University of Twente Student Theses


Individual action and group activity recognition in soccer videos

Gerats, B.G.A. (2020) Individual action and group activity recognition in soccer videos.

[img] PDF
Abstract:Data and statistics are key to soccer analytics and have important roles in player evaluation and fan engagement. Automatic recognition of soccer events - such as passes and corners - would ease the data gathering process, potentially opening up the market for non-professional soccer analytics. We propose a novel method for the automatic recognition of soccer events from video. To the best of our knowledge, it is the first method that infers both individual actions and group activities simultaneously from soccer videos. Three key contributions in the proposed method are (1) the use of player-centric snippets as model input, (2) per-player feature extraction with an I3D CNN - based on RGB video and optical flow - and (3) the use of feature suppression and zero-padding in graph attention networks for feature contextualisation. The results show that the proposed method performs better than an alternative state-of-the-art method, designed for action and activity recognition in volleyball. Our method gains 98.7% accuracy for the recognition of eight actions and 75.2% for eleven activities.
Item Type:Essay (Master)
Faculty:EEMCS: Electrical Engineering, Mathematics and Computer Science
Subject:54 computer science
Programme:Computer Science MSc (60300)
Link to this item:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page