ODABE-Dec)

e PreDecrypt(preCompDec, nodel D, GID): stores the result of pre-decryption,
preCompDec, performed by computational node with nodel D for user with
GID. (ODABE-Dec)

B.2 Action facts

e AA_Setup($3AA): entity AA ran the attribute authority setup algorithm. (ABE,
DABE, ODABE, ODABE-Dec)

62

B. Labels TAMARIN models

SecretKey_AA($AA, sk): couples the entity AA to secret key sk. (ABE)

RevealAA($AA): the keys of entity AA are revealed. (ABE, DABE, ODABE,
ODABE-Dec)

CreateKey($A,$AA, GID, att): a secret key is created for user A with GID
for attribute att that belongs to attribute authority AA. (ABE)

SecretKey(keyGID): keyGID is kept secret for an adversary. (ABE, DABE,
ODABE, ODABE-Dec)

Create_AP(): an access policy is created. (ABE)

Encrypt("AA’,m): encrypt message m using the public key of attribute au-
thority AA. (ABE)

Secret_m(m): the message is kept secret for an adversary. (ABE, DABE,
ODABE, ODABE-Dec)

Decrypt(message): message is the result of the decrypt algorithm. (ABE)

SecretKey_AA_key($AA, sk): couples the entity AA to secret key sk. (DABE,
ODABE, ODABE-Dec)

Public_key_AA($AA, pubk): couples the entity AA to public key pubk.
(DABE, ODABE, ODABE-Dec)

UserGID(GID): user with GID is created. (DABE, ODABE, ODABE-Dec)

CreateKey($A4, att): a secret key is created for user A for attribute att. (DABE,
ODABE)

AttrAA(att,$AA): couples the attribute authority AA with attribute att that
belongs to this AA. (DABE, ODABE, ODABE-Dec)

Create_AP(attl, att2): an access policy with attributes att1 and att2 is created.
(DABE, ODABE, ODABE-Dec)

Encrypt(AAl, AA2): the encryption algorithm used attributes from attribute
authorities AA1 and AA2. (DABE, ODABE, ODABE-Dec)

EncryptAtt(attl, att2): the encryption algorithm uses attributes attl and att2
to encrypt. (DABE, ODABE, ODABE-Dec)

OutCT(ct): the ciphertext ct is the output of the encryption algorithm. (DABE,
ODABE, ODABE-Dec)

63

B. Labels TAMARIN models

EncryptCheck(AAl, AA2, attl, att2, pkl, pk2): the encryption algorithm used
attributes attl and att2 from respectively attributes authorities AA1 and AA2
with respectively public keys pkl and pk2 to encrypt the message. (DABE,

ODABE, ODABE-Dec)

Decrypt(AAL, AA2): the attribute authorities AA1 and AA2 that contain the
attributes needed for decryption. (DABE, ODABE, ODABE-Dec)

DecryptAttUser(attl,att2,U): user U decrypts the message using attributes
attl and att2. (DABE, ODABE, ODABE-Dec)

InCT(ct): the ciphertext ct is the input of the decryption algorithm. (DABE,
ODABE, ODABE-Dec)

SecretVar(z/y/z/varGen/preComp/p/preCompDec/preCompEnc): value
x/y/z/varGen/preComp/p/preCompDec/preCompEnc is kept secret for an
adversary. (ODABE, ODABE-Dec)

AA_Setup_var(AA): attribute authority AA setup the variables. (ODABE,
ODABE-Dec)

StartEncrypt(nodel D, GID): the encryption prepare is performed by user
with GID and will be send to the computational node with nodel D. (ODABE,
ODABE-Dec)

CPPreEncrypt(nodel D, GID): the pre-encryption is performed by computa-
tional node with nodel D for user with GID. (ODABE, ODABE-Dec)

EncryptUser(GID): the GID of the user that encrypted the message.
(ODABE, ODABE-Dec)

CreateKey($A4, att, GID): a secret key is created for user A with GID for
attribute att. (ODABE-Dec)

StartDecrypt(nodel D, GID): the decryption prepare is performed by user
with GID and will be send to the computational node with nodel D. (ODABE-
Dec)

CPPreDecrypt(nodel D, GID): the pre-decryption is performed by computa-
tional node with nodel D for user with GID. (ODABE-Dec)

DecryptUser(GID): user with GID decrypts the message. (ODABE-Dec)

64

B. Labels TAMARIN models

B.3 Trace restrictions

e Equality(x,y): checks that values x and y are the same. (ABE, DABE,
ODABE, ODABE-Dec)

1 restriction Equality:

2 "All x y #i. Eq(x,y) @i ==> x = y"

Code B.1: Equality trace restriction

e Once(x): checks that the trace is only created once, so if there are two oc-
cassions of Once(x), they happen at the same time. (ABE, DABE, ODABE,
ODABE-Dec)

1 restriction Once:
2 "All X #i #j. Once(X)Q@i & Once(X)Q@j ==> #i = #j"

Code B.2: Once trace restriction

e Inequality(x,y): checks that values x and y are not the same. (DABE,
ODABE, ODABE-Dec)

1 restriction Inequality:
2 "All x #i. Neq(x,x) @ #i ==> F"

Code B.3: Inequality trace restriction

e Attribute(z,y, AP): checks that the access policy AP equals < z,y > or

< y,x >, so it ensures the attributes x and y are part of the access policy AP.
(DABE, ODABE, ODABE-Dec)

1 restriction Attribute:
2 "All x y ap #i. Attribute(x, y, ap) @i ==> (<x, y> = ap | <y,

x> = ap)n

Code B.4: Attribute trace restriction

65

List of Figures

2.1

3.1

3.2
3.3

4.1
4.2
4.3

Example of Key-Policy Attribute-based Encryption (KP-ABE) and
Ciphertext-Policy Attribute-based Encryption (CP-ABE) 7

Conversion from access tree to Linear Secret Sharing Scheme (LSSS)

matrix for access policy ‘A AND B AND (COR D) 16
DABE overview 20
ODABE Encryption overview 22
ODABE Decryption overview 26
ODABE Decryption setup overview 30
DABE and ODABE decryptor execution time 31

66

List of Tables

2.1 Supported properties ABE schemes

4.1 Number of heavy computations in decryption schemes, i = |A| and

e=|T| .

4.2 Decryptor execution time of decryption schemes

67

List of Algorithms and Protocols

1 LSSS Conversion algorithm [42]
2 ODABE Secret decryption parameter generation
3 ODABE Decryption

68

List of Codes

A.1 executable without decrypt lemma ABE 52
A.2 executable lemma ABE 000 52
A.3 secret _message lemma ABEo 0000 53
A4 secret user key lemma ABE 000000 53
A5 secret AA keylemma ABE. 0. 53
A.6 executable setup encrypt lemma DABE 23
A.7 executable encrypt decrypt lemma DABE 54
A.8 executable lemma DABE 0L 54
A9 secret message lemma DABE00 0000000 54
A.10 collusion _resistant lemma DABE 5Y)
A.11 only decrypt with right attributes lemma DABE 55
A12not two AA same attribute lemma DABE 56
A13sameCT lemma DABE 56
A.14 gid hiding lemma DABE o000 56
A.15 check correct AAs_ encrypt lemma DABE 56
A.16 executable setup encrypt lemma ODABE 57
A.17 executable lemma ODABE, 57
A.18 authority setup correct lemma ODABE 58
A.19 collusion _resistant lemma ODABE, 58
A.20 only decrypt with right attributes lemma ODABE. 59
A.21 encrypt _cpnode lemma ODABE, 59
A.22 decrypt _cpnode lemma ODABE 59
A .23 secret variable lemma ODABE 60
B.1 Equality trace restriction L Lo 65
B.2 Once trace restriction oL 65
B.3 Inequality trace restriction 65
B.4 Attribute trace restrictiono 65

69

	Introduction
	Overview
	Thesis Objectives
	Contribution
	Organization of the Thesis

	Related Work
	Formal Verification
	Attribute-based Encryption
	Decentralized Attribute-based Encryption
	Lightweight Decentralized Attribute-based Encryption

	Preliminaries
	Secret Sharing
	Formal Verification
	Tamarin
	Access Policy
	Linear Secret Sharing Scheme
	Bilinear Map
	Attribute-based Encryption
	Decentralized Attribute-based Encryption
	Lightweight Decentralized Attribute-based Encryption

	Proposed Outsourced Decryption
	Decryption DABE
	Possible Improvements

	Security Definition
	Proposed Decryption ODABE
	Analysis

	Formal Verification
	ABE Model in Tamarin
	DABE Model in Tamarin
	ODABE Model in Tamarin
	ODABE Decryption in Tamarin

	Conclusion
	Summary of the Thesis
	Conclusion
	Future Research Directions

	Bibliography
	Lemmas Tamarin models
	ABE
	DABE
	ODABE

	Labels Tamarin models
	Facts
	Action facts
	Trace restrictions

	List of Figures
	List of Tables
	List of Algorithms and Protocols
	List of Codes

